WorldWideScience

Sample records for single hippocampal neurons

  1. Elucidating distinct ion channel populations on the surface of hippocampal neurons via single-particle tracking recurrence analysis

    Science.gov (United States)

    Sikora, Grzegorz; Wyłomańska, Agnieszka; Gajda, Janusz; Solé, Laura; Akin, Elizabeth J.; Tamkun, Michael M.; Krapf, Diego

    2017-12-01

    Protein and lipid nanodomains are prevalent on the surface of mammalian cells. In particular, it has been recently recognized that ion channels assemble into surface nanoclusters in the soma of cultured neurons. However, the interactions of these molecules with surface nanodomains display a considerable degree of heterogeneity. Here, we investigate this heterogeneity and develop statistical tools based on the recurrence of individual trajectories to identify subpopulations within ion channels in the neuronal surface. We specifically study the dynamics of the K+ channel Kv1.4 and the Na+ channel Nav1.6 on the surface of cultured hippocampal neurons at the single-molecule level. We find that both these molecules are expressed in two different forms with distinct kinetics with regards to surface interactions, emphasizing the complex proteomic landscape of the neuronal surface. Further, the tools presented in this work provide new methods for the analysis of membrane nanodomains, transient confinement, and identification of populations within single-particle trajectories.

  2. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons.

    Science.gov (United States)

    Ishikawa, Daisuke; Matsumoto, Nobuyoshi; Sakaguchi, Tetsuya; Matsuki, Norio; Ikegaya, Yuji

    2014-04-02

    Learning is a process of plastic adaptation through which a neural circuit generates a more preferable outcome; however, at a microscopic level, little is known about how synaptic activity is patterned into a desired configuration. Here, we report that animals can generate a specific form of synaptic activity in a given neuron in the hippocampus. In awake, head-restricted mice, we applied electrical stimulation to the lateral hypothalamus, a reward-associated brain region, when whole-cell patch-clamped CA1 neurons exhibited spontaneous synaptic activity that met preset criteria. Within 15 min, the mice learned to generate frequently the excitatory synaptic input pattern that satisfied the criteria. This reinforcement learning of synaptic activity was not observed for inhibitory input patterns. When a burst unit activity pattern was conditioned in paired and nonpaired paradigms, the frequency of burst-spiking events increased and decreased, respectively. The burst reinforcement occurred in the conditioned neuron but not in other adjacent neurons; however, ripple field oscillations were concomitantly reinforced. Neural conditioning depended on activation of NMDA receptors and dopamine D1 receptors. Acutely stressed mice and depression model mice that were subjected to forced swimming failed to exhibit the neural conditioning. This learning deficit was rescued by repetitive treatment with fluoxetine, an antidepressant. Therefore, internally motivated animals are capable of routing an ongoing action potential series into a specific neural pathway of the hippocampal network.

  3. Single neuron computation

    CERN Document Server

    McKenna, Thomas M; Zornetzer, Steven F

    1992-01-01

    This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real n

  4. Population model of hippocampal pyramidal neurons, linking a refractory density approach to conductance-based neurons

    Science.gov (United States)

    Chizhov, Anton V.; Graham, Lyle J.

    2007-01-01

    We propose a macroscopic approach toward realistic simulations of the population activity of hippocampal pyramidal neurons, based on the known refractory density equation with a different hazard function and on a different single-neuron threshold model. The threshold model is a conductance-based model taking into account adaptation-providing currents, which is reduced by omitting the fast sodium current and instead using an explicit threshold criterion for action potential events. Compared to the full pyramidal neuron model, the threshold model well approximates spike-time moments, postspike refractory states, and postsynaptic current integration. The dynamics of a neural population continuum are described by a set of one-dimensional partial differential equations in terms of the distributions of the refractory density (where the refractory state is defined by the time elapsed since the last action potential), the membrane potential, and the gating variables of the voltage-dependent channels, across the entire population. As the source term in the density equation, the probability density of firing, or hazard function, is derived from the Fokker-Planck (FP) equation, assuming that a single neuron is governed by a deterministic average-across-population input and a noise term. A self-similar solution of the FP equation in the subthreshold regime is obtained. Responses of the ensemble to stimulation by a current step and oscillating current are simulated and compared with individual neuron simulations. An example of interictal-like activity of a population of all-to-all connected excitatory neurons is presented.

  5. Activation of perforant path neurons to field CA1 by hippocampal projections.

    Science.gov (United States)

    Bartesaghi, Renata; Gessi, Tiziana

    2003-01-01

    Previous evidence showed that single-shock stimulation of dorsal hippocampal commissure (PSD) fibers to the entorhinal cortex led to sequential activation of perforant path neurons to the dentate gyrus, dentate granule cells, pyramidal neurons of hippocampal fields CA3 and CA1, and, through reentrant hippocampal impulses, neurons of deep and superficial layers of the entorhinal cortex. The aim of the present study was to ascertain whether perforant path neurons to CA1 are activated by the PSD input and/or by the reentrant hippocampal impulses in this model. Field potentials evoked by single-shock (0.1-Hz) or repetitive (1-4 Hz) PSD stimulation were recorded in anesthetized guinea pigs from the entorhinal cortex, dentate gyrus, fields CA1 and CA3, and subiculum. A current source-density analysis of the evoked potentials was used to localize the input to field CA1 and dentate gyrus. After either single-shock or repetitive PSD stimulation, an early current sink was found in the molecular layer of the dentate gyrus, but no sink was present in CA1. With low-frequency PSD stimulation, a late (approximately 40-ms) surface positive wave occurred in field CA1 alone. During this wave, a current sink was found in the stratum lacunosum-moleculare of CA1, but no sink was present in the dentate gyrus. The late wave had threshold and magnitude related to the building up of the response evoked by reentrant hippocampal impulses in layer III of the entorhinal cortex and was abolished by selective interruption of the perforant path to CA1. The results show that the commissural input to the entorhinal cortex activates perforant path neurons to the dentate gyrus, but not those to field CA1 which are recruited by repetitive hippocampal impulses. These findings show different frequency-dependent patterns of loop operation that might be related to different behaviors.

  6. Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions.

    Science.gov (United States)

    Arnold, S E; Franz, B R; Gur, R C; Gur, R E; Shapiro, R M; Moberg, P J; Trojanowski, J Q

    1995-05-01

    The goal of this study was to characterize the hippocampal formation in patients with schizophrenia by measuring neuron density, neuron size, and variability of neuronal axis orientation. Brain tissue was obtained at autopsy from 14 prospectively accrued elderly patients with chronic schizophrenia and 10 age-compatible individuals without psychiatric disorder. Eight hippocampal regions of interest and two internal control regions (primary motor and visual cortices) were identified on Nissl-stained sections. Morphometric measurements were made without knowledge of diagnosis by means of a computer-based image analysis system. The patients exhibited smaller neuron size in the hippocampal regions relative to the control regions, which was significant only for the subiculum, CA1, and layer II of the entorhinal cortex. Neuron size in the control regions was nearly identical in the two groups. No significant differences in neuron density or in variability of neuronal axis orientation were identified for any region. There was no correlation between neuron size in any area and several potentially confounding variables (age, post-mortem interval, neuroleptic exposure, sex, brain hemisphere studied, duration of illness), with the exception of a negative correlation with age in layer II of the entorhinal cortex. Regression analyses indicated that the findings could not be attributed to these age effects. The subiculum, entorhinal cortex, and CA1 are the major subfields of the hippocampal region that maintain the afferent and efferent connections of the hippocampus with widespread cortical and subcortical targets. The smaller size of neurons in these subfields may reflect the presence of structural or functional impairments that disrupt these connections, which in turn could have important behavioral sequelae.

  7. Necroptosis Mediates TNF-Induced Toxicity of Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2014-01-01

    Full Text Available Tumor necrosis factor-α (TNF-α is a critical proinflammatory cytokine regulating neuroinflammation. Elevated levels of TNF-α have been associated with various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, the signaling events that lead to TNF-α-initiated neurotoxicity are still unclear. Here, we report that RIP3-mediated necroptosis, a form of regulated necrosis, is activated in the mouse hippocampus after intracerebroventricular injection of TNF-α. RIP3 deficiency attenuates TNF-α-initiated loss of hippocampal neurons. Furthermore, we characterized the molecular mechanism of TNF-α-induced neurotoxicity in HT-22 hippocampal neuronal cells. HT-22 cells are sensitive to TNF-α only upon caspase blockage and subsequently undergo necrosis. The cell death is suppressed by knockdown of CYLD or RIP1 or RIP3 or MLKL, suggesting that this necrosis is necroptosis and mediated by CYLD-RIP1-RIP3-MLKL signaling pathway. TNF-α-induced necroptosis of HT-22 cells is largely independent of both ROS accumulation and calcium influx although these events have been shown to be critical for necroptosis in certain cell lines. Taken together, these data not only provide the first in vivo evidence for a role of RIP3 in TNF-α-induced toxicity of hippocampal neurons, but also demonstrate that TNF-α promotes CYLD-RIP1-RIP3-MLKL-mediated necroptosis of hippocampal neurons largely bypassing ROS accumulation and calcium influx.

  8. Phenolic antioxidants attenuate hippocampal neuronal cell damage ...

    Indian Academy of Sciences (India)

    In this regard, certain dietary compounds are begining to receive increased attention, in particular those involving phytochemicals found in medicinal plants in alleviating neuronal injury. In the present study, we examined whether medicinal plant extracts protect neurons against excitotoxic lesions induced by kainic acid (KA) ...

  9. Thallium stimulates ethanol production in immortalized hippocampal neurons

    Science.gov (United States)

    2017-01-01

    Lactate and ethanol (EtOH) were determined in cell culture medium (CCM) of immortalized hippocampal neurons (HN9.10e cell line) before and after incubation with Thallium (Tl). This cell line is a reliable, in vitro model of one of the most vulnerable regions of central nervous system. Cells were incubated for 48 h with three different single Tl doses: 1, 10, 100 μg/L (corresponding to 4.9, 49 and 490 nM, respectively). After 48 h, neurons were “reperfused” with fresh CCM every 24/48 h until 7 days after the treatment and the removed CCM was collected and analysed. Confocal microscopy was employed to observe morphological changes. EtOH was determined by head space—solid phase microextraction -gas chromatography -mass spectrometry (HS-SPME-GCMS), lactate by RP-HPLC with UV detection. Tl exposure had significant effects on neuronal growth rate and morphology. The damage degree was dose-dependent. In not exposed cells, EtOH concentration was 0.18 ± 0.013 mM, which represents about 5% of lactate concentration (3.4 ± 0.10 mM). After Tl exposure lactate and EtOH increased. In CCM of 100 and 10 μg/L Tl-treated cells, lactate increased 24 h after reperfusion up to 2 and 3.3 times the control value, respectively. In CCM of 10 and 100 μg/L Tl-treated cells 24 h after reperfusion, EtOH increased up to 0.3 and 0.58 mmol/L. respectively. These results are consistent with significant alterations in energy metabolism, despite the low doses of Tl employed and the relatively short incubation time. PMID:29161327

  10. Thallium stimulates ethanol production in immortalized hippocampal neurons.

    Science.gov (United States)

    Colombaioni, Laura; Onor, Massimo; Benedetti, Edoardo; Bramanti, Emilia

    2017-01-01

    Lactate and ethanol (EtOH) were determined in cell culture medium (CCM) of immortalized hippocampal neurons (HN9.10e cell line) before and after incubation with Thallium (Tl). This cell line is a reliable, in vitro model of one of the most vulnerable regions of central nervous system. Cells were incubated for 48 h with three different single Tl doses: 1, 10, 100 μg/L (corresponding to 4.9, 49 and 490 nM, respectively). After 48 h, neurons were "reperfused" with fresh CCM every 24/48 h until 7 days after the treatment and the removed CCM was collected and analysed. Confocal microscopy was employed to observe morphological changes. EtOH was determined by head space-solid phase microextraction -gas chromatography -mass spectrometry (HS-SPME-GCMS), lactate by RP-HPLC with UV detection. Tl exposure had significant effects on neuronal growth rate and morphology. The damage degree was dose-dependent. In not exposed cells, EtOH concentration was 0.18 ± 0.013 mM, which represents about 5% of lactate concentration (3.4 ± 0.10 mM). After Tl exposure lactate and EtOH increased. In CCM of 100 and 10 μg/L Tl-treated cells, lactate increased 24 h after reperfusion up to 2 and 3.3 times the control value, respectively. In CCM of 10 and 100 μg/L Tl-treated cells 24 h after reperfusion, EtOH increased up to 0.3 and 0.58 mmol/L. respectively. These results are consistent with significant alterations in energy metabolism, despite the low doses of Tl employed and the relatively short incubation time.

  11. Thallium stimulates ethanol production in immortalized hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Laura Colombaioni

    Full Text Available Lactate and ethanol (EtOH were determined in cell culture medium (CCM of immortalized hippocampal neurons (HN9.10e cell line before and after incubation with Thallium (Tl. This cell line is a reliable, in vitro model of one of the most vulnerable regions of central nervous system. Cells were incubated for 48 h with three different single Tl doses: 1, 10, 100 μg/L (corresponding to 4.9, 49 and 490 nM, respectively. After 48 h, neurons were "reperfused" with fresh CCM every 24/48 h until 7 days after the treatment and the removed CCM was collected and analysed. Confocal microscopy was employed to observe morphological changes. EtOH was determined by head space-solid phase microextraction -gas chromatography -mass spectrometry (HS-SPME-GCMS, lactate by RP-HPLC with UV detection. Tl exposure had significant effects on neuronal growth rate and morphology. The damage degree was dose-dependent. In not exposed cells, EtOH concentration was 0.18 ± 0.013 mM, which represents about 5% of lactate concentration (3.4 ± 0.10 mM. After Tl exposure lactate and EtOH increased. In CCM of 100 and 10 μg/L Tl-treated cells, lactate increased 24 h after reperfusion up to 2 and 3.3 times the control value, respectively. In CCM of 10 and 100 μg/L Tl-treated cells 24 h after reperfusion, EtOH increased up to 0.3 and 0.58 mmol/L. respectively. These results are consistent with significant alterations in energy metabolism, despite the low doses of Tl employed and the relatively short incubation time.

  12. Orexin-A increases the firing activity of hippocampal CA1 neurons through orexin-1 receptors.

    Science.gov (United States)

    Chen, Xin-Yi; Chen, Lei; Du, Yi-Feng

    2017-07-01

    Orexins including two peptides, orexin-A and orexin-B, are produced in the posterior lateral hypothalamus. Much evidence has indicated that central orexinergic systems play numerous functions including energy metabolism, feeding behavior, sleep/wakefulness, and neuroendocrine and sympathetic activation. Morphological studies have shown that the hippocampal CA1 regions receive orexinergic innervation originating from the hypothalamus. Positive orexin-1 (OX 1 ) receptors are detected in the CA1 regions. Previous behavioral studies have shown that microinjection of OX 1 receptor antagonist into the hippocampus impairs acquisition and consolidation of spatial memory. However, up to now, little has been known about the direct electrophysiological effects of orexin-A on hippocampal CA1 neurons. Employing multibarrel single-unit extracellular recordings, the present study showed that micropressure administration of orexin-A significantly increased the spontaneous firing rate from 2.96 ± 0.85 to 8.45 ± 1.86 Hz (P orexin-A-induced excitation of hippocampal CA1 neurons. The PLC pathway may be involved in activation of OX 1 receptor-induced excitation of CA1 neurons. Taken together, the present study's results suggest that orexin-A produces excitatory effects on hippocampal neurons via OX 1 receptors. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Auditory stimuli elicit hippocampal neuronal responses during sleep

    Directory of Open Access Journals (Sweden)

    Ekaterina eVinnik

    2012-06-01

    Full Text Available To investigate how hippocampal neurons code behaviorally salient stimuli, we recorded from neurons in the CA1 region of hippocampus in rats while they learned to associate the presence of sound with water reward. Rats learned to alternate between two reward ports at which, in 50 percent of the trials, sound stimuli were presented followed by water reward after a 3-second delay. Sound at the water port predicted subsequent reward delivery in 100 percent of the trials and the absence of sound predicted reward omission. During this task, 40% of recorded neurons fired differently according to which of the 2 reward ports the rat was visiting. A smaller fraction of neurons demonstrated onset response to sound/nosepoke (19% and reward delivery (24%. When the sounds were played during passive wakefulness, 8% of neurons responded with short latency onset responses; 25% of neurons responded to sounds when they were played during sleep. Based on the current findings and the results of previous experiments we propose the existence of two types of hippocampal neuronal responses to sounds: sound-onset responses with very short latency and longer-lasting sound-specific responses that are likely to be present when the animal is actively engaged in the task. During sleep the short-latency responses in hippocampus are intermingled with sustained activity which in the current experiment was detected for 1-2 seconds.

  14. Hippocampal neuron populations are reduced in vervet monkeys with fetal alcohol exposure

    DEFF Research Database (Denmark)

    Burke, Mark W; Ptito, Maurice; Ervin, Frank R

    2015-01-01

    of pregnancy. Here, we report significant numerical reductions in the principal hippocampal neurons of fetal alcohol-exposed (FAE) offspring, as compared to age-matched, similarly housed conspecifics with isocaloric sucrose exposure. These deficits, particularly marked in CA1 and CA3, are present neonatally...... late pregnancy results in a stable loss of hippocampal neurons and a progressive reduction of hippocampal volume....

  15. Protocol for culturing low density pure rat hippocampal neurons supported by mature mixed neuron cultures.

    Science.gov (United States)

    Yang, Qian; Ke, Yini; Luo, Jianhong; Tang, Yang

    2017-02-01

    primary hippocampal neuron cultures allow for subcellular morphological dissection, easy access to drug treatment and electrophysiology analysis of individual neurons, and is therefore an ideal model for the study of neuron physiology. While neuron and glia mixed cultures are relatively easy to prepare, pure neurons are particular hard to culture at low densities which are suitable for morphology studies. This may be due to a lack of neurotrophic factors such as brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and Glial cell line-derived neurotrophic factor (GDNF). In this study we used a two step protocol in which neuron-glia mixed cultures were initially prepared for maturation to support the growth of young neurons plated at very low densities. Our protocol showed that neurotrophic support resulted in physiologically functional hippocampal neurons with larger cell body, increased neurite length and decreased branching and complexity compared to cultures prepared using a conventional method. Our protocol provides a novel way to culture highly uniformed hippocampal neurons for acquiring high quality, neuron based data. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Towards neuronal organoids: a method for long-term culturing of high-density hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    George K Todd

    Full Text Available One of the goals in neuroscience is to obtain tractable laboratory cultures that closely recapitulate in vivo systems while still providing ease of use in the lab. Because neurons can exist in the body over a lifetime, long-term culture systems are necessary so as to closely mimic the physiological conditions under laboratory culture conditions. Ideally, such a neuronal organoid culture would contain multiple cell types, be highly differentiated, and have a high density of interconnected cells. However, before these types of cultures can be created, certain problems associated with long-term neuronal culturing must be addressed. We sought to develop a new protocol which may further prolong the duration and integrity of E18 rat hippocampal cultures. We have developed a protocol that allows for culturing of E18 hippocampal neurons at high densities for more than 120 days. These cultured hippocampal neurons are (i well differentiated with high numbers of synapses, (ii anchored securely to their substrate, (iii have high levels of functional connectivity, and (iv form dense multi-layered cellular networks. We propose that our culture methodology is likely to be effective for multiple neuronal subtypes-particularly those that can be grown in Neurobasal/B27 media. This methodology presents new avenues for long-term functional studies in neurons.

  17. Introduction of green fluorescent protein (GFP) into hippocampal neurons through viral infection.

    Science.gov (United States)

    Malinow, Roberto; Hayashi, Yasunori; Maletic-Savatic, Mirjana; Zaman, Shahid H; Poncer, Jean-Christophe; Shi, Song-Hai; Esteban, José A; Osten, Pavel; Seidenman, Ken

    2010-04-01

    Expression of green fluorescent protein (GFP), its more fluorescent mutant forms (e.g., EGFP [enhanced GFP]), or their fusion protein derivatives, affords a number of informative possibilities in cellular neuroscience. EGFP is a soluble protein and appears to be homogeneously distributed within the cytosol of neurons when expressed. Thus, it reveals the structure of the neuron, including the cell body, and axonal and dendritic arbors. It is also sufficiently bright to reveal detailed structures such as axonal boutons and dendritic spines. When expressed as a fusion protein, EGFP can provide information about the distribution characteristics of the proteins within neurons. Furthermore, during single-cell electrophysiological studies, such expression can direct the investigator to record from a cell carrying a foreign gene. In this protocol, we describe the use of the Sindbis pseudovirus expression system to deliver GFP to neurons. Sindbis is a member of the alphaviruses, which are plus-stranded RNA viruses. This protocol uses the DH(26S) strain, which preferentially infects neurons over glia (50:1). Two infection methods are given: one for dissociated hippocampal cultured neurons and one for organotypic hippocampal slices.

  18. Oligomeric forms of the metastasis-related Mts1 (S100A4) protein stimulate neuronal differentiation in cultures of rat hippocampal neurons

    DEFF Research Database (Denmark)

    Novitskaya, V; Grigorian, M; Kriajevska, M

    2000-01-01

    protein family. The oligomeric but not the dimeric form of Mts1 strongly induces differentiation of cultured hippocampal neurons. A mutant with a single Y75F amino acid substitution, which stabilizes the dimeric form of Mts1, is unable to promote neurite extension. Disulfide bonds do not play an essential...

  19. Anti-inflammatory effects of Ginkgo biloba extract against trimethyltin-induced hippocampal neuronal injury.

    Science.gov (United States)

    Kaur, Sukhwinder; Sharma, Neha; Nehru, Bimla

    2018-02-01

    Despite the immense neuromodulatory potentials of Ginkgo biloba extract as a memory enhancer, its underlying mechanism seems inadequate particularly with regard to its anti-inflammatory properties. The objective of the present study is to investigate the protective potentials of Ginkgo biloba extract (GBE) against hippocampal neuronal injury induced by trimethyltin (TMT), a potent neurotoxicant. Male SD rats were administered trimethyltin (8.5 mg kg -1 b.wt) single intraperitoneal (i.p.) injection, followed by Ginkgo biloba extract (100 mg kg -1 b.wt i.p) for 21 days. The co-administration of GBE with TMT showed marked improvement in cognitive functions. Concomitantly, there was a significant decrease in oxidative stress as evident by reduction in MDA and total ROS levels. In addition, there was a marked suppression of astrocyte activation (GFAP), transcription factor NFκB and proinflammatory cytokines (TNF-α, IL-1α, 1L-6), which were found to be elevated by TMT administration. Histopathological observations showed remarkable improvement in hippocampal neuronal injury in the conjunctive group. Therefore, it is suggested that Ginkgo biloba extract is an effective agent against trimethyltin-induced hippocampal neuronal loss owing to its antioxidative as well as anti-inflammatory properties.

  20. Endocannabinoids block status epilepticus in cultured hippocampal neurons

    Science.gov (United States)

    Deshpande, Laxmikant S.; Blair, Robert E.; Ziobro, Julie M.; Sombati, Sompong; Martin, Billy R.; DeLorenzo, Robert J.

    2008-01-01

    Status epilepticus is a serious neurological disorder associated with a significant morbidity and mortality. Antiepileptic drugs such as diazepam, phenobarbital and phenytoin are the mainstay of status epilepticus treatment. However, over 20% of status epilepticus cases are refractory to the initial treatment with two or more antiepileptic drugs. Endocannabinoids have been implicated as playing an important role in regulating seizure activity and seizure termination. This study evaluated the effects of the major endocannabinoids methanandamide and 2-arachidonylglycerol (2-AG) on status epilepticus in the low-Mg2+ hippocampal neuronal culture model. Status epilepticus in this model was resistant to treatment with phenobarbital and phenytoin. Methanandamide and 2-AG inhibited status epilepticus in a dose-dependent manner with an EC50 of 145±4.15 nM and 1.68±0.19 µM, respectively. In addition, the anti-status epilepticus effects of methanandamide and 2-AG were mediated by activation of the cannabinoid CB1 receptor since they were blocked by the cannabinoid CB1 receptor antagonist AM251. These results provide the first evidence that the endocannabinoids, methanandamide and 2-AG, are effective inhibitors of refractory status epilepticus in the hippocampal neuronal culture model and indicate that regulating the endocannabinoid system may provide a novel therapeutic approach for treating refractory status epilepticus. PMID:17174949

  1. Mechanism of PAMAM Dendrimers Internalization in Hippocampal Neurons.

    Science.gov (United States)

    Vidal, Felipe; Vásquez, Pilar; Díaz, Carola; Nova, Daniela; Alderete, Joel; Guzmán, Leonardo

    2016-10-03

    Polyamidoamine (PAMAM) dendrimers are hyperbranched macromolecules which have been described as one of the most promising drug nanocarrier systems. A key process to understand is their cellular internalization mechanism because of its direct influence on their intracellular distribution, association with organelles, entry kinetics, and cargo release. Despite that internalization mechanisms of dendrimers have been studied in different cell types, in the case of neurons they are not completely described. Considering the relevance of central nervous system (CNS) diseases and neuropharmacology, the aim of this report is to describe the molecular internalization mechanism of different PAMAM-based dendrimer systems in hippocampal neurons. Four dendrimers based on fourth generation PAMAM with different surface properties were studied: unmodified G4, with a positively charged surface; PP50, with a substitution of the 50% of amino surface groups with polyethylene glycol neutral groups; PAc, with a substitution of the 30% of amino surface groups with acrylate anionic groups; and PFO, decorated with folic acid groups in a 25% of total terminal groups. Confocal images show that both G4 and PFO are able to enter the neurons, but not PP50 and PAc. Colocalization study with specific endocytosis markers and specific endocytosis inhibitor assay demonstrate that clathrin-mediated endocytosis would be the main internalization mechanism for G4, whereas clathrin- and caveolae-mediated endocytosis would be implicated in PFO internalization. These results show the existence of different internalization mechanisms for PAMAM dendrimers in neurons and the possibility to control their internalization properties with specific chemical modifications.

  2. The BDNF val-66-met Polymorphism Affects Neuronal Morphology and Synaptic Transmission in Cultured Hippocampal Neurons from Rett Syndrome Mice

    Directory of Open Access Journals (Sweden)

    Xin Xu

    2017-07-01

    Full Text Available Brain-derived neurotrophic factor (Bdnf has been implicated in several neurological disorders including Rett syndrome (RTT, an X-linked neurodevelopmental disorder caused by loss-of-function mutations in the transcriptional modulator methyl-CpG-binding protein 2 (MECP2. The human BDNF gene has a single nucleotide polymorphism (SNP—a methionine (met substitution for valine (val at codon 66—that affects BDNF’s trafficking and activity-dependent release and results in cognitive dysfunction. Humans that are carriers of the met-BDNF allele have subclinical memory deficits and reduced hippocampal volume and activation. It is still unclear whether this BDNF SNP affects the clinical outcome of RTT individuals. To evaluate whether this BDNF SNP contributes to RTT pathophysiology, we examined the consequences of expression of either val-BDNF or met-BDNF on dendrite and dendritic spine morphology, and synaptic function in cultured hippocampal neurons from wildtype (WT and Mecp2 knockout (KO mice. Our findings revealed that met-BDNF does not increase dendritic growth and branching, dendritic spine density and individual spine volume, and the number of excitatory synapses in WT neurons, as val-BDNF does. Furthermore, met-BDNF reduces dendritic complexity, dendritic spine volume and quantal excitatory synaptic transmission in Mecp2 KO neurons. These results suggest that the val-BDNF variant contributes to RTT pathophysiology, and that BDNF-based therapies should take into consideration the BDNF genotype of the RTT individuals.

  3. Frizzled-5 receptor is involved in neuronal polarity and morphogenesis of hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Paula G Slater

    Full Text Available The Wnt signaling pathway plays important roles during different stages of neuronal development, including neuronal polarization and dendritic and axonal outgrowth. However, little is known about the identity of the Frizzled receptors mediating these processes. In the present study, we investigated the role of Frizzled-5 (Fzd5 on neuronal development in cultured Sprague-Dawley rat hippocampal neurons. We found that Fzd5 is expressed early in cultured neurons on actin-rich structures localized at minor neurites and axonal growth cones. At 4 DIV, Fzd5 polarizes towards the axon, where its expression is detected mainly at the peripheral zone of axonal growth cones, with no obvious staining at dendrites; suggesting a role of Fzd5 in neuronal polarization. Overexpression of Fzd5 during the acquisition of neuronal polarity induces mislocalization of the receptor and a loss of polarized axonal markers. Fzd5 knock-down leads to loss of axonal proteins, suggesting an impaired neuronal polarity. In contrast, overexpression of Fzd5 in neurons that are already polarized did not alter polarity, but decreased the total length of axons and increased total dendrite length and arborization. Fzd5 activated JNK in HEK293 cells and the effects triggered by Fzd5 overexpression in neurons were partially prevented by inhibition of JNK, suggesting that a non-canonical Wnt signaling mechanism might be involved. Our results suggest that, Fzd5 has a role in the establishment of neuronal polarity, and in the morphogenesis of neuronal processes, in part through the activation of the non-canonical Wnt mechanism involving JNK.

  4. Dipeptide Piracetam Analogue Noopept Improves Viability of Hippocampal HT-22 Neurons in the Glutamate Toxicity Model.

    Science.gov (United States)

    Antipova, T A; Nikolaev, S V; Ostrovskaya, P U; Gudasheva, T A; Seredenin, S B

    2016-05-01

    Effect of noopept (N-phenylacetyl-prolylglycine ethyl ester) on viability of neurons exposed to neurotoxic action of glutamic acid (5 mM) was studied in vitro in immortalized mouse hippocampal HT-22 neurons. Noopept added to the medium before or after glutamic acid improved neuronal survival in a concentration range of 10-11-10-5 M. Comparison of the effective noopept concentrations determined in previous studies on cultured cortical and cerebellar neurons showed that hippocampal neurons are more sensitive to the protective effect of noopept.

  5. Ablation of NMDA receptors enhances the excitability of hippocampal CA3 neurons.

    Directory of Open Access Journals (Sweden)

    Fumiaki Fukushima

    Full Text Available Synchronized discharges in the hippocampal CA3 recurrent network are supposed to underlie network oscillations, memory formation and seizure generation. In the hippocampal CA3 network, NMDA receptors are abundant at the recurrent synapses but scarce at the mossy fiber synapses. We generated mutant mice in which NMDA receptors were abolished in hippocampal CA3 pyramidal neurons by postnatal day 14. The histological and cytological organizations of the hippocampal CA3 region were indistinguishable between control and mutant mice. We found that mutant mice lacking NMDA receptors selectively in CA3 pyramidal neurons became more susceptible to kainate-induced seizures. Consistently, mutant mice showed characteristic large EEG spikes associated with multiple unit activities (MUA, suggesting enhanced synchronous firing of CA3 neurons. The electrophysiological balance between fast excitatory and inhibitory synaptic transmission was comparable between control and mutant pyramidal neurons in the hippocampal CA3 region, while the NMDA receptor-slow AHP coupling was diminished in the mutant neurons. In the adult brain, inducible ablation of NMDA receptors in the hippocampal CA3 region by the viral expression vector for Cre recombinase also induced similar large EEG spikes. Furthermore, pharmacological blockade of CA3 NMDA receptors enhanced the susceptibility to kainate-induced seizures. These results raise an intriguing possibility that hippocampal CA3 NMDA receptors may suppress the excitability of the recurrent network as a whole in vivo by restricting synchronous firing of CA3 neurons.

  6. Bicuculline, pentobarbital and diazepam modulate spontaneous GABAA channels in rat hippocampal neurons

    Science.gov (United States)

    Birnir, Bryndis; Eghbali, Mansoureh; Everitt, Andrea B; Gage, Peter W

    2000-01-01

    Spontaneously opening, chloride-selective channels that showed outward rectification were recorded in ripped-off patches from rat cultured hippocampal neurons and in cell-attached patches from rat hippocampal CA1 pyramidal neurons in slices. In both preparations, channels had multiple conductance states and the most common single-channel conductance varied. In the outside-out patches it ranged from 12 to 70 pS (Vp=40 mV) whereas in the cell-attached patches it ranged from 56 to 85 pS (−Vp=80 mV). Application of GABA to a patch showing spontaneous channel activity evoked a rapid, synchronous activation of channels. During prolonged exposure to either 5 or 100 μM GABA, the open probability of channels decreased. Application of GABA appeared to have no immediate effect on single-channel conductance. Exposure of the patches to 100 μM bicuculline caused a gradual decrease on the single-channel conductance of the spontaneous channels. The time for complete inhibition to take place was slower in the outside-out than in the cell-attached patches. Application of 100 μM pentobarbital or 1 μM diazepam caused 2–4 fold increase in the maximum channel conductance of low conductance (<40 pS) spontaneously active channels. The observation of spontaneously opening GABAA channels in cell-attached patches on neurons in slices suggests that they may have a role in neurons in vivo and could be an important site of action for some drugs such as benzodiazepines, barbiturates and general anaesthetics. PMID:11030718

  7. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    Directory of Open Access Journals (Sweden)

    Harish Babu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  8. The effects of pumiliotoxin-B on sodium currents in guinea pig hippocampal neurons.

    Science.gov (United States)

    Sheridan, R E; Deshpande, S S; Lebeda, F J; Adler, M

    1991-08-09

    The actions of pumiliotoxin-B, extracted from the skin of the frog Dendrobates pumilio, were examined on hippocampal slices and on acutely dissociated hippocampal neurons from the adult guinea pig. Application of 0.5-1 microM pumiliotoxin-B to hippocampal slices caused spontaneous, repetitive field discharges in the CA3 subfield. In whole-cell patch-clamp recordings of isolated CA1 and CA3 neurons, 1-2 microM pumiliotoxin-B shifted the midpoint of Na+ current activation by -11.4 +/- 1.1 mV. This shift was not dependent upon prior activation of the sodium channel. Pumiliotoxin-B did not block macroscopic Na+ inactivation but did reduce the apparent voltage-dependence of inactivation such that currents decayed faster at membrane potentials more negative than -30 mV. Single-channel recordings of sodium currents from excised membrane patches indicated that pumiliotoxin-B had little or no effect on channel closings due to entry into inactivated state(s) but did increase the rate of channel closings due to reversal of channel opening. The increase in the channel closing rate was consistent with a +8.7 mV shift in voltage sensitivity. Negative shifts in activation and positive shifts in closing rates implied a negative shift in the voltage-dependence of channel opening, suggesting that pumiliotoxin-B increases the rate of Na+ channel opening and closing in cells at rest, which could result in spontaneous activity in the neurons.

  9. Zbtb20 Defines a Hippocampal Neuronal Identity Through Direct Repression of Genes That Control Projection Neuron Development in the Isocortex

    DEFF Research Database (Denmark)

    Nielsen, Jakob V; Thomassen, Mads; Møllgård, Kjeld

    2014-01-01

    Hippocampal pyramidal neurons are important for encoding and retrieval of spatial maps and episodic memories. While previous work has shown that Zbtb20 is a cell fate determinant for CA1 pyramidal neurons, the regulatory mechanisms governing this process are not known. In this study, we demonstrate...

  10. Hippocampal insulin resistance links maternal obesity with impaired neuronal plasticity in adult offspring.

    Science.gov (United States)

    Schmitz, Lisa; Kuglin, Rebecca; Bae-Gartz, Inga; Janoschek, Ruth; Appel, Sarah; Mesaros, Andrea; Jakovcevski, Igor; Vohlen, Christina; Handwerk, Marion; Ensenauer, Regina; Dötsch, Jörg; Hucklenbruch-Rother, Eva

    2017-12-28

    Maternal obesity and a disturbed metabolic environment during pregnancy and lactation have been shown to result in many long-term health consequences for the offspring. Among them, impairments in neurocognitive development and performance belong to the most dreaded ones. So far, very few mechanistic approaches have aimed to determine the responsible molecular events. In a mouse model of maternal diet-induced obesity and perinatal hyperinsulinemia, we assessed adult offspring's hippocampal insulin signaling as well as concurrent effects on markers of hippocampal neurogenesis, synaptic plasticity and function using western blotting and immunohistochemistry. In search for a potential link between neuronal insulin resistance and hippocampal plasticity, we additionally quantified protein expression of key molecules of synaptic plasticity in an in vitro model of acute neuronal insulin resistance. Maternal obesity and perinatal hyperinsulinemia result in adult hippocampal insulin resistance with subsequently reduced hippocampal mTor signaling and altered expression of markers of neurogenesis (doublecortin), synaptic plasticity (FoxO1, pSynapsin) and function (vGlut, vGAT) in the offspring. The observed effects are independent of the offspring's adult metabolic phenotype and can be associated with multiple previously reported behavioral abnormalities. Additionally, we demonstrate that induction of insulin resistance in cultured hippocampal neurons reduces mTor signaling, doublecortin and vGAT protein expression. Hippocampal insulin resistance might play a key role in mediating the long-term effects of maternal obesity and perinatal hyperinsulinemia on hippocampal plasticity and the offspring's neurocognitive outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Biomechanics of single cortical neurons.

    Science.gov (United States)

    Bernick, Kristin B; Prevost, Thibault P; Suresh, Subra; Socrate, Simona

    2011-03-01

    This study presents experimental results and computational analysis of the large strain dynamic behavior of single neurons in vitro with the objective of formulating a novel quantitative framework for the biomechanics of cortical neurons. Relying on the atomic force microscopy (AFM) technique, novel testing protocols are developed to enable the characterization of neural soma deformability over a range of indentation rates spanning three orders of magnitude, 10, 1, and 0.1 μm s(-1). Modified spherical AFM probes were utilized to compress the cell bodies of neonatal rat cortical neurons in load, unload, reload and relaxation conditions. The cell response showed marked hysteretic features, strong non-linearities, and substantial time/rate dependencies. The rheological data were complemented with geometrical measurements of cell body morphology, i.e. cross-diameter and height estimates. A constitutive model, validated by the present experiments, is proposed to quantify the mechanical behavior of cortical neurons. The model aimed to correlate empirical findings with measurable degrees of (hyper)elastic resilience and viscosity at the cell level. The proposed formulation, predicated upon previous constitutive model developments undertaken at the cortical tissue level, was implemented in a three-dimensional finite element framework. The simulated cell response was calibrated to the experimental measurements under the selected test conditions, providing a novel single cell model that could form the basis for further refinements. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Falcarindiol allosterically modulates GABAergic currents in cultured rat hippocampal neurons.

    Science.gov (United States)

    Wyrembek, Paulina; Negri, Roberto; Kaczor, Przemysław; Czyżewska, Marta; Appendino, Giovanni; Mozrzymas, Jerzy Wladyslaw

    2012-04-27

    Falcarindiol (1), a C-17 polyacetylenic diol, shows a pleiotropic profile of bioactivity, but the mechanism(s) underlying its actions are largely unknown. Large amounts of 1 co-occur in water hemlock (Oenanthe crocata) along with the convulsant polyacetylenic toxin oenanthotoxin (2), a potent GABA(A) receptor (GABA(A)R) inhibitor. Since these compounds are structurally and biogenetically related, it was considered of interest to evaluate whether 1 could affect GABAergic activity, and for this purpose a model of hippocampal cultured neurons was used. Compound 1 significantly increased the amplitude of miniature inhibitory postsynaptic currents, accelerated their onset, and prolonged the decay kinetics. This compound enhanced also the amplitude of currents elicited by 3 μM GABA and accelerated their fading, reducing, however, currents evoked by a saturating (10 mM) GABA concentration. Moreover, kinetic analysis of responses to 10 mM GABA revealed that 1 upregulated the rate and extent of desensitization and slowed the current onset and deactivation. Taken together, these data show that 1 exerts a potent modulatory action on GABA(A)Rs, possibly by modulating agonist binding and desensitization, overall potentially decreasing the toxicity of co-occurring GABA-inhibiting convulsant toxins. © 2012 American Chemical Society and American Society of Pharmacognosy

  13. Information in small neuronal ensemble activity in the hippocampal CA1 during delayed non-matching to sample performance in rats

    Directory of Open Access Journals (Sweden)

    Takahashi Susumu

    2009-09-01

    Full Text Available Abstract Background The matrix-like organization of the hippocampus, with its several inputs and outputs, has given rise to several theories related to hippocampal information processing. Single-cell electrophysiological studies and studies of lesions or genetically altered animals using recognition memory tasks such as delayed non-matching-to-sample (DNMS tasks support the theories. However, a complete understanding of hippocampal function necessitates knowledge of the encoding of information by multiple neurons in a single trial. The role of neuronal ensembles in the hippocampal CA1 for a DNMS task was assessed quantitatively in this study using multi-neuronal recordings and an artificial neural network classifier as a decoder. Results The activity of small neuronal ensembles (6-18 cells over brief time intervals (2-50 ms contains accurate information specifically related to the matching/non-matching of continuously presented stimuli (stimulus comparison. The accuracy of the combination of neurons pooled over all the ensembles was markedly lower than those of the ensembles over all examined time intervals. Conclusion The results show that the spatiotemporal patterns of spiking activity among cells in the small neuronal ensemble contain much information that is specifically useful for the stimulus comparison. Small neuronal networks in the hippocampal CA1 might therefore act as a comparator during recognition memory tasks.

  14. The Edible Red Alga Porphyra yezoensis Promotes Neuronal Survival and Cytoarchitecture in Primary Hippocampal Neurons.

    Science.gov (United States)

    Mohibbullah, Md; Bhuiyan, Mohammad Maqueshudul Haque; Hannan, Md Abdul; Getachew, Paulos; Hong, Yong-Ki; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo

    2016-07-01

    The edible red alga Porphyra yezoensis is among the most popular marine algae and is of economic and medicinal importance. In the present study, the neurotrophic and neuroprotective activities of the ethanol extract of P. yezoensis (PYE) were investigated in primary cultures of hippocampal neurons. Results revealed that PYE significantly increased neurite outgrowth at an optimal concentration of 15 µg/mL. PYE dose-dependently increased viable cells, significantly accelerated the rate of neuronal differentiation in cultures, promoted axodendritic arborization, and eventually induced synaptogenesis. In addition to morphological development, PYE also promoted functional maturation as indicated by the staining of live cultures with FM 1-43. Moreover, PYE increased neuronal survivability, which was attributed to reduced apoptosis and its ROS scavenging activity. Taurine, a major organic acid in PYE (2.584/100 mg of dry PYE) promoted neurite outgrowth in a dose-dependent manner, and this promotion was suppressed by the taurine antagonist isethionic acid. The study indicates that PYE and its active component, taurine, facilitate neuronal development and maturation and have a neuroprotective effect.

  15. The Neuropsychiatric Disease-Associated Gene cacna1c Mediates Survival of Young Hippocampal Neurons123

    Science.gov (United States)

    Lee, Anni S.; Kabir, Zeeba D.; Knobbe, Whitney; Orr, Madeline; Burgdorf, Caitlin; Huntington, Paula; McDaniel, Latisha; Britt, Jeremiah K.; Hoffmann, Franz; Brat, Daniel J.; Rajadhyaksha, Anjali M.

    2016-01-01

    Genetic variations in CACNA1C, which encodes the Cav1.2 subunit of L-type calcium channels (LTCCs), are associated with multiple forms of neuropsychiatric disease that manifest high anxiety in patients. In parallel, mice harboring forebrain-specific conditional knockout of cacna1c (forebrain-Cav1.2 cKO) display unusually high anxiety-like behavior. LTCCs in general, including the Cav1.3 subunit, have been shown to mediate differentiation of neural precursor cells (NPCs). However, it has not previously been determined whether Cav1.2 affects postnatal hippocampal neurogenesis in vivo. Here, we show that forebrain-Cav1.2 cKO mice exhibit enhanced cell death of young hippocampal neurons, with no change in NPC proliferation, hippocampal size, dentate gyrus thickness, or corticosterone levels compared with wild-type littermates. These mice also exhibit deficits in brain levels of brain-derived neurotrophic factor (BDNF), and Cre recombinase-mediated knockdown of adult hippocampal Cav1.2 recapitulates the deficit in young hippocampal neurons survival. Treatment of forebrain-Cav1.2 cKO mice with the neuroprotective agent P7C3-A20 restored the net magnitude of postnatal hippocampal neurogenesis to wild-type levels without ameliorating their deficit in BDNF expression. The role of Cav1.2 in young hippocampal neurons survival may provide new approaches for understanding and treating neuropsychiatric disease associated with aberrations in CACNA1C. Visual Abstract PMID:27066530

  16. Miniature excitatory synaptic currents in cultured hippocampal neurons.

    Science.gov (United States)

    Finch, D M; Fisher, R S; Jackson, M B

    1990-06-04

    We performed patch clamp recordings in the whole cell mode from cultured embryonic mouse hippocampal neurons. In bathing solutions containing tetrodotoxin (TTX), the cells showed spontaneous inward currents (SICs) ranging in size from 1 to 100 pA. Several observations indicated that the SICs were miniature excitatory synaptic currents mediated primarily by non-NMDA (N-methyl-D-aspartate) excitatory amino acid receptors: the rising phase of SICs was fast (1 ms to half amplitude at room temperature) and smooth, suggesting unitary events. The SICs were blocked by the broad-spectrum glutamate receptor antagonist gamma-D-glutamylglycine (DGG), but not by the selective NMDA-receptor antagonist D-2-amino-5-phosphonovaleric acid (5-APV). SICs were also blocked by desensitizing concentrations of quisqualate. Incubating cells in tetanus toxin, which blocks exocytotic transmitter release, eliminated SICs. The presence of SICs was consistent with the morphological arrangement of glutamatergic innervation in the cell cultures demonstrated immunohistochemically. Spontaneous outward currents (SOCs) were blocked by bicuculline and presumed to be mediated by GABAA receptors. This is consistent with immunohistochemical demonstration of GABAergic synapses. SIC frequency was increased in a calcium dependent manner by bathing the cells in a solution high in K+, and application of the dihydropyridine L-type calcium channel agonist BAY K 8644 increased the frequency of SICs. Increases in SIC frequency produced by high K+ solutions were reversed by Cd2+ and omega-conotoxin GVIA, but not by the selective L-type channel antagonist nimodipine. This suggested that presynaptic L-type channels were in a gating mode that was not blocked by nimodipine, and/or that another class of calcium channel makes a dominant contribution to excitatory transmitter release.

  17. Falcarindiol inhibits nitric oxide-mediated neuronal death in lipopolysaccharide-treated organotypic hippocampal cultures.

    Science.gov (United States)

    Kim, Jeong Min; Lee, Pyeongjae; Son, Dongwook; Kim, Hocheol; Kim, Sun Yeou

    2003-10-27

    Excessive nitric oxide (NO) release from activated microglia has a predominant role in neuronal death. This study investigated the effect of falcarindiol, which was isolated from Cnidium officinale Makino, on the NO-mediated neuronal death in lipopolysaccharide (LPS)-treated organotypic hippocampal cultures. Falcarindiol dose-dependently reduced inducible NO synthase (iNOS)-mediated NO production without cytotoxic effects on LPS-activated BV-2 and microglia. Predictably, falcarindiol inhibited neuronal death by reducing NO production in the LPS-treated organotypic hippocampal cultures. N-monomethyl-L-arginine (NMMA), an iNOS inhibitor, also inhibited neuronal death at 500 microM. In contrast, massive neuronal death was induced by excessive NO production in the LPS-treated alone cultures. These results suggest that excessive NO production plays an important role in the neurotoxic effect, and falcarindiol is a potential inhibitor in NO-mediated neuronal death.

  18. Hippocampal adaptive response following extensive neuronal loss in an inducible transgenic mouse model.

    Directory of Open Access Journals (Sweden)

    Kristoffer Myczek

    Full Text Available Neuronal loss is a common component of a variety of neurodegenerative disorders (including Alzheimer's, Parkinson's, and Huntington's disease and brain traumas (stroke, epilepsy, and traumatic brain injury. One brain region that commonly exhibits neuronal loss in several neurodegenerative disorders is the hippocampus, an area of the brain critical for the formation and retrieval of memories. Long-lasting and sometimes unrecoverable deficits caused by neuronal loss present a unique challenge for clinicians and for researchers who attempt to model these traumas in animals. Can these deficits be recovered, and if so, is the brain capable of regeneration following neuronal loss? To address this significant question, we utilized the innovative CaM/Tet-DT(A mouse model that selectively induces neuronal ablation. We found that we are able to inflict a consistent and significant lesion to the hippocampus, resulting in hippocampally-dependent behavioral deficits and a long-lasting upregulation in neurogenesis, suggesting that this process might be a critical part of hippocampal recovery. In addition, we provide novel evidence of angiogenic and vasculature changes following hippocampal neuronal loss in CaM/Tet-DTA mice. We posit that angiogenesis may be an important factor that promotes neurogenic upregulation following hippocampal neuronal loss, and both factors, angiogenesis and neurogenesis, can contribute to the adaptive response of the brain for behavioral recovery.

  19. Turmeric extract inhibits apoptosis of hippocampal neurons of trimethyltin-exposed rats.

    Science.gov (United States)

    Yuliani, S; Widyarini, S; Mustofa; Partadiredja, G

    2017-01-01

    The aim of the present study was to reveal the possible antiapoptotic effect of turmeric (Curcuma longa Linn.) on the hippocampal neurons of rats exposed to trimethyltin (TMT). Oxidative damage in the hippocampus can induce the apoptosis of neurons associated with the pathogenesis of dementiaMETHODS. The ethanolic turmeric extract and a citicoline (as positive control) solution were administered to the TMT-exposed rats for 28 days. The body weights of rats were recorded once a week. The hippocampal weights and imumunohistochemical expression of caspase 3 proteins in the CA1 and CA2-CA3 regions of the hippocampi were examined at the end of the experiment. Immunohistochemical analysis showed that the injection of TMT increased the expression of caspase 3 in the CA1 and CA2-CA3 regions of hippocampus. TMT also decreased the body and hippocampal weights. Furthermore, the administration of 200 mg/kg bw dose of turmeric extract decreased the caspase 3 expression in the CA2-CA3 pyramidal neurons but not in the CA1 neurons. It also prevented the decrease of the body and hippocampal weights. We suggest that the 200 mg/kg bw dose of turmeric extract may exert antiapoptotic effect on the hippocampal neurons of the TMT-exposed rats (Tab. 1, Fig. 3, Ref. 49).

  20. Amyloid beta-peptide(25-35) changes [Ca2+] in hippocampal neurons

    DEFF Research Database (Denmark)

    Mogensen, Helle Smidt; Beatty, D M; Morris, S J

    1998-01-01

    Insoluble aggregates of the amyloid beta-peptide (A beta) is a major constituent of senile plaques found in brains of Alzheimer disease (AD) patients. The detrimental effects of aggregated A beta is associated with an increased intracellular Ca2+ concentration ([Ca2+]i). We examined the effects...... of A beta(25-35) on [Ca2+]i and intracellular H+ concentration ([H+]i) in single hippocampal neurons by real time fluorescence imaging using the Ca(2+)- and H(+)-specific ratio dyes, indo-1 and SNARF-1. Incubation of these cultures with A beta(25-35) for 3-12 days in vitro increased [Ca2+]i and [H+]i...

  1. Memory formation orchestrates the wiring of adult-born hippocampal neurons into brain circuits.

    Science.gov (United States)

    Petsophonsakul, Petnoi; Richetin, Kevin; Andraini, Trinovita; Roybon, Laurent; Rampon, Claire

    2017-08-01

    During memory formation, structural rearrangements of dendritic spines provide a mean to durably modulate synaptic connectivity within neuronal networks. New neurons generated throughout the adult life in the dentate gyrus of the hippocampus contribute to learning and memory. As these neurons become incorporated into the network, they generate huge numbers of new connections that modify hippocampal circuitry and functioning. However, it is yet unclear as to how the dynamic process of memory formation influences their synaptic integration into neuronal circuits. New memories are established according to a multistep process during which new information is first acquired and then consolidated to form a stable memory trace. Upon recall, memory is transiently destabilized and vulnerable to modification. Using contextual fear conditioning, we found that learning was associated with an acceleration of dendritic spines formation of adult-born neurons, and that spine connectivity becomes strengthened after memory consolidation. Moreover, we observed that afferent connectivity onto adult-born neurons is enhanced after memory retrieval, while extinction training induces a change of spine shapes. Together, these findings reveal that the neuronal activity supporting memory processes strongly influences the structural dendritic integration of adult-born neurons into pre-existing neuronal circuits. Such change of afferent connectivity is likely to impact the overall wiring of hippocampal network, and consequently, to regulate hippocampal function.

  2. Amentoflavone protects hippocampal neurons: anti-inflammatory, antioxidative, and antiapoptotic effects

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2015-01-01

    Full Text Available Amentoflavone is a natural biflavone compound with many biological properties, including anti-inflammatory, antioxidative, and neuroprotective effects. We presumed that amentoflavone exerts a neuroprotective effect in epilepsy models. Prior to model establishment, mice were intragastrically administered 25 mg/kg amentoflavone for 3 consecutive days. Amentoflavone effectively prevented pilocarpine-induced epilepsy in a mouse kindling model, suppressed nuclear factor-κB activation and expression, inhibited excessive discharge of hippocampal neurons resulting in a reduction in epileptic seizures, shortened attack time, and diminished loss and apoptosis of hippocampal neurons. Results suggested that amentoflavone protected hippocampal neurons in epilepsy mice via anti-inflammation, antioxidation, and antiapoptosis, and then effectively prevented the occurrence of seizures.

  3. Dopamine receptor activation reorganizes neuronal ensembles during hippocampal sharp waves in vitro.

    Directory of Open Access Journals (Sweden)

    Takeyuki Miyawaki

    Full Text Available Hippocampal sharp wave (SW/ripple complexes are thought to contribute to memory consolidation. Previous studies suggest that behavioral rewards facilitate SW occurrence in vivo. However, little is known about the precise mechanism underlying this enhancement. Here, we examined the effect of dopaminergic neuromodulation on spontaneously occurring SWs in acute hippocampal slices. Local field potentials were recorded from the CA1 region. A brief (1 min treatment with dopamine led to a persistent increase in the event frequency and the magnitude of SWs. This effect lasted at least for our recording period of 45 min and did not occur in the presence of a dopamine D1/D5 receptor antagonist. Functional multineuron calcium imaging revealed that dopamine-induced SW augmentation was associated with an enriched repertoire of the firing patterns in SW events, whereas the overall tendency of individual neurons to participate in SWs and the mean number of cells participating in a single SW were maintained. Therefore, dopaminergic activation is likely to reorganize cell assemblies during SWs.

  4. Neuroprotective effects of curcumin on endothelin-1 mediated cell death in hippocampal neurons.

    Science.gov (United States)

    Stankowska, Dorota L; Krishnamoorthy, Vignesh R; Ellis, Dorette Z; Krishnamoorthy, Raghu R

    2017-06-01

    Alzheimer's disease is a progressive neurodegenerative disease characterized by loss of hippocampal neurons leading to memory deficits and cognitive decline. Studies suggest that levels of the vasoactive peptide endothelin-1 (ET-1) are increased in the brain tissue of Alzheimer's patients. Curcumin, the main ingredient of the spice turmeric, has been shown to have anti-inflammatory, anti-cancer, and neuroprotective effects. However, the mechanisms underlying some of these beneficial effects are not completely understood. The objective of this study was to determine if curcumin could protect hippocampal neurons from ET-1 mediated cell death and examine the involvement of c-Jun in this pathway. Primary hippocampal neurons from rat pups were isolated using a previously published protocol. Viability of the cells was measured by the live/dead assay. Immunoblot and immunohistochemical analyses were performed to analyze c-Jun levels in hippocampal neurons treated with either ET-1 or a combination of ET-1 and curcumin. Apoptotic changes were evaluated by immunoblot detection of cleaved caspase-3, cleaved fodrin, and a caspase 3/7 activation assay. ET-1 treatment produced a 2-fold increase in the levels of c-Jun as determined by an immunoblot analysis in hippocampal neurons. Co-treatment with curcumin significantly attenuated the ET-1 mediated increase in c-Jun levels. ET-1 caused increased neuronal cell death of hippocampal neurons indicated by elevation of cleaved caspase-3, cleaved fodrin and an increased activity of caspases 3 and 7 which was attenuated by co-treatment with curcumin. Blockade of JNK, an upstream effector of c-Jun by specific inhibitor SP600125 did not fully protect from ET-1 mediated activation of pro-apoptotic enzymes in primary hippocampal cells. Our data suggests that one mechanism by which curcumin protects against ET-1-mediated cell death is through blocking an increase in c-Jun levels. Other possible mechanisms include decreasing pro

  5. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    Science.gov (United States)

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  6. Full Length Bid is sufficient to induce apoptosis of cultured rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Ward Manus W

    2007-02-01

    Full Text Available Abstract Background Bcl-2 homology domain (BH 3-only proteins are pro-apoptotic proteins of the Bcl-2 family that couple stress signals to the mitochondrial cell death pathways. The BH3-only protein Bid can be activated in response to death receptor activation via caspase 8-mediated cleavage into a truncated protein (tBid, which subsequently translocates to mitochondria and induces the release of cytochrome-C. Using a single-cell imaging approach of Bid cleavage and translocation during apoptosis, we have recently demonstrated that, in contrast to death receptor-induced apoptosis, caspase-independent excitotoxic apoptosis involves a translocation of full length Bid (FL-Bid from the cytosol to mitochondria. We induced a delayed excitotoxic cell death in cultured rat hippocampal neurons by a 5-min exposure to the glutamate receptor agonist N-methyl-D-aspartate (NMDA; 300 μM. Results Western blot experiments confirmed a translocation of FL-Bid to the mitochondria during excitotoxic apoptosis that was associated with the release of cytochrome-C from mitochondria. These results were confirmed by immunofluorescence analysis of Bid translocation during excitotoxic cell death using an antibody raised against the amino acids 1–58 of mouse Bid that is not able to detect tBid. Finally, inducible overexpression of FL-Bid or a Bid mutant that can not be cleaved by caspase-8 was sufficient to induce apoptosis in the hippocampal neuron cultures. Conclusion Our data suggest that translocation of FL-Bid is sufficient for the activation of mitochondrial cell death pathways in response to glutamate receptor overactivation.

  7. Effects of propofol and pentobarbital on calcium concentration in presynaptic boutons on a rat hippocampal neuron.

    Science.gov (United States)

    Ito, Shinichi; Sugiyama, Hitomi; Kitahara, Seiko; Ikemoto, Yoshimi; Yokoyama, Takeshi

    2011-10-01

    Numerous reports suggest that intravenously administered (IV) anesthetics affect postsynaptic events in the central nervous system. However, there is little evidence about how general anesthetics influence the presynaptic processes. The level of presynaptic calcium (Ca(2+)) concentration ([Ca(2+)](pre)) regulates neurotransmitter release. In this study, we investigated the effects of anesthetic propofol IV and the barbiturate pentobarbital on neurotransmitter release by measuring [Ca(2+)](pre) in the presynaptic nerve terminals (boutons) on a dissociated single hippocampal rat neuron. Sprague-Dawley rats 10-14 days old were decapitated under pentobarbital anesthesia, and brain slices were prepared. The hippocampal CA1 area was touched with a fire-polished glass pipette, which vibrated horizontally, and neurons were dissociated, along with the attached presynaptic boutons. The presynaptic boutons were visualized under a confocal laser-scanning microscope after staining with FM1-43 dye, and [Ca(2+)](pre) was measured with acetoxymethyl ester of fluo-3 (fluo-3 AM). High potassium (K(+)) (15-90 mM) increased the [Ca(2+)](pre) in the Ca(2+)-containing solution in a concentration-dependent manner. Whereas propofol (10 μM) and pentobarbital (300 μM) suppressed the high K(+) (60 mM)-induced increase in [Ca(2+)](pre) in the boutons attached to the dendrite, they did not affect [Ca(2+)](pre) in the boutons attached to the soma or dendrite base. As a large majority of excitatory synapses are located on dendritic spines, these agents may affect Ca(2+) mobilization in the excitatory presynaptic boutons. Propofol and pentobarbital may affect neurotransmitter release from the excitatory presynaptic nerve terminals due to inhibition of increase in [Ca(2+)](pre).

  8. MMPs and soluble ICAM-5 increase neuronal excitability within in vitro networks of hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Mark Niedringhaus

    Full Text Available Matrix metalloproteinases (MMPs are zinc-dependent endopeptidases that are released from neurons in an activity dependent manner. Published studies suggest their activity is important to varied forms of learning and memory. At least one MMP can stimulate an increase in the size of dendritic spines, structures which represent the post synaptic component for a large number of glutamatergic synapses. This change may be associated with increased synaptic glutamate receptor incorporation, and an increased amplitude and/or frequency of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA mini excitatory post-synaptic currents (EPSCs. An associated increase in the probability of action potential occurrence would be expected. While the mechanism(s by which MMPs may influence synaptic structure and function are not completely understood, MMP dependent shedding of specific cell adhesion molecules (CAMs could play an important role. CAMs are ideally positioned to be cleaved by synaptically released MMPs, and shed N terminal domains could potentially interact with previously unengaged integrins to stimulate dendritic actin polymerization with spine expansion. In the present study, we have used multielectrode arrays (MEAs to investigate MMP and soluble CAM dependent changes in neuronal activity recorded from hippocampal cultures. We have focused on intercellular adhesion molecule-5 (ICAM-5 in particular, as this CAM is expressed on glutamatergic dendrites and shed in an MMP dependent manner. We show that chemical long-term potentiation (cLTP evoked changes in recorded activity, and the dynamics of action potential bursts in particular, are altered by MMP inhibition. A blocking antibody to β(1 integrins has a similar effect. We also show that the ectodomain of ICAM-5 can stimulate β(1 integrin dependent increases in spike counts and burst number. These results support a growing body of literature suggesting that MMPs have important effects on neuronal

  9. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Nabi Shamsaei

    2015-01-01

    Full Text Available Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral ischemic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule (5 days per week for 4 weeks. Then rats underwent cerebral ischemia induction through occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic exercise significantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration.

  10. Multiple single-unit long-term tracking on organotypic hippocampal slices using high-density microelectrode arrays

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2016-11-01

    Full Text Available A novel system to cultivate and record from organotypic brain slices directly on high-density microelectrode arrays (HD-MEA was developed. This system allows for continuous recording of electrical activity of specific individual neurons at high spatial resolution while monitoring at the same time, neuronal network activity. For the first time, the electrical activity patterns of single neurons and the corresponding neuronal network in an organotypic hippocampal slice culture were studied during several consecutive weeks at daily intervals. An unsupervised iterative spike-sorting algorithm, based on PCA and k-means clustering, was developed to assign the activities to the single units. Spike-triggered average extracellular waveforms of an action potential recorded across neighboring electrodes, termed ‘footprints’ of single-units were generated and tracked over weeks. The developed system offers the potential to study chronic impacts of drugs or genetic modifications on individual neurons in slice preparations over extended times.

  11. Phosphoinositide-3-kinase activation controls synaptogenesis and spinogenesis in hippocampal neurons.

    Science.gov (United States)

    Cuesto, Germán; Enriquez-Barreto, Lilian; Caramés, Cristina; Cantarero, Marta; Gasull, Xavier; Sandi, Carmen; Ferrús, Alberto; Acebes, Ángel; Morales, Miguel

    2011-02-23

    The possibility of changing the number of synapses may be an important asset in the treatment of neurological diseases. In this context, the synaptogenic role of the phosphoinositide-3-kinase (PI3K) signaling cascade has been previously demonstrated in Drosophila. This study shows that treatment with a PI3K-activating transduction peptide is able to promote synaptogenesis and spinogenesis in primary cultures of rat hippocampal neurons, as well as in CA1 hippocampal neurons in vivo. In culture, the peptide increases synapse density independently of cell density, culture age, dendritic complexity, or synapse type. The induced synapses also increase neurotransmitter release from cultured neurons. The synaptogenic signaling pathway includes PI3K-Akt. Furthermore, the treatment is effective on adult neurons, where it induces spinogenesis and enhances the cognitive behavior of treated animals in a fear-conditioning assay. These findings demonstrate that functional synaptogenesis can be induced in mature mammalian brains through PI3K activation.

  12. Temporal lobe epilepsy with mesial temporal sclerosis: hippocampal neuronal loss as a predictor of surgical outcome

    Directory of Open Access Journals (Sweden)

    Anaclara Prada Jardim

    2012-05-01

    Full Text Available OBJECTIVE: To analyze retrospectively a series of patients with temporal lobe epilepsy (TLE and mesial temporal sclerosis (MTS, and the association of patterns of hippocampal sclerosis with clinical data and surgical prognosis. METHOD: Sixty-six patients with medically refractory TLE with unilateral MTS after anterior temporal lobectomy were included. Quantitative neuropathological evaluation was performed on NeuN-stained hippocampal sections. Patient's clinical data and surgical outcome were reviewed. RESULTS: Occurrence of initial precipitating insult (IPI, as well as better postoperative seizure control (i.e. Engel class 1, were associated with classical and severe patterns of hippocampal sclerosis (MTS type 1a and 1b, respectively. CONCLUSION: Quantitative evaluation of hippocampal neuronal loss patterns predicts surgical outcome in patients with TLE-MTS.

  13. Temporal lobe epilepsy with mesial temporal sclerosis: hippocampal neuronal loss as a predictor of surgical outcome.

    Science.gov (United States)

    Jardim, Anaclara Prada; Neves, Rafael Scarpa da Costa; Caboclo, Luís Otávio Sales Ferreira; Lancellotti, Carmen Lucia Penteado; Marinho, Murilo Martinez; Centeno, Ricardo Silva; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Yacubian, Elza Márcia Targas

    2012-05-01

    To analyze retrospectively a series of patients with temporal lobe epilepsy (TLE) and mesial temporal sclerosis (MTS), and the association of patterns of hippocampal sclerosis with clinical data and surgical prognosis. Sixty-six patients with medically refractory TLE with unilateral MTS after anterior temporal lobectomy were included. Quantitative neuropathological evaluation was performed on NeuN-stained hippocampal sections. Patient's clinical data and surgical outcome were reviewed. Occurrence of initial precipitating insult (IPI), as well as better postoperative seizure control (i.e. Engel class 1), were associated with classical and severe patterns of hippocampal sclerosis (MTS type 1a and 1b, respectively). Quantitative evaluation of hippocampal neuronal loss patterns predicts surgical outcome in patients with TLE-MTS.

  14. The Effect of Vitamin D Treatment On Nerve Growth Factor (NGF) Release From Hippocampal Neurons.

    Science.gov (United States)

    Gezen-Ak, Duygu; Dursun, Erdinç; Yilmazer, Selma

    2014-06-01

    Vitamin D, the main function of which is thought to be the maintenance of calcium and phosphate homeostasis and bone structure, has been shown in recent studies to have important roles in brain development as well. A certain vitamin D receptor (VDR) gene haplotype was reported, for the first time by our group, to increase the risk of developing Alzheimer's disease. Our studies also showed that vitamin D prevents beta amyloid-induced calcium elevation and toxicity that target nerve growth factor (NGF) release in cortical neurons; beta amyloid suppresses VDR expression and the disruption of vitamin D-VDR pathway mimics beta amyloid-induced neurodegeneration. In this study, our aim was to investigate the effects of vitamin D on the NGF release from hippocampal neurons. Primary hippocampal neuron cultures that were prepared from 18-day-old Sprague-Dawley rat embryos were treated with vitamin D for 48 hours. The alteration in the NGF release was determined with ELISA. Cytotoxicity tests were also performed for all groups. The NGF release in vitamin D-treated group was significantly higher than in untreated control group. The protective effect of vitamin D against cytotoxicity was also observed. Our results indicated that vitamin D regulates the release of NGF, a very important molecule for neuronal survival of hippocampal neurons as well as cortical neurons.

  15. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons

    Science.gov (United States)

    Murphy, Diane D.; Cole, Nelson B.; Segal, Menahem

    1998-01-01

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons. PMID:9736750

  16. VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1

    Directory of Open Access Journals (Sweden)

    Chun-Lei Wang

    2012-10-01

    VPS35, a major component of the retromer, plays an important role in the selective endosome-to-Golgi retrieval of membrane proteins. Dysfunction of retromer is a risk factor for neurodegenerative disorders, but its function in developing mouse brain remains poorly understood. Here we provide evidence for VPS35 promoting dendritic growth and maturation, and axonal protein transport in developing mouse hippocampal neurons. Embryonic hippocampal CA1 neurons suppressing Vps35 expression by in utero electroporation of its micro RNAs displayed shortened apical dendrites, reduced dendritic spines, and swollen commissural axons in the neonatal stage, those deficits reflecting a defective protein transport/trafficking in developing mouse neurons. Further mechanistic studies showed that Vps35 depletion in neurons resulted in an impaired retrograde trafficking of BACE1 (β1-secretase and altered BACE1 distribution. Suppression of BACE1 expression in CA1 neurons partially rescued both dendritic and axonal deficits induced by Vps35-deficiency. These results thus demonstrate that BACE1 acts as a critical cargo of retromer in vitro and in vivo, and suggest that VPS35 plays an essential role in regulating apical dendritic maturation and in preventing axonal spheroid formation in developing hippocampal neurons.

  17. Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway

    NARCIS (Netherlands)

    Esselens, C.; Oorschot, V.; Baert, V.; Raemaekers, T.; Spittaels, K.; Serneels, L.; Zheng, H.; Saftig, P.; Strooper, B. de; Klumperman, J.; Annaert, W.

