WorldWideScience

Sample records for single highly active

  1. Design of high-activity single-atom catalysts via n-p codoping

    Science.gov (United States)

    Wang, Xiaonan; Zhou, Haiyan; Zhang, Xiaoyang; Jia, Jianfeng; Wu, Haishun

    2018-03-01

    The large-scale synthesis of stable single-atom catalysts (SACs) in experiments remains a significant challenge due to high surface free energy of metal atom. Here, we propose a concise n-p codoping approach, and find it can not only disperse the relatively inexpensive metal, copper (Cu), onto boron (B)-doped graphene, but also result in high-activity SACs. We use CO oxidation on B/Cu codoped graphene as a prototype example, and demonstrate that: (1) a stable SAC can be formed by stronger electrostatic attraction between the metal atom (n-type Cu) and support (p-type B-doped graphene). (2) the energy barrier of the prototype CO oxidation on B/Cu codoped graphene is 0.536 eV by the Eley-Rideal mechanism. Further analysis shows that the spin selection rule can provide well theoretical insight into high activity of our suggested SAC. The concept of n-p codoping may lead to new strategy in large-scale synthesis of stable single-atom catalysts.

  2. Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds.

    Science.gov (United States)

    Peng, Yuhan; Geng, Zhigang; Zhao, Songtao; Wang, Liangbing; Li, Hongliang; Wang, Xu; Zheng, Xusheng; Zhu, Junfa; Li, Zhenyu; Si, Rui; Zeng, Jie

    2018-06-13

    Single-atom catalysts exhibit high selectivity in hydrogenation due to their isolated active sites, which ensure uniform adsorption configurations of substrate molecules. Compared with the achievement in catalytic selectivity, there is still a long way to go in exploiting the catalytic activity of single-atom catalysts. Herein, we developed highly active and selective catalysts in selective hydrogenation by embedding Pt single atoms in the surface of Ni nanocrystals (denoted as Pt 1 /Ni nanocrystals). During the hydrogenation of 3-nitrostyrene, the TOF numbers based on surface Pt atoms of Pt 1 /Ni nanocrystals reached ∼1800 h -1 under 3 atm of H 2 at 40 °C, much higher than that of Pt single atoms supported on active carbon, TiO 2 , SiO 2 , and ZSM-5. Mechanistic studies reveal that the remarkable activity of Pt 1 /Ni nanocrystals derived from sufficient hydrogen supply because of spontaneous dissociation of H 2 on both Pt and Ni atoms as well as facile diffusion of H atoms on Pt 1 /Ni nanocrystals. Moreover, the ensemble composed of the Pt single atom and nearby Ni atoms in Pt 1 /Ni nanocrystals leads to the adsorption configuration of 3-nitrostyrene favorable for the activation of nitro groups, accounting for the high selectivity for 3-vinylaniline.

  3. A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruxi [Virginia Polytechnic Institute and State University (Virginia Tech); Wang, Fei [ORNL; Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech); Burgos, Rolando [ABB; Lai, Rixin [General Electric; Ning, Puqi [ORNL; Rajashekara, Kaushik [Rolls Royce

    2011-01-01

    It is well known that single-phase pulse width modulation rectifiers have second-order harmonic currents and corresponding ripple voltages on the dc bus. The low-frequency harmonic current is normally filtered using a bulk capacitor in the bus, which results in low power density. However, pursuing high power density in converter design is a very important goal in the aerospace applications. This paper studies methods for reducing the energy storage capacitor for single-phase rectifiers. The minimum ripple energy storage requirement is derived independently of a specific topology. Based on theminimum ripple energy requirement, the feasibility of the active capacitor s reduction schemes is verified. Then, we propose a bidirectional buck boost converter as the ripple energy storage circuit, which can effectively reduce the energy storage capacitance. The analysis and design are validated by simulation and experimental results.

  4. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction.

    Science.gov (United States)

    Yang, Liu; Cheng, Daojian; Xu, Haoxiang; Zeng, Xiaofei; Wan, Xin; Shui, Jianglan; Xiang, Zhonghua; Cao, Dapeng

    2018-06-26

    It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The half-wave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm -2 Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.

  5. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Rok Gaber

    2013-11-01

    Full Text Available To effectively fight against the human immunodeficiency virus infection/ acquired immunodeficiency syndrome (HIV/AIDS epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity.

  6. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    Science.gov (United States)

    Gaber, Rok; Majerle, Andreja; Jerala, Roman; Benčina, Mojca

    2013-01-01

    To effectively fight against the human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET)-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity. PMID:24287545

  7. Analysis and design of a parallel-connected single active bridge DC-DC converter for high-power wind farm applications

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2013-01-01

    This paper presents a parallel-connected Single Active Bridge (SAB) dc-dc converter for high-power applications. Paralleling lower-power converters can lower the current rating of each modular converter and interleaving the outputs can significantly reduce the magnitudes of input and output curre...

  8. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  9. Single and multi-frequency impedance characterization of symmetric activated carbon single capacitor cells

    Directory of Open Access Journals (Sweden)

    Suzana Sopčić

    2018-05-01

    Full Text Available Electrochemical impedance spectroscopy (EIS technique is used for characterization of single cell symmetric capacitors having different mass loadings of activated carbon (AC. Relevant values of charge storage capacitance (CT and internal resistance (ESR were evaluated by the single frequency and multi-frequency analyses of measured impedance spectra. Curve fittings were based on the non-ideal R-C model that takes into account the parasitic inductance, contributions from electrode materials/contacts and the effects of AC porosity. Higher CT and lower ESR values were obtained not only for the cell with higher mass of AC, but also using the single vs. multi-frequency approach. Lower CT and higher values of ESR that are generally obtained using the multi-frequency method and curve fittings should be related to the not ideal capacitive response of porous AC material and too high frequency chosen in applying the single frequency analysis.

  10. Raman-Activated Droplet Sorting (RADS) for Label-Free High-Throughput Screening of Microalgal Single-Cells.

    Science.gov (United States)

    Wang, Xixian; Ren, Lihui; Su, Yetian; Ji, Yuetong; Liu, Yaoping; Li, Chunyu; Li, Xunrong; Zhang, Yi; Wang, Wei; Hu, Qiang; Han, Danxiang; Xu, Jian; Ma, Bo

    2017-11-21

    Raman-activated cell sorting (RACS) has attracted increasing interest, yet throughput remains one major factor limiting its broader application. Here we present an integrated Raman-activated droplet sorting (RADS) microfluidic system for functional screening of live cells in a label-free and high-throughput manner, by employing AXT-synthetic industrial microalga Haematococcus pluvialis (H. pluvialis) as a model. Raman microspectroscopy analysis of individual cells is carried out prior to their microdroplet encapsulation, which is then directly coupled to DEP-based droplet sorting. To validate the system, H. pluvialis cells containing different levels of AXT were mixed and underwent RADS. Those AXT-hyperproducing cells were sorted with an accuracy of 98.3%, an enrichment ratio of eight folds, and a throughput of ∼260 cells/min. Of the RADS-sorted cells, 92.7% remained alive and able to proliferate, which is equivalent to the unsorted cells. Thus, the RADS achieves a much higher throughput than existing RACS systems, preserves the vitality of cells, and facilitates seamless coupling with downstream manipulations such as single-cell sequencing and cultivation.

  11. Novel approaches for single molecule activation and detection

    CERN Document Server

    Benfenati, Fabio; Torre, Vincent

    2014-01-01

    How can we obtain tools able to process and exchange information at the molecular scale In order to do this, it is necessary to activate and detect single molecules under controlled conditions. This book focuses on the generation of biologically-inspired molecular devices. These devices are based on the developments of new photonic tools able to activate and stimulate single molecule machines. Additionally, new light sensitive molecules can be selectively activated by photonic tools. These technological innovations will provide a way to control activation of single light-sensitive molecules, a

  12. High Electrocatalytic Activity of Vertically Aligned Single-Walled Carbon Nanotubes towards Sulfide Redox Shuttles.

    Science.gov (United States)

    Hao, Feng; Dong, Pei; Zhang, Jing; Zhang, Yongchang; Loya, Phillip E; Hauge, Robert H; Li, Jianbao; Lou, Jun; Lin, Hong

    2012-01-01

    Vertically aligned single-walled carbon nanotubes (VASWCNTs) have been successfully transferred onto transparent conducting oxide glass and implemented as efficient low-cost, platinum-free counter electrode in sulfide -mediated dye-sensitized solar cells (DSCs), featuring notably improved electrocatalytic activity toward thiolate/disulfide redox shuttle over conventional Pt counter electrodes. Impressively, device with VASWCNTs counter electrode demonstrates a high fill factor of 0.68 and power conversion efficiency up to 5.25%, which is significantly higher than 0.56 and 3.49% for that with a conventional Pt electrode. Moreover, VASWCNTs counter electrode produces a charge transfer resistance of only 21.22 Ω towards aqueous polysulfide electrolyte commonly applied in quantum dots-sensitized solar cells (QDSCs), which is several orders of magnitude lower than that of a typical Pt electrode. Therefore, VASWCNTs counter electrodes are believed to be a versatile candidate for further improvement of the power conversion efficiency of other iodine-free redox couple based DSCs and polysulfide electrolyte based QDSCs.

  13. Multiple single-unit long-term tracking on organotypic hippocampal slices using high-density microelectrode arrays

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2016-11-01

    Full Text Available A novel system to cultivate and record from organotypic brain slices directly on high-density microelectrode arrays (HD-MEA was developed. This system allows for continuous recording of electrical activity of specific individual neurons at high spatial resolution while monitoring at the same time, neuronal network activity. For the first time, the electrical activity patterns of single neurons and the corresponding neuronal network in an organotypic hippocampal slice culture were studied during several consecutive weeks at daily intervals. An unsupervised iterative spike-sorting algorithm, based on PCA and k-means clustering, was developed to assign the activities to the single units. Spike-triggered average extracellular waveforms of an action potential recorded across neighboring electrodes, termed ‘footprints’ of single-units were generated and tracked over weeks. The developed system offers the potential to study chronic impacts of drugs or genetic modifications on individual neurons in slice preparations over extended times.

  14. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity

    Science.gov (United States)

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2013-12-01

    Objective. Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  15. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity.

    Science.gov (United States)

    Cowley, Benjamin R; Kaufman, Matthew T; Butler, Zachary S; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V; Yu, Byron M

    2013-12-01

    Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.

  16. DataHigh: Graphical user interface for visualizing and interacting with high-dimensional neural activity

    Science.gov (United States)

    Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.

    2014-01-01

    Objective Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than three, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance DataHigh was developed to fulfill a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity. PMID:24216250

  17. Production of propylene from 1-butene on highly active "bi-functional single active site" catalyst: Tungsten carbene-hydride supported on alumina

    KAUST Repository

    Mazoyer, Etienne; Szeto, Kaï Chung; Norsic, Sé bastien; Garron, Anthony; Basset, Jean-Marie; Nicholas, Christopher P.; Taoufik, Mostafa

    2011-01-01

    1-Butene is transformed in a continuous flow reactor over tungsten hydrides precursor W-H/Al2O3, 1, giving a promising yield into propylene at 150 °C and different pressures. Tungsten carbene-hydride single active site operates as a "bi

  18. Load compensation for single phase system using series active filter

    African Journals Online (AJOL)

    user

    Keywords: Active power filter (APF), current source type of harmonic load ... Single phase active filters could attract less attention than three phase due to its low ..... Generalised single-phase p-q theory for active power filtering: simulation and.

  19. Unearthing a Well-Defined Highly Active Bimetallic W/Ti Precatalyst Anchored on a Single Silica Surface for Metathesis of Propane

    KAUST Repository

    Samantaray, Manoja; Kavitake, Santosh Giridhar; Morlanes, Natalia Sanchez; Abou-Hamad, Edy; Hamieh, Ali Imad Ali; Dey, Raju; Basset, Jean-Marie

    2017-01-01

    Two compatible organometallic complexes, W(Me)(6) (1) and TiNp4 (2), were successively anchored on a highly dehydroxylated single silica support (SiO2-700) to synthesize the well-defined bimetallic precatalyst [(equivalent to Si-O-)W(Me)(5)(equivalent to Si-O-)Ti(Np)(3)] (4). Precatalyst 4 was characterized at the molecular level using advanced surface organometallic chemistry (SOMC) characterization techniques. The strong autocorrelation observed between methyl of W and Ti in H-1-H-1 multiple-quantum NMR spectra demonstrates that W and Ti species are in close proximity to each other. The bimetallic precatalyst 4, with a turnover number (TON) of 9784, proved to be significantly more efficient than the silica-supported monometallic catalyst [(equivalent to Si-O-)W(Me)(5)] (3), with a TON of 98, for propane metathesis at 150 degrees C in a flow reactor. The dramatic improvement in the activity signifies the cooperativity between Ti and W and indicates that the key step of alkane metathesis (C-H bond activation followed by beta-H elimination) occurs on Ti, followed by olefin metathesis, which occurs on W. We have demonstrated the influence and importance of proximity of Ti to W for achieving such a significantly high activity. This is the first report demonstrating the considerably high activity (TON = 9784) in propane metathesis at moderate temperature (150 degrees C) using a well-defined bimetallic system prepared via the SOMC approach.

  20. Unearthing a Well-Defined Highly Active Bimetallic W/Ti Precatalyst Anchored on a Single Silica Surface for Metathesis of Propane

    KAUST Repository

    Samantaray, Manoja

    2017-02-10

    Two compatible organometallic complexes, W(Me)(6) (1) and TiNp4 (2), were successively anchored on a highly dehydroxylated single silica support (SiO2-700) to synthesize the well-defined bimetallic precatalyst [(equivalent to Si-O-)W(Me)(5)(equivalent to Si-O-)Ti(Np)(3)] (4). Precatalyst 4 was characterized at the molecular level using advanced surface organometallic chemistry (SOMC) characterization techniques. The strong autocorrelation observed between methyl of W and Ti in H-1-H-1 multiple-quantum NMR spectra demonstrates that W and Ti species are in close proximity to each other. The bimetallic precatalyst 4, with a turnover number (TON) of 9784, proved to be significantly more efficient than the silica-supported monometallic catalyst [(equivalent to Si-O-)W(Me)(5)] (3), with a TON of 98, for propane metathesis at 150 degrees C in a flow reactor. The dramatic improvement in the activity signifies the cooperativity between Ti and W and indicates that the key step of alkane metathesis (C-H bond activation followed by beta-H elimination) occurs on Ti, followed by olefin metathesis, which occurs on W. We have demonstrated the influence and importance of proximity of Ti to W for achieving such a significantly high activity. This is the first report demonstrating the considerably high activity (TON = 9784) in propane metathesis at moderate temperature (150 degrees C) using a well-defined bimetallic system prepared via the SOMC approach.

  1. Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng

    2014-04-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  2. Decay properties of high-lying single-particles modes

    NARCIS (Netherlands)

    Beaumel, D; Fortier, S; Gales, S; Guillot, J; LangevinJoliot, H; Laurent, H; Maison, JM; Vernotte, J; Bordewijck, J; Brandenburg, S; Krasznahorkay, A; Crawley, GM; Massolo, CP; Renteria, M; Khendriche, A

    1996-01-01

    The neutron decay of high-lying single-particle states in Ni-64, Zr-90, Sn-120 and (208)pb excited by means of the (alpha,He-3) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular

  3. High-Throughput Phenotyping of Wheat and Barley Plants Grown in Single or Few Rows in Small Plots Using Active and Passive Spectral Proximal Sensing

    Directory of Open Access Journals (Sweden)

    Gero Barmeier

    2016-11-01

    Full Text Available In the early stages of plant breeding, breeders evaluate a large number of varieties. Due to limited availability of seeds and space, plot sizes may range from one to four rows. Spectral proximal sensors can be used in place of labour-intensive methods to estimate specific plant traits. The aim of this study was to test the performance of active and passive sensing to assess single and multiple rows in a breeding nursery. A field trial with single cultivars of winter barley and winter wheat with four plot designs (single-row, wide double-row, three rows, and four rows was conducted. A GreenSeeker RT100 and a passive bi-directional spectrometer were used to assess biomass fresh and dry weight, as well as aboveground nitrogen content and uptake. Generally, spectral passive sensing and active sensing performed comparably in both crops. Spectral passive sensing was enhanced by the availability of optimized ratio vegetation indices, as well as by an optimized field of view and by reduced distance dependence. Further improvements of both sensors in detecting the performance of plants in single rows can likely be obtained by optimization of sensor positioning or orientation. The results suggest that even in early selection cycles, enhanced high-throughput phenotyping might be able to assess plant performance within plots comprising single or multiple rows. This method has significant potential for advanced breeding.

  4. Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit

    Energy Technology Data Exchange (ETDEWEB)

    Mawet, D.; Ruane, G.; Xuan, W.; Echeverri, D.; Klimovich, N.; Randolph, M.; Fucik, J.; Wang, J.; Dekany, R.; Delorme, J.-R. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Wallace, J. K.; Vasisht, G.; Mennesson, B.; Choquet, E.; Serabyn, E., E-mail: dmawet@astro.caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2017-04-01

    High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.

  5. High-activity liquid packaging design criteria

    International Nuclear Information System (INIS)

    1994-05-01

    In recent studies, it has been acknowledged that there is an emerging need for packaging to transport high-activity liquid off the Hanford Site to support characterization and process development activities of liquid waste stored in underground tanks. These studies have dealt with specimen testing needs primarily at the Hanford Site; however, similar needs appear to be developing at other US Department of Energy (DOE) sites. The need to ship single and multiple specimens to offsite laboratories is anticipated because it is predicted that onsite laboratories will be overwhelmed by an increasing number and size (volume) of samples. Potentially, the specimen size could range from 250 mL to greater than 50 L. Presently, no certified Type-B packagings are available for transport of high-activity liquid radioactive specimens in sizes to support Site missions

  6. Activation of surface lattice oxygen in single-atom Pt/CeO 2 for low-temperature CO oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Lei; Mei, Donghai; Xiong, Haifeng; Peng, Bo; Ren, Zhibo; Pereira Hernandez, Xavier I.; DelaRiva, Andrew; Wang, Meng; Engelhard, Mark H.; Kovarik, Libor; Datye, Abhaya K.; Wang, Yong

    2017-12-14

    While single-atom catalysts can provide high catalytic activity and selectivity, application in industrial catalysts demands long term performance and the ability to regenerate the catalysts. We have investigated the factors that lead to improved catalytic activity of a Pt/CeO2 catalyst for low temperature CO oxidation. Single-atom Pt/CeO2 becomes active for CO oxidation under lean condition only at elevated temperatures, because CO is strongly bound to ionic Pt sites. Reducing the catalyst, even under mild conditions, leads to onset of CO oxidation activity even at room temperature. This high activity state involves the transformation of mononuclear Pt species to sub-nanometer sized Pt particles. Under oxidizing conditions, the Pt can be restored to its stable, single-atom state. The key to facile regeneration is the ability to create mobile Pt species and suitable trapping sites on the support, making this a prototypical catalyst system for industrial application of single-atom catalysis.

  7. High activity waste disposal

    International Nuclear Information System (INIS)

    Gaul, W.C.

    1990-01-01

    Chem-Nuclear Environmental Services (CNES) has developed a container that is capable of containing high activity waste and can be shipped as a regular DOT Type A shipment. By making the container special form the amount of activity that can be transported in a Type A shipment is greatly enhanced. Special form material presents an extra degree of protection to the environment by requiring the package to be destroyed to get access to the radioactive material and must undergo specific testing requirements, whereas normal form material can allow access to the radioactive material. With the special form container up to 10 caries of radium can be transported in a single package. This paper will describe the considerations that were taken to develop these products

  8. Piezo-Catalytic Effect on the Enhancement of the Ultra-High Degradation Activity in the Dark by Single- and Few-Layers MoS2 Nanoflowers.

    Science.gov (United States)

    Wu, Jyh Ming; Chang, Wei En; Chang, Yu Ting; Chang, Chih-Kai

    2016-05-01

    Single- and few-layer MoS2 nanoflowers are first discovered to have a piezo-catalyst effect, exhibiting an ultra-high degradation activity in the dark by introducing external mechanical strains. The degradation ratio of the Rhodamine-B dye solution reaches 93% within 60 s under ultrasonic-wave assistance in the dark. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Single Phase Passive Rectification Versus Active Rectification Applied to High Power Stirling Engines

    Science.gov (United States)

    Santiago, Walter; Birchenough, Arthur G.

    2006-01-01

    Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.