    2004-01-01

    Presenilin 1 (PS1) interacts with telencephalin (TLN) and the amyloid precursor protein via their transmembrane domain. Here, we demonstrate that TLN is not a substrate for γ-secretase cleavage, but displays a prolonged half-life in PS1⁻/⁻ hippocampal neurons. TLN accumulates in intracellular

  18. Computational Model of a Positive BDNF Feedback Loop in Hippocampal Neurons Following Inhibitory Avoidance Training

    Science.gov (United States)

    Zhang, Yili; Smolen, Paul; Alberini, Cristina M.; Baxter, Douglas A.; Byrne, John H.

    2016-01-01

    Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins…

  19. Potential Protective Effects of Chronic Anterior Thalamic Nucleus Stimulation on Hippocampal Neurons in Epileptic Monkeys.

    Science.gov (United States)

    Yang, An-Chao; Shi, Lin; Li, Lu-Ming; Li, Jun-Ju; Jiang, Yin; Meng, Da-Wei; Zhu, Guan-Yu; Chen, Ying-Chuan; Lu, De-Hong; Zhang, Jian-Guo

    2015-01-01

    Stimulation of the anterior nucleus of the thalamus (ANT) is effective in seizure reduction, but the mechanisms underlying the beneficial effects of ANT stimulation are unclear. To assess the beneficial effects of ANT stimulation on hippocampal neurons of epileptic monkeys. Chronic ANT stimulation was applied to kainic acid-induced epileptic monkeys. Behavioral seizures were continuously monitored. Immunohistochemical staining and western blot assays were performed to assess the hippocampal injury and the effects of ANT stimulation. The frequency of seizures was 42.8% lower in the stimulation group compared with the sham-stimulation group. Immunohistochemical staining and western blot analyses indicated that neuronal loss and apoptosis were less severe and that neurofilament synthesis was enhanced in the stimulation monkeys compared with the sham-stimulation group. These data showed that the hippocampal injury was less severe in monkeys in the stimulation group than in those in the sham-stimulation group. Our data suggest that chronic ANT stimulation may exert protective effects on hippocampal neurons and boost the regeneration of neuronal fibers. These effects may be closely related to the mechanisms of ANT stimulation in epilepsy treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat

    DEFF Research Database (Denmark)

    Madsen, Torsten Meldgaard; Kristjansen, P.E.G.; Bolwig, Tom Gert

    2003-01-01

    irradiation blocked the formation of new neurons in the dentate gyrus of the hippocampus. At different time points after the termination of the irradiation procedure, the animals were tested in two tests of short-term memory that differ with respect to their dependence on hippocampal function. Eight and 21...

  1. Homeostatic maintenance in excitability of tree shrew hippocampal CA3 pyramidal neurons after chronic stress

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Czéh, Boldizsár; Fuchs, Eberhard

    2004-01-01

    The experience of chronic stress induces a reversible regression of hippocampal CA3 apical neuron dendrites. Although such postsynaptic membrane reduction will obviously diminish the possibility of synaptic input, the consequences for the functional membrane properties of these cells are not well

  2. Trim9 Deletion Alters the Morphogenesis of Developing and Adult-Born Hippocampal Neurons and Impairs Spatial Learning and Memory.

    Science.gov (United States)

    Winkle, Cortney C; Olsen, Reid H J; Kim, Hyojin; Moy, Sheryl S; Song, Juan; Gupton, Stephanie L

    2016-05-04

    During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9(-/-) adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9(-/-) mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo These cellular defects were associated with severe deficits in spatial learning and memory. Copyright © 2016 the authors 0270-6474/16/364940-19$15.00/0.

  3. Cell cycle markers have different expression and localization patterns in neuron-like PC12 cells and primary hippocampal neurons.

    Science.gov (United States)

    Negis, Yesim; Unal, Aysegul Yildiz; Korulu, Sirin; Karabay, Arzu

    2011-06-01

    Neuron-like PC12 cells are extensively used in place of neurons in published studies. Aim of this paper has been to compare mRNA and protein expressions of cell cycle markers; cyclinA, B, D, E; Cdk1, 2 and 4; and p27 in post-mitotic primary hippocampal neurons, mitotically active PC12 cells and NGF-differentiated post-mitotic PC12 cells. Contrary to PC12 cells, in neurons, the presence of all these markers was detected only at mRNA level; except for cyclinA, cyclinE and Cdk4, which were detectable also at protein levels. In both NGF-treated PC12 cells and neurons, cyclinE was localized only in the nucleus. In NGF-treated PC12 cells cyclinD and Cdk4 were localized in the nucleus while, in neurons cyclinD expression was not detectable; Cdk4 was localized in the cytoplasm. In neurons, cyclinA was nuclear, whereas in NGF-treated PC12 cells, it was localized in the cell body and along the processes. These results suggest that PC12 cells and primary neurons are different in terms of cell cycle protein expressions and localizations. Thus, it may not be very appropriate to use these cells as neuronal model system in order to understand neuronal physiological activities, upstream of where may lie cell cycle activation triggered events. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Intervention effects of ganoderma lucidum spores on epileptiform discharge hippocampal neurons and expression of neurotrophin-4 and N-cadherin.

    Directory of Open Access Journals (Sweden)

    Shu-Qiu Wang

    Full Text Available Epilepsy can cause cerebral transient dysfunctions. Ganoderma lucidum spores (GLS, a traditional Chinese medicinal herb, has shown some antiepileptic effects in our previous studies. This was the first study of the effects of GLS on cultured primary hippocampal neurons, treated with Mg(2+ free medium. This in vitro model of epileptiform discharge hippocampal neurons allowed us to investigate the anti-epileptic effects and mechanism of GLS activity. Primary hippocampal neurons from <1 day old rats were cultured and their morphologies observed under fluorescence microscope. Neurons were confirmed by immunofluorescent staining of neuron specific enolase (NSE. Sterile method for GLS generation was investigated and serial dilutions of GLS were used to test the maximum non-toxic concentration of GLS on hippocampal neurons. The optimized concentration of GLS of 0.122 mg/ml was identified and used for subsequent analysis. Using the in vitro model, hippocampal neurons were divided into 4 groups for subsequent treatment i control, ii model (incubated with Mg(2+ free medium for 3 hours, iii GLS group I (incubated with Mg(2+ free medium containing GLS for 3 hours and replaced with normal medium and incubated for 6 hours and iv GLS group II (neurons incubated with Mg(2+ free medium for 3 hours then replaced with a normal medium containing GLS for 6 hours. Neurotrophin-4 and N-Cadherin protein expression were detected using Western blot. The results showed that the number of normal hippocampal neurons increased and the morphologies of hippocampal neurons were well preserved after GLS treatment. Furthermore, the expression of neurotrophin-4 was significantly increased while the expression of N-Cadherin was decreased in the GLS treated group compared with the model group. This data indicates that GLS may protect hippocampal neurons by promoting neurotrophin-4 expression and inhibiting N-Cadherin expression.

  5. Differential Regulation of Apical-basolateral Dendrite Outgrowth by Activity in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Yang eYuan

    2015-08-01

    Full Text Available Hippocampal pyramidal neurons have characteristic dendrite asymmetry, characterized by structurally and functionally distinct apical and basolateral dendrites. The ability of the neuron to generate and maintain dendrite asymmetry is vital, since synaptic inputs received are critically dependent on dendrite architecture. Little is known about the role of neuronal activity in guiding maintainance of dendrite asymmetry. Our data indicate that dendrite asymmetry is established and maintained early during development. Further, our results indicate that cell intrinsic and global alterations of neuronal activity have differential effects on net extension of apical and basolateral dendrites. Thus, apical and basolateral dendrite extension may be independently regulated by cell intrinsic and network neuronal activity during development, suggesting that individual dendrites may have autonomous control over net extension. We propose that regulated individual dendrite extension in response to cell intrinsic and neuronal network activity may allow temporal control of synapse specificity in the developing hippocampus.

  6. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons.

    Science.gov (United States)

    Orellana, Juan A; Moraga-Amaro, Rodrigo; Díaz-Galarce, Raúl; Rojas, Sebastián; Maturana, Carola J; Stehberg, Jimmy; Sáez, Juan C

    2015-01-01

    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression.

  7. Segregated populations of hippocampal principal CA1 neurons mediating conditioning and extinction of contextual fear.

    Science.gov (United States)

    Tronson, Natalie C; Schrick, Christina; Guzman, Yomayra F; Huh, Kyu Hwan; Srivastava, Deepak P; Penzes, Peter; Guedea, Anita L; Gao, Can; Radulovic, Jelena

    2009-03-18

    Learning processes mediating conditioning and extinction of contextual fear require activation of several key signaling pathways in the hippocampus. Principal hippocampal CA1 neurons respond to fear conditioning by a coordinated activation of multiple protein kinases and immediate early genes, such as cFos, enabling rapid and lasting consolidation of contextual fear memory. The extracellular signal-regulated kinase (Erk) additionally acts as a central mediator of fear extinction. It is not known however, whether these molecular events take place in overlapping or nonoverlapping neuronal populations. By using mouse models of conditioning and extinction of fear, we set out to determine the time course of cFos and Erk activity, their cellular overlap, and regulation by afferent cholinergic input from the medial septum. Analyses of cFos(+) and pErk(+) cells by immunofluorescence revealed predominant nuclear activation of either protein during conditioning and extinction of fear, respectively. Transgenic cFos-LacZ mice were further used to label in vivo Fos(+) hippocampal cells during conditioning followed by pErk immunostaining after extinction. The results showed that these signaling molecules were activated in segregated populations of hippocampal principal neurons. Furthermore, immunotoxin-induced lesions of medial septal neurons, providing cholinergic input into the hippocampus, selectively abolished Erk activation and extinction of fear without affecting cFos responses and conditioning. These results demonstrate that extinction mechanisms based on Erk signaling involve a specific population of CA1 principal neurons distinctively regulated by afferent cholinergic input from the medial septum.

  8. Selective axonal growth of embryonic hippocampal neurons according to topographic features of various sizes and shapes

    Directory of Open Access Journals (Sweden)

    Christine E Schmidt

    2010-12-01

    Full Text Available David Y Fozdar1*, Jae Y Lee2*, Christine E Schmidt2–6, Shaochen Chen1,3–5,7,1Departments of Mechanical Engineering, 2Chemical Engineering, 3Biomedical Engineering; 4Center for Nano Molecular Science and Technology; 5Texas Materials Institute; 6Institute of Neuroscience; 7Microelectronics Research Center, The University of Texas at Austin, Austin, TX, USA *Contributed equally to this workPurpose: Understanding how surface features influence the establishment and outgrowth of the axon of developing neurons at the single cell level may aid in designing implantable scaffolds for the regeneration of damaged nerves. Past studies have shown that micropatterned ridge-groove structures not only instigate axon polarization, alignment, and extension, but are also preferred over smooth surfaces and even neurotrophic ligands.Methods: Here, we performed axonal-outgrowth competition assays using a proprietary four-quadrant topography grid to determine the capacity of various micropatterned topographies to act as stimuli sequestering axon extension. Each topography in the grid consisted of an array of microscale (approximately 2 µm or submicroscale (approximately 300 nm holes or lines with variable dimensions. Individual rat embryonic hippocampal cells were positioned either between two juxtaposing topographies or at the borders of individual topographies juxtaposing unpatterned smooth surface, cultured for 24 hours, and analyzed with respect to axonal selection using conventional imaging techniques.Results: Topography was found to influence axon formation and extension relative to smooth surface, and the distance of neurons relative to topography was found to impact whether the topography could serve as an effective cue. Neurons were also found to prefer submicroscale over microscale features and holes over lines for a given feature size.Conclusion: The results suggest that implementing physical cues of various shapes and sizes on nerve guidance conduits

  9. Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons.

    Science.gov (United States)

    Edelmann, Elke; Cepeda-Prado, Efrain; Leßmann, Volkmar

    2017-01-01

    Understanding learning and memory mechanisms is an important goal in neuroscience. To gain insights into the underlying cellular mechanisms for memory formation, synaptic plasticity processes are studied with various techniques in different brain regions. A valid model to scrutinize different ways to enhance or decrease synaptic transmission is recording of long-term potentiation (LTP) or long-term depression (LTD). At the single cell level, spike timing-dependent plasticity (STDP) protocols have emerged as a powerful tool to investigate synaptic plasticity with stimulation paradigms that also likely occur during memory formation in vivo . Such kind of plasticity can be induced by different STDP paradigms with multiple repeat numbers and stimulation patterns. They subsequently recruit or activate different molecular pathways and neuromodulators for induction and expression of STDP. Dopamine (DA) and brain-derived neurotrophic factor (BDNF) have been recently shown to be important modulators for hippocampal STDP at Schaffer collateral (SC)-CA1 synapses and are activated exclusively by distinguishable STDP paradigms. Distinct types of parallel synaptic plasticity in a given neuron depend on specific subcellular molecular prerequisites. Since the basal and apical dendrites of CA1 pyramidal neurons are known to be heterogeneous, and distance-dependent dendritic gradients for specific receptors and ion channels are described, the dendrites might provide domain specific locations for multiple types of synaptic plasticity in the same neuron. In addition to the distinct signaling and expression mechanisms of various types of LTP and LTD, activation of these different types of plasticity might depend on background brain activity states. In this article, we will discuss some ideas why multiple forms of synaptic plasticity can simultaneously and independently coexist and can contribute so effectively to increasing the efficacy of memory storage and processing capacity of the

  10. Recording Spikes Activity in Cultured Hippocampal Neurons Using Flexible or Transparent Graphene Transistors

    Directory of Open Access Journals (Sweden)

    Farida Veliev

    2017-08-01

    Full Text Available The emergence of nanoelectronics applied to neural interfaces has started few decades ago, and aims to provide new tools for replacing or restoring disabled functions of the nervous systems as well as further understanding the evolution of such complex organization. As the same time, graphene and other 2D materials have offered new possibilities for integrating micro and nano-devices on flexible, transparent, and biocompatible substrates, promising for bio and neuro-electronics. In addition to many bio-suitable features of graphene interface, such as, chemical inertness and anti-corrosive properties, its optical transparency enables multimodal approach of neuronal based systems, the electrical layer being compatible with additional microfluidics and optical manipulation ports. The convergence of these fields will provide a next generation of neural interfaces for the reliable detection of single spike and record with high fidelity activity patterns of neural networks. Here, we report on the fabrication of graphene field effect transistors (G-FETs on various substrates (silicon, sapphire, glass coverslips, and polyimide deposited onto Si/SiO2 substrates, exhibiting high sensitivity (4 mS/V, close to the Dirac point at VLG < VD and low noise level (10−22 A2/Hz, at VLG = 0 V. We demonstrate the in vitro detection of the spontaneous activity of hippocampal neurons in-situ-grown on top of the graphene sensors during several weeks in a millimeter size PDMS fluidics chamber (8 mm wide. These results provide an advance toward the realization of biocompatible devices for reliable and high spatio-temporal sensing of neuronal activity for both in vitro and in vivo applications.

  11. Survival of adult generated hippocampal neurons is altered in circadian arrhythmic mice.

    Directory of Open Access Journals (Sweden)

    Brooke D Rakai

    Full Text Available The subgranular zone of the hippocampal formation gives rise to new neurons that populate the dentate gyrus throughout life. Cells in the hippocampus exhibit rhythmic clock gene expression and the circadian clock is known to regulate the cycle of cell division in other areas of the body. These facts suggest that the circadian clock may regulate adult neurogenesis in the hippocampus as well. In the present study, neurogenesis in the hippocampal subgranular zone was examined in arrhythmic Bmal1 knockout (-KO mice and their rhythmic heterozygous and wildtype littermates. Proliferation and survival of newly generated subgranular zone cells were examined using bromodeoxyuridine labelling, while pyknosis (a measure of cell death and hippocampal volume were examined in cresyl violet stained sections. There was no significant difference in cellular proliferation between any of the groups, yet survival of proliferating cells, 6 weeks after the bromodeoxyuridine injection, was significantly greater in the BMAL1-KO animals. The number of pyknotic cells was significantly decreased in Bmal1-KO animals, yet hippocampal volume remained the same across genotypes. These findings suggest that while a functional circadian clock is not necessary for normal proliferation of neuronal precursor cells, the normal pruning of newly generated neurons in the hippocampus may require a functional circadian clock.

  12. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Pizzurro, Daniella M.; Dao, Khoi [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Costa, Lucio G. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Department of Neuroscience, University of Parma, Parma (Italy)

    2014-02-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  13. Centella asiatica Attenuates Mitochondrial Dysfunction and Oxidative Stress in Aβ-Exposed Hippocampal Neurons

    Science.gov (United States)

    Zweig, Jonathan A.; Matthews, Donald G.; Caruso, Maya; Quinn, Joseph F.; Soumyanath, Amala

    2017-01-01

    Centella asiatica has been used for centuries to enhance memory. We have previously shown that a water extract of Centella asiatica (CAW) protects against the deleterious effects of amyloid-β (Aβ) in neuroblastoma cells and attenuates Aβ-induced cognitive deficits in mice. Yet, the neuroprotective mechanism of CAW has yet to be thoroughly explored in neurons from these animals. This study investigates the effects of CAW on neuronal metabolism and oxidative stress in isolated Aβ-expressing neurons. Hippocampal neurons from amyloid precursor protein overexpressing Tg2576 mice and wild-type (WT) littermates were treated with CAW. In both genotypes, CAW increased the expression of antioxidant response genes which attenuated the Aβ-induced elevations in reactive oxygen species (ROS) and lipid peroxidation in Tg2576 neurons. CAW also improved mitochondrial function in both genotypes and increased the expression of electron transport chain enzymes and mitochondrial labeling, suggesting an increase in mitochondrial content. These data show that CAW protects against mitochondrial dysfunction and oxidative stress in Aβ-exposed hippocampal neurons which could contribute to the beneficial effects of the extract observed in vivo. Since CAW also improved mitochondrial function in the absence of Aβ, these results suggest a broader utility for other conditions where neuronal mitochondrial dysfunction occurs. PMID:28883904

  14. EEA1 restores homeostatic synaptic plasticity in hippocampal neurons from Rett syndrome mice.

    Science.gov (United States)

    Xu, Xin; Pozzo-Miller, Lucas

    2017-08-15

    Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Mecp2 deletion in mice results in an imbalance of excitation and inhibition in hippocampal neurons, which affects 'Hebbian' synaptic plasticity. We show that Mecp2-deficient neurons also lack homeostatic synaptic plasticity, likely due to reduced levels of EEA1, a protein involved in AMPA receptor endocytosis. Expression of EEA1 restored homeostatic synaptic plasticity in Mecp2-deficient neurons, providing novel targets of intervention in Rett syndrome. Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Deletion of Mecp2 in mice results in an imbalance of synaptic excitation and inhibition in hippocampal pyramidal neurons, which affects 'Hebbian' long-term synaptic plasticity. Since the excitatory-inhibitory balance is maintained by homeostatic mechanisms, we examined the role of MeCP2 in homeostatic synaptic plasticity (HSP) at excitatory synapses. Negative feedback HSP, also known as synaptic scaling, maintains the global synaptic strength of individual neurons in response to sustained alterations in neuronal activity. Hippocampal neurons from Mecp2 knockout (KO) mice do not show the characteristic homeostatic scaling up of the amplitude of miniature excitatory postsynaptic currents (mEPSCs) and of synaptic levels of the GluA1 subunit of AMPA-type glutamate receptors after 48 h silencing with the Na + channel blocker tetrodotoxin. This deficit in HSP is bidirectional because Mecp2 KO neurons also failed to scale down mEPSC amplitudes and GluA1 synaptic levels after 48 h blockade of type A GABA receptor (GABA A R)-mediated inhibition with bicuculline. Consistent with the role of synaptic trafficking of AMPA-type of glutamate receptors in HSP, Mecp2 KO neurons

  15. Prolonged cannabinoid exposure alters GABAA receptor mediated synaptic function in cultured hippocampal neurons

    Science.gov (United States)

    Deshpande, Laxmikant S.; Blair, Robert. E.; DeLorenzo, Robert. J.

    2011-01-01

    Developing cannabinoid based medication along with marijuana’s recreational use makes it important to investigate molecular adaptations the endocannabinoid system undergoes following prolonged use and withdrawal. Repeated cannabinoid administration results in development of tolerance and produces withdrawal symptoms that may include seizures. Here we employed electrophysiological and immunochemical techniques to investigate the effects of prolonged CB1 receptor agonist exposure on cultured hippocampal neurons. Approximately 60% of CB1 receptors colocalize to GABAergic terminals in hippocampal cultures. Prolonged treatment with the cannabinamimetic WIN 55,212-2 (+WIN, 1μM, 24-h) caused profound CB1 receptor downregulation accompanied by neuronal hyperexcitability. Furthermore, prolonged +WIN treatment resulted in increased GABA release as indicated by increased mIPSC frequency, a diminished GABAergic inhibition as indicated by reduction in mIPSC amplitude and a reduction in GABAA channel number. Additionally, surface staining for the GABAA β2/3 receptor subunits was decreased, while no changes in staining for the presynaptic vesicular GABA transporter were observed, indicating that GABAergic terminals remained intact. These findings demonstrate that agonist-induced downregulation of the CB1 receptor in hippocampal cultures results in neuronal hyperexcitability that may be attributed, in part, to alterations in both presynaptic GABA release mechanisms and postsynaptic GABAA receptor function demonstrating a novel role for cannabinoid-dependent presynaptic control of neuronal transmission. PMID:21324315

  16. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons.

    Directory of Open Access Journals (Sweden)

    Rafael Rodríguez-Muñoz

    Full Text Available The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f, during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV. By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60% and multipolar Glutamatergic (≤40% neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC: dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively, in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles of neuronal nucleoskeleton preparations. The present study evinces that each Dp71's complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.

  17. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons.

    Science.gov (United States)

    Rodríguez-Muñoz, Rafael; Cárdenas-Aguayo, María Del Carmen; Alemán, Víctor; Osorio, Beatriz; Chávez-González, Oscar; Rendon, Alvaro; Martínez-Rojas, Dalila; Meraz-Ríos, Marco Antonio

    2015-01-01

    The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f), during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV). By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60%) and multipolar Glutamatergic (≤40%) neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC): dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively), in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles) of neuronal nucleoskeleton preparations. The present study evinces that each Dp71's complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.

  18. Diacylglycerol kinase β promotes dendritic outgrowth and spine maturation in developing hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Otani Koichi

    2009-08-01

    Full Text Available Abstract Background Diacylglycerol kinase (DGK is an enzyme that phosphorylates diacylglycerol to phosphatidic acid and comprises multiple isozymes of distinct properties. Of DGKs, mRNA signal for DGKβ is strongly detected in the striatum, and one of the transcripts derived from the human DGKβ locus is annotated in GenBank as being differentially expressed in bipolar disorder patients. Recently, we have reported that DGKβ is expressed in medium spiny neurons of the striatum and is highly concentrated at the perisynapse of dendritic spines. However, it remains elusive how DGKβ is implicated in pathophysiological role in neurons at the cellular level. Results In the present study, we investigated the expression and subcellular localization of DGKβ in the hippocampus, together with its functional implication using transfected hippocampal neurons. DGKβ is expressed not only in projection neurons but also in interneurons and is concentrated at perisynaptic sites of asymmetrical synapses. Overexpression of wild-type DGKβ promotes dendrite outgrowth at 7 d in vitro (DIV and spine maturation at 14 DIV in transfected hippocampal neurons, although its kinase-dead mutant has no effect. Conclusion In the hippocampus, DGKβ is expressed in both projection neurons and interneurons and is accumulated at the perisynapse of dendritic spines in asymmetrical synapses. Transfection experiments suggest that DGKβ may be involved in the molecular machineries of dendrite outgrowth and spinogenesis through its kinase activity.

  19. Characterization of synchronized bursts in cultured hippocampal neuronal networks with learning training on microelectrode arrays.

    Science.gov (United States)

    Li, Yanling; Zhou, Wei; Li, Xiangning; Zeng, Shaoqun; Liu, Man; Luo, Qingming

    2007-06-15

    Spontaneous synchronized bursts seem to play a key role in brain functions such as learning and memory. Still controversial is the characterization of spontaneous synchronized bursts in neuronal networks after learning training, whether depression or promotion. By taking advantages of the main features of the microelectrode array (MEA) technology (i.e. multisite recordings, stable and long-term coupling with the biological preparation), we analyzed changes of spontaneous synchronized bursts in cultured hippocampal neuronal networks after learning training. And for this purpose, a learning model at networking level on MEA system was constructed, and analysis of spontaneous synchronized burst activity modulation was presented. Preliminary results show that, the number of burst was increased by 154%, burst duration was increased by 35%, and the number of spikes per burst was increased by 124%, while interburst interval decreased by 44% with learning. In particular, correlation and synchrony of neuronal activities in networks were enhanced by 51% and 36%, respectively, with learning. In contrast, dynamic properties of neuronal networks were not changed much when the network was under "non-learning" condition. These results indicate that firing, association and synchrony of spontaneous bursts in neuronal networks were promoted by learning. Furthermore, from these observations, we are encouraged to think of a more engineered system based on in vitro hippocampal neurons, as a novel sensitive system for electrophysiological evaluations.

  20. ASIC-like, proton-activated currents in rat hippocampal neurons.

    Science.gov (United States)

    Baron, Anne; Waldmann, Rainer; Lazdunski, Michel

    2002-03-01

    The expression of mRNA for acid sensing ion channels (ASIC) subunits ASIC1a, ASIC2a and ASIC2b has been reported in hippocampal neurons, but the presence of functional hippocampal ASIC channels was never assessed. We report here the first characterization of ASIC-like currents in rat hippocampal neurons in primary culture. An extracellular pH drop induces a transient Na(+) current followed by a sustained non-selective cation current. This current is highly sensitive to pH with an activation threshold around pH 6.9 and a pH(0.5) of 6.2. About half of the total peak current is inhibited by the spider toxin PcTX1, which is specific for homomeric ASIC1a channels. The remaining PcTX1-resistant ASIC-like current is increased by 300 microM Zn(2+) and, whereas not fully activated at pH 5, it shows a pH(0.5) of 6.0 between pH 7.4 and 5. We have previously shown that Zn(2+) is a co-activator of ASIC2a-containing channels. Thus, the hippocampal transient ASIC-like current appears to be generated by a mixture of homomeric ASIC1a channels and ASIC2a-containing channels, probably heteromeric ASIC1a+2a channels. The sustained non-selective current suggests the involvement of ASIC2b-containing heteromeric channels. Activation of the hippocampal ASIC-like current by a pH drop to 6.9 or 6.6 induces a transient depolarization which itself triggers an initial action potential (AP) followed by a sustained depolarization and trains of APs. Zn(2+) increases the acid sensitivity of ASIC channels, and consequently neuronal excitability. It is probably an important co-activator of ASIC channels in the central nervous system.

  1. Sleep deprivation and hippocampal vulnerability: changes in neuronal plasticity, neurogenesis and cognitive function.

    Science.gov (United States)

    Kreutzmann, J C; Havekes, R; Abel, T; Meerlo, P

    2015-11-19

    Despite the ongoing fundamental controversy about the physiological function of sleep, there is general consensus that sleep benefits neuronal plasticity, which ultimately supports brain function and cognition. In agreement with this are numerous studies showing that sleep deprivation (SD) results in learning and memory impairments. Interestingly, such impairments appear to occur particularly when these learning and memory processes require the hippocampus, suggesting that this brain region may be particularly sensitive to the consequences of sleep loss. Although the molecular mechanisms underlying sleep and memory formation remain to be investigated, available evidence suggests that SD may impair hippocampal neuronal plasticity and memory processes by attenuating intracellular cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling which may lead to alterations in cAMP response element binding protein (CREB)-mediated gene transcription, neurotrophic signaling, and glutamate receptor expression. When restricted sleep becomes a chronic condition, it causes a reduction of hippocampal cell proliferation and neurogenesis, which may eventually lead to a reduction in hippocampal volume. Ultimately, by impairing hippocampal plasticity and function, chronically restricted and disrupted sleep contributes to cognitive disorders and psychiatric diseases. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Neuroprotective benzyl benzoate glycosides from Disporum viridescens roots in HT22 hippocampal neuronal cells.

    Science.gov (United States)

    Cho, Namki; Yang, Heejung; Lee, Mina; Huh, Jungmoo; Kim, Hyeon-Woo; Kim, Hong-Pyo; Sung, Sang-Hyun

    2013-12-27

    Bioassay-guided fractionation of the EtOAc extract from Disporum viridescens roots led to the isolation of five new benzyl benzoate glycosides, BBGs (1-5). The neuroprotective activities of the BBGs were screened using neuronal HT22 hippocampal cells. BBG-D (4) significantly protected murine hippocampal HT22 cells against glutamate-induced neurotoxicity by maintaining the antioxidative defense systems such as superoxide dismutase, glutathione reductase, glutathione peroxidase, and the glutathione content. BBG-D, in a dose-and time-dependent manner, increased HO-1 expression through the selective activation of pERK signaling among the MAPK pathways. These results suggest that BBG-D could be a promising candidate for the treatment of neurodegenerative diseases related to glutamate-induced oxidative neuronal cytotoxicity.

  3. Correlation of hippocampal theta rhythm with changes in cutaneous temperature. [evoked neuron response in thermoregulation

    Science.gov (United States)

    Horowitz, J. M.; Saleh, M. A.; Karem, R. D.

    1974-01-01

    A possible role for the hippocampus in alerting an animal to changes in cutaneous temperature was examined. Following local warming or cooling of the ears of unanesthetized, loosely restrained rabbits, theta waves (4-7 Hz EEG waves) were recorded from electrodes straddling the hippocampus. The onset of the hippocampal theta rhythm was correlated with changes in cutaneous temperature, an observation consistent with studies indicating that the theta rhythm is a nonspecific response evoked by stimulation of several sensory modalities. Additional data from cats and rabbits were correlated with specific neurons within the hippocampus, namely pyramidal cells. Post stimulus time histograms obtained by excitation of the dorsal fornix were interpreted in terms of excitatory and inhibitory inputs to pyramidal cells. Thus, the theta rhythm, which appears to be evoked by changes in cutaneous temperature, can be related to a specific type of hippocampal neuron which is in turn connected with other areas of the brain involved in temperature regulation.

  4. Hippocampal neuron number loss in rats exposed to ingested sulfite.

    Science.gov (United States)

    Akdogan, Ilgaz; Kocamaz, Erdogan; Kucukatay, Vural; Yonguc, Nilufer Goksin; Ozdemir, Mehmet Bulent; Murk, William

    2011-10-01

    Sulfite, which is continuously formed in the body during metabolism of sulfur-containing amino acids, is commonly used in preservatives. It has been shown that there are toxic effects of sulfite on many cellular components. The aim of this study was to investigate the possible toxic effects of sulfite on pyramidal neurons by counting cell numbers in CA1 and CA2-CA3 subdivisions of the rat hippocampus. For this purpose, male albino rats were divided into a control group and a sulfite group (25 mg/kg). Sulfite was administered to the animals via drinking water for 8 weeks. At the end of the experimental period, brains were removed and neurons were estimated in total and in a known fraction of CA1 and CA2-CA3 subdivisions of the left hippocampus by using the optical fractionator method--a stereological method. Results showed that sulfite treatment caused a significant decrease in the total number of pyramidal neurons in three subdivisions of the hippocampus (CA1 and CA2-CA3) in the sulfite group compared with the control group (p < 0.05, Mann Whitney U test). It was concluded that exogenous administration of sulfite causes loss of pyramidal neurons in CA1 and CA2-CA3 subdivisions of the rat hippocampus.

  5. Neuronal activity regulates hippocampal miRNA expression

    NARCIS (Netherlands)

    Eacker, S.M.; Keuss, M.J.; Berezikov, E.; Dawson, V.L.; Dawson, T.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a

  6. Neuronal Activity Regulates Hippocampal miRNA Expression

    NARCIS (Netherlands)

    Eacker, Stephen M.; Keuss, Matthew J.; Berezikov, Eugene; Dawson, Valina L.; Dawson, Ted M.

    2011-01-01

    Neuronal activity regulates a broad range of processes in the hippocampus, including the precise regulation of translation. Disruptions in proper translational control in the nervous system are associated with a variety of disorders that fall in the autistic spectrum. MicroRNA (miRNA) represent a

  7. Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice

    Directory of Open Access Journals (Sweden)

    Paula Patricia Perissinotti

    2015-01-01

    Full Text Available Kelch-like 1 (KLHL1 is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type and CaV3.2 (α1H T-type calcium channels; KLHL1 knockdown experiments (KD cause down-regulation of both channel types and altered synaptic properties in cultured rat hippocampal neurons (Perissinotti et al., 2014. Here, we studied the effect of ablation of KLHL1 on calcium channel function and synaptic properties in cultured hippocampal neurons from KLHL1 knockout (KO mice. Western blot data showed the P/Q-type channel α1A subunit was less abundant in KO hippocampus compared to wildtype (WT; and PQ-type calcium currents were smaller in KO neurons than WT during early days in vitro, although this decrease was compensated for at late stages by increases in L-type calcium current. In contrast, T-type currents did not change in culture. However, biophysical properties and western blot analysis revealed a differential contribution of T-type channel isoforms in the KO, with CaV3.2 α1H subunit being down-regulated and CaV3.1 α1G up-regulated. Synapsin I levels were reduced in the KO hippocampus; cultured neurons displayed a concomitant reduction in synapsin I puncta and decreased miniature excitatory postsynaptic current (mEPSC frequency. In summary, genetic ablation of the calcium channel modulator resulted in compensatory mechanisms to maintain calcium current homeostasis in hippocampal KO neurons; however, synaptic alterations resulted in a reduction of excitatory synapse number, causing an imbalance of the excitatory-inhibitory synaptic input ratio favoring inhibition.

  8. Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons.

    Science.gov (United States)

    Wang, Wei-Ping; Iyo, Abiye H; Miguel-Hidalgo, Javier; Regunathan, Soundar; Zhu, Meng-Yang

    2006-04-21

    Agmatine is a polyamine and has been considered as a novel neurotransmitter or neuromodulator in the central nervous system. In the present study, the neuroprotective effect of agmatine against cell damage caused by N-methyl-D-aspartate (NMDA) and glutamate was investigated in cultured rat hippocampal neurons. Lactate dehydrogenase (LDH) activity assay, beta-tubulin III immunocytochemical staining and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end-labeling (TUNEL) assay were conducted to detect cell damage. Exposure of 12-day neuronal cultures of rat hippocampus to NMDA or glutamate for 1 h caused a concentration-dependent neurotoxicity, as indicated by the significant increase in released LDH activities. Addition of 100 microM agmatine into media ablated the neurotoxicity induced by NMDA or glutamate, an effect also produced by the specific NMDA receptor antagonist dizocilpine hydrogen maleate (MK801). Arcaine, an analog of agmatine with similar structure as agmatine, fully prevented the NMDA- or glutamate-induced neuronal damage. Spermine and putrescine, the endogenous polyamine and metabolic products of agmatine without the guanidine moiety of agmatine, failed to show this effect, indicating a structural relevance for this neuroprotection. Immunocytochemical staining and TUNEL assay confirmed the findings in the LDH measurement. That is, agmatine and MK801 markedly attenuated NMDA-induced neuronal death and significantly reduced TUNEL-positive cell numbers induced by exposure of cultured hippocampal neurons to NMDA. Taken together, these results demonstrate that agmatine can protect cultured hippocampal neurons from NMDA- or glutamate-induced excitotoxicity, through a possible blockade of the NMDA receptor channels or a potential anti-apoptotic property.

  9. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat

    DEFF Research Database (Denmark)

    Madsen, Torsten Meldgaard; Kristjansen, P.E.G.; Bolwig, Tom Gert

    2003-01-01

    irradiation blocked the formation of new neurons in the dentate gyrus of the hippocampus. At different time points after the termination of the irradiation procedure, the animals were tested in two tests of short-term memory that differ with respect to their dependence on hippocampal function. Eight and 21...... that blocked neurogenesis contributes to the reported deleterious side effects of this treatment, consisting of memory impairment, dysphoria and lethargy....

  10. Concentration-dependent effects of fullerenol on cultured hippocampal neuron viability

    Directory of Open Access Journals (Sweden)

    Zha YY

    2012-06-01

    Full Text Available Ying-ying Zha,1 Bo Yang,1 Ming-liang Tang,2 Qiu-chen Guo,1 Ju-tao Chen,1 Long-ping Wen,3 Ming Wang11CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 2Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, 3Laboratory of Nano-biology, School of Life Sciences, University of Science and Technology of China, Hefei, People's Republic of ChinaBackground: Recent studies have shown that the biological actions and toxicity of the water-soluble compound, polyhydroxyfullerene (fullerenol, are related to the concentrations present at a particular site of action. This study investigated the effects of different concentrations of fullerenol on cultured rat hippocampal neurons.Methods and results: Fullerenol at low concentrations significantly enhanced hippocampal neuron viability as tested by MTT assay and Hoechst 33342/propidium iodide double stain detection. At high concentrations, fullerenol induced apoptosis confirmed by Comet assay and assessment of caspase proteins.Conclusion: These findings suggest that fullerenol promotes cell death and protects against cell damage, depending on the concentration present. The concentration-dependent effects of fullerenol were mainly due to its influence on the reduction-oxidation pathway.Keywords: fullerenol, nanomaterial, neurotoxicity, neuroprotection, hippocampal neuron

  11. Differential regulation of amyloid-β-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    International Nuclear Information System (INIS)

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.; Goldgaber, D.; Gajdusek, D.C.; Young, W.G.; Morrison, J.H.; Wilson, M.C.

    1988-01-01

    The authors have mapped the neuroanatomical distribution of amyloid-β-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-β-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-β-protein mRNA in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-β-protein gene expression may be altered in Alzheimer disease

  12. Prolactin mediates neuroprotection against excitotoxicity in primary cell cultures of hippocampal neurons via its receptor.

    Science.gov (United States)

    Vergara-Castañeda, E; Grattan, D R; Pasantes-Morales, H; Pérez-Domínguez, M; Cabrera-Reyes, E A; Morales, T; Cerbón, M

    2016-04-01

    Recently it has been reported that prolactin (PRL) exerts a neuroprotective effect against excitotoxicity in hippocampus in the rat in vivo models. However, the exact mechanism by which PRL mediates this effect is not completely understood. The aim of our study was to assess whether prolactin exerts neuroprotection against excitotoxicity in an in vitro model using primary cell cultures of hippocampal neurons, and to determine whether this effect is mediated via the prolactin receptor (PRLR). Primary cell cultures of rat hippocampal neurons were used in all experiments, gene expression was evaluated by RT-qPCR, and protein expression was assessed by Western blot analysis and immunocytochemistry. Cell viability was assessed by using the MTT method. The results demonstrated that PRL treatment of neurons from primary cultures did not modify cell viability, but that it exerted a neuroprotective effect, with cells treated with PRL showing a significant increase of viability after glutamate (Glu)--induced excitotoxicity as compared with neurons treated with Glu alone. Cultured neurons expressed mRNA for both PRL and its receptor (PRLR), and both PRL and PRLR expression levels changed after the excitotoxic insult. Interestingly, the PRLR protein was detected as two main isoforms of 100 and 40 kDa as compared with that expressed in hypothalamic cells, which was present only as a 30 kDa variant. On the other hand, PRL was not detected in neuron cultures, either by western blot or by immunohistochemistry. Neuroprotection induced by PRL was significantly blocked by specific oligonucleotides against PRLR, thus suggesting that the PRL role is mediated by its receptor expressed in these neurons. The overall results indicated that PRL induces neuroprotection in neurons from primary cell cultures. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Knockout of Amyloid β Protein Precursor (APP) Expression Alters Synaptogenesis, Neurite Branching and Axonal Morphology of Hippocampal Neurons.

    Science.gov (United States)

    Southam, Katherine A; Stennard, Fiona; Pavez, Cassandra; Small, David H

    2018-03-23

    The function of the β-A4 amyloid protein precursor (APP) of Alzheimer's disease (AD) remains unclear. APP has a number of putative roles in neuronal differentiation, survival, synaptogenesis and cell adhesion. In this study, we examined the development of axons, dendrites and synapses in cultures of hippocampus neutrons derived from APP knockout (KO) mice. We report that loss of APP function reduces the branching of cultured hippocampal neurons, resulting in reduced synapse formation. Using a compartmentalised culture approach, we found reduced axonal outgrowth in cultured hippocampal neurons and we also identified abnormal growth characteristics of isolated hippocampal neuron axons. Although APP has previously been suggested to play an important role in promoting cell adhesion, we surprisingly found that APPKO hippocampal neurons adhered more strongly to a poly-L-lysine substrate and their neurites displayed an increased density of focal adhesion puncta. The findings suggest that the function of APP has an important role in both dendritic and axonal growth and that endogenous APP may regulate substrate adhesion of hippocampal neurons. The results may explain neuronal and synaptic morphological abnormalities in APPKO mice and the presence of abnormal APP expression in dystrophic neurites around amyloid deposits in AD.

  14. Altered neuronal excitability underlies impaired hippocampal function in an animal model of psychosis

    Directory of Open Access Journals (Sweden)

    Thomas eGrüter

    2015-05-01

    Full Text Available Psychosis is accompanied by severe attentional deficits, and impairments in associational-memory processing and sensory information processing that are ascribed to dysfunctions in prefrontal and hippocampal function. Disruptions of glutamatergic signalling may underlie these alterations: Antagonism of the N-methyl-D-aspartate receptor (NMDAR results in similar molecular, cellular, cognitive and behavioural changes in rodents and/or humans as those that occur in psychosis, raising the question as to whether changes in glutamatergic transmission may be intrinsic to the pathophysiology of the disease. In an animal model of psychosis that comprises treatment with the irreversible NMDAR-antagonist, MK801, we explored the cellular mechanisms that may underlie hippocampal dysfunction in psychosis. MK801-treatment resulted in a profound loss of hippocampal LTP that was evident 4 weeks after treatment. Whereas neuronal expression of the immediate early gene, Arc, was enhanced in the hippocampus by spatial learning in controls, MK801-treated animals failed to show activity-dependent increases in Arc expression. By contrast, a significant increase in basal Arc expression in the absence of learning was evident compared to controls. Paired-pulse facilitation was increased at the 40 ms interval indicating that NMDAR and/or fast GABAergic-mediated neurotransmission was disrupted. In line with this, MK801-treatment resulted in a significant decrease in GABA(A, and increase in GABA(B-receptor-expression in PFC, along with a significant increase of GABA(B- and NMDAR-GluN2B expression in the dentate gyrus. NMDAR-GluN1 or GluN2A subunit expression was unchanged. These data suggest that in psychosis, deficits in hippocampus-dependent memory may be caused by a loss of hippocampal LTP that arises through enhanced hippocampal neuronal excitability, altered GluN2B and GABA receptor expression and an uncoupling of the hippocampus-prefrontal cortex circuitry.

  15. [Protective effect of valsartan or/and ligustrazine on hippocampal neuronal loss in rats with vascular dementia].

    Science.gov (United States)

    Qin, Da-lian; Deng, Sha; Zhang, Zhuo; Zhou, Miao; Li, Hua

    2011-01-01

    To investigate the effect of Valsartan and Ligustrazine on hippocampal neuronal loss and the ability of learning and memory of rats with vascular dementia. Vascular dementia was induced in rats by blocking bilateral carotid artery repeatedly and intraperitoneal injection of sodium nitroprusside. The vacuity learning and memory of the rats were measured with Morris water maze. The plasma AVP and ANGII were determined by radio-immunity methods. The activities of SOD, GSH-Px and MDA in hippocampal tissues were detected by chemistry colorimetry. The hippocampal neuronal loss was observe with light microscope. Both valsartan and ligustrazine shortened escape latency (P drugs alone in all of the indicators except for plasma AVP. Valsartan or/and Ligustrazine have protective effect on hippocampal neuronal loss in rats with vascular dementia, possibly through inhibiting RAS activation and free radical formation induced by cerebral ischemia-reperfusion.

  16. SoxC Transcription Factors Are Required for Neuronal Differentiation in Adult Hippocampal Neurogenesis

    Science.gov (United States)

    Mu, Lifang; Berti, Lucia; Masserdotti, Giacomo; Covic, Marcela; Michaelidis, Theologos M.; Doberauer, Kathrin; Merz, Katharina; Rehfeld, Frederick; Haslinger, Anja; Wegner, Michael; Sock, Elisabeth; Lefebvre, Veronique; Couillard-Despres, Sebastien; Aigner, Ludwig; Berninger, Benedikt; Lie, D. Chichung

    2012-01-01

    Neural stem cells (NSCs) generate new hippocampal dentate granule neurons throughout adulthood. The genetic programs controlling neuronal differentiation of adult NSCs are only poorly understood. Here we show that, in the adult mouse hippocampus, expression of the SoxC transcription factors Sox4 and Sox11 is initiated around the time of neuronal commitment of adult NSCs and is maintained in immature neurons. Overexpression of Sox4 and Sox11 strongly promotes in vitro neurogenesis from adult NSCs, whereas ablation of Sox4/Sox11 prevents in vitro and in vivo neurogenesis from adult NSCs. Moreover, we demonstrate that SoxC transcription factors target the promoters of genes that are induced on neuronal differentiation of adult NSCs. Finally, we show that reprogramming of astroglia into neurons is dependent on the presence of SoxC factors. These data identify SoxC proteins as essential contributors to the genetic network controlling neuronal differentiation in adult neurogenesis and neuronal reprogramming of somatic cells. PMID:22378879

  17. Repositioning of Somatic Golgi Apparatus Is Essential for the Dendritic Establishment of Adult-Born Hippocampal Neurons.

    Science.gov (United States)

    Rao, Sneha; Kirschen, Gregory W; Szczurkowska, Joanna; Di Antonio, Adrian; Wang, Jia; Ge, Shaoyu; Shelly, Maya

    2018-01-17

    New dentate granule cells (DGCs) are continuously generated, and integrate into the preexisting hippocampal network in the adult brain. How an adult-born neuron with initially simple spindle-like morphology develops into a DGC, consisting of a single apical dendrite with further branches, remains largely unknown. Here, using retroviruses to birth date and manipulate newborn neurons, we examined initial dendritic formation and possible underlying mechanisms. We found that GFP-expressing newborn cells began to establish a DGC-like morphology at ∼7 d after birth, with a primary dendrite pointing to the molecular layer, but at this stage, with several neurites in the neurogenic zone. Interestingly, the Golgi apparatus, an essential organelle for neurite growth and maintenance, was dynamically repositioning in the soma of newborn cells during this initial integration stage. Two weeks after birth, by which time most neurites in the neurogenic zone were eliminated, a compact Golgi apparatus was positioned exclusively at the base of the primary dendrite. We analyzed the presence of Golgi-associated genes using single-cell transcriptomes of newborn DGCs, and among Golgi-related genes, found the presence of STK25 and STRAD , regulators of embryonic neuronal development. When we knocked down either of these two proteins, we found Golgi mislocalization and extensive aberrant dendrite formation. Furthermore, overexpression of a mutated form of STRAD, underlying the disorder polyhydramnios, megalencephaly, and symptomatic epilepsy, characterized by abnormal brain development and intractable epilepsy, caused similar defects in Golgi localization and dendrite formation in adult-born neurons. Together, our findings reveal a role for Golgi repositioning in regulating the initial integration of adult-born DGCs. SIGNIFICANCE STATEMENT Since the discovery of the continuous generation of new neurons in the adult hippocampus, extensive effort was directed toward understanding the

  18. Cdk5 Is Essential for Amphetamine to Increase Dendritic Spine Density in Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Soledad Ferreras

    2017-11-01

    Full Text Available Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant’s effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine–induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine’s effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction.

  19. Formin1 mediates the induction of dendritogenesis and synaptogenesis by neurogenin3 in mouse hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Julia Simon-Areces

    Full Text Available Neurogenin3, a proneural transcription factor controlled by Notch receptor, has been recently shown to regulate dendritogenesis and synaptogenesis in mouse hippocampal neurons. However, little is known about the molecular mechanisms involved in these actions of Ngn3. We have used a microarray analysis to identify Ngn3 regulated genes related with cytoskeleton dynamics. One of such genes is Fmn1, whose protein, Formin1, is associated with actin and microtubule cytoskeleton. Overexpression of the Fmn1 isoform-Ib in cultured mouse hippocampal neurons induced an increase in the number of primary dendrites and in the number of glutamatergic synaptic inputs at 4 days in vitro. The same changes were provoked by overexpression of Ngn3. In addition downregulation of Fmn1 by the use of Fmn1-siRNAs impaired such morphological and synaptic changes induced by Ngn3 overexpression in neurons. These results reveal a previously unknown involvement of Formin1 in dendritogenesis and synaptogenesis and indicate that this protein is a key component of the Ngn3 signaling pathway that controls neuronal differentiation.

  20. NRSF causes cAMP-sensitive suppression of sodium current in cultured hippocampal neurons

    Science.gov (United States)

    Nadeau, H.; Lester, H. A.

    2002-01-01

    The neuron restrictive silencer factor (NRSF/REST) has been shown to bind to the promoters of many neuron-specific genes and is able to suppress transcription of Na(+) channels in PC12 cells, although its functional effect in terminally differentiated neurons is unknown. We constructed lentiviral vectors to express NRSF as a bicistronic message with green fluorescent protein (GFP) and followed infected hippocampal neurons in culture over a period of 1-2 wk. NRSF-expressing neurons showed a time-dependent suppression of Na(+) channel function as measured by whole cell electrophysiology. Suppression was reversed or prevented by the addition of membrane-permeable cAMP analogues and enhanced by cAMP antagonists but not affected by increasing protein expression with a viral enhancer. Secondary effects, including altered sensitivity to glutamate and GABA and reduced outward K(+) currents, were duplicated by culturing GFP-infected control neurons in TTX. The striking similarity of the phenotypes makes NRSF potentially useful as a genetic "silencer" and also suggests avenues of further exploration that may elucidate the transcription factor's in vivo role in neuronal plasticity.

  1. Scanning Ultrasound (SUS Causes No Changes to Neuronal Excitability and Prevents Age-Related Reductions in Hippocampal CA1 Dendritic Structure in Wild-Type Mice.

    Directory of Open Access Journals (Sweden)

    Robert John Hatch

    Full Text Available Scanning ultrasound (SUS is a noninvasive approach that has recently been shown to ameliorate histopathological changes and restore memory functions in an Alzheimer's disease mouse model. Although no overt neuronal damage was reported, the short- and long-term effects of SUS on neuronal excitability and dendritic tree morphology had not been investigated. To address this, we performed patch-clamp recordings from hippocampal CA1 pyramidal neurons in wild-type mice 2 and 24 hours after a single SUS treatment, and one week and 3 months after six weekly SUS treatments, including sham treatments as controls. In both treatment regimes, no changes in CA1 neuronal excitability were observed in SUS-treated neurons when compared to sham-treated neurons at any time-point. For the multiple treatment groups, we also determined the dendritic morphology and spine densities of the neurons from which we had recorded. The apical trees of sham-treated neurons were reduced at the 3 month time-point when compared to one week; however, surprisingly, no longitudinal change was detected in the apical dendritic trees of SUS-treated neurons. In contrast, the length and complexity of the basal dendritic trees were not affected by SUS treatment at either time-point. The apical dendritic spine densities were reduced, independent of the treatment group, at 3 months compared to one week. Collectively, these data suggest that ultrasound can be employed to prevent an age-associated loss of dendritic structure without impairing neuronal excitability.

  2. Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep.

    Science.gov (United States)

    Poe, G R; Nitz, D A; McNaughton, B L; Barnes, C A

    2000-02-07

    The idea that sleep could serve a cognitive function has remained popular since Freud stated that dreams were "not nonsense" but a time to sort out experiences [S. Freud, Letter to Wilhelm Fliess, May 1897, in The Origins of Psychoanalysis - Personal Letters of Sigmund Freud, M. Bonaparte, A. Freud, E. Kris (Eds.), Translated by E. Mosbacher, J. Strachey, Basic Books and Imago Publishing, 1954]. Rapid eye movement (REM) sleep, which is associated with dream reports, is now known to be is important for acquisition of some tasks [A. Karni, D. Tanne, B.S. Rubenstein, J.J.M. Askenasy, D. Sagi, Dependence on REM sleep of overnight improvement of a perceptual skill, Science 265 (1994) 679-682; C. Smith, Sleep states and learning: a review of the animal literature, Biobehav. Rev. 9 (1985) 157-168]; although why this is so remains obscure. It has been proposed that memories may be consolidated during REM sleep or that forgetting of unnecessary material occurs in this state [F. Crick, G. Mitchison, The function of dream sleep, Nature 304 (1983) 111-114; D. Marr, Simple memory: a theory for archicortex, Philos. Trans. R. Soc. B. 262 (1971) 23-81]. We studied the firing of multiple single neurons in the hippocampus, a structure that is important for episodic memory, during familiar and novel experiences and in subsequent REM sleep. Cells active in familiar places during waking exhibited a reversal of firing phase relative to local theta oscillations in REM sleep. Because firing-phase can influence whether synapses are strengthened or weakened [C. Holscher, R. Anwyl, M.J. Rowan, Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo, J. Neurosci. 15 (1977) 6470-6477; P.T. Huerta, J.E. Lisman, Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro, Neuron 15 (1995) 1053-1063; C. Pavlides, Y

  3. Genetic deletion of melanin-concentrating hormone neurons impairs hippocampal short-term synaptic plasticity and hippocampal-dependent forms of short-term memory.

    Science.gov (United States)

    Le Barillier, Léa; Léger, Lucienne; Luppi, Pierre-Hervé; Fort, Patrice; Malleret, Gaël; Salin, Paul-Antoine

    2015-11-01

    The cognitive role of melanin-concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero-lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long-term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal-dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long-term potentiation and depression in the CA1 area of the hippocampus. Post-tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre-synaptic forms of short-term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short-term memory T-maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short-term memory by impairing short-term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short-term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.

  4. Expression of m1-m4 muscarinic acetylcholine receptor immunoreactivity in septohippocampal neurons and other identified hippocampal afferents.

    Science.gov (United States)

    Rouse, S T; Levey, A I

    1996-11-18

    Muscarinic cholinergic transmission plays an important role in modulating hippocampal activity and many higher brain functions. Many of the modulatory effects of acetylcholine on hippocampal function result from direct effects in the hippocampus or from actions on the hippocampal afferent neurons. At each site, the differential expression of a family of five distinct but related receptor subtypes governs the nature of the response. The aim of the present study was to identify the subtypes expressed in the hippocampal afferent neurons by combining retrograde tracing with immunocytochemistry. The retrograde tracer, wheat germ agglutinin conjugated to horseradish peroxidase, was injected into the hippocampus unilaterally to label afferent neurons, and was combined with muscarinic (m) acetylcholine (ACh) receptors (mAChRs) with immunocytochemistry to identify the m1-m4 subtypes expressed. The retrogradely labeled cells in the basal forebrain that contribute to the septohippocampal pathway were found to express m2, m3, and, to a lesser extent, m1. Commissural/associational pathway neurons, which were identified by retrogradely labeled cells in the ipsi- and contralateral dentate gyrus, expressed m1, m3, and m4. The retrogradely labeled cells in the entorhinal cortex of the perforant pathway expressed predominantly m1 and m3, with fewer neurons expressing m2 and m4. Raphe-hippocampal cells were found to express m1. Thus, this study provides evidence for the diversity of mAChR subtypes expressed in neurons that project to the hippocampus. The complex modulation by acetylcholine of hippocampal function, therefore, is governed not only by the variety of mAChRs expressed in the hippocampus but also by their differential expression in extrinsic hippocampal afferents.

  5. Models of synchronized hippocampal bursts in the presence of inhibition. I. Single population events.

    Science.gov (United States)

    Traub, R D; Miles, R; Wong, R K

    1987-10-01

    1. We constructed model networks with 520 or 1,020 cells intended to represent the CA3 region of the hippocampus. Model neurons were simulated in enough detail to reproduce intrinsic bursting and the electrotonic flow of currents along dendritic cables. Neurons exerted either excitatory or inhibitory postsynaptic actions on other cells. The network models were simulated with different levels of excitatory and inhibitory synaptic strengths in order to study epileptic and other interesting collective behaviors in the system. 2. Excitatory synapses between neurons in the network were powerful enough so that burst firing in a presynaptic neuron would evoke bursting in its connected cells. Since orthodromic or antidromic stimulation evokes both a fast and a slow phase of inhibition, two types of inhibitory cells were simulated. The properties of these inhibitory cells were modeled to resemble those of two types of inhibitory cells characterized by dual intracellular recordings in the slice preparation. 3. With fast inhibition totally blocked, a stimulus to a single cell lead to a synchronized population burst. Thus the principles of our epileptic synchronization model, developed earlier, apply even when slow inhibitory postsynaptic potentials (IPSPs) are present, as apparently occurs in the epileptic hippocampal slice. The model performs in this way because bursting can propagate through several generations in the network before slow inhibition builds up enough to block burst propagation. This can occur, however, only if connectivity is sufficiently large. With very low connection densities, slow IPSPs will prevent the development of full synchronization. 4. We performed multiple simulations in which the fast inhibitory conductance strength was kept fixed at various levels while the strength of the excitatory synapses was varied. In each simulation, we stimulated either one or four cells. For each level of inhibition, the peak number of cells bursting depended

  6. Laser capture microdissection of enriched populations of neurons or single neurons for gene expression analysis after traumatic brain injury.

    Science.gov (United States)

    Boone, Deborah R; Sell, Stacy L; Hellmich, Helen Lee

    2013-04-10

    Long-term cognitive disability after TBI is associated with injury-induced neurodegeneration in the hippocampus-a region in the medial temporal lobe that is critical for learning, memory and executive function. Hence our studies focus on gene expression analysis of specific neuronal populations in distinct subregions of the hippocampus. The technique of laser capture microdissection (LCM), introduced in 1996 by Emmert-Buck, et al., has allowed for significant advances in gene expression analysis of single cells and enriched populations of cells from heterogeneous tissues such as the mammalian brain that contains thousands of functional cell types. We use LCM and a well established rat model of traumatic brain injury (TBI) to investigate the molecular mechanisms that underlie the pathogenesis of TBI. Following fluid-percussion TBI, brains are removed at pre-determined times post-injury, immediately frozen on dry ice, and prepared for sectioning in a cryostat. The rat brains can be embedded in OCT and sectioned immediately, or stored several months at -80 °C before sectioning for laser capture microdissection. Additionally, we use LCM to study the effects of TBI on circadian rhythms. For this, we capture neurons from the suprachiasmatic nuclei that contain the master clock of the mammalian brain. Here, we demonstrate the use of LCM to obtain single identified neurons (injured and degenerating, Fluoro-Jade-positive, or uninjured, Fluoro-Jade-negative) and enriched populations of hippocampal neurons for subsequent gene expression analysis by real time PCR and/or whole-genome microarrays. These LCM-enabled studies have revealed that the selective vulnerability of anatomically distinct regions of the rat hippocampus are reflected in the different gene expression profiles of different populations of neurons obtained by LCM from these distinct regions. The results from our single-cell studies, where we compare the transcriptional profiles of dying and adjacent surviving

  7. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    OpenAIRE

    Eder, Anja; Bading, Hilmar

    2007-01-01

    Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nuc...

  8. Cytomorphometric changes in hippocampal CA1 neurons exposed to simulated microgravity using rats as model

    Directory of Open Access Journals (Sweden)

    Amit eRanjan

    2014-05-01

    Full Text Available Microgravity and sleep loss lead to cognitive and learning deficits. These behavioral alterations are likely to be associated with cytomorphological changes and loss of neurons. To understand the phenomenon, we exposed rats (225-275g to 14 days simulated microgravity (SMg and compared its effects on CA1 hippocampal neuronal plasticity, with that of normal cage control rats. We observed that the mean area, perimeter, synaptic cleft and length of active zone of CA1 hippocampal neurons significantly decreased while dendritic arborization and number of spines significantly increased in SMg group as compared with controls. The mean thickness of the post synaptic density and total dendritic length remained unaltered. The changes may be a compensatory effect induced by exposure to microgravity; however, the effects may be transient or permanent, which need further study. These findings may be useful for designing effective prevention for those, including the astronauts, exposed to microgravity. Further, subject to confirmation we propose that SMg exposure might be useful for recovery of stroke patients.

  9. Aging Triggers a Repressive Chromatin State at Bdnf Promoters in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Ernest Palomer

    2016-09-01

    Full Text Available Cognitive capacities decline with age, an event accompanied by the altered transcription of synaptic plasticity genes. Here, we show that the transcriptional induction of Bdnf by a mnemonic stimulus is impaired in aged hippocampal neurons. Mechanistically, this defect is due to reduced NMDA receptor (NMDAR-mediated activation of CaMKII. Decreased NMDAR signaling prevents changes associated with activation at specific Bdnf promoters, including displacement of histone deacetylase 4, recruitment of the histone acetyltransferase CBP, increased H3K27 acetylation, and reduced H3K27 trimethylation. The decrease in NMDA-CaMKII signaling arises from constitutive reduction of synaptic cholesterol that occurs with normal aging. Increasing the levels of neuronal cholesterol in aged neurons in vitro, ex vivo, and in vivo restored NMDA-induced Bdnf expression and chromatin remodeling. Furthermore, pharmacological prevention of age-associated cholesterol reduction rescued signaling and cognitive deficits of aged mice. Thus, reducing hippocampal cholesterol loss may represent a therapeutic approach to reverse cognitive decline during aging.

  10. GABAA receptor-mediated modulation of neuronal activity propagation upon tetanic stimulation in rat hippocampal slices.

    Science.gov (United States)

    Tominaga, Takashi; Tominaga, Yoko

    2010-10-01

    Tetanic stimulation (100 Hz), which can induce long-term potentiation in synaptic connections in the hippocampal CA1 region, causes γ-aminobutyric acid (GABA)(A) receptor-mediated long-lasting depolarization of postsynaptic neurons. However, it is not clear how this stimulation modulates neuronal activity propagation. We studied tetanic burst-induced neuronal responses in the hippocampal CA1 region by using optical-recording methods employing a voltage-sensitive dye and focused on GABA(A) receptor-mediated modulation. We observed that burst stimulation induced long-lasting depolarization and progressive decrease in individual excitatory postsynaptic potentials (EPSPs). Both these effects were suppressed by picrotoxin, a GABA(A) receptor antagonist. Under whole-cell voltage-clamp conditions, we observed a long-lasting inhibitory current (IPSC) and a prominent progressive decrease in the amplitude of the excitatory postsynaptic current (EPSC). Further, picrotoxin inhibited the IPSC and the progressive decrease in EPSC. The optically recorded long-lasting depolarization and progressive decrease of EPSPs were strongly dependent on the distance between the recording electrode and the stimulation site. Optical recordings performed across a wide swatch of CA1 revealed that the decrease in activity propagation was followed by facilitation of propagation after recovery and that this facilitation also depended on GABA(A) receptors. Intense activation of GABA(A) receptors is a key factor shaping the spatiotemporal patterns of high-frequency stimulation-induced responses in the CA1 region.

  11. NMDAR-Mediated Hippocampal Neuronal Death is Exacerbated by Activities of ASIC1a

    Science.gov (United States)

    Gao, Su; Yu, Yang; Ma, Zhi-Yuan; Sun, Hui; Zhang, Yong-Li; Wang, Xing-Tao; Wang, Chaoyun; Fan, Wei-Ming; Zheng, Qing-Yin

    2015-01-01

    NMDARs and ASIC1a both exist in central synapses and mediate important physiological and pathological conditions, but the functional relationship between them is unclear. Here we report several novel findings that may shed light on the functional relationship between these two ion channels in the excitatory postsynaptic membrane of mouse hippocampus. Firstly, NMDAR activation induced by either NMDA or OGD led to increased [Ca2+]i and greater apoptotic and necrotic cell deaths in cultured hippocampal neurons; these cell deaths were prevented by application of NMDAR antagonists. Secondly, ASIC1a activation induced by pH 6.0 extracellular solution (ECS) showed similar increases in apoptotic and necrotic cell deaths; these cell deaths were prevented by ASIC1a antagonists, and also by NMDAR antagonists. Since increased [Ca2+]i leads to increased cell deaths and since NMDAR exhibits much greater calcium permeability than ASIC1a, these data suggest that ASIC1a-induced neuronal death is mediated through activation of NMDARs. Thirdly, treatment of hippocampal cultures with both NMDA and acidic ECS induced greater degrees of cell deaths than either NMDA or acidic ECS treatment alone. These results suggest that ASIC1a activation up-regulates NMDAR function. Additional data supporting the functional relationship between ASIC1a and NMDAR are found in our electrophysiology experiments in hippocampal slices, where stimulation of ASIC1a induced a marked increase in NMDAR EPSC amplitude, and inhibition of ASIC1a resulted in a decrease in NMDAR EPSC amplitude. In summary, we present evidence that ASIC1a activity facilitates NMDAR function and exacerbates NMDAR-mediated neuronal death in pathological conditions. These findings are invaluable to the search for novel therapeutic targets in the treatment of brain ischemia. PMID:25947342

  12. Astaxanthin Protects Primary Hippocampal Neurons against Noxious Effects of Aβ-Oligomers

    Directory of Open Access Journals (Sweden)

    Pedro Lobos

    2016-01-01

    Full Text Available Increased reactive oxygen species (ROS generation and the ensuing oxidative stress contribute to Alzheimer’s disease pathology. We reported previously that amyloid-β peptide oligomers (AβOs produce aberrant Ca2+ signals at sublethal concentrations and decrease the expression of type-2 ryanodine receptors (RyR2, which are crucial for hippocampal synaptic plasticity and memory. Here, we investigated whether the antioxidant agent astaxanthin (ATX protects neurons from AβOs-induced excessive mitochondrial ROS generation, NFATc4 activation, and RyR2 mRNA downregulation. To determine mitochondrial H2O2 production or NFATc4 nuclear translocation, neurons were transfected with plasmids coding for HyperMito or NFATc4-eGFP, respectively. Primary hippocampal cultures were incubated with 0.1 μM ATX for 1.5 h prior to AβOs addition (500 nM. We found that incubation with ATX (≤10 μM for ≤24 h was nontoxic to neurons, evaluated by the live/dead assay. Preincubation with 0.1 μM ATX also prevented the neuronal mitochondrial H2O2 generation induced within minutes of AβOs addition. Longer exposures to AβOs (6 h promoted NFATc4-eGFP nuclear translocation and decreased RyR2 mRNA levels, evaluated by detection of the eGFP-tagged fluorescent plasmid and qPCR, respectively. Preincubation with 0.1 μM ATX prevented both effects. These results indicate that ATX protects neurons from the noxious effects of AβOs on mitochondrial ROS production, NFATc4 activation, and RyR2 gene expression downregulation.

  13. Activation of functional α7-containing nAChRs in hippocampal CA1 pyramidal neurons by physiological levels of choline in the presence of PNU-120596.

    Directory of Open Access Journals (Sweden)

    Bopanna I Kalappa

    2010-11-01

    Full Text Available The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596.An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71% of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1-5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV the entire pyramidal neuron and occasionally

  14. Oxygen-glucose deprivation enhancement of cell death/apoptosis in PC12 cells and hippocampal neurons correlates with changes in neuronal excitatory amino acid neurotransmitter signaling and potassium currents.

    Science.gov (United States)

    Wang, Yu-Xiang; Zhang, Feng; Ma, Xue-Ling; He, Cong-Cong; Tian, Kun; Wang, Hong-Gang; An, Di; Heng, Bin; Xie, Lai-Hua; Liu, Yan-Qiang

    2016-05-25

    Neuronal death is a pathophysiological process that is often caused by hypoxia/ischemia. However, the causes of hypoxia/ischemia-induced neuronal death are debated, and additional experimental data are needed to resolve this debate. In the present study, we applied oxygen-glucose deprivation (OGD) to PC12 cells and hippocampal neurons to establish a hypoxia/ischemia model. We evaluated the effects of OGD on cell death/apoptosis and on the levels of two excitatory amino acid neurotransmitters, aspartic acid and glutamic acid, in both hippocampal neurons and the medium used to culture the hippocampal neurons. We also evaluated GluR2 expression in hippocampal neurons as well as the effects of OGD on whole-cell potassium currents in PC12 cells and hippocampal neurons. Our experimental results showed that OGD significantly decreased cell viability and markedly enhanced apoptosis in PC12 cells and hippocampal neurons. OGD treatment for 3 h increased the levels of Asp and Glu in the medium used to culture hippocampal neurons, but decreased both the levels of Asp and Glu and GluR2 expression in hippocampal neurons. Furthermore, OGD altered the electrophysiological properties of voltage-dependent potassium channels in PC12 cells and hippocampal neurons in different ways; OGD decreased the voltage-dependent potassium current in PC12 cells, but increased this current in hippocampal neurons. On the basis of these results, we concluded that OGD enhanced neuronal cell death/apoptosis in addition to altering neuronal excitatory amino acid neurotransmitter signaling and whole-cell voltage-dependent potassium currents.

  15. Modulators of cytoskeletal reorganization in CA1 hippocampal neurons show increased expression in patients at mid-stage Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Patricia F Kao

    2010-10-01

    Full Text Available During the progression of Alzheimer's disease (AD, hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that actin capping protein beta2 subunit, Capzb2, binds tubulin and, in the presence of tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons resulted in short, dystrophic neurites, seen in neurodegenerative diseases including AD. Here we demonstrate the statistically significant increase in the Capzb2 expression in the postmortem hippocampi in persons at mid-stage, Braak and Braak stage (BB III-IV, non-familial AD in comparison to controls. The dynamics of Capzb2 expression in progressive AD stages cannot be attributed to reactive astrocytosis. Moreover, the increased expression of Capzb2 mRNA in CA1 pyramidal neurons in AD BB III-IV is accompanied by an increased mRNA expression of brain derived neurotrophic factor (BDNF receptor tyrosine kinase B (TrkB, mediator of synaptic plasticity in hippocampal neurons. Thus, the up-regulation of Capzb2 and TrkB may reflect cytoskeletal reorganization and/or regenerative response occurring in hippocampal CA1 neurons at a specific stage of AD progression.

  16. Hippocampal neurons respond uniquely to topographies of various sizes and shapes

    International Nuclear Information System (INIS)

    Fozdar, David Y; Chen Shaochen; Lee, Jae Young; Schmidt, Christine E

    2010-01-01

    A number of studies have investigated the behavior of neurons on microfabricated topography for the purpose of developing interfaces for use in neural engineering applications. However, there have been few studies simultaneously exploring the effects of topographies having various feature sizes and shapes on axon growth and polarization in the first 24 h. Accordingly, here we investigated the effects of arrays of lines (ridge grooves) and holes of microscale (∼2 μm) and nanoscale (∼300 nm) dimensions, patterned in quartz (SiO 2 ), on the (1) adhesion, (2) axon establishment (polarization), (3) axon length, (4) axon alignment and (5) cell morphology of rat embryonic hippocampal neurons, to study the response of the neurons to feature dimension and geometry. Neurons were analyzed using optical and scanning electron microscopy. The topographies were found to have a negligible effect on cell attachment but to cause a marked increase in axon polarization, occurring more frequently on sub-microscale features than on microscale features. Neurons were observed to form longer axons on lines than on holes and smooth surfaces; axons were either aligned parallel or perpendicular to the line features. An analysis of cell morphology indicated that the surface features impacted the morphologies of the soma, axon and growth cone. The results suggest that incorporating microscale and sub-microscale topographies on biomaterial surfaces may enhance the biomaterials' ability to modulate nerve development and regeneration.

  17. Activity-dependent regulation of the cytochrome c promoter in individual hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Jary Y Delgado

    2012-03-01

    Full Text Available The proximal enhancer of the cytochrome c gene (Cycs contains binding sites for both cAMP response element binding proteins (CREB and Nuclear Respiratory Factor 1 (NRF1. To investigate how neuronal activity regulates this enhancer region, a lentivirus was constructed in which a short-lived green fluorescent protein (GFP was placed under the transcriptional control of the Cycs proximal enhancer. Primary hippocampal neurons were infected, and the synaptic strengths of individual neurons were measured by whole cell patch clamping. On average the amplitude of miniature postsynaptic currents (mEPSCs was higher in brighter GFP+ neurons, while mEPSC frequencies were not significantly different. Inhibiting neural activity by applying a GABAA receptor agonist increased GFP expression in most neurons, which persisted after homeostatic synaptic scaling as evidenced by a decrease in the amplitude and frequency of mEPSCs. Removing the CREB binding sites revealed that calcium influx through L-type channels and NMDA receptors, and ERK1/2 activation played a role in NRF1-mediated transcription. CREB and NRF1 therefore combine to regulate transcription of Cycs in response to changing neural activity.

  18. Current Source Density Estimation for Single Neurons

    Directory of Open Access Journals (Sweden)

    Dorottya Cserpán

    2014-03-01

    Full Text Available Recent developments of multielectrode technology made it possible to measure the extracellular potential generated in the neural tissue with spatial precision on the order of tens of micrometers and on submillisecond time scale. Combining such measurements with imaging of single neurons within the studied tissue opens up new experimental possibilities for estimating distribution of current sources along a dendritic tree. In this work we show that if we are able to relate part of the recording of extracellular potential to a specific cell of known morphology we can estimate the spatiotemporal distribution of transmembrane currents along it. We present here an extension of the kernel CSD method (Potworowski et al., 2012 applicable in such case. We test it on several model neurons of progressively complicated morphologies from ball-and-stick to realistic, up to analysis of simulated neuron activity embedded in a substantial working network (Traub et al, 2005. We discuss the caveats and possibilities of this new approach.

  19. Tetracycline-regulated transgene expression in hippocampal neurones following transfection with adenoviral vectors.

    Science.gov (United States)

    Harding, T C; Geddes, B J; Noel, J D; Murphy, D; Uney, J B

    1997-12-01

    A transfer system that enabled the efficient introduction of transgenes into neurones and the quantitative control of the expressed transgene would greatly facilitate studies into neuronal gene function. To develop such a system we incorporated the tetracycline (Tet)-responsive On/Off regulatory elements into type-5 adenoviral (Ad) vectors. Regulation of transgene expression following transfection was measured by placing the enhanced green fluorescent protein (EGFP) gene upstream of the Tet regulatory element. The results showed that cultures of primary hippocampal cells could be transfected with very high efficiency (<70%) by the AdTet-On and AdTet-Off systems. Following transfection with the AdTet-On system no EGFP-fluorescent cells could be detected until doxycycline was added. The AdTet-Off system showed the reverse transcriptional regulation, in that the addition of Tet caused EGFP fluorescence to be abolished.

  20. Free and membrane-bound ribosomes and polysomes in hippocampal neurons during a learning experiment.

    Science.gov (United States)

    Wenzel, J; David, H; Pohle, W; Marx, I; Matthies, H

    1975-01-24

    The ribosomes of the CA1 and CA3 pyramidal cells of hipocampus were investigated by morphometric methods after the acquisition of a shock-motivated brightness discrimination in rats. A significant increase in the total number of ribosomes was observed in CA1 cells of trained animals and in CA3 cells of both active controls and trained rats. A significant increase in membrane-bound ribosomes was obtained in CA1 and CA3 cells after training only. The results confirm the suggestion of an increased protein synthesis in hippocampal neurons during and after the acquisition of a brightness discrimination, as we have concluded from out previous investigations on the incorporation of labeled amino acids under identical experimental conditions. The results lead to the assumption that the protein synthesis in some neuronal cells may probably differ not only quantitatively, but also qualitatively in trained and untrained animals.

  1. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons.

    Science.gov (United States)

    Bittner, Katie C; Grienberger, Christine; Vaidya, Sachin P; Milstein, Aaron D; Macklin, John J; Suh, Junghyup; Tonegawa, Susumu; Magee, Jeffrey C

    2015-08-01

    Feature-selective firing allows networks to produce representations of the external and internal environments. Despite its importance, the mechanisms generating neuronal feature selectivity are incompletely understood. In many cortical microcircuits the integration of two functionally distinct inputs occurs nonlinearly through generation of active dendritic signals that drive burst firing and robust plasticity. To examine the role of this processing in feature selectivity, we recorded CA1 pyramidal neuron membrane potential and local field potential in mice running on a linear treadmill. We found that dendritic plateau potentials were produced by an interaction between properly timed input from entorhinal cortex and hippocampal CA3. These conjunctive signals positively modulated the firing of previously established place fields and rapidly induced new place field formation to produce feature selectivity in CA1 that is a function of both entorhinal cortex and CA3 input. Such selectivity could allow mixed network level representations that support context-dependent spatial maps.

  2. Differential regulation of the Rac1 GTPase-activating protein (GAP) BCR during oxygen/glucose deprivation in hippocampal and cortical neurons.

    Science.gov (United States)

    Smith, Katharine R; Rajgor, Dipen; Hanley, Jonathan G

    2017-12-08

    Brain ischemia causes oxygen and glucose deprivation (OGD) in neurons, triggering a cascade of events leading to synaptic accumulation of glutamate. Excessive activation of glutamate receptors causes excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts, but the mechanisms that underlie this difference are unclear. Signaling via Rho-family small GTPases, their upstream guanine nucleotide exchange factors, and GTPase-activating proteins (GAPs) is differentially dysregulated in response to OGD/ischemia in hippocampal and cortical neurons. Increased Rac1 activity caused by OGD/ischemia contributes to neuronal death in hippocampal neurons via diverse effects on NADPH oxidase activity and dendritic spine morphology. The Rac1 guanine nucleotide exchange factor Tiam1 mediates an OGD-induced increase in Rac1 activity in hippocampal neurons; however, the identity of an antagonistic GAP remains elusive. Here we show that the Rac1 GAP breakpoint cluster region (BCR) associates with NMDA receptors (NMDARs) along with Tiam1 and that this protein complex is more abundant in hippocampal compared with cortical neurons. Although total BCR is similar in the two neuronal types, BCR is more active in hippocampal compared with cortical neurons. OGD causes an NMDAR- and Ca 2+ -permeable AMPAR-dependent deactivation of BCR in hippocampal but not cortical neurons. BCR knockdown occludes OGD-induced Rac1 activation in hippocampal neurons. Furthermore, disrupting the Tiam1-NMDAR interaction with a fragment of Tiam1 blocks OGD-induced Tiam1 activation but has no effect on the deactivation of BCR. This work identifies BCR as a critical player in Rac1 regulation during OGD in hippocampal neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Rapid regulation of tonic GABA currents in cultured rat hippocampal neurons.

    Science.gov (United States)

    Ransom, Christopher B; Tao, Wucheng; Wu, Yuanming; Spain, William J; Richerson, George B

    2013-02-01

    Subacute and chronic changes in tonic GABAergic inhibition occur in human and experimental epilepsy. Less is known about how tonic inhibition is modulated over shorter time frames (seconds). We measured endogenous tonic GABA currents from cultured rat hippocampal neurons to evaluate how they are affected by 1) transient increases in extracellular GABA concentration ([GABA]), 2) transient postsynaptic depolarization, and 3) depolarization of presynaptic cells. Transient increases in [GABA] (1 μM) reduced tonic currents; this reduction resulted from GABA-induced shifts in the reversal potential for GABA currents (E(GABA)). Transient depolarization of postsynaptic neurons reversed the effects of exogenous GABA and potentiated tonic currents. The voltage-dependent potentiation of tonic GABA currents was independent of E(GABA) shifts and represented postdepolarization potentiation (PDP), an intrinsic GABA(A) receptor property (Ransom CB, Wu Y, Richerson GB. J Neurosci 30: 7672-7684, 2010). Inhibition of vesicular GABA release with concanamycin A (ConA) did not affect tonic currents. In ConA-treated cells, transient application of 12 mM K(+) to depolarize presynaptic neurons and glia produced a persistent increase in tonic current amplitude. The K(+)-induced increase in tonic current was reversibly inhibited by SKF89976a (40 μM), indicating that this was caused by nonvesicular GABA release from GABA transporter type 1 (GAT1). Nonvesicular GABA release due to GAT1 reversal also occurred in acute hippocampal brain slices. Our results indicate that tonic GABA currents are rapidly regulated by GABA-induced changes in intracellular Cl(-) concentration, PDP of extrasynaptic GABA(A) receptors, and nonvesicular GABA release. These mechanisms may influence tonic inhibition during seizures when neurons are robustly depolarized and extracellular GABA and K(+) concentrations are elevated.

  4. PYRETHROID MODULATION OF SPONTANEOUS NEURONAL EXCITABILITY AND NEUROTRANSMISSION IN HIPPOCAMPAL NEURONS IN CULTURE

    Science.gov (United States)

    Pyrethroid insecticides have potent actions on voltage-gated sodium channels, inhibiting inactivation and increasing channel open times. These are thought to underlie, at least in part, the clinical symptoms of pyrethroid intoxication. However, disruption of neuronal activity at ...

  5. The effects of bilateral vestibular loss on hippocampal volume, neuronal number and cell proliferation in rats

    Directory of Open Access Journals (Sweden)

    Yiwen eZheng

    2012-02-01

    Full Text Available Previous studies in humans have shown that bilateral loss of vestibular function is associated with a significant bilateral atrophy of the hippocampus, which correlated with the patients’ spatial memory deficits. More recently, patients who had recovered from unilateral vestibular neuritis have been reported to exhibit a significant atrophy of the left posterior hippocampus. Therefore, we investigated whether bilateral vestibular deafferentation (BVD would result in a decrease in neuronal number or volume in the rat hippocampus, using stereological methods. At 16 months post-BVD, we found no significant differences in hippocampal neuronal number or volume compared to sham controls, despite the fact that these animals exhibited severe spatial memory deficits. By contrast, using bromodeoxyuridine (BrdU as a marker of cell proliferation, we found that the number of BrdU-labelled cells significantly increased in the dentate gyrus of the hippocampus between 48 h and 1 week following BVD. Although a substantial proportion of these cells survived for up to 1 month, the survival rate was significantly lower in BVD animals when compared with that in sham animals. These results suggest a dissociation between the effects of BVD on spatial memory and hippocampal structure in rats and humans, which cannot be explained by an injury-induced increase in cell proliferation.

  6. Point application with Angong Niuhuang sticker protects hippocampal and cortical neurons in rats with cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Dong-shu Zhang

    2015-01-01

    Full Text Available Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological functions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris and Realgar, we used transdermal enhancers to deliver Angong Niuhuang pill by modern technology, which expanded the safe dose range and clinical indications. In this study, Angong Niuhuang stickers administered at different point application doses (1.35, 2.7, and 5.4 g/kg were administered to the Dazhui (DU14, Qihai (RN6 and Mingmen (DU4 of rats with chronic cerebral ischemia, for 4 weeks. The Morris water maze was used to determine the learning and memory ability of rats. Hematoxylin-eosin staining and Nissl staining were used to observe neuronal damage of the cortex and hippocampal CA1 region in rats with chronic cerebral ischemia. The middle- and high-dose point application of Angong Niuhuang stickers attenuated neuronal damage in the cortex and hippocampal CA1 region, and improved the memory of rats with chronic cerebral ischemia with an efficacy similar to interventions by electroacupuncture at Dazhui (DU14, Qihai (RN6 and Mingmen (DU4. Our experimental findings indicate that point application with Angong Niuhuang stickers can improve cognitive function after chronic cerebral ischemia in rats and is neuroprotective with an equivalent efficacy to acupuncture.

  7. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Samuel D Robinson

    2015-10-01

    Full Text Available NMDA receptors (NMDARs play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM but not high (50 μM concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-AP. Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and RAP, a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs.

  8. Transient optogenetic inactivation of the medial entorhinal cortex biases the active population of hippocampal neurons.

    Science.gov (United States)

    Rueckemann, Jon W; DiMauro, Audrey J; Rangel, Lara M; Han, Xue; Boyden, Edward S; Eichenbaum, Howard

    2016-02-01

    The mechanisms that enable the hippocampal network to express the appropriate spatial representation for a particular circumstance are not well understood. Previous studies suggest that the medial entorhinal cortex (MEC) may have a role in reproducibly selecting the hippocampal representation of an environment. To examine how ongoing MEC activity is continually integrated by the hippocampus, we performed transient unilateral optogenetic inactivations of the MEC while simultaneously recording place cell activity in CA1. Inactivation of the MEC caused a partial remapping in the CA1 population without diminishing the degree of spatial tuning across the active cell assembly. These changes remained stable irrespective of intermittent disruption of MEC input, indicating that while MEC input is integrated over long time scales to bias the active population, there are mechanisms for stabilizing the population of active neurons independent of the MEC. We find that MEC inputs to the hippocampus shape its ongoing activity by biasing the participation of the neurons in the active network, thereby influencing how the hippocampus selectively represents information. © 2015 Wiley Periodicals, Inc.

  9. The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Valerie T. Ramírez

    2016-01-01

    Full Text Available Mastoparan-7 (Mas-7, an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX- sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95 clustering in neurites and activates Gαo signaling, increasing the intracellular Ca2+ concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC, c-Jun N-terminal kinase (JNK, and calcium-calmodulin dependent protein kinase IIα (CaMKIIα after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gαo subunit signaling in the regulation of synapse formation.

  10. Saikosaponin a Enhances Transient Inactivating Potassium Current in Rat Hippocampal CA1 Neurons

    Directory of Open Access Journals (Sweden)

    Wei Xie

    2013-01-01

    Full Text Available Saikosaponin a (SSa, a main constituent of the Chinese herb Bupleurum chinense DC., has been demonstrated to have antiepileptic activity. Recent studies have shown that SSa could inhibit NMDA receptor current and persistent sodium current. However, the effects of SSa on potassium (K+ currents remain unclear. In this study, we tested the effect of SSa on 4AP-induced epileptiform discharges and K+ currents in CA1 neurons of rat hippocampal slices. We found that SSa significantly inhibited epileptiform discharges frequency and duration in hippocampal CA1 neurons in the 4AP seizure model in a dose-dependent manner with an IC50 of 0.7 μM. SSa effectively increased the amplitude of ITotal and IA, significantly negative-shifted the activation curve, and positive-shifted steady-state curve of IA. However, SSa induced no significant changes in the amplitude and activation curve of IK. In addition, SSa significantly increased the amplitude of 4AP-sensitive K+ current, while there was no significant change in the amplitude of TEA-sensitive K+ current. Together, our data indicate that SSa inhibits epileptiform discharges induced by 4AP in a dose-dependent manner and that SSa exerts selectively enhancing effects on IA. These increases in IA may contribute to the anticonvulsant mechanisms of SSa.

  11. Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Bianca Seifert

    2016-01-01

    Full Text Available The neurotrophin brain derived neurotrophic factor (BDNF is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer’s disease (AD. To analyze the role of BDNF transport in AD, live cell imaging of fluorescently labeled BDNF was performed in hippocampal neurons of different AD model systems. BDNF and APP colocalized with low incidence in vesicular structures. Anterograde as well as retrograde transport of BDNF vesicles was reduced and these effects were mediated by factors released from hippocampal neurons into the extracellular medium. Transport of BDNF was altered at a very early time point after onset of human APP expression or after acute amyloid-beta(1-42 treatment, while the activity-dependent release of BDNF remained unaffected. Taken together, extracellular cleavage products of APP induced rapid changes in anterograde and retrograde transport of BDNF-containing vesicles while release of BDNF was unaffected by transgenic expression of mutated APP. These early transport deficits might lead to permanently impaired brain functions in the adult brain.

  12. The aminoestrogen prolame increases recognition memory and hippocampal neuronal spine density in aged mice.

    Science.gov (United States)

    Diaz, Alfonso; Treviño, Samuel; Vázquez-Roque, Rubén; Venegas, Berenice; Espinosa, Blanca; Flores, Gonzalo; Fernández-G, Juan Manuel; Montaño, Luis F; Guevara, Jorge

    2017-05-25

    The aging brain shows biochemical and morphological changes in the dendrites of pyramidal neurons from the limbic system associated with memory loss. Prolame (N-(3-hydroxy-1,3,5 (10)-estratrien-17β-yl)-3-hydroxypropylamine) is a non-feminizing aminoestrogen with antithrombotic activity that prevents neuronal deterioration, oxidative stress, and neuroinflammation. Our aim was to evaluate the effect of prolame on motor and cognitive processes, as well as its influence on the dendritic morphology of neurons at the CA1, CA3, and granule cells of the dentate gyrus (DG) regions of hippocampus (HP), and medium spiny neurons of the nucleus accumbens (NAcc) of aged mice. Dendritic morphology was assessed with the Golgi-Cox stain procedure followed by Sholl analysis. Prolame (60 µg/kg) was subcutaneously injected daily for 60 days in 18-month-old mice. Immediately after treatment, locomotor activity in a new environment and recognition memory using the Novel Object Recognition Task (NORT) were evaluated. Prolame-treated mice showed a significant increase in the long-term exploration quotient, but locomotor activity was not modified in comparison to control animals. Prolame-treated mice showed a significant increase in dendritic spines density and dendritic length in neurons of the CA1, CA3, and DG regions of the HP, whereas dendrites of neurons in the NAcc remained unmodified. In conclusion, prolame administration promotes hippocampal plasticity processes but not in the NAcc neurons of aged mice, thus improving long-term recognition memory. Prolame could become a pharmacological alternative to prevent or delay the brain aging process, and thus the emergence of neurodegenerative diseases that affect memory. © 2017 Wiley Periodicals, Inc.

  13. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential

    Directory of Open Access Journals (Sweden)

    Brinton Roberta

    2008-12-01

    Full Text Available Abstract Background Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that AP

  14. GSK-3β Overexpression Alters the Dendritic Spines of Developmentally Generated Granule Neurons in the Mouse Hippocampal Dentate Gyrus

    Science.gov (United States)

    Pallas-Bazarra, Noemí; Kastanauskaite, Asta; Avila, Jesús; DeFelipe, Javier; Llorens-Martín, María

    2017-01-01

    The dentate gyrus (DG) plays a crucial role in hippocampal-related memory. The most abundant cellular type in the DG, namely granule neurons, are developmentally generated around postnatal day P6 in mice. Moreover, a unique feature of the DG is the occurrence of adult hippocampal neurogenesis, a process that gives rise to newborn granule neurons throughout life. Adult-born and developmentally generated granule neurons share some maturational aspects but differ in others, such as in their positioning within the granule cell layer. Adult hippocampal neurogenesis encompasses a series of plastic changes that modify the function of the hippocampal trisynaptic network. In this regard, it is known that glycogen synthase kinase 3β (GSK-3β) regulates both synaptic plasticity and memory. By using a transgenic mouse overexpressing GSK-3β in hippocampal neurons, we previously demonstrated that the overexpression of this kinase has deleterious effects on the maturation of newborn granule neurons. In the present study, we addressed the effects of GSK-3β overexpression on the morphology and number of dendritic spines of developmentally generated granule neurons. To this end, we performed intracellular injections of Lucifer Yellow in developmentally generated granule neurons of wild-type and GSK-3β-overexpressing mice and analyzed the number and morphologies of dendritic spines (namely, stubby, thin and mushroom). GSK-3β overexpression led to a general reduction in the number of dendritic spines. In addition, it caused a slight reduction in the percentage, head diameter and length of thin spines, whereas the head diameter of mushroom spines was increased. PMID:28344548

  15. Eltrombopag, a thrombopoietin mimetic, crosses the blood-brain-barrier and impairs iron-dependent hippocampal neuron dendrite development

    Science.gov (United States)

    Bastian, Thomas W.; Duck, Kari A.; Michalopoulos, George C.; Chen, Michael J.; Liu, Zhi-Jian; Connor, James R.; Lanier, Lorene M.; Sola-Visner, Martha C.; Georgieff, Michael K.

    2017-01-01

    Background Thrombocytopenia is common in sick neonates. Thrombopoietin mimetics (e.g., eltrombopag (ELT)) might provide an alternative therapy for selected neonates with severe and prolonged thrombocytopenia, and for infants and young children with different varieties of thrombocytopenia. However, ELT chelates intracellular iron, which may adversely affect developing organs with high metabolic requirements. Iron deficiency (ID) is particularly deleterious during brain development, impairing neuronal myelination, dopamine signaling, and dendritic maturation and ultimately impairing long-term neurological function (e.g. hippocampal-dependent learning and memory). Objective Determine whether ELT crosses the blood-brain barrier (BBB), causes neuronal ID and impairs hippocampal neuron dendrite maturation. Methods ELT transport across the BBB was assessed using primary bovine brain microvascular endothelial cells. Embryonic mouse primary hippocampal neuron cultures were treated with ELT or deferoxamine (DFO, an iron chelator) from 7 days in vitro (DIV) through 14DIV and assessed for gene expression and neuronal dendrite complexity. Results ELT crossed the BBB in a time-dependent manner. 2 and 6 μM ELT increased Tfr1 and Slc11a2 (iron-responsive genes involved in neuronal iron uptake) mRNA levels, indicating neuronal ID. 6 μM ELT, but not 2 μM ELT, decreased BdnfVI, Camk2a, and Vamp1 mRNA levels, suggesting impaired neuronal development and synaptic function. Dendrite branch number and length was reduced in 6 μM ELT-treated neurons, resulting in blunted dendritic arbor complexity that was similar to DFO-treated neurons. Conclusions ELT treatment during development may impair neuronal structure due to neuronal ID. Pre-clinical in vivo studies are warranted to assess ELT safety during periods of rapid brain development. PMID:28005311

  16. Ginsenoside Rg1 protects against neurodegeneration by inducing neurite outgrowth in cultured hippocampal neurons.

    Science.gov (United States)

    Huang, Liang; Liu, Li-Feng; Liu, Juan; Dou, Ling; Wang, Ge-Ying; Liu, Xiao-Qing; Yuan, Qiong-Lan

    2016-02-01

    Ginsenoside Rg1 (Rg1) has anti-aging and anti-neurodegenerative effects. However, the mechanisms underlying these actions remain unclear. The aim of the present study was to determine whether Rg1 affects hippocampal survival and neurite outgrowth in vitro after exposure to amyloid-beta peptide fragment 25-35 (Aβ25-35), and to explore whether the extracellular signal-regulated kinase (ERK) and Akt signaling pathways are involved in these biological processes. We cultured hippocampal neurons from newborn rats for 24 hours, then added Rg1 to the medium for another 24 hours, with or without pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) family or Akt signaling pathways for a further 24 hours. We then immunostained the neurons for growth associated protein-43, and measured neurite length. In a separate experiment, we exposed cultured hippocampal neurons to Aβ25-35 for 30 minutes, before adding Rg1 for 48 hours, with or without Akt or MAPK inhibitors, and assessed neuronal survival using Hoechst 33258 staining, and phosphorylation of ERK1/2 and Akt by western blot analysis. Rg1 induced neurite outgrowth, and this effect was blocked by API-2 (Akt inhibitor) and PD98059 (MAPK/ERK kinase inhibitor), but not by SP600125 or SB203580 (inhibitors of c-Jun N-terminal kinase and p38 MAPK, respectively). Consistent with this effect, Rg1 upregulated the phosphorylation of Akt and ERK1/2; these effects were reversed by API-2 and PD98059, respectively. In addition, Rg1 significantly reversed Aβ25-35-induced apoptosis; this effect was blocked by API-2 and PD98059, but not by SP600125 or SB203580. Finally, Rg1 significantly reversed the Aβ25-35-induced decrease in Akt and ERK1/2 phosphorylation, but API-2 prevented this reversal. Our results indicate that Rg1 enhances neurite outgrowth and protects against Aβ25-35-induced damage, and that its mechanism may involve the activation of Akt and ERK1/2 signaling.

  17. Learning causes reorganization of neuronal firing patterns to represent related experiences within a hippocampal schema.

    Science.gov (United States)

    McKenzie, Sam; Robinson, Nick T M; Herrera, Lauren; Churchill, Jordana C; Eichenbaum, Howard

    2013-06-19

    According to schema theory as proposed by Piaget and Bartlett, learning involves the assimilation of new memories into networks of preexisting knowledge, as well as alteration of the original networks to accommodate the new information. Recent evidence has shown that rats form a schema of goal locations and that the hippocampus plays an essential role in adding new memories to the spatial schema. Here we examined the nature of hippocampal contributions to schema updating by monitoring firing patterns of multiple CA1 neurons as rats learned new goal locations in an environment in which there already were multiple goals. Before new learning, many neurons that fired on arrival at one goal location also fired at other goals, whereas ensemble activity patterns also distinguished different goal events, thus constituting a neural representation that linked distinct goals within a spatial schema. During new learning, some neurons began to fire as animals approached the new goals. These were primarily the same neurons that fired at original goals, the activity patterns at new goals were similar to those associated with the original goals, and new learning also produced changes in the preexisting goal-related firing patterns. After learning, activity patterns associated with the new and original goals gradually diverged, such that initial generalization was followed by a prolonged period in which new memories became distinguished within the ensemble representation. These findings support the view that consolidation involves assimilation of new memories into preexisting neural networks that accommodate relationships among new and existing memories.

  18. Study of the protective effects of nootropic agents against neuronal damage induced by amyloid-beta (fragment 25-35) in cultured hippocampal neurons.

    Science.gov (United States)

    Sendrowski, Krzysztof; Sobaniec, Wojciech; Stasiak-Barmuta, Anna; Sobaniec, Piotr; Popko, Janusz

    2015-04-01

    Alzheimer's disease (AD) is a common neurodegenerative disorder, in which progressive neuron loss, mainly in the hippocampus, is observed. The critical events in the pathogenesis of AD are associated with accumulation of β-amyloid (Aβ) peptides in the brain. Deposits of Aβ initiate a neurotoxic "cascade" leading to apoptotic death of neurons. Aim of this study was to assess a putative neuroprotective effects of two nootropic drugs: piracetam (PIR) and levetiracetam (LEV) on Aβ-injured hippocampal neurons in culture. Primary cultures of rat's hippocampal neurons at 7 day in vitro were exposed to Aβ(25-35) in the presence or absence of nootropics in varied concentrations. Flow cytometry with Annexin V/PI staining was used for counting and establishing neurons as viable, necrotic or apoptotic. Additionally, release of lactate dehydrogenase (LDH) to the culture medium, as a marker of cell death, was evaluated. Aβ(25-35) caused concentration-dependent death of about one third number of hippocampal neurons, mainly through an apoptotic pathway. In drugs-containing cultures, number of neurons injured with 20 μM Aβ(25-35) was about one-third lesser for PIR and almost two-fold lesser for LEV. When 40 μM Aβ(25-35) was used, only LEV exerted beneficial neuroprotective action, while PIR was ineffective. Our results suggest the protective potential of both studied nootropics against Aβ-induced death of cultured hippocampal neurons with more powerful neuroprotective effects of LEV. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Evidence for neuroprotective effect of sulbutiamine against oxygen-glucose deprivation in rat hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Kwag, Jeehyun; Majid, Aman Shah Abdul; Kang, Kui Dong

    2011-01-01

    Hippocampus is one of the earliest brain regions that gets affected by ischemia, however, no pharmacological therapy exists yet that can fully counteract the ischemic damage. Here we study the effect of sulbutiamine, a synthetic thiamine analogue that can cross the blood-brain barrier easily, on hippocampal neurons under an in vitro model of ischemia, oxygen-glucose deprivation (OGD). We find that exposure to OGD in the presence of sulbutiamine significantly increases neuronal viability and enhances electrophysiological properties such as excitatory synaptic transmissions and intrinsic neuronal membrane input resistance in a concentration-dependent manner. Overall, here we report, for the first time, the neuroprotective evidence of sulbutiamine on hippocampal CA1 pyramidal neurons under OGD, which may have beneficial implications as a possible therapeutic agent/substance against ischemic insult.

  20. Altered intrinsic excitability of hippocampal CA1 pyramidal neurons in aged PDAPP mice

    Directory of Open Access Journals (Sweden)

    Francesco eTamagnini

    2015-10-01

    Full Text Available Amyloidopathy involves the accumulation of insoluble amyloid β (Aβ species in the brain’s parenchyma and is a key histopathological hallmark of Alzheimer’s disease (AD. Work on transgenic mice that overexpress A suggests that elevated A levels in the brain are associated with aberrant epileptiform activity and increased intrinsic excitability of CA1 hippocampal neurons. In this study we examined if similar changes could be observed in hippocampal CA1 pyramidal neurons from aged PDAPP mice (20-23 month old, Indiana mutation: V717F on APP gene compared to their age-matched WT littermate controls. Whole-cell current clamp recordings revealed that sub-threshold intrinsic properties, such as input resistance, resting membrane potential and hyperpolarization activated sag were unaffected, but capacitance was significantly decreased in the transgenic animals. No differences between genotypes were observed in the overall number of action potentials (AP elicited by 500 ms supra-threshold current stimuli. PDAPP neurons, however, exhibited higher instantaneous firing frequencies after accommodation in response to high intensity current injections. The AP waveform was narrower and shorter in amplitude in PDAPP mice: these changes, according to our in silico model of a CA1/3 pyramidal neuron, depended on the respective reduction and increase of Na+ and K+ voltage-gated channels maximal conductances. Finally, the after-hyperpolarization (AHP, seen after the first AP evoked by a +300 pA current injection and after 50 Hz AP bursts, was more pronounced in PDAPP mice.These data show that Aβ-overexpression in aged mice altered the capacitance, the neuronal firing and the AP waveform of CA1 pyramidal neurons. Some of these findings are consistent with previous work on younger PDAPP, they also show important differences that can be potentially ascribed to the interaction between amyloidopathy and ageing. Such a change of IE properties over time

  1. Sevoflurane induces endoplasmic reticulum stress mediated apoptosis in hippocampal neurons of aging rats.

    Directory of Open Access Journals (Sweden)

    Gang Chen

    Full Text Available Elderly patients are more likely to suffer from postoperative memory impairment for volatile anesthetics could induce aging neurons degeneration and apoptosis while the mechanism was still elusive. Therefore we hypothesized that ER stress mediated hippocampal neurons apoptosis might play an important role in the mechanism of sevoflurane-induced cognitive impairment in aged rats. Thirty 18-month-old male Sprague-Dawley rats were divided into two groups: the sham anesthesia group (exposure to simply humidified 30-50% O2 balanced by N2 in an acrylic anesthetizing chamber for 5 hours and the sevoflurane anesthesia group (received 2% sevoflurane in the same humidified mixed air in an identical chamber for the same time. Spatial memory of rats was assayed by the Morris water maze test. The ultrastructure of the hippocampus was observed by transmission electron microscopy (TEM. The expressions of C/EBP homologous protein (CHOP and caspase-12 in the hippocampus were observed by immunohistochemistry and real-time PCR analysis. The apoptosis neurons were also assessed by TUNEL assay. The Morris water maze test showed that sevoflurane anesthesia induced spatial memory impairment in aging rats (P<0.05. The apoptotic neurons were condensed and had clumped chromatin with fragmentation of the nuclear membrane, verifying apoptotic degeneration in the sevoflurane group rats by TEM observation. The expressions of CHOP and caspase-12 increased, and the number of TUNEL positive cells of the hippocampus also increased in the sevoflurane group rats (P<0.05. The present results suggested that the long time exposure of sevoflurane could induce neuronal degeneration and cognitive impairment in aging rats. The ER stress mediated neurons apoptosis may play a role in the sevoflurane-induced memory impairment in aging rats.

  2. Iron overload triggers mitochondrial fragmentation via calcineurin-sensitive signals in HT-22 hippocampal neuron cells

    International Nuclear Information System (INIS)

    Park, Junghyung; Lee, Dong Gil; Kim, Bokyung; Park, Sun-Ji; Kim, Jung-Hak; Lee, Sang-Rae; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2015-01-01

    Highlights: • FAC-induced iron overload promotes neuronal apoptosis. • Iron overload causes mitochondrial fragmentation in a Drp1-dependent manner. • Iron-induced Drp1 activation depends on dephosphorylation of Drp1(Ser637). • Calcineurin is a key regulator of Drp1-dependent mitochondrial fission by iron. - Abstract: The accumulation of iron in neurons has been proposed to contribute to the pathology of numerous neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. However, insufficient research has been conducted on the precise mechanism underlying iron toxicity in neurons. In this study, we investigated mitochondrial dynamics in hippocampal HT-22 neurons exposed to ferric ammonium citrate (FAC) as a model of iron overload and neurodegeneration. Incubation with 150 μM FAC for 48 h resulted in decreased cell viability and apoptotic death in HT-22 cells. The FAC-induced iron overload triggered mitochondrial fragmentation, which was accompanied by Drp1(Ser637) dephosphorylation. Iron chelation with deferoxamine prevented the FAC-induced mitochondrial fragmentation and apoptotic cell death by inhibiting Drp1(Ser637) dephosphorylation. In addition, a S637D mutation of Drp1, which resulted in a phosphorylation-mimetic form of Drp1 at Ser637, protected against the FAC-induced mitochondrial fragmentation and neuronal apoptosis. FK506 and cyclosporine A, inhibitors of calcineurin activation, determined that calcineurin was associated with the iron-induced changes in mitochondrial morphology and the phosphorylation levels of Drp1. These results indicate that the FAC-induced dephosphorylation of Drp1-dependent mitochondrial fragmentation was rescued by the inhibition of calcineurin activation. Therefore, these findings suggest that calcineurin-mediated phosphorylation of Drp1(Ser637) acts as a key regulator of neuronal cell loss by modulating mitochondrial dynamics in iron-induced toxicity. These results may contribute to the

  3. Visualizing Metal Content and Intracellular Distribution in Primary Hippocampal Neurons with Synchrotron X-Ray Fluorescence.

    Directory of Open Access Journals (Sweden)

    Robert A Colvin

    Full Text Available Increasing evidence suggests that metal dyshomeostasis plays an important role in human neurodegenerative diseases. Although distinctive metal distributions are described for mature hippocampus and cortex, much less is known about metal levels and intracellular distribution in individual hippocampal neuronal somata. To solve this problem, we conducted quantitative metal analyses utilizing synchrotron radiation X-Ray fluorescence on frozen hydrated primary cultured neurons derived from rat embryonic cortex (CTX and two regions of the hippocampus: dentate gyrus (DG and CA1. Comparing average metal contents showed that the most abundant metals were calcium, iron, and zinc, whereas metals such as copper and manganese were less than 10% of zinc. Average metal contents were generally similar when compared across neurons cultured from CTX, DG, and CA1, except for manganese that was larger in CA1. However, each metal showed a characteristic spatial distribution in individual neuronal somata. Zinc was uniformly distributed throughout the cytosol, with no evidence for the existence of previously identified zinc-enriched organelles, zincosomes. Calcium showed a peri-nuclear distribution consistent with accumulation in endoplasmic reticulum and/or mitochondria. Iron showed 2-3 distinct highly concentrated puncta only in peri-nuclear locations. Notwithstanding the small sample size, these analyses demonstrate that primary cultured neurons show characteristic metal signatures. The iron puncta probably represent iron-accumulating organelles, siderosomes. Thus, the metal distributions observed in mature brain structures are likely the result of both intrinsic neuronal factors that control cellular metal content and extrinsic factors related to the synaptic organization, function, and contacts formed and maintained in each region.

  4. MicroRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment.

    Science.gov (United States)

    Wang, Xinlei; Ding, Guoyou; Lai, Wei; Liu, Shiwen; Shuai, Jun

    2018-04-01

    Anesthesia-induced cognitive impairment is a recognized clinical phenomenon. The present study aimed to investigate the effect of microRNA-383 (miR-383) expression on propofol-induced learning and memory impairment. In total, 48 male Sprague-Dawley rats (weight, 250±10 g) were randomly divided into four groups (n=12 each): Control group, and three groups of rats that were anesthetized with propofol for 6 h and untreated (propofol model group), treated with a constructed lentivirus vector expressing miR-383 mimics (mimic + propofol group), or treated with miR-383 scramble (scramble + propofol group). The learning memory ability, hippocampal neuron apoptosis and expression of apoptosis-associated factors were detected using reverse transcription-quantitiative polymerase chain reaction and western blot analysis. Propofol treatment significantly reduced the relative mRNA and protein expression of miR-383, induced neuron apoptosis, upregulated the Bax/Bcl-2 ratio, downregulated the relative mRNA and protein expression levels of postsynaptic density protein 95 and cAMP-response element binding protein, and inactivated the phosphoinositide 3-kinase/protein kinase B signaling pathway. By contrast, miR-383 mimics significantly altered the propofol-induced dysregulation of the aforementioned factors. In conclusion, miR-383 mimic was able to repair propofol-induced cognitive impairment via protecting against hippocampal neuron apoptosis and dysregulation of related factors. The present study suggested that miR-383 may be used as a potential therapeutic target for the clinical treatment of cognitive impairment induced by propofol anesthesia.

  5. Prevention of Hippocampal Neuronal Damage and Cognitive Function Deficits in Vascular Dementia by Dextromethorphan.

    Science.gov (United States)

    Xu, Xiaofeng; Zhang, Bin; Lu, Kaili; Deng, Jiangshan; Zhao, Fei; Zhao, Bing-Qiao; Zhao, Yuwu

    2016-07-01

    Dextromethorphan (DM) is a non-competitive antagonist of NMDA receptors and a widely used component of cough medicine. Recently, its indication has been extended experimentally to a wide range of disorders including inflammation-mediated central nervous system disorders such as Parkinson disease (PD) and multiple sclerosis (MS). In this study, we investigate whether DM treatment has protective effects on the hippocampal neuron damage induced by bilateral occlusion of the common carotid arteries (two-vessel occlusion [2VO]), an animal model of vascular dementia (VaD). Sprague-Dawley (SD) (10 weeks of age) rats were subjected to the 2VO, and DM was injected intraperitoneally once per day for 37 days. Neuron death, glial activation, and cognitive function were assessed at 37 days after 2VO (0.2 mg/kg, i.p., "DM-0.2" and 2 mg/kg, i.p., "DM-2"). DM-2 treatment provided protection against neuronal death and glial activation in the hippocampal CA1 subfield and reduced cognitive impairment induced by 2VO in rats. The study also demonstrates that activation of the Nrf2-HO-1 pathway and upregulation of superoxide dismutase (SOD) play important roles in these effects. These results suggest that DM is effective in treating VaD and protecting against oxidative stress, which is strongly implicated in the pathogenesis of VaD. Therefore, the present study suggests that DM treatment may represent a new and promising protective strategy for treating VaD.

  6. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons.

    Science.gov (United States)

    Fujimoto, Takahiro; Itoh, Kyoko; Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH2-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takahiro; Itoh, Kyoko, E-mail: kxi14@koto.kpu-m.ac.jp; Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    Highlights: • Identification of dystrophin (Dp) shortest isoform, Dp40, is a neuron-type Dp. • Dp40 expression is temporally and differentially regulated in comparison to Dp71. • Somatodendritic and nuclear localization of Dp40. • Dp40 is localized to excitatory postsynapses. • Dp40 might play roles in dendritic and synaptic functions. - Abstract: The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH{sub 2}-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.

  8. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons

    International Nuclear Information System (INIS)

    Fujimoto, Takahiro; Itoh, Kyoko; Yaoi, Takeshi; Fushiki, Shinji

    2014-01-01

    Highlights: • Identification of dystrophin (Dp) shortest isoform, Dp40, is a neuron-type Dp. • Dp40 expression is temporally and differentially regulated in comparison to Dp71. • Somatodendritic and nuclear localization of Dp40. • Dp40 is localized to excitatory postsynapses. • Dp40 might play roles in dendritic and synaptic functions. - Abstract: The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH 2 -terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions

  9. Inhibiting PTEN protects hippocampal neurons against stretch injury by decreasing membrane translocation of AMPA receptor GluR2 subunit.

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    Full Text Available The AMPA type of glutamate receptors (AMPARs-mediated excitotoxicity is involved in the secondary neuronal death following traumatic brain injury (TBI. But the underlying cellular and molecular mechanisms remain unclear. In this study, the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN in GluR2-lacking AMPARs mediated neuronal death was investigated through an in vitro stretch injury model of neurons. It was indicated that both the mRNA and protein levels of PTEN were increased in cultured hippocampal neurons after stretch injury, which was associated with the decreasing expression of GluR2 subunits on the surface of neuronal membrane. Inhibition of PTEN activity by its inhibitor can promote the survival of neurons through preventing reduction of GluR2 on membrane. Moreover, the effect of inhibiting GluR2-lacking AMPARs was similar to PTEN suppression-mediated neuroprotective effect in stretch injury-induced neuronal death. Further evidence identified that the total GluR2 protein of neurons was not changed in all groups. So inhibition of PTEN or blockage of GluR2-lacking AMPARs may attenuate the death of hippocampal neurons post injury through decreasing the translocation of GluR2 subunit on the membrane effectively.

  10. Locomotion, Theta Oscillations, and the Speed-Correlated Firing of Hippocampal Neurons Are Controlled by a Medial Septal Glutamatergic Circuit.

    Science.gov (United States)

    Fuhrmann, Falko; Justus, Daniel; Sosulina, Liudmila; Kaneko, Hiroshi; Beutel, Tatjana; Friedrichs, Detlef; Schoch, Susanne; Schwarz, Martin Karl; Fuhrmann, Martin; Remy, Stefan

    2015-06-03

    Before the onset of locomotion, the hippocampus undergoes a transition into an activity-state specialized for the processing of spatially related input. This brain-state transition is associated with increased firing rates of CA1 pyramidal neurons and the occurrence of theta oscillations, which both correlate with locomotion velocity. However, the neural circuit by which locomotor activity is linked to hippocampal oscillations and neuronal firing rates is unresolved. Here we reveal a septo-hippocampal circuit mediated by glutamatergic (VGluT2(+)) neurons that is activated before locomotion onset and that controls the initiation and velocity of locomotion as well as the entrainment of theta oscillations. Moreover, via septo-hippocampal projections onto alveus/oriens interneurons, this circuit regulates feedforward inhibition of Schaffer collateral and perforant path input to CA1 pyramidal neurons in a locomotion-dependent manner. With higher locomotion speed, the increased activity of medial septal VGluT2 neurons is translated into increased axo-somatic depolarization and higher firing rates of CA1 pyramidal neurons. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The transcriptional repressor Zbtb20 is essential for specification of hippocampal projection neurons and territory in mice

    DEFF Research Database (Denmark)

    Rosenthal, Eva Helga

    for specification of both hippocampal pyramidal neurons and territory in a mouse knockout model. Homozygous Zbtb20-/- mice are viable at birth, but display dwarfism and die during the first month of postnatal life. Characterization of the Zbtb20-/- brain phenotype reveals a small vestigial hippocampus...

  12. New Hippocampal Neurons Mature Rapidly in Response to Ketamine But Are Not Required for Its Acute Antidepressant Effects on Neophagia in Rats123

    Science.gov (United States)

    Soumier, Amelie; Carter, Rayna M.; Schoenfeld, Timothy J.

    2016-01-01

    Abstract Virtually all antidepressant agents increase the birth of granule neurons in the adult dentate gyrus in rodents, providing a key basis for the neurogenesis hypothesis of antidepressant action. The novel antidepressant ketamine, however, shows antidepressant activity in humans within hours, far too rapid for a mechanism involving neuronal birth. Ketamine could potentially act more rapidly by enhancing maturation of new neurons born weeks earlier. To test this possibility, we assessed the effects of S-ketamine (S-(+)-ketamine hydrochloride) injection on maturation, as well as birth and survival, of new dentate gyrus granule neurons in rats, using the immediate-early gene zif268, proliferating cell nuclear antigen, and BrdU, respectively. We show that S-ketamine has rapid effects on new neurons, increasing the proportion of functionally mature young granule neurons within 2 h. A single injection of S-ketamine also increased cell proliferation and functional maturation, and decreased depressive-like behavior, for at least 4 weeks in rats treated with long-term corticosterone administration (a depression model) and controls. However, the behavioral effects of S-ketamine on neophagia were unaffected by elimination of adult neurogenesis. Together, these results indicate that ketamine has surprisingly rapid and long-lasting effects on the recruitment of young neurons into hippocampal networks, but that ketamine has antidepressant-like effects that are independent of adult neurogenesis. PMID:27066531

  13. GABAB receptor deficiency causes failure of neuronal homeostasis in hippocampal networks.

    Science.gov (United States)

    Vertkin, Irena; Styr, Boaz; Slomowitz, Edden; Ofir, Nir; Shapira, Ilana; Berner, David; Fedorova, Tatiana; Laviv, Tal; Barak-Broner, Noa; Greitzer-Antes, Dafna; Gassmann, Martin; Bettler, Bernhard; Lotan, Ilana; Slutsky, Inna

    2015-06-23

    Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABA(A), receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABA(B) receptor (GABA(B)R) blockade or genetic deletion of the GB(1a) receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABA(B)Rs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB(1a)-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB(1a) intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the Ca(V)2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB(1b)-containing receptors. Thus, GABA(B)Rs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABA(B)R as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure's persistence in the absence of functional GABA(B)Rs.

  14. Beta-amyloid peptide blocks the fast-inactivating K+ current in rat hippocampal neurons.

    Science.gov (United States)

    Good, T A; Smith, D O; Murphy, R M

    1996-01-01

    Deposition of beta-amyloid peptide (A beta) in senile plaques is a hallmark of Alzheimer disease neuropathology. Chronic exposure of neuronal cultures to synthetic A beta is directly toxic, or enhances neuronal susceptibility to excitotoxins. Exposure to A beta may cause a loss of cellular calcium homeostasis, but the mechanism by which this occurs is uncertain. In this work, the acute response of rat hippocampal neurons to applications of synthetic A beta was measured using whole-cell voltage-clamp techniques. Pulse application of A beta caused a reversible voltage-dependent decrease in membrane conductance. A beta selectively blocked the voltage-gated fast-inactivating K+ current, with an estimated KI < 10 microM. A beta also blocked the delayed rectifying current, but only at the highest concentration tested. The response was independent of aggregation state or peptide length. The dynamic response of the fast-inactivating current to a voltage jump was consistent with a model whereby A beta binds reversibly to closed channels and prevents their opening. Blockage of fast-inactivating K+ channels by A beta could lead to prolonged cell depolarization, thereby increasing Ca2+ influx. PMID:8770205

  15. Diverse Effects of an Acetylcholinesterase Inhibitor, Donepezil, on Hippocampal Neuronal Death after Pilocarpine-Induced Seizure.

    Science.gov (United States)

    Jeong, Jeong Hyun; Choi, Bo Young; Kho, A Ra; Lee, Song Hee; Hong, Dae Ki; Lee, Sang Hwon; Lee, Sang Yup; Song, Hong Ki; Choi, Hui Chul; Suh, Sang Won

    2017-11-02

    Epileptic seizures are short episodes of abnormal brain electrical activity. Many survivors of severe epilepsy display delayed neuronal death and permanent cognitive impairment. Donepezil is an acetylcholinesterase inhibitor and is an effective treatment agent for Alzheimer's disease. However, the role of donepezil in seizure-induced hippocampal injury remains untested. Temporal lobe epilepsy (TLE) was induced by intraperitoneal injection of pilocarpine (25 mg/kg). Donepezil (2.5 mg/kg/day) was administered by gavage in three different settings: (1) pretreatment for three days before the seizure; (2) for one week immediately after the seizure; and (3) for three weeks from three weeks after the seizure. We found that donepezil showed mixed effects on seizure-induced brain injury, which were dependent on the treatment schedule. Pretreatment with donepezil aggravated neuronal death, oxidative injury, and microglia activation. Early treatment with donepezil for one week showed neither adverse nor beneficial effects; however, a treatment duration of three weeks starting three weeks after the seizure showed a significant reduction in neuronal death, oxidative injury, and microglia activation. In conclusion, donepezil has therapeutic effects when injected for three weeks after seizure activity subsides. Therefore, the present study suggests that the therapeutic use of donepezil for epilepsy patients requires a well-conceived strategy for administration.

  16. Ammonia inhibits long-term potentiation via neurosteroid synthesis in hippocampal pyramidal neurons.

    Science.gov (United States)

    Izumi, Y; Svrakic, N; O'Dell, K; Zorumski, C F

    2013-03-13

    Neurosteroids are a class of endogenous steroids synthesized in the brain that are believed to be involved in the pathogenesis of neuropsychiatric disorders and memory impairment. Ammonia impairs long-term potentiation (LTP), a synaptic model of learning, in the hippocampus, a brain region involved in memory acquisition. Although mechanisms underlying ammonia-mediated LTP inhibition are not fully understood, we previously found that the activation of N-methyl-d-aspartate receptors (NMDARs) is important. Based on this, we hypothesize that metabolic stressors, including hyperammonemia, promote untimely NMDAR activation and result in neural adaptations that include the synthesis of allopregnanolone (alloP) and other GABA-potentiating neurosteroids that dampen neuronal activity and impair LTP and memory formation. Using an antibody against 5α-reduced neurosteroids, we found that 100 μM ammonia acutely enhanced neurosteroid immunostaining in pyramidal neurons in the CA1 region of rat hippocampal slices. The enhanced staining was blocked by finasteride, a selective inhibitor of 5α-reductase, a key enzyme required for alloP synthesis. Finasteride also overcame LTP inhibition by 100 μM ammonia, as did picrotoxin, an inhibitor of GABA-A receptors. These results indicate that GABA-enhancing neurosteroids, synthesized locally within pyramidal neurons, contribute significantly to ammonia-mediated synaptic dysfunction. These results suggest that the manipulation of neurosteroid synthesis could provide a strategy to improve cognitive function in individuals with hyperammonemia. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Prototypical antipsychotic drugs protect hippocampal neuronal cultures against cell death induced by growth medium deprivation

    Directory of Open Access Journals (Sweden)

    Williams Sylvain

    2006-03-01

    Full Text Available Abstract Background Several clinical studies suggested that antipsychotic-based medications could ameliorate cognitive functions impaired in certain schizophrenic patients. Accordingly, we investigated the effects of various dopaminergic receptor antagonists – including atypical antipsychotics that are prescribed for the treatment of schizophrenia – in a model of toxicity using cultured hippocampal neurons, the hippocampus being a region of particular relevance to cognition. Results Hippocampal cell death induced by deprivation of growth medium constituents was strongly blocked by drugs including antipsychotics (10-10-10-6 M that display nM affinities for D2 and/or D4 receptors (clozapine, haloperidol, (±-sulpiride, domperidone, clozapine, risperidone, chlorpromazine, (+-butaclamol and L-741,742. These effects were shared by some caspases inhibitors and were not accompanied by inhibition of reactive oxygen species. In contrast, (--raclopride and remoxipride, two drugs that preferentially bind D2 over D4 receptors were ineffective, as well as the selective D3 receptor antagonist U 99194. Interestingly, (--raclopride (10-6 M was able to block the neuroprotective effect of the atypical antipsychotic clozapine (10-6 M. Conclusion Taken together, these data suggest that D2-like receptors, particularly the D4 subtype, mediate the neuroprotective effects of antipsychotic drugs possibly through a ROS-independent, caspase-dependent mechanism.

  18. Branched dimerization of Tat peptide improves permeability to HeLa and hippocampal neuronal cells.

    Science.gov (United States)

    Monreal, I Abrrey; Liu, Qian; Tyson, Katherine; Bland, Tyler; Dalisay, Doralyn S; Adams, Erin V; Wayman, Gary A; Aguilar, Hector C; Saludes, Jonel P

    2015-03-28

    A dimeric branched peptide TATp-D designed as an analogue of the HIV-Tat protein transduction domain (TATp), a prototypical cell penetrating peptide (CPP), demonstrates significantly enhanced cell uptake at 0.25 to 2.5 μM. Live cell confocal laser scanning microscopy revealed that multivalency dramatically improved the permeation potency of TATp-D to HeLa and primary hippocampal neuronal cells. The observed enhanced ability of TATp-D to translocate through the membrane is highlighted by a non-linear dependence on concentration, exhibiting the greatest uptake at sub-micromolar concentrations as compared to TATp. Multimerization via bis-Fmoc Lysine offered a synthetically straightforward method to investigate the effects of multivalent CPPs while offering orthogonal handles for cargo attachment, increasing the utility of CPPs at significantly lower concentrations.

  19. Neurotoxicity of coral snake phospholipases A2 in cultured rat hippocampal neurons.

    Science.gov (United States)

    de Carvalho, Nathalia Delazeri; Garcia, Raphael CaioTamborelli; Ferreira, Adilson Kleber; Batista, Daniel Rodrigo; Cassola, Antonio Carlos; Maria, Durvanei; Lebrun, Ivo; Carneiro, Sylvia Mendes; Afeche, Solange Castro; Marcourakis, Tania; Sandoval, Maria Regina Lopes

    2014-03-13

    The neurotoxicity of two secreted Phospholipases A2 from Brazilian coral snake venom in rat primary hippocampal cell culture was investigated. Following exposure to Mlx-8 or Mlx-9 toxins, an increase in free cytosolic Ca(2+) and a reduction in mitochondrial transmembrane potential (ΔΨm) became evident and occurred prior to the morphological changes and cytotoxicity. Exposure of hippocampal neurons to Mlx-8 or Mlx-9 caused a decrease in the cell viability as assessed by MTT and LDH assays. Inspection using fluorescent images and ultrastructural analysis by scanning and transmission electron microscopy showed that multiphase injury is characterized by overlapping cell death phenotypes. Shrinkage, membrane blebbing, chromatin condensation, nucleosomal DNA fragmentation and the formation of apoptotic bodies were observed. The most striking alteration observed in the electron microscopy was the fragmentation and rarefaction of the neuron processes network. Degenerated terminal synapses, cell debris and apoptotic bodies were observed among the fragmented fibers. Numerous large vacuoles as well as swollen mitochondria and dilated Golgi were noted. Necrotic signs such as a large amount of cellular debris and membrane fragmentation were observed mainly when the cells were exposed to highest concentration of the PLA2-neurotoxins. PLA2s exposed cultures showed cytoplasmic vacuoles filled with cell debris, clusters of mitochondria presented mitophagy-like structures that are in accordance to patterns of programmed cell death by autophagy. Finally, we demonstrated that the sPLA2s, Mlx-8 and Mlx-9, isolated from the Micrurus lemniscatus snake venom induce a hybrid cell death with apoptotic, autophagic and necrotic features. Furthermore, this study suggests that the augment in free cytosolic Ca(2+) and mitochondrial dysfunction are involved in the neurotoxicity of Elapid coral snake venom sPLA2s. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. PCB 136 Atropselectively Alters Morphometric and Functional Parameters of Neuronal Connectivity in Cultured Rat Hippocampal Neurons via Ryanodine Receptor-Dependent Mechanisms

    Science.gov (United States)

    Yang, Dongren; Kania-Korwel, Izabela; Ghogha, Atefeh; Chen, Hao; Stamou, Marianna; Bose, Diptiman D.; Pessah, Isaac N.; Lehmler, Hans-Joachim; Lein, Pamela J.

    2014-01-01

    We recently demonstrated that polychlorinated biphenyl (PCB) congeners with multiple ortho chlorine substitutions sensitize ryanodine receptors (RyRs), and this activity promotes Ca2+-dependent dendritic growth in cultured neurons. Many ortho-substituted congeners display axial chirality, and we previously reported that the chiral congener PCB 136 (2,2′,3,3′,6,6′-hexachlorobiphenyl) atropselectively sensitizes RyRs. Here, we test the hypothesis that PCB 136 atropisomers differentially alter dendritic growth and other parameters of neuronal connectivity influenced by RyR activity. (−)-PCB 136, which potently sensitizes RyRs, enhances dendritic growth in primary cultures of rat hippocampal neurons, whereas (+)-PCB 136, which lacks RyR activity, has no effect on dendritic growth. The dendrite-promoting activity of (−)-PCB 136 is observed at concentrations ranging from 0.1 to 100nM and is blocked by pharmacologic RyR antagonism. Neither atropisomer alters axonal growth or cell viability. Quantification of PCB 136 atropisomers in hippocampal cultures indicates that atropselective effects on dendritic growth are not due to differential partitioning of atropisomers into cultured cells. Imaging of hippocampal neurons loaded with Ca2+-sensitive dye demonstrates that (−)-PCB 136 but not (+)-PCB 136 increases the frequency of spontaneous Ca2+ oscillations. Similarly, (−)-PCB 136 but not (+)-PCB 136 increases the activity of hippocampal neurons plated on microelectrode arrays. These data support the hypothesis that atropselective effects on RyR activity translate into atropselective effects of PCB 136 atropisomers on neuronal connectivity, and suggest that the variable atropisomeric enrichment of chiral PCBs observed in the human population may be a significant determinant of individual susceptibility for adverse neurodevelopmental outcomes following PCB exposure. PMID:24385416

  1. Impaired 2-AG Signaling in Hippocampal Glutamatergic Neurons: Aggravation of Anxiety-Like Behavior and Unaltered Seizure Susceptibility

    Science.gov (United States)

    Guggenhuber, Stephan; Romo-Parra, Hector; Bindila, Laura; Leschik, Julia; Lomazzo, Ermelinda; Remmers, Floortje; Zimmermann, Tina; Lerner, Raissa; Klugmann, Matthias; Pape, Hans-Christian

    2016-01-01

    Background: Postsynaptically generated 2-arachidonoylglycerol activates the presynaptic cannabinoid type-1 receptor, which is involved in synaptic plasticity at both glutamatergic and GABAergic synapses. However, the differential function of 2-arachidonoylglycerol signaling at glutamatergic vs GABAergic synapses in the context of animal behavior has not been investigated yet. Methods: Here, we analyzed the role of 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons. Monoacylglycerol lipase, the primary degrading enzyme of 2-arachidonoylglycerol, is expressed at presynaptic sites of excitatory and inhibitory neurons. By adeno-associated virus-mediated overexpression of monoacylglycerol lipase in glutamatergic neurons of the mouse hippocampus, we selectively interfered with 2-arachidonoylglycerol signaling at glutamatergic synapses of these neurons. Results: Genetic modification of monoacylglycerol lipase resulted in a 50% decrease in 2-arachidonoylglycerol tissue levels without affecting the content of the second major endocannabinoid anandamide. A typical electrophysiological read-out for 2-arachidonoylglycerol signaling is the depolarization-induced suppression of excitation and of inhibition. Elevated monoacylglycerol lipase levels at glutamatergic terminals selectively impaired depolarization-induced suppression of excitation, while depolarization-induced suppression of inhibition was not significantly changed. At the behavioral level, mice with impaired hippocampal glutamatergic 2-arachidonoylglycerol signaling exhibited increased anxiety-like behavior but showed no alterations in aversive memory formation and seizure susceptibility. Conclusion: Our data indicate that 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons is essential for the animal’s adaptation to aversive situations. PMID:26232789

  2. Impaired 2-AG Signaling in Hippocampal Glutamatergic Neurons: Aggravation of Anxiety-Like Behavior and Unaltered Seizure Susceptibility.

    Science.gov (United States)

    Guggenhuber, Stephan; Romo-Parra, Hector; Bindila, Laura; Leschik, Julia; Lomazzo, Ermelinda; Remmers, Floortje; Zimmermann, Tina; Lerner, Raissa; Klugmann, Matthias; Pape, Hans-Christian; Lutz, Beat

    2015-08-01

    Postsynaptically generated 2-arachidonoylglycerol activates the presynaptic cannabinoid type-1 receptor, which is involved in synaptic plasticity at both glutamatergic and GABAergic synapses. However, the differential function of 2-arachidonoylglycerol signaling at glutamatergic vs GABAergic synapses in the context of animal behavior has not been investigated yet. Here, we analyzed the role of 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons. Monoacylglycerol lipase, the primary degrading enzyme of 2-arachidonoylglycerol, is expressed at presynaptic sites of excitatory and inhibitory neurons. By adeno-associated virus-mediated overexpression of monoacylglycerol lipase in glutamatergic neurons of the mouse hippocampus, we selectively interfered with 2-arachidonoylglycerol signaling at glutamatergic synapses of these neurons. Genetic modification of monoacylglycerol lipase resulted in a 50% decrease in 2-arachidonoylglycerol tissue levels without affecting the content of the second major endocannabinoid anandamide. A typical electrophysiological read-out for 2-arachidonoylglycerol signaling is the depolarization-induced suppression of excitation and of inhibition. Elevated monoacylglycerol lipase levels at glutamatergic terminals selectively impaired depolarization-induced suppression of excitation, while depolarization-induced suppression of inhibition was not significantly changed. At the behavioral level, mice with impaired hippocampal glutamatergic 2-arachidonoylglycerol signaling exhibited increased anxiety-like behavior but showed no alterations in aversive memory formation and seizure susceptibility. Our data indicate that 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons is essential for the animal's adaptation to aversive situations. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  3. Aluminum alters NMDA receptor 1A and 2A/B expression on neonatal hippocampal neurons in rats

    Directory of Open Access Journals (Sweden)

    Yuan Chia-Yi

    2011-11-01

    Full Text Available Abstract Background High aluminum (Al content in certain infant formula raises the concern of possible Al toxicity on brain development of neonates during their vulnerable period of growing. Results of in vivo study showed that Al content of brain tissues reached to 74 μM when oral intake up to 1110 μM, 10 times of that in the hi-Al infant formula. Methods Utilizing a cultured neuron cells in vitro model, we have assessed Al influence on neuronal specific gene expression alteration by immunoblot and immunohistochemistry and neural proliferation rate changes by MTT assay. Results Microscopic images showed that the neurite outgrowth of hippocampal neurons increased along with the Al dosages (37, 74 μM Al (AlCl3. MTT results also indicated that Al increased neural cell viability. On the other hand, the immunocytochemistry staining suggested that the protein expressions of NMDAR 1A and NMDAR 2A/B decreased with the Al dosages (p Conclusion Treated hippocampal neurons with 37 and 74 μM of Al for 14 days increased neural cell viability, but hampered NMDAR 1A and NMDAR 2A/B expressions. It was suggested that Al exposure might alter the development of hippocampal neurons in neonatal rats.

  4. Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies.

    Science.gov (United States)

    Garthe, Alexander; Behr, Joachim; Kempermann, Gerd

    2009-01-01

    Despite enormous progress in the past few years the specific contribution of newly born granule cells to the function of the adult hippocampus is still not clear. We hypothesized that in order to solve this question particular attention has to be paid to the specific design, the analysis, and the interpretation of the learning test to be used. We thus designed a behavioral experiment along hypotheses derived from a computational model predicting that new neurons might be particularly relevant for learning conditions, in which novel aspects arise in familiar situations, thus putting high demands on the qualitative aspects of (re-)learning.In the reference memory version of the water maze task suppression of adult neurogenesis with temozolomide (TMZ) caused a highly specific learning deficit. Mice were tested in the hidden platform version of the Morris water maze (6 trials per day for 5 days with a reversal of the platform location on day 4). Testing was done at 4 weeks after the end of four cycles of treatment to minimize the number of potentially recruitable new neurons at the time of testing. The reduction of neurogenesis did not alter longterm potentiation in CA3 and the dentate gyrus but abolished the part of dentate gyrus LTP that is attributed to the new neurons. TMZ did not have any overt side effects at the time of testing, and both treated mice and controls learned to find the hidden platform. Qualitative analysis of search strategies, however, revealed that treated mice did not advance to spatially precise search strategies, in particular when learning a changed goal position (reversal). New neurons in the dentate gyrus thus seem to be necessary for adding flexibility to some hippocampus-dependent qualitative parameters of learning.Our finding that a lack of adult-generated granule cells specifically results in the animal's inability to precisely locate a hidden goal is also in accordance with a specialized role of the dentate gyrus in generating a metric

  5. [Nonuniform distribution and contribution of the P- and P/Q-type calcium channels to short-term inhibitory synaptic transmission in cultured hippocampal neurons].

    Science.gov (United States)

    Mizerna, O P; Fedulova, S A; Veselovs'kyĭ, M S

    2010-01-01

    In the present study, we investigated the sensitivity of GABAergic short-term plasticity to the selective P- and P/Q-type calcium channels blocker omega-agatoxin-IVA. To block the P-type channels we used 30 nM of this toxin and 200 nM of the toxin was used to block the P/Q channel types. The evoked inhibitory postsynaptic currents (eIPSC) were studied using patch-clamp technique in whole-cell configuration in postsynaptic neuron and local extracellular stimulation of single presynaptic axon by rectangular pulse. The present data show that the contribution of P- and P/Q-types channels to GABAergic synaptic transmission in cultured hippocampal neurons are 30% and 45%, respectively. It was shown that the mediate contribution of the P- and P/Q-types channels to the amplitudes of eIPSC is different to every discovered neuron. It means that distribution of these channels is non-uniform. To study the short-term plasticity of inhibitory synaptic transmission, axons of presynaptic neurons were paired-pulse stimulated with the interpulse interval of 150 ms. Neurons demonstrated both the depression and facilitation. The application of 30 nM and 200 nM of the blocker decreased the depression and increased facilitation to 8% and 11%, respectively. In addition, we found that the mediate contribution of the P- and P/Q-types channels to realization of synaptic transmission after the second stimuli is 4% less compared to that after the first one. Therefore, blocking of both P- and P/Q-types calcium channels can change the efficiency of synaptic transmission. In this instance it facilitates realization of the transmission via decreased depression or increased facilitation. These results confirm that the P- and P/Q-types calcium channels are involved in regulation of the short-term inhibitory synaptic plasticity in cultured hippocampal neurons.

  6. Detection of 5-hydroxytryptamine (5-HT) in vitro using a hippocampal neuronal network-based biosensor with extracellular potential analysis of neurons.

    Science.gov (United States)

    Hu, Liang; Wang, Qin; Qin, Zhen; Su, Kaiqi; Huang, Liquan; Hu, Ning; Wang, Ping

    2015-04-15

    5-hydroxytryptamine (5-HT) is an important neurotransmitter in regulating emotions and related behaviors in mammals. To detect and monitor the 5-HT, effective and convenient methods are demanded in investigation of neuronal network. In this study, hippocampal neuronal networks (HNNs) endogenously expressing 5-HT receptors were employed as sensing elements to build an in vitro neuronal network-based biosensor. The electrophysiological characteristics were analyzed in both neuron and network levels. The firing rates and amplitudes were derived from signal to determine the biosensor response characteristics. The experimental results demonstrate a dose-dependent inhibitory effect of 5-HT on hippocampal neuron activities, indicating the effectiveness of this hybrid biosensor in detecting 5-HT with a response range from 0.01μmol/L to 10μmol/L. In addition, the cross-correlation analysis of HNNs activities suggests 5-HT could weaken HNN connectivity reversibly, providing more specificity of this biosensor in detecting 5-HT. Moreover, 5-HT induced spatiotemporal firing pattern alterations could be monitored in neuron and network levels simultaneously by this hybrid biosensor in a convenient and direct way. With those merits, this neuronal network-based biosensor will be promising to be a valuable and utility platform for the study of neurotransmitter in vitro. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. ATP induces NO production in hippocampal neurons by P2X(7 receptor activation independent of glutamate signaling.