  10. BUILDING A BETTER GLUTEAL BRIDGE: ELECTROMYOGRAPHIC ANALYSIS OF HIP MUSCLE ACTIVITY DURING MODIFIED SINGLE-LEG BRIDGES.

    Science.gov (United States)

    Lehecka, B J; Edwards, Michael; Haverkamp, Ryan; Martin, Lani; Porter, Kambry; Thach, Kailey; Sack, Richard J; Hakansson, Nils A

    2017-08-01

    Gluteal strength plays a role in injury prevention, normal gait patterns, eliminating pain, and enhancing athletic performance. Research shows high gluteal muscle activity during a single-leg bridge compared to other gluteal strengthening exercises; however, prior studies have primarily measured muscle activity with the active lower extremity starting in 90 ° of knee flexion with an extended contralateral knee. This standard position has caused reports of hamstring cramping, which may impede optimal gluteal strengthening. The purpose of this study was to determine which modified position for the single-leg bridge is best for preferentially activating the gluteus maximus and medius. Cross-Sectional. Twenty-eight healthy males and females aged 18-30 years were tested in five different, randomized single-leg bridge positions. Electromyography (EMG) electrodes were placed on subjects' gluteus maximus, gluteus medius, rectus femoris, and biceps femoris of their bridge leg (i.e., dominant or kicking leg), as well as the rectus femoris of their contralateral leg. Subjects performed a maximal voluntary isometric contraction (MVIC) for each tested muscle prior to performing five different bridge positions in randomized order. All bridge EMG data were normalized to the corresponding muscle MVIC data. A modified bridge position with the knee of the bridge leg flexed to 135 ° versus the traditional 90 ° of knee flexion demonstrated preferential activation of the gluteus maximus and gluteus medius compared to the traditional single-leg bridge. Hamstring activation significantly decreased (p bridge by flexing the active knee to 135 ° instead of 90 ° minimizes hamstring activity while maintaining high levels of gluteal activation, effectively building a bridge better suited for preferential gluteal activation. 3.

  11. Inactivation of Listeria in Foods Packed in Films Activated with Enterocin AS-48 plus Thymol Singly or in Combination with High-Hydrostatic Pressure Treatment

    Directory of Open Access Journals (Sweden)

    Irene Ortega Blázquez

    2017-11-01

    Full Text Available The aim of the present study was to determine the efficacy of films activated with enterocin AS-48 plus thymol singly, or in combination with high-hydrostatic pressure (HHP on the inactivation of Listeria innocua in sea bream fillets and in fruit puree stored under refrigeration for 10 days. L. innocua proliferated in control fish fillets during storage. The activated film reduced viable Listeria counts in fillets by 1.76 log cycles and prevented growth of survivors until mid-storage. Application of HHP treatment to fillets packed in films without antimicrobials reduced Listeria counts by 1.83 log cycles, but did not prevent the growth of survivors during storage. The combined treatment reduced viable counts by 1.88 log cycles and delayed growth of survivors during the whole storage period. L. innocua survived in puree during storage. The activated film reduced Listeria counts by 1.80 and 2.0 log cycles at days 0 and 3. After that point, Listeria were below the detection limit. No viable Listeria were detected in the purees after application of HHP treatment singly, or in combination with the activated film. Results from the study indicate that the efficacy of activated films against Listeria is markedly influenced by the food type.

  12. Hedgehog signaling pathway is active in GBM with GLI1 mRNA expression showing a single continuous distribution rather than discrete high/low clusters.

    Science.gov (United States)

    Chandra, Vikas; Das, Tapojyoti; Gulati, Puneet; Biswas, Nidhan K; Rote, Sarang; Chatterjee, Uttara; Ghosh, Samarendra N; Deb, Sumit; Saha, Suniti K; Chowdhury, Anup K; Ghosh, Subhashish; Rudin, Charles M; Mukherjee, Ankur; Basu, Analabha; Dhara, Surajit

    2015-01-01

    Hedgehog (Hh) signaling pathway is a valid therapeutic target in a wide range of malignancies. We focus here on glioblastoma multiforme (GBM), a lethal malignancy of the central nervous system (CNS). By analyzing RNA-sequencing based transcriptomics data on 149 clinical cases of TCGA-GBM database we show here a strong correlation (r = 0.7) between GLI1 and PTCH1 mRNA expression--as a hallmark of the canonical Hh-pathway activity in this malignancy. GLI1 mRNA expression varied in 3 orders of magnitude among the GBM patients of the same cohort showing a single continuous distribution-unlike the discrete high/low-GLI1 mRNA expressing clusters of medulloblastoma (MB). When compared with MB as a reference, the median GLI1 mRNA expression in GBM appeared 14.8 fold lower than that of the "high-Hh" cluster of MB but 5.6 fold higher than that of the "low-Hh" cluster of MB. Next, we demonstrated statistically significant up- and down-regulation of GLI1 mRNA expressions in GBM patient-derived low-passage neurospheres in vitro by sonic hedgehog ligand-enriched conditioned media (shh-CM) and by Hh-inhibitor drug vismodegib respectively. We also showed clinically achievable dose (50 μM) of vismodegib alone to be sufficient to induce apoptosis and cell cycle arrest in these low-passage GBM neurospheres in vitro. Vismodegib showed an effect on the neurospheres, both by down-regulating GLI1 mRNA expression and by inducing apoptosis/cell cycle arrest, irrespective of their relative endogenous levels of GLI1 mRNA expression. We conclude from our study that this single continuous distribution pattern of GLI1 mRNA expression technically puts almost all GBM patients in a single group rather than discrete high- or low-clusters in terms of Hh-pathway activity. That is suggestive of therapies with Hh-pathway inhibitor drugs in this malignancy without a need for further stratification of patients on the basis of relative levels of Hh-pathway activity among them.

  13. Highly Durable Platinum Single-Atom Alloy Catalyst for Electrochemical Reactions

    DEFF Research Database (Denmark)

    Kim, Jiwhan; Roh, Chi-Woo; Sahoo, Suman Kalyan

    2018-01-01

    Single atomic Pt catalyst can offer efficient utilization of the expensive platinum and provide unique selectivity because it lacks ensemble sites. However, designing such a catalyst with high Pt loading and good durability is very challenging. Here, single atomic Pt catalyst supported on antimony...... functional theory calculations show that replacing Sb sites with Pt atoms in the bulk phase or at the surface of SbSn or ATO is energetically favorable. The Pt1/ATO shows superior activity and durability for formic acid oxidation reaction, compared to a commercial Pt/C catalyst. The single atomic Pt...... structure is retained even after a harsh durability test, which is performed by repeating cyclic voltammetry in the range of 0.05–1.4 V for 1800 cycles. A full cell is fabricated for direct formic acid fuel cell using the Pt1/ATO as an anode catalyst, and an order of magnitude higher cell power is obtained...

  14. Production of propylene from 1-butene on highly active "bi-functional single active site" catalyst: Tungsten carbene-hydride supported on alumina

    KAUST Repository

    Mazoyer, Etienne

    2011-12-02

    1-Butene is transformed in a continuous flow reactor over tungsten hydrides precursor W-H/Al2O3, 1, giving a promising yield into propylene at 150 °C and different pressures. Tungsten carbene-hydride single active site operates as a "bi-functional catalyst" through 1-butene isomerization on W-hydride and 1-butene/2-butenes cross-metathesis on W-carbene. This active moiety is generated in situ at the initiation steps by insertion of 1-butene on tungsten hydrides precursor W-H/Al2O3, 1 followed by α-H and β-H abstraction. © 2011 American Chemical Society.

  15. Temporal dynamics of high repetition rate pulsed single longitudinal ...

    Indian Academy of Sciences (India)

    ing (GIG) cavity, single-mode dye laser pumped by high repetition rate ... in a high loss cavity, a detailed theoretical study and optimization of cavity ..... rate for high conversion efficiency and longer pulse width of the single-mode dye laser.

  16. Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries

    KAUST Repository

    Tu, Zhengyuan

    2017-09-21

    Substrates able to rectify transport of ions based on charge and/or size are ubiquitous in biological systems. Electrolytes and interphases that selectively transport electrochemically active ions are likewise of broad interest in all electrical energy storage technologies. In lithium-ion batteries, electrolytes with single- or near-single-ion conductivity reduce losses caused by ion polarization. In emergent lithium or sodium metal batteries, they maintain high conductivity at the anode and stabilize metal deposition by fundamental mechanisms. We report that 20- to 300-nm-thick, single-ion-conducting membranes deposited at the anode enable electrolytes with the highest combination of cation transference number, ionic conductivity, and electrochemical stability reported. By means of direct visualization we find that single-ion membranes also reduce dendritic deposition of Li in liquids. Galvanostatic measurements further show that the electrolytes facilitate long (3 mAh) recharge of full Li/LiNi0.8Co0.15Al0.05O2 (NCA) cells with high cathode loadings (3 mAh cm−2/19.9 mg cm−2) and at high current densities (3 mA cm−2).

  17. High-speed single-photon signaling for daytime QKD

    Science.gov (United States)

    Bienfang, Joshua; Restelli, Alessandro; Clark, Charles

    2011-03-01

    The distribution of quantum-generated cryptographic key at high throughputs can be critically limited by the performance of the systems' single-photon detectors. While noise and afterpulsing are considerations for all single-photon QKD systems, high-transmission rate systems also have critical detector timing-resolution and recovery time requirements. We present experimental results exploiting the high timing resolution and count-rate stability of modified single-photon avalanche diodes (SPADs) in our GHz QKD system operating over a 1.5 km free-space link that demonstrate the ability to apply extremely short temporal gates, enabling daytime free-space QKD with a 4% QBER. We also discuss recent advances in gating techniques for InGaAs SPADs that are suitable for high-speed fiber-based QKD. We present afterpulse-probability measurements that demonstrate the ability to support single-photon count rates above 100 MHz with low afterpulse probability. These results will benefit the design and characterization of free-space and fiber QKD systems. A. Restelli, J.C. Bienfang A. Mink, and C.W. Clark, IEEE J. Sel. Topics in Quant. Electron 16, 1084 (2010).

  18. Single-phase high-entropy alloys. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, Roksolana; Steurer, Walter [ETH Zurich (Switzerland). Lab. of Crystallography; Sologubenko, Alla [ETH Zurich (Switzerland). Lab. of Nanotechnology

    2015-02-01

    The term 'high-entropy alloys (HEAs)' first appeared about 10 years ago defining alloys composed of n=5-13 principal elements with concentrations of approximately 100/n at.% each. Since then many equiatomic (or near equiatomic) single- and multi-phase multicomponent alloys were developed, which are reported for a combination of tunable properties: high hardness, strength and ductility, oxidation and wear resistance, magnetism, etc. In our paper, we focus on probably single-phase HEAs (solid solutions) out of all HEAs studied so far, discuss ways of their prediction, mechanical properties. In contrast to classical multielement/multiphase alloys, only single-phase multielement alloys (solid solutions) represent the basic concept underlying HEAs as mixing-entropy stabilized homogenous materials. The literature overview is complemented by own studies demonstrating that the alloys CrFeCoNi, CrFeCoNiAl{sub 0.3} and PdFeCoNi homogenized at 1300 and 1100 C, respectively, for 1 week are not single-phase HEAs, but a coherent mixture of two solid solutions.

  19. Physical Activity Experiences and Beliefs among Single Mothers: A Qualitative Study

    Science.gov (United States)

    Dlugonski, Deirdre; Motl, Robert W.

    2016-01-01

    Purpose: Single motherhood has been associated with negative health consequences such as depression and cardiovascular disease. Physical activity might reduce these consequences, but little is known about physical activity experiences and beliefs that might inform interventions and programs for single mothers. The present study used…

  20. High-dimensional single-cell cancer biology.

    Science.gov (United States)

    Irish, Jonathan M; Doxie, Deon B

    2014-01-01

    Cancer cells are distinguished from each other and from healthy cells by features that drive clonal evolution and therapy resistance. New advances in high-dimensional flow cytometry make it possible to systematically measure mechanisms of tumor initiation, progression, and therapy resistance on millions of cells from human tumors. Here we describe flow cytometry techniques that enable a "single-cell " view of cancer. High-dimensional techniques like mass cytometry enable multiplexed single-cell analysis of cell identity, clinical biomarkers, signaling network phospho-proteins, transcription factors, and functional readouts of proliferation, cell cycle status, and apoptosis. This capability pairs well with a signaling profiles approach that dissects mechanism by systematically perturbing and measuring many nodes in a signaling network. Single-cell approaches enable study of cellular heterogeneity of primary tissues and turn cell subsets into experimental controls or opportunities for new discovery. Rare populations of stem cells or therapy-resistant cancer cells can be identified and compared to other types of cells within the same sample. In the long term, these techniques will enable tracking of minimal residual disease (MRD) and disease progression. By better understanding biological systems that control development and cell-cell interactions in healthy and diseased contexts, we can learn to program cells to become therapeutic agents or target malignant signaling events to specifically kill cancer cells. Single-cell approaches that provide deep insight into cell signaling and fate decisions will be critical to optimizing the next generation of cancer treatments combining targeted approaches and immunotherapy.

  1. A Single-Transistor Active Pixel CMOS Image Sensor Architecture

    International Nuclear Information System (INIS)

    Zhang Guo-An; He Jin; Zhang Dong-Wei; Su Yan-Mei; Wang Cheng; Chen Qin; Liang Hai-Lang; Ye Yun

    2012-01-01

    A single-transistor CMOS active pixel image sensor (1 T CMOS APS) architecture is proposed. By switching the photosensing pinned diode, resetting and selecting can be achieved by diode pull-up and capacitive coupling pull-down of the source follower. Thus, the reset and selected transistors can be removed. In addition, the reset and selected signal lines can be shared to reduce the metal signal line, leading to a very high fill factor. The pixel design and operation principles are discussed in detail. The functionality of the proposed 1T CMOS APS architecture has been experimentally verified using a fabricated chip in a standard 0.35 μm CMOS AMIS technology

  2. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements.

    Science.gov (United States)

    Back, Seoin; Lim, Juhyung; Kim, Na-Young; Kim, Yong-Hyun; Jung, Yousung

    2017-02-01

    A single-atom catalyst (SAC) has an electronic structure that is very different from its bulk counterparts, and has shown an unexpectedly high specific activity with a significant reduction in noble metal usage for CO oxidation, fuel cell and hydrogen evolution applications, although physical origins of such performance enhancements are still poorly understood. Herein, by means of density functional theory (DFT) calculations, we for the first time investigate the great potential of single atom catalysts for CO 2 electroreduction applications. In particular, we study a single transition metal atom anchored on defective graphene with single or double vacancies, denoted M@sv-Gr or M@dv-Gr, where M = Ag, Au, Co, Cu, Fe, Ir, Ni, Os, Pd, Pt, Rh or Ru, as a CO 2 reduction catalyst. Many SACs are indeed shown to be highly selective for the CO 2 reduction reaction over a competitive H 2 evolution reaction due to favorable adsorption of carboxyl (*COOH) or formate (*OCHO) over hydrogen (*H) on the catalysts. On the basis of free energy profiles, we identified several promising candidate materials for different products; Ni@dv-Gr (limiting potential U L = -0.41 V) and Pt@dv-Gr (-0.27 V) for CH 3 OH production, and Os@dv-Gr (-0.52 V) and Ru@dv-Gr (-0.52 V) for CH 4 production. In particular, the Pt@dv-Gr catalyst shows remarkable reduction in the limiting potential for CH 3 OH production compared to any existing catalysts, synthesized or predicted. To understand the origin of the activity enhancement of SACs, we find that the lack of an atomic ensemble for adsorbate binding and the unique electronic structure of the single atom catalysts as well as orbital interaction play an important role, contributing to binding energies of SACs that deviate considerably from the conventional scaling relation of bulk transition metals.

  3. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing

    Science.gov (United States)

    Ikoma, S.; Nguyen, H. K.; Kashiwagi, M.; Uchiyama, K.; Shima, K.; Tanaka, D.

    2017-02-01

    A 3 kW single stage all-fiber Yb-doped single-mode fiber laser with bi-directional pumping configuration has been demonstrated. Our newly developed high-power LD modules are employed for a high available pump power of 4.9 kW. The length of the delivery fiber is 20 m which is long enough to be used in most of laser processing machines. An output power of 3 kW was achieved at a pump power of 4.23 kW. The slope efficiency was 70%. SRS was able to be suppressed at the same output power by increasing ratio of backward pump power. The SRS level was improved by 5dB when 57% backward pump ratio was adopted compared with the case of 50%. SRS was 35dB below the laser power at the output power of 3 kW even with a 20-m delivery fiber. The M-squared factor was 1.3. Single-mode beam quality was obtained. To evaluate practical utility of the 3 kW single-mode fiber laser, a Bead-on-Plate (BoP) test onto a pure copper plate was executed. The BoP test onto a copper plate was made without stopping or damaging the laser system. That indicates our high power single-mode fiber lasers can be used practically in processing of materials with high reflectivity and high thermal conductivity.

  4. DECAY MODES OF HIGH-LYING SINGLE-PARTICLE STATES IN PB-209

    NARCIS (Netherlands)

    BEAUMEL, D; FORTIER, S; GALES, S; GUILLOT, J; LANGEVINJOLIOT, H; LAURENT, H; MAISON, JM; VERNOTTE, J; BORDEWIJK, JA; BRANDENBURG, S; KRASZNAHORKAY, A; CRAWLEY, GM; MASSOLO, CP; RENTERIA, M

    The neutron decay of high-lying single-particle states in Pb-209 excited by means of the (alpha, He-3) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high-spin values of these states, inferred from previous inclusive experiments, are confirmed by the

  5. Measurement of highly active samples of ultrashort-lived radionuclides and its problems

    International Nuclear Information System (INIS)

    van der Baan, J.G.; Panek, K.J.

    1985-01-01

    The measurement of highly active eluates obtained from the generators for ultrashort-lived radionuclides poses several problems which are briefly discussed by using the example of the /sup 195m/Hg→/sup 195m/Au generator. For overcoming some of the problems, the construction of a multiple single-channel analyzer that allows high count rates, is described, as well as the counting technique applicable for highly active eluates

  6. Patterning solution-processed organic single-crystal transistors with high device performance

    Directory of Open Access Journals (Sweden)

    Yun Li

    2011-06-01

    Full Text Available We report on the patterning of organic single-crystal transistors with high device performance fabricated via a solution process under ambient conditions. The semiconductor was patterned on substrates via surface selective deposition. Subsequently, solvent-vapor annealing was performed to reorganize the semiconductor into single crystals. The transistors exhibited field-effect mobility (μFET of up to 3.5 cm2/V s. Good reliability under bias-stress conditions indicates low density of intrinsic defects in crystals and low density of traps at the active interfaces. Furthermore, the Y function method clearly suggests that the variation of μFET of organic crystal transistors was caused by contact resistance. Further improvement of the device with higher μFET with smaller variation can be expected when lower and more uniform contact resistance is achieved.

  7. Decay properties of high-lying single-particles modes

    Science.gov (United States)

    Beaumel, D.; Fortier, S.; Galès, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J. M.; Vernotte, J.; Bordewijck, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G. M.; Massolo, C. P.; Renteria, M.; Khendriche, A.

    1996-02-01

    The neutron decay of high-lying single-particle states in 64Ni, 90Zr, 120Sn and 208Pb excited by means of the (α, 3He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in 91Zr, and between 8 and 12 MeV excitation energy in 209Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations.

  8. High-Performance Single-Crystalline Perovskite Thin-Film Photodetector

    KAUST Repository

    Yang, Zhenqian

    2018-01-10

    The best performing modern optoelectronic devices rely on single-crystalline thin-film (SC-TF) semiconductors grown epitaxially. The emerging halide perovskites, which can be synthesized via low-cost solution-based methods, have achieved substantial success in various optoelectronic devices including solar cells, lasers, light-emitting diodes, and photodetectors. However, to date, the performance of these perovskite devices based on polycrystalline thin-film active layers lags behind the epitaxially grown semiconductor devices. Here, a photodetector based on SC-TF perovskite active layer is reported with a record performance of a 50 million gain, 70 GHz gain-bandwidth product, and a 100-photon level detection limit at 180 Hz modulation bandwidth, which as far as we know are the highest values among all the reported perovskite photodetectors. The superior performance of the device originates from replacing polycrystalline thin film by a thickness-optimized SC-TF with much higher mobility and longer recombination time. The results indicate that high-performance perovskite devices based on SC-TF may become competitive in modern optoelectronics.