    Directory of Open Access Journals (Sweden)

    Juan Francisco Codocedo

    Full Text Available To assess the putative role of adenosine triphosphate (ATP upon nitric oxide (NO production in the hippocampus, we used as a model both rat hippocampal slices and isolated hippocampal neurons in culture, lacking glial cells. In hippocampal slices, additions of exogenous ATP or 2'(3'-O-(4-Benzoylbenzoyl ATP (Bz-ATP elicited concentration-dependent NO production, which increased linearly within the first 15 min and plateaued thereafter; agonist EC50 values were 50 and 15 µM, respectively. The NO increase evoked by ATP was antagonized in a concentration-dependent manner by Coomassie brilliant blue G (BBG or by N(ω-propyl-L-arginine, suggesting the involvement of P2X7Rs and neuronal NOS, respectively. The ATP induced NO production was independent of N-methyl-D-aspartic acid (NMDA receptor activity as effects were not alleviated by DL-2-Amino-5-phosphonopentanoic acid (APV, but antagonized by BBG. In sum, exogenous ATP elicited NO production in hippocampal neurons independently of NMDA receptor activity.

  8. Protein fingerprints of cultured CA3-CA1 hippocampal neurons: comparative analysis of the distribution of synaptosomal and cytosolic proteins

    Directory of Open Access Journals (Sweden)

    Cerutti Sergio

    2008-04-01

    Full Text Available Abstract Background All studies aimed at understanding complex molecular changes occurring at synapses face the problem of how a complete view of the synaptic proteome and of its changes can be efficiently met. This is highly desirable when synaptic plasticity processes are analyzed since the structure and the biochemistry of neurons and synapses get completely reshaped. Because most molecular studies of synapses are nowadays mainly or at least in part based on protein extracts from neuronal cultures, this is not a feasible option: these simplified versions of the brain tissue on one hand provide an homogeneous pure population of neurons but on the other yield only tiny amounts of proteins, many orders of magnitude smaller than conventional brain tissue. As a way to overcome this limitation and to find a simple way to screen for protein changes at cultured synapses, we have produced and characterized two dimensional electrophoresis (2DE maps of the synaptic proteome of CA3-CA1 hippocampal neurons in culture. Results To obtain 2D maps, hippocampal cultures were mass produced and after synaptic maturation, proteins were extracted following subfractionation procedures and separated by 2D gel electrophoresis. Similar maps were obtained for the crude cytosol of cultured neurons and for synaptosomes purified from CA3-CA1 hippocampal tissue. To efficiently compare these different maps some clearly identifiable reference points were molecularly identified by mass spectrometry and immunolabeling methods. This information was used to run a differential analysis and establish homologies and dissimilarities in these 2D protein profiles. Conclusion Because reproducible fingerprints of cultured synapses were clearly obtained, we believe that our mapping effort could represent a simple tool to screen for protein expression and/or protein localization changes in CA3-CA1 hippocampal neurons following plasticity.

  9. Impaired rRNA synthesis triggers homeostatic responses in hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Anna eKiryk

    2013-11-01

    Full Text Available Decreased rRNA synthesis and nucleolar disruption, known as nucleolar stress, are primary signs of cellular stress associated with aging and neurodegenerative disorders. Silencing of rDNA occurs during early stages of Alzheimer´s disease (AD and may play a role in dementia. Moreover aberrant regulation of the protein synthesis machinery is present in the brain of suicide victims and implicates the epigenetic modulation of rRNA. Recently, we developed unique mouse models characterized by nucleolar stress in neurons. We inhibited RNA polymerase I by genetic ablation of the basal transcription factor TIF-IA in adult hippocampal neurons. Nucleolar stress resulted in progressive neurodegeneration, although with a differential vulnerability within the CA1, CA3 and dentate gyrus. Here, we investigate the consequences of nucleolar stress on learning and memory. The mutant mice show normal performance in the Morris water maze and in other behavioral tests, suggesting the activation of adaptive mechanisms. In fact, we observe a significantly enhanced learning and re-learning corresponding to the initial inhibition of rRNA transcription. This phenomenon is accompanied by aberrant synaptic plasticity. By the analysis of nucleolar function and integrity, we find that the synthesis of rRNA is later restored. Gene expression profiling shows that thirty-six transcripts are differentially expressed in comparison to the control group in absence of neurodegeneration. Additionally, we observe a significant enrichment of the putative serum response factor (SRF binding sites in the promoters of the genes with changed expression, indicating potential adaptive mechanisms mediated by the mitogen-activated protein kinase pathway. In the dentate gyrus a neurogenetic response might compensate the initial molecular deficits. These results underscore the role of nucleolar stress in neuronal homeostasis and open a new ground for therapeutic strategies aiming at preserving

  10. Accumulating microglia phagocytose injured neurons in hippocampal slice cultures: involvement of p38 MAP kinase.

    Directory of Open Access Journals (Sweden)

    Takahiro Katayama

    Full Text Available In this study, microglial migration and phagocytosis were examined in mouse organotypic hippocampal slice cultures, which were treated with N-methyl-D-aspartate (NMDA to selectively injure neuronal cells. Microglial cells were visualized by the expression of enhanced green fluorescent protein. Daily observation revealed microglial accumulation in the pyramidal cell layer, which peaked 5 to 6 days after NMDA treatment. Time-lapse imaging showed that microglia migrated to the pyramidal cell layer from adjacent and/or remote areas. There was no difference in the number of proliferating microglia between control and NMDA-treated slices in both the pyramidal cell layer and stratum radiatum, suggesting that microglial accumulation in the injured areas is mainly due to microglial migration, not to proliferation. Time-lapse imaging also showed that the injured neurons, which were visualized by propidium iodide (PI, disappeared just after being surrounded by microglia. Daily observation revealed that the intensity of PI fluorescence gradually attenuated, and this attenuation was suppressed by pretreatment with clodronate, a microglia toxin. These findings suggest that accumulating microglia phagocytosed injured neurons, and that PI fluorescence could be a useful indicator for microglial phagocytosis. Using this advantage to examine microglial phagocytosis in living slice cultures, we investigated the involvements of mitogen-activated protein (MAP kinases in microglial accumulation and phagocytosis. p38 MAP kinase inhibitor SB203580, but not MAP kinase/extracellular signal-regulated kinase inhibitor PD98059 or c-Jun N-terminal kinase inhibitor SP600125, suppressed the attenuation of PI fluorescence. On the other hand, microglial accumulation in the injured areas was not inhibited by any of these inhibitors. These data suggest that p38 MAP kinase plays an important role in microglial phagocytosis of injured neurons.

  11. Pathological changes in hippocampal neuronal circuits underlie age-associated neurodegeneration and memory loss: positive clue toward SAD.

    Science.gov (United States)

    Moorthi, P; Premkumar, P; Priyanka, R; Jayachandran, K S; Anusuyadevi, M

    2015-08-20

    Among vertebrates hippocampus forms the major component of the brain in consolidating information from short-term memory to long-term memory. Aging is considered as the major risk factor for memory impairment in sporadic Alzheimer's disease (SAD) like pathology. Present study thus aims at investigating whether age-specific degeneration of neuronal-circuits in hippocampal formation (neural-layout of Subiculum-hippocampus proper-dentate gyrus (DG)-entorhinal cortex (EC)) results in cognitive impairment. Furthermore, the neuroprotective effect of Resveratrol (RSV) was attempted to study in the formation of hippocampal neuronal-circuits. Radial-Arm-Maze was conducted to evaluate hippocampal-dependent spatial and learning memory in control and experimental rats. Nissl staining of frontal cortex (FC), subiculum, hippocampal-proper (CA1→CA2→CA3→CA4), DG, amygdala, cerebellum, thalamus, hypothalamus, layers of temporal and parietal lobe of the neocortex were examined for pathological changes in young and aged wistar rats, with and without RSV. Hippocampal trisynaptic circuit (EC layerII→DG→CA3→CA1) forming new memory and monosynaptic circuit (EC→CA1) that strengthen old memories were found disturbed in aged rats. Loss of Granular neuron observed in DG and polymorphic cells of CA4 can lead to decreased mossy fibers disturbing neural-transmission (CA4→CA3) in perforant pathway. Further, intensity of nissl granules (stratum lacunosum moleculare (SLM)-SR-SO) of CA3 pyramidal neurons was decreased, disturbing the communication in schaffer collaterals (CA3-CA1) during aging. We also noticed disarranged neuronal cell layer in Subiculum (presubiculum (PrS)-parasubiculum (PaS)), interfering output from hippocampus to prefrontal cortex (PFC), EC, hypothalamus, and amygdala that may result in interruption of thought processes. We conclude from our observations that poor memory performance of aged rats as evidenced through radial arm maze (RAM) analysis was due to the

  12. Biophysics Model of Heavy-Ion Degradation of Neuron Morphology in Mouse Hippocampal Granular Cell Layer Neurons.

    Science.gov (United States)

    Alp, Murat; Cucinotta, Francis A

    2018-03-01

    Exposure to heavy-ion radiation during cancer treatment or space travel may cause cognitive detriments that have been associated with changes in neuron morphology and plasticity. Observations in mice of reduced neuronal dendritic complexity have revealed a dependence on radiation quality and absorbed dose, suggesting that microscopic energy deposition plays an important role. In this work we used morphological data for mouse dentate granular cell layer (GCL) neurons and a stochastic model of particle track structure and microscopic energy deposition (ED) to develop a predictive model of high-charge and energy (HZE) particle-induced morphological changes to the complex structures of dendritic arbors. We represented dendrites as cylindrical segments of varying diameter with unit aspect ratios, and developed a fast sampling method to consider the stochastic distribution of ED by δ rays (secondary electrons) around the path of heavy ions, to reduce computational times. We introduce probabilistic models with a small number of parameters to describe the induction of precursor lesions that precede dendritic snipping, denoted as snip sites. Predictions for oxygen ( 16 O, 600 MeV/n) and titanium ( 48 Ti, 600 MeV/n) particles with LET of 16.3 and 129 keV/μm, respectively, are considered. Morphometric parameters to quantify changes in neuron morphology are described, including reduction in total dendritic length, number of branch points and branch numbers. Sholl analysis is applied for single neurons to elucidate dose-dependent reductions in dendritic complexity. We predict important differences in measurements from imaging of tissues from brain slices with single neuron cell observations due to the role of neuron death through both soma apoptosis and excessive dendritic length reduction. To further elucidate the role of track structure, random segment excision (snips) models are introduced and a sensitivity study of the effects of the modes of neuron death in predictions

  13. Eltrombopag, a thrombopoietin mimetic, crosses the blood-brain barrier and impairs iron-dependent hippocampal neuron dendrite development.

    Science.gov (United States)

    Bastian, T W; Duck, K A; Michalopoulos, G C; Chen, M J; Liu, Z-J; Connor, J R; Lanier, L M; Sola-Visner, M C; Georgieff, M K

    2017-03-01

    Essentials Potential neurodevelopmental side effects of thrombopoietin mimetics need to be considered. The effects of eltrombopag (ELT) on neuronal iron status and dendrite development were assessed. ELT crosses the blood-brain barrier and causes iron deficiency in developing neurons. ELT blunts dendrite maturation, indicating a need for more safety studies before neonatal use. Background Thrombocytopenia is common in sick neonates. Thrombopoietin mimetics (e.g. eltrombopag [ELT]) might provide an alternative therapy for selected neonates with severe and prolonged thrombocytopenia, and for infants and young children with different varieties of thrombocytopenia. However, ELT chelates intracellular iron, which may adversely affect developing organs with high metabolic requirements. Iron deficiency (ID) is particularly deleterious during brain development, impairing neuronal myelination, dopamine signaling and dendritic maturation and ultimately impairing long-term neurological function (e.g. hippocampal-dependent learning and memory). Objective To determine whether ELT crosses the blood-brain barrier (BBB), causes neuronal ID and impairs hippocampal neuron dendrite maturation. Methods ELT transport across the BBB was assessed using primary bovine brain microvascular endothelial cells. Embryonic mouse primary hippocampal neuron cultures were treated with ELT or deferoxamine (DFO, an iron chelator) from 7 days in vitro (DIV) through 14 DIV and assessed for gene expression and neuronal dendrite complexity. Results ELT crossed the BBB in a time-dependent manner. 2 and 6 μm ELT increased Tfr1 and Slc11a2 (iron-responsive genes involved in neuronal iron uptake) mRNA levels, indicating neuronal ID. 6 μm ELT, but not 2 μm ELT, decreased BdnfVI, Camk2a and Vamp1 mRNA levels, suggesting impaired neuronal development and synaptic function. Dendrite branch number and length were reduced in 6 μm ELT-treated neurons, resulting in blunted dendritic arbor complexity that

  14. Radix Puerariae modulates glutamatergic synaptic architecture and potentiates functional synaptic plasticity in primary hippocampal neurons.

    Science.gov (United States)

    Bhuiyan, Mohammad Maqueshudul Haque; Haque, Md Nazmul; Mohibbullah, Md; Kim, Yung Kyu; Moon, Il Soo

    2017-09-14

    Neurologic disorders are frequently characterized by synaptic pathology, including abnormal density and morphology of dendritic spines, synapse loss, and aberrant synaptic signaling and plasticity. Therefore, to promote and/or protect synapses by the use of natural molecules capable of modulating neurodevelopmental events, such as, spinogenesis and synaptic plasticity, could offer a preventive and curative strategy for nervous disorders associated with synaptic pathology. Radix Puerariae, the root of Pueraria monatana var. lobata (Willd.) Sanjappa&Pradeep, is a Chinese ethnomedicine, traditionally used for the treatment of memory-related nervous disorders including Alzheimer's disease. In the previous study, we showed that the ethanolic extracts of Radix Puerariae (RPE) and its prime constituent, puerarin induced neuritogenesis and synapse formation in cultured hippocampal neurons, and thus could improve memory functions. In the present study, we specifically investigated the abilities of RPE and puerarin to improve memory-related brain disorders through modulating synaptic maturation and functional potentiation. Rat embryonic (E19) brain neurons were cultured in the absence or presence of RPE or puerarin. At predetermined times, cells were live-stained with DiO or fixed and immunostained to visualize neuronal morphologies, or lysed for protein harvesting. Morphometric analyses of dendritic spines and synaptogenesis were performed using Image J software. Functional pre- and postsynaptic plasticity was measured by FM1-43 staining and whole-cell patch clamping, respectively. RPE or puerarin-mediated changes in actin-related protein 2 were assessed by Western blotting. Neuronal survivals were measured using propidium iodide exclusion assay. RPE and puerarin both: (1) promoted a significant increase in the numbers, and maturation, of dendritic spines; (2) modulated the formation of glutamatergic synapses; (3) potentiated synaptic transmission by increasing the sizes of

  15. cAMP-dependent cell differentiation triggered by activated CRHR1 in hippocampal neuronal cells.

    Science.gov (United States)

    Inda, Carolina; Bonfiglio, Juan José; Dos Santos Claro, Paula A; Senin, Sergio A; Armando, Natalia G; Deussing, Jan M; Silberstein, Susana

    2017-05-16

    Corticotropin-releasing hormone receptor 1 (CRHR1) activates the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). Both cAMP sources were shown to be required for the phosphorylation of ERK1/2 triggered by activated G protein coupled receptor (GPCR) CRHR1 in neuronal and neuroendocrine contexts. Here, we show that activated CRHR1 promotes growth arrest and neurite elongation in neuronal hippocampal cells (HT22-CRHR1 cells). By characterising CRHR1 signalling mechanisms involved in the neuritogenic effect, we demonstrate that neurite outgrowth in HT22-CRHR1 cells takes place by a sAC-dependent, ERK1/2-independent signalling cascade. Both tmACs and sAC are involved in corticotropin-releasing hormone (CRH)-mediated CREB phosphorylation and c-fos induction, but only sAC-generated cAMP pools are critical for the neuritogenic effect of CRH, further highlighting the engagement of two sources of cAMP downstream of the activation of a GPCR, and reinforcing the notion that restricted cAMP microdomains may regulate independent cellular processes.

  16. Dorsal-CA1 Hippocampal Neuronal Ensembles Encode Nicotine-Reward Contextual Associations.

    Science.gov (United States)

    Xia, Li; Nygard, Stephanie K; Sobczak, Gabe G; Hourguettes, Nicholas J; Bruchas, Michael R

    2017-06-06

    Natural and drug rewards increase the motivational valence of stimuli in the environment that, through Pavlovian learning mechanisms, become conditioned stimuli that directly motivate behavior in the absence of the original unconditioned stimulus. While the hippocampus has received extensive attention for its role in learning and memory processes, less is known regarding its role in drug-reward associations. We used in vivo Ca 2+ imaging in freely moving mice during the formation of nicotine preference behavior to examine the role of the dorsal-CA1 region of the hippocampus in encoding contextual reward-seeking behavior. We show the development of specific neuronal ensembles whose activity encodes nicotine-reward contextual memories and that are necessary for the expression of place preference. Our findings increase our understanding of CA1 hippocampal function in general and as it relates to reward processing by identifying a critical role for CA1 neuronal ensembles in nicotine place preference. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Study on protective effect of ketogenic diet against hippocampal neurons of kainic acid-induced epileptic rats

    Directory of Open Access Journals (Sweden)

    Nan-nan ZHANG

    2015-11-01

    Full Text Available Objective To investigate the protective effects of ketogenic diet on hippocampal neurons of kainic acid (KA-induced epileptic rats.  Methods A total of 40 healthy male specific pathogen free (SPF Sprague-Dawley (SD rats were randomly divided into 4 groups, with each group containing 10 rats. Epileptic rat models were formed by injection of KA through lateral ventricle with brain stereotactic instrument. According to Racine classification, epileptic seizures in rats above grade Ⅳ were defined successful. Then the rats were given different dietary treatment: Group C with normal saline and normal diet, Group K with normal saline and ketogenic diet, Group E with KA and normal diet, Group EK with KA and ketogenic diet. All rats were observed for 21 d, and were recorded each body weight. The epileptic seizure frequency and duration were observed at 12:00-15:00 daily. At the 21st day, all rats were put to death, and the brain hippocampus tissues were separated. Neuron injury of rat hippocampal CA3 region in Group E and EK was observed by HE staining. Normal neuron number of rat hippocampal CA3 region in Group E and EK was counted by Nissl staining. Results Group C and K had no epileptic seizures, and the neuron number in hippocampal CA3 region was normal. Rats in both Group E and EK had grade Ⅳ or Ⅴ seizures. The number of seizures in Group EK [(17.90 ± 4.12 times] after 21-day ketogenic diet was decreased significantly compared to Group E [(30.50 ± 4.40 times] after 21-day normal diet (t = 6.606, P = 0.000. The seizure duration in Group EK [(212.70 ± 17.75 s] after 21-day ketogenic diet was shortened compared to Group E [(335.00 ± 14.21 s] after 21-day normal diet (t = 17.011, P = 0.000. The normal neuron number in hippocampal CA3 region in Group EK (117.67 ± 7.51 was more than those in Group E (71.33 ± 6.11, with statistically significant difference (t = 9.614, P = 0.000.  Conclusions Ketogenic diet has protective effect on hippocampal

  18. Serotonin-mediated modulation of Na+/K+ pump current in rat hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Zhang, Li Nan; Su, Su Wen; Guo, Fang; Guo, Hui Cai; Shi, Xiao Lu; Li, Wen Ya; Liu, Xu; Wang, Yong Li

    2012-01-19

    The aim of this study was to investigate whether serotonin (5-hydroxytryptamine, 5-HT) can modulate Na+/K+ pump in rat hippocampal CA1 pyramidal neurons. 5-HT (0.1, 1 mM) showed Na+/K+ pump current (Ip) densities of 0.40 ± 0.04, 0.34 ± 0.03 pA/pF contrast to 0.63 ± 0.04 pA/pF of the control of 0.5 mM strophanthidin (Str), demonstrating 5-HT-induced inhibition of Ip in a dose-dependent manner in hippocampal CA1 pyramidal neurons. The effect was partly attenuated by ondasetron, a 5-HT3 receptor (5-HT3R) antagonist, not by WAY100635, a 5-HT1AR antagonist, while 1-(3-Chlorophenyl) biguanide hydrochloride (m-CPBG), a 5-HT3R specific agonist, mimicked the effect of 5-HT on Ip. 5-HT inhibits neuronal Na+/K+ pump activity via 5-HT3R in rat hippocampal CA1 pyramidal neurons. This discloses novel mechanisms for the function of 5-HT in learning and memory, which may be a useful target to benefit these patients with cognitive disorder.

  19. Sulforhodamine 101 induces long-term potentiation of intrinsic excitability and synaptic efficacy in hippocampal CA1 pyramidal neurons

    DEFF Research Database (Denmark)

    Kang, J.; Kang, N.; Yu, Y.

    2010-01-01

    Sulforhodamine 101 (SR101) has been extensively used for investigation as a specific marker for astroglia in vivo and activity-dependent dye for monitoring regulated exocytosis. Here, we report that SR101 has bioactive effects on neuronal activity. Perfusion of slices with SR101 (1 microM) for 10...... min induced long-term potentiation of intrinsic neuronal excitability (LTP-IE) and a long-lasting increase in evoked EPSCs (eEPSCs) in CA1 pyramidal neurons in hippocampal slices. The increase in intrinsic neuronal excitability was a result of negative shifts in the action potential (AP) threshold...... NMDAR currents, suggesting that SR101 enhances activation of synaptic NMDARs. SR101-induced LTP-IE and potentiation of synaptic transmission triggered spontaneous neuronal firing in slices and in vivo epileptic seizures. Our results suggest that SR101 is an epileptogenic agent that long-lastingly lowers...

  20. αν and β1 Integrins mediate Aβ-induced neurotoxicity in hippocampal neurons via the FAK signaling pathway.

    Directory of Open Access Journals (Sweden)

    Hai-Yan Han

    Full Text Available αν and β1 integrins mediate Aβ-induced neurotoxicity in primary hippocampal neurons. We treated hippocampal neurons with 2.5 µg/mL 17E6 and 5 µg/mL ab58524, which are specific αν and β1 integrin antagonists, respectively, for 42 h prior to 10 µM Aβ treatment. Next, we employed small interfering RNA (siRNA to silence focal adhesion kinase (FAK, a downstream target gene of integrins. The siRNAs were designed with a target sequence, an MOI of 10 and the addition of 5 µg/mL polybrene. Under these conditions, the neurons were transfected and the apoptosis of different cell types was detected. Moreover, we used real-time PCR and Western blotting analyses to detect the expression of FAK and ρFAK genes in different cell types and investigated the underlying mechanism and signal pathway by which αν and β1 integrins mediate Aβ-induced neurotoxicity in hippocampal neurons. An MTT assay showed that both 17E6 and ab58524 significantly increased cell viability compared with the Aβ-treated neurons (P<0.01 and P<0.05, respectively. However, this protective effect was markedly attenuated after transfection with silencing FAK (siFAK. Moreover, TUNEL immunostaining and flow cytometry indicated that both 17E6 and ab58524 significantly protected hippocampal neurons against apoptosis induced by Aβ (P<0.05 compared with the Aβ-treated cells. However, this protective effect was reversed with siFAK treatment. Both the gene and protein expression of FAK increased after Aβ treatment. Interestingly, as the gene and protein levels of FAK decreased, the ρFAK protein expression markedly increased. Furthermore, both the gene and protein expression of FAK and ρFAK were significantly diminished. Thus, we concluded that both αν and β1 integrins interfered with Aβ-induced neurotoxicity in hippocampal neurons and that this mechanism partially contributes to the activation of the Integrin-FAK signaling pathway.

  1. Delayed hippocampal neuronal death in young gerbil following transient global cerebral ischemia is related to higher and longer-term expression of p63 in the ischemic hippocampus

    Directory of Open Access Journals (Sweden)

    Eun Joo Bae

    2015-01-01

    Full Text Available The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not been addressed yet. In this study, we first compared ischemia-induced effects on p63 expression in the hippocampal regions (CA1- 3 between the young and adult gerbils subjected to 5 minutes of transient global cerebral ischemia. Neuronal death in the hippocampal CA1 region of young gerbils was significantly slow compared with that in the adult gerbils after transient global cerebral ischemia. p63 immunoreactivity in the hippocampal CA1 pyramidal neurons in the sham-operated young group was significantly low compared with that in the sham-operated adult group. p63 immunoreactivity was apparently changed in ischemic hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. In the ischemia-operated adult groups, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons was significantly decreased at 4 days post-ischemia; however, p63 immunoreactivity in the ischemia-operated young group was significantly higher than that in the ischemia-operated adult group. At 7 days post-ischemia, p63 immunoreactivity was decreased in the hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. Change patterns of p63 level in the hippocampal CA1 region of adult and young gerbils after ischemic damage were similar to those observed in the immunohistochemical results. These findings indicate that higher and longer-term expression of p63 in the hippocampal CA1 region of the young gerbils after ischemia/reperfusion may be related to more delayed neuronal death compared to that in the adults.

  2. Temporal correlation between auditory neurons and the hippocampal theta rhythm induced by novel stimulations in awake guinea pigs.

    Science.gov (United States)

    Liberman, Tamara; Velluti, Ricardo A; Pedemonte, Marisa

    2009-11-17

    The hippocampal theta rhythm is associated with the processing of sensory systems such as touch, smell, vision and hearing, as well as with motor activity, the modulation of autonomic processes such as cardiac rhythm, and learning and memory processes. The discovery of temporal correlation (phase locking) between the theta rhythm and both visual and auditory neuronal activity has led us to postulate the participation of such rhythm in the temporal processing of sensory information. In addition, changes in attention can modify both the theta rhythm and the auditory and visual sensory activity. The present report tested the hypothesis that the temporal correlation between auditory neuronal discharges in the inferior colliculus central nucleus (ICc) and the hippocampal theta rhythm could be enhanced by changes in sensory stimulation. We presented chronically implanted guinea pigs with auditory stimuli that varied over time, and recorded the auditory response during wakefulness. It was observed that the stimulation shifts were capable of producing the temporal phase correlations between the theta rhythm and the ICc unit firing, and they differed depending on the stimulus change performed. Such correlations disappeared approximately 6 s after the change presentation. Furthermore, the power of the hippocampal theta rhythm increased in half of the cases presented with a stimulation change. Based on these data, we propose that the degree of correlation between the unitary activity and the hippocampal theta rhythm varies with--and therefore may signal--stimulus novelty.

  3. Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain.

    Science.gov (United States)

    Schneider, David M; Woolley, Sarah M N

    2010-06-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the

  4. Molecular mechanisms of non-transferrin-bound and transferring-bound iron uptake in primary hippocampal neurons.

    Science.gov (United States)

    Ji, Changyi; Kosman, Daniel J

    2015-06-01

    The molecular mechanisms of iron trafficking in neurons have not been elucidated. In this study, we characterized the expression and localization of ferrous iron transporters Zip8, Zip14 and divalent metal transporter 1 (DMT1), and ferrireductases Steap2 and stromal cell-derived receptor 2 in primary rat hippocampal neurons. Steap2 and Zip8 partially co-localize, indicating these two proteins may function in Fe(3+) reduction prior to Fe(2+) permeation. Zip8, DMT1, and Steap2 co-localize with the transferrin receptor/transferrin complex, suggesting they may be involved in transferrin receptor/transferrin-mediated iron assimilation. In brain interstitial fluid, transferring-bound iron (TBI) and non-transferrin-bound iron (NTBI) exist as potential iron sources. Primary hippocampal neurons exhibit significant iron uptake from TBI (Transferrin-(59) Fe(3+)) and NTBI, whether presented as (59) Fe(2+) -citrate or (59) Fe(3+) -citrate; reductase-independent (59) Fe(2+) uptake was the most efficient uptake pathway of the three. Kinetic analysis of Zn(2+) inhibition of Fe(2+) uptake indicated that DMT1 plays only a minor role in the uptake of NTBI. In contrast, localization and knockdown data indicate that Zip8 makes a major contribution. Data suggest also that cell accumulation of (59) Fe from TBI relies at least in part on an endocytosis-independent pathway. These data suggest that Zip8 and Steap2 play a major role in iron accumulation from NTBI and TBI by hippocampal neurons. Analysis of the expression and localization of known iron uptake transporters demonstrated that Zip8 makes a major contribution to iron accumulation in primary cultures of rat embryonic hippocampal neurons. These cells exhibit uptake pathways for ferrous and ferric iron (non-transferrin-bound iron, NTBI in figure) and for transferrin-bound iron; the ferrireductases Steap2 and SDR2 support the uptake of ferric iron substrates. Zip8 and Steap2 are strongly expressed in the plasma membrane of both soma

  5. Acupuncture attenuates cognitive deficits and increases pyramidal neuron number in hippocampal CA1 area of vascular dementia rats.

    Science.gov (United States)

    Li, Fang; Yan, Chao-Qun; Lin, Li-Ting; Li, Hui; Zeng, Xiang-Hong; Liu, Yi; Du, Si-Qi; Zhu, Wen; Liu, Cun-Zhi

    2015-04-28

    Decreased cognition is recognized as one of the most severe and consistent behavioral impairments in dementia. Experimental studies have reported that acupuncture may improve cognitive deficits, relieve vascular dementia (VD) symptoms, and increase cerebral perfusion and electrical activity. Multi-infarction dementia was modeled in rats with 3% microemboli saline suspension. Two weeks after acupuncture at Zusanli (ST36), all rats were subjected to a hidden platform trial to test their 3-day spatial memory using the Morris water maze test. To estimate the numbers of pyramidal neuron, astrocytes, and synaptic boutons in hippocampal CA1 area, we adopted an unbiased stereology method to accurately sample and measure the size of cells. We found that acupuncture at ST36 significantly decreased the escape latency of VD rats. In addition, acupuncture significantly increased the pyramidal neuron number in hippocampal CA1 area (P 0.05). These findings suggest that acupuncture may improve cognitive deficits and increase pyramidal neuron number of hippocampal CA1 area in VD rats.

  6. Volume regulated anion channel currents of rat hippocampal neurons and their contribution to oxygen-and-glucose deprivation induced neuronal death.

    Directory of Open Access Journals (Sweden)

    Huaqiu Zhang

    2011-02-01

    Full Text Available Volume-regulated anion channels (VRAC are widely expressed chloride channels that are critical for the cell volume regulation. In the mammalian central nervous system, the physiological expression of neuronal VRAC and its role in cerebral ischemia are issues largely unknown. We show that hypoosmotic medium induce an outwardly rectifying chloride conductance in CA1 pyramidal neurons in rat hippocampal slices. The induced chloride conductance was sensitive to some of the VRAC inhibitors, namely, IAA-94 (300 µM and NPPB (100 µM, but not to tamoxifen (10 µM. Using oxygen-and-glucose deprivation (OGD to simulate ischemic conditions in slices, VRAC activation appeared after OGD induced anoxic depolarization (AD that showed a progressive increase in current amplitude over the period of post-OGD reperfusion. The OGD induced VRAC currents were significantly inhibited by inhibitors for glutamate AMPA (30 µM NBQX and NMDA (40 µM AP-5 receptors in the OGD solution, supporting the view that induction of AD requires an excessive Na(+-loading via these receptors that in turn to activate neuronal VRAC. In the presence of NPPB and DCPIB in the post-OGD reperfusion solution, the OGD induced CA1 pyramidal neuron death, as measured by TO-PRO-3-I staining, was significantly reduced, although DCPIB did not appear to be an effective neuronal VRAC blocker. Altogether, we show that rat hippocampal pyramidal neurons express functional VRAC, and ischemic conditions can initial neuronal VRAC activation that may contribute to ischemic neuronal damage.

  7. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release.

    Directory of Open Access Journals (Sweden)

    Matthew E Pamenter

    Full Text Available During stroke, cells in the infarct core exhibit rapid failure of their permeability barriers, which releases ions and inflammatory molecules that are deleterious to nearby tissue (the penumbra. Plasma membrane degradation is key to penumbral spread and is mediated by matrix metalloproteinases (MMPs, which are released via vesicular exocytosis into the extracellular fluid in response to stress. DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid preserves membrane integrity in neurons challenged with an in vitro ischemic penumbral mimic (ischemic solution: IS and we asked whether this action was mediated via inhibition of MMP activity. In cultured murine hippocampal neurons challenged with IS, intracellular proMMP-2 and -9 expression increased 4-10 fold and extracellular latent and active MMP isoform expression increased 2-22 fold. MMP-mediated extracellular gelatinolytic activity increased ∼20-50 fold, causing detachment of 32.1±4.5% of cells from the matrix and extensive plasma membrane degradation (>60% of cells took up vital dyes and >60% of plasma membranes were fragmented or blebbed. DIDS abolished cellular detachment and membrane degradation in neurons and the pathology-induced extracellular expression of latent and active MMPs. DIDS similarly inhibited extracellular MMP expression and cellular detachment induced by the pro-apoptotic agent staurosporine or the general proteinase agonist 4-aminophenylmercuric acetate (APMA. Conversely, DIDS-treatment did not impair stress-induced intracellular proMMP production, nor the intracellular cleavage of proMMP-2 to the active form, suggesting DIDS interferes with the vesicular extrusion of MMPs rather than directly inhibiting proteinase expression or activation. In support of this hypothesis, an antagonist of the V-type vesicular ATPase also inhibited extracellular MMP expression to a similar degree as DIDS. In addition, in a proteinase-independent model of vesicular exocytosis, DIDS

  8. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  9. Differential responses of hippocampal neurons and astrocytes to nicotine and hypoxia in the fetal guinea pig.

    Science.gov (United States)

    Blutstein, Tamara; Castello, Michael A; Viechweg, Shaun S; Hadjimarkou, Maria M; McQuail, Joseph A; Holder, Mary; Thompson, Loren P; Mong, Jessica A

    2013-07-01

    In utero exposure to cigarette smoke has severe consequences for the developing fetus, including increased risk of birth complications and behavioral and learning disabilities later in life. Evidence from animal models suggests that the cognitive deficits may be a consequence of in utero nicotine exposure in the brain during critical developmental periods. However, maternal smoking exposes the fetus to not only nicotine but also a hypoxic intrauterine environment. Thus, both nicotine and hypoxia are capable of initiating cellular cascades, leading to long-term changes in synaptic patterning that have the potential to affect cognitive functions. This study investigates the combined effect of in utero exposure to nicotine and hypoxia on neuronal and glial elements in the hippocampal CA1 field. Fetal guinea pigs were exposed in utero to normoxic or hypoxic conditions in the presence or absence of nicotine. Hypoxia increased the protein levels of matrix metalloproteinase-9 (MMP-9) and synaptophysin and decreased the neural density as measured by NeuN immunoreactivity (ir). Nicotine exposure had no effect on these neuronal parameters but dramatically increased the density of astrocytes immunopositive for glial fibrillary acidic protein (GFAP). Further investigation into the effects of in utero nicotine exposure revealed that both GFAP-ir and NeuN-ir in the CA1 field were significantly reduced in adulthood. Taken together, our data suggest that prenatal exposure to nicotine and hypoxia not only alters synaptic patterning acutely during fetal development, but that nicotine also has long-term consequences that are observed well into adulthood. Moreover, these effects most likely take place through distinct mechanisms.

  10. Hippocampal neuronal cyclooxygenase-2 downstream signaling imbalance in a rat model of chronic aluminium gluconate administration.

    Science.gov (United States)

    Wang, Hong; Ye, Mengliang; Yu, Lijuan; Wang, Jianfeng; Guo, Yuanxin; Lei, Wenjuan; Yang, Junqing

    2015-02-18

    Acute and chronic brain damages including neurodegenerative diseases are a group of neuroinflammation-associated diseases characterized by cognitive function defect and progressive neuron loss. The pathophysiological procession of brain damages involves the overexpression of cyclooxygenase (COX)-2. Owing to the limited benefit to chronic brain damage and the late adverse effect of COX-2 inhibitors, the COX downstream signaling pathway has become a focus in neurological research. In order to explore the mechanism of aluminum neurotoxicity and the importance of COX2 downstream signaling pathways to chronic brain damage, the present study was designed to simultaneously observe the prostaglandin (PG) contents, and the expressions of PG synthases and PG receptors of hippocampus in a rat model induced by chronic administration of aluminium gluconate. A rat model of chronic brain damage was established by chronic intragastric administration of aluminium gluconate (Al3+ 200 mg/kg per day, 5d a week for 20 weeks). PG contents, the expressions of PG synthases, and the expressions of PG receptors in rats were measured by ELISA, RT-PCR and Western blotting, respectively. Chronic aluminium gluconate administration resulted in hippocampal neuron injury and learning and memory disorders in rats. Aluminium gluconate administration also resulted in increased levels of PGE2, PGD2, TXA2, PGI2, and PGF2α in rat hippocampus. The DP1, EP2, IP, mPGES-1, EP4, PGIS and TXAS mRNA expressions, and the DP1, EP2 and IP protein expressions significantly increased in the Al-treated hippocampus, while the EP3 and FP mRNA and protein expressions and the TP mRNA expression decreased. The PGS/PGs/PG receptors signaling pathway in chronic aluminium gluconate-overloaded rat hippocampus is disturbed, which may be involved in the mechanism of aluminium neurotoxicity.

  11. Overexpression of cypin alters dendrite morphology, single neuron activity, and network properties via distinct mechanisms

    Science.gov (United States)

    Rodríguez, Ana R.; O'Neill, Kate M.; Swiatkowski, Przemyslaw; Patel, Mihir V.; Firestein, Bonnie L.

    2018-02-01

    Objective. This study investigates the effect that overexpression of cytosolic PSD-95 interactor (cypin), a regulator of synaptic PSD-95 protein localization and a core regulator of dendrite branching, exerts on the electrical activity of rat hippocampal neurons and networks. Approach. We cultured rat hippocampal neurons and used lipid-mediated transfection and lentiviral gene transfer to achieve high levels of cypin or cypin mutant (cypinΔPDZ PSD-95 non-binding) expression cellularly and network-wide, respectively. Main results. Our analysis revealed that although overexpression of cypin and cypinΔPDZ increase dendrite numbers and decrease spine density, cypin and cypinΔPDZ distinctly regulate neuronal activity. At the single cell level, cypin promotes decreases in bursting activity while cypinΔPDZ reduces sEPSC frequency and further decreases bursting compared to cypin. At the network level, by using the Fano factor as a measure of spike count variability, cypin overexpression results in an increase in variability of spike count, and this effect is abolished when cypin cannot bind PSD-95. This variability is also dependent on baseline activity levels and on mean spike rate over time. Finally, our spike sorting data show that overexpression of cypin results in a more complex distribution of spike waveforms and that binding to PSD-95 is essential for this complexity. Significance. Our data suggest that dendrite morphology does not play a major role in cypin action on electrical activity.

  12. Nicotine uses neuron-glia communication to enhance hippocampal synaptic transmission and long-term memory.

    Directory of Open Access Journals (Sweden)

    Mónica López-Hidalgo

    Full Text Available Nicotine enhances synaptic transmission and facilitates long-term memory. Now it is known that bi-directional glia-neuron interactions play important roles in the physiology of the brain. However, the involvement of glial cells in the effects of nicotine has not been considered until now. In particular, the gliotransmitter D-serine, an endogenous co-agonist of NMDA receptors, enables different types of synaptic plasticity and memory in the hippocampus. Here, we report that hippocampal long-term synaptic plasticity induced by nicotine was annulled by an enzyme that degrades endogenous D-serine, or by an NMDA receptor antagonist that acts at the D-serine binding site. Accordingly, both effects of nicotine: the enhancement of synaptic transmission and facilitation of long-term memory were eliminated by impairing glial cells with fluoroacetate, and were restored with exogenous D-serine. Together, these results show that glial D-serine is essential for the long-term effects of nicotine on synaptic plasticity and memory, and they highlight the roles of glial cells as key participants in brain functions.

  13. Cytoskeleton of hippocampal neurons as a target for valproic acid in an experimental model of depression.

    Science.gov (United States)

    Ferrero, Alejandro J; Cereseto, Marina; Sifonios, Laura L; Reinés, Analía; Peixoto, Estanislao; Rubio, Modesto C; Wikinski, Silvia

    2007-10-01

    Atrophy of pyramidal hippocampal neurons and of the entire hippocampus has been reported in experimental models of depression and in depressive patients respectively. We investigated the efficacy of valproic acid (VPA) for reversing a depressive-like behaviour and a cytoskeletal alteration in the hippocampus, the loss of the light neurofilament subunit (NF-L). Depressive-like behaviour was induced by inescapable stress. Animals were divided into four groups: two to assess the response to 21 days of treatment with 200 mg/kg (I.P.) of valproic acid, and two in which the treatment was interrupted and the effects of VPA were evaluated 90 days later. Depressive-like behaviour was evaluated by the quantification of escape movements in a swimming test. NF-L was quantified by immunohistochemistry in dentate gyrus and CA3 of hippocampus. VPA corrected the depressive-like behaviour and reversed the diminution of NF-L in the hippocampus. Ninety days after the end of the treatment, and in contrast to the results previously obtained with fluoxetine, no recurrence of the depressive-like behaviour was observed. Despite interruption of the treatment, a long-lasting effect of VPA was observed. A possible relationship between the effect on NF-L and the prevention of depressive-like behaviour recurrence could be suggested.

  14. Erythropoietin and carbamylated erythropoietin promote histone deacetylase 5 phosphorylation and nuclear export in rat hippocampal neurons

    International Nuclear Information System (INIS)

    Jo, Hye-Ryeong; Kim, Yong-Seok; Son, Hyeon

    2016-01-01

    Erythropoietin (EPO) produces neurotrophic effects in animal model of neurodegeneration. However, clinical use of EPO is limited due to thrombotic risk. Carbamylated EPO (cEPO), devoid of thrombotic risk, has been proposed as a novel neuroprotective and neurotrophic agent although the molecular mechanisms of cEPO remain incomplete. Here, we show a previously unidentified role of histone deacetylase 5 (HDAC5) in the actions of EPO and cEPO. EPO and cEPO regulate the HDAC5 phosphorylation at two critical sites, Ser259 and Ser498 through a protein kinase D (PKD) dependent pathway. In addition, EPO and cEPO rapidly stimulates nuclear export of HDAC5 in rat hippocampal neurons which expressing HDAC5-GFP. Consequently, EPO and cEPO enhanced the myocyte enhancer factor-2 (MEF2) target gene expression. Taken together, our results reveal that EPO and cEPO mediate MEF2 target gene expression via the regulation of HDAC5 phosphorylation at Ser259/498, and suggest that HDAC5 could be a potential mechanism contributing to the therapeutic actions of EPO and cEPO.

  15. Erythropoietin and carbamylated erythropoietin promote histone deacetylase 5 phosphorylation and nuclear export in rat hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hye-Ryeong [Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering (Korea, Republic of); Kim, Yong-Seok [Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering (Korea, Republic of); Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791 (Korea, Republic of); Son, Hyeon, E-mail: hyeonson@hanyang.ac.kr [Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering (Korea, Republic of); Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791 (Korea, Republic of)

    2016-01-29

    Erythropoietin (EPO) produces neurotrophic effects in animal model of neurodegeneration. However, clinical use of EPO is limited due to thrombotic risk. Carbamylated EPO (cEPO), devoid of thrombotic risk, has been proposed as a novel neuroprotective and neurotrophic agent although the molecular mechanisms of cEPO remain incomplete. Here, we show a previously unidentified role of histone deacetylase 5 (HDAC5) in the actions of EPO and cEPO. EPO and cEPO regulate the HDAC5 phosphorylation at two critical sites, Ser259 and Ser498 through a protein kinase D (PKD) dependent pathway. In addition, EPO and cEPO rapidly stimulates nuclear export of HDAC5 in rat hippocampal neurons which expressing HDAC5-GFP. Consequently, EPO and cEPO enhanced the myocyte enhancer factor-2 (MEF2) target gene expression. Taken together, our results reveal that EPO and cEPO mediate MEF2 target gene expression via the regulation of HDAC5 phosphorylation at Ser259/498, and suggest that HDAC5 could be a potential mechanism contributing to the therapeutic actions of EPO and cEPO.

  16. Centella asiatica (L. Leaf Extract Treatment During the Growth Spurt Period Enhances Hippocampal CA3 Neuronal Dendritic Arborization in Rats

    Directory of Open Access Journals (Sweden)

    K. G. Mohandas Rao

    2006-01-01

    Full Text Available Centella asiatica (CeA is a creeping plant growing in damp places in India and other Asian countries. The leaves of CeA are used for memory enhancement in the Ayurvedic system of medicine, an alternative system of medicine in India. In this study, we have investigated the effect during the rat growth spurt period of CeA fresh leaf extract treatment on the dendritic morphology of hippocampal CA3 neurons, one of the regions of the brain concerned with learning and memory. Neonatal rat pups (7 days old were fed with 2, 4 or 6 ml kg−1 body weight of fresh leaf extract of CeA for 2, 4 or 6 weeks. After the treatment period the rats were killed, their brains were removed and the hippocampal neurons were impregnated with silver nitrate (Golgi staining. Hippocampal CA3 neurons were traced using a camera lucida, and dendritic branching points (a measure of dendritic arborization and intersections (a measure of dendritic length were quantified. These data were compared with data for age-matched control rats. The results showed a significant increase in the dendritic length (intersections and dendritic branching points along the length of both apical and basal dendrites in rats treated with 4 and 6 ml kg−1 body weight per day of CeA for longer periods of time (i.e. 4 and 6 weeks. We conclude that the constituents/active principles present in CeA fresh leaf extract have a neuronal dendritic growth stimulating property; hence, the extract can be used for enhancing neuronal dendrites in stress and neurodegenerative and memory disorders.

  17. LPA1 is a key mediator of intracellular signalling and neuroprotection triggered by tetracyclic antidepressants in hippocampal neurons.

    Science.gov (United States)

    Olianas, Maria C; Dedoni, Simona; Onali, Pierluigi

    2017-10-01

    Both lysophosphatidic acid (LPA) and antidepressants have been shown to affect neuronal survival and differentiation, but whether LPA signalling participates in the action of antidepressants is still unknown. In this study, we examined the role of LPA receptors in the regulation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activity and neuronal survival by the tetracyclic antidepressants, mianserin and mirtazapine in hippocampal neurons. In HT22 immortalized hippocampal cells, antidepressants and LPA induced a time- and concentration-dependent stimulation of ERK1/2 phosphorylation. This response was inhibited by either LPA 1 and LPA 1/3 selective antagonists or siRNA-induced LPA 1 down-regulation, and enhanced by LPA 1 over-expression. Conversely, the selective LPA 2 antagonist H2L5186303 had no effect. Antidepressants induced cyclic AMP response element binding protein phosphorylation and this response was prevented by LPA 1 blockade. ERK1/2 stimulation involved pertussis toxin-sensitive G proteins, Src tyrosine kinases and fibroblast growth factor receptor (FGF-R) activity. Tyrosine phosphorylation of FGF-R was enhanced by antidepressants through LPA 1 . Serum withdrawal induced apoptotic death, as indicated by increased annexin V staining, caspase activation and cleavage of poly-ADP-ribose polymerase. Antidepressants inhibited the apoptotic cascade and this protective effect was curtailed by blockade of either LPA 1 , ERK1/2 or FGF-R activity. Moreover, in primary mouse hippocampal neurons, mianserin acting through LPA 1 increased phospho-ERK1/2 and protected from apoptosis induced by removal of growth supplement. These data indicate that in neurons endogenously expressed LPA 1 receptors mediate intracellular signalling and neuroprotection by tetracyclic antidepressants. © 2017 International Society for Neurochemistry.

  18. Altered NMDA receptor function in primary cultures of hippocampal neurons from mice lacking the Homer2 gene.

    Science.gov (United States)

    Smothers, C Thetford; Szumlinski, Karen K; Worley, Paul F; Woodward, John J

    2016-01-01

    N-Methyl-D-Aspartate (NMDA) receptors are inhibited during acute exposure to ethanol and are involved in changes in neuronal plasticity following repeated ethanol exposure. The postsynaptic scaffolding protein Homer2 can regulate the cell surface expression of NMDA receptors in vivo, and mice with a null mutation of the Homer2 gene exhibit an alcohol-avoiding and -intolerant phenotype that is accompanied by a lack of ethanol-induced glutamate sensitization. Thus, Homer2 deletion may perturb the function or acute ethanol sensitivity of the NMDA receptor. In this study, the function and ethanol sensitivity of glutamate receptors in cultured hippocampal neurons from wild-type (WT) and Homer2 knock-out (KO) mice were examined at 7 and 14 days in vitro (DIV) using standard whole-cell voltage-clamp electrophysiology. As compared with wild-type controls, NMDA receptor current density was reduced in cultured hippocampal neurons from Homer2 KO mice at 14 DIV, but not at 7 DIV. There were no genotype-dependent changes in whole-cell capacitance or in currents evoked by kainic acid. The GluN2B-selective antagonist ifenprodil inhibited NMDA-evoked currents to a similar extent in both wild-type and Homer2 KO neurons and inhibition was greater at 7 versus 14 DIV. NMDA receptor currents from both WT and KO mice were inhibited by ethanol (10-100 mM) and the degree of inhibition did not differ as a function of genotype. In conclusion, NMDA receptor function, but not ethanol sensitivity, is reduced in hippocampal neurons lacking the Homer2 gene. © 2015 Wiley Periodicals, Inc.

  19. Memory-enhancing intra-basolateral amygdala clenbuterol infusion reduces post-burst afterhyperpolarizations in hippocampal CA1 pyramidal neurons following inhibitory avoidance learning.

    Science.gov (United States)

    Lovitz, E S; Thompson, L T

    2015-03-01

    Activation of the basolateral amygdala can modulate the strength of fear memories, including those in single-trial inhibitory avoidance (IA) tasks. Memory retention, measured by the latency to re-enter a dark-compartment paired 24h earlier with a footshock, varies with intensity of this aversive stimulus. When higher intensity footshocks were used, hippocampal CA1 pyramidal neurons exhibited reduced afterhyperpolarizations (AHPs) 24h post-trial, an effect blocked by immediate post-trial inactivation of the basolateral complex of the amygdala (BLA). Similar AHP reductions in CA1 have been observed in a number of learning tasks, with time courses appropriate to support memory consolidation. When less intense footshocks were used for IA training of Sprague-Dawley rats, immediate post-trial infusion of the β-adrenergic agonist clenbuterol into BLA was required to enhance hippocampal Arc protein expression 45 min later and to enhance memory retention tested 48 h later. Here, using Long-Evans rats and low-intensity footshocks, we confirmed that bilateral immediate post-trial infusion of 15 ng/0.5 μl of the β-adrenergic agonist clenbuterol into BLA significantly enhances memory for an IA task. Next, clenbuterol was infused into one BLA immediately post-training, with vehicle infused into the contralateral BLA, then hippocampal CA1 neuron AHPs were assessed 24 h later. Only CA1 neurons from hemispheres ipsilateral to post-trial clenbuterol infusion showed learning-dependent AHP reductions. Excitability of CA1 neurons from the same trained rats, but from the vehicle-infused hemispheres, was identical to that from untrained rats receiving unilateral clenbuterol or vehicle infusions. Peak AHPs, medium and slow AHPs, and accommodation were reduced only with the combination of IA training and unilateral BLA β-receptor activation. Similar to previous observations of BLA adrenergic memory-related enhancement of Arc protein expression in hippocampus, increased CA1 neuronal

  20. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-07-01

    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  1. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Science.gov (United States)

    Eder, Anja; Bading, Hilmar

    2007-01-01

    Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events. PMID:17663775

  2. Orexin-A aggravates the impairment of hippocampal neurons caused by intermittent hypoxemia by the OXR-PLCβ1-ERK1/2 pathway.

    Science.gov (United States)

    Li, Guohua; Tang, Shi; Chi, Heng; Huang, Weiwei; Lu, Shanshan; Lv, Xin; Liu, Xiaomin; Li, Yan; Wang, Yanpeng; Tang, Jiyou

    2017-04-12

    Obstructive sleep apnea is a highly prevalent but under-recognized disorder that causes neurocognitive deficits such as spatial memory and learning deficits. These deficits are frequently accompanied by an increase in orexin-A, which has been shown to be involved in learning and memory as well as in neuronal apoptosis in brain areas involved in cognition, such as the hippocampus. The aim of this work was to study the possible harmful effects of orexin-A on intermittent hypoxemia-induced hippocampal neuronal damage and to investigate the potential underlying molecular mechanisms and signaling pathways in vitro. We established a hypoxia model in cultured rat hippocampal neurons and evaluated the effects of orexin-A by testing the apoptosis rate of the hippocampal neurons. Further studies using the extracellular signal-regulated kinase 1/2 inhibitor U0126, siRNA-PLCβ1, and siRNA-PLCβ4 were carried out to evaluate the mechanisms by which orexin-A contributes toward impairment of hippocampal neurons. The results showed that orexin-A increases intermittent hypoxemia-induced hippocampal neurons damage by overphosphorylating extracellular signal-regulated kinase 1/2 through the OXR-PLCβ1 pathway.

  3. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis

    NARCIS (Netherlands)

    Boekhoorn, Karin; van Dis, Vera; Goedknegt, Erika; Sobel, André; Lucassen, Paul J; Hoogenraad, Casper C

    2014-01-01

    The hippocampus is one of the two areas in the mammalian brain where adult neurogenesis occurs. Adult neurogenesis is well known to be involved in hippocampal physiological functions as well as pathophysiological conditions. Microtubules (MTs), providing intracellular transport, stability, and

  4. A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats.

    Science.gov (United States)

    Fujiyama, Fumino; Nakano, Takashi; Matsuda, Wakoto; Furuta, Takahiro; Udagawa, Jun; Kaneko, Takeshi

    2016-12-01

    The external globus pallidus (GP) is known as a relay nucleus of the indirect pathway of the basal ganglia. Recent studies in dopamine-depleted and healthy rats indicate that the GP comprises two main types of pallidofugal neurons: the so-called "prototypic" and "arkypallidal" neurons. However, the reconstruction of complete arkypallidal neurons in healthy rats has not been reported. Here we visualized the entire axonal arborization of four single arkypallidal neurons and six single prototypic neurons in rat brain using labeling with a viral vector expressing membrane-targeted green fluorescent protein and examined the distribution of axon boutons in the target nuclei. Results revealed that not only the arkypallidal neurons but nearly all of the prototypic neurons projected to the striatum with numerous axon varicosities. Thus, the striatum is a major target nucleus for pallidal neurons. Arkypallidal and prototypic GP neurons located in the calbindin-positive and calbindin-negative regions mainly projected to the corresponding positive and negative regions in the striatum. Because the GP and striatum calbindin staining patterns reflect the topographic organization of the striatopallidal projection, the striatal neurons in the sensorimotor and associative regions constitute the reciprocal connection with the GP neurons in the corresponding regions.

  5. Effects of prenatal binge-like ethanol exposure and maternal stress on postnatal morphological development of hippocampal neurons in rats.

    Science.gov (United States)

    Jakubowska-Dogru, Ewa; Elibol, Birsen; Dursun, Ilknur; Yürüker, Sinan

    2017-10-01

    Alcohol is one of the most commonly used drugs of abuse negatively affecting human health and it is known as a potent teratogen responsible for fetal alcohol syndrome (FAS), which is characterized by cognitive deficits especially pronounced in juveniles but ameliorating in adults. Searching for the potential morphological correlates of these effects, in this study, we compared the course of developmental changes in the morphology of principal hippocampal neurons in fetal-alcohol (A group), intubated control (IC group), and intact control male rats (C group) over a protracted period of the first two postnatal months. Ethanol was administered to the pregnant Wistar dams intragastrically, throughout gestation days (GD) 7-20, at a total dose of 6g/kg/day resulting in the mean blood alcohol concentration (BAC) of 246.6±40.9mg/dl. Ten morphometric parameters of Golgi-stained hippocampal neurons (pyramidal and granule) from CA1, CA3, and DG areas were examined at critical postnatal days (PD): at birth (PD1), at the end of the brain growth spurt period (PD10), in juveniles (PD30), and in young adults (PD60). During postnatal development, the temporal pattern of morphometric changes was shown to be region-dependent with most significant alterations observed between PD1-30 in the CA region and between PD10-30 in the DG region. It was also parameter-dependent with the soma size (except for CA3 pyramids), number of primary dendrites, dendrite diameter, dendritic tortuosity and the branch angle demonstrating little changes, while the total dendritic field area, dendritic length, number of dendritic bifurcations, and spine density being highly increased in all hippocampal regions during the first postnatal month. Moderate ethanol intoxication and the maternal intubation stress during gestation, showed similar, transient effects on the neuron development manifested as a smaller soma size in granule cells, reduced dendritic parameters and lower spine density in pyramidal neurons

  6. Misoprostol Reverse Hippocampal Neuron Cyclooxygenase-2 Downstream Signaling Imbalance in Aluminum-Overload Rats

    Science.gov (United States)

    Guo, Yuanxin; Lei, Wenjuan; Wang, Jianfeng; Hu, Xinyue; Wei, Yuling; Ji, Chaonan; Yang, Junqing

    2016-01-01

    Although COX-2 inhibition in animal models of neurodegenerative diseases has shown neuroprotection, recent studies have revealed some serious side effects (ulcers, bleeding, fatal cerebrovascular diseases etc.) and the limited benefits of COX-2 inhibitors. A more focused approach is necessary to explore the therapeutic effect of the COX downstream signaling pathway in neurological research. The aim of this study was to explore the alterations of the PGES-PGE2-EP signal pathway and the effect of misoprostol on neurodegeneration by chronic aluminum-overload in rats. Adult rats were treated by intragastric administration of aluminum gluconate. The PGE2 content and expression of PGES and EPs in the hippocampi of rats were detected using ELISA, q-PCR and Western blot analysis, respectively. The content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) in the rat hippocampi were also detected. The misoprostol treatment dose-dependently improved spatial learning and memory function as well as healing after hippocampal neuron damage induced by chronic aluminum-overload in rats. Meanwhile, the administration of misoprostol resulted in a decrease in the PGE2 level and down-regulation of the mPGES-1, EP2 and EP4 expression levels, while there was a dose-dependent up-regulation of EP3 expression. These results suggest that misoprostol possesses a neuroprotective property, and the mechanism involves affecting the EP3 level and reducing the endogenous production of PGE2 through a negative feedback mechanism, increasing the EP3 expression level, decreasing the EP2 and EP4 expression levels, and rebuilding the mPGES-1-PGE2-EP1-4 signal pathway balance. In this way, misoprostol has a counteractive effect on oxidant stress and inflammation in the central nervous system. The PGES-PGE2-EPs signaling pathway is a potential therapeutic strategy for treating neurodegeneration in patients. PMID:27033056

  7. Activation of Transient Receptor Potential Vanilloid 4 Increases NMDA-Activated Current in Hippocampal Pyramidal Neurons.

    Science.gov (United States)

    Li, Lin; Qu, Weijun; Zhou, Libin; Lu, Zihong; Jie, Pinghui; Chen, Lei; Chen, Ling

    2013-01-01

    The glutamate excitotoxicity, mediated through N-methyl-d-aspartate receptors (NMDARs), plays an important role in cerebral ischemia injury. Transient receptor potential vanilloid 4 (TRPV4) can be activated by multiple stimuli that may happen during stroke. The present study evaluated the effect of TRPV4 activation on NMDA-activated current (INMDA) and that of blocking TRPV4 on brain injury after focal cerebral ischemia in mice. We herein report that activation of TRPV4 by 4α-PDD and hypotonic stimulation increased INMDA in hippocampal CA1 pyramidal neurons, which was sensitive to TRPV4 antagonist 10 μ M/2 μ 1/mouse [DOSAGE ERROR CORRECTED] and NMDAR antagonist AP-5, indicating that TRPV4 activation potentiates NMDAR response. In addition, the increase in INMDA by hypotonicity was sensitive to the antagonist of NMDAR NR2B subunit, but not of NR2A subunit. Furthermore, antagonists of calcium/calmodulin-dependent protein kinase II (CaMKII) significantly attenuated hypotonicity-induced increase in INMDA, while antagonists of protein kinase C or casein kinase II had no such effect, indicating that phosphorylation of NR2B subunit by CaMKII is responsible for TRPV4-potentiated NMDAR response. Finally, we found that intracerebroventricular injection of 10 μ m/2 μ 1/mouse [DOSAGE ERROR CORRECTED] after 60 min middle cerebral artery occlusion reduced the cerebral infarction with at least a 12 h efficacious time-window. These findings indicate that activation of TRPV4 increases NMDAR function, which may facilitate glutamate excitotoxicity. Closing TRPV4 may exert potent neuroprotection against cerebral ischemia injury through many mechanisms at least including the prevention of NMDAR-mediated glutamate excitotoxicity.

  8. Phencyclidine block of calcium current in isolated guinea-pig hippocampal neurones.

    Science.gov (United States)

    Ffrench-Mullen, J M; Rogawski, M A

    1992-10-01

    1. Phencyclidine (PCP) block of Ca2+ channel current in enzymatically dissociated neurones from the CA1 region of the adult guinea-pig hippocampus was studied using whole-cell voltage clamp techniques. Ca2+ channel current was recorded with 3 mM-Ba2+ as the charge carrier. Na+ currents were blocked with tetrodotoxin and K+ currents were eliminated by using tetraethylammonium and N-methyl-D-glucamine as the predominant extracellular and intracellular cations, respectively. 2. Peak Ca2+ channel current evoked by depolarization from -80 to -10 mV was reduced in a use-dependent fashion by PCP. The apparent forward and reverse rate constants for block at the depolarized voltage were 10(6) s-1 M-1 and 11-14 s-1, respectively. These values were at least 60 times faster than the corresponding rates at the resting voltage. The steady-state block produced by PCP increased in a concentration-dependent fashion with an IC50 of 7 microM. Other dissociative anaesthetic drugs were substantially weaker inhibitors of the current (tiletamine > dizocilpine (MK-801) > ketamine). 3. The Ca2+ channel current recorded under identical conditions in rat dorsal root ganglion neurones was less sensitive to blockade by PCP (IC50, 90 microM). 4. PCP block of the hippocampal Ca2+ channel current occurred in a voltage-dependent fashion with the fractional block decreasing at positive membrane potentials. Analysis indicated that the PCP blocking site senses 56% of the transmembrane electric field. 5. Analysis of tail currents recorded at -80 mV demonstrated that PCP does not affect the voltage-dependent or time-dependent activation or deactivation of the Ca2+ channel current. 6. The rate and extent of inactivation of the Ca2+ channel current was maximal at -10 mV and diminished at more positive potentials. Experiments with Ba(2+)-free external solution demonstrated that inactivation of the Ca2+ channels is largely voltage-dependent and is not affected by Ba2+ influx. 7. PCP markedly increased the

  9. Hydrogen Suppresses Hypoxia/Reoxygenation-Induced Cell Death in Hippocampal Neurons Through Reducing Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Rong Wei

    2015-05-01

    Full Text Available Background & Aims: Deep hypothermic circulatory arrest (DHCA is a cerebral protection technique that has been used in the operations involving the aortic arch and brain aneurysm for decades. We previous showed that DHCA treated rats developed a significant oxidative stress and apoptosis in neurons. We here intend to investigate the protective the effect of hydrogen against oxidative stress-induced cell injury and the involved mechanisms using an in vitro experimental model of hypoxia/reoxygenation (H/R on HT-22 cells. Methods: The model of H/R was established using an airtight culture container and the anaeropack. Measurement of mitochondrial membrane potential (MMP and reactive oxygen species (ROS production was used H2DCFDA and JC-1 staining. Western blot was used for the quantification of Akt, p-Akt, Bcl-2, Bax and cleaved caspase-3 proteins. The microRNA (miRNA profile in hippocampal neurons from rat model of DHCA was determined by miRNA deep sequencing. Results: The elevation of ROS and reduction of MMP were significantly induced by the treatment with hypoxia for 18 h followed by reoxygenation for 6 h. Hydrogen treatment significantly reduced H/R-caused cell death. The levels of p-Akt (Ser 473 and Bcl-2 were significantly increased while Bax and cleaved caspase-3 were decreased by hydrogen treatment on the model of H/R. The expression of miR-200 family was significantly elevated in model of DHCA and H/R. Hydrogen administration inhibited the H/R-induced expression of miR-200 family in HT-22 cells. In addition, inhibition of miR-200 family suppressed H/R-caused cell death through reducing ROS production. Conclusions: These results suggest that H/R causes oxidative stress-induced cell death and that the hydrogen protects against H/R-induced cell death in HT22 cells, in part, due to reducing expression of miR-200 family.

  10. Transient Receptor Potential Vanilloid 4 Activation-Induced Increase in Glycine-Activated Current in Mouse Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Mengwen Qi

    2018-02-01

    Full Text Available Background/Aims: Glycine plays an important role in regulating hippocampal inhibitory/ excitatory neurotransmission through activating glycine receptors (GlyRs and acting as a co-agonist of N-methyl-d-aspartate-type glutamate receptors. Activation of transient receptor potential vanilloid 4 (TRPV4 is reported to inhibit hippocampal A-type γ-aminobutyric acid receptor, a ligand-gated chloride ion channel. GlyRs are also ligand-gated chloride ion channels and this paper aimed to explore whether activation of TRPV4 could modulate GlyRs. Methods: Whole-cell patch clamp recording was employed to record glycine-activated current (IGly and Western blot was conducted to assess GlyRs subunits protein expression. Results: Application of TRPV4 agonist (GSK1016790A or 5,6-EET increased IGly in mouse hippocampal CA1 pyramidal neurons. This action was blocked by specific antagonists of TRPV4 (RN-1734 or HC-067047 and GlyR (strychnine, indicating that activation of TRPV4 increases strychnine-sensitive GlyR function in mouse hippocampal pyramidal neurons. GSK1016790A-induced increase in IGly was significantly attenuated by protein kinase C (PKC (BIM II or D-sphingosine or calcium/calmodulin-dependent protein kinase II (CaMKII (KN-62 or KN-93 antagonists but was unaffected by protein kinase A or protein tyrosine kinase antagonists. Finally, hippocampal protein levels of GlyR α1 α2, α3 and β subunits were not changed by treatment with GSK1016790A for 30 min or 1 h, but GlyR α2, α3 and β subunits protein levels increased in mice that were intracerebroventricularly (icv. injected with GSK1016790A for 5 d. Conclusion: Activation of TRPV4 increases GlyR function and expression, and PKC and CaMKII signaling pathways are involved in TRPV4 activation-induced increase in IGly. This study indicates that GlyRs may be effective targets for TRPV4-induced modulation of hippocampal inhibitory neurotransmission.

  11. Single neuron dynamics during experimentally induced anoxic depolarization

    NARCIS (Netherlands)

    Zandt, B.; Stigen, Tyler; ten Haken, Bernard; Netoff, Theoden; van Putten, Michel Johannes Antonius Maria

    2013-01-01

    We studied single neuron dynamics during anoxic depolarizations, which are often observed in cases of neuronal energy depletion. Anoxic and similar depolarizations play an important role in several pathologies, notably stroke, migraine, and epilepsy. One of the effects of energy depletion was

  12. Functional Characterization of Acetylcholine Receptors Expressed in Human Neurons Differentiated from Hippocampal Neural Stem/Progenitor Cells.

    Science.gov (United States)

    Fukushima, Kazuyuki; Yamazaki, Kazuto; Miyamoto, Norimasa; Sawada, Kohei

    2016-12-01

    Neurotransmission mediated by acetylcholine receptors (AChRs) plays an important role in learning and memory functions in the hippocampus. Impairment of the cholinergic system contributes to Alzheimer's disease (AD), indicating the importance of AChRs as drug targets for AD. To improve the success rates for AD drug development, human cell models that mimic the target brain region are important. Therefore, we characterized the functional expression of nicotinic and muscarinic AChRs (nAChRs and mAChRs, respectively) in human hippocampal neurons differentiated from hippocampal neural stem/progenitor cells (HIP-009 cells). Intracellular calcium flux in 4-week differentiated HIP-009 cells demonstrated that the cells responded to acetylcholine, nicotine, and muscarine in a concentration-dependent manner (EC 50 = 13.4 ± 0.5, 6.0 ± 0.4, and 35.0 ± 2.5 µM, respectively). In addition, assays using subtype-selective compounds revealed that major AD therapeutic target AChR subtypes-α7 and α4β2 nAChRs, as well as M 1 and M 3 mAChRs-were expressed in the cells. Furthermore, neuronal network analysis demonstrated that potentiation of M 3 mAChRs inhibits the spontaneous firing of HIP-009 neurons. These results indicate that HIP-009 cells are physiologically relevant for AD drug screening and hence are loadstars for the establishment of in vitro AD models.

  13. Long-lasting changes in DNA methylation following short-term hypoxic exposure in primary hippocampal neuronal cultures.

    Directory of Open Access Journals (Sweden)

    Iain Hartley

    Full Text Available While the effects of hypoxia on gene expression have been investigated in the CNS to some extent, we currently do not know what role epigenetics plays in the transcription of many genes during such hypoxic stress. To start understanding the role of epigenetic changes during hypoxia, we investigated the long-term effect of hypoxia on gene expression and DNA methylation in hippocampal neuronal cells. Primary murine hippocampal neuronal cells were cultured for 7 days. Hypoxic stress of 1% O2, 5% CO2 for 24 hours was applied on Day 3, conditions we found to maximize cellular hypoxic stress response without inducing cell death. Cells were returned to normoxia for 4 days following the period of hypoxic stress. On Day 7, Methyl-Sensitive Cut Counting (MSCC was used to identify a genome-wide methylation profile of the hippocampal cell lines to assess methylation changes resulting from hypoxia. RNA-Seq was also done on Day 7 to analyze changes in gene transcription. Phenotypic analysis showed that neuronal processes were significantly shorter after 1 day of hypoxia, but there was a catch-up growth of these processes after return to normoxia. Transcriptome profiling using RNA-Seq revealed 369 differentially expressed genes with 225 being upregulated, many of which form networks shown to affect CNS development and function. Importantly, the expression level of 59 genes could be correlated to the changes in DNA methylation in their promoter regions. CpG islands, in particular, had a strong tendency to remain hypomethylated long after hypoxic stress was removed. From this study, we conclude that short-term, sub-lethal hypoxia results in long-lasting changes to genome wide DNA methylation status and that some of these changes can be highly correlated with transcriptional modulation in a number of genes involved in functional pathways that have been previously implicated in neural growth and development.

  14. Environmental enrichment protects spatial learning and hippocampal neurons from the long-lasting effects of protein malnutrition early in life.

    Science.gov (United States)

    Soares, Roberto O; Horiquini-Barbosa, Everton; Almeida, Sebastião S; Lachat, João-José

    2017-09-29

    As early protein malnutrition has a critically long-lasting impact on the hippocampal formation and its role in learning and memory, and environmental enrichment has demonstrated great success in ameliorating functional deficits, here we ask whether exposure to an enriched environment could be employed to prevent spatial memory impairment and neuroanatomical changes in the hippocampus of adult rats maintained on a protein deficient diet during brain development (P0-P35). To elucidate the protective effects of environmental enrichment, we used the Morris water task and neuroanatomical analysis to determine whether changes in spatial memory and number and size of CA1 neurons differed significantly among groups. Protein malnutrition and environmental enrichment during brain development had significant effects on the spatial memory and hippocampal anatomy of adult rats. Malnourished but non-enriched rats (MN) required more time to find the hidden platform than well-nourished but non-enriched rats (WN). Malnourished but enriched rats (ME) performed better than the MN and similarly to the WN rats. There was no difference between well-nourished but non-enriched and enriched rats (WE). Anatomically, fewer CA1 neurons were found in the hippocampus of MN rats than in those of WN rats. However, it was also observed that ME and WN rats retained a similar number of neurons. These results suggest that environmental enrichment during brain development alters cognitive task performance and hippocampal neuroanatomy in a manner that is neuroprotective against malnutrition-induced brain injury. These results could have significant implications for malnourished infants expected to be at risk of disturbed brain development. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of 17beta-estradiol and xenoestrogens on the neuronal survival in an organotypic hippocampal culture.

    Science.gov (United States)

    Sato, Kaoru; Matsuki, Norio; Ohno, Yasuo; Nakazawa, Ken

    2002-10-01

    Xenoestrogens are man-made compounds that mimic the actions of estrogens through interactions with estrogen receptors (ERs). Although xenoestrogens have received a great deal of attention as possible causes of brain disfunctions, little information concerning the effects of xenoestrogens on the central nervous system is available. In this study, we investigated the effects of 17beta-estradiol (E(2)) and four xenoestrogens (17alpha-ethynylestradiol, diethylstilbestrol, p-nonylphenol and bisphenol A (BPA)) on the neuronal survival using organotypic hippocampal slice cultures. When the cultured hippocampal slices were exposed to glutamate (1 mM, 15 min), the CA1-selective neuronal damage was induced. Pretreatment with E(2) and the xenoestrogens (24 h) selectively exacerbated the CA3 neuronal damage caused by glutamate. In spite of the marked difference of binding affinities to ERs, all compounds revealed maximal effects at 1 nM. ER antagonists, tamoxifen and ICI 182,780, did not affect responses to E(2) and the xenoestrogens, indicating that these effects are mediated through mechanisms other than ERs. In spite of the fact that BPA has little interaction with ERs at 1 nM, E(2) and BPA equally increased the expression of N-methyl-D-aspartate receptor in CA3 and upregulated the spine density of the apical portion of CA3 dendrites at 1 nM. These compounds also enhanced the sprouting of mossy fibers to CA3 neurons. These results suggest that exposure to E(2) and xenoestrogens during the developmental stage results in a marked influence on synaptogenesis and neuronal vulnerability through mechanisms other than ERs. Copyright 2002 S. Karger AG, Basel

  16. Endogenous sulfur dioxide regulates hippocampal neuron apoptosis in developing epileptic rats and is associated with the PERK signaling pathway.

    Science.gov (United States)

    Niu, Manman; Han, Ying; Li, Qinrui; Zhang, Jing

    2018-02-05

    Epilepsy is among the most common neurological diseases in children. Recurrent seizures can result in hippocampal damage and seriously impair learning and memory functions in children. However, the mechanisms underlying epilepsy-related brain injury are unclear. Neuronal apoptosis is among the most common neuropathological manifestations of brain injury. Endogenous sulfur dioxide (SO 2 ) has been shown to be involved in seizures and related neuron apoptosis. However, the role of endogenous SO 2 in epilepsy remains unclear. This study assessed whether endogenous SO 2 is involved in epilepsy and its underlying mechanisms. Using a rat epilepsy model induced by an intraperitoneal injection of kainic acid (KA), we found that hippocampal neuron apoptosis was induced in epileptic rats, and the SO 2 content and aspartate aminotransferase (AAT) activity in the plasma were increased compared to those in the control group. However, the inhibition of SO 2 production by l-aspartate-β-hydroxamate (HDX) can subvert this response 72h after an epileptic seizure. No difference in apoptosis was observed 7 d after the epileptic seizure in the KA and KA+HDX groups. The protein expression levels of AAT2, glucose-regulated protein 78 (GRP78), pancreatic eIF2 kinase-like ER kinase (PERK) and phospho-PERK (p-PERK) were remarkably elevated in the hippocampi of the epileptic rats, while the HDX treatment was capable of reversing this process 7 d after the epileptic seizure. These results indicate that the inhibition of endogenous SO 2 production can alleviate neuronal apoptosis and is associated with the PERK signaling pathway during the initial stages after epileptic seizure, but inhibiting SO 2 production only delayed the occurrence of apoptosis and did not prevent neuronal apoptosis in the epileptic rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. AMPA receptor pHluorin-GluA2 reports NMDA receptor-induced intracellular acidification in hippocampal neurons

    OpenAIRE

    Rathje, Mette; Fang, Huaqiang; Bachman, Julia L.; Anggono, Victor; Gether, Ulrik; Huganir, Richard L.; Madsen, Kenneth L.

    2013-01-01

    NMDA receptor activation promotes endocytosis of AMPA receptors, which is an important mechanism underlying long-term synaptic depression. The pH-sensitive GFP variant pHluorin fused to the N terminus of GluA2 (pH-GluA2) has been used to assay NMDA-mediated AMPA receptor endocytosis and recycling. Here, we demonstrate that in somatic and dendritic regions of hippocampal neurons a large fraction of the fluorescent signal originates from intracellular pH-GluA2, and that the decline in fluoresce...

  18. Interleukin-1β increases neuronal death in the hippocampal dentate gyrus associated with status epilepticus in the developing rat.

    Science.gov (United States)

    Rincón-López, C; Tlapa-Pale, A; Medel-Matus, J-S; Martínez-Quiroz, J; Rodríguez-Landa, J F; López-Meraz, M-L

    Interleukin-1β (IL-1β) increases necrotic neuronal cell death in the CA1 area after induced status epilepticus (SE) in developing rats. However, it remains uncertain whether IL-1β has a similar effect on the hippocampal dentate gyrus (DG). In this study, we analysed the effects of IL-1β on 14-day-old Wistar rats experiencing DG neuronal death induced by SE. SE was induced with lithium-pilocarpine. Six hours after SE onset, a group of pups was injected with IL-1β (at 0, 0.3, 3, 30, or 300ng/μL) in the right ventricle; another group was injected with IL-1β receptor (IL-1R1) antagonist (IL-1Ra, at 30ng/μL) of IL-1RI antagonist (IL-1Ra) alone, and additional group with 30ng/μL of IL-1Ra plus 3ng/μL of IL-1β. Twenty-four hours after SE onset, neuronal cell death in the dentate gyrus of the dorsal hippocampus was assessed using haematoxylin-eosin staining. Dead cells showed eosinophilic cytoplasm and condensed and fragmented nuclei. We observed an increased number of eosinophilic cells in the hippocampal DG ipsilateral to the site of injection of 3ng/μL and 300ng/μL of IL-1β in comparison with the vehicle group. A similar effect was observed in the hippocampal DG contralateral to the site of injection of 3ng/μL of IL-1β. Administration of both of IL-1β and IL-1Ra failed to prevent an increase in the number of eosinophilic cells. Our data suggest that IL-1β increases apoptotic neuronal cell death caused by SE in the hippocampal GD, which is a mechanism independent of IL-1RI activation. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Activity of human hippocampal formation and amygdala neurons during memory testing.

    Science.gov (United States)

    Halgren, E; Babb, T L; Crandall, P H

    1978-11-01

    Single and multiple unit recordings were made from fine wires stereotaxically implanted in the hippocampus (HC), hippocampal gyrus (HCG), and amygdala (Am) of psychomotor epileptics. During a series of memory and control tests presented on slides, 21 of 155 HCG units, 15 of 59 HC units, and 2 of 54 Am units showed what appeared to be simple phasic or tonic visual responses. Twenty-seven other units, found only in the HCG, changed firing only during slides requiring a choice ('choice units'). A given choice unit responded during choices indicated verbally or manually, and during tasks requiring recall of Recent Memory, various visual discriminations, and expressions of preference. Choice units were not affected by sensory stimulation or motor activity in contexts not requiring choice. Phasically inhibited choice units had higher firing rates and lower signal-to-noise ratios than tonically excited units. Whether an electrode recorded a choice unit was unrelated to if it recorded a response to hyperventilation, or was in an area of epileptic pathology. Recordings were also made during an interview lasting several hours and eliciting a wide range of behaviors. Five of the 131 HCG units fired in repeated extended bursts, at least 50 times background during recall of word pairs or of the patient's hospital room. The unit response did not occur during numerous control tasks possessing similar overt sensory, motor, and social concomitants, but not requiring Recent Memory.

  20. Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor.

    Science.gov (United States)

    Fink, Ann E; Bender, Kevin J; Trussell, Laurence O; Otis, Thomas S; DiGregorio, David A

    2012-01-01

    Minimally invasive measurements of neuronal activity are essential for understanding how signal processing is performed by neuronal networks. While optical strategies for making such measurements hold great promise, optical sensors generally lack the speed and sensitivity necessary to record neuronal activity on a single-trial, single-neuron basis. Here we present additional biophysical characterization and practical improvements of a two-component optical voltage sensor (2cVoS), comprised of the neuronal tracer dye, DiO, and dipicrylamine (DiO/DPA). Using laser spot illumination we demonstrate that membrane potential-dependent fluorescence changes can be obtained in a wide variety of cell types within brain slices. We show a correlation between membrane labeling and the sensitivity of the magnitude of fluorescence signal, such that neurons with the brightest membrane labeling yield the largest ΔF/F values per action potential (AP; ∼40%). By substituting a blue-shifted donor for DiO we confirm that DiO/DPA works, at least in part, via a Förster resonance energy transfer (FRET) mechanism. We also describe a straightforward iontophoretic method for labeling multiple neurons with DiO and show that DiO/DPA is compatible with two-photon (2P) imaging. Finally, exploiting the high sensitivity of DiO/DPA, we demonstrate AP-induced fluorescence transients (fAPs) recorded from single spines of hippocampal pyramidal neurons and single-trial measurements of subthreshold synaptic inputs to granule cell dendrites. Our findings suggest that the 2cVoS, DiO/DPA, enables optical measurements of trial-to-trial voltage fluctuations with very high spatial and temporal resolution, properties well suited for monitoring electrical signals from multiple neurons within intact neuronal networks.

  1. Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor.

    Directory of Open Access Journals (Sweden)

    Ann E Fink

    Full Text Available Minimally invasive measurements of neuronal activity are essential for understanding how signal processing is performed by neuronal networks. While optical strategies for making such measurements hold great promise, optical sensors generally lack the speed and sensitivity necessary to record neuronal activity on a single-trial, single-neuron basis. Here we present additional biophysical characterization and practical improvements of a two-component optical voltage sensor (2cVoS, comprised of the neuronal tracer dye, DiO, and dipicrylamine (DiO/DPA. Using laser spot illumination we demonstrate that membrane potential-dependent fluorescence changes can be obtained in a wide variety of cell types within brain slices. We show a correlation between membrane labeling and the sensitivity of the magnitude of fluorescence signal, such that neurons with the brightest membrane labeling yield the largest ΔF/F values per action potential (AP; ∼40%. By substituting a blue-shifted donor for DiO we confirm that DiO/DPA works, at least in part, via a Förster resonance energy transfer (FRET mechanism. We also describe a straightforward iontophoretic method for labeling multiple neurons with DiO and show that DiO/DPA is compatible with two-photon (2P imaging. Finally, exploiting the high sensitivity of DiO/DPA, we demonstrate AP-induced fluorescence transients (fAPs recorded from single spines of hippocampal pyramidal neurons and single-trial measurements of subthreshold synaptic inputs to granule cell dendrites. Our findings suggest that the 2cVoS, DiO/DPA, enables optical measurements of trial-to-trial voltage fluctuations with very high spatial and temporal resolution, properties well suited for monitoring electrical signals from multiple neurons within intact neuronal networks.

  2. Training a Single Sigmoidal Neuron is Hard

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jiří

    2002-01-01

    Roč. 14, č. 11 (2002), s. 2709-2729 ISSN 0899-7667 R&D Projects: GA MŠk LN00A056 Keywords : sigmoidal neuron * loading problem * NP-hardness Subject RIV: BA - General Mathematics Impact factor: 2.313, year: 2002

  3. Electroconvulsive stimulation results in long-term survival of newly generated hippocampal neurons in rats

    DEFF Research Database (Denmark)

    Olesen, Mikkel Vestergaard; Wörtwein, Gitta; Folke, Jonas

    2017-01-01

    Electroconvulsive stimulation (ECS) is one of the strongest stimulators of hippocampal neurogenesis in rodents that represents a plausible mechanism for the efficacy of electroconvulsive therapy (ECT) in major depressive disorder. Using design-based stereological cell counting, we recently...

  4. Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice.

    Directory of Open Access Journals (Sweden)

    Sindhu K Madathil

    Full Text Available Traumatic brain injury (TBI survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1, a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal overexpression of IGF-1 using the controlled cortical impact (CCI injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI.

  5. Transiently increasing cAMP levels selectively in hippocampal excitatory neurons during sleep deprivation prevents memory deficits caused by sleep loss.

    Science.gov (United States)

    Havekes, Robbert; Bruinenberg, Vibeke M; Tudor, Jennifer C; Ferri, Sarah L; Baumann, Arnd; Meerlo, Peter; Abel, Ted

    2014-11-19

    The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object-location task. Five hours of total sleep deprivation directly following training impaired the formation of object-location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. Copyright © 2014 the authors 0270-6474/14/3415715-07$15.00/0.

  6. Enhancement of information transmission with stochastic resonance in hippocampal CA1 neuron models: effects of noise input location.

    Science.gov (United States)

    Kawaguchi, Minato; Mino, Hiroyuki; Durand, Dominique M

    2007-01-01

    Stochastic resonance (SR) has been shown to enhance the signal to noise ratio or detection of signals in neurons. It is not yet clear how this effect of SR on the signal to noise ratio affects signal processing in neural networks. In this paper, we investigate the effects of the location of background noise input on information transmission in a hippocampal CA1 neuron model. In the computer simulation, random sub-threshold spike trains (signal) generated by a filtered homogeneous Poisson process were presented repeatedly to the middle point of the main apical branch, while the homogeneous Poisson shot noise (background noise) was applied to a location of the dendrite in the hippocampal CA1 model consisting of the soma with a sodium, a calcium, and five potassium channels. The location of the background noise input was varied along the dendrites to investigate the effects of background noise input location on information transmission. The computer simulation results show that the information rate reached a maximum value for an optimal amplitude of the background noise amplitude. It is also shown that this optimal amplitude of the background noise is independent of the distance between the soma and the noise input location. The results also show that the location of the background noise input does not significantly affect the maximum values of the information rates generated by stochastic resonance.

  7. The neuronal ceroid lipofuscinosis Cln8 gene expression is developmentally regulated in mouse brain and up-regulated in the hippocampal kindling model of epilepsy

    Directory of Open Access Journals (Sweden)

    Kuronen Mervi

    2005-04-01

    Full Text Available Abstract Background The neuronal ceroid lipofuscinoses (NCLs are a group of inherited neurodegenerative disorders characterized by accumulation of autofluorescent material in many tissues, especially in neurons. Mutations in the CLN8 gene, encoding an endoplasmic reticulum (ER transmembrane protein of unknown function, underlie NCL phenotypes in humans and mice. The human phenotype is characterized by epilepsy, progressive psychomotor deterioration and visual loss, while motor neuron degeneration (mnd mice with a Cln8 mutation show progressive motor neuron dysfunction and retinal degeneration. Results We investigated spatial and temporal expression of Cln8 messenger ribonucleic acid (mRNA using in situ hybridization, reverse transcriptase polymerase chain reaction (RT-PCR and northern blotting. Cln8 is ubiquitously expressed at low levels in embryonic and adult tissues. In prenatal embryos Cln8 is most prominently expressed in the developing gastrointestinal tract, dorsal root ganglia (DRG and brain. In postnatal brain the highest expression is in the cortex and hippocampus. Expression of Cln8 mRNA in the central nervous system (CNS was also analyzed in the hippocampal electrical kindling model of epilepsy, in which Cln8 expression was rapidly up-regulated in hippocampal pyramidal and granular neurons. Conclusion Expression of Cln8 in the developing and mature brain suggests roles for Cln8 in maturation, differentiation and supporting the survival of different neuronal populations. The relevance of Cln8 up-regulation in hippocampal neurons of kindled mice should be further explored.

  8. Neuro-Compatible Metabolic Glycan Labeling of Primary Hippocampal Neurons in Noncontact, Sandwich-Type Neuron-Astrocyte Coculture.

    Science.gov (United States)

    Choi, Ji Yu; Park, Matthew; Cho, Hyeoncheol; Kim, Mi-Hee; Kang, Kyungtae; Choi, Insung S

    2017-12-20

    Glycans are intimately involved in several facets of neuronal development and neuropathology. However, the metabolic labeling of surface glycans in primary neurons is a difficult task because of the neurotoxicity of unnatural monosaccharides that are used as a metabolic precursor, hindering the progress of metabolic engineering in neuron-related fields. Therefore, in this paper, we report a neurosupportive, neuron-astrocyte coculture system that neutralizes the neurotoxic effects of unnatural monosaccharides, allowing for the long-term observation and characterization of glycans in primary neurons in vitro. Polysialic acids in neurons are selectively imaged, via the metabolic labeling of sialoglycans with peracetylated N-azidoacetyl-d-mannosamine (Ac 4 ManNAz), for up to 21 DIV. Two-color labeling shows that neuronal activities, such as neurite outgrowth and recycling of membrane components, are highly dynamic and change over time during development. In addition, the insertion sites of membrane components are suggested to not be random, but be predominantly localized in developing neurites. This work provides a new research platform and also suggests advanced 3D systems for metabolic-labeling studies of glycans in primary neurons.

  9. When Are New Hippocampal Neurons, Born in the Adult Brain, Integrated into the Network That Processes Spatial Information?

    Science.gov (United States)

    Sandoval, C. Jimena; Pérez, Oswaldo; Ramírez-Amaya, Víctor

    2011-01-01

    Adult-born neurons in the dentate gyrus (DG) functionally integrate into the behaviorally relevant hippocampal networks, showing a specific Arc-expression response to spatial exploration when mature. However, it is not clear when, during the 4- to 6-week interval that is critical for survival and maturation of these neurons, this specific response develops. Therefore, we characterized Arc expression after spatial exploration or cage control conditions in adult-born neurons from rats that were injected with BrdU on one day and were sacrificed 1, 7, 15, 30, and 45 days post-BrdU injection (PBI). Triple immunostaining for NeuN, Arc, and BrdU was analyzed through the different DG layers. Arc protein expression in BrdU-positive cells was observed from day 1 to day 15 PBI but was not related to behavioral stimulation. The specific Arc-expression response to spatial exploration was observed from day 30 and 45 in about 5% of the BrdU-positive cell population. Most of the BrdU-positive neurons expressing Arc in response to spatial exploration (∼90%) were located in DG layer 1, and no Arc expression was observed in cells located in the subgranular zone (SGZ). Using the current data and that obtained previously, we propose a mathematical model suggesting that new neurons are unlikely to respond to exploration by expressing Arc after they are 301 days old, and also that in a 7-month-old rat the majority (60%) of the neurons that respond to exploration must have been born during adulthood; thus, suggesting that adult neurogenesis in the DG is highly relevant for spatial information processing. PMID:21408012

  10. Estradiol attenuates ischemia-induced death of hippocampal neurons and enhances synaptic transmission in aged, long-term hormone-deprived female rats.

    Directory of Open Access Journals (Sweden)

    Tomoko Inagaki

    Full Text Available Transient global forebrain ischemia causes selective, delayed death of hippocampal CA1 pyramidal neurons, and the ovarian hormone 17β-estradiol (E2 reduces neuronal loss in young and middle-aged females. The neuroprotective efficacy of E2 after a prolonged period of hormone deprivation is controversial, and few studies examine this issue in aged animals given E2 treatment after induction of ischemia.The present study investigated the neuroprotective effects of E2 administered immediately after global ischemia in aged female rats (15-18 months after 6 months of hormone deprivation. We also used electrophysiological methods to assess whether CA1 synapses in the aging hippocampus remain responsive to E2 after prolonged hormone withdrawal. Animals were ovariohysterectomized and underwent 10 min global ischemia 6 months later. A single dose of E2 (2.25 µg infused intraventricularly after reperfusion significantly increased cell survival, with 45% of CA1 neurons surviving vs 15% in controls. Ischemia also induced moderate loss of CA3/CA4 pyramidal cells. Bath application of 1 nM E2 onto brain slices derived from non-ischemic aged females after 6 months of hormone withdrawal significantly enhanced excitatory transmission at CA1 synapses evoked by Schaffer collateral stimulation, and normal long-term potentiation (LTP was induced. The magnitude of LTP and of E2 enhancement of field excitatory postsynaptic potentials was indistinguishable from that recorded in slices from young rats.The data demonstrate that 1 acute post-ischemic infusion of E2 into the brain ventricles is neuroprotective in aged rats after 6 months of hormone deprivation; and 2 E2 enhances synaptic transmission in CA1 pyramidal neurons of aged long-term hormone deprived females. These findings provide evidence that the aging hippocampus remains responsive to E2 administered either in vivo or in vitro even after prolonged periods of hormone withdrawal.

  11. Receptor protein tyrosine phosphatase alpha is essential for hippocampal neuronal migration and long-term potentiation

    DEFF Research Database (Denmark)

    Petrone, Angiola; Battaglia, Fortunato; Wang, Cheng

    2003-01-01

    neuronal migration. The migratory abnormality likely results from a radial glial dysfunction rather than from a neuron-autonomous defect. In spite of this aberrant development, basic synaptic transmission from the Schaffer collateral pathway to CA1 pyramidal neurons remains intact in Ptpra(-/-) mice....... However, these synapses are unable to undergo long-term potentiation. Mice lacking RPTPalpha also underperform in the radial-arm water-maze test. These studies identify RPTPalpha as a key mediator of neuronal migration and synaptic plasticity....

  12. Sigma-1 receptor agonist increases axon outgrowth of hippocampal neurons via voltage-gated calcium ions channels.

    Science.gov (United States)

    Li, Dong; Zhang, Shu-Zhuo; Yao, Yu-Hong; Xiang, Yun; Ma, Xiao-Yun; Wei, Xiao-Li; Yan, Hai-Tao; Liu, Xiao-Yan

    2017-12-01

    Sigma-1 receptors (Sig-1Rs) are unique endoplasmic reticulum proteins that have been implicated in both neurodegenerative and ischemic diseases, such as Alzheimer's disease and stroke. Accumulating evidence has suggested that Sig-1R plays a role in neuroprotection and axon outgrowth. The underlying mechanisms of Sig-1R-mediated neuroprotection have been well elucidated. However, the mechanisms underlying the effects of Sig-1R on axon outgrowth are not fully understood. To clarify this issue, we utilized immunofluorescence to compare the axon lengths of cultured naïve hippocampal neurons before and after the application of the Sig-1R agonist, SA4503. Then, electrophysiology and immunofluorescence were used to examine voltage-gated calcium ion channel (VGCCs) currents in the cell membranes and growth cones. We found that Sig-1R activation dramatically enhanced the axonal length of the naïve hippocampal neurons. Application of the Sig-1R antagonist NE100 and gene knockdown techniques both demonstrated the effects of Sig-1R. The growth-promoting effect of SA4503 was accompanied by the inhibition of voltage-gated Ca 2+ influx and was recapitulated by incubating the neurons with the L-type, N-type, and P/Q-type VGCC blockers, nimodipine, MVIIA and ω-agatoxin IVA, respectively. This effect was unrelated to glial cells. The application of SA4503 transformed the growth cone morphologies from complicated to simple, which favored axon outgrowth. Sig-1R activation can enhance axon outgrowth and may have a substantial influence on neurogenesis and neurodegenerative diseases. © 2017 John Wiley & Sons Ltd.

  13. Neurotrophic, Cytoprotective, and Anti-inflammatory Effects of St. John's Wort Extract on Differentiated Mouse Hippocampal HT-22 Neurons

    Directory of Open Access Journals (Sweden)

    Gabriel A. Bonaterra

    2018-01-01

    Full Text Available Introduction: Since ancient times Hypericum perforatum L. named St. John's wort (SJW, has been used in the management of a wide range of applications, including nervous disorders. Development of mood disorders are due to alterations in glutamate metabolism, initiation of inflammatory pathways, and changes of the neuronal plasticity. Previous studies suggest that the glutamatergic system contributes to the pathophysiology of depression. Extracts of SJW have been recommended for the treatment of depression. The aim of the present in vitro study was to evaluate the action of STW3-VI, a special SJW extract in differentiated mouse hippocampal HT-22 neurons. We evaluated the stimulation of neurogenesis, the protective effect against glutamate or N-methyl-D-aspartate receptor induced-excitotoxicity and its anti-inflammatory properties in LPS-activated human macrophages.Results: After 48 h treatment, STW3-VI stimulated the neurite formation by 25% in comparison with the control and showed protective effects against glutamate- or NMDA-induced cytotoxicity by significantly increasing the viability about +25 or +50%. In conjunction with these effects, after pretreatment with STW3-VI, the intracellular reduced glutathione content was significantly 2.3-fold increased compared with the neurons incubated with glutamate alone. Additionally, pre-treatment of human macrophages with STW3-VI showed anti-inflammatory effects after 24 or 48 h concerning inhibition of LPS-induced TNF release by −47.3 and −53.8% (24 h or −25.0 to −64.8% (48 h.Conclusions: Our data provide new evidence that STW3-VI protects hippocampal cells from NMDA- or glutamate-induced cytotoxicity. Moreover, our results indicate a morphological remodeling by increasing neurite outgrowth and activation of the anti-inflammatory defense by inhibition of the cytokine production in human macrophages after STW3-VI treatment. These protective, neurotrophic and anti-inflammatory properties may be

  14. Zolpidem reduces hippocampal neuronal activity in freely behaving mice: a large scale calcium imaging study with miniaturized fluorescence microscope.

    Directory of Open Access Journals (Sweden)

    Tamara Berdyyeva

    Full Text Available Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal's state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼ 65% significantly decreasing the rate of calcium transients, and a small subset (3% showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders.

  15. Hippocampal neuronal loss, decreased GFAP immunoreactivity and cognitive impairment following experimental intoxication of rats with aluminum citrate.

    Science.gov (United States)

    Silva, Ademir F Junior; Aguiar, Maria Socorro S; Carvalho, Odemir S Junior; Santana, Luana de Nazaré S; Franco, Edna C S; Lima, Rafael Rodrigues; Siqueira, Natalino Valente M de; Feio, Romulo Augusto; Faro, Lilian Rosana F; Gomes-Leal, Walace

    2013-01-23

    Aluminum (Al) is a neurotoxic agent with deleterious actions on cognitive processes. Nevertheless, few studies have investigated the neuropathological effects underlying the Al-induced cognitive impairment. We have explored the effects of acute Al citrate intoxication on both hippocampal morphology and mnemonic processes in rodents. Adult male Wistar rats were intoxicated with a daily dose of Al citrate (320 mg/kg) during 4 days by gavage. Animals were perfused at 8 (G2), 17 (G3) and 31 days (G4) after intoxication. Control animals were treated with sodium citrate (G1). Animals were submitted to behavioral tests of open field and elevated T-maze. Immunohistochemistry was performed to label neurons (anti-NeuN) and astrocytes (anti-GFAP) in both CA1 and CA3 hippocampal regions. There was an increase in the locomotor activity in open field test for G2 in comparison to control group and other groups (ANOVA-Bonferroni, P<0.05). The elevated T-maze avoidance latency (AL) was higher in all intoxicated groups compared to control (P<0.05) in avoidance 1. These values remained elevated in avoidance 2 (P<0.05), but abruptly decreased in G2 and G3, but not in G1 and G4 animals in avoidance 3 (P<0.05). There were no significant differences for 1 and 2 escape latencies. There were intense neuronal loss and a progressive decrease in GFAP immunoreactivity in the hippocampus of intoxicated animals. The results suggest that Al citrate treatment induces deficits on learning and memory concomitant with neuronal loss and astrocyte impairment in the hippocampus of intoxicated rats. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Ablation of sphingosine 1-phosphate receptor subtype 3 impairs hippocampal neuron excitability in vitro and spatial working memory in vivo

    Directory of Open Access Journals (Sweden)

    Daniela Weth-Malsch

    2016-11-01

    Full Text Available Understanding the role of the bioactive lipid mediator sphingosine 1-phosphate (S1P within the central nervous system has recently gained more and more attention, as it has been connected to major diseases such as multiple sclerosis and Alzheimer's disease. Even though much data about the functions of the five S1P receptors has been collected for other organ systems, we still lack a complete understanding for their specific roles, in particular within the brain. Therefore, it was the aim of this study to further elucidate the role of S1P receptor subtype 3 (S1P3 in vivo and in vitro with a special focus on the hippocampus. Using an S1P3 knock-out mouse model we applied a range of behavioral tests, performed expression studies and whole cell patch clamp recordings in acute hippocampal slices. We were able to show that S1P3 deficient mice display a significant spatial working memory deficit within the T-maze test, but not in anxiety related tests. Furthermore, S1p3 mRNA was expressed throughout the hippocampal formation. Principal neurons in area CA3 lacking S1P3 showed significantly increased interspike intervals and a significantly decreased input resistance. Upon stimulation with S1P CA3 principal neurons from both wildtype and S1P3-/- mice displayed significantly increased evoked EPSC amplitudes and decay times, whereas rise times remained unchanged. These results suggest a specific involvement of S1P3 for the establishment of spatial working memory and neuronal excitability within the hippocampus.

  17. Altered Chloride Homeostasis Decreases the Action Potential Threshold and Increases Hyperexcitability in Hippocampal Neurons

    DEFF Research Database (Denmark)

    Sørensen, Andreas T; Ledri, Marco; Melis, Miriam

    2017-01-01

    neurons, and promote AP generation. It is generally recognized that altered chloride homeostasis per se has no effect on the AP threshold. Here, we demonstrate that chloride overload of mouse principal CA3 pyramidal neurons not only makes these cells more excitable through GABAA receptor activation...... homeostasis. This finding further broadens the spectrum of neuronal plasticity regulated by ionic compositions across the cellular membrane....

  18. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics.

    Science.gov (United States)

    Colvin, Robert A; Lai, Barry; Holmes, William R; Lee, Daewoo

    2015-07-01

    The purpose of this study was to demonstrate how single cell quantitative and subcellular metallomics inform us about both the spatial distribution and cellular mechanisms of metal buffering and homeostasis in primary cultured neurons from embryonic rat brain, which are often used as models of human disease involving metal dyshomeostasis. The present studies utilized synchrotron radiation X-ray fluorescence (SRXRF) and focused primarily on zinc and iron, two abundant metals in neurons that have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Total single cell contents for calcium, iron, zinc, copper, manganese, and nickel were determined. Resting steady state zinc showed a diffuse distribution in both soma and processes, best defined by the mass profile of the neuron with an enrichment in the nucleus compared with the cytoplasm. Zinc buffering and homeostasis was studied using two modes of cellular zinc loading - transporter and ionophore (pyrithione) mediated. Single neuron zinc contents were shown to statistically significantly increase by either loading method - ionophore: 160 million to 7 billion; transporter 160 million to 280 million atoms per neuronal soma. The newly acquired and buffered zinc still showed a diffuse distribution. Soma and processes have about equal abilities to take up zinc via transporter mediated pathways. Copper levels are distributed diffusely as well, but are relatively higher in the processes relative to zinc levels. Prior studies have observed iron puncta in certain cell types, but others have not. In the present study, iron puncta were characterized in several primary neuronal types. The results show that iron puncta could be found in all neuronal types studied and can account for up to 50% of the total steady state content of iron in neuronal soma. Although other metals can be present in iron puncta, they are predominantly iron containing and do not appear to be

  19. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms. Association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Kjaerulff, Karen M; Pedersen, Hans C

    2002-01-01

    progenitors as well as in differentiated glia. During embryonic development of the murine cerebral cortex, HOF expression is restricted to the hippocampal subdivision. Expression coincides with early differentiation of presumptive CA1 and CA3 pyramidal neurons and dentate gyrus granule cells, with a sharp...

  20. Prior Activation of Inositol 1,4,5-Trisphosphate Receptors Suppresses the Subsequent Induction of Long-Term Potentiation in Hippocampal CA1 Neurons

    Science.gov (United States)

    Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko

    2016-01-01

    We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population…

  1. Robust increase of microglia proliferation in the fornix of hippocampal axonal pathway after a single LPS stimulation.

    Science.gov (United States)

    Fukushima, Shohei; Furube, Eriko; Itoh, Masanobu; Nakashima, Toshihiro; Miyata, Seiji

    2015-08-15

    Microglia are resident immunocompetent cells having important roles in innate immunity in the brains. In the present study, we found that a single lipopolysaccharide (LPS) administration significantly increased microglial proliferation in the fornix and dentate gyrus (DG) but not the cerebral cortex and corpus callosum of adult mice. LPS-induced microglial proliferation was especially robust at the white matter of the fornix. The density of microglia increased in the fornix and DG for roughly one week and returned to basal levels at least 20days after a single LPS administration. Consecutive LPS administration did not induce such dramatic increase of microglial proliferation in the fornix. The inhibition of vascular endothelial growth factor signaling by AZD2171 largely suppressed LPS-induced increase of microglial proliferation in the fornix. In conclusion, the present study indicates that the hippocampal neuronal system has a higher proliferative microglial capability against LPS-induced inflammatory administration compared with other brain regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Stochastic models for spike trains of single neurons

    CERN Document Server

    Sampath, G

    1977-01-01

    1 Some basic neurophysiology 4 The neuron 1. 1 4 1. 1. 1 The axon 7 1. 1. 2 The synapse 9 12 1. 1. 3 The soma 1. 1. 4 The dendrites 13 13 1. 2 Types of neurons 2 Signals in the nervous system 14 2. 1 Action potentials as point events - point processes in the nervous system 15 18 2. 2 Spontaneous activi~ in neurons 3 Stochastic modelling of single neuron spike trains 19 3. 1 Characteristics of a neuron spike train 19 3. 2 The mathematical neuron 23 4 Superposition models 26 4. 1 superposition of renewal processes 26 4. 2 Superposition of stationary point processe- limiting behaviour 34 4. 2. 1 Palm functions 35 4. 2. 2 Asymptotic behaviour of n stationary point processes superposed 36 4. 3 Superposition models of neuron spike trains 37 4. 3. 1 Model 4. 1 39 4. 3. 2 Model 4. 2 - A superposition model with 40 two input channels 40 4. 3. 3 Model 4. 3 4. 4 Discussion 41 43 5 Deletion models 5. 1 Deletion models with 1nd~endent interaction of excitatory and inhibitory sequences 44 VI 5. 1. 1 Model 5. 1 The basic de...

  3. Super-resolution microscopy reveals presynaptic localization of the ALS / FTD related protein FUS in hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Michael eSchoen

    2016-01-01

    Full Text Available Fused in Sarcoma (FUS is a multifunctional RNA- / DNA-binding protein, which is involved in the pathogenesis of the neurodegenerative disorders amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. A common hallmark of these disorders is the abnormal accumulation of mutated FUS protein in the cytoplasm. Under normal conditions FUS is confined to the nuclear compartment, in neurons however, additional somatodendritic localization can be observed. In this study, we carefully analyzed the subcellular localization of endogenous FUS at synaptic sites of hippocampal neurons which are among the most affected cell types in frontotemporal dementia with FUS pathology. We could confirm a strong nuclear localization of FUS as well as its prominent and widespread neuronal expression throughout the adult and developing rat brain, particularly in the hippocampus, the cerebellum and the outer layers of the cortex. Intriguingly, FUS was also consistently observed at synaptic sites as detected by neuronal subcellular fractionation as well as by immunolabeling. To define a pre- and / or postsynaptic localization of FUS, we employed super-resolution fluorescence localization microscopy. FUS was found to be localized within the axon terminal in close proximity to the presynaptic vesicle protein Synaptophysin1 and adjacent to the active zone protein Bassoon, but well separated from the postsynaptic protein PSD-95. Having shown the presynaptic localization of FUS in the nervous system, a novel extranuclear role of FUS at neuronal contact sites has to be considered. Since there is growing evidence that local presynaptic translation might also be an important mechanism for plasticity, FUS - like the fragile X mental retardation protein FMRP - might act as one of the presynaptic RNA-binding proteins regulating this machinery. Our observation of presynaptic FUS should foster further investigations to determine its role in neurodegenerative diseases such as

  4. Curcumin protects neuronal cells against status-epilepticus-induced hippocampal damage through induction of autophagy and inhibition of necroptosis.

    Science.gov (United States)

    Wang, Jin; Liu, Yuan; Li, Xiao-Hui; Zeng, Xiang-Chang; Li, Jian; Zhou, Jun; Xiao, Bo; Hu, Kai

    2017-05-01

    Status epilepticus, the most severe form of epilepsy, is characterized by progressive functional and structural damage in the hippocampus, ultimately leading to the development and clinical appearance of spontaneous, recurrent seizures. Although the pathogenesis underlying epileptogenesis processes remains unclear, a substantial body of evidence has shown that status epilepticus acts as an important initial factor in triggering epileptogenesis. Notably, besides classical cell death mechanisms such as apoptosis and necrosis, 2 novel regulators of cell fate known as necroptosis and autophagy, are demonstrated to be involved in neuronal damage in various neurodegenerative and neuropsychiatric disorders. However, whether necroptosis and autophagy play a role in post-status-epilepticus rat hippocampus and other epilepsy mechanisms deserves further research effort. In addition, research is needed to determine whether compounds from traditional Chinese herbs possess antiepileptic effects through the modulation of necroptosis and autophagy. In this study, we found that curcumin, a polyphenolic phytochemical extracted from the Curcuma longa plant, protects neuronal cells against status-epilepticus-induced hippocampal neuronal damage in the lithium-pilocarpine-induced status epilepticus rat model through induction of autophagy and inhibition of necroptosis.

  5. Aging Enables Ca2+ Overload and Apoptosis Induced by Amyloid-β Oligomers in Rat Hippocampal Neurons: Neuroprotection by Non-Steroidal Anti-Inflammatory Drugs and R-Flurbiprofen in Aging Neurons.

    Science.gov (United States)

    Calvo-Rodríguez, María; García-Durillo, Mónica; Villalobos, Carlos; Núñez, Lucía

    2016-07-22

    The most important risk factor for Alzheimer's disease (AD) is aging. Neurotoxicity in AD has been linked to dyshomeostasis of intracellular Ca2+ induced by small aggregates of the amyloid-β peptide 1-42 (Aβ42 oligomers). However, how aging influences susceptibility to neurotoxicity induced by Aβ42 oligomers is unknown. In this study, we used long-term cultures of rat hippocampal neurons, a model of neuronal in vitro aging, to investigate the contribution of aging to Ca2+ dishomeostasis and neuron cell death induced by Aβ42 oligomers. In addition, we tested whether non-steroidal anti-inflammatory drugs (NSAIDs) and R-flurbiprofen prevent apoptosis acting on subcellular Ca2+ in aged neurons. We found that Aβ42 oligomers have no effect on young hippocampal neurons cultured for 2 days in vitro (2 DIV). However, they promoted apoptosis modestly in mature neurons (8 DIV) and these effects increased dramatically after 13 DIV, when neurons display many hallmarks of in vivo aging. Consistently, cytosolic and mitochondrial Ca2+ responses induced by Aβ42 oligomers increased dramatically with culture age. At low concentrations, NSAIDs and the enantiomer R-flurbiprofen lacking anti-inflammatory activity prevent Ca2+ overload and neuron cell death induced by Aβ42 oligomers in aged neurons. However, at high concentrations R-flurbiprofen induces apoptosis. Thus, Aβ42 oligomers promote Ca2+ overload and neuron cell death only in aged rat hippocampal neurons. These effects are prevented by low concentrations of NSAIDs and R-flurbiprofen acting on mitochondrial Ca2+ overload.

  6. Changes in hippocampal volume and neuron number co-occur with memory decline in old homing pigeons (Columba livia).

    Science.gov (United States)

    Coppola, Vincent J; Kanyok, Nate; Schreiber, Austin J; Flaim, Mary E; Bingman, Verner P

    2016-05-01

    The mammalian hippocampus is particularly susceptible to age-related structural changes, which have been used to explain, in part, age-related memory decline. These changes are generally characterized by atrophy (e.g., a decrease in volume and number of synaptic contacts). Recent studies have reported age-related spatial memory deficits in older pigeons similar to those seen in older mammals. However, to date, little is known about any co-occurring changes in the aging avian hippocampal formation (HF). In the current study, it was found that the HF of older pigeons was actually larger and contained more neurons than the HF of younger pigeons, a finding that suggests that the pattern of structural changes during aging in the avian HF is different from that seen in the mammalian hippocampus. A working hypothesis for relating the observed structural changes with spatial-cognitive decline is offered. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Parameter estimation in neuronal stochastic differential equation models from intracellular recordings of membrane potentials in single neurons

    DEFF Research Database (Denmark)

    Ditlevsen, Susanne; Samson, Adeline

    2016-01-01

    Dynamics of the membrane potential in a single neuron can be studied by estimating biophysical parameters from intracellular recordings. Diffusion processes, given as continuous solutions to stochastic differential equations, are widely applied as models for the neuronal membrane potential evolut...

  8. GDNF selectively induces microglial activation and neuronal survival in CA1/CA3 hippocampal regions exposed to NMDA insult through Ret/ERK signalling.

    Directory of Open Access Journals (Sweden)

    Francesca Boscia

    Full Text Available The glial cell line-derived neurotrophic factor (GDNF is a potent survival factor for several neuronal populations in different brain regions, including the hippocampus. However, no information is available on the: (1 hippocampal subregions involved in the GDNF-neuroprotective actions upon excitotoxicity, (2 identity of GDNF-responsive hippocampal cells, (3 transduction pathways involved in the GDNF-mediated neuroprotection in the hippocampus. We addressed these questions in organotypic hippocampal slices exposed to GDNF in presence of N-methyl-D-aspartate (NMDA by immunoblotting, immunohistochemistry, and confocal analysis. In hippocampal slices GDNF acts through the activation of the tyrosine kinase receptor, Ret, without involving the NCAM-mediated pathway. Both Ret and ERK phosphorylation mainly occurred in the CA3 region where the two activated proteins co-localized. GDNF protected in a greater extent CA3 rather than CA1 following NMDA exposure. This neuroprotective effect targeted preferentially neurons, as assessed by NeuN staining. GDNF neuroprotection was associated with a significant increase of Ret phosphorylation in both CA3 and CA1. Interestingly, confocal images revealed that upon NMDA exposure, Ret activation occurred in microglial cells in the CA3 and CA1 following GDNF exposure. Collectively, this study shows that CA3 and CA1 hippocampal regions are highly responsive to GDNF-induced Ret activation and neuroprotection, and suggest that, upon excitotoxicity, such neuroprotection involves a GDNF modulation of microglial cell activity.

  9. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-01-01

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density. DOI: http://dx.doi.org/10.7554/eLife.13424.001 PMID:27549340

  10. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1.

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-08-23

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density.

  11. A kainate receptor subunit promotes the recycling of the neuron-specific K+-Cl-co-transporter KCC2 in hippocampal neurons.

    Science.gov (United States)

    Pressey, Jessica C; Mahadevan, Vivek; Khademullah, C Sahara; Dargaei, Zahra; Chevrier, Jonah; Ye, Wenqing; Huang, Michelle; Chauhan, Alamjeet K; Meas, Steven J; Uvarov, Pavel; Airaksinen, Matti S; Woodin, Melanie A

    2017-04-14

    Synaptic inhibition depends on a transmembrane gradient of chloride, which is set by the neuron-specific K + -Cl - co-transporter KCC2. Reduced KCC2 levels in the neuronal membrane contribute to the generation of epilepsy, neuropathic pain, and autism spectrum disorders; thus, it is important to characterize the mechanisms regulating KCC2 expression. In the present study, we determined the role of KCC2-protein interactions in regulating total and surface membrane KCC2 expression. Using quantitative immunofluorescence in cultured mouse hippocampal neurons, we discovered that the kainate receptor subunit GluK2 and the auxiliary subunit Neto2 significantly increase the total KCC2 abundance in neurons but that GluK2 exclusively increases the abundance of KCC2 in the surface membrane. Using a live cell imaging assay, we further determined that KCC2 recycling primarily occurs within 1-2 h and that GluK2 produces an ∼40% increase in the amount of KCC2 recycled to the membrane during this time period. This GluK2-mediated increase in surface recycling translated to a significant increase in KCC2 expression in the surface membrane. Moreover, we found that KCC2 recycling is enhanced by protein kinase C-mediated phosphorylation of the GluK2 C-terminal residues Ser-846 and Ser-868. Lastly, using gramicidin-perforated patch clamp recordings, we found that the GluK2-mediated increase in KCC2 recycling to the surface membrane translates to a hyperpolarization of the reversal potential for GABA (E GABA ). In conclusion, our results have revealed a mechanism by which kainate receptors regulate KCC2 expression in the hippocampus. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Live-cell imaging of post-golgi transport vesicles in cultured hippocampal neurons

    DEFF Research Database (Denmark)

    Jensen, Camilla Stampe; Misonou, Hiroaki

    2015-01-01

    compartments of neurons. In the past two decades, the establishment and advancement of fluorescent protein technology have provided us with opportunities to study how proteins are trafficked in living cells. However, live imaging of trafficking processes in neurons necessitate imaging tools to distinguish......The subcellular localization of neuronal membrane signaling molecules such as receptors and ion channels depends on intracellular trafficking mechanisms. Essentially, vesicular trafficking mechanisms ensure that a large number of membrane proteins are correctly targeted to different subcellular...... the several different routes that neurons use for protein trafficking. Here we provide a novel protocol to selectively visualize post-Golgi transport vesicles carrying fluorescent-labeled ion channel proteins in living neurons. Further, we provide a number of analytical tools we developed to quantify...

  13. Reduction of Cav1.3 channels in dorsal hippocampus impairs the development of dentate gyrus newborn neurons and hippocampal-dependent memory tasks.

    Directory of Open Access Journals (Sweden)

    Su-Hyun Kim

    Full Text Available Cav1.3 has been suggested to mediate hippocampal neurogenesis of adult mice and contribute to hippocampal-dependent learning and memory processes. However, the mechanism of Cav1.3 contribution in these processes is unclear. Here, roles of Cav1.3 of mouse dorsal hippocampus during newborn cell development were examined. We find that knock-out (KO of Cav1.3 resulted in the reduction of survival of newborn neurons at 28 days old after mitosis. The retroviral eGFP expression showed that both dendritic complexity and the number and length of mossy fiber bouton (MFB filopodia of newborn neurons at ≥ 14 days old were significantly reduced in KO mice. Both contextual fear conditioning (CFC and object-location recognition tasks were impaired in recent (1 day memory test while passive avoidance task was impaired only in remote (≥ 20 days memory in KO mice. Results using adeno-associated virus (AAV-mediated Cav1.3 knock-down (KD or retrovirus-mediated KD in dorsal hippocampal DG area showed that the recent memory of CFC was impaired in both KD mice but the remote memory was impaired only in AAV KD mice, suggesting that Cav1.3 of mature neurons play important roles in both recent and remote CFC memory while Cav1.3 in newborn neurons is selectively involved in the recent CFC memory process. Meanwhile, AAV KD of Cav1.3 in ventral hippocampal area has no effect on the recent CFC memory. In conclusion, the results suggest that Cav1.3 in newborn neurons of dorsal hippocampus is involved in the survival of newborn neurons while mediating developments of dendritic and axonal processes of newborn cells and plays a role in the memory process differentially depending on the stage of maturation and the type of learning task.

  14. Imaging of mitochondrial and non-mitochondrial responses in cultured rat hippocampal neurons exposed to micromolar concentrations of TMRM.

    Directory of Open Access Journals (Sweden)

    Andrew Monteith

    Full Text Available Tetramethylrhodamine methyl ester (TMRM is a fluorescent dye used to study mitochondrial function in living cells. Previously, we reported that TMRM effectively labeled mitochondria of neurons deep within mouse brain slices. Use of micromolar concentration of dye, which was required to get sufficient staining for two-photon imaging, resulted in typical fluctuations of TMRM. With prolonged exposure, we recorded additional responses in some neurons that included slow oscillations and propagating waves of fluorescence. (Note: We use the terms "fluctuation" to refer to a change in the fluorescent state of an individual mitochondrion, "oscillation" to refer to a localized change in fluorescence in the cytosol, and "wave" to refer to a change in cytosolic fluorescence that propagated within a cell. Use of these terms does not imply any underlying periodicity. In this report we describe similar results using cultured rat hippocampal neurons. Prolonged exposure of cultures to 2.5 µM TMRM produced a spontaneous increase in fluorescence in some neurons, but not glial cells, after 45-60 minutes that was followed by slow oscillations, waves, and eventually apoptosis. Spontaneous increases in fluorescence were insensitive to high concentrations of FCCP (100 µM and thapsigargin (10 µM indicating that they originated, at least in part, from regions outside of mitochondria. The oscillations did not correlate with changes in intracellular Ca(2+, but did correlate with differences in fluorescence lifetime of the dye. Fluorescence lifetime and one-photon ratiometric imaging of TMRM suggested that the spontaneous increase and subsequent oscillations were due to movement of dye between quenched (hydrophobic and unquenched (hydrophilic compartments. We propose that these movements may be correlates of intracellular events involved in early stages of apoptosis.

  15. Differential induction of heme oxygenase and other stress proteins in cultured hippocampal astrocytes and neurons by inorganic lead

    International Nuclear Information System (INIS)

    Cabell, Leigh; Ferguson, Charles; Luginbill, Deana; Kern, Marcey; Weingart, Adam; Audesirk, Gerald

    2004-01-01

    We examined the effects of exposure to inorganic lead (Pb 2+ ) on the induction of stress proteins in cultured hippocampal neurons and astrocytes, with particular emphasis on the induction of heme oxygenase-1 (HO-1). In radiolabeled neuronal cultures, Pb 2+ exposure had no significant effect on the synthesis of any protein at any concentration (up to 250 μM) or duration of exposure (up to 4 days). In radiolabeled astrocyte cultures, however, Pb 2+ exposure (100 nM to 100 μM; 1-4 days) increased synthesis of proteins with approximate molecular weights of 23, 32, 45, 57, 72, and 90 kDa. Immunoblot experiments showed that Pb 2+ exposure (100 nM to 10 μM, 1-14 days) induces HO-1 synthesis in astrocytes, but not in neurons; this is probably the 32-kDa protein. The other heme oxygenase isoform, HO-2, is present in both neurons and astrocytes, but is not inducible by Pb 2+ at concentrations up to 100 μM. HO-1 can be induced by a variety of stimuli. We found that HO-1 induction in astrocytes is increased by combined exposure to Pb 2+ and many other stresses, including heat, nitric oxide, H 2 O 2 , and superoxide. One of the stimuli that may induce HO-1 is oxidative stress. Lead exposure causes oxidative stress in many cell types, including astrocytes. Induction of HO-1 by Pb 2+ is reduced by the hydroxyl radical scavengers dimethylthiourea (DMTU) and mannitol, but not by inhibitors of calmodulin, calmodulin-dependent protein kinases, protein kinase C, or extracellular signal-regulated kinases (ERK). Therefore, we conclude that oxidative stress is an important mechanism by which Pb 2+ induces HO-1 synthesis in astrocytes

  16. Responses of single neurons and neuronal ensembles in frog first- and second-order olfactory neurons

    Czech Academy of Sciences Publication Activity Database

    Rospars, J. P.; Šanda, Pavel; Lánský, Petr; Duchamp-Viret, P.

    2013-01-01

    Roč. 1536, NOV 6 (2013), s. 144-158 ISSN 0006-8993 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP103/11/0282 Institutional support: RVO:67985823 Keywords : olfaction * spiking activity * neuronal model Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.828, year: 2013

  17. Contribution of Hippocampal 5-HT3 Receptors in Hippocampal Autophagy and Extinction of Conditioned Fear Responses after a Single Prolonged Stress Exposure in Rats.

    Science.gov (United States)

    Wu, Zhong-Min; Yang, Li-Hua; Cui, Rong; Ni, Gui-Lian; Wu, Feng-Tian; Liang, Yong

    2017-05-01

    One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT 3 receptor in the development of PTSD, even though 5-HT 3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT 3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT 3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT 3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT 3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT 3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.

  18. The mixture of "ecstasy" and its metabolites impairs mitochondrial fusion/fission equilibrium and trafficking in hippocampal neurons, at in vivo relevant concentrations.

    Science.gov (United States)

    Barbosa, Daniel José; Serrat, Romàn; Mirra, Serena; Quevedo, Martí; de Barreda, Elena Goméz; Àvila, Jesús; Ferreira, Luísa Maria; Branco, Paula Sério; Fernandes, Eduarda; Lourdes Bastos, Maria de; Capela, João Paulo; Soriano, Eduardo; Carvalho, Félix

    2014-06-01

    3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a potentially neurotoxic recreational drug of abuse. Though the mechanisms involved are still not completely understood, formation of reactive metabolites and mitochondrial dysfunction contribute to MDMA-related neurotoxicity. Neuronal mitochondrial trafficking, and their targeting to synapses, is essential for proper neuronal function and survival, rendering neurons particularly vulnerable to mitochondrial dysfunction. Indeed, MDMA-associated disruption of Ca(2+) homeostasis and ATP depletion have been described in neurons, thus suggesting possible MDMA interference on mitochondrial dynamics. In this study, we performed real-time functional experiments of mitochondrial trafficking to explore the role of in situ mitochondrial dysfunction in MDMA's neurotoxic actions. We show that the mixture of MDMA and six of its major in vivo metabolites, each compound at 10μM, impaired mitochondrial trafficking and increased the fragmentation of axonal mitochondria in cultured hippocampal neurons. Furthermore, the overexpression of mitofusin 2 (Mfn2) or dynamin-related protein 1 (Drp1) K38A constructs almost completely rescued the trafficking deficits caused by this mixture. Finally, in hippocampal neurons overexpressing a Mfn2 mutant, Mfn2 R94Q, with impaired fusion and transport properties, it was confirmed that a dysregulation of mitochondrial fission/fusion events greatly contributed to the reported trafficking phenotype. In conclusion, our study demonstrated, for the first time, that the mixture of MDMA and its metabolites, at concentrations relevant to the in vivo scenario, impaired mitochondrial trafficking and increased mitochondrial fragmentation in hippocampal neurons, thus providing a new insight in the context of "ecstasy"-induced neuronal injury.

  19. Estrogen Regulates Protein Synthesis and Actin Polymerization in Hippocampal Neurons through Different Molecular Mechanisms

    Science.gov (United States)

    Briz, Victor; Baudry, Michel

    2014-01-01

    Estrogen rapidly modulates hippocampal synaptic plasticity by activating selective membrane-associated receptors. Reorganization of the actin cytoskeleton and stimulation of mammalian target of rapamycin (mTOR)-mediated protein synthesis are two major events required for the consolidation of hippocampal long-term potentiation and memory. Estradiol regulates synaptic plasticity by interacting with both processes, but the underlying molecular mechanisms are not yet fully understood. Here, we used acute rat hippocampal slices to analyze the mechanisms underlying rapid changes in mTOR activity and actin polymerization elicited by estradiol. Estradiol-induced mTOR phosphorylation was preceded by rapid and transient activation of both extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) and by phosphatase and tensin homolog (PTEN) degradation. These effects were prevented by calpain and ERK inhibitors. Estradiol-induced mTOR stimulation did not require activation of classical estrogen receptors (ER), as specific ERα and ERβ agonists (PPT and DPN, respectively) failed to mimic this effect, and ER antagonists could not block it. Estradiol rapidly activated both RhoA and p21-activated kinase (PAK). Furthermore, a specific inhibitor of RhoA kinase (ROCK), H1152, and a potent and specific PAK inhibitor, PF-3758309, blocked estradiol-induced cofilin phosphorylation and actin polymerization. ER antagonists also blocked these effects of estrogen. Consistently, both PPT and DPN stimulated PAK and cofilin phosphorylation as well as actin polymerization. Finally, the effects of estradiol on actin polymerization were insensitive to protein synthesis inhibitors, but its stimulation of mTOR activity was impaired by latrunculin A, a drug that disrupts actin filaments. Taken together, our results indicate that estradiol regulates local protein synthesis and cytoskeletal reorganization via different molecular mechanisms and signaling pathways. PMID:24611062

  20. Sleep deprivation and hippocampal vulnerability : Changes in neuronal plasticity, neurogenesis and cognitive function

    NARCIS (Netherlands)

    Kreutzmann, J C; Havekes, R; Abel, T; Meerlo, P

    2015-01-01

    Despite the ongoing fundamental controversy about the physiological function of sleep, there is general consensus that sleep benefits neuronal plasticity, which ultimately supports brain function and cognition. In agreement with this are numerous studies showing that sleep deprivation (SD) results

  1. Protective Effects of Testosterone on Presynaptic Terminals against Oligomeric β-Amyloid Peptide in Primary Culture of Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Chi-Fai Lau

    2014-01-01

    Full Text Available Increasing lines of evidence support that testosterone may have neuroprotective effects. While observational studies reported an association between higher bioavailable testosterone or brain testosterone levels and reduced risk of Alzheimer’s disease (AD, there is limited understanding of the underlying neuroprotective mechanisms. Previous studies demonstrated that testosterone could alleviate neurotoxicity induced by β-amyloid (Aβ, but these findings mainly focused on neuronal apoptosis. Since synaptic dysfunction and degeneration are early events during the pathogenesis of AD, we aim to investigate the effects of testosterone on oligomeric Aβ-induced synaptic changes. Our data suggested that exposure of primary cultured hippocampal neurons to oligomeric Aβ could reduce the length of neurites and decrease the expression of presynaptic proteins including synaptophysin, synaptotagmin, and synapsin-1. Aβ also disrupted synaptic vesicle recycling and protein folding machinery. Testosterone preserved the integrity of neurites and the expression of presynaptic proteins. It also attenuated Aβ-induced impairment of synaptic exocytosis. By using letrozole as an aromatase antagonist, we further demonstrated that the effects of testosterone on exocytosis were unlikely to be mediated through the estrogen receptor pathway. Furthermore, we showed that testosterone could attenuate Aβ-induced reduction of HSP70, which suggests a novel mechanism that links testosterone and its protective function on Aβ-induced synaptic damage. Taken together, our data provide further evidence on the beneficial effects of testosterone, which may be useful for future drug development for AD.

  2. Housing under the pyramid reduces susceptibility of hippocampal CA3 pyramidal neurons to prenatal stress in the developing rat offspring.

    Science.gov (United States)

    Murthy, Krishna Dilip; George, Mitchel Constance; Ramasamy, Perumal; Mustapha, Zainal Arifin

    2013-12-01

    Mother-offspring interaction begins before birth. The foetus is particularly vulnerable to environmental insults and stress. The body responds by releasing excess of the stress hormone cortisol, which acts on glucocorticoid receptors. Hippocampus in the brain is rich in glucocorticoid receptors and therefore susceptible to stress. The stress effects are reduced when the animals are placed under a model wooden pyramid. The present study was to first explore the effects of prenatal restraint-stress on the plasma corticosterone levels and the dendritic arborisation of CA3 pyramidal neurons in the hippocampus of the offspring. Further, to test whether the pyramid environment would alter these effects, as housing under a pyramid is known to reduce the stress effects, pregnant Sprague Dawley rats were restrained for 9 h per day from gestation day 7 until parturition in a wire-mesh restrainer. Plasma corticosterone levels were found to be significantly increased. In addition, there was a significant reduction in the apical and the basal total dendritic branching points and intersections of the CA3 hippocampal pyramidal neurons. The results thus suggest that, housing in the pyramid dramatically reduces prenatal stress effects in rats.

  3. Ginkgo biloba prevents transient global ischemia-induced delayed hippocampal neuronal death through antioxidant and anti-inflammatory mechanism.

    Science.gov (United States)

    Tulsulkar, Jatin; Shah, Zahoor A

    2013-01-01

    We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia. In a quest to extend our studies on EGb 761 and its constituents further, we used a model of transient global ischemia induced delayed hippocampal neuronal death and inflammation. Mice pretreated with different test drugs for 7 days were subjected to 8-min bilateral common carotid artery occlusion (tBCCAO) at day 8. After 7 days of reperfusion, mice brains were dissected out for TUNEL assay and immunohistochemistry. In situ detection of fragmented DNA (TUNEL staining) showed that out of all test drugs, only EGb 761 (13.6% ± 3.2) pretreatment protected neurons in the hippocampus against global ischemia (vs. vehicle, 85.1% ± 9.9; p<0.05). Immunofluorescence-based studies demonstrated that pretreatment with EGb 761 upregulated the expression levels of heme oxygenase 1 (HO1), nuclear factor erythroid 2-related factor 2 (Nrf2), and vascular endothelial growth factor (VEGF) as compared to the vehicle group. In addition, increased number of activated astrocytes and microglia in the vehicle group was observed to be significantly lower in the EGb 761 pretreated group. Together, these results suggest that EGb 761 is a multifunctional neuroprotective agent, and the protection is in part associated with activation of the HO1/Nrf2 pathway, upregulation of VEGF and downregulation of inflammatory mediators such as astrocytes and microglia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Visualization of spatiotemporal energy dynamics of hippocampal neurons by mass spectrometry during a kainate-induced seizure.

    Directory of Open Access Journals (Sweden)

    Yuki Sugiura

    Full Text Available We report the use of matrix-assisted laser desorption/ionization (MALDI imaging mass spectrometry combined with capillary electrophoresis (CE mass spectrometry to visualize energy metabolism in the mouse hippocampus by imaging energy-related metabolites. We show the distribution patterns of ATP, ADP, and AMP in the hippocampus as well as changes in their amounts and distribution patterns in a murine model of limbic, kainate-induced seizure. As an acute response to kainate administration, we found massive and moderate reductions in ATP and ADP levels, respectively, but no significant changes in AMP levels--especially in cells of the CA3 layer. The results suggest the existence of CA3 neuron-selective energy metabolism at the anhydride bonds of ATP and ADP in the hippocampal neurons during seizure. In addition, metabolome analysis of energy synthesis pathways indicates accelerated glycolysis and possibly TCA cycle activity during seizure, presumably due to the depletion of ATP. Consistent with this result, the observed energy depletion significantly recovered up to 180 min after kainate administration. However, the recovery rate was remarkably low in part of the data-pixel population in the CA3 cell layer region, which likely reflects acute and CA3-selective neural death. Taken together, the present approach successfully revealed the spatiotemporal energy metabolism of the mouse hippocampus at a cellular resolution--both quantitatively and qualitatively. We aim to further elucidate various metabolic processes in the neural system.

  5. Zinc and Copper Effects on Stability of Tubulin and Actin Networks in Dendrites and Spines of Hippocampal Neurons.

    Science.gov (United States)

    Perrin, Laura; Roudeau, Stéphane; Carmona, Asuncion; Domart, Florelle; Petersen, Jennifer D; Bohic, Sylvain; Yang, Yang; Cloetens, Peter; Ortega, Richard

    2017-07-19

    Zinc and copper ions can modulate the activity of glutamate receptors. However, labile zinc and copper ions likely represent only the tip of the iceberg and other neuronal functions are suspected for these metals in their bound state. We performed synchrotron X-ray fluorescence imaging with 30 nm resolution to image total biometals in dendrites and spines from hippocampal neurons. We found that zinc is distributed all along the dendrites while copper is mainly pinpointed within the spines. In spines, zinc content is higher within the spine head while copper is higher within the spine neck. Such specific distributions suggested metal interactions with cytoskeleton proteins. Zinc supplementation induced the increase of β-tubulin content in dendrites. Copper supplementation impaired the β-tubulin and F-actin networks. Copper chelation resulted in the decrease of F-actin content in dendrites, drastically reducing the number of F-actin protrusions. These results indicate that zinc is involved in microtubule stability whereas copper is essential for actin-dependent stability of dendritic spines, although copper excess can impair the dendritic cytoskeleton.