  9. Highly multiplexed targeted DNA sequencing from single nuclei.

    Science.gov (United States)

    Leung, Marco L; Wang, Yong; Kim, Charissa; Gao, Ruli; Jiang, Jerry; Sei, Emi; Navin, Nicholas E

    2016-02-01

    Single-cell DNA sequencing methods are challenged by poor physical coverage, high technical error rates and low throughput. To address these issues, we developed a single-cell DNA sequencing protocol that combines flow-sorting of single nuclei, time-limited multiple-displacement amplification (MDA), low-input library preparation, DNA barcoding, targeted capture and next-generation sequencing (NGS). This approach represents a major improvement over our previous single nucleus sequencing (SNS) Nature Protocols paper in terms of generating higher-coverage data (>90%), thereby enabling the detection of genome-wide variants in single mammalian cells at base-pair resolution. Furthermore, by pooling 48-96 single-cell libraries together for targeted capture, this approach can be used to sequence many single-cell libraries in parallel in a single reaction. This protocol greatly reduces the cost of single-cell DNA sequencing, and it can be completed in 5-6 d by advanced users. This single-cell DNA sequencing protocol has broad applications for studying rare cells and complex populations in diverse fields of biological research and medicine.

  10. Microwave pyrolysis using self-generated pyrolysis gas as activating agent: An innovative single-step approach to convert waste palm shell into activated carbon

    Science.gov (United States)

    Yek, Peter Nai Yuh; Keey Liew, Rock; Shahril Osman, Mohammad; Chung Wong, Chee; Lam, Su Shiung

    2017-11-01

    Waste palm shell (WPS) is a biomass residue largely available from palm oil industries. An innovative microwave pyrolysis method was developed to produce biochar from WPS while the pyrolysis gas generated as another product is simultaneously used as activating agent to transform the biochar into waste palm shell activated carbon (WPSAC), thus allowing carbonization and activation to be performed simultaneously in a single-step approach. The pyrolysis method was investigated over a range of process temperature and feedstock amount with emphasis on the yield and composition of the WPSAC obtained. The WPSAC was tested as dye adsorbent in removing methylene blue. This pyrolysis approach provided a fast heating rate (37.5°/min) and short process time (20 min) in transforming WPS into WPSAC, recording a product yield of 40 wt%. The WPSAC was detected with high BET surface area (≥ 1200 m2/g), low ash content (< 5 wt%), and high pore volume (≥ 0.54 cm3/g), thus recording high adsorption efficiency of 440 mg of dye/g. The desirable process features (fast heating rate, short process time) and the recovery of WPSAC suggest the exceptional promise of the single-step microwave pyrolysis approach to produce high-grade WPSAC from WPS.

  11. Single-Atom Mn Active Site in a Triol-Stabilized β-Anderson Manganohexamolybdate for Enhanced Catalytic Activity towards Adipic Acid Production

    Directory of Open Access Journals (Sweden)

    Jianhui Luo

    2018-03-01

    Full Text Available Adipic acid is an important raw chemical for the commercial production of polyamides and polyesters. The traditional industrial adipic acid production utilizes nitric acid to oxidize KA oil (mixtures of cyclohexanone and cyclohexanol, leading to the emission of N2O and thus causing ozone depletion, global warming, and acid rain. Herein, we reported an organically functionalized β-isomer of Anderson polyoxometalates (POMs nanocluster with single-atom Mn, β-{[H3NC(CH2O3]2MnMo6O18}− (1, as a highly active catalyst to selectively catalyze the oxidation of cyclohexanone, cyclohexanol, or KA oil with atom economy use of 30% H2O2 for the eco-friendly synthesis of adipic acid. The catalyst has been characterized by single crystal and powder XRD, XPS, ESI-MS, FT-IR, and NMR. A cyclohexanone (cyclohexanol conversion of >99.9% with an adipic acid selectivity of ~97.1% (~85.3% could be achieved over catalyst 1 with high turnover frequency of 2427.5 h−1 (2132.5 h−1. It has been demonstrated that the existence of Mn3+ atom active site in catalyst 1 and the special butterfly-shaped topology of POMs both play vital roles in the enhancement of catalytic activity.

  12. Investigation of electrically-active deep levels in single-crystalline diamond by particle-induced charge transient spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kada, W., E-mail: kada.wataru@gunma-u.ac.jp [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Kambayashi, Y.; Ando, Y. [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Onoda, S. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Umezawa, H.; Mokuno, Y. [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Shikata, S. [Kwansei Gakuin Univ., 2-1, Gakuen, Mita, Hyogo 669-1337 (Japan); Makino, T.; Koka, M. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Hanaizumi, O. [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Kamiya, T.; Ohshima, T. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan)

    2016-04-01

    To investigate electrically-active deep levels in high-resistivity single-crystalline diamond, particle-induced charge transient spectroscopy (QTS) techniques were performed using 5.5 MeV alpha particles and 9 MeV carbon focused microprobes. For unintentionally-doped (UID) chemical vapor deposition (CVD) diamond, deep levels with activation energies of 0.35 eV and 0.43 eV were detected which correspond to the activation energy of boron acceptors in diamond. The results suggested that alpha particle and heavy ion induced QTS techniques are the promising candidate for in-situ investigation of deep levels in high-resistivity semiconductors.

  13. Single-mode temperature and polarisation-stable high-speed 850nm vertical cavity surface emitting lasers

    International Nuclear Information System (INIS)

    Nazaruk, D E; Blokhin, S A; Maleev, N A; Bobrov, M A; Pavlov, M M; Kulagina, M M; Vashanova, K A; Zadiranov, Yu M; Ustinov, V M; Kuzmenkov, A G; Vasil'ev, A P; Gladyshev, A G; Blokhin, A A; Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" data-affiliation=" (JSV Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" >Fefelov, A G

    2014-01-01

    A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range

  14. Decay properties of high-lying single-particles modes

    Energy Technology Data Exchange (ETDEWEB)

    Beaumel, D. [Institut de Physique Nucleaire, 91 - Orsay (France); Fortier, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Gales, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Guillot, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Langevin-Joliot, H. [Institut de Physique Nucleaire, 91 - Orsay (France); Laurent, H. [Institut de Physique Nucleaire, 91 -Orsay (France); Maison, J.M. [Institut de Physique Nucleaire, 91 - Orsay (France); Vernotte, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Bordewijck, J. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Brandenburg, S. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Krasznahorkay, A. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Crawley, G.M. [NSCL, Michigan State University, East Lansing, MI 48824 (United States); Massolo, C.P. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Renteria, M. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Khendriche, A. [University of Tizi-Ouzou, Tizi-Ouzou (Algeria)

    1996-03-18

    The neutron decay of high-lying single-particle states in {sup 64}Ni, {sup 90}Zr, {sup 120}Sn and {sup 208}Pb excited by means of the ({alpha},{sup 3}He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in {sup 91}Zr, and between 8 and 12 MeV excitation energy in {sup 209}Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations. (orig.).

  15. Activation delay-induced mechanical dyssynchrony in single-ventricle heart disease

    DEFF Research Database (Denmark)

    Forsha, Daniel; Risum, Niels; Barker, Piers

    2017-01-01

    We present the case of an infant with a single functional ventricle who developed ventricular dysfunction and heart failure due to an electrical activation delay and dyssynchrony. Earlier recognition of this potentially reversible aetiology may have changed her poor outcome.......We present the case of an infant with a single functional ventricle who developed ventricular dysfunction and heart failure due to an electrical activation delay and dyssynchrony. Earlier recognition of this potentially reversible aetiology may have changed her poor outcome....

  16. Active Photonic crystal fibers for high power applications

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin

    The photonic crystal ber technology provides means to realize bers optimized for high power operation, due to the large single-mode cores and the unique design exibility of the microstructure. The work presented in this thesis focuses on improving the properties of active photonic crystal bers...... contributed to the compounding of new and improved material compositions. The second part is an investigation of pump absorption in photonic crystal bers, demonstrating that the microstructure in photonic crystal bers improves the pump absorption by up to a factor of two compared to step-index bers....... This plays an important role in high power lasers and ampliers with respect to efficiency, packaging, and thermal handling. The third part of the work has involved developing tools for characterizing the mode quality and stability of large core bers. Stable, single-mode bers with larger cores are essential...

  17. Quantitative high-resolution genomic analysis of single cancer cells.

    Science.gov (United States)

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  18. Dissecting Cell-Type Composition and Activity-Dependent Transcriptional State in Mammalian Brains by Massively Parallel Single-Nucleus RNA-Seq.

    Science.gov (United States)

    Hu, Peng; Fabyanic, Emily; Kwon, Deborah Y; Tang, Sheng; Zhou, Zhaolan; Wu, Hao

    2017-12-07

    Massively parallel single-cell RNA sequencing can precisely resolve cellular diversity in a high-throughput manner at low cost, but unbiased isolation of intact single cells from complex tissues such as adult mammalian brains is challenging. Here, we integrate sucrose-gradient-assisted purification of nuclei with droplet microfluidics to develop a highly scalable single-nucleus RNA-seq approach (sNucDrop-seq), which is free of enzymatic dissociation and nucleus sorting. By profiling ∼18,000 nuclei isolated from cortical tissues of adult mice, we demonstrate that sNucDrop-seq not only accurately reveals neuronal and non-neuronal subtype composition with high sensitivity but also enables in-depth analysis of transient transcriptional states driven by neuronal activity, at single-cell resolution, in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A comparison of muscular activity during single and double mouse clicks.

    Science.gov (United States)

    Thorn, Stefan; Forsman, Mikael; Hallbeck, Susan

    2005-05-01

    Work-related musculoskeletal disorders (WMSDs) in the neck/shoulder region and the upper extremities are a common problem among computer workers. Occurrences of motor unit (MU) double discharges with very short inter-firing intervals (doublets) have been hypothesised as a potential additional risk for overuse of already exhausted fibres during long-term stereotyped activity. Doublets are reported to be present during double-click mouse work tasks. A few comparative studies have been carried out on overall muscle activities for short-term tasks with single types of actions, but none on occurrences of doublets during double versus single clicks. The main purpose of this study was to compare muscle activity levels of single and double mouse clicks during a long-term combined mouse/keyboard work task. Four muscles were studied: left and right upper trapezius, right extensor digitorum communis (EDC) and right flexor carpi ulnaris. Additionally, MU activity was analysed through intramuscular electromyography in the EDC muscle for a selection of subjects. The results indicate that double clicking produces neither higher median or 90th percentile levels in the trapezius and EDC muscles, nor a higher disposition for MU doublets, than does single clicking. Especially for the 90th percentile levels, the indications are rather the opposite (in the EDC significantly higher during single clicks in 8 of 11 subjects, P < 0.05). Although it cannot be concluded from the present study that double clicks are harmless, there were no signs that double clicks during computer work generally constitute a larger risk factor for WMSDs than do single clicks.

  20. Statistical and direct decay of high-lying single-particle excitations

    International Nuclear Information System (INIS)

    Gales, S.

    1993-01-01

    Transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of high-lying excitations embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by microscopic nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured particle (n,p) decay branching ratios. The neutron and proton decay studies of high-lying single-particle states in heavy nuclei are presented. (author). 13 refs., 9 figs

  1. 2-Deoxyglucose autoradiography of single motor units: labelling of individual acutely active muscle fibers

    International Nuclear Information System (INIS)

    Toop, J.; Burke, R.E.; Dum, R.P.; O'Donovan, M.J.; Smith, C.B.

    1982-01-01

    2-Deoxy-D-[1- 14 C]glucose (2DG) was given intravenously during repetitive stimulation of single motor units in adult cats and autoradiographs were made of frozen sections of the target muscles in order to evaluate methods designed to improve the spatial resolution of [ 14 C]2DG autoradiography. With the modifications used, acutely active muscle fibers, independently identified by depletion of intrafiber glycogen, were associated with highly localized accumulations of silver grains over the depleted fibers. The results indicate that [ 14 C]2DG autoradiography can successfully identify individual active muscle fibers and might in principle be used to obtain quantitative data about rates of glucose metabolism in single muscle fibers of defined histochemical type. The modifications may be applicable also to other tissues to give improved spatial resolution with [ 14 C]-labeled metabolic markers. (Auth.)

  2. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging

    Science.gov (United States)

    Yomogida, Yohei; Tanaka, Takeshi; Zhang, Minfang; Yudasaka, Masako; Wei, Xiaojun; Kataura, Hiromichi

    2016-01-01

    Single-chirality, single-wall carbon nanotubes are desired due to their inherent physical properties and performance characteristics. Here, we demonstrate a chromatographic separation method based on a newly discovered chirality-selective affinity between carbon nanotubes and a gel containing a mixture of the surfactants. In this system, two different selectivities are found: chiral-angle selectivity and diameter selectivity. Since the chirality of nanotubes is determined by the chiral angle and diameter, combining these independent selectivities leads to high-resolution single-chirality separation with milligram-scale throughput and high purity. Furthermore, we present efficient vascular imaging of mice using separated single-chirality (9,4) nanotubes. Due to efficient absorption and emission, blood vessels can be recognized even with the use of ∼100-fold lower injected dose than the reported value for pristine nanotubes. Thus, 1 day of separation provides material for up to 15,000 imaging experiments, which is acceptable for industrial use. PMID:27350127

  3. Active immobilization of biomolecules on a hybrid three-dimensional nanoelectrode by dielectrophoresis for single-biomolecule study

    International Nuclear Information System (INIS)

    Yamamoto, Takatoki; Fujii, Teruo

    2007-01-01

    We propose and experimentally demonstrate a method of active immobilization for biomolecules on a three-dimensional nanometre-scale electrode (3D nanoelectrode) using dielectrophoresis to immobilize the biomolecules at predetermined locations for single-biomolecule study. We have developed a novel two-step fabrication process for obtaining a 3D nanoelectrode having a sharp top, which is necessary for immobilizing a single biomolecule at a single point. The first step is to fabricate the backbone structure, which is rigid and defines the shape of the 3D nanoelectrode. It was fabricated with diamond-like carbon (DLC) obtained using focused ion beam assisted chemical vapour deposition followed by post-plasma etching, which reshapes the DLC structure. The second step coats the DLC structure with a thin layer of aluminium, which supplies electrical conductivity to the DLC structure. By applying a high frequency (of the order of megahertz) and high intensity (greater than or equal to a few megavolts per metre) electric field using the 3D nanoelectrodes, the generated dielectrophoresis attracted and then immobilized target biomolecules onto the tops of 3D nanoelectrodes, as a demonstration of active immobilization of biomolecules

  4. Single-cell vs. bulk activity properties of coastal bacterioplankton over an annual cycle in a temperate ecosystem.

    Science.gov (United States)

    Morán, Xosé Anxelu G; Calvo-Díaz, Alejandra

    2009-01-01

    The connections between single-cell activity properties of heterotrophic planktonic bacteria and whole community metabolism are still poorly understood. Here, we show flow cytometry single-cell analysis of membrane-intact (live), high nucleic acid (HNA) content and actively respiring (CTC+) bacteria with samples collected monthly during 2006 in northern Spain coastal waters. Bulk activity was assessed by measuring 3H-Leucine incorporation and specific growth rates. Consistently, different single-cell relative abundances were found, with 60-100% for live, 30-84% for HNA and 0.2-12% for CTC+ cells. Leucine incorporation rates (2-153 pmol L(-1) h(-1)), specific growth rates (0.01-0.29 day(-1)) and the total and relative abundances of the three single-cell groups showed marked seasonal patterns. Distinct depth distributions during summer stratification and different relations with temperature, chlorophyll and bacterial biovolume suggest the existence of different controlling factors on each single-cell property. Pooled leucine incorporation rates were similarly correlated with the abundance of all physiological groups, while specific growth rates were only substantially explained by the percentage of CTC+ cells. However, the ability to reduce CTC proved notably better than the other two single-cell properties at predicting bacterial bulk rates within seasons, suggesting a tight linkage between bacterial individual respiration and biomass production at the community level.

  5. Quantitative high-resolution genomic analysis of single cancer cells.

    Directory of Open Access Journals (Sweden)

    Juliane Hannemann

    Full Text Available During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  6. High-quality single crystals for neutron experiments

    Indian Academy of Sciences (India)

    studies and our collaborative research projects with other UK and international groups will be discussed. Keywords. Crystal growth; floating zone method; neutron scattering. ... of single crystals of new materials is a highly competitive business.

  7. High-Speed and Low-Energy Flip-Flop Operation of Asymmetric Active-Multimode Interferometer Bi-Stable Laser Diodes

    DEFF Research Database (Denmark)

    Jiang, Haisong; Chaen, Yutaka; Hagio, Takuma

    2011-01-01

    High-speed (121/25 ps rise/fall time) and low-switching energy (7.1 and 3.4 fJ) alloptical flip-flop operation of single-wavelength high-mesa asymmetric active-MMI bi-stable laser diodes is demonstrated for the first time using 25 ps long switching pulses.......High-speed (121/25 ps rise/fall time) and low-switching energy (7.1 and 3.4 fJ) alloptical flip-flop operation of single-wavelength high-mesa asymmetric active-MMI bi-stable laser diodes is demonstrated for the first time using 25 ps long switching pulses....

  8. Safety and activity of ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukaemia: a single-arm, phase 2 study.

    Science.gov (United States)

    Burger, Jan A; Keating, Michael J; Wierda, William G; Hartmann, Elena; Hoellenriegel, Julia; Rosin, Nathalie Y; de Weerdt, Iris; Jeyakumar, Ghayathri; Ferrajoli, Alessandra; Cardenas-Turanzas, Marylou; Lerner, Susan; Jorgensen, Jeffrey L; Nogueras-González, Graciela M; Zacharian, Gracy; Huang, Xuelin; Kantarjian, Hagop; Garg, Naveen; Rosenwald, Andreas; O'Brien, Susan

    2014-09-01

    Ibrutinib, an orally administered covalent inhibitor of Bruton's tyrosine kinase (BTK), is an effective treatment for relapsed chronic lymphocytic leukaemia (CLL). We investigated the activity and safety of the combination of ibrutinib with the monoclonal antibody rituximab in patients with high-risk CLL. In this single-arm phase 2 study, we enrolled adult patients with high-risk CLL at the MD Anderson Cancer Center (Houston, TX, USA). All enrolled participants had high-risk cytogenetic abnormalities (deletion 17p, TP53 mutation, or deletion 11q) or a short progression-free survival (PFS ibrutinib 420 mg together with rituximab (375 mg/m(2), intravenously, every week during cycle 1, then once per cycle until cycle 6), followed by continuous daily single-agent ibrutinib 420 mg until disease progression or until toxicities or complications precluded further treatment. The primary endpoint was progression-free survival in the intention-to-treat population. This study is registered with ClinicalTrials.gov number NCT01520519, and is no longer accruing patients. Between Feb 28, 2012, and Sept 11, 2012, we enrolled 40 patients with CLL with high-risk disease features, 20 of whom had deletion 17p (del[17p]) or TP53 mutations (16 previously treated, four untreated), 13 had relapsed CLL with deletion 11q (del[11q]), and seven a PFS less than 36 months after first-line chemoimmunotherapy. 18-month PFS in all patients was 78·0% (95% CI 60·6-88·5), whereas in those with a del(17p) or TP53 mutation it was 72·4% (45·6-87·6) Toxicity was mainly mild to moderate in severity (grade 1-2). Diarrhoea occurred in ten (25%) patients (grade 1 in nine patients and grade 2 in one), bleeding events in 14 (33%) patients (eight grade 1 and five grade 2), nausea or vomiting in 15 patients (38%) (ten grade 1 and five grade 2), and fatigue in seven (18%) patients (four grade 1 and three grade 2). Five patients (13%) had grade 3 infections (two lung infections, one upper respiratory tract

  9. Active vibration isolation of high precision machines

    CERN Document Server

    Collette, C; Artoos, K; Hauviller, C

    2010-01-01

    This paper provides a review of active control strategies used to isolate high precisionmachines (e.g. telescopes, particle colliders, interferometers, lithography machines or atomic force microscopes) from external disturbances. The objective of this review is to provide tools to develop the best strategy for a given application. Firstly, the main strategies are presented and compared, using single degree of freedom models. Secondly, the case of huge structures constituted of a large number of elements, like particle colliders or segmented telescopes, is considered.

  10. Thermally activated flux creep in strongly layered high-temperature superconductors

    International Nuclear Information System (INIS)

    Chakravarty, S.; Ivlev, B.I.; Ovchinnikov, Y.N.