  6. Peroxisome proliferator-activated receptor γ is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling

    International Nuclear Information System (INIS)

    Inestrosa, Nibaldo C.; Godoy, Juan A.; Quintanilla, Rodrigo A.; Koenig, Cecilia S.; Bronfman, Miguel

    2005-01-01

    The molecular pathogenesis of Alzheimer's disease (AD) involves the participation of the amyloid-β-peptide (Aβ), which plays a critical role in the neurodegeneration that triggers the disease. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, which are members of the nuclear receptor family. We report here that (1) PPARγ is present in rat hippocampal neurons in culture. (2) Activation of PPARγ by troglitazone and rosiglitazone protects rat hippocampal neurons against Aβ-induced neurodegeneration, as shown by the 3-[4,5 -2yl]-2,5-diphenyltetrazolium bromide (MTT) reduction assay, immunofluorescence using an anti-heavy neurofilament antibody, and quantitative electron microscopy. (3) Hippocampal neurons treated with several PPARγ agonists, including troglitazone, rosiglitazone, and ciglitazone, prevent the excitotoxic Aβ-induced rise in bulk-free Ca 2+ . (4) PPARγ activation results in the modulation of Wnt signaling components, including the inhibition of glycogen synthase kinase-3β (GSK-3β) and an increase of the cytoplasmic and nuclear β-catenin levels. We conclude that the activation of PPARγ prevents Aβ-induced neurodegeneration by a mechanism that may involve a cross talk between neuronal PPARγ and the Wnt signaling pathway. More important, the fact that the activation of PPARγ attenuated Aβ-dependent neurodegeneration opens the possibility to fight AD from a new therapeutic perspective

  7. Trading new neurons for status: Adult hippocampal neurogenesis in eusocial Damaraland mole-rats.

    Science.gov (United States)

    Oosthuizen, M K; Amrein, I

    2016-06-02

    Diversity in social structures, from solitary to eusocial, is a prominent feature of subterranean African mole-rat species. Damaraland mole-rats are eusocial, they live in colonies that are characterized by a reproductive division of labor and a subdivision into castes based on physiology and behavior. Damaraland mole-rats are exceptionally long lived and reproductive animals show delayed aging compared to non-reproductive animals. In the present study, we described the hippocampal architecture and the rate of hippocampal neurogenesis of wild-derived, adult Damaraland mole-rats in relation to sex, relative age and social status or caste. Overall, Damaraland mole-rats were found to have a small hippocampus and low rates of neurogenesis. We found no correlation between neurogenesis and sex or relative age. Social status or caste was the most prominent modulator of neurogenesis. An inverse relationship between neurogenesis and social status was apparent, with queens displaying the lowest neurogenesis while the worker mole-rats had the most. As there is no natural progression from one caste to another, social status within a colony was relatively stable and is reflected in the level of neurogenesis. Our results correspond to those found in the naked mole-rat, and may reflect an evolutionary and environmentally conserved trait within social mole-rat species. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury

    International Nuclear Information System (INIS)

    Chen, Shang-Der; Lin, Tsu-Kung; Yang, Ding-I.; Lee, Su-Ying; Shaw, Fu-Zen; Liou, Chia-Wei; Chuang, Yao-Chung

    2015-01-01

    Recent studies showed that increased mitochondrial fission is an early event of cell death during cerebral ischemia and dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, which may be regulated by PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase thought to protect cells from stress-induced mitochondrial dysfunction and regulate mitochondrial fission. However, the roles of PINK1 and Drp1 in hippocampal injury caused by transient global ischemia (TGI) remain unknown. We therefore tested the hypothesis that TGI may induce PINK1 causing downregulation of Drp1 phosphorylation to enhance hippocampal neuronal survival, thus functioning as an endogenous neuroprotective mechanism. We found progressively increased PINK1 expression in the hippocampal CA1 subfield1-48 h following TGI, reaching the maximal level at 4 h. Despite lack of changes in the expression level of total Drp1 and phosphor-Drp1 at Ser637, TGI induced a time-dependent increase of Drp1 phosphorlation at Ser616 that peaked after 24 h. Notably, PINK1-siRNA increased p-Drp1(Ser616) protein level in hippocampal CA1 subfield 24 h after TGI. The PINK1 siRNA also aggravated the TGI-induced oxidative DNA damage with an increased 8-hydroxy-deoxyguanosine (8-OHdG) content in hippocampal CA1 subfield. Furthermore, PINK1 siRNA also augmented TGI-induced apoptosis as evidenced by the increased numbers of TUNEL-positive staining and enhanced DNA fragmentation. These findings indicated that PINK1 is an endogenous protective mediator vital for neuronal survival under ischemic insult through regulating Drp1 phosphorylation at Ser616. - Highlights: • Transient global ischemia increases expression of PINK1 and p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA decreases PINK1 expression but increases p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA augments oxidative stress and neuronal damage in hippocampal CA1 subfield

  9. Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shang-Der, E-mail: chensd@adm.cgmh.org.tw [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Lin, Tsu-Kung [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Yang, Ding-I. [Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei, Taiwan (China); Lee, Su-Ying [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Shaw, Fu-Zen [Department of Psychology, National Cheng Kung University, Tainan, Taiwan (China); Liou, Chia-Wei [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Chuang, Yao-Chung, E-mail: ycchuang@adm.cgmh.org.tw [Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China); Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan (China)

    2015-05-01

    Recent studies showed that increased mitochondrial fission is an early event of cell death during cerebral ischemia and dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, which may be regulated by PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase thought to protect cells from stress-induced mitochondrial dysfunction and regulate mitochondrial fission. However, the roles of PINK1 and Drp1 in hippocampal injury caused by transient global ischemia (TGI) remain unknown. We therefore tested the hypothesis that TGI may induce PINK1 causing downregulation of Drp1 phosphorylation to enhance hippocampal neuronal survival, thus functioning as an endogenous neuroprotective mechanism. We found progressively increased PINK1 expression in the hippocampal CA1 subfield1-48 h following TGI, reaching the maximal level at 4 h. Despite lack of changes in the expression level of total Drp1 and phosphor-Drp1 at Ser637, TGI induced a time-dependent increase of Drp1 phosphorlation at Ser616 that peaked after 24 h. Notably, PINK1-siRNA increased p-Drp1(Ser616) protein level in hippocampal CA1 subfield 24 h after TGI. The PINK1 siRNA also aggravated the TGI-induced oxidative DNA damage with an increased 8-hydroxy-deoxyguanosine (8-OHdG) content in hippocampal CA1 subfield. Furthermore, PINK1 siRNA also augmented TGI-induced apoptosis as evidenced by the increased numbers of TUNEL-positive staining and enhanced DNA fragmentation. These findings indicated that PINK1 is an endogenous protective mediator vital for neuronal survival under ischemic insult through regulating Drp1 phosphorylation at Ser616. - Highlights: • Transient global ischemia increases expression of PINK1 and p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA decreases PINK1 expression but increases p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA augments oxidative stress and neuronal damage in hippocampal CA1 subfield.

  10. Degradation of the electrospun silica nanofiber in a biological medium for primary hippocampal neuron – effect of surface modification

    Directory of Open Access Journals (Sweden)

    Feng ZV

    2016-02-01

    Full Text Available Z Vivian Feng,1,* Wen Shuo Chen,2,* Khomson Keratithamkul,1 Michael Stoick,1 Brittany Kapala,3 Eryn Johnson,3 An-Chi Huang,2 Ting Yu Chin,4 Yui Whei Chen-Yang,2 Mong-Lin Yang3 1Chemistry Department, Augsburg College, Minneapolis, MN, USA; 2Department of Chemistry, Center for Nanotechnology, Center for Biomedical Technology, Chung Yuan Christian University, Chung Li, Taiwan, Republic of China; 3Department of Science, Concordia University Saint Paul, Saint Paul, MN, USA; 4Department of Bioscience Technology, Chung Yuan Christian University, Chung Li, Taiwan, Republic of China *These authors contributed equally to this work Abstract: In this work, silica nanofibers (SNFs were prepared by an electrospinning method and modified with poly-D-lysine (PDL or (3-aminopropyl trimethoxysilane (APTS making biocompatible and degradable substrates for neuronal growth. The as-prepared SNF, modified SNF-PDL, and SNF-APTS were evaluated using scanning electron microscopy, nitrogen adsorption/desorption isotherms, contact angle measurements, and inductively coupled plasma atomic emission spectroscopy. Herein, the scanning electron microscopic images revealed that dissolution occurred in a corrosion-like manner by enlarging porous structures, which led to loss of structural integrity. In addition, covalently modified SNF-APTS with more hydrophobic surfaces and smaller surface areas resulted in significantly slower dissolution compared to SNF and physically modified SNF-PDL, revealing that different surface modifications can be used to tune the dissolution rate. Growth of primary hippocampal neuron on all substrates led to a slower dissolution rate. The three-dimensional SNF with larger surface area and higher surface density of the amino group promoted better cell attachment and resulted in an increased neurite density. This is the first known work addressing the degradability of SNF substrate in physiological conditions with neuron growth in vitro, suggesting a

  11. A high fat diet-induced decrease in hippocampal newly-born neurons of male mice is exacerbated by mild psychological stress using a Communication Box.

    Science.gov (United States)

    Murata, Yusuke; Narisawa, Yukiyasu; Shimono, Rima; Ohmori, Hiraku; Mori, Masayoshi; Ohe, Kenji; Mine, Kazunori; Enjoji, Munechika

    2017-02-01

    Obese persons have a higher incidence of depression than healthy-weight persons. Several studies indicated that the exposure to a high fat diet (HFD) results in a decrease in hippocampal neurogenesis, which leads to higher stress response and stress-induced depression. Although stress is a risk factor for obesity and depression, no studies to date have investigated the effect of stress on the hippocampal neurogenesis of HFD-induced obese animals. The aim of this study was to elucidate whether or not obese HFD-fed mice are vulnerable to stress-induced depression by investigating hippocampal neurogenesis. Sixty-four male ICR mice (four weeks of age) were fed a control (N=24) or 45%HFD (N=40) for seven weeks. Of the HFD-fed group, twenty-four mice met the criteria for "diet-induced obesity". The animals were then exposed to three consecutive days of psychological stress using a Communication Box. Half were sacrificed to evaluate the physiological changes, and the other half were perfused to quantify hippocampal neuroblasts/immature neurons by the estimation of doublecortin-immunopositive cells. In the HFD-fed mice, psychological stress resulted in increases in caloric intake and visceral adipose tissue and a significant decrease in doublecortin-positive cells in the dentate gyrus; however, no such differences were found in the control diet-fed group. Limitations Further study using other neurogenic markers to assess the stage-specific changes in hippocampal neurogenesis will be required CONCLUSIONS: Our findings suggest that an HFD-induced decrease in hippocampal newly-born neurons leads to stress vulnerability, which may contribute to a high risk of stress-induced depression for obese persons. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Reduced Hyperpolarization-Activated Current Contributes to Enhanced Intrinsic Excitability in Cultured Neonatal Hippocampal Neurons from PrP−/− Mice

    Directory of Open Access Journals (Sweden)

    Jing eFan

    2016-03-01

    Full Text Available Genetic ablation of cellular prion protein (PrPC has been linked to increased neuronal excitability and synaptic activity in the hippocampus. We have previously shown that synaptic activity in hippocampi of PrP-null mice is increased due to enhanced N-methyl-D-aspartate receptor (NMDAR function. Here, we focused on the effect of PRNP gene knock-out (KO on intrinsic neuronal excitability, and in particular, the underlying ionic mechanism in hippocampal neurons cultured from P0 mouse pups. We found that the absence of PrPC profoundly affected the firing properties of cultured hippocampal neurons in the presence of synaptic blockers. The membrane impedance was greater in PrP-null neurons, and this difference was abolished by the hyperpolarization-activated cyclic nucleotide-gated (HCN channel blocker ZD7288 (100 µM. HCN channel activity appeared to be functionally regulated by PrPC. The amplitude of voltage sag, a characteristic of activating HCN channel current (Ih, was decreased in null mice. Moreover, Ih peak current was reduced, along with a hyperpolarizing shift in activation gating and slower kinetics. However, neither HCN1 nor HCN2 formed a biochemical complex with PrPC. These results suggest that the absence of PrP downregulates the activity of HCN channels through activation of a cell signaling pathway rather than through direct interactions. This in turn contributes to an increase in membrane impedance to potentiate neuronal excitability.

  13. A cognitive prosthesis for memory facilitation by closed-loop functional ensemble stimulation of hippocampal neurons in primate brain

    Science.gov (United States)

    Deadwyler, Sam A.; Hampson, Robert E.; Song, Dong; Opris, Ioan; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.

    2017-01-01

    Very productive collaborative investigations characterized how multineuron hippocampal ensembles recorded in nonhuman primates (NHPs) encode short-term memory necessary for successful performance in a delayed match to sample (DMS) task and utilized that information to devise a unique nonlinear multi-input multi-output (MIMO) memory prosthesis device to enhance short-term memory in real-time during task performance. Investigations have characterized how the hippocampus in primate brain encodes information in a multi-item, rule-controlled, delayed match to sample (DMS) task. The MIMO model was applied via closed loop feedback micro-current stimulation during the task via conformal electrode arrays and enhanced performance of the complex memory requirements. These findings clearly indicate detection of a means by which the hippocampus encodes information and transmits this information to other brain regions involved in memory processing. By employing the nonlinear dynamic multi-input/multi-output (MIMO) model, developed and adapted to hippocampal neural ensemble firing patterns derived from simultaneous recorded multi-neuron CA1 and CA3 activity, it was possible to extract information encoded in the Sample phase of DMS trials that was necessary for successful performance in the subsequent Match phase of the task. The extension of this MIMO model to online delivery of electrical stimulation patterns to the same recording loci that exhibited successful CA1 firing in the DMS Sample Phase provided the means to increase task performance on a trial-by-trial basis. Increased utility of the MIMO model as a memory prosthesis was exhibited by the demonstration of cumulative increases in DMS task performance with repeated MIMO stimulation over many sessions. These results, reported below in this article, provide the necessary demonstrations to further the feasibility of the MIMO model as a memory prosthesis to recover and/or enhance encoding of cognitive information in humans

  14. N-cadherin relocalizes from the periphery to the center of the synapse after transient synaptic stimulation in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Patricia T Yam

    Full Text Available N-cadherin is a cell adhesion molecule which is enriched at synapses. Binding of N-cadherin molecules to each other across the synaptic cleft has been postulated to stabilize adhesion between the presynaptic bouton and the postsynaptic terminal. N-cadherin is also required for activity-induced changes at synapses, including hippocampal long term potentiation and activity-induced spine expansion and stabilization. We hypothesized that these activity-dependent changes might involve changes in N-cadherin localization within synapses. To determine whether synaptic activity changes the localization of N-cadherin, we used structured illumination microscopy, a super-resolution approach which overcomes the conventional resolution limits of light microscopy, to visualize the localization of N-cadherin within synapses of hippocampal neurons. We found that synaptic N-cadherin exhibits a spectrum of localization patterns, ranging from puncta at the periphery of the synapse adjacent to the active zone to an even distribution along the synaptic cleft. Furthermore, the N-cadherin localization pattern within synapses changes during KCl depolarization and after transient synaptic stimulation. During KCl depolarization, N-cadherin relocalizes away from the central region of the synaptic cleft to the periphery of the synapse. In contrast, after transient synaptic stimulation with KCl followed by a period of rest in normal media, fewer synapses have N-cadherin present as puncta at the periphery and more synapses have N-cadherin present more centrally and uniformly along the synapse compared to unstimulated cells. This indicates that transient synaptic stimulation modulates N-cadherin localization within the synapse. These results bring new information to the structural organization and activity-induced changes occurring at synapses, and suggest that N-cadherin relocalization may contribute to activity dependent changes at synapses.

  15. No loss of hippocampal hilar somatostatinergic neurons after repeated electroconvulsive shock

    DEFF Research Database (Denmark)

    Dalby, Nils Ole; Tønder, N; Wolby, D P

    1996-01-01

    Electrically induced seizures with anesthesia and muscle relaxation (ECT) is commonly used in the therapy of psychotic depression in humans. Unmodified electroshock (ECS) is used as a model for epilepsy in the rat. In several seizure models of epilepsy, in particular the dentate hilar somatostatin...... was estimated using the optical disector technique. The mean number of hilar SSergic neurons in the ECS-treated rats was 12,785, compared to 12,392 in the control rats. The total number of hilar SSergic neurons in ECS-treated versus control rats was not significantly different (Student's t test; t value = .35...

  16. Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression

    Directory of Open Access Journals (Sweden)

    Chung-Hsiang Liu

    2012-01-01

    Full Text Available Uncaria rhynchophylla (UR, which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA- induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treatment in hippocampal CA1 and CA3 areas. Furthermore, oral UR for 6 weeks significantly attenuated the overexpression of astrocyte proliferation and S100B proteins but not γ-aminobutyric acid A (GABAA receptors. These results indicate that oral UR for 6 weeks can successfully attenuate mossy fiber sprouting, astrocyte proliferation, and S100B protein overexpression and increase neuronal survival in KA-induced epileptic rat hippocampus

  17. Impairment of neural coordination in hippocampal neuronal ensembles after a psychotomimetic dose of dizocilpine.

    Czech Academy of Sciences Publication Activity Database

    Szczurowska, E.; Ahuja, Nikhil; Jiruška, Přemysl; Kelemen, E.; Stuchlík, Aleš

    2018-01-01

    Roč. 81, Feb 2 (2018), s. 275-283 ISSN 0278-5846 R&D Projects: GA ČR(CZ) GA17-04047S Institutional support: RVO:67985823 Keywords : psychosis * MK-801 * neuronal discoordination * hippocampus * Theta rhythm Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.187, year: 2016

  18. Changes in the Golgi apparatus of neocortical and hippocampal neurons in the hibernating hamster

    Directory of Open Access Journals (Sweden)

    Alejandro eAntón

    2015-12-01

    Full Text Available Hibernating animals have been used as models to study several aspects of the plastic changes that occur in the metabolism and physiology of neurons. These models are also of interest in the study of Alzheimer’s disease because the microtubule-associated protein tau is hyperphosphorylated during the hibernation state known as torpor, similar to the pretangle stage of Alzheimer’s disease. Hibernating animals undergo torpor periods with drops in body temperature and metabolic rate, and a virtual cessation of neural activity. These processes are accompanied by morphological and neurochemical changes in neurons, which reverse a few hours after coming out of the torpor state. Since tau has been implicated in the structural regulation of the neuronal Golgi apparatus (GA we have used Western Blot and immunocytochemistry to analyze whether the GA is modified in cortical neurons of the Syrian hamster at different hibernation stages. The results show that, during the hibernation cycle, the GA undergo important structural changes along with differential modifications in expression levels and distribution patterns of Golgi structural proteins. These changes were accompanied by significant transitory reductions in the volume and surface area of the GA elements during torpor and arousal stages as compared with euthermic animals

  19. Escitalopram attenuates ?-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3? pathway

    OpenAIRE

    Wang, Yan-Juan; Ren, Qing-Guo; Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-01-01

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-? (A?)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with A?1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased A?1?42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3? pathway, and t...

  20. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    International Nuclear Information System (INIS)

    Zhang Qi; Shen Mi; Ding Mei; Shen Dingding; Ding Fei

    2011-01-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Akt and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: →PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. →PQQ inhibited glutamate-induced Ca 2+ influx and caspase-3 activity. →PQQ reduced glutamate-induced increase in ROS production. →PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. →PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.

  1. Age-related toxicity of amyloid-beta associated with increased pERK and pCREB in primary hippocampal neurons: reversal by blueberry extract

    OpenAIRE

    Brewer, Gregory J.; Torricelli, John R.; Lindsey, Amanda L.; Kunz, Elizabeth Z.; Neuman, A.; Fisher, Derek R.; Joseph, James A.

    2009-01-01

    Further clarification is needed to address the paradox that memory formation, aging and neurodegeneration all involve calcium influx, oxyradical production (ROS) and activation of certain signaling pathways. In aged rats and in APP/PS-1 mice, cognitive and hippocampal Ca2+ dysregulation were reversed by food supplementation with a high antioxidant blueberry extract. Here, we studied whether neurons were an important target of blueberry extract and whether the mechanism involved altered ROS si...

  2. The effects of realistic synaptic distribution and 3D geometry on signal integration and extracellular field generation of hippocampal pyramidal cells and inhibitory neurons

    Directory of Open Access Journals (Sweden)

    Attila I Gulyas

    2016-11-01

    Full Text Available In vivo and in vitro multichannel field and somatic intracellular recordings are frequently used to study mechanisms of network pattern generation. When interpreting these data, neurons are often implicitly considered as electrotonically compact cylinders with a homogeneous distribution of excitatory and inhibitory inputs. However, the actual distributions of dendritic length, diameter, and the densities of excitatory and inhibitory input are non-uniform and cell type-specific. We first review quantitative data on the dendritic structure and synaptic input and output distribution of pyramidal cells and interneurons in the hippocampal CA1 area. Second, using multicompartmental passive models of four different types of neurons, we quantitatively explore the effect of differences in dendritic structure and synaptic distribution on the errors and biases of voltage clamp measurements of inhibitory and excitatory postsynaptic currents. Finally, using the 3-dimensional distribution of dendrites and synaptic inputs we calculate how different inhibitory and excitatory inputs contribute to the generation of local field potential in the hippocampus. We analyze these effects at different realistic background activity levels as synaptic bombardment influences neuronal conductance and thus the propagation of signals in the dendritic tree.We conclude that, since dendrites are electrotonically long and entangled in 3D, somatic intracellular and field potential recordings miss the majority of dendritic events in some cell types, and thus overemphasize the importance of perisomatic inhibitory inputs and belittle the importance of complex dendritic processing. Modeling results also suggest that pyramidal cells and inhibitory neurons probably use different input integration strategies. In pyramidal cells, second- and higher-order thin dendrites are relatively well-isolated from each other, which may support branch-specific local processing as suggested by studies

  3. Long-Term Lithium Treatment Increases cPLA2 and iPLA2 Activity in Cultured Cortical and Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Vanessa de Jesus De-Paula

    2015-11-01

    Full Text Available Background: Experimental evidence supports the neuroprotective properties of lithium, with implications for the treatment and prevention of dementia and other neurodegenerative disorders. Lithium modulates critical intracellular pathways related to neurotrophic support, inflammatory response, autophagy and apoptosis. There is additional evidence indicating that lithium may also affect membrane homeostasis. Objective: To investigate the effect of lithium on cytosolic phospholipase A2 (PLA2 activity, a key player on membrane phospholipid turnover which has been found to be reduced in blood and brain tissue of patients with Alzheimer’s disease (AD. Methods: Primary cultures of cortical and hippocampal neurons were treated for 7 days with different concentrations of lithium chloride (0.02 mM, 0.2 mM and 2 mM. A radio-enzymatic assay was used to determine the total activity of PLA2 and two PLA2 subtypes: cytosolic calcium-dependent (cPLA2; and calcium-independent (iPLA2. Results: cPLA2 activity increased by 82% (0.02 mM; p = 0.05 and 26% (0.2 mM; p = 0.04 in cortical neurons and by 61% (0.2 mM; p = 0.03 and 57% (2 mM; p = 0.04 in hippocampal neurons. iPLA2 activity was increased by 7% (0.2 mM; p = 0.04 and 13% (2 mM; p = 0.05 in cortical neurons and by 141% (0.02 mM; p = 0.0198 in hippocampal neurons. Conclusion: long-term lithium treatment increases membrane phospholipid metabolism in neurons through the activation of total, c- and iPLA2. This effect is more prominent at sub-therapeutic concentrations of lithium, and the activation of distinct cytosolic PLA2 subtypes is tissue specific, i.e., iPLA2 in hippocampal neurons, and cPLA2 in cortical neurons. Because PLA2 activities are reported to be reduced in Alzheimer’s disease (AD and bipolar disorder (BD, the present findings provide a possible mechanism by which long-term lithium treatment may be useful in the prevention of the disease.

  4. GLP-1 and Exendin-4 Transiently Enhance GABA(A) Receptor-Mediated Synaptic and Tonic Currents in Rat Hippocampal CA3 Pyramidal Neurons

    OpenAIRE

    Korol, Sergiy V.; Jin, Zhe; Babateen, Omar; Birnir, Bryndis

    2015-01-01

    GLP-1 is a hormone that stimulates insulin secretion. Receptors for GLP-1 are also found in the brain, including the hippocampus, the centre for memory and learning. Diabetes mellitus is a risk factor for decreased memory functions. We studied effects of GLP-1 and exendin-4, a GLP-1 receptor agonist, on γ-aminobutyric acid (GABA) signaling in hippocampal CA3 pyramidal neurons. GABA is the main inhibitory neurotransmitter and decreases neuronal excitability. GLP-1 (0.01 – 1 nmol/L) transiently...

  5. Metabotropic glutamate receptor 5 activation enhances tyrosine phosphorylation of the N-methyl-D-aspartate (NMDA) receptor and NMDA-induced cell death in hippocampal cultured neurons.

    Science.gov (United States)

    Takagi, Norio; Besshoh, Shintaro; Marunouchi, Tetsuro; Takeo, Satoshi; Tanonaka, Kouichi

    2012-01-01

    The activation of group I metabotropic glutamate receptors (mGluRs), which are coupled with Gq-protein, initiates a variety physiological responses in different types of cells. While Gq-protein-coupled receptors can upregulate N-methyl-D-aspartate (NMDA) receptor function, group I mGluR-mediated regulations of NMDA receptor function are not fully understood. To determine biochemical roles of group I mGluRs in the regulation of the NMDA receptor, we have investigated changes in tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B induced by a selective mGluR5 agonist, (RS)-chloro-5-hydroxyphenylglycine (CHPG) in hippocampal neuronal cultures. Activation of mGluR5 by CHPG increased active-forms of Src. CHPG also enhanced tyrosine phosphorylation of NR2A and NR2B in hippocampal neuronal cultures. In addition, NMDA-induced cell death was enhanced by CHPG-induced mGluR5 stimulation at the concentration, which increased tyrosine phosphorylation of Src and NR2A/2B but did not induce cell death. This effect was inhibited by selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP). The results suggest that in hippocampal neurons, mGluR5 may regulate NMDA receptor activity, involving tyrosine phosphorylation of NR2A and NR2B and may be involved in NMDA receptor-mediated cell injury.

  6. Stimulus-response functions of single avian olfactory bulb neurones.

    Science.gov (United States)

    McKeegan, Dorothy E F; Demmers, Theodorus G M; Wathes, Christopher M; Jones, R Bryan; Gentle, Michael J

    2002-10-25

    This study investigated olfactory processing in a functional context by examining the responses of single avian olfactory bulb neurones to two biologically important gases over relevant concentration ranges. Recordings of extracellular spike activity were made from 80 single units in the left olfactory bulb of 11 anaesthetised, freely breathing adult hens (Gallus domesticus). The units were spontaneously active, exhibiting widely variable firing rates (0.07-47.28 spikes/s) and variable temporal firing patterns. Single units were tested for their response to an ascending concentration series of either ammonia (2.5-100 ppm) or hydrogen sulphide (1-50 ppm), delivered directly to the olfactory epithelium. Stimulation with a calibrated gas delivery system resulted in modification of spontaneous activity causing either inhibition (47% of units) or excitation (53%) of firing. For ammonia, 20 of the 35 units tested exhibited a response, while for hydrogen sulphide, 25 of the 45 units tested were responsive. Approximate response thresholds for ammonia (median threshold 3.75 ppm (range 2.5-60 ppm, n=20)) and hydrogen sulphide (median threshold 1 ppm (range 1-10 ppm, n=25)) were determined with most units exhibiting thresholds near the lower end of these ranges. Stimulus response curves were constructed for 23 units; 16 (the most complete) were subjected to a linear regression analysis to determine whether they were best fitted by a linear, log or power function. No single function provided the best fit for all the curves (seven were linear, eight were log, one was power). These findings show that avian units respond to changes in stimulus concentration in a manner generally consistent with reported responses in mammalian olfactory bulb neurones. However, this study illustrates a level of fine-tuning to small step changes in concentration (<5 ppm) not previously demonstrated in vertebrate single olfactory bulb neurones.

  7. Involvement of cyclin D1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb2+-induced neuronal death in cultured hippocampal neurons

    International Nuclear Information System (INIS)

    Li Chenchen; Xing Tairan; Tang Mingliang; Yong Wu; Yan Dan; Deng Hongmin; Wang Huili; Wang Ming; Chen Jutao; Ruan Diyun

    2008-01-01

    Lead (Pb) is widely recognized as a neurotoxicant. One of the suggested mechanisms of lead neurotoxicity is apoptotic cell death. And the mechanism by which Pb 2+ causes neuronal death is not well understood. The present study sought to examine the obligate nature of cyclin D1/cyclin-dependent kinase 4 (CDK4), phosphorylation of its substrate retinoblastoma protein (pRb) and its select upstream signal phosphoinositide 3-kinase (PI3K)/AKT pathway in the death of primary cultured rat hippocampal neurons evoked by Pb 2+ . Our data showed that lead treatment of primary hippocampal cultures results in dose-dependent cell death. Inhibition of CDK4 prevented Pb 2+ -induced neuronal death significantly but was incomplete. In addition, we demonstrated that the levels of cyclin D1 and pRb/p107 were increased during Pb 2+ treatment. These elevated expression persisted up to 48 h, returning to control levels after 72 h. We also presented pharmacological and morphological evidences that cyclin D1/CDK4 and pRb/p107 were required for such kind of neuronal death. Addition of the PI3K inhibitor LY294002 (30 μM) or wortmannin (100 nM) significantly rescued the cultured hippocampal neurons from death caused by Pb 2+ . And that Pb 2+ -elicited phospho-AKT (Ser473) participated in the induction of cyclin D1 and partial pRb/p107 expression. These results provide evidences that cell cycle elements play a required role in the death of neurons evoked by Pb 2+ and suggest that certain signaling elements upstream of cyclin D1/CDK4 are modified and/or required for this form of neuronal death

  8. A selective histone deacetylase-6 inhibitor improves BDNF trafficking in hippocampal neurons from Mecp2 knockout mice:implications for Rett syndrome

    Directory of Open Access Journals (Sweden)

    Xin eXu

    2014-03-01

    Full Text Available Rett syndrome (RTT is a neurodevelopmental disorder caused by loss-of-function mutations in the transcriptional modulator methyl-CpG-binding protein 2 (MECP2. One of the most prominent gene targets of MeCP2 is brain-derived neurotrophic factor (Bdnf, a potent modulator of activity-dependent synaptic development, function and plasticity. Dysfunctional BDNF signaling has been demonstrated in several pathophysiological mechanisms of RTT disease progression. To evaluate whether the dynamics of BDNF trafficking is affected by Mecp2 deletion, we analyzed movements of BDNF tagged with yellow fluorescent protein (YFP in cultured hippocampal neurons by time-lapse fluorescence imaging. We found that both anterograde and retrograde vesicular trafficking of BDNF-YFP are significantly impaired in Mecp2 knockout hippocampal neurons. Selective inhibitors of histone deacetylase 6 (HDAC6 show neuroprotective effects in neurodegenerative diseases and stimulate microtubule-dependent vesicular trafficking of BDNF-containing dense core vesicles. Here, we show that the selective HDAC6 inhibitor Tubastatin-A increased the velocity of BDNF-YFP vesicles in Mecp2 knockout neurons in both directions by increasing αtubulin acetylation. Tubastatin-A also restored activity-dependent BDNF release from Mecp2 knockout neurons to levels comparable to those shown by wildtype neurons. These findings demonstrate that a selective HDAC6 inhibitor is a potential pharmacological strategy to reverse cellular and synaptic impairments in RTT resulting from impaired BDNF signaling.

  9. Quantification of a single exploratory trip reveals hippocampal formation mediated dead reckoning.

    Science.gov (United States)

    Wallace, Douglas G; Hines, Dustin J; Whishaw, Ian Q

    2002-01-30

    A rat's proclivity to explore a novel environment presents a behaviorally rich paradigm to investigate the role of the hippocampus in spatial navigation. Here we describe a novel technique of behavioral analysis that is derived from a single exploratory trip. An exploratory trip was defined as a rat's departure from the home base that ended when the rat returned to the home base. The behavior observed on a single exploratory trip by a control animal is highly organized into outward and homeward segments. An outward segment is characterized by a slow circuitous progression from the home base marked by several stops. A homeward segment is characterized by a rapid direct return to the home base. The velocity attribute of the exploratory trip was quantified by estimating the point of inflection associated with the trip's cumulative moment-to-moment velocity distribution. The heading direction and variance of the homeward trip segment was analyzed with circular statistics. A comparison of the exploratory behavior of control animals and animals with damage to the fimbria-fornix indicated that the velocity and heading direction of the homeward portion of the trip depends upon the hippocampal formation. While control and fimbria-fornix rats had similar outward segments, the return paths of the fimbria-fornix rats were significantly slower, more circuitous, and more variable compared with that of the control rats. This result was also independent of testing in light or dark conditions. The lack of dependence on allothetic cues suggests that rats employ dead reckoning navigational strategies to initiate the homeward portion of exploratory movements. Methods to quantify exploratory behavior in terms of velocity and angular components provide an assessment of control behavior and the assessment of the behavior of rats with hippocampal formation damage that is easy to implement.

  10. Regulation of Taurine Transport in Rat Hippocampal Neurons by Hypoosmotic Swelling

    OpenAIRE

    Olson, James E.; Martinho, Eduardo

    2006-01-01

    Taurine, an important mediator of cellular volume regulation in the central nervous system, is accumulated into neurons and glia by means of a highly specific sodium-dependent membrane transporter. During hyperosmotic cell shrinkage, net cellular taurine content increases as taurine transporter activity is enhanced via elevated gene expression of the transporter protein. In hypoosmotic conditions, taurine is rapidly lost from cells by means of taurine-conducting membrane channels. We reasoned...

  11. Computer aided solution for segmenting the neuron line in hippocampal microscope images

    Science.gov (United States)

    Albaidhani, Tahseen; Jassim, Sabah; Al-Assam, Hisham

    2017-05-01

    The brain Hippocampus component is known to be responsible for memory and spatial navigation. Its functionality depends on the status of different blood vessels within the Hippocampus and is severely impaired by Alzheimer's disease as a result blockage of increasing number of blood vessels by accumulation of amyloid-beta (Aβ) protein. Accurate counting of blood vessels within the Hippocampus of mice brain, from microscopic images, is an active research area for the understanding of Alzheimer's disease. Here, we report our work on automatic detection of the Region of Interest, i.e. the region in which blood vessels are located. This area typically falls between the hippocampus edge and the line of neurons within the Hippocampus. This paper proposes a new method to detect and exclude the neuron line to improve the accuracy of blood vessel counting because some neurons on it might lead to false positive cases as they look like blood vessels. Our proposed solution is based on using trainable segmentation approach with morphological operations, taking into account variation in colour, intensity values, and image texture. Experiments on a sufficient number of microscopy images of mouse brain demonstrate the effectiveness of the developed solution in preparation for blood vessels counting.

  12. Early postnatal respiratory viral infection alters hippocampal neurogenesis, cell fate, and neuron morphology in the neonatal piglet.

    Science.gov (United States)

    Conrad, Matthew S; Harasim, Samantha; Rhodes, Justin S; Van Alstine, William G; Johnson, Rodney W

    2015-02-01

    Respiratory viral infections are common during the neonatal period in humans, but little is known about how early-life infection impacts brain development. The current study used a neonatal piglet model as piglets have a gyrencephalic brain with growth and development similar to human infants. Piglets were inoculated with porcine reproductive and respiratory syndrome virus (PRRSV) to evaluate how chronic neuroinflammation affects hippocampal neurogenesis and neuron morphology. Piglets in the neurogenesis study received one bromodeoxyuridine injection on postnatal day (PD) 7 and then were inoculated with PRRSV. Piglets were sacrificed at PD 28 and the number of BrdU+ cells and cell fate were quantified in the dentate gyrus. PRRSV piglets showed a 24% reduction in the number of newly divided cells forming neurons. Approximately 15% of newly divided cells formed microglia, but this was not affected by sex or PRRSV. Additionally, there was a sexual dimorphism of new cell survival in the dentate gyrus where males had more cells than females, and PRRSV infection caused a decreased survival in males only. Golgi impregnation was used to characterize dentate granule cell morphology. Sholl analysis revealed that PRRSV caused a change in inner granule cell morphology where the first branch point was extended further from the cell body. Males had more complex dendritic arbors than females in the outer granule cell layer, but this was not affected by PRRSV. There were no changes to dendritic spine density or morphology distribution. These findings suggest that early-life viral infection can impact brain development. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The MMP-1/PAR-1 Axis Enhances Proliferation and Neuronal Differentiation of Adult Hippocampal Neural Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Maria Maddalena Valente

    2015-01-01

    Full Text Available Matrix metalloproteinases (MMPs are zinc-dependent endopeptidases that play a role in varied forms of developmental and postnatal neuroplasticity. MMP substrates include protease-activated receptor-1 (PAR-1, a G-protein coupled receptor expressed in hippocampus. We examined proliferation and differentiation of adult neural progenitor cells (aNPCs from hippocampi of mice that overexpress the potent PAR-1 agonist MMP-1. We found that, as compared to aNPCs from littermate controls, MMP-1 tg aNPCs display enhanced proliferation. Under differentiating conditions, these cells give rise to a higher percentage of MAP-2+ neurons and a reduced number of oligodendrocyte precursors, and no change in the number of astrocytes. The fact that these results are MMP and PAR-1 dependent is supported by studies with distinct antagonists. Moreover, JSH-23, an inhibitor of NF-κB p65 nuclear translocation, counteracted both the proliferation and differentiation changes seen in MMP-1 tg-derived NPCs. In complementary studies, we found that the percentage of Sox2+ undifferentiated progenitor cells is increased in hippocampi of MMP-1 tg animals, compared to wt mice. Together, these results add to a growing body of data suggesting that MMPs are effectors of hippocampal neuroplasticity in the adult CNS and that the MMP-1/PAR-1 axis may play a role in neurogenesis following physiological and/or pathological stimuli.

  14. The depolarizing action of GABA in cultured hippocampal neurons is not due to the absence of ketone bodies.

    Directory of Open Access Journals (Sweden)

    Jaylyn Waddell

    Full Text Available Two recent reports propose that the depolarizing action of GABA in the immature brain is an artifact of in vitro preparations in which glucose is the only energy source. The authors argue that this does not mimic the physiological environment because the suckling rats use ketone bodies and pyruvate as major sources of metabolic energy. Here, we show that availability of physiologically relevant levels of ketone bodies has no impact on the excitatory action of GABA in immature cultured hippocampal neurons. Addition of β-hydroxybutyrate (BHB, the primary ketone body in the neonate rat, affected neither intracellular calcium elevation nor membrane depolarizations induced by the GABA-A receptor agonist muscimol, when assessed with calcium imaging or perforated patch-clamp recording, respectively. These results confirm that the addition of ketone bodies to the extracellular environment to mimic conditions in the neonatal brain does not reverse the chloride gradient and therefore render GABA hyperpolarizing. Our data are consistent with the existence of a genuine "developmental switch" mechanism in which GABA goes from having a predominantly excitatory role in immature cells to a predominantly inhibitory one in adults.

  15. Ceftriaxone rescues hippocampal neurons from excitotoxicity and enhances memory retrieval in chronic hypobaric hypoxia.

    Science.gov (United States)

    Hota, Sunil K; Barhwal, Kalpana; Ray, Koushik; Singh, Shashi B; Ilavazhagan, G

    2008-05-01

    Exposure to high altitude is known to cause impairment in cognitive functions in sojourners. The molecular events leading to this behavioral manifestation, however, still remain an enigma. The present study aims at exploring the nature of memory impairment occurring on chronic exposure to hypobaric hypoxia and the possible role of glutamate in mediating it. Increased ionotropic receptor stimulation by glutamate under hypobaric hypoxic conditions could lead to calcium mediated excitotoxic cell death resulting in impaired cognitive functions. Since glutamate is cleared from the synapse by the Glial Glutamate Transporter, upregulation of the transporter can be a good strategy in preventing excitotoxic cell death. Considering previous reports on upregulation of the expression of Glial Glutamate Transporter on ceftriaxone administration, the therapeutic potential of ceftriaxone in ameliorating hypobaric hypoxia induced memory impairment was investigated in male Sprague Dawley rats. Exposure to hypobaric hypoxia equivalent to an altitude of 7600 m for 14 days lead to oxidative stress, chromatin condensation and neuronal degeneration in the hippocampus. This was accompanied by delayed memory retrieval as evident from increased latency and pathlength in Morris Water Maze. Administration of ceftriaxone at a dose of 200 mg/kg for 7 days and 14 days during the exposure on the other hand improved the performance of rats in the water maze along with decreased oxidative stress and enhanced neuronal survival when compared to hypoxic group without drug administration. An increased expression of Glial Glutamate Transporter was also observed following drug administration indicating faster clearance of glutamate from the synapse. The present study not only brings to light the effect of longer duration of exposure to hypobaric hypoxia on the memory functions, but also indicates the pivotal role played by glutamate in mediating excitotoxic neuronal degeneration at high altitude. The

  16. Protective effects of plant seed extracts against amyloid β-induced neurotoxicity in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Yoshinori Okada

    2013-01-01

    Full Text Available Aim: Alzheimer′s disease (AD is characterized by large deposits of amyloid β (Aβ peptide. Aβ is known to increase reactive oxygen species (ROS production in neurons, leading to cell death. In this study, we screened 15 plant seeds′ aqueous extracts (PSAE for inhibitory effects on Aβ (25-35-induced cell death using hippocampus neurons (HIPN. Materials and Methods: Fifteen chosen plants were nine medical herbs (Japanese honeywort, luffa, rapeseed, Chinese colza, potherb mustard, Japanese radish, bitter melon, red shiso, corn, and kaiware radish and six general commercial plants (common bean, komatsuna, Qing geng cai, bell pepper, kale, and lettuce. PSAE were measured for total phenolic content (TPC with the Folin-Ciocalteu method, and the 2-diphenyl-1-picryl-hydrazyl (DPPH radical scavenging effect of each seed extract was measured. To find a protectant against Aβ-induced oxidative stress, we screened 15 PSAE using a 2′, 7′-dichlorofluorescein diacetate assay. To further unravel the anti-inflammatory effects of PSAE on Aβ-induced inflammation, PSAE were added to HIPN. The neuroprotective effects of the PSAE were evaluated by Cell Counting Kit-8 assay, measuring the cell viability in Aβ-induced HIPN. Results: TPC of 15 PSAE was in the range of 0.024-1.96 mg of chlorogenic acid equivalents/gram. The aqueous extracts showed antioxidant activities. Furthermore, intracellular ROS accumulation resulting from Aβ treatment was reduced when cells were treated with some PSAE. Kale, bitter melon, kaiware radish, red shiso, and corn inhibited tumor necrosis factor-alpha secretion by the Aβ-stimulated neurons and all samples except Japanese honeywort showed enhancement of cell survival. Conclusion: From these results, we suggest that some plant seed extracts offer protection against Aβ-mediated cell death.

  17. Long-term omega-3 supplementation modulates behavior, hippocampal fatty acid concentration, neuronal progenitor proliferation and central TNF-α expression in 7 month old unchallenged mice

    Science.gov (United States)

    Grundy, Trent; Toben, Catherine; Jaehne, Emily J.; Corrigan, Frances; Baune, Bernhard T.

    2014-01-01

    Dietary polyunsaturated fatty acid (PUFA) manipulation is being investigated as a potential therapeutic supplement to reduce the risk of developing age-related cognitive decline (ARCD). Animal studies suggest that high omega (Ω)-3 and low Ω-6 dietary content reduces cognitive decline by decreasing central nervous system (CNS) inflammation and modifying neuroimmune activity. However, no previous studies have investigated the long term effects of Ω-3 and Ω-6 dietary levels in healthy aging mice leaving the important question about the preventive effects of Ω-3 and Ω-6 on behavior and underlying molecular pathways unaddressed. We aimed to investigate the efficacy of long-term Ω-3 and Ω-6 PUFA dietary supplementation in mature adult C57BL/6 mice. We measured the effect of low, medium, and high Ω-3:Ω-6 dietary ratio, given from the age of 3–7 months, on anxiety and cognition-like behavior, hippocampal tissue expression of TNF-α, markers of neuronal progenitor proliferation and gliogenesis and serum cytokine concentration. Our results show that a higher Ω-3:Ω-6 PUFA diet ratio increased hippocampal PUFA, increased anxiety, improved hippocampal dependent spatial memory and reduced hippocampal TNF-α levels compared to a low Ω-3:Ω-6 diet. Furthermore, serum TNF-α concentration was reduced in the higher Ω-3:Ω-6 PUFA ratio supplementation group while expression of the neuronal progenitor proliferation markers KI67 and doublecortin (DCX) was increased in the dentate gyrus as opposed to the low Ω-3:Ω-6 group. Conversely, Ω-3:Ω-6 dietary PUFA ratio had no significant effect on astrocyte or microglia number or cell death in the dentate gyrus. These results suggest that supplementation of PUFAs may delay aging effects on cognitive function in unchallenged mature adult C57BL/6 mice. This effect is possibly induced by increasing neuronal progenitor proliferation and reducing TNF-α. PMID:25484856

  18. Long-term omega-3 supplementation modulates behavior, hippocampal fatty acid concentration, neuronal progenitor proliferation and central TNF-α expression in 7 month old unchallenged mice

    Directory of Open Access Journals (Sweden)

    Trent eGrundy

    2014-11-01

    Full Text Available Dietary polyunsaturated fatty acid (PUFA manipulation is being investigated as a potential therapeutic supplement to reduce the risk of developing age-related cognitive decline (ARCD. Animal studies suggest that high omega (Ω-3 and low Ω-6 dietary content reduces cognitive decline by decreasing central nervous system (CNS inflammation and modifying neuroimmune activity. However, no previous studies have investigated the long term effects of Ω-3 and Ω-6 dietary levels in healthy aging mice leaving the important question about the preventive effects of Ω-3 and Ω-6 on behavior and underlying molecular pathways unaddressed. We aimed to investigate the efficacy of long-term Ω-3 and Ω-6 PUFA dietary supplementation in mature adult C57BL/6 mice. We measured the effect of low, medium and high Ω-3:Ω-6 dietary ratio, given from the age of 3 to 7 months, on anxiety and cognition-like behavior, hippocampal tissue expression of TNF-α, markers of neuronal progenitor proliferation and gliogenesis and serum cytokine concentration. Our results show that a higher Ω-3:Ω-6 PUFA diet ratio increased hippocampal PUFA, increased anxiety, improved hippocampal dependent spatial memory and reduced hippocampal TNF-α levels compared to a low Ω-3:Ω-6 diet. Furthermore, serum TNF-α concentration was reduced in the higher Ω-3:Ω-6 PUFA ratio supplementation group while expression of the neuronal progenitor proliferation markers KI67 and doublecortin (DCX was increased in the dentate gyrus as opposed to the low Ω-3:Ω-6 group. Conversely, Ω-3:Ω-6 dietary PUFA ratio had no significant effect on astrocyte or microglia number or cell death in the dentate gyrus. These results suggest that supplementation of PUFAs may delay ageing effects on cognitive function in unchallenged mature adult C57BL/6 mice. This effect is possibly induced by increasing neuronal progenitor proliferation and reducing TNF-α.

  19. The Kv2.1 K+ channel targets to the axon initial segment of hippocampal and cortical neurons in culture and in situ

    Directory of Open Access Journals (Sweden)

    Tamkun Michael M

    2008-11-01

    Full Text Available Abstract Background The Kv2.1 delayed-rectifier K+ channel regulates membrane excitability in hippocampal neurons where it targets to dynamic cell surface clusters on the soma and proximal dendrites. In the past, Kv2.1 has been assumed to be absent from the axon initial segment. Results Transfected and endogenous Kv2.1 is now demonstrated to preferentially accumulate within the axon initial segment (AIS over other neurite processes; 87% of 14 DIV hippocampal neurons show endogenous channel concentrated at the AIS relative to the soma and proximal dendrites. In contrast to the localization observed in pyramidal cells, GAD positive inhibitory neurons within the hippocampal cultures did not show AIS targeting. Photoactivable-GFP-Kv2.1-containing clusters at the AIS were stable, moving μm/hr with no channel turnover. Photobleach studies indicated individual channels within the cluster perimeter were highly mobile (FRAP τ = 10.4 ± 4.8 sec, supporting our model that Kv2.1 clusters are formed by the retention of mobile channels behind a diffusion-limiting perimeter. Demonstrating that the AIS targeting is not a tissue culture artifact, Kv2.1 was found in axon initial segments within both the adult rat hippocampal CA1, CA2, and CA3 layers and cortex. Conclusion In summary, Kv2.1 is associated with the axon initial segment both in vitro and in vivo where it may modulate action potential frequency and back propagation. Since transfected Kv2.1 initially localizes to the AIS before appearing on the soma, it is likely multiple mechanisms regulate Kv2.1 trafficking to the cell surface.

  20. Spatial information content and reliability of hippocampal CA1 neurons: effects of visual input.

    Science.gov (United States)

    Markus, E J; Barnes, C A; McNaughton, B L; Gladden, V L; Skaggs, W E

    1994-08-01

    The effects of darkness on quantitative spatial firing characteristics of 235 hippocampal CA1 "complex spike" (CS) cells were studied in young and old Fischer-344 rats during food-motivated performance of a randomized, forced-choice task on an eight-arm radial maze. The room lights were turned on or off on alternate blocks of all eight arms. In the dark, a lower proportion of CS cells had "place fields," and the fields were less specific and less reliable than in the light. A small number of cells had place fields unique to the dark condition. Like CS cells, Theta cells showed a reduction in spatially related firing in the dark. The specificity and reliability of the place fields under both light and dark conditions were similar for both age groups. Increasing the salience of the environment, by increasing the light level and the number of visual cues in the light condition, did not affect the specificity or reliability of the place fields. Even though all rats had substantial prior experience with the environment, and were placed on the maze center under normal illumination before the first dark trial, the correlation between the firing pattern in the light and dark increased after the rat first traversed the maze in the light. Thus, even after considerable experience with the environment over days, experiencing the illuminated environment from different locations on a given day was a significant factor affecting subsequent location and reliability of place fields in darkness. While the task was simple and errors rare, rats that made fewer errors (i.e., re-entries into the previously visited arm) also had more reliable place cells, but no such correlation was found with place cell specificity. Thus, the reliability of spatial firing in the hippocampus may be more important for spatial navigation than the size of the place fields per se. Alternatively, both spatial memory and place field reliability may be modulated by a common variable, such as attention.

  1. AMPA receptor pHluorin-GluA2 reports NMDA receptor-induced intracellular acidification in hippocampal neurons.

    Science.gov (United States)

    Rathje, Mette; Fang, Huaqiang; Bachman, Julia L; Anggono, Victor; Gether, Ulrik; Huganir, Richard L; Madsen, Kenneth L

    2013-08-27

    NMDA receptor activation promotes endocytosis of AMPA receptors, which is an important mechanism underlying long-term synaptic depression. The pH-sensitive GFP variant pHluorin fused to the N terminus of GluA2 (pH-GluA2) has been used to assay NMDA-mediated AMPA receptor endocytosis and recycling. Here, we demonstrate that in somatic and dendritic regions of hippocampal neurons a large fraction of the fluorescent signal originates from intracellular pH-GluA2, and that the decline in fluorescence in response to NMDA and AMPA primarily describes an intracellular acidification, which quenches the pHluorin signal from intracellular receptor pools. Neurons expressing an endoplasmic reticulum-retained mutant of GluA2 (pH-GluA2 ΔC49) displayed a larger response to NMDA than neurons expressing wild-type pH-GluA2. A similar NMDA-elicited decline in pHluorin signal was observed by expressing cytosolic pHluorin alone without fusion to GluA2 (cyto-pHluorin). Intracellular acidification in response to NMDA was further confirmed by using the ratiometric pH indicator carboxy-SNARF-1. The NMDA-induced decline was followed by rapid recovery of the fluorescent signal from both cyto-pHluorin and pH-GluA2. The recovery was sodium-dependent and sensitive to Na(+)/H(+)-exchanger (NHE) inhibitors. Moreover, recovery was more rapid after shRNA-mediated knockdown of the GluA2 binding PDZ domain-containing protein interacting with C kinase 1 (PICK1). Interestingly, the accelerating effect of PICK1 knockdown on the fluorescence recovery was eliminated in the presence of the NHE1 inhibitor zoniporide. Our results indicate that the pH-GluA2 recycling assay is an unreliable assay for studying AMPA receptor trafficking and also suggest a role for PICK1 in regulating intracellular pH via modulation of NHE activity.

  2. Adult Hippocampal Neurogenesis in Parkinson’s Disease: Impact on Neuronal Survival and Plasticity

    Directory of Open Access Journals (Sweden)

    Martin Regensburger

    2014-01-01

    Full Text Available In Parkinson’s disease (PD and other synucleinopathies, chronic neurodegeneration occurs within different areas of the central nervous system leading to progressive motor and nonmotor symptoms. The symptomatic treatment options that are currently available do not slow or halt disease progression. This highlights the need of a better understanding of disease mechanisms and disease models. The generation of newborn neurons in the adult hippocampus and in the subventricular zone/olfactory bulb system is affected by many different regulators and possibly involved in memory processing, depression, and olfaction, symptoms which commonly occur in PD. The pathology of the adult neurogenic niches in human PD patients is still mostly elusive, but different preclinical models have shown profound alterations of adult neurogenesis. Alterations in stem cell proliferation, differentiation, and survival as well as neurite outgrowth and spine formation have been related to different aspects in PD pathogenesis. Therefore, neurogenesis in the adult brain provides an ideal model to study disease mechanisms and compounds. In addition, adult newborn neurons have been proposed as a source of endogenous repair. Herein, we review current knowledge about the adult neurogenic niches in PD and highlight areas of future research.

  3. Phenolic Compounds Protect Cultured Hippocampal Neurons against Ethanol-Withdrawal Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Marianna E. Jung

    2009-04-01

    Full Text Available Ethanol withdrawal is linked to elevated oxidative damage to neurons. Here we report our findings on the contribution of phenolic antioxidants (17β-estradiol, p-octyl-phenol and 2,6-di-tert-butyl-4-methylphenol to counterbalance sudden ethanol withdrawal-initiated oxidative events in hippocampus-derived cultured HT-22 cells. We showed that ethanol withdrawal for 4 h after 24-h ethanol treatment provoked greater levels of oxidative damage than the preceding ethanol exposure. Phenolic antioxidant treatment either during ethanol exposure or ethanol withdrawal only, however, dose-dependently reversed cellular oxidative damage, as demonstrated by the significantly enhanced cell viability, reduced malondialdehyde production and protein carbonylation, compared to untreated cells. Interestingly, the antioxidant treatment schedule had no significant impact on the observed neuroprotection. In addition, the efficacy of the three phenolic compounds was practically equipotent in protecting HT-22 cells in spite of predictions based on an in silico study and a cell free assay of lipid peroxidation. This finding implies that free-radical scavenging may not be the sole factor responsible for the observed neuroprotection and warrants further studies to establish, whether the HT-22 line is indeed a suitable model for in vitro screening of antioxidants against EW-related neuronal damage.

  4. Sub-millisecond firing synchrony of closely neighboring pyramidal neurons in hippocampal CA1 of rats during delayed non-matching to sample task

    Directory of Open Access Journals (Sweden)

    Susumu Takahashi

    2009-09-01

    Full Text Available Firing synchrony among neurons is thought to play functional roles in several brain regions. In theoretical analyses, firing synchrony among neurons within sub-millisecond precision is feasible to convey information. However, little is known about the occurrence and the functional significance of the sub-millisecond synchrony among closely neighboring neurons in the brain of behaving animals because of a technical issue: spikes simultaneously generated from closely neighboring neurons are overlapped in the extracellular space and are not easily separated. As described herein, using a unique spike sorting technique based on independent component analysis together with extracellular 12-channel multi-electrodes (dodecatrodes, we separated such overlapping spikes and investigated the firing synchrony among closely neighboring pyramidal neurons in the hippocampal CA1 of rats during a delayed non-matching to sample task. Results showed that closely neighboring pyramidal neurons in the hippocampal CA1 can co-fire with sub-millisecond precision. The synchrony generally co-occurred with the firing rate modulation in relation to both internal (retention and comparison and external (stimulus input and motor output events during the task. However, the synchrony occasionally occurred in relation to stimulus inputs even when rate modulation was clearly absent, suggesting that the synchrony is not simply accompanied with firing rate modulation and that the synchrony and the rate modulation might code similar information independently. We therefore conclude that the sub-millisecond firing synchrony in the hippocampus is an effective carrier for propagating information—as represented by the firing rate modulations—to downstream neurons.

  5. Dopamine Inhibits High-Frequency Stimulation-Induced Long-Term Potentiation of Intrinsic Excitability in CA1 Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Chun-ling Wei

    2012-09-01

    Full Text Available The efficiency of neural circuits is modified by changes not only in synaptic strength, but also in intrinsic excitability of neurons. In CA1 hippocampal pyramidal neurons, bidirectional changes in the intrinsic excitability are often presented after induction of synaptic long-term potentiation or depression. This plasticity of intrinsic excitability has been identified as a cellular correlate of learning. Besides, behavioral learning often involves action of reinforcement or rewarding mediated by dopamine (DA. Here, we examined how DA influences the intrinsic plasticity of CA1 hippocampal pyramidal neurons when high-frequency stimulation (HFS was applied to Schaffer collaterals. The results showed that DA inhibits the decrease in rheobase and increase in mean firing rate of pyramidal neurons induced by HFS, and that this inhibition was abolished by the D1-like receptor antagonist SCH23390 but not by the D2-like receptor antagonist sulpiride. The results suggest that DA inhibits the potentiation of excitability induced by presynaptic HFS, and that this inhibition depends on the activation of D1-like receptors.

  6. Maternal cocaine administration in mice alters DNA methylation and gene expression in hippocampal neurons of neonatal and prepubertal offspring.

    Directory of Open Access Journals (Sweden)

    Svetlana I Novikova

    2008-04-01

    Full Text Available Previous studies documented significant behavioral changes in the offspring of cocaine-exposed mothers. We now explore the hypothesis that maternal cocaine exposure could alter the fetal epigenetic machinery sufficiently to cause lasting neurochemical and functional changes in the offspring. Pregnant CD1 mice were administered either saline or 20 mg/kg cocaine twice daily on gestational days 8-19. Male pups from each of ten litters of the cocaine and control groups were analyzed at 3 (P3 or 30 (P30 days postnatum. Global DNA methylation, methylated DNA immunoprecipitation followed by CGI(2 microarray profiling and bisulfite sequencing, as well as quantitative real-time RT-PCR gene expression analysis, were evaluated in hippocampal pyramidal neurons excised by laser capture microdissection. Following maternal cocaine exposure, global DNA methylation was significantly decreased at P3 and increased at P30. Among the 492 CGIs whose methylation was significantly altered by cocaine at P3, 34% were hypermethylated while 66% were hypomethylated. Several of these CGIs contained promoter regions for genes implicated in crucial cellular functions. Endogenous expression of selected genes linked to the abnormally methylated CGIs was correspondingly decreased or increased by as much as 4-19-fold. By P30, some of the cocaine-associated effects at P3 endured, reversed to opposite directions, or disappeared. Further, additional sets of abnormally methylated targets emerged at P30 that were not observed at P3. Taken together, these observations indicate that maternal cocaine exposure during the second and third trimesters of gestation could produce potentially profound structural and functional modifications in the epigenomic programs of neonatal and prepubertal mice.

  7. A million-plus neuron model of the hippocampal dentate gyrus: Dependency of spatio-temporal network dynamics on topography.

    Science.gov (United States)

    Hendrickson, Phillip J; Yu, Gene J; Song, Dong; Berger, Theodore W

    2015-01-01

    This paper describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust, non-random pattern of spiking best described as spatiotemporal "clustering". To identify the network property or properties responsible for generating such firing "clusters", we progressively eliminated from the model key mechanisms such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatio-temporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as "functional units" that organize the processing of entorhinal signals.

  8. Exposure to depleted uranium during development affects neuronal differentiation in the hippocampal dentate gyrus and induces depressive-like behavior in offspring.

    Science.gov (United States)

    Legrand, M; Lam, S; Anselme, I; Gloaguen, C; Ibanez, C; Eriksson, P; Lestaevel, P; Dinocourt, C

    2016-12-01

    The developing brain is known to be sensitive to uranium (U) and exposure to this element during postnatal brain development results in behavioral disorders in adulthood. Moreover, we have previously shown that U exposure during gestation and lactation affects neurogenesis, in particular neural cell proliferation and cell death. In this study, we investigated whether exposure to depleted U (DU) affects neuronal differentiation during prenatal and postnatal brain development. We assessed in situ expression of specific genes involved in neuronal differentiation and expression of neuronal protein markers. The effects of DU on neurobehavioral function were investigated in parallel. Neuronal differentiation involves many signaling pathways that regulate the balance between cell proliferation and the transition to neuronal differentiation. In the present study pregnant rats were exposed from gestational day (GD) 1 throughout lactation to postnatal day (PND) 21. Using in situ hybridization, our results show decreased expression of Wnt3a in the hippocampal neuroepithelium in GD 13 embryos from DU exposed dams and decreased expression of Notch1 and increased expression of Mash1 in the hippocampal and dentate neuroepithelia of GD 18 fetuses from DU exposed dams. Expression of the NeuroD and NeuroD2 genes was not modified in the hippocampal neuroepithelium of GD18 fetuses from DU exposed dams. There was no change in the expression of any of these genes in the dentate gyrus of PND 5 pups from DU exposed dams. No change in nestin or doublecortin immunestaining was observed in the prenatal or early postnatal stages. However, the number of doublecortin-positive cells increased in the granular cell layer of PND 21 pups from DU exposed dams. Finally, depressive-like behavior was induced in PND21 rats, without modification of locomotor and exploratory activities or of spatial memory. In conclusion, these results showed that exposure of pregnant and lactating rats to DU affects brain

  9. Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Shanshan Sun

    2017-04-01

    Full Text Available Deficient bioenergetics and diminished redox conservation have been implicated in the development of cerebral ischemia/reperfusion injury. In this study, the mechanisms underlying the neuroprotective effects of cannabidiol (CBD, a nonpsychotropic compound derived from Cannabis sativa with FDA-approved antiepilepsy properties, were studied in vitro using an oxygen–glucose-deprivation/reperfusion (OGD/R model in a mouse hippocampal neuronal cell line. CBD supplementation during reperfusion rescued OGD/R-induced cell death, attenuated intracellular ROS generation and lipid peroxidation, and simultaneously reversed the abnormal changes in antioxidant biomarkers. Using the Seahorse XFe24 Extracellular Flux Analyzer, we found that CBD significantly improved basal respiration, ATP-linked oxygen consumption rate, and the spare respiratory capacity, and augmented glucose consumption in OGD/R-injured neurons. The activation of glucose 6-phosphate dehydrogenase and the preservation of the NADPH/NADP+ ratio implies that the pentose-phosphate pathway is stimulated by CBD, thus protecting hippocampal neurons from OGD/R injury. This study is the first to document the neuroprotective effects of CBD against OGD/R insult, which depend in part on attenuating oxidative stress, enhancing mitochondrial bioenergetics, and modulating glucose metabolism via the pentose-phosphate pathway, thus preserving both energy and the redox balance.

  10. Aniracetam attenuates H2O2-induced deficiency of neuron viability, mitochondria potential and hippocampal long-term potentiation of mice in vitro.

    Science.gov (United States)

    Wang, Yong-Fu; Li, Chao-Cui; Cai, Jing-Xia

    2006-09-01

    Objective It is known that free radicals are involved in neurodegeneration and cognitive dysfunction, as seen in Alzheimer' s disease (AD) and aging. The present study examines the protective effects of aniracetam against H2O2-induced toxicity to neuron viability, mitochondria potential and hippocampal long-term potentiation (LTP). Methods Tetrazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was used to detect neuronal viability. MitoTracker Red (CMX Ros), a fluorescent stain for mitochondria, was used to measure mitochondria potential. Electrophysiological technique was carried out to record hippocampal LTP. Results H2O2 exposure impaired the viability of neurons, reduced mitochondria potential, and decreased LTP in the CA1 region of hippocampus. These deficient effects were significantly rescued by pre-treatment with aniracetam (10-100 mu mol/L). Conclusion These results indicate that aniracetam has a strong neuroprotective effect against H2O2-induced toxicity, which could partly explain the mechanism of its clinical application in neurodegenerative diseases.

  11. Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons.

    Science.gov (United States)

    Sun, Shanshan; Hu, Fangyuan; Wu, Jihong; Zhang, Shenghai

    2017-04-01

    Deficient bioenergetics and diminished redox conservation have been implicated in the development of cerebral ischemia/reperfusion injury. In this study, the mechanisms underlying the neuroprotective effects of cannabidiol (CBD), a nonpsychotropic compound derived from Cannabis sativa with FDA-approved antiepilepsy properties, were studied in vitro using an oxygen-glucose-deprivation/reperfusion (OGD/R) model in a mouse hippocampal neuronal cell line. CBD supplementation during reperfusion rescued OGD/R-induced cell death, attenuated intracellular ROS generation and lipid peroxidation, and simultaneously reversed the abnormal changes in antioxidant biomarkers. Using the Seahorse XF e 24 Extracellular Flux Analyzer, we found that CBD significantly improved basal respiration, ATP-linked oxygen consumption rate, and the spare respiratory capacity, and augmented glucose consumption in OGD/R-injured neurons. The activation of glucose 6-phosphate dehydrogenase and the preservation of the NADPH/NADP + ratio implies that the pentose-phosphate pathway is stimulated by CBD, thus protecting hippocampal neurons from OGD/R injury. This study is the first to document the neuroprotective effects of CBD against OGD/R insult, which depend in part on attenuating oxidative stress, enhancing mitochondrial bioenergetics, and modulating glucose metabolism via the pentose-phosphate pathway, thus preserving both energy and the redox balance. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Serotonin stimulates phospholipase A2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositolphospholipid hydrolysis

    International Nuclear Information System (INIS)

    Felder, C.C.; Ma, A.L.; Axelrod, J.; Kanterman, R.Y.

    1990-01-01

    Serotonin (5-HT) stimulated the release of arachidonic acid in hippocampal neurons cocultured with glial cells but not in glial cultures alone. Similar results were observed for the 5-HT-stimulated release of inositol phosphates. These results suggest a neural but not glial origin of both responses. Pharmacological studies suggested that release of arachidonic acid and inositol phosphates was mediated by a type 2 5-HTT (5-HT 2 ) receptor. 5-HT-stimulated release of arachidonic acid was also detected in cortical neurons, which contain high levels of 5-HT 2 receptors, but not striatum, spinal cord, or cerebellar granule cells, which have very low levels or are devoid of 5-HT 2 receptors. The phorbol ester phorbol 12-myristate 13-acetate augmented the 5-HT-stimulated release of arachidonic acid but inhibited the 5-HT-stimulated release of inositol phosphates. 5-HT-stimulated release of arachidonic acid, but not inositol phosphates, was dependent on extracellular calcium. 5-HT stimulated the release of [ 3 H]lysophosphatidylcholine from [ 3 H]choline-labeled cells with no increase in the release of [ 3 H]choline or phospho[ 3 H]choline. These data suggest that 5-HT stimulated the release of arachidonic acid in hippocampal neurons through the activation of phospholipase A 2 , independent of the activation of phospholipase C

  13. Sodium/bicarbonate cotransporter NBCn1/slc4a7 increases cytotoxicity in magnesium depletion in primary cultures of hippocampal neurons

    Science.gov (United States)

    Cooper, Deborah S.; Yang, Han Soo; He, Peijian; Kim, Eunjin; Rajbhandari, Ira; Yun, Chris C.; Choi, Inyeong

    2009-01-01

    Growing evidence suggests that pharmacological inhibition of Na/H exchange and Na/HCO3 transport provides protection against damage or injury in cardiac ischemia. In this study, we examined the contribution of the sodium/bicarbonate cotransporter NBCn1 (slc4a7) to cytotoxicity in cultured hippocampal neurons of rats. In neurons exposed to extracellular pH (pHo) ranging from 6.2 to 8.3, NBCn1 protein expression increased by fivefold at pH < 6.5 compared to the expression at pHo 7.4. At pHo 6.5, the intracellular pH of neurons was ~1 unit lower than that at pH 7.4. Immunochemistry showed a marked increase in NBCn1 immunofluorescence in plasma membranes and cytosol of the soma as well as in dendrites, at pHo 6.5. NBCn1 expression also increased by 40% in a prolonged Mg2+-free incubation at normal pHo. Knockdown of NBCn1 in neurons had negligible effect on cell viability. The effect of NBCn1 knockdown on cytotoxicity was then determined by exposing neurons to 0.5 mM glutamate for 10 min and measuring lactate dehydrogenase (LDH) release from neurons. Compared to normal incubation (pHo 7.2 for 6 h) after glutamate exposure, acidic incubation (pHo 6.3 for 6 h) reduced cytotoxicity by 75% for control neurons and 78% for NBCn1-knockdown neurons. Thus, both controls and knockdown neurons showed acidic protection from cytotoxicity. However, in Mg2+-free incubation after glutamate exposure, NBCn1 knockdown progressively attenuated cytotoxicity. This attenuation was unaffected by acidic preincubation before glutamate exposure. We conclude that NBCn1 has a dynamic upregulation in low pHo and Mg2+ depletion. NBCn1 is not required for acidic protection, but increases cytotoxicity in Mg2+-free conditions. PMID:19170751

  14. Role of Cl- -HCO3- exchanger AE3 in intracellular pH homeostasis in cultured murine hippocampal neurons, and in crosstalk to adjacent astrocytes.

    Science.gov (United States)

    Salameh, Ahlam I; Hübner, Christian A; Boron, Walter F

    2017-01-01

    A polymorphism of human AE3 is associated with idiopathic generalized epilepsy. Knockout of AE3 in mice lowers the threshold for triggering epileptic seizures. The explanations for these effects are elusive. Comparisons of cells from wild-type vs. AE3 -/- mice show that AE3 (present in hippocampal neurons, not astrocytes; mediates HCO 3 - efflux) enhances intracellular pH (pH i ) recovery (decrease) from alkali loads in neurons and, surprisingly, adjacent astrocytes. During metabolic acidosis (MAc), AE3 speeds initial acidification, but limits the extent of pH i decrease in neurons and astrocytes. AE3 speeds re-alkalization after removal of MAc in neurons and astrocytes, and speeds neuronal pH i recovery from an ammonium prepulse-induced acid load. We propose that neuronal AE3 indirectly increases acid extrusion in (a) neurons via Cl - loading, and (b) astrocytes by somehow enhancing NBCe1 (major acid extruder). The latter would enhance depolarization-induced alkalinization of astrocytes, and extracellular acidification, and thereby reduce susceptibility to epileptic seizures. The anion exchanger AE3, expressed in hippocampal (HC) neurons but not astrocytes, contributes to intracellular pH (pH i ) regulation by facilitating the exchange of extracellular Cl - for intracellular HCO 3 - . The human AE3 polymorphism A867D is associated with idiopathic generalized epilepsy. Moreover, AE3 knockout (AE3 -/- ) mice are more susceptible to epileptic seizure. The mechanism of these effects has been unclear because the starting pH i in AE3 -/- and wild-type neurons is indistinguishable. The purpose of the present study was to use AE3 -/- mice to investigate the role of AE3 in pH i homeostasis in HC neurons, co-cultured with astrocytes. We find that the presence of AE3 increases the acidification rate constant during pH i recovery from intracellular alkaline loads imposed by reducing [CO 2 ]. The presence of AE3 also speeds intracellular acidification during the early phase of

  15. Effect of sevoflurane on the ATPase activity of hippocampal neurons in a rat model of cerebral ischemia-reperfusion injury via the cAMP-PKA signaling pathway.

    Science.gov (United States)

    Liu, Tie-Jun; Zhang, Jin-Cun; Gao, Xiao-Zeng; Tan, Zhi-Bin; Wang, Jian-Jun; Zhang, Pan-Pan; Cheng, Ai-Bin; Zhang, Shu-Bo

    2018-01-01

    We aim to investigate the effects of sevoflurane on the ATPase activity of the hippocampal neurons in rats with cerebral ischemia-reperfusion injury (IRI) via the cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) signaling pathway. Sixty rats were assigned into the normal, model and sevoflurane groups (n = 20, the latter two groups were established as focal cerebral IRI models). The ATPase activity was detected using an ultramicro Na (+)-K (+)-ATP enzyme kit. Immunohistochemical staining was used to detect the positive protein expression of cAMP and PKA. The hippocampal neurons were assigned to the normal, IRI, IRI + sevoflurane, IRI + forskolin, IRI + H89 and IRI + sevoflurane + H89 groups. qRT-PCR and Western blotting were performed for the expressions of cAMP, PKA, cAMP-responsive element-binding protein (CREB) and brain derived neurotrophic factor (BDNF). The normal and sevoflurane groups exhibited a greater positive protein expression of cAMP and PKA than the model group. Compared with the normal group, the expressions of cAMP, PKA, CREB and BDNF all reduced in the IRI, model and IRI + H89 groups. The sevoflurane group showed higher cAMP, PKA, CREB and BDNF expressions than the model group. Compared with the IRI group, ATPase activity and expressions of cAMP, PKA, CREB and BDNF all increased in the normal, IRI + sevoflurane and IRI + forskolin groups but decreased in the IRI + H89 group. It suggests that sevoflurane could enhance ATPase activity in hippocampal neurons of cerebral IRI rats through activating cAMP-PKA signaling pathway. Copyright © 2017. Published by Elsevier Taiwan.

  16. Glycine receptor in rat hippocampal and spinal cord neurons as a molecular target for rapid actions of 17-β-estradiol

    Directory of Open Access Journals (Sweden)

    Liu Chun-Feng

    2009-01-01

    Full Text Available Abstract Glycine receptors (GlyRs play important roles in regulating hippocampal neural network activity and spinal nociception. Here we show that, in cultured rat hippocampal (HIP and spinal dorsal horn (SDH neurons, 17-β-estradiol (E2 rapidly and reversibly reduced the peak amplitude of whole-cell glycine-activated currents (IGly. In outside-out membrane patches from HIP neurons devoid of nuclei, E2 similarly inhibited IGly, suggesting a non-genomic characteristic. Moreover, the E2 effect on IGly persisted in the presence of the calcium chelator BAPTA, the protein kinase inhibitor staurosporine, the classical ER (i.e. ERα and ERβ antagonist tamoxifen, or the G-protein modulators, favoring a direct action of E2 on GlyRs. In HEK293 cells expressing various combinations of GlyR subunits, E2 only affected the IGly in cells expressing α2, α2β or α3β subunits, suggesting that either α2-containing or α3β-GlyRs mediate the E2 effect observed in neurons. Furthermore, E2 inhibited the GlyR-mediated tonic current in pyramidal neurons of HIP CA1 region, where abundant GlyR α2 subunit is expressed. We suggest that the neuronal GlyR is a novel molecular target of E2 which directly inhibits the function of GlyRs in the HIP and SDH regions. This finding may shed new light on premenstrual dysphoric disorder and the gender differences in pain sensation at the CNS level.

  17. Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation.

    Science.gov (United States)

    Doron, Guy; von Heimendahl, Moritz; Schlattmann, Peter; Houweling, Arthur R; Brecht, Michael

    2014-02-05

    The action potential activity of single cortical neurons can evoke measurable sensory effects, but it is not known how spiking parameters and neuronal subtypes affect the evoked sensations. Here, we examined the effects of spike train irregularity, spike frequency, and spike number on the detectability of single-neuron stimulation in rat somatosensory cortex. For regular-spiking, putative excitatory neurons, detectability increased with spike train irregularity and decreasing spike frequencies but was not affected by spike number. Stimulation of single, fast-spiking, putative inhibitory neurons led to a larger sensory effect compared to regular-spiking neurons, and the effect size depended only on spike irregularity. An ideal-observer analysis suggests that, under our experimental conditions, rats were using integration windows of a few hundred milliseconds or more. Our data imply that the behaving animal is sensitive to single neurons' spikes and even to their temporal patterning. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Role of Cl−–HCO3 − exchanger AE3 in intracellular pH homeostasis in cultured murine hippocampal neurons, and in crosstalk to adjacent astrocytes

    Science.gov (United States)

    Salameh, Ahlam I.; Hübner, Christian A.

    2016-01-01

    Key points A polymorphism of human AE3 is associated with idiopathic generalized epilepsy. Knockout of AE3 in mice lowers the threshold for triggering epileptic seizures. The explanations for these effects are elusive.Comparisons of cells from wild‐type vs. AE3–/– mice show that AE3 (present in hippocampal neurons, not astrocytes; mediates HCO3 – efflux) enhances intracellular pH (pHi) recovery (decrease) from alkali loads in neurons and, surprisingly, adjacent astrocytes.During metabolic acidosis (MAc), AE3 speeds initial acidification, but limits the extent of pHi decrease in neurons and astrocytes.AE3 speeds re‐alkalization after removal of MAc in neurons and astrocytes, and speeds neuronal pHi recovery from an ammonium prepulse‐induced acid load.We propose that neuronal AE3 indirectly increases acid extrusion in (a) neurons via Cl– loading, and (b) astrocytes by somehow enhancing NBCe1 (major acid extruder). The latter would enhance depolarization‐induced alkalinization of astrocytes, and extracellular acidification, and thereby reduce susceptibility to epileptic seizures. Abstract The anion exchanger AE3, expressed in hippocampal (HC) neurons but not astrocytes, contributes to intracellular pH (pHi) regulation by facilitating the exchange of extracellular Cl– for intracellular HCO3 –. The human AE3 polymorphism A867D is associated with idiopathic generalized epilepsy. Moreover, AE3 knockout (AE3–/–) mice are more susceptible to epileptic seizure. The mechanism of these effects has been unclear because the starting pHi in AE3–/– and wild‐type neurons is indistinguishable. The purpose of the present study was to use AE3–/– mice to investigate the role of AE3 in pHi homeostasis in HC neurons, co‐cultured with astrocytes. We find that the presence of AE3 increases the acidification rate constant during pHi recovery from intracellular alkaline loads imposed by reducing [CO2]. The presence of AE3 also speeds intracellular

  19. Neurons Generated by Mouse ESCs with Hippocampal or Cortical Identity Display Distinct Projection Patterns When Co-transplanted in the Adult Brain

    Directory of Open Access Journals (Sweden)

    Marco Terrigno

    2018-03-01

    Full Text Available Summary: The capability of generating neural precursor cells with distinct types of regional identity in vitro has recently opened new opportunities for cell replacement in animal models of neurodegenerative diseases. By manipulating Wnt and BMP signaling, we steered the differentiation of mouse embryonic stem cells (ESCs toward isocortical or hippocampal molecular identity. These two types of cells showed different degrees of axonal outgrowth and targeted different regions when co-transplanted in healthy or lesioned isocortex or in hippocampus. In hippocampus, only precursor cells with hippocampal molecular identity were able to extend projections, contacting CA3. Conversely, isocortical-like cells were capable of extending long-range axonal projections only when transplanted in motor cortex, sending fibers toward both intra- and extra-cortical targets. Ischemic damage induced by photothrombosis greatly enhanced the capability of isocortical-like cells to extend far-reaching projections. Our results indicate that neural precursors generated by ESCs carry intrinsic signals specifying axonal extension in different environments. : In this article, Terrigno and colleagues show that Wnt and BMB signaling control the differentiation of mouse ESCs toward isocortical or hippocampal identity in vitro. The two types of cells contact different regions when transplanted in adult brain. Photothrombotic lesion favors neurite elongation of cortical transplanted cells, which can improve the motor performance after ischemic damage of motor cortex. Keywords: mouse embryonic stem cells, WNT signaling, neuronal identity, transplantation, stroke, cell replacement, isocortex, hippocampus, axonal extension, axonal projection

  20. Hippocampal expression of aryl hydrocarbon receptor nuclear translocator 2 and neuronal PAS domain protein 4 in a rat model of depression.

    Science.gov (United States)

    Zhang, Zhaohui; Fei, Pengge; Mu, Junlin; Li, Wenqiang; Song, Jinggui

    2014-02-01

    The transcription factors aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) and neuronal PAS domain protein 4 (NPAS4) may influence emotion and cognitive function by regulating brain-derived neurotrophic factor expression in the hippocampus. We estimated hippocampal ARNT2 and NPAS4 expression in chronic unexpected mild stress (CUMS) rat model. The possible association was investigated between expression of these transcription factors and depressive behaviors. Behavioral tests were conducted before, during, and after 28 days of group housing or isolation plus CUMS. The sucrose solution consumption test was used to assess changes in interest and pleasure-seeking, and the open field test (OFT) was conducted to measure spontaneous activity and exploratory behavior. Expression levels of ARNT2 and NPAS4 were estimated by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). Compared to controls, rats subjected to isolation plus CUMS exhibited significantly reduced weight gain (t = 9.317, P = 0.000), sucrose consumption (t = 3.756, P = 0.003), horizontal ambulation (t = 2.362, P = 0.041), and number of rearings (vertical motion) (t = 2.268, P = 0.040). Relative hippocampal NPAS4 expression was significantly lower in depression model rats compared to controls (t = 2.995, P = 0.010) but there was no significant difference in hippocampal ARNT2 expression between groups (t = 0.091, P = 0.929). The relationship between the CUMS model of depression and NPAS4 expression requires further exploration.

  1. The effect of chronic stimulation of serotonin receptor type 7 on recognition, passive avoidance memory, hippocampal long-term potentiation, and neuronal apoptosis in the amyloid β protein treated rat.

    Science.gov (United States)

    Shahidi, Siamak; Asl, Sara Soleimani; Komaki, Alireza; Hashemi-Firouzi, Nasrin

    2018-05-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory impairment, neuronal death, and synaptic loss in the hippocampus. Long-term potentiation (LTP), a type of synaptic plasticity, occurs during learning and memory. Serotonin receptor type 7 (5-HTR7) activation is suggested as a possible therapeutic target for AD. The aim of the present study was to examine the effects of chronic treatment with the 5-HTR7 agonist, AS19, on cognitive function, memory, hippocampal plasticity, amyloid beta (Aβ) plaque accumulation, and apoptosis in an adult rat model of AD. AD was induced in rats using Aβ (single 1 μg/μL intracerebroventricular (icv) injection during surgery). The following experimental groups were included: control, sham-operated, Aβ + saline (1 μL icv for 30 days), and Aβ + AS19 (1 μg/μL icv for 30 days) groups. The animals were tested for cognition and memory performance using the novel object recognition and passive avoidance tests, respectively. Next, anesthetized rats were placed in a stereotaxic apparatus for electrode implantation, and field potentials were recorded in the hippocampal dentate gyrus. Lastly, brains were removed and Aβ plaques and neuronal apoptosis were evaluated using Congo red staining and TUNEL assay, respectively. Administration of AS19 in the Aβ rats increased the discrimination index of the novel object recognition test. Furthermore, AS19 treatment decreased time spent in the dark compartment during the passive avoidance test. AS19 also enhanced both the population spike (PS) amplitude and the field excitatory postsynaptic potential (fEPSP) slope evoked potentials of the LTP components. Aβ plaques and neuronal apoptosis were decreased in the AS19-treated Aβ rats. These results indicate that chronic treatment with a 5-HTR7 agonist can prevent Aβ-related impairments in cognition and memory performance by alleviating Aβ plaque accumulation and neuronal apoptosis, hence improving neuronal

  2. IP{sub 3}-dependent intracellular Ca{sup 2+} release is required for cAMP-induced c-fos expression in hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng [Department of Pharmacology, University of Cambridge (United Kingdom); Johnson, Hong W.; Schell, Michael J. [Department of Pharmacology, Uniformed Services University, Bethesda (United States); Lord, Rebecca L. [Department of Biology, University of York (United Kingdom); Chawla, Sangeeta, E-mail: sangeeta.chawla@york.ac.uk [Department of Pharmacology, University of Cambridge (United Kingdom); Department of Biology, University of York (United Kingdom)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca{sup 2+} pool. Black-Right-Pointing-Pointer The submembraneous Ca{sup 2+} pool derives from intracellular ER stores. Black-Right-Pointing-Pointer Expression of IP{sub 3}-metabolizing enzymes inhibits cAMP-induced c-fos expression. Black-Right-Pointing-Pointer SRE-mediated and CRE-mediated gene expression is sensitive to IP{sub 3}-metabolizing enzymes. Black-Right-Pointing-Pointer Intracellular Ca{sup 2+} release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca{sup 2+} and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate information encoded in the spatiotemporal dynamics and magnitude of Ca{sup 2+} and cAMP signals, including some that are Ca{sup 2+}-responsive, some that are cAMP-responsive and some that detect coincident Ca{sup 2+} and cAMP signals. Because Ca{sup 2+} and cAMP can influence each other's amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca{sup 2+} are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca{sup 2+} buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP{sub 3} levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements - the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP{sub 3} metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited

  3. PSD95 suppresses dendritic arbor development in mature hippocampal neurons by occluding the clustering of NR2B-NMDA receptors.

    Directory of Open Access Journals (Sweden)

    Fernando J Bustos

    Full Text Available Considerable evidence indicates that the NMDA receptor (NMDAR subunits NR2A and NR2B are critical mediators of synaptic plasticity and dendritogenesis; however, how they differentially regulate these processes is unclear. Here we investigate the roles of the NR2A and NR2B subunits, and of their scaffolding proteins PSD-95 and SAP102, in remodeling the dendritic architecture of developing hippocampal neurons (2-25 DIV. Analysis of the dendritic architecture and the temporal and spatial expression patterns of the NMDARs and anchoring proteins in immature cultures revealed a strong positive correlation between synaptic expression of the NR2B subunit and dendritogenesis. With maturation, the pruning of dendritic branches was paralleled by a strong reduction in overall and synaptic expression of NR2B, and a significant elevation in synaptic expression of NR2A and PSD95. Using constructs that alter the synaptic composition, we found that either over-expression of NR2B or knock-down of PSD95 by shRNA-PSD95 augmented dendritogenesis in immature neurons. Reactivation of dendritogenesis could also be achieved in mature cultured neurons, but required both manipulations simultaneously, and was accompanied by increased dendritic clustering of NR2B. Our results indicate that the developmental increase in synaptic expression of PSD95 obstructs the synaptic clustering of NR2B-NMDARs, and thereby restricts reactivation of dendritic branching. Experiments with shRNA-PSD95 and chimeric NR2A/NR2B constructs further revealed that C-terminus of the NR2B subunit (tail was sufficient to induce robust dendritic branching in mature hippocampal neurons, and suggest that the NR2B tail is important in recruiting calcium-dependent signaling proteins and scaffolding proteins necessary for dendritogenesis.

  4. Age-related toxicity of amyloid-beta associated with increased pERK and pCREB in primary hippocampal neurons: reversal by blueberry extract.

    Science.gov (United States)

    Brewer, Gregory J; Torricelli, John R; Lindsey, Amanda L; Kunz, Elizabeth Z; Neuman, A; Fisher, Derek R; Joseph, James A

    2010-10-01

    Further clarification is needed to address the paradox that memory formation, aging and neurodegeneration all involve calcium influx, oxyradical production (ROS) and activation of certain signaling pathways. In aged rats and in APP/PS-1 mice, cognitive and hippocampal Ca(2+) dysregulation was reversed by food supplementation with a high antioxidant blueberry extract. Here, we studied whether neurons were an important target of blueberry extract and whether the mechanism involved altered ROS signaling through MAP kinase and cyclic-AMP response element binding protein (CREB), pathways known to be activated in response to amyloid-beta (Aβ). Primary hippocampal neurons were isolated and cultured from embryonic, middle-age or old-age (24 months) rats. Blueberry extract was found to be equally neuroprotective against Aβ neurotoxicity at all ages. Increases in Aβ toxicity with age were associated with age-related increases in immunoreactivity of neurons to pERK and an age-independent increase in pCREB. Treatment with blueberry extract strongly inhibited these increases in parallel with neuroprotection. Simultaneous labeling for ROS and for glutathione with dichlorofluorescein and monochlorobimane showed a mechanism of action of blueberry extract to involve transient ROS generation with an increase in the redox buffer glutathione. We conclude that the increased age-related susceptibility of old-age neurons to Aβ toxicity may be due to higher levels of activation of pERK and pCREB pathways that can be protected by blueberry extract through inhibition of both these pathways through an ROS stress response. These results suggest that the beneficial effects of blueberry extract may involve transient stress signaling and ROS protection that may translate into improved cognition in aging rats and APP/PS1 mice given blueberry extract. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Age-related toxicity of amyloid-beta associated with increased pERK and pCREB in primary hippocampal neurons: reversal by blueberry extract

    Science.gov (United States)

    Brewer, Gregory J.; Torricelli, John R.; Lindsey, Amanda L.; Kunz, Elizabeth Z.; Neuman, A.; Fisher, Derek R.; Joseph, James A.

    2009-01-01

    Further clarification is needed to address the paradox that memory formation, aging and neurodegeneration all involve calcium influx, oxyradical production (ROS) and activation of certain signaling pathways. In aged rats and in APP/PS-1 mice, cognitive and hippocampal Ca2+ dysregulation were reversed by food supplementation with a high antioxidant blueberry extract. Here, we studied whether neurons were an important target of blueberry extract and whether the mechanism involved altered ROS signaling through MAPK and CREB, pathways known to be activated in response to amyloid-beta. Primary hippocampal neurons were isolated and cultured from embryonic, middle-age or old-age (24 months) rats. Blueberry extract was found to be equally neuroprotective against amyloid-beta neurotoxicity at all ages. Increases in amyloid-beta toxicity with age were associated with age-related increases in immunoreactivity of neurons to pERK and an age-independent increase in pCREB. Treatment with blueberry extract strongly inhibited these increases in parallel with neuroprotection. Simultaneous labeling for ROS and for glutathione with dichlorofluorescein and monocholorobimane showed a mechanism of action of blueberry extract to involve transient ROS generation with an increase in the redox buffer, glutathione. We conclude that the increased age-related susceptibility of old-age neurons to amyloid-beta toxicity may be due to higher levels of activation of pERK and pCREB pathways that can be protected by blueberry extract through inhibition of both these pathways through an ROS stress response. These results suggest that the beneficial effects of blueberry extract may involve transient stress signaling and ROS protection that may translate into improved cognition in aging rats and APP/PS1 mice given blueberry extract. PMID:19954954

  6. Activation of Transient Receptor Potential Vanilloid 4 Impairs the Dendritic Arborization of Newborn Neurons in the Hippocampal Dentate Gyrus through the AMPK and Akt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Yujing Tian

    2017-06-01

    Full Text Available Neurite growth is an important process for the adult hippocampal neurogenesis which is regulated by a specific range of the intracellular free Ca2+ concentration ([Ca2+]i. Transient receptor potential vanilloid 4 (TRPV4 is a calcium-permeable channel and activation of it causes an increase in [Ca2+]i. We recently reported that TRPV4 activation promotes the proliferation of stem cells in the adult hippocampal dentate gyrus (DG. The present study aimed to examine the effect of TRPV4 activation on the dendrite morphology of newborn neurons in the adult hippocampal DG. Here, we report that intracerebroventricular injection of the TRPV4 agonist GSK1016790A for 5 days (GSK1016790A-injected mice reduced the number of doublecortin immunopositive (DCX+ cells and DCX+ fibers in the hippocampal DG, showing the impaired dendritic arborization of newborn neurons. The phosphorylated AMP-activated protein kinase (p-AMPK protein level increased from 30 min to 2 h, and then decreased from 1 to 5 days after GSK1016790A injection. The phosphorylated protein kinase B (p-Akt protein level decreased from 30 min to 5 days after GSK1016790A injection; this decrease was markedly attenuated by the AMPK antagonist compound C (CC, but not by the AMPK agonist AICAR. Moreover, the phosphorylated mammalian target of rapamycin (mTOR and p70 ribosomal S6 kinase (p70S6k protein levels were decreased by GSK1016790A; these changes were sensitive to 740 Y-P and CC. The phosphorylation of glycogen synthase kinase 3β (GSK3β at Y216 was increased by GSK1016790A, and this change was accompanied by increased phosphorylation of microtubule-associated protein 2 (MAP2 and collapsin response mediator protein-2 (CRMP-2. These changes were markedly blocked by 740 Y-P and CC. Finally, GSK1016790A-induced decrease of DCX+ cells and DCX+ fibers was markedly attenuated by 740 Y-P and CC, but was unaffected by AICAR. We conclude that TRPV4 activation impairs the dendritic arborization of newborn

  7. Deep learning and shapes similarity for joint segmentation and tracing single neurons in SEM images

    Science.gov (United States)

    Rao, Qiang; Xiao, Chi; Han, Hua; Chen, Xi; Shen, Lijun; Xie, Qiwei

    2017-02-01

    Extracting the structure of single neurons is critical for understanding how they function within the neural circuits. Recent developments in microscopy techniques, and the widely recognized need for openness and standardization provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. In order to look into the fine structure of neurons, we use the Automated Tape-collecting Ultra Microtome Scanning Electron Microscopy (ATUM-SEM) to get images sequence of serial sections of animal brain tissue that densely packed with neurons. Different from other neuron reconstruction method, we propose a method that enhances the SEM images by detecting the neuronal membranes with deep convolutional neural network (DCNN) and segments single neurons by active contour with group shape similarity. We joint the segmentation and tracing together and they interact with each other by alternate iteration that tracing aids the selection of candidate region patch for active contour segmentation while the segmentation provides the neuron geometrical features which improve the robustness of tracing. The tracing model mainly relies on the neuron geometrical features and is updated after neuron being segmented on the every next section. Our method enables the reconstruction of neurons of the drosophila mushroom body which is cut to serial sections and imaged under SEM. Our method provides an elementary step for the whole reconstruction of neuronal networks.

  8. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

    Science.gov (United States)

    Wang, Yan-Juan; Ren, Qing-Guo; Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-03-22

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1-42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1-42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1-42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1-42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

  9. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-12-01

    Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.

  10. Acute 5-HT7 receptor activation increases NMDA-evoked currents and differentially alters NMDA receptor subunit phosphorylation and trafficking in hippocampal neurons.

    Science.gov (United States)

    Vasefi, Maryam S; Yang, Kai; Li, Jerry; Kruk, Jeff S; Heikkila, John J; Jackson, Michael F; MacDonald, John F; Beazely, Michael A

    2013-05-14

    N-methyl-D-aspartate (NMDA) receptors are regulated by several G protein-coupled receptors (GPCRs) as well as receptor tyrosine kinases. Serotonin (5-HT) type 7 receptors are expressed throughout the brain including the thalamus and hippocampus. Long-term (2-24 h) activation of 5-HT7 receptors promotes the expression of neuroprotective growth factor receptors, including the platelet-derived growth factor (PDGF) β receptors which can protect neurons against NMDA-induced neurotoxicity. In contrast to long-term activation of 5-HT7 receptors, acute (5 min) treatment of isolated hippocampal neurons with the 5-HT7 receptor agonist 5-carboxamidotryptamine (5-CT) enhances NMDA-evoked peak currents and this increase in peak currents is blocked by the 5-HT7 receptor antagonist, SB 269970. In hippocampal slices, acute 5-HT7 receptor activation increases NR1 NMDA receptor subunit phosphorylation and differentially alters the phosphorylation state of the NR2B and NR2A subunits. NMDA receptor subunit cell surface expression is also differentially altered by 5-HT7 receptor agonists: NR2B cell surface expression is decreased whereas NR1 and NR2A surface expression are not significantly altered. In contrast to the negative regulatory effects of long-term activation of 5-HT7 receptors on NMDA receptor signaling, acute activation of 5-HT7 receptors promotes NMDA receptor activity. These findings highlight the potential for temporally differential regulation of NMDA receptors by the 5-HT7 receptor.

  11. Neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress in rats with streptozotocin-induced type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Sang Gun Lee

    2015-01-01

    Full Text Available In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxidant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxidation, in the hippocampus. For this study, streptozotocin (75 mg/kg was intraperitoneally injected into adult rats to induce type 1 diabetes. The three experimental parameters were determined at 2, 3, 4 weeks after streptozotocin treatment. Fasting blood glucose levels significantly increased by 20.7-21.9 mM after streptozotocin treatment. The number of antioxidant-like protein-1 immunoreactive neurons significantly decreased in the hippocampal CA1 region, but not the dentate gyrus, 3 weeks after streptozotocin treatment compared to the control group. Malondialdehyde and protein carbonyl levels, which are modified by oxidative stress, significantly increased with a peak at 3 weeks after malondialdehyde treatment, and then decreased 4 weeks after malondialdehyde treatment. These results suggest that neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress 3 weeks after malondialdehyde treatment.

  12. Effects of Nigella sativa on apoptosis and GABAA receptor density in cerebral cortical and hippocampal neurons in pentylenetetrazol induced kindling in rats.

    Science.gov (United States)

    Meral, I; Esrefoglu, M; Dar, K A; Ustunova, S; Aydin, M S; Demirtas, M; Arifoglu, Y

    2016-11-01

    We investigated the effects of Nigella sativa on apoptosis and gamma-aminobutyric acid (GABA A ) receptor density in cerebral cortical and hippocampal neurons in a pentylenetetrazol (PTZ)-induced kindling model in rats. The PTZ kindling model was produced by injecting PTZ in subconvulsive doses to rats on days 1, 3, 5, 8, 10, 12, 15, 17, 19, 22 and 24 of the study into animals of PTZ treated (PTZ) and PTZ + N. sativa treated (PTZ + NS) groups. Clonic and tonic seizures were induced by injecting a convulsive dose of PTZ on day 26 of the study. Rats in the PTZ + NS group were treated also with a 10 mg/kg methanolic extract of N. sativa 2 h before each PTZ injection. Rats in the control group were treated with 4 ml/kg saline. The number of neurons that expressed GABA A receptors in the hippocampus and cerebral cortex of rats in the PTZ and PTZ + NS groups increased significantly. There was no significant difference in the number of GABA A receptors between the PTZ and PTZ + NS groups. GABA A receptor density of the neurons in the cerebral cortex, but not hippocampus, was increased in PTZ group compared to controls. We observed a significant increase in the number of apoptotic neurons in the cerebral cortex of rats of both the PTZ and PTZ + NS groups compared to controls. We observed a significant decrease in the number of the apoptotic neurons in the cerebral cortex of rats in the PTZ + NS group compared to the PTZ group. N. sativa treatment ameliorated the PTZ induced neurodegeneration in the cerebral cortex as reflected by neuronal apoptosis and neuronal GABA A receptor frequency.

  13. Neurosteroids block the increase in intracellular calcium level induced by Alzheimer’s β-amyloid protein in long-term cultured rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Midori Kato-Negishi

    2008-03-01

    Full Text Available Midori Kato-Negishi1, Masahiro Kawahara21Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183- 8526, Japan; 2Department of Analytical Chemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-cho, Nobeoka-shi, Miyazaki 882-8508, JapanAbstract: The neurotoxicity of β-amyloid protein (AβP is implicated in the etiology of Alzheimer’s disease. We previously have demonstrated that AβP forms Ca2+-permeable pores on neuronal membranes, causes a marked increase in intracellular calcium level, and leads to neuronal death. Here, we investigated in detail the features of AβP-induced changes in intracellular Ca2+ level in primary cultured rat hippocampal neurons using a multisite Ca2+- imaging system with fura-2 as a fluorescent probe. Only a small fraction of short-term cultured hippocampal neurons (ca 1 week in vitro exhibited changes in intracellular Ca2+ level after AβP exposure. However, AβP caused an acute increase in intracellular Ca2+ level in long-term cultured neurons (ca 1 month in vitro. The responses to AβP were highly heterogeneous, and immunohistochemical analysis using an antibody to AβP revealed that AβP is deposited on some but not all neurons. Considering that the disruption of Ca2+ homeostasis is the primary event in AβP neurotoxicity, substances that protect neurons from an AβP-induced intracellular Ca2+ level increase may be candidates as therapeutic drugs for Alzheimer’s disease. In line with the search for such protective substances, we found that the preadministration of neurosteroids including dehydroepiandrosterone, dehydroepiandrosterone sulfate, and pregnenolone significantly inhibits the increase in intracellular calcium level induced by AβP. Our results suggest the possible significance of neurosteroids, whose levels are reduced in the elderly, in preventing AβP neurotoxicity

  14. Reward-timing-dependent bidirectional modulation of cortical microcircuits during optical single-neuron operant conditioning.

    Science.gov (United States)

    Hira, Riichiro; Ohkubo, Fuki; Masamizu, Yoshito; Ohkura, Masamichi; Nakai, Junichi; Okada, Takashi; Matsuzaki, Masanori

    2014-11-24

    Animals rapidly adapt to environmental change. To reveal how cortical microcircuits are rapidly reorganized when an animal recognizes novel reward contingency, we conduct two-photon calcium imaging of layer 2/3 motor cortex neurons in mice and simultaneously reinforce the activity of a single cortical neuron with water delivery. Here we show that when the target neuron is not relevant to a pre-trained forelimb movement, the mouse increases the target neuron activity and the number of rewards delivered during 15-min operant conditioning without changing forelimb movement behaviour. The reinforcement bidirectionally modulates the activity of subsets of non-target neurons, independent of distance from the target neuron. The bidirectional modulation depends on the relative timing between the reward delivery and the neuronal activity, and is recreated by pairing reward delivery and photoactivation of a subset of neurons. Reward-timing-dependent bidirectional modulation may be one of the fundamental processes in microcircuit reorganization for rapid adaptation.

  15. Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.

    Science.gov (United States)

    Yang, Yunze; Liu, Xian-Wei; Wang, Hui; Yu, Hui; Guan, Yan; Wang, Shaopeng; Tao, Nongjian

    2018-03-28

    Action potentials in neurons have been studied traditionally by intracellular electrophysiological recordings and more recently by the fluorescence detection methods. Here we describe a label-free optical imaging method that can measure mechanical motion in single cells with a sub-nanometer detection limit. Using the method, we have observed sub-nanometer mechanical motion accompanying the action potential in single mammalian neurons by averaging the repeated action potential spikes. The shape and width of the transient displacement are similar to those of the electrically recorded action potential, but the amplitude varies from neuron to neuron, and from one region of a neuron to another, ranging from 0.2-0.4 nm. The work indicates that action potentials may be studied noninvasively in single mammalian neurons by label-free imaging of the accompanying sub-nanometer mechanical motion.

  16. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting, E-mail: BTZhu@kumc.edu

    2012-07-15

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K{sub 3}) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of

  17. Dual effect of serotonin on the dendritic growth of cultured hippocampal neurons: Involvement of 5-HT1A and 5-HT7 receptors.

    Science.gov (United States)

    Rojas, P S; Aguayo, F; Neira, D; Tejos, M; Aliaga, E; Muñoz, J P; Parra, C S; Fiedler, J L

    2017-12-01

    Serotonin acts through its receptors (5-HTRs) to shape brain networks during development and modulates essential functions in mature brain. The 5-HT 1A R is mainly located at soma of hippocampal neurons early during brain development and its expression gradually shifts to dendrites during postnatal development. The 5-HT 7 R expressed early during hippocampus development, shows a progressive reduction in its expression postnatally. Considering these changes during development, we evaluated in cultured hippocampal neurons whether the 5-HT 1A R and 5-HT 7 R change their expression, modulate dendritic growth, and activate signaling pathways such as ERK1/2, AKT/GSK3β and LIMK/cofilin, which may sustain dendrite outgrowth by controlling cytoskeleton dynamics. We show that mRNA levels of both receptors increase between 2 and 7 DIV; however only protein levels of 5-HT 7 R increase significantly at 7 DIV. The 5-HT 1A R is preferentially distributed in the soma, while 5-HT 7 R displays a somato-dendritic localization at 7 DIV. Through stimulation with 5-HT at 7 DIV during 24h and using specific antagonists, we determined that 5-HT 1A R decreases the number of primary and secondary dendrites and restricts the growth of primary dendrites. The activation of 5-HT 1A R and 5-HT 7 R promotes the growth of short secondary dendrites and triggers ERK1/2 and AKT phosphorylation through MEK and PI3K activation respectively; without changes in the phosphorylation of LIMK and cofilin. We conclude that 5-HT 1A R restricts dendritogenesis and outgrowth of primary dendrites, but that both 5-HT 1A R and 5-HT 7 R promote secondary dendrite outgrowth. These data support the role of 5-HT in neuronal outgrowth during development and provide insight into cellular basis of neurodevelopmental disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. 17-AAG post-treatment ameliorates memory impairment and hippocampal CA1 neuronal autophagic death induced by transient global cerebral ischemia.

    Science.gov (United States)

    Li, Jianxiong; Yang, Fei; Guo, Jia; Zhang, Rongrong; Xing, Xiangfeng; Qin, Xinyue

    2015-06-12

    Neuro-inflammation plays an important role in global cerebral ischemia (GCI). The 72-kDa heat shock protein (Hsp70) has been reported to be involved in the inflammatory response of many central nervous system diseases. Preclinical findings implicate that 17-allylamino-demethoxygeldanamycin (17-AAG), an anticancer drug in clinical, provide neuroprotection actions in a rat model of traumatic brain injury, and the beneficial effects of 17-AAG were specifically due to up-regulation of Hsp70. However, no experiments have tested whether 17-AAG has beneficial or harmful effects in the setting of GCI. The present study was designed to determine the hypothesis that administration of 17-AAG could attenuate cerebral infarction and improve neuronal survival, thereby ameliorating memory impairment in a rat model of GCI. Furthermore, to test whether any neuroprotective effect of 17-AAG was associated with inflammatory response and neuronal autophagy, we examined the expression of multiplex inflammatory cytokine levels as well as autophagy-associate protein in hippocampal CA1 of rat brain. Our results showed that post-GCI administration of 17-AAG significantly protected rats against GCI induced brain injury, and 17-AAG is also an effective antagonist of the inflammatory response and thereby ameliorates hippocampal CA1 neuronal autophagic death. We therefore believe that the present study provides novel clues in understanding the mechanisms by which 17-AAG exerts its neuroprotective activity in GCI. All data reveal that 17-AAG might be a potential neuroprotective agent for ischemic stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Zooming Out of Single Neurons Reveals Structure in Mnemonic Representations.

    Science.gov (United States)

    Jazayeri, Mehrdad

    2017-12-20

    In this issue of Neuron, Rossi-Pool et al. (2017) show that the complex and heterogeneous response profiles of individual neurons in the dorsal premotor cortex during comparison of tactile temporal patterns can be understood in terms of two robust activity patterns that emerge across the population. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    Full Text Available The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC, plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.

  1. Osthole Stimulated Neural Stem Cells Differentiation into Neurons in an Alzheimer's Disease Cell Model via Upregulation of MicroRNA-9 and Rescued the Functional Impairment of Hippocampal Neurons in APP/PS1 Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Shao-Heng Li

    2017-06-01

    Full Text Available Alzheimer's disease (AD is the most serious neurodegenerative disease worldwide and is characterized by progressive cognitive impairment and multiple neurological changes, including neuronal loss in the brain. However, there are no available drugs to delay or cure this disease. Consequently, neuronal replacement therapy may be a strategy to treat AD. Osthole (Ost, a natural coumarin derivative, crosses the blood-brain barrier and exerts strong neuroprotective effects against AD in vitro and in vivo. Recently, microRNAs (miRNAs have demonstrated a crucial role in pathological processes of AD, implying that targeting miRNAs could be a therapeutic approach to AD. In the present study, we investigated whether Ost could enhance cell viability and prevent cell death in amyloid precursor protein (APP-expressing neural stem cells (NSCs as well as promote APP-expressing NSCs differentiation into more neurons by upregulating microRNA (miR-9 and inhibiting the Notch signaling pathway in vitro. In addition, Ost treatment in APP/PS1 double transgenic (Tg mice markedly restored cognitive functions, reduced Aβ plague production and rescued functional impairment of hippocampal neurons. The results of the present study provides evidence of the neurogenesis effects and neurobiological mechanisms of Ost against AD, suggesting that Ost is a promising drug for treatment of AD or other neurodegenerative diseases.

  2. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity.

    Directory of Open Access Journals (Sweden)

    Julia P Brandt

    Full Text Available Many animals possess neurons specialized for the detection of carbon dioxide (CO(2, which acts as a cue to elicit behavioral responses and is also an internally generated product of respiration that regulates animal physiology. In many organisms how such neurons detect CO(2 is poorly understood. We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2. The ETS-5 transcription factor is necessary for the specification of CO(2-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient to bypass a requirement for ets-5 in CO(2-detection and transforms neurons into CO(2-sensing neurons. Because ETS-5 and GCY-9 are members of gene families that are conserved between nematodes and vertebrates, a similar mechanism might act in the specification of CO(2-sensing neurons in other phyla.

  3. Computation in a single neuron: Hodgkin and Huxley revisited

    OpenAIRE

    Arcas, Blaise Aguera y; Fairhall, Adrienne L.; Bialek, William

    2002-01-01

    A spiking neuron ``computes'' by transforming a complex dynamical input into a train of action potentials, or spikes. The computation performed by the neuron can be formulated as dimensional reduction, or feature detection, followed by a nonlinear decision function over the low dimensional space. Generalizations of the reverse correlation technique with white noise input provide a numerical strategy for extracting the relevant low dimensional features from experimental data, and information t...

  4. The GLP-1 Receptor Agonist Exendin-4 and Diazepam Differentially Regulate GABAA Receptor-Mediated Tonic Currents in Rat Hippocampal CA3 Pyramidal Neurons

    Science.gov (United States)

    Korol, Sergiy V.; Jin, Zhe; Birnir, Bryndis

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is a metabolic hormone that is secreted in a glucose-dependent manner and enhances insulin secretion. GLP-1 receptors are also found in the brain where their signalling affects neuronal activity. We have previously shown that the GLP-1 receptor agonists, GLP-1 and exendin-4 enhanced GABA-activated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. The hippocampus is the centre for memory and learning and is important for cognition. Here we examined if exendin-4 similarly enhanced the GABA-activated currents in the presence of the benzodiazepine diazepam. In whole-cell recordings in rat brain slices, diazepam (1 μM), an allosteric positive modulator of GABAA receptors, alone enhanced the spontaneous inhibitory postsynaptic current (sIPSC) amplitude and frequency by a factor of 1.3 and 1.6, respectively, and doubled the tonic GABAA current normally recorded in the CA3 pyramidal cells. Importantly, in the presence of exendin-4 (10 nM) plus diazepam (1 μM), only the tonic but not the sIPSC currents transiently increased as compared to currents recorded in the presence of diazepam alone. The results suggest that exendin-4 potentiates a subpopulation of extrasynaptic GABAA receptors in the CA3 pyramidal neurons. PMID:25927918

  5. Intermittent fasting promotes prolonged associative interactions during synaptic tagging/capture by altering the metaplastic properties of the CA1 hippocampal neurons.

    Science.gov (United States)

    Dasgupta, Ananya; Kim, Joonki; Manakkadan, Anoop; Arumugam, Thiruma V; Sajikumar, Sreedharan

    2017-12-19

    Metaplasticity is the inherent property of a neuron or neuronal population to undergo activity-dependent changes in neural function that modulate subsequent synaptic plasticity. Here we studied the effect of intermittent fasting (IF) in governing the interactions of associative plasticity mechanisms in the pyramidal neurons of rat hippocampal area CA1. Late long-term potentiation and its associative mechanisms such as synaptic tagging and capture at an interval of 120 min were evaluated in four groups of animals, AL (Ad libitum), IF12 (daily IF for 12 h), IF16 (daily IF for 16 h) and EOD (every other day IF for 24 h). IF had no visible effect on the early or late plasticity but it manifested a critical role in prolonging the associative interactions between weak and strong synapses at an interval of 120 min in IF16 and EOD animals. However, both IF12 and AL did not show associativity at 120 min. Plasticity genes such as Bdnf and Prkcz, which are well known for their expressions in late plasticity and synaptic tagging and capture, were significantly upregulated in IF16 and EOD in comparison to AL. Specific inhibition of brain derived neurotropic factor (BDNF) prevented the prolonged associativity expressed in EOD. Thus, daily IF for 16 h or more can be considered to enhance the metaplastic properties of synapses by improving their associative interactions that might translate into animprovedmemoryformation. Copyright © 2017. Published by Elsevier Inc.

  6. The GLP-1 Receptor Agonist Exendin-4 and Diazepam Differentially Regulate GABAA Receptor-Mediated Tonic Currents in Rat Hippocampal CA3 Pyramidal Neurons.

    Directory of Open Access Journals (Sweden)

    Sergiy V Korol

    Full Text Available Glucagon-like peptide-1 (GLP-1 is a metabolic hormone that is secreted in a glucose-dependent manner and enhances insulin secretion. GLP-1 receptors are also found in the brain where their signalling affects neuronal activity. We have previously shown that the GLP-1 receptor agonists, GLP-1 and exendin-4 enhanced GABA-activated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. The hippocampus is the centre for memory and learning and is important for cognition. Here we examined if exendin-4 similarly enhanced the GABA-activated currents in the presence of the benzodiazepine diazepam. In whole-cell recordings in rat brain slices, diazepam (1 μM, an allosteric positive modulator of GABAA receptors, alone enhanced the spontaneous inhibitory postsynaptic current (sIPSC amplitude and frequency by a factor of 1.3 and 1.6, respectively, and doubled the tonic GABAA current normally recorded in the CA3 pyramidal cells. Importantly, in the presence of exendin-4 (10 nM plus diazepam (1 μM, only the tonic but not the sIPSC currents transiently increased as compared to currents recorded in the presence of diazepam alone. The results suggest that exendin-4 potentiates a subpopulation of extrasynaptic GABAA receptors in the CA3 pyramidal neurons.

  7. The Effect of N-acetyl-cysteine on Memory Retrieval and the Number of Intact Neurons of Hippocampal CA1 Area in Streptozotocin-induced Alzheimeric Male Rats

    Directory of Open Access Journals (Sweden)

    Niloufar Darbandi

    2018-01-01

    Full Text Available Abstract Background: Alzheimer is a neurodegenerative disease wich caused memory impairment, reduced cognitive functions, intellectual ability and behavior changes. In this study, the effect of N-acetyl-cysteine (NAC as a strong antioxidant on memory deficiency and number of CA1 pyramidal neurons in Streptozotocine (STZ - induced Alzheimeric rats were studied. Materials and Methods: 32 Male Wistar rats were divided into four groups: sham group, streptozotocin group, treated group with streptozotocin plus N-acetyl-cysteine, and treated group with N-acetyl-cysteine alone. Intracerebroventricular (ICV administration of STZ was done in the first and the third day of surgery and i.p injection of N-acetyl-cysteine was done in the fourth of surgery. After the memory test, the animals were killed and their brains were fixed and density of intact neurons in the CA1 area of the hippocampus was investigated. Statistical analysis was performed with software SPSS, ANOVA and Prisme software. The level of statistical significance was set at p 0.05. Conclusion: N-acetyl-cysteine improved memory retrieval and hippocampal CA1 area intact neurons in streptozotocin-induced Alzheimeric male rats.

  8. Binaural response characteristics of single neurons in the medial superior olivary nucleus of the albino rat.

    Science.gov (United States)

    Inbody, S B; Feng, A S

    1981-04-06

    Binaural response properties of single neurons in the medial superior olivary nucleus (MSO) were investigated in the anesthetized rat. Stimulus parameters studied included interaural time difference and interaural intensity difference. In the present study, of the two cell types observed in the rat MSO nucleus, EE and EI, variations in the binaural response properties of the MSO neurons permitted further subclassifications, which may be related to the dendritic dominance of the MSO neurons.

  9. Prenatal exposure to 1-bromopropane causes delayed adverse effects on hippocampal neuronal excitability in the CA1 subfield of rat offspring.

    Science.gov (United States)

    Fueta, Yukiko; Ishidao, Toru; Ueno, Susumu; Yoshida, Yasuhiro; Kanda, Yasunari; Hori, Hajime

    2018-01-25

    Neurotoxicity of 1-bromopropane (1-BP) has been reported in occupational exposure, but whether the chemical exerts developmental neurotoxicity is unknown. We studied the effects of prenatal 1-BP exposure on neuronal excitability in rat offspring. We exposed dams to 1-BP (700 ppm, 6 h a day for 20 days) and examined hippocampal slices obtained from the male offspring at 2, 5, 8, and 13 weeks of age. We measured the stimulation/response (S/R) relationship and paired-pulse ratios (PPRs) of the population spike (PS) at the interpulse intervals (IPIs) of 5 and 10 ms in the CA1 subfield. Prenatal 1-BP exposure enhanced S/R relationships of PS at 2 weeks of age; however, the enhancement diminished at 5 weeks of age until it reached control levels. Prenatal 1-BP exposure decreased PPRs of PS at 2 weeks of age. After sexual maturation, however, the PPRs of PS increased at 5-ms IPI in rats aged 8 and 13 weeks. Our findings indicate that prenatal 1-BP exposure in dams can cause delayed adverse effects on excitability of pyramidal cells in the hippocampal CA1 subfield of offspring.

  10. Long-Term Plasticity of Astrocytic Metabotropic Neurotransmitter Receptors Driven by Changes in Neuronal Activity in Hippocampal Slices

    OpenAIRE

    Xie, Xiaoqiao

    2011-01-01

    In addition to synaptic communication between neurons, there is now strong evidence for neuron-to-astrocyte receptor signaling in the brain. During trains of action potentials or repetitive stimulation, neurotransmitter spills out of the synapse to activate astrocytic Gq protein-coupled receptors (Gq GPCRs). To date, very little is known about the ability of astrocytic receptors to exhibit plasticity as a result of long-term changes in neuronal firing rates. Here we describe for the first tim...

  11. A cognitive prosthesis for memory facilitation by closed-loop functional ensemble stimulation of hippocampal neurons in primate brain

    OpenAIRE

    Deadwyler, Sam A.; Hampson, Robert E.; Song, Dong; Opris, Ioan; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.

    2016-01-01

    Very productive collaborative investigations characterized how multineuron hippocampal ensembles recorded in nonhuman primates (NHPs) encode short-term memory necessary for successful performance in a delayed match to sample (DMS) task and utilized that information to devise a unique nonlinear multi-input multi-output (MIMO) memory prosthesis device to enhance short-term memory in real-time during task performance. Investigations have characterized how the hippocampus in primate brain encodes...

  12. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity

    DEFF Research Database (Denmark)

    Brandt, Julia P; Aziz-Zaman, Sonya; Juozaityte, Vaida

    2012-01-01

    . We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2). The ETS-5 transcription factor is necessary for the specification of CO(2)-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient...

  13. Single photon emission computed tomography in motor neuron disease with dementia.

    Science.gov (United States)

    Sawada, H; Udaka, F; Kishi, Y; Seriu, N; Mezaki, T; Kameyama, M; Honda, M; Tomonobu, M

    1988-01-01

    Single photon emission computed tomography with [123 I] isopropylamphetamine was carried out on a patient with motor neuron disease with dementia. [123 I] uptake was decreased in the frontal lobes. This would reflect the histopathological findings such as neuronal loss and gliosis in the frontal lobes.

  14. Stochastic optimal control of single neuron spike trains

    DEFF Research Database (Denmark)

    Iolov, Alexandre; Ditlevsen, Susanne; Longtin, Andrë

    2014-01-01

    stimulation of a neuron to achieve a target spike train under the physiological constraint to not damage tissue. Approach. We pose a stochastic optimal control problem to precisely specify the spike times in a leaky integrate-and-fire (LIF) model of a neuron with noise assumed to be of intrinsic or synaptic...... to the spike times (open-loop control). Main results. We have developed a stochastic optimal control algorithm to obtain precise spike times. It is applicable in both the supra-threshold and sub-threshold regimes, under open-loop and closed-loop conditions and with an arbitrary noise intensity; the accuracy...... into account physiological constraints on the control. A precise and robust targeting of neural activity based on stochastic optimal control has great potential for regulating neural activity in e.g. prosthetic applications and to improve our understanding of the basic mechanisms by which neuronal firing...

  15. Neuroprotective effects of Nigella sativa extract on cell death in hippocampal neurons following experimental global cerebral ischemia-reperfusion injury in rats.

    Science.gov (United States)

    Hobbenaghi, R; Javanbakht, J; Sadeghzadeh, Sh; Kheradmand, D; Abdi, F S; Jaberi, M H; Mohammadiyan, M R; Khadivar, F; Mollaei, Y

    2014-02-15

    Global cerebral ischemia followed by reperfusion, leads to extensive neuronal damage, particularly the neurons in the hippocampal CA region. Recent studies have demonstrated that pharmacological agents, such as Nigella sativa L. (Ranunculaceae) that is an annual herbaceous flowering plant, given at the time of reperfusion afforded protection against ischemia, which is referred to as pharmacological post conditioning. The aim of this study was to evaluate the neuroprotective effects of Nigella sativa in the hippocampus neurons of rats exposed to global ischemia/reperfusion. In the present study 30 Wister rats (200-250 g) were divided into 5 groups namely sham (operated without treatment), control (operation with normal saline treatment), and 3 treatment groups with Nigella sativa 1mg/kg, 10mg/kg and 50mg/kg. Firstly, the animals were anesthetized by ketamin and xylazine, and then the right carotid artery was operated upon dissection of the soft tissues around it and ligation by a clamp for 20 min. The Nigella sativa extraction was used during surgery through IP route and after 72 h the animals were euthanized and their brain removed, fixed and prepared for histopathological examinations. In treatment group (1mg/kg) the interstitial neuron frequency which contains cytoplasmic edema, along with CA, was 28 cells, whereas the edematous astrocyte number along with CA in this group was 115 cells. In the treatment group (10mg/kg) the interstitial neurons of cornua ammonis (CA) were 15 and the edematous astrocytes were 122 cells and in the treatment group (50mg/kg) the number of edematous interstitial neurons was 7 cells in distance of 2900 μ of CA. In such group the number of edematous interstitial neurons was less as well. In this group the appearance of CA cells was more similar to control group, not only the edema decreased in interstitial and astrocyte cells, but it dramatically decreased in pyramidal cells. Our study revealed that the Nigella sativa extraction could

  16. A lentiviral sponge for miR-101 regulates RanBP9 expression and amyloid precursor protein metabolism in hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Christian eBarbato

    2014-02-01

    Full Text Available Neurodegeneration associated with amyloid β (Aβ peptide accumulation, synaptic loss, and memory impairment are pathophysiological features of Alzheimer's disease (AD. Numerous microRNAs regulate amyloid precursor protein (APP expression and metabolism. We previously reported that miR-101 is a negative regulator of APP expression in cultured hippocampal neurons. In this study, a search for predicted APP metabolism-associated miR-101 targets led to the identification of a conserved miR-101 binding site within the 3’ untranslated region (UTR of the mRNA encoding Ran-binding protein 9 (RanBP9. RanBP9 increases APP processing by β-amyloid converting enzyme 1 (BACE1, secretion of soluble APPβ (sAPPβ, and generation of Aβ. MiR-101 significantly reduced reporter gene expression when co-transfected with a RanBP9 3'-UTR reporter construct, while site-directed mutagenesis of the predicted miR-101 target site eliminated the reporter response. To investigate the effect of stable inhibition of miR-101 both in vitro and in vivo, a microRNA sponge was developed to bind miR-101 and derepress its targets. Four tandem bulged miR-101 responsive elements (REs, located downstream of the enhanced green fluorescence protein (EGFP open reading frame and driven by the synapsin promoter, were placed in a lentiviral vector to create the pLSyn-miR-101 sponge. Delivery of the sponge to primary hippocampal neurons significantly increased both APP and RanBP9 expression, as well as sAPPβ levels in the conditioned medium. Importantly, silencing of endogenous RanBP9 reduced sAPPβ levels in miR-101 sponge-containing hippocampal cultures, indicating that miR-101 inhibition may increase amyloidogenic processing of APP by RanBP9. Lastly, the impact of miR-101 on its targets was demonstrated in vivo by intrahippocampal injection of the pLSyn-miR-101 sponge into C57BL6 mice. This study thus provides the basis for studying the consequences of long-term miR-101 inhibition on

  17. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks.

    Science.gov (United States)

    Fabbro, Alessandra; Bosi, Susanna; Ballerini, Laura; Prato, Maurizio

    2012-08-15

    In the past decade, nanotechnology applications to the nervous system have often involved the study and the use of novel nanomaterials to improve the diagnosis and therapy of neurological diseases. In the field of nanomedicine, carbon nanotubes are evaluated as promising materials for diverse therapeutic and diagnostic applications. Besides, carbon nanotubes are increasingly employed in basic neuroscience approaches, and they have been used in the design of neuronal interfaces or in that of scaffolds promoting neuronal growth in vitro. Ultimately, carbon nanotubes are thought to hold the potential for the development of innovative neurological implants. In this framework, it is particularly relevant to document the impact of interfacing such materials with nerve cells. Carbon nanotubes were shown, when modified with biologically active compounds or functionalized in order to alter their charge, to affect neurite outgrowth and branching. Notably, purified carbon nanotubes used as scaffolds can promote the formation of nanotube-neuron hybrid networks, able per se to affect neuron integrative abilities, network connectivity, and synaptic plasticity. We focus this review on our work over several years directed to investigate the ability of carbon nanotube platforms in providing a new tool for nongenetic manipulations of neuronal performance and network signaling.

  18. High Content Analysis of Hippocampal Neuron-Astrocyte Co-cultures Shows a Positive Effect of Fortasyn Connect on Neuronal Survival and Postsynaptic Maturation

    Directory of Open Access Journals (Sweden)

    Anne-Lieke F. van Deijk

    2017-08-01

    Full Text Available Neuronal and synaptic membranes are composed of a phospholipid bilayer. Supplementation with dietary precursors for phospholipid synthesis –docosahexaenoic acid (DHA, uridine and choline– has been shown to increase neurite outgrowth and synaptogenesis both in vivo and in vitro. A role for multi-nutrient intervention with specific precursors and cofactors has recently emerged in early Alzheimer's disease, which is characterized by decreased synapse numbers in the hippocampus. Moreover, the medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect (FC, improves memory performance in early Alzheimer's disease patients, possibly via maintaining brain connectivity. This suggests an effect of FC on synapses, but the underlying cellular mechanism is not fully understood. Therefore, we investigated the effect of FC (consisting of DHA, eicosapentaenoic acid (EPA, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C and E, and selenium, on synaptogenesis by supplementing it to primary neuron-astrocyte co-cultures, a cellular model that mimics metabolic dependencies in the brain. We measured neuronal developmental processes using high content screening in an automated manner, including neuronal survival, neurite morphology, as well as the formation and maturation of synapses. Here, we show that FC supplementation resulted in increased numbers of neurons without affecting astrocyte number. Furthermore, FC increased postsynaptic PSD95 levels in both immature and mature synapses. These findings suggest that supplementation with FC to neuron-astrocyte co-cultures increased both neuronal survival and the maturation of postsynaptic terminals, which might aid the functional interpretation of FC-based intervention strategies in neurological diseases characterized by neuronal loss and impaired synaptic functioning.

  19. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA.

    Science.gov (United States)

    Kebschull, Justus M; Garcia da Silva, Pedro; Reid, Ashlan P; Peikon, Ian D; Albeanu, Dinu F; Zador, Anthony M

    2016-09-07

    Neurons transmit information to distant brain regions via long-range axonal projections. In the mouse, area-to-area connections have only been systematically mapped using bulk labeling techniques, which obscure the diverse projections of intermingled single neurons. Here we describe MAPseq (Multiplexed Analysis of Projections by Sequencing), a technique that can map the projections of thousands or even millions of single neurons by labeling large sets of neurons with random RNA sequences ("barcodes"). Axons are filled with barcode mRNA, each putative projection area is dissected, and the barcode mRNA is extracted and sequenced. Applying MAPseq to the locus coeruleus (LC), we find that individual LC neurons have preferred cortical targets. By recasting neuroanatomy, which is traditionally viewed as a problem of microscopy, as a problem of sequencing, MAPseq harnesses advances in sequencing technology to permit high-throughput interrogation of brain circuits. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Expressions of Hippocampal Mineralocorticoid Receptor (MR) and Glucocorticoid Receptor (GR) in the Single-Prolonged Stress-Rats

    International Nuclear Information System (INIS)

    Zhe, Du; Fang, Han; Yuxiu, Shi

    2008-01-01

    Post-traumatic stress disorder (PTSD) is a stress-related mental disorder caused by traumatic experience. Single-prolonged stress (SPS) is one of the animal models proposed for PTSD. Rats exposed to SPS showed enhanced inhibition of the hypothalamo-pituitary-adrenal (HPA) axis, which has been reliably reproduced in patients with PTSD. Mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the hippocampus regulate HPA axis by glucocorticoid negative feedback. Abnormalities in negative feedback are found in PTSD, suggesting that GR and MR might be involved in the pathophysiology of these disorders. In the present study, we performed immunohistochemistry and western blotting to examine the changes in hippocampal MR- and GR-expression after SPS. Immunohistochemistry revealed decreased MR- and GR-immunoreactivity (ir) in the CA1 of hippocampus in SPS animals. Change in GR sub-distribution was also observed, where GR-ir was shifted from nucleus to cytoplasm in SPS rats. Western blotting showed that SPS induced significantly decreased MR- and GR-protein in the whole hippocampus, although the degree of decreased expression of both receptors was different. Meanwhile, we also found the MR/GR ratio decreased in SPS rats. In general, SPS induced down-regulation of MR- and GR-expression. These findings suggest that MR and GR play critical roles in affecting hippocampal function. Changes in MR/GR ratio may be relevant for behavioral syndrome in PTSD

  1. Multiple forms of metaplasticity at a single hippocampal synapse during late postnatal development

    Directory of Open Access Journals (Sweden)

    Daniel G. McHail

    2015-04-01

    Full Text Available Metaplasticity refers to adjustment in the requirements for induction of synaptic plasticity based on the prior history of activity. Numerous forms of developmental metaplasticity are observed at Schaffer collateral synapses in the rat hippocampus at the end of the third postnatal week. Emergence of spatial learning and memory at this developmental stage suggests possible involvement of metaplasticity in the final maturation of the hippocampus. Three distinct metaplastic phenomena are apparent. (1 As transmitter release probability increases with increasing age, presynaptic potentiation is reduced. (2 Alterations in the composition and channel conductance properties of AMPARs facilitate the induction of postsynaptic potentiation with increasing age. (3 Low frequency stimulation inhibits subsequent induction of potentiation in animals older but not younger than 3 weeks of age. Thus, many forms of plasticity expressed at SC-CA1 synapses are different in rats younger and older than 3 weeks of age, illustrating the complex orchestration of physiological modifications that underlie the maturation of hippocampal excitatory synaptic transmission. This review paper describes three late postnatal modifications to synaptic plasticity induction in the hippocampus and attempts to relate these metaplastic changes to developmental alterations in hippocampal network activity and the maturation of contextual learning.

  2. Xenon Reduces Neuronal Hippocampal Damage and Alters the Pattern of Microglial Activation after Experimental Subarachnoid Hemorrhage: A Randomized Controlled Animal Trial

    Directory of Open Access Journals (Sweden)

    Michael Veldeman

    2017-09-01

    Full Text Available ObjectiveThe neuroprotective properties of the noble gas xenon have already been demonstrated using a variety of injury models. Here, we examine for the first time xenon’s possible effect in attenuating early brain injury (EBI and its influence on posthemorrhagic microglial neuroinflammation in an in vivo rat model of subarachnoid hemorrhage (SAH.MethodsSprague-Dawley rats (n = 22 were randomly assigned to receive either Sham surgery (n = 9; divided into two groups or SAH induction via endovascular perforation (n = 13, divided into two groups. Of those randomized for SAH, 7 animals were postoperatively ventilated with 50 vol% oxygen/50 vol% xenon for 1 h and 6 received 50 vol% oxygen/50 vol% nitrogen (control. The animals were sacrificed 24 h after SAH. Of each animal, a cerebral coronal section (−3.60 mm from bregma was selected for assessment of histological damage 24 h after SAH. A 5-point neurohistopathological severity score was applied to assess neuronal cell damage in H&E and NeuN stained sections in a total of four predefined anatomical regions of interest. Microglial activation was evaluated by a software-assisted cell count of Iba-1 stained slices in three cortical regions of interest.ResultsA diffuse cellular damage was apparent in all regions of the ipsilateral hippocampus 24 h after SAH. Xenon-treated animals presented with a milder damage after SAH. This effect was found to be particularly pronounced in the medial regions of the hippocampus, CA3 (p = 0.040, and dentate gyrus (DG p = 0.040. However, for the CA1 and CA2 regions, there were no statistical differences in neuronal damage according to our histological scoring. A cell count of activated microglia was lower in the cortex of xenon-treated animals. This difference was especially apparent in the left piriform cortex (p = 0.017.ConclusionIn animals treated with 50 vol% xenon (for 1 h after SAH, a less pronounced neuronal damage was

  3. Synaptic activity and nuclear calcium signaling protect hippocampal neurons from death signal-associated nuclear translocation of FoxO3a induced by extrasynaptic N-methyl-D-aspartate receptors.

    Science.gov (United States)

    Dick, Oliver; Bading, Hilmar

    2010-06-18

    Synaptic activity and the generation of nuclear calcium signals promote neuronal survival through a transcription-dependent process that is not fully understood. Here we show that one mechanism of activity-induced acquired neuroprotection involves the Forkhead transcription factor, FoxO3a, which is known to induce genomic death responses upon translocation from the cytosol to the nucleus. Depletion of endogenous FoxO3a using RNA interference renders hippocampal neurons more resistant to excitotoxic cell death. Using a FoxO3a-green fluorescent protein (GFP) fusion protein to monitor in real time the localization of FoxO3a in hippocampal neurons, we found that several cell death inducing stimuli, including the stimulation of extrasynaptic N-methyl-D-aspartate receptors, growth factor withdrawal, and oxygen-glucose deprivation, caused a swift translocation of FoxO3a-GFP from the cytosol to the cell nucleus. This translocation was inhibited in hippocampal neurons that had undergone prolonged periods of synaptic activity before exposure to cell death-inducing conditions. The activity-dependent protection from death signal-induced FoxO3a-GFP nuclear translocation required synaptic N-methyl-D-aspartate receptor activation and was dependent on nuclear calcium signaling and calcium/calmodulin-dependent protein kinase IV. The modulation of nucleo-cytoplasmic shuttling of FoxO3a may represent one mechanism through which nuclear calcium-induced genomic responses affect cell death processes.

  4. Synaptic Activity and Nuclear Calcium Signaling Protect Hippocampal Neurons from Death Signal-associated Nuclear Translocation of FoxO3a Induced by Extrasynaptic N-Methyl-d-aspartate Receptors*

    Science.gov (United States)

    Dick, Oliver; Bading, Hilmar

    2010-01-01

    Synaptic activity and the generation of nuclear calcium signals promote neuronal survival through a transcription-dependent process that is not fully understood. Here we show that one mechanism of activity-induced acquired neuroprotection involves the Forkhead transcription factor, FoxO3a, which is known to induce genomic death responses upon translocation from the cytosol to the nucleus. Depletion of endogenous FoxO3a using RNA interference renders hippocampal neurons more resistant to excitotoxic cell death. Using a FoxO3a-green fluorescent protein (GFP) fusion protein to monitor in real time the localization of FoxO3a in hippocampal neurons, we found that several cell death inducing stimuli, including the stimulation of extrasynaptic N-methyl-d-aspartate receptors, growth factor withdrawal, and oxygen-glucose deprivation, caused a swift translocation of FoxO3a-GFP from the cytosol to the cell nucleus. This translocation was inhibited in hippocampal neurons that had undergone prolonged periods of synaptic activity before exposure to cell death-inducing conditions. The activity-dependent protection from death signal-induced FoxO3a-GFP nuclear translocation required synaptic N-methyl-d-aspartate receptor activation and was dependent on nuclear calcium signaling and calcium/calmodulin-dependent protein kinase IV. The modulation of nucleo-cytoplasmic shuttling of FoxO3a may represent one mechanism through which nuclear calcium-induced genomic responses affect cell death processes. PMID:20404335

  5. Stable long-term chronic brain mapping at the single-neuron level.

    Science.gov (United States)

    Fu, Tian-Ming; Hong, Guosong; Zhou, Tao; Schuhmann, Thomas G; Viveros, Robert D; Lieber, Charles M

    2016-10-01

    Stable in vivo mapping and modulation of the same neurons and brain circuits over extended periods is critical to both neuroscience and medicine. Current electrical implants offer single-neuron spatiotemporal resolution but are limited by such factors as relative shear motion and chronic immune responses during long-term recording. To overcome these limitations, we developed a chronic in vivo recording and stimulation platform based on flexible mesh electronics, and we demonstrated stable multiplexed local field potentials and single-unit recordings in mouse brains for at least 8 months without probe repositioning. Properties of acquired signals suggest robust tracking of the same neurons over this period. This recording and stimulation platform allowed us to evoke stable single-neuron responses to chronic electrical stimulation and to carry out longitudinal studies of brain aging in freely behaving mice. Such advantages could open up future studies in mapping and modulating changes associated with learning, aging and neurodegenerative diseases.

  6. Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Cornelia Schmitt

    Full Text Available Optogenetic approaches using light-activated proteins like Channelrhodopsin-2 (ChR2 enable investigating the function of populations of neurons in live Caenorhabditis elegans (and other animals, as ChR2 expression can be targeted to these cells using specific promoters. Sub-populations of these neurons, or even single cells, can be further addressed by restricting the illumination to the cell of interest. However, this is technically demanding, particularly in free moving animals. Thus, it would be helpful if expression of ChR2 could be restricted to single neurons or neuron pairs, as even wide-field illumination would photostimulate only this particular cell. To this end we adopted the use of Cre or FLP recombinases and conditional ChR2 expression at the intersection of two promoter expression domains, i.e. in the cell of interest only. Success of this method depends on precise knowledge of the individual promoters' expression patterns and on relative expression levels of recombinase and ChR2. A bicistronic expression cassette with GFP helps to identify the correct expression pattern. Here we show specific expression in the AVA reverse command neurons and the aversive polymodal sensory ASH neurons. This approach shall enable to generate strains for optogenetic manipulation of each of the 302 C. elegans neurons. This may eventually allow to model the C. elegans nervous system in its entirety, based on functional data for each neuron.

  7. Kaleido: Visualizing Big Brain Data with Automatic Color Assignment for Single-Neuron Images.

    Science.gov (United States)

    Wang, Ting-Yuan; Chen, Nan-Yow; He, Guan-Wei; Wang, Guo-Tzau; Shih, Chi-Tin; Chiang, Ann-Shyn

    2018-03-03

    Effective 3D visualization is essential for connectomics analysis, where the number of neural images easily reaches over tens of thousands. A formidable challenge is to simultaneously visualize a large number of distinguishable single-neuron images, with reasonable processing time and memory for file management and 3D rendering. In the present study, we proposed an algorithm named "Kaleido" that can visualize up to at least ten thousand single neurons from the Drosophila brain using only a fraction of the memory traditionally required, without increasing computing time. Adding more brain neurons increases memory only nominally. Importantly, Kaleido maximizes color contrast between neighboring neurons so that individual neurons can be easily distinguished. Colors can also be assigned to neurons based on biological relevance, such as gene expression, neurotransmitters, and/or development history. For cross-lab examination, the identity of every neuron is retrievable from the displayed image. To demonstrate the effectiveness and tractability of the method, we applied Kaleido to visualize the 10,000 Drosophila brain neurons obtained from the FlyCircuit database ( http://www.flycircuit.tw/modules.php?name=kaleido ). Thus, Kaleido visualization requires only sensible computer memory for manual examination of big connectomics data.

  8. Crypt neurons express a single V1R-related ora gene.

    Science.gov (United States)

    Oka, Yuichiro; Saraiva, Luis R; Korsching, Sigrun I

    2012-03-01

    Both ciliated and microvillous olfactory sensory neuron populations express large families of olfactory receptor genes. However, individual neurons generally express only a single receptor gene according to the "one neuron-one receptor" rule. We report here that crypt neurons, the third type of olfactory neurons in fish species, use an even more restricted mode of expression. We recently identified a novel olfactory receptor family of 6 highly conserved G protein-coupled receptors, the v1r-like ora genes. We show now that a single member of this family, ora4 is expressed in nearly all crypt neurons, whereas the other 5 ora genes are not found in this cell type. Consistent with these findings, ora4 is never coexpressed with any of the remaining 5 ora genes. Furthermore, several lines of evidence indicate the absence of any other olfactory receptor families in crypt neurons. These results suggest that the vast majority of the crypt neuron population may select one and the same olfactory receptor gene, a "one cell type-one receptor" mode of expression. Such an expression pattern is familiar in the visual system, with rhodopsin as the sole light receptor of rod photoreceptor cells, but unexpected in the sense of smell.