    1990-01-01

    Thermal activation energies for single vortices and vortex bundles in the presence of a magnetic field parallel to the layers are calculated. The pinning considered is intrinsic and is due to the strongly layered structure of high-temperature superconductors. The magnetic field and the current dependence of the activation energy are studied in detail. The calculation of the activation energy is used to determine the current-voltage characteristic. It may be possible to observe the effects discussed in this paper in a pure enough sample

  11. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    Science.gov (United States)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  12. Irradiation of single cells with individual high-LET particles

    International Nuclear Information System (INIS)

    Nelson, J.M.; Braby, L.A.

    1993-01-01

    The dose-limiting normal tissue of concern when irradiating head and neck lesions is often the vascular endothelium within the treatment field. Consequently, the response of capillary endothelial cells exposed to moderate doses of high LET particles is essential for establishing exposure limits for neutron-capture therapy. In an effort to characterize the high-LET radiation biology of cultured endothelial cells, the authors are attempting to measure cellular response to single particles. The single-particle irradiation apparatus, described below, allows them to expose individual cells to known numbers of high-LET particles and follow these cells for extended periods, in order to assess the impact of individual particles on cell growth kinetics. Preliminary cell irradiation experiments have revealed complications related to the smooth and efficient operation of the equipment; these are being resolved. Therefore, the following paragraphs deal primarily with the manner by which high LET particles deposit energy, the requirements for single-cell irradiation, construction and assembly of such apparatus, and testing of experimental procedures, rather than with the radiation biology of endothelial cells

  13. Defects of diamond single crystal grown under high temperature and high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Su, Qingcai, E-mail: suqc@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials (Ministry of Education), Shandong University, Jinan, P. R. China, 250061 (China); School of Materials Science and Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Shandong Engineering Research Center for Superhard Materials, Zoucheng, P. R. China 273500 (China); Zhang, Jianhua [School of Mechanical Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Li, Musen [Key Laboratory of Liquid Structure and Heredity of Materials (Ministry of Education), Shandong University, Jinan, P. R. China, 250061 (China); School of Materials Science and Engineering, Shandong University, Jinan, P. R. China, 250061 (China); Shandong Engineering Research Center for Superhard Materials, Zoucheng, P. R. China 273500 (China)

    2013-11-01

    The diamond single crystal, synthesized with Fe–Ni–C–B system of catalyst under high temperature and high pressure, had been observed by field emission scanning electron microscope and transmission electron microscope. The presence of a cellular structure suggested that the diamond grew from melted catalyst solution and there existed a zone of component supercooling zone in front of the solid–liquid interface. The main impurities in the diamond crystal was (FeNi){sub 23}C{sub 6}. The triangle screw pit revealed on the (111) plane was generated by the screw dislocation meeting the diamond (111) plane at the points of emergence of dislocations. A narrow twin plane was formed between the two (111) plane. - Highlights: • High pressure, high temperature synthesis of diamond single crystal. • Fe–Ni–C–B used as catalyst, graphite as carbon source. • The main impurity in the diamond crystal was (FeNi){sub 23}C{sub 6}. • Surface defects arose from screw dislocations and stacking faults.

  14. 15 W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA at 1.6 μm.

    Science.gov (United States)

    Yang, Changsheng; Guan, Xianchao; Zhao, Qilai; Lin, Wei; Li, Can; Gan, Jiulin; Qian, Qi; Feng, Zhouming; Yang, Zhongmin; Xu, Shanhui

    2018-05-14

    A 1603 nm high optical signal-to-noise ratio (OSNR) kHz-linewidth linearly-polarized all-fiber single-frequency master-oscillator power amplifier (MOPA) is demonstrated. To suppress the amplified spontaneous emission from Yb 3+ /Er 3+ ions with the customized filters and optimize the length of the double cladding active fiber, an over 15 W stable single-longitudinal-mode laser is achieved with an OSNR of >70 dB. A measured laser linewidth of 4.5 kHz and a polarization-extinction ratio of >23 dB are obtained at the full output power. This L-band high-power single-frequency MOPA is promising for high-resolution molecular spectroscopy and pumping of Tm 3+ -doped or Tm 3+ /Ho 3+ co-doped laser.

  15. The LET Procedure for Prosthetic Myocontrol: Towards Multi-DOF Control Using Single-DOF Activations.

    Directory of Open Access Journals (Sweden)

    Markus Nowak

    Full Text Available Simultaneous and proportional myocontrol of dexterous hand prostheses is to a large extent still an open problem. With the advent of commercially and clinically available multi-fingered hand prostheses there are now more independent degrees of freedom (DOFs in prostheses than can be effectively controlled using surface electromyography (sEMG, the current standard human-machine interface for hand amputees. In particular, it is uncertain, whether several DOFs can be controlled simultaneously and proportionally by exclusively calibrating the intended activation of single DOFs. The problem is currently solved by training on all required combinations. However, as the number of available DOFs grows, this approach becomes overly long and poses a high cognitive burden on the subject. In this paper we present a novel approach to overcome this problem. Multi-DOF activations are artificially modelled from single-DOF ones using a simple linear combination of sEMG signals, which are then added to the training set. This procedure, which we named LET (Linearly Enhanced Training, provides an augmented data set to any machine-learning-based intent detection system. In two experiments involving intact subjects, one offline and one online, we trained a standard machine learning approach using the full data set containing single- and multi-DOF activations as well as using the LET-augmented data set in order to evaluate the performance of the LET procedure. The results indicate that the machine trained on the latter data set obtains worse results in the offline experiment compared to the full data set. However, the online implementation enables the user to perform multi-DOF tasks with almost the same precision as single-DOF tasks without the need of explicitly training multi-DOF activations. Moreover, the parameters involved in the system are statistically uniform across subjects.

  16. Large-area aligned growth of single-crystalline organic nanowire arrays for high-performance photodetectors

    International Nuclear Information System (INIS)

    Wu Yiming; Zhang Xiujuan; Pan Huanhuan; Zhang Xiwei; Zhang Yuping; Zhang Xiaozhen; Jie Jiansheng

    2013-01-01

    Due to their extraordinary properties, single-crystalline organic nanowires (NWs) are important building blocks for future low-cost and efficient nano-optoelectronic devices. However, it remains a critical challenge to assemble organic NWs rationally in an orientation-, dimensionality- and location-controlled manner. Herein, we demonstrate a feasible method for aligned growth of single-crystalline copper phthalocyanine (CuPc) NW arrays with high density, large-area uniformity and perfect crossed alignment by using Au film as a template. The growth process was investigated in detail. The Au film was found to have a critical function in the aligned growth of NWs, but may only serve as the active site for NW nucleation because of the large surface energy, as well as direct the subsequent aligned growth. The as-prepared NWs were then transferred to construct single NW-based photoconductive devices, which demonstrated excellent photoresponse properties with robust stability and reproducibility; the device showed a high switching ratio of ∼180, a fast response speed of ∼100 ms and could stand continuous operation up to 2 h. Importantly, this strategy can be extended to other organic molecules for their synthesis of NW arrays, revealing great potential for use in the construction of large-scale high-performance functional nano-optoelectronic devices. (paper)

  17. Calibration of Single High Purity Germanium Detector for Whole Body Counter

    International Nuclear Information System (INIS)

    Taha, T.M.; Morsi, T.M.

    2009-01-01

    A new Accuscan II single germanium detector for whole body counter was installed in NRC (Egypt). The current paper concerned on calibration of single high purity germanium detector for whole body counter. Physical parameters affecting on performance of whole body counter such as linearity, minimum detectable activity and source detector distance, SDD were investigated. Counting efficiencies for the detector have been investigated in rear wall, fixed diagnostic position in air. Counting efficiencies for organ compartments such as thyroid, lung, upper and lower gastrointestinal tract have been investigated using transfer phantom in fixed diagnostic and screening positions respectively. The organ compartment efficiencies in screening geometry were higher than that value of diagnostic geometry by a factor of three. The committed dose equivalents of I-131 in thyroid were ranged from 0.073 ± 0.004 to 1.73±0.09 mSv and in lung was 0.02±0.001 mSv

  18. The Applied Behavior Analysis Research Paradigm and Single-Subject Designs in Adapted Physical Activity Research.

    Science.gov (United States)

    Haegele, Justin A; Hodge, Samuel Russell

    2015-10-01

    There are basic philosophical and paradigmatic assumptions that guide scholarly research endeavors, including the methods used and the types of questions asked. Through this article, kinesiology faculty and students with interests in adapted physical activity are encouraged to understand the basic assumptions of applied behavior analysis (ABA) methodology for conducting, analyzing, and presenting research of high quality in this paradigm. The purposes of this viewpoint paper are to present information fundamental to understanding the assumptions undergirding research methodology in ABA, describe key aspects of single-subject research designs, and discuss common research designs and data-analysis strategies used in single-subject studies.

  19. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity

    Directory of Open Access Journals (Sweden)

    M. D. Petters

    2007-01-01

    Full Text Available We present a method to describe the relationship between particle dry diameter and cloud condensation nuclei (CCN activity using a single hygroscopicity parameter κ. Values of the hygroscopicity parameter are between 0.5 and 1.4 for highly-CCN-active salts such as sodium chloride, between 0.01 and 0.5 for slightly to very hygroscopic organic species, and 0 for nonhygroscopic components. Observations indicate that atmospheric particulate matter is typically characterized by 0.1<κ<0.9. If compositional data are available and if the hygroscopicity parameter of each component is known, a multicomponent hygroscopicity parameter can be computed by weighting component hygroscopicity parameters by their volume fractions in the mixture. In the absence of information on chemical composition, experimental data for complex, multicomponent particles can be fitted to obtain the hygroscopicity parameter. The hygroscopicity parameter can thus also be used to conveniently model the CCN activity of atmospheric particles, including those containing insoluble components. We confirm the applicability of the hygroscopicity parameter and its mixing rule by applying it to published hygroscopic diameter growth factor and CCN-activation data for single- and multi-component particles containing varying amounts of inorganic, organic and surface active compounds. We suggest that κ may be fit to CCN data assuming σs/a=0.072 J m−2 and present a table of κ derived for this value and T=298.15 K. The predicted hygroscopicities for mixtures that contain the surfactant fulvic acid agree within uncertainties with the measured values. It thus appears that this approach is adequate for predicting CCN activity of mixed particles containing surface active materials, but the generality of this assumption requires further verification.

  20. High-mechanical-strength single-pulse draw tower gratings

    Science.gov (United States)

    Rothhardt, Manfred W.; Chojetzki, Christoph; Mueller, Hans Rainer

    2004-11-01

    The inscription of fiber Bragg gratings during the drawing process is a very useful method to realize sensor arrays with high numbers of gratings and excellent mechanical strength and also type II gratings with high temperature stability. Results of single pulse grating arrays with numbers up to 100 and definite wavelengths and positions for sensor applications were achieved at 1550 nm and 830 nm using new photosensitive fibers developed in IPHT. Single pulse type I gratings at 1550 nm with more than 30% reflectivity were shown first time to our knowledge. The mechanical strength of this fiber with an Ormocer coating with those single pulse gratings is the same like standard telecom fibers. Weibull plots of fiber tests will be shown. At 830 nm we reached more than 10% reflectivity with single pulse writing during the fiber drawing in photosensitive fibers with less than 16 dB/km transmission loss. These gratings are useful for stress and vibration sensing applications. Type II gratings with reflectivity near 100% and smooth spectral shape and spectral width of about 1 nm are temperature stable up to 1200 K for short time. They are also realized in the fiber drawing process. These gratings are useful for temperature sensor applications.

  1. Interaction of dislocations and point defects in high-purity molybdenum single crystals

    International Nuclear Information System (INIS)

    Polotskij, I.G.; Benieva, T.Ya.; Golub, T.V.

    1975-01-01

    The effect of the interstitial atoms distribution on dislocations mobility in extra pure molybdenum is studied. The amplitude relationships of the internal fraction were measured, which makes it possible to record energy dissipation associated with dislocation mobility in conditions of microdeformation. It was established that single crystals of extra pure molybdenum subjected to minor plastic deformation (1%) are characterized by high internal friction, which depends on the degree of crystall purification with regard to interstitial admixtures. Annealing at temperatures of 200 - 500 deg reduces the total level of damping and causes appearance of a sharp amplitude relationship. In this case, the reduction of damping is associated with diffusion of the interstitial atoms towards the dislocation line and its fixation. The irreversible nature of the internal friction amplitude relationship after development of high deformation amplitudes is explained by micro-plastic deformation processes. The amplitude. of deformation, after which the internal friction becomes irreversible, increases with the increase of the annealing temperature. The damping-deformation hysteresis reaches its maximum value after heat treatment at middle tempetatures. With the increase of the annealing temperature, the hysteresis becomes less. Thermal activation causes displacement of the critical amplitude corresponding to production of the delta-epsilon hysteresis to the region of lower values. Using the Pagen, Pare and Goben theory the amplitude-dependent internal friction data have been employed for calculation of the activation volume values which characterize the initial stages of plastic flow in extra pure single crystals of molybdenum

  2. Collective and single-particle states at high excitation energy

    International Nuclear Information System (INIS)

    Van den Berg, A.M.; Van der Molen, H.K.T.; Harakeh, M.N.; Akimune, H.; Daito, I.; Fujimura, H.; Fujiwara, M.; Ihara, F.; Inomata, T.

    2000-01-01

    Complete text of publication follows. Damping of high-lying single-particle states was investigated by the study of proton decay from high-lying states in 91 Nb, populated by the 90 Zr(α,t) reaction with E α = 180 MeV. In addition to decay to the ground state of 90 Zr, semi-direct decay was observed to the low-lying (2 + and 3 - ) phonon states, confirming the conclusion from other experiments that these phonon states play an important role in the damping process of the single-particle states. Furthermore, the population and decay of Isobaric Analogue States of 91 Zr, which are located at an excitation energy of about 10 - 12 MeV in 91 Nb, has been studied in the same reaction. (author)

  3. Active and fast charge-state switching of single NV centres in diamond by in-plane Al-Schottky junctions

    Directory of Open Access Journals (Sweden)

    Christoph Schreyvogel

    2016-11-01

    Full Text Available In this paper, we demonstrate an active and fast control of the charge state and hence of the optical and electronic properties of single and near-surface nitrogen-vacancy centres (NV centres in diamond. This active manipulation is achieved by using a two-dimensional Schottky-diode structure from diamond, i.e., by using aluminium as Schottky contact on a hydrogen terminated diamond surface. By changing the applied potential on the Schottky contact, we are able to actively switch single NV centres between all three charge states NV+, NV0 and NV− on a timescale of 10 to 100 ns, corresponding to a switching frequency of 10–100 MHz. This switching frequency is much higher than the hyperfine interaction frequency between an electron spin (of NV− and a nuclear spin (of 15N or 13C for example of 2.66 kHz. This high-frequency charge state switching with a planar diode structure would open the door for many quantum optical applications such as a quantum computer with single NVs for quantum information processing as well as single 13C atoms for long-lifetime storage of quantum information. Furthermore, a control of spectral emission properties of single NVs as a single photon emitters – embedded in photonic structures for example – can be realized which would be vital for quantum communication and cryptography.

  4. A single source precursor route to group 13 homo- and heterometallic oxides as highly active supports for gold-catalyzed aerobic epoxidation of trans-stilbene

    KAUST Repository

    Mishra, Shashank K.; Mendez, Violaine; Jeanneau, Erwann; Caps, Valerie; Daniè le, Sté phane

    2012-01-01

    A new Mitsubishi-type of star-shaped homoleptic derivative of indium(III), In4(mdea)6 (2, mdeaH2 = N-methyldiethanolamine) , was synthesized by the chloro-aminoalkoxo exchange reaction of a heteroleptic complex In6Cl6(mdea)6 (1) and used as a facile single source molecular precursor for the sol-gel preparation of high surface area indium oxide. Successful deposition of gold nanoparticles (1 wt.-%) of average size 3.3 nm on the above metal oxide by using HAuCl4· 3H2O afforded a highly efficient Au/In2O3 catalyst for the aerobic epoxidation of trans-stilbene at low temperature. The above single source precursor approach was further extended to obtain other group 13 homo- and heterometallic oxides, namely, α-Ga2O 3, β-Ga2O3 and Al4Ga 2O9, as highly active supports for gold catalysts. The obtained Au/M2O3 (M = Ga, In) and Au/Al4Ga 2O9 catalysts were thoroughly characterized by using several physicochemical techniques such as XRD, high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). A comparative study of the above catalysts for the model aerobic oxidation of stilbene in methylcyclohexane was undertaken. Highly efficient catalysts for aerobic oxidation reactions were obtained by depositing gold nanoparticles on group 13 mono- or mixed metal oxides prepared from the hydrolysis of well-characterized homo- and heterometallic N-methyldiethanolaminate derivatives. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A single source precursor route to group 13 homo- and heterometallic oxides as highly active supports for gold-catalyzed aerobic epoxidation of trans-stilbene

    KAUST Repository

    Mishra, Shashank K.

    2012-12-14

    A new Mitsubishi-type of star-shaped homoleptic derivative of indium(III), In4(mdea)6 (2, mdeaH2 = N-methyldiethanolamine) , was synthesized by the chloro-aminoalkoxo exchange reaction of a heteroleptic complex In6Cl6(mdea)6 (1) and used as a facile single source molecular precursor for the sol-gel preparation of high surface area indium oxide. Successful deposition of gold nanoparticles (1 wt.-%) of average size 3.3 nm on the above metal oxide by using HAuCl4· 3H2O afforded a highly efficient Au/In2O3 catalyst for the aerobic epoxidation of trans-stilbene at low temperature. The above single source precursor approach was further extended to obtain other group 13 homo- and heterometallic oxides, namely, α-Ga2O 3, β-Ga2O3 and Al4Ga 2O9, as highly active supports for gold catalysts. The obtained Au/M2O3 (M = Ga, In) and Au/Al4Ga 2O9 catalysts were thoroughly characterized by using several physicochemical techniques such as XRD, high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). A comparative study of the above catalysts for the model aerobic oxidation of stilbene in methylcyclohexane was undertaken. Highly efficient catalysts for aerobic oxidation reactions were obtained by depositing gold nanoparticles on group 13 mono- or mixed metal oxides prepared from the hydrolysis of well-characterized homo- and heterometallic N-methyldiethanolaminate derivatives. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Actively addressed single pixel full-colour plasmonic display

    Science.gov (United States)

    Franklin, Daniel; Frank, Russell; Wu, Shin-Tson; Chanda, Debashis

    2017-05-01

    Dynamic, colour-changing surfaces have many applications including displays, wearables and active camouflage. Plasmonic nanostructures can fill this role by having the advantages of ultra-small pixels, high reflectivity and post-fabrication tuning through control of the surrounding media. However, previous reports of post-fabrication tuning have yet to cover a full red-green-blue (RGB) colour basis set with a single nanostructure of singular dimensions. Here, we report a method which greatly advances this tuning and demonstrates a liquid crystal-plasmonic system that covers the full RGB colour basis set, only as a function of voltage. This is accomplished through a surface morphology-induced, polarization-dependent plasmonic resonance and a combination of bulk and surface liquid crystal effects that manifest at different voltages. We further demonstrate the system's compatibility with existing LCD technology by integrating it with a commercially available thin-film-transistor array. The imprinted surface interfaces readily with computers to display images as well as video.

  7. Effects of single and repeated exposure to biocidal active substances on the barrier function of the skin in vitro.

    Science.gov (United States)

    Buist, Harrie E; van de Sandt, Johannes J M; van Burgsteden, Johan A; de Heer, Cees

    2005-10-01

    The dermal route of exposure is important in worker exposure to biocidal products. Many biocidal active substances which are used on a daily basis may decrease the barrier function of the skin to a larger extent than current risk assessment practice addresses, due to possible skin effects of repeated exposure. The influence of repeated and single exposure to representative biocidal active substances on the skin barrier was investigated in vitro. The biocidal active substances selected were alkyldimethylbenzylammonium chloride (ADBAC), boric acid, deltamethrin, dimethyldidecylammonium chloride (DDAC), formaldehyde, permethrin, piperonyl butoxide, sodium bromide, and tebuconazole. Of these nine compounds, only the quaternary ammonium chlorides ADBAC and DDAC had a clear and consistent influence on skin permeability of the marker compounds tritiated water and [(14)C]propoxur. For these compounds, repeated exposure increased skin permeability more than single exposure. At high concentrations the difference between single and repeated exposure was quantitatively significant: repeated exposure to 300 mg/L ADBAC increased skin permeability two to threefold in comparison to single exposure. Therefore, single and repeated exposure to specific biocidal products may significantly increase skin permeability, especially when used undiluted.

  8. Angle-dependent XPS study of the mechanisms of 'high-low temperature' activation of GaAs photocathode

    International Nuclear Information System (INIS)

    Du Xiaoqing; Chang Benkang

    2005-01-01

    The surface chemical compositions, atomic concentration percentage and layer thickness after 'high-temperature' single-step activation and 'high-low temperature' two-step activation were obtained using quantitative analysis of angle-dependent X-ray photoelectron spectroscopy (XPS). It was found that compared to single-step activation, the thickness of GaAs-O interface barrier had a remarkable decrease, the degree of As-O bond became much smaller and the Ga-O bond became dominating, and at the same time the thickness of (Cs, O) layer also had a deduction while the ratio of Cs to O had no change after two-step activation. The measured spectral response curves showed that a increase of 29% of sensitivity had been obtained after two-step activation. To explore the inherent mechanisms of influences of the evolution of GaAs(Cs, O) surface layers on photoemission, surface electric barrier models based on the experimental results were built. By calculation of electron escape probability it was found that the decrease of thickness of GaAs-O interface barrier and (Cs, O) layer is the main reasons, which explained why higher sensitivity is achieved after two-step activation than single-step activation

  9. Improving the singles rate method for modeling accidental coincidences in high-resolution PET

    International Nuclear Information System (INIS)

    Oliver, Josep F; Rafecas, Magdalena

    2010-01-01

    Random coincidences ('randoms') are one of the main sources of image degradation in PET imaging. In order to correct for this effect, an accurate method to estimate the contribution of random events is necessary. This aspect becomes especially relevant for high-resolution PET scanners where the highest image quality is sought and accurate quantitative analysis is undertaken. One common approach to estimate randoms is the so-called singles rate method (SR) widely used because of its good statistical properties. SR is based on the measurement of the singles rate in each detector element. However, recent studies suggest that SR systematically overestimates the correct random rate. This overestimation can be particularly marked for low energy thresholds, below 250 keV used in some applications and could entail a significant image degradation. In this work, we investigate the performance of SR as a function of the activity, geometry of the source and energy acceptance window used. We also investigate the performance of an alternative method, which we call 'singles trues' (ST) that improves SR by properly modeling the presence of true coincidences in the sample. Nevertheless, in any real data acquisition the knowledge of which singles are members of a true coincidence is lost. Therefore, we propose an iterative method, STi, that provides an estimation based on ST but which only requires the knowledge of measurable quantities: prompts and singles. Due to inter-crystal scatter, for wide energy windows ST only partially corrects SR overestimations. While SR deviations are in the range 86-300% (depending on the source geometry), the ST deviations are systematically smaller and contained in the range 4-60%. STi fails to reproduce the ST results, although for not too high activities the deviation with respect to ST is only a few percent. For conventional energy windows, i.e. those without inter-crystal scatter, the ST method corrects the SR overestimations, and deviations from

  10. Acceleration of a high-current single bunch in a linear accelerator

    International Nuclear Information System (INIS)

    Takeda, Seishi

    1984-01-01

    Some problems associated with the feasibility of an electron-positron linear collider with colliding energy of about 1x1 TeV are discussed. The first problem is related to the generation of high-current single bunch. A quasi-relativistic electron beam from an electron gun is injected into one bucket of the accelerating fields, in opposition to the longitudinal defocusing due to the space-charge effect. For generating a high-current single bunch, the beam bunching by means of the velocity modulation with a subharmonic prebuncher (SHPB) is indispensable. Three existing second generation single bunch electron linear accelerators (SLC, ANL and ISLR-Osaka Univ.) are briefly described. The results of the simulation of subharmonic-bunching is also reported. The second problem is associated with the physics of accelerating high-current single bunch. The longitudinal and transverse wake fields generated by a bunch-cavity interaction and the energy spread of the single bunch are analyzed and discussed. (Aoki, K.)

  11. Searching for Next Single-Phase High-Entropy Alloy Compositions

    Directory of Open Access Journals (Sweden)

    David E. Alman

    2013-10-01

    Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

  12. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-07-01

    Full Text Available Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3O3-PbTiO3 (PMN-PT have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60% near the morphotropic phase boundary (MPB. Ternary Pb(In1/2Nb1/2O3-Pb(Mg1/3Nb2/3O3-PbTiO3 (PIN-PMN-PT single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed.

  13. High Energy Single Frequency Resonant Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  14. Repurposing a Benchtop Centrifuge for High-Throughput Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Yang, Darren; Wong, Wesley P

    2018-01-01

    We present high-throughput single-molecule manipulation using a benchtop centrifuge, overcoming limitations common in other single-molecule approaches such as high cost, low throughput, technical difficulty, and strict infrastructure requirements. An inexpensive and compact Centrifuge Force Microscope (CFM) adapted to a commercial centrifuge enables use by nonspecialists, and integration with DNA nanoswitches facilitates both reliable measurements and repeated molecular interrogation. Here, we provide detailed protocols for constructing the CFM, creating DNA nanoswitch samples, and carrying out single-molecule force measurements.

  15. Scintillation activity in an unirradiated single crystal of 3-hydroxyxanthine

    International Nuclear Information System (INIS)

    Cooke, D.W.; Jahan, M.S.; Alexander, C. Jr.

    1976-01-01

    A method of growing single crystals (approximately 4mm long) of 3-hydroxyxanthine is described. Observed scintillations occurring in an unirradiated single crystal of this potent oncogen as the temperature is lowered from 300 to 90 K are shown. It was found that these scintillations occur upon heating or cooling and do not diminish in activity as the number of heating and cooling cycles increase. It was found that a short duration u.v. exposure would terminate the scintillation activity and various attempts (such as annealing and pressure changes) to rejuvenate them were unsuccessful. With these observations in mind speculation is made concerning the mechanisms associated with the production of purine N-oxide derivatives. (U.K.)

  16. Recent progress in large grain/single crystal high RRR niobium

    International Nuclear Information System (INIS)

    Ganapati Rao Myneni; Peter Kneisel; Tadeu Carneiro; S.R. Agnew; F. Stevie

    2005-01-01

    High RRR bulk niobium Superconducting Radio Frequency (SRF) cavity technology is chosen for the International Linear Collider (ILC). The SRF community was convinced until now that fine grain polycrystalline RRR niobium sheets obtained via forging and cross rolling are essential for forming the SRF Cavities. However, it was recently discovered under a joint Reference Metals Company, Inc., - JLAB CRADA that large grain/single crystal RRR niobium sliced directly from ingots is highly ductile reaching 100 percent elongation. This discovery led to the successful fabrication of several SRF single and/or multi cell structures, formed with sliced RRR discs from the ingots, operating at 2.3, 1.5 and 1.3 GHz. This new exciting development is expected to offer high performance accelerator structures not only at reduced costs but also with simpler fabrication and processing conditions. As a result there is a renewed interest in the evaluation and understanding of the large grain and single crystal niobium with respect to their mechanical and physical properties as well as the oxidation behavior and the influence of impurities such as hydrogen and Ta. In this paper the results of many collaborative studies on large grain and single crystal high RRR niobium between JLAB, Universities and Industry are presented

  17. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device

    NARCIS (Netherlands)

    Schoeman, R.M.; Kemna, Evelien; Wolbers, F.; van den Berg, Albert

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped

  18. High-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects.

    Science.gov (United States)

    Zeng, Zhaoli; Qu, Xueming; Tan, Yidong; Tan, Runtao; Zhang, Shulian

    2015-06-29

    A simple and high-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects is presented. The single high-order feedback effect is realized when dual-frequency laser reflects numerous times in a Fabry-Perot cavity and then goes back to the laser resonator along the same route. In this case, two orthogonally polarized feedback fringes with nanoscale resolution are obtained. This self-mixing interferometer has the advantages of higher sensitivity to weak signal than that of conventional interferometer. In addition, two orthogonally polarized fringes are useful for discriminating the moving direction of measured object. The experiment of measuring 2.5nm step is conducted, which shows a great potential in nanometrology.

  19. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

    KAUST Repository

    Zhu, Jie

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules. © 2014 American Chemical Society.

  20. Seeded growth of boron arsenide single crystals with high thermal conductivity

    Science.gov (United States)

    Tian, Fei; Song, Bai; Lv, Bing; Sun, Jingying; Huyan, Shuyuan; Wu, Qi; Mao, Jun; Ni, Yizhou; Ding, Zhiwei; Huberman, Samuel; Liu, Te-Huan; Chen, Gang; Chen, Shuo; Chu, Ching-Wu; Ren, Zhifeng

    2018-01-01

    Materials with high thermal conductivities are crucial to effectively cooling high-power-density electronic and optoelectronic devices. Recently, zinc-blende boron arsenide (BAs) has been predicted to have a very high thermal conductivity of over 2000 W m-1 K-1 at room temperature by first-principles calculations, rendering it a close competitor for diamond which holds the highest thermal conductivity among bulk materials. Experimental demonstration, however, has proved extremely challenging, especially in the preparation of large high quality single crystals. Although BAs crystals have been previously grown by chemical vapor transport (CVT), the growth process relies on spontaneous nucleation and results in small crystals with multiple grains and various defects. Here, we report a controllable CVT synthesis of large single BAs crystals (400-600 μm) by using carefully selected tiny BAs single crystals as seeds. We have obtained BAs single crystals with a thermal conductivity of 351 ± 21 W m-1 K-1 at room temperature, which is almost twice as conductive as previously reported BAs crystals. Further improvement along this direction is very likely.

  1. Research status of large mode area single polarization active fiber

    Science.gov (United States)

    Xiao, Chun; Zhang, Ge; Yang, Bin-hua; Cheng, Wei-feng; Gu, Shao-yi

    2018-03-01

    As high power fiber laser used more and more widely, to increase the output power of fiber laser and beam quality improvement have become an important goal for the development of high power fiber lasers. The use of large mode fiber is the most direct and effective way to solve the nonlinear effect and fiber damage in the fiber laser power lifting process. In order to reduce the effect of polarization of the fiber laser system, the study found that when introduces a birefringence in the single-mode fiber, the polarization state changes caused by the birefringence is far greater than the random polarization state changes, then the external disturbance is completely submerged, finally the polarization can be controlled and stabilized. Through the fine design of the fiber structure, if the birefringence is high enough to achieve the separation of the two polarization states, the fiber will have a different cut-off mechanism to eliminate polarization which is not need, which will realize single mode single polarization transmission in a band. In this paper, different types of single polarization fiber design are presented and the application of these fibers are also discussed.

  2. Single crystal growth, characterization and high-pressure Raman spectroscopy of impurity-free magnesite (MgCO3)

    Science.gov (United States)

    Liang, Wen; Li, Zeming; Yin, Yuan; Li, Rui; Chen, Lin; He, Yu; Dong, Haini; Dai, Lidong; Li, Heping

    2018-05-01

    The understanding of the physical and chemical properties of magnesite (MgCO3) under deep-mantle conditions is highly important to capture the essence of deep-carbon storage in Earth's interior. To develop standard rating scales, the impurity-free magnesite single crystal, paying particular attention to the case of avoiding adverse impacts of Ca2+, Fe2+, and Mn2+ impurities in natural magnesite, is undoubtedly necessary for all research of magnesite, including crystalline structural phase transitions, anisotropic elasticity and conductivity, and equation of state (EoS). Thus, a high-quality single crystal of impurity-free magnesite was grown successfully for the first time using the self-flux method under high pressure-temperature conditions. The size of the magnesite single crystal, observed in a plane-polarized microscope, exceeds 200 μm, and the crystal exhibits a rhombohedral structure to cleave along the (101) plane. In addition, its composition of Mg0.999 ± 0.001CO3 was quantified through electron probing analysis. The structural property was investigated by means of single crystal X-ray diffraction and the unit cell dimensions obtained in the rhombohedral symmetry of the R\\bar {3}c space group are a = 4.6255 (3) and c = 14.987 (2), and the final R = 0.0243 for 718 reflections. High-pressure Raman spectroscopy of the magnesite single crystal was performed up to 27 GPa at ambient temperature. All Raman active bands, ν i, without any splitting increased almost linearly with increasing pressure. In combination with the high-pressure Raman results {{d/ν _i}}{{{d}P}} and the bulk modulus K T (103 GPa) reported from magnesite EoS studies, the mode Grüneisen parameters (1.49, 1.40, 0.26, and 0.27) of each vibration ( T, L, ν 4, and ν 1) were calculated.

  3. Social Cognitive Theory and Physical Activity Among Korean Male High-School Students.

    Science.gov (United States)

    Lee, Chung Gun; Park, Seiyeong; Lee, Seung Hwan; Kim, Hyunwoo; Park, Ji-Won

    2018-02-01

    The most critical step in developing and implementing effective physical activity interventions is to understand the determinants and correlates of physical activity, and it is strongly suggested that such effort should be based on theories. The purpose of this study is to test the direct, indirect, and total effect of social cognitive theory constructs on physical activity among Korean male high-school students. Three-hundred and forty-one 10th-grade male students were recruited from a private single-sex high school located in Seoul, South Korea. Structural equation modeling was used to test the expected relationships among the latent variables. The proposed model accounted for 42% of the variance in physical activity. Self-efficacy had the strongest total effect on physical activity. Self-efficacy for being physically active was positively associated with physical activity ( p social cognitive theory is a useful framework to understand physical activity among Korean male adolescents. Physical activity interventions targeting Korean male high-school students should focus on the major sources of efficacy.

  4. Active Learning Strategies for Phenotypic Profiling of High-Content Screens.

    Science.gov (United States)

    Smith, Kevin; Horvath, Peter

    2014-06-01

    High-content screening is a powerful method to discover new drugs and carry out basic biological research. Increasingly, high-content screens have come to rely on supervised machine learning (SML) to perform automatic phenotypic classification as an essential step of the analysis. However, this comes at a cost, namely, the labeled examples required to train the predictive model. Classification performance increases with the number of labeled examples, and because labeling examples demands time from an expert, the training process represents a significant time investment. Active learning strategies attempt to overcome this bottleneck by presenting the most relevant examples to the annotator, thereby achieving high accuracy while minimizing the cost of obtaining labeled data. In this article, we investigate the impact of active learning on single-cell-based phenotype recognition, using data from three large-scale RNA interference high-content screens representing diverse phenotypic profiling problems. We consider several combinations of active learning strategies and popular SML methods. Our results show that active learning significantly reduces the time cost and can be used to reveal the same phenotypic targets identified using SML. We also identify combinations of active learning strategies and SML methods which perform better than others on the phenotypic profiling problems we studied. © 2014 Society for Laboratory Automation and Screening.

  5. Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy

    Science.gov (United States)

    Guo, Qing; He, Yufan; Lu, H. Peter

    2015-01-01

    Characterizing the impact of fluctuating enzyme conformation on enzymatic activity is critical in understanding the structure–function relationship and enzymatic reaction dynamics. Different from studying enzyme conformations under a denaturing condition, it is highly informative to manipulate the conformation of an enzyme under an enzymatic reaction condition while monitoring the real-time enzymatic activity changes simultaneously. By perturbing conformation of horseradish peroxidase (HRP) molecules using our home-developed single-molecule total internal reflection magnetic tweezers, we successfully manipulated the enzymatic conformation and probed the enzymatic activity changes of HRP in a catalyzed H2O2–amplex red reaction. We also observed a significant tolerance of the enzyme activity to the enzyme conformational perturbation. Our results provide a further understanding of the relation between enzyme behavior and enzymatic conformational fluctuation, enzyme–substrate interactions, enzyme–substrate active complex formation, and protein folding–binding interactions. PMID:26512103

  6. Ankle muscle activity modulation during single-leg stance differs between children, young adults and seniors.

    Science.gov (United States)

    Kurz, Eduard; Faude, Oliver; Roth, Ralf; Zahner, Lukas; Donath, Lars

    2018-02-01

    Incomplete maturation and aging-induced declines of the neuromuscular system affect postural control both in children and older adults and lead to high fall rates. Age-specific comparisons of the modulation of ankle muscle activation and behavioral center of pressure (COP) indices during upright stance have been rarely conducted. The objective of the present study was to quantify aging effects on a neuromuscular level. Thus, surface electromyography (SEMG) modulation and co-activity of ankle muscles during single-leg standing was compared in healthy children, young adults and seniors. Postural steadiness (velocity and mean sway frequency of COP), relative muscle activation (SEMG modulation) and co-activation of two ankle muscles (tibialis anterior, TA; soleus, SO) were examined during single-leg stance in 19 children [age, 9.7 (SD 0.5) years], 30 adults [23.3 (1.5) years] and 29 seniors [62.7 (6.1) years]. Velocity of COP in medio-lateral and anterior-posterior directions, mean sway frequency in anterior-posterior direction, relative muscle activation (TA and SO) and co-activation revealed large age effects (P  0.14). Post-hoc comparisons indicated higher COP velocities, anterior-posterior frequencies, relative SO activation and co-activation in children and seniors when compared with adults. Relative TA activation was higher in children and adults compared with seniors (P seniors seems to be counteracted with higher TA/SO co-activity and SO modulation. However, TA modulation is higher in children and adults, whereas seniors' TA modulation capacity is diminished. An aging-induced decline of TA motor units might account for deteriorations of TA modulation in seniors.

  7. Load Insensitive, Low Voltage Quadrature Oscillator Using Single Active Element

    Directory of Open Access Journals (Sweden)

    Jitendra Mohan

    2017-01-01

    Full Text Available In this paper, a load insensitive quadrature oscillator using single differential voltage dual-X second generation current conveyor operated at low voltage is proposed. The proposed circuit employs single active element, three grounded resistors and two grounded capacitors. The proposed oscillator offers two load insensitive quadrature current outputs and three quadrature voltage outputs simultaneously. Effects of non-idealities along with the effects of parasitic are further studied. The proposed circuit enjoys the feature of low active and passive sensitivities. Additionally, a resistorless realization of the proposed quadrature oscillator is also explored. Simulation results using PSPICE program on cadence tool using 90 nm Complementary Metal Oxide Semiconductor (CMOS process parameters confirm the validity and practical utility of the proposed circuit.

  8. Active power decoupling with reduced converter stress for single ...

    Indian Academy of Sciences (India)

    SUJATA BHOWMICK

    Department of Electronic Systems Engineering, Indian Institute of Science, ... Single phase; double-frequency ripple; active power decoupling; reduced stress; ... sation of renewable energy sources (e.g., PV), potential ... In standard grid connected DC/AC H-bridge configuration, ..... solar inverter with reduced-size dc link.

  9. Hall mobility reduction in single-crystalline silicon gradually compensated by thermal donors activation

    Science.gov (United States)

    Veirman, J.; Dubois, S.; Enjalbert, N.; Garandet, J. P.; Heslinga, D. R.; Lemiti, M.

    2010-06-01

    This letter focuses on the variation of the Hall majority carrier mobility with the dopant compensation level in purely Boron-doped Czochralski grown silicon single crystals. Compensation was varied continuously at the sample scale via a step by step activation of the oxygen-based thermal donors. At room temperature, we show a strong drop in mobility for high compensation levels in both p- and n-type Si. Mobility models taking into account carrier scattering on ionized impurities and phonons could not reproduce this drop. We conclude that a specific effect of compensation must be taken into account to explain the observed behaviour. We qualitatively discuss physical mechanisms susceptible to reduce mobility in highly compensated Si.

  10. Failure analysis of high strength pipeline with single and multiple corrosions

    International Nuclear Information System (INIS)

    Chen, Yanfei; Zhang, Hong; Zhang, Juan; Li, Xin; Zhou, Jing

    2015-01-01

    Highlights: • We study failure of high strength pipelines with single corrosion. • We give regression equations for failure pressure prediction. • We propose assessment procedure for pipelines with multiple corrosions. - Abstract: Corrosion will compromise safety operation of oil and gas pipelines, accurate determination of failure pressure finds importance in residual strength assessment and corrosion allowance design of onshore and offshore pipelines. This paper investigates failure pressure of high strength pipeline with single and multiple corrosions using nonlinear finite element analysis. On the basis of developed regression equations for failure pressure prediction of high strength pipeline with single corrosion, the paper proposes an assessment procedure for predicting failure pressure of high strength pipeline with multiple corrosions. Furthermore, failure pressures predicted by proposed solutions are compared with experimental results and various assessment methods available in literature, where accuracy and versatility are demonstrated

  11. Single-stage anterior high sacrectomy for locally recurrent rectal cancer.

    Science.gov (United States)

    Fawaz, Khaled; Khaled, Fawaz; Smith, Myles J; Moises, Cukier; Smith, Andrew J; Yee, Albert J M

    2014-03-01

    A review of prospectively collected data on a consecutive series of patients undergoing single-stage anterior high sacrectomy for locally recurrent rectal carcinoma (LRRC). To determine the clinical outcome of patients who underwent anterior high sacrectomy for LRRC. High sacrectomy for oncological resection remains technically challenging. Surgery has the potential to achieve cure in carefully selected patients. Complete (R0) tumor excision in LRRC may require sacrectomy. High sacral resections (S3 and above) typically require a combined anterior/supine and posterior/prone procedure. We investigated our experience performing single-stage anterior high sacrectomy for LRRC. A consecutive series of patients with LRRC without systemic metastases who underwent resection with curative intent requiring high sacrectomy were identified. A review of a prospectively maintained colorectal and spine cancer database data was performed. An oblique dome high sacral osteotomy was performed during a single-stage anterior procedure. Outcome measures included surgical resection margin status, hospital length of stay, postoperative complications, physical functioning status, and overall survival. Nineteen consecutive patients were treated between 2002 and 2011. High sacrectomy was performed at sacral level S1-S2 in 4 patients, S2-S3 in 9 patients, and through S3 in 6 patients. An R0 resection margin was achieved histologically in all 19 cases. There was 1 early (<30 d) postoperative death (1/19, 5%). At median follow-up of 38 months, 13 patients had no evidence of residual disease, 1 was alive with disease, and 4 had died of disease. Morbidities occurred in 15 of the 19 patients (79%). Although high sacrectomy may require a combined anterior and posterior surgical approach, our series demonstrates the feasibility of performing single-stage anterior high sacrectomy in LRRC, with acceptable risks and outcomes compared with the literature. The procedure described by us for LRRC lessens

  12. Diffusion-cooled high-power single-mode waveguide CO2 laser for transmyocardial revascularization

    Science.gov (United States)

    Berishvili, I. I.; Bockeria, L. A.; Egorov, E. N.; Golubev, Vladimir S.; Galushkin, Michail G.; Kheliminsky, A. A.; Panchenko, Vladislav Y.; Roshin, A. P.; Sigaev, I. Y.; Vachromeeva, M. N.; Vasiltsov, Victor V.; Yoshina, V. I.; Zabelin, Alexandre M.; Zelenov, Evgenii V.

    1999-01-01

    The paper presents the results on investigations and development of multichannel waveguide CO2 laser with diffusion cooling of active medium excited by discharge of audio-frequency alternating current. The description of high-power single-mode CO2 laser with average beam power up to 1 kW is presented. The result of measurement of the laser basic parameters are offered, as well as the outcomes of performances of the laser head with long active zone, operating in waveguide mode. As an example of application of these laser, various capabilities a description of the developed medical system 'Genom' used in the transmyocardial laser revascularization (TMLR) procedure and clinical results of the possibilities of the TMLR in the surgical treatment are presented.

  13. An overview of fotemustine in high-grade gliomas: from single agent to association with bevacizumab.

    Science.gov (United States)

    Lombardi, Giuseppe; Farina, Patrizia; Della Puppa, Alessandro; Cecchin, Diego; Pambuku, Ardi; Bellu, Luisa; Zagonel, Vittorina

    2014-01-01

    Fotemustine is a third-generation nitrosourea showing efficacy in various types of tumors such as melanoma and glioma. We reviewed the most important studies on fotemustine treatment in glioma patients analyzing its pharmacological profile and its activity and safety. Fotemustine was used as single agent or in association with new targeted drugs such as bevacizumab; fotemustine was used both as first-line chemotherapy before temozolomide era and in refractory-temozolomide patients during temozolomide era. Finally, analyzing and comparing the activity and safety of fotemustine alone or in combination with bevacizumab versus other nitrosoureas such as lomustine, we may suggest that the combination treatment with bevacizumab and fotemustine may be active and tolerable in patients with high grade gliomas.

  14. Design and Implementation of a High Efficiency, Low Component Voltage Stress, Single-Switch High Step-Up Voltage Converter for Vehicular Green Energy Systems

    Directory of Open Access Journals (Sweden)

    Yu-En Wu

    2016-09-01

    Full Text Available In this study, a novel, non-isolated, cascade-type, single-switch, high step-up DC/DC converter was developed for green energy systems. An integrated coupled inductor and voltage lift circuit were applied to simplify the converter structure and satisfy the requirements of high efficiency and high voltage gain ratios. In addition, the proposed structure is controllable with a single switch, which effectively reduces the circuit cost and simplifies the control circuit. With the leakage inductor energy recovery function and active voltage clamp characteristics being present, the circuit yields optimizable conversion efficiency and low component voltage stress. After the operating principles of the proposed structure and characteristics of a steady-state circuit were analyzed, a converter prototype with 450 W, 40 V of input voltage, 400 V of output voltage, and 95% operating efficiency was fabricated. The Renesas MCU RX62T was employed to control the circuits. Experimental results were analyzed to validate the feasibility and effectiveness of the proposed system.

  15. Characterizing the angiogenic activity of patients with single ventricle physiology and aortopulmonary collateral vessels.

    Science.gov (United States)

    Sandeep, Nefthi; Uchida, Yutaka; Ratnayaka, Kanishka; McCarter, Robert; Hanumanthaiah, Sridhar; Bangoura, Aminata; Zhao, Zhen; Oliver-Danna, Jacqueline; Leatherbury, Linda; Kanter, Joshua; Mukouyama, Yoh-Suke

    2016-04-01

    Patients with single ventricle congenital heart disease often form aortopulmonary collateral vessels via an unclear mechanism. To gain insights into the pathogenesis of aortopulmonary collateral vessels, we correlated angiogenic factor levels with in vitro activity and angiographic aortopulmonary collateral assessment and examined whether patients with single ventricle physiology have increased angiogenic factors that can stimulate endothelial cell sprouting in vitro. In patients with single ventricle physiology (n = 27) and biventricular acyanotic control patients (n = 21), hypoxia-inducible angiogenic factor levels were measured in femoral venous and arterial plasma at cardiac catheterization. To assess plasma angiogenic activity, we used a 3-dimensional in vitro cell sprouting assay that recapitulates angiogenic sprouting. Aortopulmonary collateral angiograms were graded using a 4-point scale. Compared with controls, patients with single ventricle physiology had increased vascular endothelial growth factor (artery: 58.7 ± 1.2 pg/mL vs 35.3 ± 1.1 pg/mL, P collateral severity. We are the first to correlate plasma angiogenic factor levels with angiography and in vitro angiogenic activity in patients with single ventricle disease with aortopulmonary collaterals. Patients with single ventricle disease have increased stromal-derived factor 1-alpha and soluble fms-like tyrosine kinase-1, and their roles in aortopulmonary collateral formation require further investigation. Plasma factors and angiogenic activity correlate poorly with aortopulmonary collateral severity in patients with single ventricles, suggesting complex mechanisms of angiogenesis. Published by Elsevier Inc.

  16. Generating high-quality single droplets for optical particle characterization with an easy setup

    Science.gov (United States)

    Xu, Jie; Ge, Baozhen; Meng, Rui

    2018-06-01

    The high-performance and micro-sized single droplet is significant for optical particle characterization. We develop a single-droplet generator (SDG) based on a piezoelectric inkjet technique with advantages of low cost and easy setup. By optimizing the pulse parameters, we achieve various size single droplets. Further investigations reveal that SDG generates single droplets of high quality, demonstrating good sphericity, monodispersity and a stable length of several millimeters.

  17. Hardness of high-pressure high-temperature treated single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kawasaki, S.; Nojima, Y.; Yokomae, T.; Okino, F.; Touhara, H.

    2007-01-01

    We have performed high-pressure high-temperature (HPHT) treatments of high quality single-walled carbon nanotubes (SWCNTs) over a wide pressure-temperature range up to 13 GPa-873 K and have investigated the hardness of the HPHT-treated SWCNTs using a nanoindentation technique. It was found that the hardness of the SWCNTs treated at pressures greater than 11 GPa and at temperatures higher than 773 K is about 10 times greater than that of the SWCNTs treated at low temperature. It was also found that the hardness change of the SWCNTs is related to the structural change by the HPHT treatments which was based on synchrotron X-ray diffraction measurements

  18. Performance evaluation of a piezoactuator-based single-stage valve system subjected to high temperature

    Science.gov (United States)

    Jeon, Juncheol; Han, Chulhee; Chung, Jye Ung; Choi, Seung-Bok

    2015-01-01

    In this paper, a novel single-stage valve system activated by a piezostack actuator is proposed and experimentally evaluated at both room temperature (20 °C) and high temperature (100 °C) conditions. A hinge-lever displacement amplifier is adopted in the valve system to magnify the displacement generated from the piezostack actuator. After explaining the operating principle of the proposed piezostack-driven single-stage valve system, the geometric dimensions and mechanical properties of the valve components are discussed in details. An experimental apparatus is then manufactured to evaluate the performances of the valve system such as flow rate. The experimental apparatus consists of a heat chamber, which can regulate the temperature of the valve system and oil, pneumatic-hydraulic cylinders, a hydraulic circuit, a pneumatic circuit, electronic devices, an interface card, and a high voltage amplifier. The pneumatic-hydraulic cylinder transforms the pneumatic pressure into hydraulic pressure. The performances of the valve system regarding spool response, pressure drop, and flow rate are evaluated and presented. In addition, the performance of the valve system under high temperature condition is compared with that under room temperature condition. The experimental results are plotted in both frequency and time domains.

  19. Performance evaluation of a piezoactuator-based single-stage valve system subjected to high temperature

    International Nuclear Information System (INIS)

    Jeon, Juncheol; Han, Chulhee; Ung Chung, Jye; Choi, Seung-Bok

    2015-01-01

    In this paper, a novel single-stage valve system activated by a piezostack actuator is proposed and experimentally evaluated at both room temperature (20 °C) and high temperature (100 °C) conditions. A hinge-lever displacement amplifier is adopted in the valve system to magnify the displacement generated from the piezostack actuator. After explaining the operating principle of the proposed piezostack-driven single-stage valve system, the geometric dimensions and mechanical properties of the valve components are discussed in details. An experimental apparatus is then manufactured to evaluate the performances of the valve system such as flow rate. The experimental apparatus consists of a heat chamber, which can regulate the temperature of the valve system and oil, pneumatic-hydraulic cylinders, a hydraulic circuit, a pneumatic circuit, electronic devices, an interface card, and a high voltage amplifier. The pneumatic-hydraulic cylinder transforms the pneumatic pressure into hydraulic pressure. The performances of the valve system regarding spool response, pressure drop, and flow rate are evaluated and presented. In addition, the performance of the valve system under high temperature condition is compared with that under room temperature condition. The experimental results are plotted in both frequency and time domains. (paper)

  20. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation

    Science.gov (United States)

    Marcinkowski, Matthew D.; Darby, Matthew T.; Liu, Jilei; Wimble, Joshua M.; Lucci, Felicia R.; Lee, Sungsik; Michaelides, Angelos; Flytzani-Stephanopoulos, Maria; Stamatakis, Michail; Sykes, E. Charles H.

    2018-03-01

    The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards the synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu-based catalysts are not practical due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Using Pt/Cu single-atom alloys (SAAs), we examine C-H activation in a number of systems including methyl groups, methane and butane using a combination of simulations, surface science and catalysis studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke-resistant C-H activation chemistry, with the added economic benefit that the precious metal is diluted at the atomic limit.

  1. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkowski, Matthew D.; Darby, Matthew T.; Liu, Jilei; Wimble, Joshua M.; Lucci, Felicia R.; Lee, Sungsik; Michaelides, Angelos; Flytzani-Stephanopoulos, Maria; Stamatakis, Michail; Sykes, E. Charles H.

    2018-01-08

    The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu- based catalysts are not practical for this chemistry due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Utilizing Pt/Cu single atom alloys (SAAs) we examine C-H activation in a number of systems including methyl groups, methane, and butane using a combination of simulations, surface science, and catalysis studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke resistant C-H activation chemistry with the added economic benefit that the precious metal is diluted at the atomic limit.

  2. Damping mechanisms of high-lying single-particle states in 91Nb

    International Nuclear Information System (INIS)

    Molen, H. K. T. van der; Berg, A. M. van den; Harakeh, M. N.; Hunyadi, M.; Kalantar-Nayestanaki, N.; Akimune, H.; Daito, I.; Fujimura, H.; Ihara, F.; Inomata, T.; Ishibashi, K.; Yoshida, H.; Yosoi, M.; Fujita, Y.; Fujiwara, M.; Jaenecke, J.; O'Donnell, T. W.; Laurent, H.; Lhenry, I.; Rodin, V. A.

    2007-01-01

    Decay by proton emission from high-lying states in 91 Nb, populated in the 90 Zr(α,t) reaction at E α =180 MeV, has been investigated. Decay to the ground state and semidirect decay to the low-lying (2 + ,5 - , and 3 - ) phonon states in 90 Zr were observed. It was found that these phonon states play an important role in the damping process of the single-particle states. An optical-model coupled-channel approach was used successfully to describe the direct and semidirect parts of the decay

  3. High-power single-mode cw dye ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H W; Stein, L; Froelich, D; Fugger, B; Welling, H [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Angewandte Physik

    1977-12-01

    Due to spatial hole burning, standing-wave dye lasers require a large amount of selectivity inside the cavity for single-mode operation. The output power of these lasers is limited by losses caused by the frequency selecting elements. In a travelling-wave laser, on the other hand, spatial hole burning does not exist, thereby eliminating the need for high selectivity. A travelling-wave cw dye laser was realized by unidirectional operation of a ring laser, yielding single mode output powers of 1.2 W at 595 nm and of 55 mW in the UV-region with intracavity frequency doubling.

  4. Fixed-Dose Combination Drug Approvals, Patents and Market Exclusivities Compared to Single Active Ingredient Pharmaceuticals.

    Science.gov (United States)

    Hao, Jing; Rodriguez-Monguio, Rosa; Seoane-Vazquez, Enrique

    2015-01-01

    Fixed-dose combinations (FDC) contain two or more active ingredients. The effective patent and exclusivity life of FDC compared to single active ingredient has not been assessed. Trends in FDA approved FDC in the period 1980-2012 and time lag between approval of FDC and single active ingredients in the combination were assessed, and the effective patent and exclusivity life of FDC was compared with their single active ingredients. New molecular entities (NMEs), new therapeutic biologics license applications (BLAs) and FDC data were collected from the FDA Orange Book and Drugs@FDA. Analysis included FDC containing one or more NMEs or BLAs at first FDA approval (NMEs-FDC) and only already marketed drugs (Non-NMEs-FDC). Descriptive, Kruskal-Wallis and Wilcoxon Rank Sum analyses were performed. During the study period, the FDA approved 28 NMEs-FDC (3.5% of NMEs) and 117 non-NMEs-FDC. FDC approvals increased from 12 in the 1980s to 59 in the 2000s. Non-NMEs-FDC entered the market at a median of 5.43 years (interquartile range 1.74, 10.31) after first FDA approval of single active ingredients in the combination. The Non-NMEs-FDC entered the market at a median of 2.33 years (-7.55, 2.39) before approval of generic single active ingredient. Non-NME-FDC added a median of 9.70 (2.75, 16.24) years to the patent and exclusivity life of the single active ingredients in the combination. FDC approvals significantly increased over the last twenty years. Pharmaceutical companies market FDC drugs shortly before the generic versions of the single ingredients enter the market extending the patent and exclusivity life of drugs included in the combination.

  5. Fixed-Dose Combination Drug Approvals, Patents and Market Exclusivities Compared to Single Active Ingredient Pharmaceuticals.

    Directory of Open Access Journals (Sweden)

    Jing Hao

    Full Text Available Fixed-dose combinations (FDC contain two or more active ingredients. The effective patent and exclusivity life of FDC compared to single active ingredient has not been assessed.Trends in FDA approved FDC in the period 1980-2012 and time lag between approval of FDC and single active ingredients in the combination were assessed, and the effective patent and exclusivity life of FDC was compared with their single active ingredients.New molecular entities (NMEs, new therapeutic biologics license applications (BLAs and FDC data were collected from the FDA Orange Book and Drugs@FDA. Analysis included FDC containing one or more NMEs or BLAs at first FDA approval (NMEs-FDC and only already marketed drugs (Non-NMEs-FDC. Descriptive, Kruskal-Wallis and Wilcoxon Rank Sum analyses were performed.During the study period, the FDA approved 28 NMEs-FDC (3.5% of NMEs and 117 non-NMEs-FDC. FDC approvals increased from 12 in the 1980s to 59 in the 2000s. Non-NMEs-FDC entered the market at a median of 5.43 years (interquartile range 1.74, 10.31 after first FDA approval of single active ingredients in the combination. The Non-NMEs-FDC entered the market at a median of 2.33 years (-7.55, 2.39 before approval of generic single active ingredient. Non-NME-FDC added a median of 9.70 (2.75, 16.24 years to the patent and exclusivity life of the single active ingredients in the combination.FDC approvals significantly increased over the last twenty years. Pharmaceutical companies market FDC drugs shortly before the generic versions of the single ingredients enter the market extending the patent and exclusivity life of drugs included in the combination.

  6. Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter†‡

    Science.gov (United States)

    Wu, Ting-Hsiang; Chen, Yue; Park, Sung-Yong; Hong, Jason; Teslaa, Tara; Zhong, Jiang F.; Di Carlo, Dino; Teitell, Michael A.

    2014-01-01

    We report a high speed and high purity pulsed laser triggered fluorescence activated cell sorter (PLACS) with a sorting throughput up to 20 000 mammalian cells s−1 with 37% sorting purity, 90% cell viability in enrichment mode, and >90% purity in high purity mode at 1500 cells s−1 or 3000 beads s−1. Fast switching (30 μs) and a small perturbation volume (~90 pL) is achieved by a unique sorting mechanism in which explosive vapor bubbles are generated using focused laser pulses in a single layer microfluidic PDMS channel. PMID:22361780

  7. Electrocatalytic oxidation of alcohols on single gold particles in highly ordered SiO2 cavities

    International Nuclear Information System (INIS)

    Li, Na; Zhou, Qun; Tian, Shu; Zhao, Hong; Li, Xiaowei; Adkins, Jason; Gu, Zhuomin; Zhao, Lili; Zheng, Junwei

    2013-01-01

    In the present work, we report a new and simple approach for preparing a highly ordered Au (1 1 1) nanoparticle (NP) array in SiO 2 cavities on indium-doped tin oxide (ITO) electrodes. We fabricated a SiO 2 cavity array on the surface of an ITO electrode using highly ordered self-assembly of polystyrene spheres as a template. Gold NPs were electrodeposited at the bottom of the SiO 2 cavities, and single gold NPs dominated with (1 1 1) facets were generated in each cavity by annealing the electrode at a high temperature. Such (1 1 1) facets were the predominate trait of the single gold particle which exhibited considerable electrocatalytic activity toward oxidation of methanol, ethanol, and glycerol. This has been attributed to the formation of incipient hydrous oxides at unusually low potential on the specific (1 1 1) facet of the gold particles. Moreover, each cavity of the SiO 2 possibly behaves as an independent electrochemical cell in which the methanol molecules are trapped; this produces an environment advantageous to catalyzing electrooxidation. The oxidation of methanol on the electrodes is a mixed control mechanism (both by diffusion and electrode kinetics). This strategy both provided an approach to study electrochemical reactions on a single particle in a microenvironment and may supply a way to construct alcohols sensors

  8. Thermodynamic analysis of single-stage and multi-stage adsorption refrigeration cycles with activated carbon–ammonia working pair

    International Nuclear Information System (INIS)

    Xu, S.Z.; Wang, L.W.; Wang, R.Z.

    2016-01-01

    Highlights: • Activated carbon–ammonia multi-stage adsorption refrigerator was analyzed. • COP, exergetic efficiency and entropy production of cycles were calculated. • Single-stage cycle usually has the advantages of simple structure and high COP. • Multi-stage cycles adapt to critical conditions better than single-stage cycle. • Boundary conditions for choosing optimal cycle were summarized as tables. - Abstract: Activated carbon–ammonia multi-stage adsorption refrigeration cycle was analyzed in this article, which realized deep-freezing for evaporating temperature under −18 °C with heating source temperature much lower than 100 °C. Cycle mathematical models for single, two and three-stage cycles were established on the basis of thorough thermodynamic analysis. According to simulation results of thermodynamic evaluation indicators such as COP (coefficient of performance), exergetic efficiency and cycle entropy production, multi-stage cycle adapts to high condensing temperature, low evaporating temperature and low heating source temperature well. Proposed cycle with selected working pair can theoretically work under very severe conditions, such as −25 °C evaporating temperature, 40 °C condensing temperature, and 70 °C heating source temperature, but under these working conditions it has the drawback of low cycle adsorption quantity. It was found that both COP and exergetic efficiency are of great reference value in the choice of cycle, whereas entropy production is not so useful for cycle stage selection. Finally, the application boundary conditions of single-stage, two-stage, and three-stage cycles were summarized as tables according to the simulation results, which provides reference for choosing optimal cycle under different conditions.

  9. Monitoring single protease activities on triple-helical collagen molecules

    Science.gov (United States)

    Harzar, Raj; Froberg, James; Srivastava, D. K.; Choi, Yongki

    Matrix metalloproteinases (MMPs), a particular family of proteases, play a pivotal role in degrading the extracellular matrix (ECM). It has been known for more than 40 years that MMPs are closely involved in multiple human cancers during cell growth, invasion, and metastasis. However, the mechanisms of MMP activity are far from being understood. Here, we monitored enzymatic processing of MMPs with two complementary approaches, atomic force microscopy and nanocircuits measurements. AFM measurements demonstrated that incubation of collagen monomers with MMPs resulted in a single position cleavage, producing 3/4 and 1/4 collagen fragments. From electronic monitoring of single MMP nanocircuit measurements, we were able to capture a single cleavage event with a rate of 0.012 Hz, which were in good agreement with fluorescence assay measurements. This work was supported financially by the NIGMS/NIH (P30GM103332-02) and ND NASA EPSCoR RID Grant.

  10. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.

    Science.gov (United States)

    Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi

    2010-12-15

    A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. An Overview of Fotemustine in High-Grade Gliomas: From Single Agent to Association with Bevacizumab

    Directory of Open Access Journals (Sweden)

    Giuseppe Lombardi

    2014-01-01

    Full Text Available Fotemustine is a third-generation nitrosourea showing efficacy in various types of tumors such as melanoma and glioma. We reviewed the most important studies on fotemustine treatment in glioma patients analyzing its pharmacological profile and its activity and safety. Fotemustine was used as single agent or in association with new targeted drugs such as bevacizumab; fotemustine was used both as first-line chemotherapy before temozolomide era and in refractory-temozolomide patients during temozolomide era. Finally, analyzing and comparing the activity and safety of fotemustine alone or in combination with bevacizumab versus other nitrosoureas such as lomustine, we may suggest that the combination treatment with bevacizumab and fotemustine may be active and tolerable in patients with high grade gliomas.

  12. Characteristics of single-atom trapping in a magneto-optical trap with a high magnetic-field gradient

    International Nuclear Information System (INIS)

    Yoon, Seokchan; Choi, Youngwoon; Park, Sangbum; Ji, Wangxi; Lee, Jai-Hyung; An, Kyungwon

    2007-01-01

    A quantitative study on characteristics of a magneto-optical trap with a single or a few atoms is presented. A very small number of 85 Rb atoms were trapped in a micron-size magneto-optical trap with a high magnetic-field gradient. In order to find the optimum condition for a single-atom trap, we have investigated how the number of atoms and the size of atomic cloud change as various experimental parameters, such as a magnetic-field gradient and the trapping laser intensity and detuning. The averaged number of atoms was measured very accurately with a calibration procedure based on the single-atom saturation curve of resonance fluorescence. In addition, the number of atoms in a trap could be controlled by suppressing stochastic loading events by means of a real-time active feedback on the magnetic-field gradient

  13. CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation.

    Science.gov (United States)

    Xiao, Shuning; Zhu, Wei; Liu, Peijue; Liu, Fanfan; Dai, Wenrui; Zhang, Dieqing; Chen, Wei; Li, Hexing

    2016-02-07

    A microwave-ionothermal strategy was developed for in situ synthesis of CNTs threaded TiO2 single crystal with a tunable percentage of surface exposed (001) active facets. The CNTs were used as microwave antennas to create local "super hot" dots to induce Ti(3+) adsorption and hydrolysis, thereby leading to a good assembly of (001) facets exposed single crystalline TiO2 threaded by the CNTs in the presence of Hmim[BF4] ionic liquid. Due to the high percentage of the active (001) facets of single crystal TiO2 and the direct electron transfer property of the CNTs, the as-prepared CNTs-TiO2 composite showed a photocatalytic NO removal ratio of up to 76.8% under UV irradiation. In addition, with self-doped Ti(3+), the CNTs-TiO2 composite also exhibited an enhanced activity under irradiation with either solar lights or visible lights, showing good potential in practical applications for environmental remediation.

  14. Single-active-electron potentials for molecules in intense laser fields

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    Single-active-electron potentials are computed for selected molecules, and molecular wave functions with the correct asymptotic behavior are produced. Asymptotic expansion coefficients are extracted from the wave functions and used to compute alignment-dependent ionization yields from molecular...

  15. Load compensation for single phase system using series active filter ...

    African Journals Online (AJOL)

    Load compensation for single phase system using series active filter. ... KK Mishra, R Gupta ... load varies from time to time, the non linear load ranging from voltage source type harmonic load (VSHL) dominant to current source type harmonic ...

  16. Critical currents and thermally activated flux motion in high-temperature superconductors

    NARCIS (Netherlands)

    Palstra, T.T.M.; Batlogg, B.; Dover, R.B. van; Schneemeyer, L.F.; Waszczak, J.V.

    1989-01-01

    We have measured the resistance below Tc of single crystals of the high-temperature superconductors Ba2YCu3O7 and Bi2.2Sr2Ca0.8Cu2O8+δ in magnetic fields up to 12 T. The resistive transition of both compounds is dominated by intrinsic dissipation which is thermally activated, resulting in an

  17. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides.

    Science.gov (United States)

    Abdel daiem, Mahmoud M; Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ocampo-Pérez, Raúl

    2015-12-15

    The main aim of this study was to investigate the single, competitive, and dynamic adsorption of phthalic acid (PA), bisphenol A (BPA), diphenolic acid (DPA), 2,4-dichlorophenoxy-acetic acid (2,4-D), and 4-chloro-2-methylphenoxyacetic acid (MCPA) on two activated carbons with different chemical natures and similar textural characteristics. The adsorption mechanism was also elucidated by analyzing the influence of solution pH and ionic strength. The activated carbons demonstrated high adsorption capacity to remove all micropollutants due to the presence of active sites on their surfaces, which increase dispersive interactions between the activated carbon graphene layers and the aromatic ring of pollutants. The adsorption capacity of the activated carbons increased in the order: DPApH (pHactivated carbon decreased by around 50% and 70% in the presence of DPA and BPA, respectively, indicating that both compounds are adsorbed on the same adsorption sites of the activated carbon. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Highly polarized single-c-domain single-crystal Pb(Mn,Nb)O(3)-PZT thin films.

    Science.gov (United States)

    Wasa, Kiyotaka; Adachi, Hideaki; Nishida, Ken; Yamamoto, Takashi; Matsushima, Tomoaki; Kanno, Isaku; Kotera, Hidetoshi

    2012-01-01

    In-plane unstrained single-c-domain/single-crystal thin films of PZT-based ternary ferroelectric perovskite, ξPb(Mn,Nb)O3-(1 - ξ)PZT, were grown on SrRuO(3)/Pt/MgO substrates using magnetron sputtering followed by quenching. The sputtered unstrained thin films exhibit unique ferroelectric properties: high coercive field, Ec > 180 kV/cm, large remanent polarization, P(r) = 100 μC/cm(2), small relative dielectric constants, ε* = 100 to 150, high Curie temperature, Tc = ~600 °C, and bulk-like large transverse piezoelectric constants, e31,f = -12.0 C/m(2) for PZT(48/52) at ξ = 0.06. The unstrained thin films are an ideal structure to extract the bulk ferroelectric properties. Their micro-structures and ferroelectric properties are discussed in relation to the potential applications for piezoelectric MEMS. © 2012 IEEE

  19. High-temperature performance of the brazement of molybdenum single crystals

    International Nuclear Information System (INIS)

    Hirakoa, Y.

    1992-01-01

    Molybdenum is utilized in the fields of high-temperature vacuum industry, electrical and electronic industry, and chemical industries. For the wider application of this material, however, it is necessary to obtain a joining with good quality. In this investigation, high-temperature brazing of a single-crystalline molybdenum was performed. Then the bend properties of the brazement after a high-temperature annealing were evaluated. The single-crystalline molybdenum had been produced by the secondary recrystallization method. Brazing was performed in vacuum at 2273K using Mo-40Ru alloy powder as a brazing material. The brazement was investigated via optical microscopy, EPMA, Knoop hardness, and three point bending. In this paper the effects of annealing in hydrogen and vacuum are discussed

  20. A monolithic glass chip for active single-cell sorting based on mechanical phenotyping.

    Science.gov (United States)

    Faigle, Christoph; Lautenschläger, Franziska; Whyte, Graeme; Homewood, Philip; Martín-Badosa, Estela; Guck, Jochen

    2015-03-07

    The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetrically etched glass plates, combines exact optical fiber alignment, low laser damage threshold and high imaging quality with the possibility of several microfluidic inlet and outlet channels. We show the utility of such a custom-built optical stretcher glass chip by measuring and sorting single cells in a heterogeneous population based on their different mechanical properties and verify sorting accuracy by simultaneous fluorescence detection. This offers new possibilities of exact characterization and sorting of small populations based on rheological properties for biological and biomedical applications.

  1. Benchmark of AC and DC active power decoupling circuits for second-order harmonic mitigation in kW-scale single-phase inverters

    DEFF Research Database (Denmark)

    Qin, Zian; Tang, Yi; Loh, Poh Chiang

    2015-01-01

    studied, where the commercially available film capacitors, circuit topologies, and control strategies for active power decoupling are all taken into account. Then, an adaptive decoupling voltage control method is proposed to further improve the performance of dc decoupling in terms of efficiency...... and reliability. The feasibility and superiority of the identified solution for active power decoupling together with the proposed adaptive decoupling voltage control method are finally verified by both the experimental results obtained on a 2 kW single-phase inverter.......This paper presents the benchmark study of ac and dc active power decoupling circuits for second-order harmonic mitigation in kW-scale single-phase inverters. First of all, the best solutions of active power decoupling to achieve high efficiency and power density are identified and comprehensively...

  2. Single-Molecule Analysis of the Rotation of F1-ATPase under High Hydrostatic Pressure

    Science.gov (United States)

    Okuno, Daichi; Nishiyama, Masayoshi; Noji, Hiroyuki

    2013-01-01

    F1-ATPase is the water-soluble part of ATP synthase and is an ATP-driven rotary molecular motor that rotates the rotary shaft against the surrounding stator ring, hydrolyzing ATP. Although the mechanochemical coupling mechanism of F1-ATPase has been well studied, the molecular details of individual reaction steps remain unclear. In this study, we conducted a single-molecule rotation assay of F1 from thermophilic bacteria under various pressures from 0.1 to 140 MPa. Even at 140 MPa, F1 actively rotated with regular 120° steps in a counterclockwise direction, showing high conformational stability and retention of native properties. Rotational torque was also not affected. However, high hydrostatic pressure induced a distinct intervening pause at the ATP-binding angles during continuous rotation. The pause was observed under both ATP-limiting and ATP-saturating conditions, suggesting that F1 has two pressure-sensitive reactions, one of which is evidently ATP binding. The rotation assay using a mutant F1(βE190D) suggested that the other pressure-sensitive reaction occurs at the same angle at which ATP binding occurs. The activation volumes were determined from the pressure dependence of the rate constants to be +100 Å3 and +88 Å3 for ATP binding and the other pressure-sensitive reaction, respectively. These results are discussed in relation to recent single-molecule studies of F1 and pressure-induced protein unfolding. PMID:24094404

  3. Comparative research on “high currents” induced by single event latch-up and transient-induced latch-up

    International Nuclear Information System (INIS)

    Chen Rui; Han Jian-Wei; Zheng Han-Sheng; Yu Yong-Tao; Shangguang Shi-Peng; Feng Guo-Qiang; Ma Ying-Qi

    2015-01-01

    By using the pulsed laser single event effect facility and electro-static discharge (ESD) test system, the characteristics of the “high current”, relation with external stimulus and relevance to impacted modes of single event latch-up (SEL) and transient-induced latch-up (TLU) are studied, respectively, for a 12-bit complementary metal–oxide semiconductor (CMOS) analog-to-digital converter. Furthermore, the sameness and difference in physical mechanism between “high current” induced by SEL and that by TLU are disclosed in this paper. The results show that the minority carrier diffusion in the PNPN structure of the CMOS device which initiates the active parasitic NPN and PNP transistors is the common reason for the “high current” induced by SEL and for that by TLU. However, for SEL, the minority carrier diffusion is induced by the ionizing radiation, and an underdamped sinusoidal voltage on the supply node (the ground node) is the cause of the minority carrier diffusion for TLU. (paper)

  4. Development of a Single High Fat Meal Challenge to Unmask ...

    Science.gov (United States)

    Stress tests are used clinically to determine the presence of underlying disease and predict future cardiovascular risk. In previous studies, we used treadmill exercise stress in rats to unmask the priming effects of air pollution inhalation. Other day-to-day activities stress the cardiovascular system, and when modeled experimentally, may be useful in identifying latent effects of air pollution exposure. For example, a single high fat (HF) meal can cause transient vascular endothelial dysfunction and increases in LDL cholesterol, triglycerides (TG), oxidative stress, and inflammation. Given the prevalence of HF meals in western diets, the goal of this study was to develop a HF meal challenge in rats to see if air pollution primes the body for a subsequent stress-induced adverse response. Healthy male Wistar Kyoto rats were fasted for six hours and then administered a single oral gavage of isocaloric lard-based HF or low fat (LF) suspensions, or a water vehicle control. We hypothesized that rats given a HF load would elicit postprandial changes in cardiopulmonary function that were distinct from LF and vehicle controls. One to four hours after gavage, rats underwent whole body plethysmography to assess breathing patterns, cardiovascular ultrasounds, blood draws for measurements of systemic lipids and hormones and a test for sensitivity to aconitine-induced arrhythmia. HF gavage caused an increase in circulating TG relative to LF and vehicle controls and an incre

  5. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase II project proposes a single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  6. Synthesis and photocatalytic activity of mesoporous – (001) facets TiO_2 single crystals

    International Nuclear Information System (INIS)

    Dong, Yeshuo; Fei, Xuening; Zhou, Yongzhu

    2017-01-01

    Highlights: • The (001) facets of TiO_2 single crystals with mesoporous structure. • The (010) and (100) facets of TiO_2 single crystals were covered by the flower – shaped TiO_2 crystals. • This special structure could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. - Abstract: In this work, the mesoporous – (001) facets TiO_2 single crystals have been successfully synthesized through a two-step solvothermal route without any template. Their structure and morphology were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy and energy dispersive X-ray spectrometer (EDX). Based on the different characteristics and atomic arrangements on each facet of anatase TiO_2 single crystals, we synthesized these mesoporous – (001) facets TiO_2 single crystals by controlling the interaction characteristics of hydrofluoric acid (HF) and isopropanol (i-PrOH) on the crystal facets. It can been seen that the (001) facets of these as-synthesized TiO_2 single crystals have a clear mesoporous structure through the SEM images and BET methods. Moreover, the other four facets were covered by the flower – shaped TiO_2 crystals with the generation of the mesoporous – (001) facets. This special and interesting morphology could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. Moreover, it is more intuitive to reflect that the different crystal facets possess the different properties due to their atomic arrangement. Besides, according to the different synthetic routes, we proposed and discussed a plausible synthesis mechanism of these mesoporous – (001) facets TiO_2 single crystals.

  7. Decay modes of high-lying single-particle states in [sup 209]Pb

    Energy Technology Data Exchange (ETDEWEB)

    Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Vernotte, J.; Bordewijk, J.A.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M. (Institut de Physique Nucleaire, Institut National de Physique Nucleaire et de Physique des Particules Centre National de la Recherche Scientifique, 91406 Orsay Cedex (France) Kernfysisch Versneller Instituut, 9747AA Groningen (Netherlands) National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States) Departamento de Fisica, Fac. Cs. Exactas, Universidad Nacional de La Plata, CC No. 67, 1900 La Plata (Argentina))

    1994-05-01

    The neutron decay of high-lying single-particle states in [sup 209]Pb excited by means of the ([alpha],[sup 3]He) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in [sup 208]Pb. The structure located between 8.5 and 12 MeV excitation energy in [sup 209]Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3[sup [minus

  8. A High Energy and High Efficiency Spectral Shaping Single Frequency Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a tunable single frequency high energy fiber laser system for coherent Lidar systems for remote sensing. Current state-of-art...

  9. Impact of single anaerobic exercise on delayed activation of endothelial xanthine oxidase in men and women.

    Science.gov (United States)

    Wiecek, Magdalena; Maciejczyk, Marcin; Szymura, Jadwiga; Kantorowicz, Malgorzata; Szygula, Zbigniew

    2017-11-01

    The aim of the study was to evaluate the activity of xanthine oxidase (XO) in the blood of men and women during the first hour following a single anaerobic exercise (AN-EX), and after 24 hours of recovery, and to determine whether the changes in XO activity in the blood after AN-EX are dependent on anaerobic performance. Ten men and ten women performed a single AN-EX. Blood was collected before and five times after completion of the AN-EX. The activity of XO was determined. In both groups, a significant (P women (P work performed during the AN-EX and the power decrease. In the first hour after the single AN-EX, XO activity in the blood of women and men did not change, but after 24 hours of recovery, it was significantly higher compared to baseline levels in both sexes. Single AN-EX causes a smaller increase in XO activity in people with higher anaerobic performance.

  10. A New Three-Dimensional High-Accuracy Automatic Alignment System For Single-Mode Fibers

    Science.gov (United States)

    Yun-jiang, Rao; Shang-lian, Huang; Ping, Li; Yu-mei, Wen; Jun, Tang

    1990-02-01

    In order to achieve the low-loss splices of single-mode fibers, a new three-dimension high-accuracy automatic alignment system for single -mode fibers has been developed, which includes a new-type three-dimension high-resolution microdisplacement servo stage driven by piezoelectric elements, a new high-accuracy measurement system for the misalignment error of the fiber core-axis, and a special single chip microcomputer processing system. The experimental results show that alignment accuracy of ±0.1 pin with a movable stroke of -±20μm has been obtained. This new system has more advantages than that reported.

  11. Jet and ultrasonic nebulization of single chain urokinase plasminogen activator (scu-PA)

    DEFF Research Database (Denmark)

    Münster, Anna-Marie; Bendstrup, E; Jensen, J.I.

    2000-01-01

    locally by nebulization in a recombinant zymogen form as single chain urokinase plasminogen activator (scu-PA). We aimed to characterize the particle size distribution, drug output, and enzymatic activity of scu-PA after nebulization with a Ventstream jet nebulizer (Medic-Aid, Bognor Regis, UK) and a Syst...

  12. [Comparison of basic carboxypeptidases activity in male rats tissues at a single injection of haloperidol].

    Science.gov (United States)

    Pravosudova, N A; Bykova, I O

    2014-01-01

    The influence of a single injection of haloperidol on basic carboxypeptidases (biologically active peptide processing enzymes) activity in rat tissues was studied. Acute exposure to haloperidol increased the activity of carboxypeptidases H (CP H) in hypothalamic-pituitary-adrenal system and cerebellum and reduced such activity in testes. Multidirectional changes of PMSF-inhibited carboxypeptidases activity (PMSF-CP) were observed after a single haloperidol injection in all studied tissues except testes. It is suggested that changes of CP H and PMSF-CP activity might affect levels of regulatory peptides in the brain and blood and thus may be involved in general and side effects of haloperidol on the organism.

  13. High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a cw single-frequency microchip laser.

    Science.gov (United States)

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-30

    In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.

  14. Increased expression of the auxiliary beta(2-subunit of ventricular L-type Ca(2+ channels leads to single-channel activity characteristic of heart failure.

    Directory of Open Access Journals (Sweden)

    Roger Hullin

    2007-03-01

    Full Text Available Increased activity of single ventricular L-type Ca(2+-channels (L-VDCC is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary beta-subunits as a possible explanation.By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression pattern of auxiliary L-VDCC beta-subunit gene products. In HEK293-cells we show differential modulation of single L-VDCC activity by coexpression of several human cardiac beta-subunits: Unlike beta(1 or beta(3 isoforms, beta(2a and beta(2b induce a high-activity channel behavior typical of failing myocytes. In accordance, beta(2-subunit mRNA and protein are up-regulated in failing human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac Ca(V1.2 also reveal increased single-channel activity and sarcolemmal beta(2 expression when entering into the maladaptive stage of heart failure. Interestingly, these animals, when still young and non-failing ("Adaptive Phase", reveal the opposite phenotype, viz: reduced single-channel activity accompanied by lowered beta(2 expression. Additional evidence for the cause-effect relationship between beta(2-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both constitutive Ca(V1.2 and inducible beta(2 cardiac overexpression. Here in non-failing hearts induction of beta(2-subunit overexpression mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure.Our study presents evidence of the pathobiochemical relevance of beta(2-subunits for the electrophysiological phenotype of cardiac L-VDCC and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure.

  15. Single-chain vascular endothelial growth factor variant with antagonist activity

    DEFF Research Database (Denmark)

    Boesen, Thomas P; Soni, Bobby; Schwartz, Thue W

    2002-01-01

    receptor molecules and inducing dimerization. By mixing two vascular endothelial growth factor monomers, each with different substitutions, heterodimers with only one active receptor binding site have previously been prepared. These heterodimers bind the receptor molecule but are unable to induce...... dimerization and activation. However, preparation of heterodimers is cumbersome, involving separate expression of different monomers, refolding the mixture, and separating heterodimers from homodimers. Here we show that a fully functional ligand can efficiently be expressed as a single protein chain containing...

  16. High-Throughput Phenotyping of Wheat and Barley Plants Grown in Single or Few Rows in Small Plots Using Active and Passive Spectral Proximal Sensing

    OpenAIRE

    Barmeier, Gero;Schmidhalter, Urs

    2017-01-01

    In the early stages of plant breeding, breeders evaluate a large number of varieties. Due to limited availability of seeds and space, plot sizes may range from one to four rows. Spectral proximal sensors can be used in place of labour-intensive methods to estimate specific plant traits. The aim of this study was to test the performance of active and passive sensing to assess single and multiple rows in a breeding nursery. A field trial with single cultivars of winter barley and winter wheat w...

  17. High Q-factor metasurfaces based on miniaturized asymmetric single split resonators

    Science.gov (United States)

    Al-Naib, Ibraheem A. I.; Jansen, Christian; Koch, Martin

    2009-04-01

    We introduce asymmetric single split rectangular resonators as bandstop metasurfaces, which exhibit very high Q-factors in combination with low passband losses and a small electrical footprint. The effect of the degree of asymmetry on the frequency response is thoroughly studied. Furthermore, complementary structures, which feature a bandpass behavior, were derived by applying Babinet's principle and investigated with regards to their transmission characteristics. In future, asymmetric single split rectangular resonators could provide efficient unit cells for frequency selective surface devices, such as thin-film sensors or high performance filters.

  18. Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability

    Science.gov (United States)

    Schwartz, Jerrod J.; Stavrakis, Stavros; Quake, Stephen R.

    2010-02-01

    Although single-molecule fluorescence spectroscopy was first demonstrated at near-absolute zero temperatures (1.8 K), the field has since advanced to include room-temperature observations, largely owing to the use of objective lenses with high numerical aperture, brighter fluorophores and more sensitive detectors. This has opened the door for many chemical and biological systems to be studied at native temperatures at the single-molecule level both in vitro and in vivo. However, it is difficult to study systems and phenomena at temperatures above 37 °C, because the index-matching fluids used with high-numerical-aperture objective lenses can conduct heat from the sample to the lens, and sustained exposure to high temperatures can cause the lens to fail. Here, we report that TiO2 colloids with diameters of 2 µm and a high refractive index can act as lenses that are capable of single-molecule imaging at 70 °C when placed in immediate proximity to an emitting molecule. The optical system is completed by a low-numerical-aperture optic that can have a long working distance and an air interface, which allows the sample to be independently heated. Colloidal lenses were used for parallel imaging of surface-immobilized single fluorophores and for real-time single-molecule measurements of mesophilic and thermophilic enzymes at 70 °C. Fluorophores in close proximity to TiO2 also showed a 40% increase in photostability due to a reduction of the excited-state lifetime.

  19. [Single-port laparoscopic cholecystectomy: advantages and disadvantages].

    Science.gov (United States)

    Alekberzade, A V; Lipnitsky, E M; Krylov, N N; Sundukov, I V; Badalov, D A

    2016-01-01

    To analyze the outcomes of single-port laparoscopic cholecystectomy. Early and long-term postoperative period has been analyzed in 240 patients who underwent laparoscopic cholecystectomy (LCE) including 120 cases of single-port technique and 120 cases of four-port technique. Both groups were compared in surgical time, pain syndrome severity (visual analog scale), need for analgesics, postoperative complications, hospital-stay, daily activity recovery and return to physical work, patients' satisfaction of surgical results and their aesthetic effect. It was revealed that single-port LCE is associated with lower severity of postoperative pain, quick recovery of daily activity and return to physical work, high satisfaction of surgical results and their aesthetic effect compared with four-port LCE. Disadvantages of single-port LCE include longer duration of surgery, high incidence of postoperative umbilical hernia. However hernia was predominantly observed during the period of surgical technique development. Further studies to standardize, evaluate the safety and benefits of single-port LCE are necessary.

  20. A single and rapid calcium wave at egg activation in Drosophila

    Directory of Open Access Journals (Sweden)

    Anna H. York-Andersen

    2015-03-01

    Full Text Available Activation is an essential process that accompanies fertilisation in all animals and heralds major cellular changes, most notably, resumption of the cell cycle. While activation involves wave-like oscillations in intracellular Ca2+ concentration in mammals, ascidians and polychaete worms and a single Ca2+ peak in fish and frogs, in insects, such as Drosophila, to date, it has not been shown what changes in intracellular Ca2+ levels occur. Here, we utilise ratiometric imaging of Ca2+ indicator dyes and genetically encoded Ca2+ indicator proteins to identify and characterise a single, rapid, transient wave of Ca2+ in the Drosophila egg at activation. Using genetic tools, physical manipulation and pharmacological treatments we demonstrate that the propagation of the Ca2+ wave requires an intact actin cytoskeleton and an increase in intracellular Ca2+ can be uncoupled from egg swelling, but not from progression of the cell cycle. We further show that mechanical pressure alone is not sufficient to initiate a Ca2+ wave. We also find that processing bodies, sites of mRNA decay and translational regulation, become dispersed following the Ca2+ transient. Based on this data we propose the following model for egg activation in Drosophila: exposure to lateral oviduct fluid initiates an increase in intracellular Ca2+ at the egg posterior via osmotic swelling, possibly through mechano-sensitive Ca2+ channels; a single Ca2+ wave then propagates in an actin dependent manner; this Ca2+ wave co-ordinates key developmental events including resumption of the cell cycle and initiation of translation of mRNAs such as bicoid.

  1. Single-Readout High-Density Memristor Crossbar

    KAUST Repository

    Zidan, M. A.

    2016-01-07

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  2. Single-Readout High-Density Memristor Crossbar

    KAUST Repository

    Zidan, M. A.; Omran, Hesham; Naous, Rawan; Salem, Ahmed Sultan; Fahmy, H. A. H.; Lu, W. D.; Salama, Khaled N.

    2016-01-01

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  3. Decay modes of high-lying single-particle states in 209Pb

    International Nuclear Information System (INIS)

    Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Crawley, G.M.; Massolo, C.P.; Renteria, M.

    1993-01-01

    The neutron decay of high-lying single-particle states in 209 Pb excited by means of the (α, 3 He) reaction has been investigated at 122 MeV incident energy using the multidetector array EDEN. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in 208 Pb. The structure located between 8.5 and 12 MeV excitation energy in 209 Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3 - ,5 - ) of 208 Pb. At higher excitation energy up to 20 MeV, the measured neutron decay is in agreement with the predictions of the statistical model. (authors). 24 refs., 16 figs., 2 tabs

  4. Amplitude dependent damping in single crystalline high purity molybdenum

    International Nuclear Information System (INIS)

    Zelada-Lambri, G.I; Lambri, O.A; Garcia, J.A; Lomer, J.N

    2004-01-01

    Amplitude dependent damping measurements were performed on high purity single crystalline molybdenum at several different constant temperatures between room temperature and 1273K. The employed samples were single crystals with the orientation, having a residual resistivity ratio of about 8000. Previously to the amplitude dependent damping tests, the samples were subjected to different thermomechanical histories. Amplitude dependent damping effects appear only during the first heating run in temperature where the samples have the thermomechanical state of the deformation process at room temperature. In the subsequent run-ups in temperature, i.e, after subsequent annealings, amplitude dependent damping effects were not detected (au)

  5. High quality single atomic layer deposition of hexagonal boron nitride on single crystalline Rh(111) four-inch wafers

    Energy Technology Data Exchange (ETDEWEB)

    Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klöckner, M.; Kälin, T.; Osterwalder, J.; Greber, T., E-mail: greber@physik.uzh.ch [Physik-Institut, Universität Zürich, CH-8057 Zürich (Switzerland); Weinl, M.; Gsell, S.; Schreck, M. [Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)

    2014-03-15

    The setup of an apparatus for chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) and its characterization on four-inch wafers in ultra high vacuum (UHV) environment is reported. It provides well-controlled preparation conditions, such as oxygen and argon plasma assisted cleaning and high temperature annealing. In situ characterization of a wafer is accomplished with target current spectroscopy. A piezo motor driven x-y stage allows measurements with a step size of 1 nm on the complete wafer. To benchmark the system performance, we investigated the growth of single layer h-BN on epitaxial Rh(111) thin films. A thorough analysis of the wafer was performed after cutting in atmosphere by low energy electron diffraction, scanning tunneling microscopy, and ultraviolet and X-ray photoelectron spectroscopies. The apparatus is located in a clean room environment and delivers high quality single layers of h-BN and thus grants access to large area UHV processed surfaces, which had been hitherto restricted to expensive, small area single crystal substrates. The facility is versatile enough for customization to other UHV-CVD processes, e.g., graphene on four-inch wafers.

  6. Health Insurance without Single Crossing : Why Healthy People have High Coverage

    NARCIS (Netherlands)

    Boone, J.; Schottmuller, C.

    2011-01-01

    Standard insurance models predict that people with high (health) risks have high insurance coverage. It is empirically documented that people with high income have lower health risks and are better insured. We show that income differences between risk types lead to a violation of single crossing in

  7. High luminous flux from single crystal phosphor-converted laser-based white lighting system

    KAUST Repository

    Cantore, Michael

    2015-12-14

    The efficiency droop of light emitting diodes (LEDs) with increasing current density limits the amount of light emitted per wafer area. Since low current densities are required for high efficiency operation, many LED die are needed for high power white light illumination systems. In contrast, the carrier density of laser diodes (LDs) clamps at threshold, so the efficiency of LDs does not droop above threshold and high efficiencies can be achieved at very high current densities. The use of a high power blue GaN-based LD coupled with a single crystal Ce-doped yttrium aluminum garnet (YAG:Ce) sample was investigated for white light illumination applications. Under CW operation, a single phosphor-converted LD (pc-LD) die produced a peak luminous efficacy of 86.7 lm/W at 1.4 A and 4.24 V and a peak luminous flux of 1100 lm at 3.0 A and 4.85 V with a luminous efficacy of 75.6 lm/W. Simulations of a pc-LD confirm that the single crystal YAG:Ce sample did not experience thermal quenching at peak LD operating efficiency. These results show that a single pc-LD die is capable of emitting enough luminous flux for use in a high power white light illumination system.

  8. Single-photon detector operating under extremely high background photon flux conditions

    International Nuclear Information System (INIS)

    Prochazka, Ivan; Sopko, Bruno; Blazej, Josef

    2009-01-01

    We are reporting our results in research and development in the field of avalanche semiconductor single-photon detectors and their application. Our goal was a development of a solid-state photon-counting detector capable of high-precision photon arrival time tagging in extremely harsh operating conditions. The background photon flux exceeding 10 9 photons per second hitting the detector active area should not avoid the useful signal detection and recognition on the signal level of units of photons per second. This is background photon flux about two orders of magnitude higher than what the conventional solid-state photon counters accept. The detection timing resolution should be better than 100 ps and the delay stability should be on picosecond level. We have developed and tested the active quenched and gated avalanche structure on silicon providing the required features in connection with the K14 detection chips. The detector is capable of gated operation under the conditions of background photon flux of 5x10 9 photons per second. The operational detector tolerates long term exposures to the input photon flux exceeding 10 15 photons (>1 mW) per second without damage.

  9. Detection of active alveolar bone destruction in human periodontal disease by analysis of radiopharmaceutical uptake after a single injection of 99m-Tc-methylene diphosphonate

    International Nuclear Information System (INIS)

    Jeffcoat, M.K.; Williams, R.C.; Holman, B.L.; English, R.; Goldhaber, P.

    1986-01-01

    Previous studies have shown that, following a single injection of 99m-Tc-MDP, measurement of bone-seeking radiopharmaceutical uptake can detect ''active'' alveolar bone loss due to periodontal disease in beagle dogs, as determined by radiographs taken at the time of, and several months after, the nuclear medicine procedure. The efficacy of this diagnostic test, however, had not been assessed in human periodontal disease. The ability of a single boneseeking radiopharmaceutical uptake examination to detect ''active'' alveolar bone loss due to periodontal disease in human patients was assessed by comparing a single uptake measurement to the rate of bone loss determined from serial radiographs taken over a 6-month period. Uptake was expressed as a ratio of the cpm from the alveolar bone divided by the cpm from the non-tooth supporting bone of the nuchal crest. High uptake ratios were associated with ''active'' loss and low uptake ratios were associated with little if any change in alveolar bone height (p<0.001). The nuclear medicine examination was an accurate detector of periodontal disease activity in nearly 80% of the individual teeth studied. These data indicate that high bone-seeking radiopharmaceutical uptake ratios may be pathognomonic of active bone loss in human periodontal disease. (author)

  10. Good Intentions: AN Experiment in Middle School Single-Sex Science and Mathematics Classrooms with High Minority Enrollment

    Science.gov (United States)

    Baker, Dale

    This study examined the effects of single-sex middle school science and mathematics classrooms with high minority enrollment on achievement, affect, peer, and teacher-student interactions. All students earned higher grades in mathematics than in science. Girls earned higher grades than boys. The higher grades of girls were not clearly attributable to the singlesex environment, and aspects of the single-sex environment interfered with boys' achievement. The single-sex environment contributed to girls', but not boys', feelings of empowerment, peer support, and positive self-concept. The curriculum and pedagogy were better suited to girls than to boys, leading to discipline problems and hostile interactions. However, boys were more engaged in technology-based activities than girls. Overall, all-boy classes were less supportive learning environments than all-girl classes. Although the results replicate findings elsewhere, this is the only study to look at minority students in middle school.

  11. Redox-active on-surface polymerization of single-site divalent cations from pure metals by a ketone-functionalized phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Skomski, Daniel; Tempas, Christopher D.; Bukowski, Gregory S.; Smith, Kevin A.; Tait, Steven L., E-mail: tait@indiana.edu [Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405 (United States)

    2015-03-14

    Metallic iron, chromium, or platinum mixing with a ketone-functionalized phenanthroline ligand on a single crystal gold surface demonstrates redox activity to a well-defined oxidation state and assembly into thermally stable, one dimensional, polymeric chains. The diverging ligand geometry incorporates redox-active sub-units and bi-dentate binding sites. The gold surface provides a stable adsorption environment and directs growth of the polymeric chains, but is inert with regard to the redox chemistry. These systems are characterized by scanning tunnelling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy under ultra-high vacuum conditions. The relative propensity of the metals to interact with the ketone group is examined, and it is found that Fe and Cr more readily complex the ligand than Pt. The formation and stabilization of well-defined transition metal single-sites at surfaces may open new routes to achieve higher selectivity in heterogeneous catalysts.

  12. Development of a high throughput single-particle screening for inorganic semiconductor nanorods as neural voltage sensor

    Science.gov (United States)

    Kuo, Yung; Park, Kyoungwon; Li, Jack; Ingargiola, Antonino; Park, Joonhyuck; Shvadchak, Volodymyr; Weiss, Shimon

    2017-08-01

    Monitoring membrane potential in neurons requires sensors with minimal invasiveness, high spatial and temporal (sub-ms) resolution, and large sensitivity for enabling detection of sub-threshold activities. While organic dyes and fluorescent proteins have been developed to possess voltage-sensing properties, photobleaching, cytotoxicity, low sensitivity, and low spatial resolution have obstructed further studies. Semiconductor nanoparticles (NPs), as prospective voltage sensors, have shown excellent sensitivity based on Quantum confined Stark effect (QCSE) at room temperature and at single particle level. Both theory and experiment have shown their voltage sensitivity can be increased significantly via material, bandgap, and structural engineering. Based on theoretical calculations, we synthesized one of the optimal candidates for voltage sensors: 12 nm type-II ZnSe/CdS nanorods (NRs), with an asymmetrically located seed. The voltage sensitivity and spectral shift were characterized in vitro using spectrally-resolved microscopy using electrodes grown by thin film deposition, which "sandwich" the NRs. We characterized multiple batches of such NRs and iteratively modified the synthesis to achieve higher voltage sensitivity (ΔF/F> 10%), larger spectral shift (>5 nm), better homogeneity, and better colloidal stability. Using a high throughput screening method, we were able to compare the voltage sensitivity of our NRs with commercial spherical quantum dots (QDs) with single particle statistics. Our method of high throughput screening with spectrally-resolved microscope also provides a versatile tool for studying single particles spectroscopy under field modulation.

  13. High-pressure oxygenation of thin-wall YBCO single-domain samples

    International Nuclear Information System (INIS)

    Chaud, X; Savchuk, Y; Sergienko, N; Prikhna, T; Diko, P

    2008-01-01

    The oxygen annealing of ReBCO bulk material, necessary to achieve superconducting properties, usually induces micro- and macro-cracks. This leads to a crack-assisted oxygenation process that allows oxygenating large bulk samples faster than single crystals. But excellent superconducting properties are cancelled by the poor mechanical ones. More progressive oxygenation strategy has been shown to reduce drastically the oxygenation cracks. The problem then arises to keep a reasonable annealing time. The concept of bulk Y123 single-domain samples with thin-wall geometry has been introduced to bypass the inherent limitation due to a slow oxygen diffusion rate. But it is not enough. The use of a high oxygen pressure (16 MPa) enables to speed up further the process. It introduces a displacement in the equilibrium phase diagram towards higher temperatures, i.e., higher diffusion rates, to achieve a given oxygen content in the material. Remarkable results were obtained by applying such a high pressure oxygen annealing process on thin-wall single-domain samples. The trapped field of 16 mm diameter Y123 thin-wall single-domain samples was doubled (0.6T vs 0.3T at 77K) using an annealing time twice shorter (about 3 days). The initial development was made on thin bars. The advantage of thin-wall geometry is that such an annealing can be applied directly to a much larger sample

  14. Three-dimensional rearrangement of single atoms using actively controlled optical microtraps.

    Science.gov (United States)

    Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2016-05-02

    We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few μm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics.

  15. Benchmark of AC and DC Active Power Decoupling Circuits for Second-Order Harmonic Mitigation in Kilowatt-Scale Single-Phase Inverters

    DEFF Research Database (Denmark)

    Qin, Zian; Tang, Yi; Loh, Poh Chiang

    2016-01-01

    efficiency and high power density is identified and comprehensively studied, and the commercially available film capacitors, the circuit topologies, and the control strategies adopted for active power decoupling are all taken into account. Then, an adaptive decoupling voltage control method is proposed...... to further improve the performance of dc decoupling in terms of efficiency and reliability. The feasibility and superiority of the identified solution for active power decoupling together with the proposed adaptive decoupling voltage control method are finally verified by both the simulation and experimental......This paper presents the benchmark study of ac and dc active power decoupling circuits for second order harmonic mitigation in kW scale single-phase inverters. First of all, a brief comparison of recently reported active power decoupling circuits is given, and the best solution that can achieve high...

  16. A novel high-efficiency single-mode quantum dot single photon source

    DEFF Research Database (Denmark)

    Gerard, J.M.; Gregersen, Niels; Nielsen, Torben Roland

    2008-01-01

    We present a novel single-mode single photon source exploiting the emission of a semiconductor quantum dot (QD) located inside a photonic wire. Besides an excellent coupling (>95%) of QD spontaneous