  9. Single low doses of MPTP decrease tyrosine hydroxylase expression in the absence of overt neuron loss.

    Science.gov (United States)

    Alam, Gelareh; Edler, Melissa; Burchfield, Shelbie; Richardson, Jason R

    2017-05-01

    Parkinson's disease (PD) is the second most common age-related neurodegenerative disease. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a prototypical neurotoxicant used in mice to mimic primary features of PD pathology including striatal dopamine depletion and dopamine neuron loss in the substantia nigra pars compacta (SNc). In the literature, there are several experimental paradigms involving multiple doses of MPTP that are used to elicit dopamine neuron loss. However, a recent study reported that a single low dose caused significant loss of dopamine neurons. Here, we determined the effect of a single intraperitoneal injection of one of three doses of MPTP (0.1, 2 and 20mg/kg) on dopamine neurons, labeled by tyrosine hydroxylase (TH + ), and total neuron number (Nissl + ) in the SNc using unbiased stereological counting. Data reveal a significant loss of neurons in the SNc (TH + and Nissl + ) only in the group treated with 20mg/kg MPTP. Groups treated with lower dose of MPTP (0.1 and 2mg/kg) only showed significant loss of TH + neurons rather than TH + and Nissl + neurons. Striatal dopamine levels were decreased in the groups treated with 2 and 20mg/kg MPTP and striatal terminal markers including, TH and the dopamine transporter (DAT), were only decreased in the groups treated with 20mg/kg MPTP. These data demonstrate that lower doses of MPTP likely result in loss of TH expression rather than actual dopamine neuron loss in the SN. This finding reinforces the need to measure both total neuron number along with TH + cells in determining dopamine neuron loss. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels.

    Science.gov (United States)

    Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J

    2014-01-01

    This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively "hiding" its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research.

  11. Phasic and tonic type A γ-Aminobutryic acid receptor mediated effect of Withania somnifera on mice hippocampal CA1 pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Janardhan Prasad Bhattarai

    2014-01-01

    Full Text Available Background: In Nepali and Indian system of traditional medicine, Withania somnifera (WS is considered as a rejuvenative medicine to maintain physical and mental health and has also been shown to improve memory consolidation. Objective: In this study, a methanolic extract of WS (mWS was applied on mice hippocampal CA1 neurons to identify the receptors activated by the WS. Materials and Methods: The whole cell patch clamp recordings were performed on CA1 pyramidal neurons from immature mice (7-20 postnatal days. The cells were voltage clamped at -60 mV. Extract of WS root were applied to identify the effect of mWS. Results: The application of mWS (400 ng/μl induced remarkable inward currents (-158.1 ± 28.08 pA, n = 26 on the CA1 pyramidal neurons. These inward currents were not only reproducible but also concentration dependent. mWS-induced inward currents remained persistent in the presence of amino acid receptor blocking cocktail (AARBC containing blockers for the ionotropic glutamate receptors, glycine receptors and voltage-gated Na + channel (Control: -200.3 ± 55.42 pA, AARBC: -151.5 ± 40.58 pA, P > 0.05 suggesting that most of the responses by mWS are postsynaptic events. Interestingly, these inward currents were almost completely blocked by broad GABA A receptor antagonist, bicuculline- 20 μM (BIC (BIC: -1.46 ± 1.4 pA, P < 0.001, but only partially by synaptic GABA A receptor blocker gabazine (1 μM (GBZ: -18.26 ± 4.70 pA, P < 0.01. Conclusion: These results suggest that WS acts on synaptic/extrasynaptic GABA A receptors and may play an important role in the process of memory and neuroprotection via activation of synaptic and extrasynaptic GABA A receptors.

  12. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    International Nuclear Information System (INIS)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok

    2016-01-01

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  13. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin, E-mail: dengbin@tju.edu.cn; Chan, Wai-lok [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2016-06-15

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  14. Sigma-1 (σ₁) receptor deficiency reduces β-amyloid(25-35)-induced hippocampal neuronal cell death and cognitive deficits through suppressing phosphorylation of the NMDA receptor NR2B.

    Science.gov (United States)

    Yin, Jun; Sha, Sha; Chen, Tingting; Wang, Conghui; Hong, Juan; Jie, Pinghui; Zhou, Rong; Li, Lin; Sokabe, Masahiro; Chen, Ling

    2015-02-01

    In early Alzheimer's disease (AD) brain, reduction of sigma-1 receptors (σ1R) is detected. In this study, we employed male heterozygous σ1R knockout (σ1R(+/-)) mice showing normal cognitive performance to investigate association of σ1R deficiency with AD risk. Herein we report that a single injection (i.c.v.) of Aβ(25-35) impaired spatial memory with approximately 25% death of pyramidal cells in the hippocampal CA1 region of WT mice (Aβ(25-35)-WT mice), whereas it did not cause such impairments in σ1R(+/-) mice (Aβ(25-35)-σ1R(+/-) mice). Compared with WT mice, Aβ(25-35)-WT mice showed increased levels of NMDA-activated currents (INMDA) and NR2B phosphorylation (phospho-NR2B) in the hippocampal CA1 region at 48 h after Aβ25-35-injection (post-Aβ(25-35)) followed by approximately 40% decline at 72 h post-Aβ(25-35) of their respective control levels, which was inhibited by the σ1R antagonist NE100. In Aβ(25-35)-WT mice, the administration of NR2B inhibitor Ro25-6981 or NE100 on day 1-4 post-Aβ(25-35) attenuated the memory deficits and loss of pyramidal cells. By contrast, Aβ(25-35)-σ1R(+/-) mice showed a slight increase in the INMDA density and the phospho-NR2B at 48 h or 72 h post-Aβ25-35 compared to σ1R(+/-) mice. Treatment with σ1R agonist PRE084 in Aβ(25-35)-σ1R(+/-) mice caused the same changes in the INMDA density and the phospho-NR2B as those in Aβ(25-35)-WT mice. Furthermore, Aβ(25-35)-σ1R(+/-) mice treated with the NMDA receptor agonist NMDA or PRE084 on day 1-4 post-Aβ(25-35) showed a loss of neuronal cells and memory impairment. These results indicate that the σ1R deficiency can reduce Aβ(25-35)-induced neuronal cell death and cognitive deficits through suppressing Aβ(25-35)-enhanced NR2B phosphorylation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. On the Non-Learnability of a Single Spiking Neuron

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jiří; Sgall, Jiří

    2005-01-01

    Roč. 17, č. 12 (2005), s. 2635-2647 ISSN 0899-7667 R&D Projects: GA ČR GA201/02/1456; GA AV ČR 1ET100300517; GA MŠk LN00A056; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10190503 Keywords : spiking neuron * consistency problem * NP-completness * PAC model * robust learning * representation problem Subject RIV: BA - General Mathematics Impact factor: 2.591, year: 2005

  16. Induction of associative olfactory memory by targeted activation of single olfactory neurons in Drosophila larvae.

    Science.gov (United States)

    Honda, Takato; Lee, Chi-Yu; Yoshida-Kasikawa, Maki; Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2014-04-25

    It has been postulated that associative memory is formed by at least two sets of external stimuli, CS and US, that are transmitted to the memory centers by distinctive conversing pathways. However, whether associative memory can be induced by the activation of only the olfactory CS and a biogenic amine-mediated US pathways remains to be elucidated. In this study, we substituted the reward signals with dTrpA1-mediated thermogenetic activation of octopaminergic neurons and the odor signals by ChR2-mediated optical activation of a specific class of olfactory neurons. We show that targeted activation of the olfactory receptor and the octopaminergic neurons is indeed sufficient for the formation of associative olfactory memory in the larval brain. We also show that targeted stimulation of only a single type of olfactory receptor neurons is sufficient to induce olfactory memory that is indistinguishable from natural memory induced by the activation of multiple olfactory receptor neurons.

  17. Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Hallermann, Stefan; Stuart, Greg J.

    2006-01-01

    The hyperpolarization-activated cation current (Ih) plays an important role in regulating neuronal excitability, yet its native single-channel properties in the brain are essentially unknown. Here we use variance-mean analysis to study the properties of single Ih channels in the apical dendrites of

  18. Frequency-dependent depression of excitatory synaptic transmission is independent of activation of MCPG-sensitive presynaptic metabotropic glutamate receptors in cultured hippocampal neurons.

    Science.gov (United States)

    Maki, R; Cummings, D D; Dichter, M A

    1995-10-01

    1. A paired-pulse paradigm, and a high-frequency train followed by a test pulse, were used to investigate the possible role of presynaptic metabotropic glutamate receptors (mGluRs) in frequency-dependent modulation of the amplitude of excitatory post-synaptic currents (EPSCs). Paired whole cell patch-clamp recordings from monosynaptically connected hippocampal neurons maintained in very low-density cultures were performed, using the mGluR antagonist (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG, 500 microM) and the mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD, 100 microM]. 2. Paired-pulse depression (PPD) was observed in all the excitatory pairs recorded. The average PPD ratio (amplitude of the 2nd EPSC divided by the amplitude of the 1st EPSC) was 0.80 +/- 0.1 (SD) (n = 8). Application of the mGluR antagonist MCPG had no effect on the amplitude of the EPSCs and did not affect the ratio of the two EPSCs (PPD ratio 0.79 +/- 0.2). 3. The amplitudes of 10 successive EPSCs stimulated at a high frequency (20 Hz) decremented on average in both 4 mM extracellular Ca2+ (n = 5) and in 1 mM extracellular Ca2+ (n = 6). In all pairs tested, posttetanic depression (PTD) was observed (PTD ratio 0.7 +/- 0.2). Bath application of MCPG (500 microM) did not affect the amplitudes of the EPSCs during the train; MCPG also did not affect PTD. 4. The mGluR agonist (1S,3R)-ACPD depressed the amplitudes of the EPSCs in both the paired-pulse (1st EPSC, 35 +/- 9%; 2nd EPSC, 36 +/- 10%) and posttetanic pulse (1 and 4 mM extracellular Ca2+) paradigms. The amount of depression observed, both PPD and PTD, remained unaffected by application of (1S,3R)-ACPD. Coapplication of the antagonist MCPG (500 microM) blocked the effects of (1S,3R)-ACPD (100 microM). 5. We conclude that frequency-dependent depression of EPSC amplitudes occurs independent of endogenous activation of MCPG-sensitive mGluRs in cultured hippocampal neurons. Moreover, we demonstrate that exogenous

  19. Creation of defined single cell resolution neuronal circuits on microelectrode arrays

    Science.gov (United States)

    Pirlo, Russell Kirk

    2009-12-01

    The way cell-cell organization of neuronal networks influences activity and facilitates function is not well understood. Microelectrode arrays (MEAs) and advancing cell patterning technologies have enabled access to and control of in vitro neuronal networks spawning much new research in neuroscience and neuroengineering. We propose that small, simple networks of neurons with defined circuitry may serve as valuable research models where every connection can be analyzed, controlled and manipulated. Towards the goal of creating such neuronal networks we have applied microfabricated elastomeric membranes, surface modification and our unique laser cell patterning system to create defined neuronal circuits with single-cell precision on MEAs. Definition of synaptic connectivity was imposed by the 3D physical constraints of polydimethylsiloxane elastomeric membranes. The membranes had 20mum clear-through holes and 2-3mum deep channels which when applied to the surface of the MEA formed microwells to confine neurons to electrodes connected via shallow tunnels to direct neurite outgrowth. Tapering and turning of channels was used to influence neurite polarity. Biocompatibility of the membranes was increased by vacuum baking, oligomer extraction, and autoclaving. Membranes were bound to the MEA by oxygen plasma treatment and heated pressure. The MEA/membrane surface was treated with oxygen plasma, poly-D-lysine and laminin to improve neuron attachment, survival and neurite outgrowth. Prior to cell patterning the outer edge of culture area was seeded with 5x10 5 cells per cm and incubated for 2 days. Single embryonic day 7 chick forebrain neurons were then patterned into the microwells and onto the electrodes using our laser cell patterning system. Patterned neurons successfully attached to and were confined to the electrodes. Neurites extended through the interconnecting channels and connected with adjacent neurons. These results demonstrate that neuronal circuits can be

  20. Simultaneous transcranial magnetic stimulation and single neuron recording in alert non-human primates

    OpenAIRE

    Mueller, Jerel K.; Grigsby, Erinn M.; Prevosto, Vincent; Petraglia, Frank W.; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V.; Sommer, Marc A.; Egner, Tobias; Platt, Michael L.; Grill, Warren M.

    2014-01-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report novel methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally per...

  1. Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones.

    Science.gov (United States)

    Sample, Susannah J; Behan, Mary; Smith, Lesley; Oldenhoff, William E; Markel, Mark D; Kalscheur, Vicki L; Hao, Zhengling; Miletic, Vjekoslav; Muir, Peter

    2008-09-01

    Regulation of load-induced bone formation is considered a local phenomenon controlled by osteocytes, although it has also been hypothesized that functional adaptation may be neuronally regulated. The aim of this study was to examine bone formation in multiple bones, in response to loading of a single bone, and to determine whether adaptation may be neuronally regulated. Load-induced responses in the left and right ulnas and humeri were determined after loading of the right ulna in male Sprague-Dawley rats (69 +/- 16 days of age). After a single period of loading at -760-, -2000-, or -3750-microepsilon initial peak strain, rats were given calcein to label new bone formation. Bone formation and bone neuropeptide concentrations were determined at 10 days. In one group, temporary neuronal blocking was achieved by perineural anesthesia of the brachial plexus with bupivicaine during loading. We found right ulna loading induces adaptive responses in other bones in both thoracic limbs compared with Sham controls and that neuronal blocking during loading abrogated bone formation in the loaded ulna and other thoracic limb bones. Skeletal adaptation was more evident in distal long bones compared with proximal long bones. We also found that the single period of loading modulated bone neuropeptide concentrations persistently for 10 days. We conclude that functional adaptation to loading of a single bone in young rapidly growing rats is neuronally regulated and involves multiple bones. Persistent changes in bone neuropeptide concentrations after a single loading period suggest that plasticity exists in the innervation of bone.

  2. Neurons the decision makers, Part I: The firing function of a single neuron.

    Science.gov (United States)

    Saaty, Thomas

    2017-02-01

    This paper is concerned with understanding synthesis of electric signals in the neural system based on making pairwise comparisons. Fundamentally, every person and every animal are born with the talent to compare stimuli from things that share properties in space or over time. Comparisons always need experience to distinguish among things. Pairwise comparisons are numerically reciprocal. If a value is assigned to the larger of two elements that have a given property when compared with the smaller one, then the smaller has the reciprocal of that value when compared with the larger. Because making comparisons requires the reciprocal property, we need mathematics that can cope with division. There are four division algebras that would allow us to use our reciprocals arising from comparisons: The real numbers, the complex numbers, the non-commutative quaternions and the non-associative octonions. Rather than inferring function as from electric flow in a network, in this paper we infer the flow from function. Neurons fire in response to stimuli and their firings vary relative to the intensities of the stimuli. We believe neurons use some kind of pairwise comparison mechanism to determine when to fire based on the stimuli they receive. The ideas we develop here about flows are used to deduce how a system based on this kind of firing determination works and can be described. Furthermore the firing of neurons requires continuous comparisons. To develop a formula describing the output of these pairwise comparisons requires solving Fredholm's equation of the second kind which is satisfied if and only if a simple functional equation has solutions. The Fourier transform of the real solution of this equation leads to inverse square laws like those that are common in physics. The Fourier transform applied to a complex valued solution leads to Dirac type of firings. Such firings are dense in the very general fields of functions known as Sobolev spaces and thus can be used to

  3. Vitamin C deficiency in early postnatal life impairs spatial memory and reduces the number of hippocampal neurons in guinea pigs

    DEFF Research Database (Denmark)

    Tveden-Nyborg, Pernille Yde; Johansen, Louise Kruse; Raida, Zindy

    2009-01-01

    BACKGROUND: The neonatal brain is particularly vulnerable to imbalances in redox homeostasis because of rapid growth and immature antioxidant systems. Vitamin C has been shown to have a key function in the brain, and during states of deficiency it is able to retain higher concentrations of vitamin...... C than other organs. However, because neurons maintain one of the highest intracellular concentrations of vitamin C in the organism, the brain may still be more sensitive to deficiency despite these preventive measures. OBJECTIVE: The objective was to study the potential link between chronic vitamin...... C deficiency and neuronal damage in newborn guinea pigs. DESIGN: Thirty 6- to 7-d-old guinea pigs were randomly assigned to 2 groups to receive either a vitamin C-sufficient diet or the same diet containing a low concentration of vitamin C (but adequate to prevent scurvy) for 2 mo. Spatial memory...

  4. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Müller Anke

    2010-06-01

    Full Text Available Abstract Background Adult neurogenesis is a particular example of brain plasticity that is partially modulated by the endocannabinoid system. Whereas the impact of synthetic cannabinoids on the neuronal progenitor cells has been described, there has been lack of information about the action of plant-derived extracts on neurogenesis. Therefore we here focused on the effects of Δ9-tetrahydrocannabinol (THC and Cannabidiol (CBD fed to female C57Bl/6 and Nestin-GFP-reporter mice on proliferation and maturation of neuronal progenitor cells and spatial learning performance. In addition we used cannabinoid receptor 1 (CB1 deficient mice and treatment with CB1 antagonist AM251 in Nestin-GFP-reporter mice to investigate the role of the CB1 receptor in adult neurogenesis in detail. Results THC and CBD differed in their effects on spatial learning and adult neurogenesis. CBD did not impair learning but increased adult neurogenesis, whereas THC reduced learning without affecting adult neurogenesis. We found the neurogenic effect of CBD to be dependent on the CB1 receptor, which is expressed over the whole dentate gyrus. Similarly, the neurogenic effect of environmental enrichment and voluntary wheel running depends on the presence of the CB1 receptor. We found that in the absence of CB1 receptors, cell proliferation was increased and neuronal differentiation reduced, which could be related to CB1 receptor mediated signaling in Doublecortin (DCX-expressing intermediate progenitor cells. Conclusion CB1 affected the stages of adult neurogenesis that involve intermediate highly proliferative progenitor cells and the survival and maturation of new neurons. The pro-neurogenic effects of CBD might explain some of the positive therapeutic features of CBD-based compounds.

  5. Pilocarpine-induced seizures trigger differential regulation of microRNA-stability related genes in rat hippocampal neurons

    OpenAIRE

    Kinjo, Erika R.; Higa, Guilherme S. V.; Santos, Bianca A.; de Sousa, Erica; Damico, Marcio V.; Walter, Lais T.; Morya, Edgard; Valle, Angela C.; Britto, Luiz R. G.; Kihara, Alexandre H.

    2016-01-01

    Epileptogenesis in the temporal lobe elicits regulation of gene expression and protein translation, leading to reorganization of neuronal networks. In this process, miRNAs were described as being regulated in a cell-specific manner, although mechanistics of miRNAs activity are poorly understood. The specificity of miRNAs on their target genes depends on their intracellular concentration, reflecting the balance of biosynthesis and degradation. Herein, we confirmed that pilocarpine application ...

  6. Baicalein protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis through inhibition of reactive oxygen species production and CHOP induction

    Science.gov (United States)

    Choi, Ji Hyun; Choi, A Young; Yoon, Hana; Choe, Wonchae; Yoon, Kyung-Sik; Ha, Joohun

    2010-01-01

    Baicalein is one of the major flavonoids in Scutellaria baicalensis Georgi and possesses various effects, including cytoprotection and anti-inflammation. Because endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and cerebral ischemia, we investigated the effects of baicalein on apoptotic death of HT22 mouse hippocampal neuronal cells induced by thapsigargin (TG) and brefeldin A (BFA), two representative ER stress inducers. Apoptosis, reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) were measured by flow cytometry. Expression level and phosphorylation status of ER stress-associated proteins and activation and cleavage of apoptosis-associated proteins were analyzed by Western blot. Baicalein reduced TG- and BFA-induced apoptosis of HT22 cells and activation and cleavage of apoptosis-associated proteins, such as caspase-12 and -3 and poly(ADP-ribose) polymerase. Baicalein also reduced the TG- and BFA-induced expression of ER stress-associated proteins, including C/EBP homologous protein (CHOP) and glucose-regulated protein 78, the cleavage of X-box binding protein-1 and activating transcription factor 6α, and the phosphorylation of eukaryotic initiation factor-2α and mitogen-activated protein kinases, such as p38, JNK, and ERK. Knock-down of CHOP expression by siRNA transfection and specific inhibitors of p38 (SB203580), JNK (SP600125), and ERK (PD98059) as well as anti-oxidant (N-acetylcysteine) reduced TG- or BFA-induced cell death. Baicalein also reduced TG- and BFA-induced ROS accumulation and MMP reduction. Taken together, these results suggest that baicalein could protect HT22 neuronal cells against ER stress-induced apoptosis by reducing CHOP induction as well as ROS accumulation and mitochondrial damage. PMID:20959717

  7. Enantioselectivity of 2,2',3,5',6-Pentachlorobiphenyl (PCB 95) Atropisomers toward Ryanodine Receptors (RyRs) and Their Influences on Hippocampal Neuronal Networks.

    Science.gov (United States)

    Feng, Wei; Zheng, Jing; Robin, Gaëlle; Dong, Yao; Ichikawa, Makoto; Inoue, Yoshihisa; Mori, Tadashi; Nakano, Takeshi; Pessah, Isaac N

    2017-12-19

    Nineteen ortho-substituted PCBs are chiral and found enantioselectively enriched in ecosystems. Their differential actions on biological targets are not understood. PCB 95 (2,2',3,5',6-pentachlorobiphenyl), a chiral PCB of current environmental relevance, is among the most potent toward modifying ryanodine receptors (RyR) function and Ca 2+ signaling. PCB 95 enantiomers are separated and assigned aR- and aS-PCB 95 using three chiral-column HPLC and circular dichroism spectroscopy. Studies of RyR1-enriched microsomes show aR-PCB 95 with >4× greater potency (EC 50 = 0.20 ± 0.05 μM), ∼ 1.3× higher efficacy (B max = 3.74 ± 0.07 μM) in [ 3 H]Ryanodine-binding and >3× greater rates (R = 7.72 ± 0.31 nmol/sec/mg) of Ca 2+ efflux compared with aS-PCB 95, whereas racemate has intermediate activity. aR-PCB 95 has modest selectivity for RyR2, and lower potency than racemate toward the RyR isoform mixture in brain membranes. Chronic exposure of hippocampal neuronal networks to nanomolar PCB 95 during a critical developmental period shows divergent influences on synchronous Ca 2+ oscillation (SCO): rac-PCB 95 increasing and aR-PCB 95 decreasing SCO frequency at 50 nM, although the latter's effects are nonmonotonic at higher concentration. aS-PCB95 shows the greatest influence on inhibiting responses to 20 Hz electrical pulse trains. Considering persistence of PCB 95 in the environment, stereoselectivity toward RyRs and developing neuronal networks may clarify health risks associated with enantioisomeric enrichment of PCBs.

  8. Spiking neurons in a hierarchical self-organizing map model can learn to develop spatial and temporal properties of entorhinal grid cells and hippocampal place cells.

    Directory of Open Access Journals (Sweden)

    Praveen K Pilly

    Full Text Available Medial entorhinal grid cells and hippocampal place cells provide neural correlates of spatial representation in the brain. A place cell typically fires whenever an animal is present in one or more spatial regions, or places, of an environment. A grid cell typically fires in multiple spatial regions that form a regular hexagonal grid structure extending throughout the environment. Different grid and place cells prefer spatially offset regions, with their firing fields increasing in size along the dorsoventral axes of the medial entorhinal cortex and hippocampus. The spacing between neighboring fields for a grid cell also increases along the dorsoventral axis. This article presents a neural model whose spiking neurons operate in a hierarchy of self-organizing maps, each obeying the same laws. This spiking GridPlaceMap model simulates how grid cells and place cells may develop. It responds to realistic rat navigational trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with one or more firing fields that match neurophysiological data about these cells and their development in juvenile rats. The place cells represent much larger spaces than the grid cells, which enable them to support navigational behaviors. Both self-organizing maps amplify and learn to categorize the most frequent and energetic co-occurrences of their inputs. The current results build upon a previous rate-based model of grid and place cell learning, and thus illustrate a general method for converting rate-based adaptive neural models, without the loss of any of their analog properties, into models whose cells obey spiking dynamics. New properties of the spiking GridPlaceMap model include the appearance of theta band modulation. The spiking model also opens a path for implementation in brain-emulating nanochips comprised of networks of noisy spiking neurons with multiple-level adaptive weights for controlling autonomous

  9. Control of βAR- and N-methyl-D-aspartate (NMDA) Receptor-Dependent cAMP Dynamics in Hippocampal Neurons.

    Science.gov (United States)

    Chay, Andrew; Zamparo, Ilaria; Koschinski, Andreas; Zaccolo, Manuela; Blackwell, Kim T

    2016-02-01

    Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs). To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA), and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory.

  10. Quercetin Protects against Okadaic Acid-Induced Injury via MAPK and PI3K/Akt/GSK3β Signaling Pathways in HT22 Hippocampal Neurons.

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    Full Text Available Increasing evidence shows that oxidative stress and the hyperphosphorylation of tau protein play essential roles in the progression of Alzheimer's disease (AD. Quercetin is a major flavonoid that has anti-oxidant, anti-cancer and anti-inflammatory properties. We investigated the neuroprotective effects of quercetin to HT22 cells (a cell line from mouse hippocampal neurons. We found that Okadaic acid (OA induced the hyperphosphorylation of tau protein at Ser199, Ser396, Thr205, and Thr231 and produced oxidative stress to the HT22 cells. The oxidative stress suppressed the cell viability and decreased the levels of lactate dehydrogenase (LDH, superoxide dismutase (SOD, mitochondria membrane potential (MMP and Glutathione peroxidase (GSH-Px. It up-regulated malondialdehyde (MDA production and intracellular reactive oxygen species (ROS. In addition, phosphoinositide 3 kinase/protein kinase B/Glycogen synthase kinase3β (PI3K/Akt/GSK3β and mitogen activated protein kinase (MAPK were also involved in this process. We found that pre-treatment with quercetin can inhibited OA-induced the hyperphosphorylation of tau protein and oxidative stress. Moreover, pre-treatment with quercetin not only inhibited OA-induced apoptosis via the reduction of Bax, and up-regulation of cleaved caspase 3, but also via the inhibition of PI3K/Akt/GSK3β, MAPKs and activation of NF-κB p65. Our findings suggest the therapeutic potential of quercetin to treat AD.

  11. Long-Term Stimulation with Electroacupuncture at DU20 and ST36 Rescues Hippocampal Neuron through Attenuating Cerebral Blood Flow in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Gui-Hua Tian

    2013-01-01

    Full Text Available This study was designed to investigate the effect of long-term electroacupuncture at Baihui (DU20 and Zusanli (ST36 on cerebral microvessels and neurons in CA1 region of hippocampus in spontaneously hypertensive rats (SHR. A total of 45 male Wistar rats and 45 SHR were randomly grouped, with or without electroacupuncture (EA at DU20 and ST36, once every other day for a period of 8 weeks. The mean arterial pressure (MAP was measured once every 2 weeks. Cerebral blood flow (CBF and the number of open microvessels in hippocampal CA1 region were detected by Laser Doppler and immunohistochemistry, respectively. Nissl staining and Western blotting were performed, respectively, to determine hippocampus morphology and proteins that were implicated in the concerning signaling pathways. The results showed that the MAP in SHR increased linearly over the observation period and was significantly reduced following electroacupuncture as compared with sham control SHR rats, while no difference was observed in Wistar rats between EA and sham control. The CBF, learning and memory capacity, and capillary rarefaction of SHR were improved by EA. The upregulation of angiotensin II type I receptor (AT1R, endothelin receptor (ETAR, and endothelin-1 (ET-1 in SHR rats was attenuated by electroacupuncture, suggesting an implication of AT1R, ETAR, and ET-1 pathway in the effect of EA.

  12. Integrative Single-Cell Transcriptomics Reveals Molecular Networks Defining Neuronal Maturation During Postnatal Neurogenesis.

    Science.gov (United States)

    Gao, Yu; Wang, Feifei; Eisinger, Brian E; Kelnhofer, Laurel E; Jobe, Emily M; Zhao, Xinyu

    2017-03-01

    In mammalian hippocampus, new neurons are continuously produced from neural stem cells throughout life. This postnatal neurogenesis may contribute to information processing critical for cognition, adaptation, learning, and memory, and is implicated in numerous neurological disorders. During neurogenesis, the immature neuron stage defined by doublecortin (DCX) expression is the most sensitive to regulation by extrinsic factors. However, little is known about the dynamic biology within this critical interval that drives maturation and confers susceptibility to regulatory signals. This study aims to test the hypothesis that DCX-expressing immature neurons progress through developmental stages via activity of specific transcriptional networks. Using single-cell RNA-seq combined with a novel integrative bioinformatics approach, we discovered that individual immature neurons can be classified into distinct developmental subgroups based on characteristic gene expression profiles and subgroup-specific markers. Comparisons between immature and more mature subgroups revealed novel pathways involved in neuronal maturation. Genes enriched in less mature cells shared significant overlap with genes implicated in neurodegenerative diseases, while genes positively associated with neuronal maturation were enriched for autism-related gene sets. Our study thus discovers molecular signatures of individual immature neurons and unveils potential novel targets for therapeutic approaches to treat neurodevelopmental and neurological diseases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    Science.gov (United States)

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4+SNS-Cre/TdTomato+, 2) IB4−SNS-Cre/TdTomato+, and 3) Parv-Cre/TdTomato+ cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001 PMID:25525749

  14. The role of dendritic non-linearities in single neuron computation

    Directory of Open Access Journals (Sweden)

    Boris Gutkin

    2014-05-01

    Full Text Available Experiment has demonstrated that summation of excitatory post-synaptic protientials (EPSPs in dendrites is non-linear. The sum of multiple EPSPs can be larger than their arithmetic sum, a superlinear summation due to the opening of voltage-gated channels and similar to somatic spiking. The so-called dendritic spike. The sum of multiple of EPSPs can also be smaller than their arithmetic sum, because the synaptic current necessarily saturates at some point. While these observations are well-explained by biophysical models the impact of dendritic spikes on computation remains a matter of debate. One reason is that dendritic spikes may fail to make the neuron spike; similarly, dendritic saturations are sometime presented as a glitch which should be corrected by dendritic spikes. We will provide solid arguments against this claim and show that dendritic saturations as well as dendritic spikes enhance single neuron computation, even when they cannot directly make the neuron fire. To explore the computational impact of dendritic spikes and saturations, we are using a binary neuron model in conjunction with Boolean algebra. We demonstrate using these tools that a single dendritic non-linearity, either spiking or saturating, combined with somatic non-linearity, enables a neuron to compute linearly non-separable Boolean functions (lnBfs. These functions are impossible to compute when summation is linear and the exclusive OR is a famous example of lnBfs. Importantly, the implementation of these functions does not require the dendritic non-linearity to make the neuron spike. Next, We show that reduced and realistic biophysical models of the neuron are capable of computing lnBfs. Within these models and contrary to the binary model, the dendritic and somatic non-linearity are tightly coupled. Yet we show that these neuron models are capable of linearly non-separable computations.

  15. Pilocarpine-induced seizures trigger differential regulation of microRNA-stability related genes in rat hippocampal neurons.

    Science.gov (United States)

    Kinjo, Erika R; Higa, Guilherme S V; Santos, Bianca A; de Sousa, Erica; Damico, Marcio V; Walter, Lais T; Morya, Edgard; Valle, Angela C; Britto, Luiz R G; Kihara, Alexandre H

    2016-02-12

    Epileptogenesis in the temporal lobe elicits regulation of gene expression and protein translation, leading to reorganization of neuronal networks. In this process, miRNAs were described as being regulated in a cell-specific manner, although mechanistics of miRNAs activity are poorly understood. The specificity of miRNAs on their target genes depends on their intracellular concentration, reflecting the balance of biosynthesis and degradation. Herein, we confirmed that pilocarpine application promptly (PAPD4 gene expression in the hippocampus, two genes related to miRNA degradation and stability, respectively. Moreover, SE decreased the number of XRN2-positive cells in the hilus, while reduced the number of PAPD4-positive cells in CA1. XRN2 and PAPD4 levels did not change in calretinin- and CamKII-positive cells, although it was possible to determine that PAPD4, but not XRN2, was upregulated in parvalbumin-positive cells, revealing that SE induction unbalances the accumulation of these functional-opposed proteins in inhibitory interneurons that directly innervate distinct domains of pyramidal cells. Therefore, we were able to disclose a possible mechanism underlying the differential regulation of miRNAs in specific neurons during epileptogenesis.

  16. Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior

    Directory of Open Access Journals (Sweden)

    Anupama Sathyamurthy

    2018-02-01

    Full Text Available To understand the cellular basis of behavior, it is necessary to know the cell types that exist in the nervous system and their contributions to function. Spinal networks are essential for sensory processing and motor behavior and provide a powerful system for identifying the cellular correlates of behavior. Here, we used massively parallel single nucleus RNA sequencing (snRNA-seq to create an atlas of the adult mouse lumbar spinal cord. We identified and molecularly characterized 43 neuronal populations. Next, we leveraged the snRNA-seq approach to provide unbiased identification of neuronal populations that were active following a sensory and a motor behavior, using a transcriptional signature of neuronal activity. This approach can be used in the future to link single nucleus gene expression data with dynamic biological responses to behavior, injury, and disease.

  17. Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior.

    Science.gov (United States)

    Sathyamurthy, Anupama; Johnson, Kory R; Matson, Kaya J E; Dobrott, Courtney I; Li, Li; Ryba, Anna R; Bergman, Tzipporah B; Kelly, Michael C; Kelley, Matthew W; Levine, Ariel J

    2018-02-20

    To understand the cellular basis of behavior, it is necessary to know the cell types that exist in the nervous system and their contributions to function. Spinal networks are essential for sensory processing and motor behavior and provide a powerful system for identifying the cellular correlates of behavior. Here, we used massively parallel single nucleus RNA sequencing (snRNA-seq) to create an atlas of the adult mouse lumbar spinal cord. We identified and molecularly characterized 43 neuronal populations. Next, we leveraged the snRNA-seq approach to provide unbiased identification of neuronal populations that were active following a sensory and a motor behavior, using a transcriptional signature of neuronal activity. This approach can be used in the future to link single nucleus gene expression data with dynamic biological responses to behavior, injury, and disease. Published by Elsevier Inc.

  18. Single fluoxetine treatment before but not after stress prevents stress-induced hippocampal long-term depression and spatial memory retrieval impairment in rats

    Science.gov (United States)

    Han, Huili; Dai, Chunfang; Dong, Zhifang

    2015-01-01

    A growing body of evidence has shown that chronic treatment with fluoxetine, a widely prescribed medication for treatment of depression, can affect synaptic plasticity in the adult central nervous system. However, it is not well understood whether acute fluoxetine influences synaptic plasticity, especially on hippocampal CA1 long-term depression (LTD), and if so, whether it subsequently impacts hippocampal-dependent spatial memory. Here, we reported that LTD facilitated by elevated-platform stress in hippocampal slices was completely prevented by fluoxetine administration (10 mg/kg, i.p.) 30 min before stress. The LTD was not, however, significantly inhibited by fluoxetine administration immediately after stress. Similarly, fluoxetine incubation (10 μM) during electrophysiological recordings also displayed no influence on the stress-facilitated LTD. In addition, behavioral results showed that a single fluoxetine treatment 30 min before but not after acute stress fully reversed the impairment of spatial memory retrieval in the Morris water maze paradigm. Taken together, these results suggest that acute fluoxetine treatment only before, but not after stress, can prevent hippocampal CA1 LTD and spatial memory retrieval impairment caused by behavioral stress in adult animals. PMID:26218751

  19. Single photon emission computed tomography in motor neuron disease with dementia

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, H.; Udaka, F.; Kishi, Y.; Seriu, N.; Ohtani, S.; Abe, K.; Mezaki, T.; Kameyama, M.; Honda, M.; Tomonobu, M.

    1988-12-01

    Single photon emission computed tomography with (123 I) isopropylamphetamine was carried out on a patient with motor neutron disease with dementia. (123 I) uptake was decreased in the frontal lobes. This would reflect the histopathological findings such as neuronal loss and gliosis in the frontal lobes.

  20. Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1

    Directory of Open Access Journals (Sweden)

    Soham Chanda

    2014-08-01

    Full Text Available Direct conversion of nonneural cells to functional neurons holds great promise for neurological disease modeling and regenerative medicine. We previously reported rapid reprogramming of mouse embryonic fibroblasts (MEFs into mature induced neuronal (iN cells by forced expression of three transcription factors: ASCL1, MYT1L, and BRN2. Here, we show that ASCL1 alone is sufficient to generate functional iN cells from mouse and human fibroblasts and embryonic stem cells, indicating that ASCL1 is the key driver of iN cell reprogramming in different cell contexts and that the role of MYT1L and BRN2 is primarily to enhance the neuronal maturation process. ASCL1-induced single-factor neurons (1F-iN expressed mature neuronal markers, exhibited typical passive and active intrinsic membrane properties, and formed functional pre- and postsynaptic structures. Surprisingly, ASCL1-induced iN cells were predominantly excitatory, demonstrating that ASCL1 is permissive but alone not deterministic for the inhibitory neuronal lineage.

  1. Single-cell resolution mapping of neuronal damage in acute focal cerebral ischemia using thallium autometallography.

    Science.gov (United States)

    Stöber, Franziska; Baldauf, Kathrin; Ziabreva, Iryna; Harhausen, Denise; Zille, Marietta; Neubert, Jenni; Reymann, Klaus G; Scheich, Henning; Dirnagl, Ulrich; Schröder, Ulrich H; Wunder, Andreas; Goldschmidt, Jürgen

    2014-01-01

    Neuronal damage shortly after onset or after brief episodes of cerebral ischemia has remained difficult to assess with clinical and preclinical imaging techniques as well as with microscopical methods. We here show, in rodent models of middle cerebral artery occlusion (MCAO), that neuronal damage in acute focal cerebral ischemia can be mapped with single-cell resolution using thallium autometallography (TlAMG), a histochemical technique for the detection of the K(+)-probe thallium (Tl(+)) in the brain. We intravenously injected rats and mice with thallium diethyldithiocarbamate (TlDDC), a lipophilic chelate complex that releases Tl(+) after crossing the blood-brain barrier. We found, within the territories of the affected arteries, areas of markedly reduced neuronal Tl(+) uptake in all animals at all time points studied ranging from 15 minutes to 24 hours after MCAO. In large lesions at early time points, areas with neuronal and astrocytic Tl(+) uptake below thresholds of detection were surrounded by putative penumbral zones with preserved but diminished Tl(+) uptake. At 24 hours, the areas of reduced Tl(+)uptake matched with areas delineated by established markers of neuronal damage. The results suggest the use of (201)TlDDC for preclinical and clinical single-photon emission computed tomography (SPECT) imaging of hyperacute alterations in brain K(+) metabolism and prediction of tissue viability in cerebral ischemia.

  2. Single-cell resolution mapping of neuronal damage in acute focal cerebral ischemia using thallium autometallography

    Science.gov (United States)

    Stöber, Franziska; Baldauf, Kathrin; Ziabreva, Iryna; Harhausen, Denise; Zille, Marietta; Neubert, Jenni; Reymann, Klaus G; Scheich, Henning; Dirnagl, Ulrich; Schröder, Ulrich H; Wunder, Andreas; Goldschmidt, Jürgen

    2014-01-01

    Neuronal damage shortly after onset or after brief episodes of cerebral ischemia has remained difficult to assess with clinical and preclinical imaging techniques as well as with microscopical methods. We here show, in rodent models of middle cerebral artery occlusion (MCAO), that neuronal damage in acute focal cerebral ischemia can be mapped with single-cell resolution using thallium autometallography (TlAMG), a histochemical technique for the detection of the K+-probe thallium (Tl+) in the brain. We intravenously injected rats and mice with thallium diethyldithiocarbamate (TlDDC), a lipophilic chelate complex that releases Tl+ after crossing the blood–brain barrier. We found, within the territories of the affected arteries, areas of markedly reduced neuronal Tl+ uptake in all animals at all time points studied ranging from 15 minutes to 24 hours after MCAO. In large lesions at early time points, areas with neuronal and astrocytic Tl+ uptake below thresholds of detection were surrounded by putative penumbral zones with preserved but diminished Tl+ uptake. At 24 hours, the areas of reduced Tl+uptake matched with areas delineated by established markers of neuronal damage. The results suggest the use of 201TlDDC for preclinical and clinical single-photon emission computed tomography (SPECT) imaging of hyperacute alterations in brain K+ metabolism and prediction of tissue viability in cerebral ischemia. PMID:24129748

  3. Neural Plasticity: Single Neuron Models for Discrimination and Generalization and AN Experimental Ensemble Approach.

    Science.gov (United States)

    Munro, Paul Wesley

    A special form for modification of neuronal response properties is described in which the change in the synaptic state vector is parallel to the vector of afferent activity. This process is termed "parallel modification" and its theoretical and experimental implications are examined. A theoretical framework has been devised to describe the complementary functions of generalization and discrimination by single neurons. This constitutes a basis for three models each describing processes for the development of maximum selectivity (discrimination) and minimum selectivity (generalization) by neurons. Strengthening and weakening of synapses is expressed as a product of the presynaptic activity and a nonlinear modulatory function of two postsynaptic variables--namely a measure of the spatially integrated activity of the cell and a temporal integration (time-average) of that activity. Some theorems are given for low-dimensional systems and computer simulation results from more complex systems are discussed. Model neurons that achieve high selectivity mimic the development of cat visual cortex neurons in a wide variety of rearing conditions. A role for low-selectivity neurons is proposed in which they provide inhibitory input to neurons of the opposite type, thereby suppressing the common component of a pattern class and enhancing their selective properties. Such contrast-enhancing circuits are analyzed and supported by computer simulation. To enable maximum selectivity, the net inhibition to a cell must become strong enough to offset whatever excitation is produced by the non-preferred patterns. Ramifications of parallel models for certain experimental paradigms are analyzed. A methodology is outlined for testing synaptic modification hypotheses in the laboratory. A plastic projection from one neuronal population to another will attain stable equilibrium under periodic electrical stimulation of constant intensity. The perturbative effect of shifting this intensity level

  4. Single bumps in a 2-population homogenized neuronal network model

    Science.gov (United States)

    Kolodina, Karina; Oleynik, Anna; Wyller, John

    2018-05-01

    We investigate existence and stability of single bumps in a homogenized 2-population neural field model, when the firing rate functions are given by the Heaviside function. The model is derived by means of the two-scale convergence technique of Nguetseng in the case of periodic microvariation in the connectivity functions. The connectivity functions are periodically modulated in both the synaptic footprint and in the spatial scale. The bump solutions are constructed by using a pinning function technique for the case where the solutions are independent of the local variable. In the weakly modulated case the generic picture consists of two bumps (one narrow and one broad bump) for each admissible set of threshold values for firing. In addition, a new threshold value regime for existence of bumps is detected. Beyond the weakly modulated regime the number of bumps depends sensitively on the degree of heterogeneity. For the latter case we present a configuration consisting of three coexisting bumps. The linear stability of the bumps is studied by means of the spectral properties of a Fredholm integral operator, block diagonalization of this operator and the Fourier decomposition method. In the weakly modulated regime, one of the bumps is unstable for all relative inhibition times, while the other one is stable for small and moderate values of this parameter. The latter bump becomes unstable as the relative inhibition time exceeds a certain threshold. In the case of the three coexisting bumps detected in the regime of finite degree of heterogeneity, we have at least one stable bump (and maximum two stable bumps) for small and moderate values of the relative inhibition time.

  5. Single-molecule folding mechanism of an EF-hand neuronal calcium sensor

    DEFF Research Database (Denmark)

    Heiðarsson, Pétur Orri; Otazo, Mariela R.; Bellucci, Luca

    2013-01-01

    EF-hand calcium sensors respond structurally to changes in intracellular Ca2+ concentration, triggering diverse cellular responses and resulting in broad interactomes. Despite impressive advances in decoding their structure-function relationships, the folding mechanism of neuronal calcium sensors...... is still elusive. We used single-molecule optical tweezers to study the folding mechanism of the human neuronal calcium sensor 1 (NCS1). Two intermediate structures induced by Ca2+ binding to the EF-hands were observed during refolding. The complete folding of the C domain is obligatory for the folding...

  6. A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation.

    Science.gov (United States)

    Feng, Peihua; Wu, Ying; Zhang, Jiazhong

    2017-01-01

    Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN) neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior.

  7. Ketamine Affects the Neurogenesis of the Hippocampal Dentate Gyrus in 7-Day-Old Rats.

    Science.gov (United States)

    Huang, He; Liu, Cun-Ming; Sun, Jie; Hao, Ting; Xu, Chun-Mei; Wang, Dan; Wu, Yu-Qing

    2016-08-01

    Ketamine has been reported to cause neonatal neurotoxicity via a neuronal apoptosis mechanism; however, no in vivo research has reported whether ketamine could affect postnatal neurogenesis in the hippocampal dentate gyrus (DG). A growing number of experiments suggest that postnatal hippocampal neurogenesis is the foundation of maintaining normal hippocampus function into adulthood. Therefore, this study investigated the effect of ketamine on hippocampal neurogenesis. Male Sprague-Dawley rats were divided into two groups: the control group (equal volume of normal saline), and the ketamine-anesthesia group (40 mg/kg ketamine in four injections at 1 h intervals). The S-phase marker 5-bromodeoxyuridine (BrdU) was administered after ketamine exposure to postnatal day 7 (PND-7) rats, and the neurogenesis in the hippocampal DG was assessed using single- or double-immunofluorescence staining. The expression of GFAP in the hippocampal DG was measured by western blot analysis. Spatial reference memory was tested by Morris water maze at 2 months after PND-7 rats exposed to ketamine treatment. The present results showed that neonatal ketamine exposure significantly inhibited neural stem cell (NSC) proliferation, decreased astrocytic differentiation, and markedly enhanced neuronal differentiation. The disruptive effect of ketamine on the proliferation and differentiation of NSCs lasted at least 1 week and disappeared by 2 weeks after ketamine exposure. Moreover, the migration of newborn neurons in the granule cell layer and the growth of astrocytes in the hippocampal DG were inhibited by ketamine on PND-37 and PND-44. Finally, ketamine caused a deficit in hippocampal-dependent spatial reference memory tasks at 2 months old. Our results suggested that ketamine may interfere with hippocampal neurogenesis and long-term neurocognitive function in PND-7 rats. These findings may provide a new perspective to explain the adult neurocognitive dysfunction induced by neonatal

  8. Synergistic combinations of five single drugs from Centella asiatica for neuronal differentiation.

    Science.gov (United States)

    Lin, Jinjin; Jiang, Hui; Ding, Xianting

    2017-01-01

    To identify alternatives of nerve growth factor, which could promote NF68 protein expression and contribute toward neuronal differentiation, five compounds namely: asiatic acid, madecassic, madecassoside, quercetin, and isoquercetin, obtained from Centella asiatica, were examined for their neuronal differentiation effects on PC12 cells. C. asiatica has been applied as an effective herbal medicine for the treatment of various diseases, including depression. According to a statistical design of experiments, both single compound and compound combinations were evaluated. A further statistical analysis indicated quantitative interactions between these five single compounds and led to the identification of the optimal drug combinations. Asiatic acid and madecassic appeared to show profound synergistic effects on neurofilaments expression in vitro. The optimized drug combinations were significantly more potent than single drugs and further investigation suggested that the optimal drug combination could be an analogue of nerve growth factor and could represent a potential treatment for neurodegenerative diseases.

  9. Effects of amyloid β-peptide fragment 31-35 on the BK channel-mediated K⁺ current and intracellular free Ca²⁺ concentration of hippocampal CA1 neurons.

    Science.gov (United States)

    Zhang, Yu; Shi, Zhi-Gang; Wang, Zhi-Hua; Li, Jian-Guo; Chen, Jin-Yuan; Zhang, Ce

    2014-05-07

    The present study characterizes the effects of Aβ31-35, a short active fragment of amyloid β-peptide (Aβ), upon the BK channel-mediated K⁺ current and intracellular free Ca²⁺ concentration ([Ca²⁺]i) of freshly dissociated pyramidal cells from rat CA1 hippocampus by using whole-cell patch-clamp recording and single cell Ca²⁺ imaging techniques. The results show that: (1) in the presence of voltage- and ATP-gated K⁺ channel blockers application of 5.0 μM Aβ31-35 significantly diminished transient outward K⁺ current amplitudes at clamped voltages between 0 and 45mV; (2) under the same conditions [Ca²⁺]i was minimally affected by 5.0 μM but significantly increased by 12.5 μM and 25 μM Aβ31-35; and (3) when 25 μM of a larger fragment of the amyloid β-peptide, Aβ25-35, was applied, the results were similar to those obtained with the same concentration of Aβ31-35. These results indicate that Aβ31-35 is likely to be the shortest active fragment of the full Aβ sequence, and can be as effectively as the full-length Aβ peptide in suppressing BK-channel mediated K⁺ currents and significantly elevating [Ca²⁺]i in hippocampal CA1 neurons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Hippocampal “Time Cells”: Time versus Path Integration

    Science.gov (United States)

    Kraus, Benjamin J.; Robinson, Robert J.; White, John A.; Eichenbaum, Howard; Hasselmo, Michael E.

    2014-01-01

    SUMMARY Recent studies have reported the existence of hippocampal “time cells,” neurons that fire at particular moments during periods when behavior and location are relatively constant. However, an alternative explanation of apparent time coding is that hippocampal neurons “path integrate” to encode the distance an animal has traveled. Here, we examined hippocampal neuronal firing patterns as rats ran in place on a treadmill, thus “clamping” behavior and location, while we varied the treadmill speed to distinguish time elapsed from distance traveled. Hippocampal neurons were strongly influenced by time and distance, and less so by minor variations in location. Furthermore, the activity of different neurons reflected integration over time and distance to varying extents, with most neurons strongly influenced by both factors and some significantly influenced by only time or distance. Thus, hippocampal neuronal networks captured both the organization of time and distance in a situation where these dimensions dominated an ongoing experience. PMID:23707613

  11. Gamma radiation-induced Impairment of hippocampal neurogenesis, comparison of single and fractionated dose regimens

    International Nuclear Information System (INIS)

    Khoshbin khoshnazar, A. R; Jahanshahi, M; Azami, N. S

    2012-01-01

    Radiation therapy of the brain is associated with many consequences, including cognitive disorders. Pathogenesis of radiation induced cognitive disorder is not clear, but reduction of neurogenesis in hippocampus may be an underlying reason. 24 adult male rats entered to study. Radiation absorbed dose to midbrain was 10 Gy, delivered by routine cobalt radiotherapy machine which its output was measured 115.24 cGy/min. The rats were divided in four groups of sixes, including groups of control, single fraction 10 Gy, fractionated 10 Gy and finally anaesthesia sham group. Number of pyramidal nerve cells was counted in two regions of hippocampus formation (CA1 and CA3). The radiation could reduce the number of cells in two regions of hippocampus significantly (p=0.000). It seems fractionated 10 Gy irradiation to more efficient than single fraction, while role of anaesthesia drug should be cautiously assessed. Moreover the rate of neurogenesis reduction was determined the same in these regions of hippocampus meaning the same radiosensitivity of cells

  12. The role of rosemary extract in degeneration of hippocampal neurons induced by kainic acid in the rat: A behavioral and histochemical approach.

    Science.gov (United States)

    Naderali, Elahe; Nikbakht, Farnaz; Ofogh, Sattar Norouzi; Rasoolijazi, Homa

    2018-01-01

    Systemic Kainic Acid (KA) administration has been used to induce experimental temporal lobe epilepsy in rats. The aim of this study was to evaluate the neuroprotective effect of rosemary extract (RE, 40% Carnosic acid) against KA-induced neurotoxicity in hippocampus and impaired learning and memory. Animals received a single dose of KA (9.5 mg/kg) intraperitoneally (i.p.) (KA group) and were observed for 2 h and were scored from 0 (for normal, no convulsion) to 5 (for continuous generalized limbic seizures). RE (100 mg/kg, orally) was administered daily for 23 days, starting a week before KA injection (KA+RE group). Neuronal degeneration in hippocampus was demonstrated by using Fluoro-Jade B immunofluorescence. The number of pyramidal cells in hippocampus was evaluated by Nissl staining. Also, the Morris Water Maze and Shuttle box have been used to assess spatial memory and passive avoidance learning, respectively. Our results revealed that, after treatment with RE, neuronal loss in CA1 decreased significantly in the animals in KA+RE group. The Morris water navigation task results revealed that spatial memory impairment decreased in the animals in KA+RE group. Furthermore, results in Shuttle box test showed that passive avoidance learning impairment significantly, upgraded in the animals in KA+RE group. These results suggest that RE may improve the spatial and working memory deficits and also neuronal degeneration induced by toxicity of KA in the rat hippocampus, due to its antioxidant activities.

  13. G gene-deficient single-round rabies viruses for neuronal circuit analysis.

    Science.gov (United States)

    Ghanem, Alexander; Conzelmann, Karl-Klaus

    2016-05-02

    Rhabdoviruses like the neurotropic rabies virus are fully amenable to pseudotyping with homologous and heterologous membrane proteins, which is being harnessed for the study of viral envelope proteins, viral retargeting, or immunization purposes. Particularly, pseudotyped delta G rabies viruses are emerging as safe and superb tools for mapping direct synaptic connections and analyzing neuronal circuits in the central and peripheral nervous system, which is a fundamental pillar of modern neuroscience. Such retrograde rabies mono-transsynaptic tracers in combination with optogenetics and modern in vivo imaging methods are opening entirely new avenues of investigation in neuroscience and help in answering major outstanding questions of connectivity and function of the nervous system. Here, we provide a brief overview on the biology and life cycle of rabies virus with emphasis on neuronal infection via axon ends, transport, and transsynaptic transmission of the virus. Pseudotyping of single-round, G-deleted virus with foreign glycoproteins allows to determine tropism and entry route, resulting in either retro- or anterograde labeling of neurons. Pseudotyping in vitro also allows specific targeting of cells that serve as starter cells for transsynaptic tracing, and pseudotyping in situ for a single (mono-transsynaptic) step of transmission to presynaptic neurons. We describe principle and experimental variations for defining "starter" cells for mono-transsynaptic tracing with ΔG rabies virus and outline open questions and limitations of the approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Audio-vocal interaction in single neurons of the monkey ventrolateral prefrontal cortex.

    Science.gov (United States)

    Hage, Steffen R; Nieder, Andreas

    2015-05-06

    Complex audio-vocal integration systems depend on a strong interconnection between the auditory and the vocal motor system. To gain cognitive control over audio-vocal interaction during vocal motor control, the PFC needs to be involved. Neurons in the ventrolateral PFC (VLPFC) have been shown to separately encode the sensory perceptions and motor production of vocalizations. It is unknown, however, whether single neurons in the PFC reflect audio-vocal interactions. We therefore recorded single-unit activity in the VLPFC of rhesus monkeys (Macaca mulatta) while they produced vocalizations on command or passively listened to monkey calls. We found that 12% of randomly selected neurons in VLPFC modulated their discharge rate in response to acoustic stimulation with species-specific calls. Almost three-fourths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of vocalization. Based on these audio-vocal interactions, the VLPFC might be well positioned to combine higher order auditory processing with cognitive control of the vocal motor output. Such audio-vocal integration processes in the VLPFC might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2015 the authors 0270-6474/15/357030-11$15.00/0.

  15. Synaptic and intrinsic homeostasis cooperate to optimize single neuron response properties and tune integrator circuits

    Science.gov (United States)

    2016-01-01

    Homeostatic processes that provide negative feedback to regulate neuronal firing rate are essential for normal brain function, and observations suggest that multiple such processes may operate simultaneously in the same network. We pose two questions: why might a diversity of homeostatic pathways be necessary, and how can they operate in concert without opposing and undermining each other? To address these questions, we perform a computational and analytical study of cell-intrinsic homeostasis and synaptic homeostasis in single-neuron and recurrent circuit models. We demonstrate analytically and in simulation that when two such mechanisms are controlled on a long time scale by firing rate via simple and general feedback rules, they can robustly operate in tandem to tune the mean and variance of single neuron's firing rate to desired goals. This property allows the system to recover desired behavior after chronic changes in input statistics. We illustrate the power of this homeostatic tuning scheme by using it to regain high mutual information between neuronal input and output after major changes in input statistics. We then show that such dual homeostasis can be applied to tune the behavior of a neural integrator, a system that is notoriously sensitive to variation in parameters. These results are robust to variation in goals and model parameters. We argue that a set of homeostatic processes that appear to redundantly regulate mean firing rate may work together to control firing rate mean and variance and thus maintain performance in a parameter-sensitive task such as integration. PMID:27306675

  16. Variations in interpulse interval of double action potentials during propagation in single neurons.

    Science.gov (United States)

    Villagran-Vargas, Edgar; Rodríguez-Sosa, Leonardo; Hustert, Reinhold; Blicher, Andreas; Laub, Katrine; Heimburg, Thomas

    2013-02-01

    In this work, we analyzed the interpulse interval (IPI) of doublets and triplets in single neurons of three biological models. Pulse trains with two or three spikes originate from the process of sensory mechanotransduction in neurons of the locust femoral nerve, as well as through spontaneous activity both in the abdominal motor neurons and the caudal photoreceptor of the crayfish. We show that the IPI for successive low-frequency single action potentials, as recorded with two electrodes at two different points along a nerve axon, remains constant. On the other hand, IPI in doublets either remains constant, increases or decreases by up to about 3 ms as the pair propagates. When IPI increases, the succeeding pulse travels at a slower speed than the preceding one. When IPI is reduced, the succeeding pulse travels faster than the preceding one and may exceed the normal value for the specific neuron. In both cases, IPI increase and reduction, the speed of the preceding pulse differs slightly from the normal value, therefore the two pulses travel at different speeds in the same nerve axon. On the basis of our results, we may state that the effect of attraction or repulsion in doublets suggests a tendency of the spikes to reach a stable configuration. We strongly suggest that the change in IPI during spike propagation of doublets opens up a whole new realm of possibilities for neural coding and may have major implications for understanding information processing in nervous systems. Copyright © 2012 Wiley Periodicals, Inc.

  17. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity

    Science.gov (United States)

    Li, Chang-Lin; Li, Kai-Cheng; Wu, Dan; Chen, Yan; Luo, Hao; Zhao, Jing-Rong; Wang, Sa-Shuang; Sun, Ming-Ming; Lu, Ying-Jin; Zhong, Yan-Qing; Hu, Xu-Ye; Hou, Rui; Zhou, Bei-Bei; Bao, Lan; Xiao, Hua-Sheng; Zhang, Xu

    2016-01-01

    Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. PMID:26691752

  18. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors.

    Science.gov (United States)

    Kuramoto, Eriko; Pan, Shixiu; Furuta, Takahiro; Tanaka, Yasuhiro R; Iwai, Haruki; Yamanaka, Atsushi; Ohno, Sachi; Kaneko, Takeshi; Goto, Tetsuya; Hioki, Hiroyuki

    2017-01-01

    The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Effects of dynamic synapses on noise-delayed response latency of a single neuron

    Science.gov (United States)

    Uzuntarla, M.; Ozer, M.; Ileri, U.; Calim, A.; Torres, J. J.

    2015-12-01

    The noise-delayed decay (NDD) phenomenon emerges when the first-spike latency of a periodically forced stochastic neuron exhibits a maximum for a particular range of noise intensity. Here, we investigate the latency response dynamics of a single Hodgkin-Huxley neuron that is subject to both a suprathreshold periodic stimulus and a background activity arriving through dynamic synapses. We study the first-spike latency response as a function of the presynaptic firing rate f . This constitutes a more realistic scenario than previous works, since f provides a suitable biophysically realistic parameter to control the level of activity in actual neural systems. We first report on the emergence of classical NDD behavior as a function of f for the limit of static synapses. Second, we show that when short-term depression and facilitation mechanisms are included at the synapses, different NDD features can be found due to their modulatory effect on synaptic current fluctuations. For example, an intriguing double NDD (DNDD) behavior occurs for different sets of relevant synaptic parameters. Moreover, depending on the balance between synaptic depression and synaptic facilitation, single NDD or DNDD can prevail, in such a way that synaptic facilitation favors the emergence of DNDD whereas synaptic depression favors the existence of single NDD. Here we report the existence of the DNDD effect in the response latency dynamics of a neuron.

  20. Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheocromocytoma cells or rat hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Rodney P O'Connor

    Full Text Available In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an "electromagnetic smog", with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+ homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012-2 W/Kg, thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP(3-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates were analysed to explore potential impact of

  1. Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheocromocytoma cells or rat hippocampal neurons.

    Science.gov (United States)

    O'Connor, Rodney P; Madison, Steve D; Leveque, Philippe; Roderick, H Llewelyn; Bootman, Martin D

    2010-07-27

    In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an "electromagnetic smog", with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+) homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012-2 W/Kg), thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons) that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP(3)-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates) were analysed to explore potential impact of radiofrequency field

  2. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression

    Directory of Open Access Journals (Sweden)

    Brandon H. Cline

    2015-02-01

    Full Text Available Central insulin receptor-mediated signalling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response and neuropsychiatric disorders including depression. Dicholine succinate (DS, a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviours and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioural and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signalling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies.

  3. Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq.

    Science.gov (United States)

    Pandey, Shristi; Shekhar, Karthik; Regev, Aviv; Schier, Alexander F

    2018-04-02

    The identification of cell types and marker genes is critical for dissecting neural development and function, but the size and complexity of the brain has hindered the comprehensive discovery of cell types. We combined single-cell RNA-seq (scRNA-seq) with anatomical brain registration to create a comprehensive map of the zebrafish habenula, a conserved forebrain hub involved in pain processing and learning. Single-cell transcriptomes of ∼13,000 habenular cells with 4× cellular coverage identified 18 neuronal types and dozens of marker genes. Registration of marker genes onto a reference atlas created a resource for anatomical and functional studies and enabled the mapping of active neurons onto neuronal types following aversive stimuli. Strikingly, despite brain growth and functional maturation, cell types were retained between the larval and adult habenula. This study provides a gene expression atlas to dissect habenular development and function and offers a general framework for the comprehensive characterization of other brain regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Moderate exercise ameliorates dysregulated hippocampal glycometabolism and memory function in a rat model of type 2 diabetes.

    Science.gov (United States)

    Shima, Takeru; Matsui, Takashi; Jesmin, Subrina; Okamoto, Masahiro; Soya, Mariko; Inoue, Koshiro; Liu, Yu-Fan; Torres-Aleman, Ignacio; McEwen, Bruce S; Soya, Hideaki

    2017-03-01

    Type 2 diabetes is likely to be an independent risk factor for hippocampal-based memory dysfunction, although this complication has yet to be investigated in detail. As dysregulated glycometabolism in peripheral tissues is a key symptom of type 2 diabetes, it is hypothesised that diabetes-mediated memory dysfunction is also caused by hippocampal glycometabolic dysfunction. If so, such dysfunction should also be ameliorated with moderate exercise by normalising hippocampal glycometabolism, since 4 weeks of moderate exercise enhances memory function and local hippocampal glycogen levels in normal animals. The hippocampal glycometabolism in OLETF rats (model of human type 2 diabetes) was assessed and, subsequently, the effects of exercise on memory function and hippocampal glycometabolism were investigated. OLETF rats, which have memory dysfunction, exhibited higher levels of glycogen in the hippocampus than did control rats, and breakdown of hippocampal glycogen with a single bout of exercise remained unimpaired. However, OLETF rats expressed lower levels of hippocampal monocarboxylate transporter 2 (MCT2, a transporter for lactate to neurons). Four weeks of moderate exercise improved spatial memory accompanied by further increase in hippocampal glycogen levels and restoration of MCT2 expression independent of neurotrophic factor and clinical symptoms in OLETF rats. Our findings are the first to describe detailed profiles of glycometabolism in the type 2 diabetic hippocampus and to show that 4 weeks of moderate exercise improves memory dysfunction in type 2 diabetes via amelioration of dysregulated hippocampal glycometabolism. Dysregulated hippocampal lactate-transport-related glycometabolism is a possible aetiology of type-2-diabetes-mediated memory dysfunction.

  5. Long-term culture of rat hippocampal neurons at low density in serum-free medium: combination of the sandwich culture technique with the three-dimensional nanofibrous hydrogel PuraMatrix.

    Science.gov (United States)

    Kaneko, Ai; Sankai, Yoshiyuki

    2014-01-01

    The primary culture of neuronal cells plays an important role in neuroscience. There has long been a need for methods enabling the long-term culture of primary neurons at low density, in defined serum-free medium. However, the lower the cell density, the more difficult it is to maintain the cells in culture. Therefore, we aimed to develop a method for long-term culture of neurons at low density, in serum-free medium, without the need for a glial feeder layer. Here, we describe the work leading to our determination of a protocol for long-term (>2 months) primary culture of rat hippocampal neurons in serum-free medium at the low density of 3×10(4) cells/mL (8.9×10(3) cells/cm2) without a glial feeder layer. Neurons were cultured on a three-dimensional nanofibrous hydrogel, PuraMatrix, and sandwiched under a coverslip to reproduce the in vivo environment, including the three-dimensional extracellular matrix, low-oxygen conditions, and exposure to concentrated paracrine factors. We examined the effects of varying PuraMatrix concentrations, the timing and presence or absence of a coverslip, the timing of neuronal isolation from embryos, cell density at plating, medium components, and changing the medium or not on parameters such as developmental pattern, cell viability, neuronal ratio, and neurite length. Using our method of combining the sandwich culture technique with PuraMatrix in Neurobasal medium/B27/L-glutamine for primary neuron culture, we achieved longer neurites (≥3,000 µm), greater cell viability (≥30%) for 2 months, and uniform culture across the wells. We also achieved an average neuronal ratio of 97%, showing a nearly pure culture of neurons without astrocytes. Our method is considerably better than techniques for the primary culture of neurons, and eliminates the need for a glial feeder layer. It also exhibits continued support for axonal elongation and synaptic activity for long periods (>6 weeks).

  6. Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates.

    Science.gov (United States)

    Mueller, Jerel K; Grigsby, Erinn M; Prevosto, Vincent; Petraglia, Frank W; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V; Sommer, Marc A; Egner, Tobias; Platt, Michael L; Grill, Warren M

    2014-08-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report new methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally perturbed by stimulation artifact in awake monkeys (Macaca mulatta). We recorded action potentials within ∼1 ms after 0.4-ms TMS pulses and observed changes in activity that differed significantly for active stimulation as compared with sham stimulation. This methodology is compatible with standard equipment in primate laboratories, allowing easy implementation. Application of these tools will facilitate the refinement of next generation TMS devices, experiments and treatment protocols.

  7. Simultaneous transcranial magnetic stimulation and single neuron recording in alert non-human primates

    Science.gov (United States)

    Mueller, Jerel K.; Grigsby, Erinn M.; Prevosto, Vincent; Petraglia, Frank W.; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V.; Sommer, Marc A.; Egner, Tobias; Platt, Michael L.; Grill, Warren M.

    2014-01-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report novel methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally perturbed by stimulation artifact in intact, awake monkeys (Macaca mulatta). We recorded action potentials within ~1 ms after 0.4 ms TMS pulses and observed changes in activity that differed significantly for active stimulation as compared to sham stimulation. The methodology is compatible with standard equipment in primate laboratories, allowing for easy implementation. Application of these new tools will facilitate the refinement of next generation TMS devices, experiments, and treatment protocols. PMID:24974797

  8. A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    Peihua Feng

    2017-10-01

    Full Text Available Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 < ω < 2.208, chaotic motion characterizes the main behavior type. The mechanism of mode transition from quasi-periodic to chaotic motion is also observed when varying the amplitude of external electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior.

  9. Effects of Arc/Arg3.1 gene deletion on rhythmic synchronization of hippocampal CA1 neurons during locomotor activity and sleep.

    Science.gov (United States)

    Malkki, Hemi A I; Mertens, Paul E C; Lankelma, Jan V; Vinck, Martin; van Schalkwijk, Frank J; van Mourik-Donga, Laura B; Battaglia, Francesco P; Mahlke, Claudia; Kuhl, Dietmar; Pennartz, Cyriel M A

    2016-05-01

    The activity-regulated cytoskeletal-associated protein/activity regulated gene (Arc/Arg3.1) is crucial for long-term synaptic plasticity and memory formation. However, the neurophysiological substrates of memory deficits occurring in the absence of Arc/Arg3.1 are unknown. We compared hippocampal CA1 single-unit and local field potential (LFP) activity in Arc/Arg3.1 knockout and wild-type mice during track running and flanking sleep periods. Locomotor activity, basic firing and spatial coding properties of CA1 cells in knockout mice were not different from wild-type mice. During active behavior, however, knockout animals showed a significantly shifted balance in LFP power, with a relative loss in high-frequency (beta-2 and gamma) bands compared to low-frequency bands. Moreover, during track-running, knockout mice showed a decrease in phase locking of spiking activity to LFP oscillations in theta, beta and gamma bands. Sleep architecture in knockout mice was not grossly abnormal. Sharp-wave ripples, which have been associated with memory consolidation and replay, showed only minor differences in dynamics and amplitude. Altogether, these findings suggest that Arc/Arg3.1 effects on memory formation are not only manifested at the level of molecular pathways regulating synaptic plasticity, but also at the systems level. The disrupted power balance in theta, beta and gamma rhythmicity and concomitant loss of spike-field phase locking may affect memory encoding during initial storage and memory consolidation stages. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Single-Cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks Involved in the Central Circadian Clock.

    Science.gov (United States)

    Park, James; Zhu, Haisun; O'Sullivan, Sean; Ogunnaike, Babatunde A; Weaver, David R; Schwaber, James S; Vadigepalli, Rajanikanth

    2016-01-01

    Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN). Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile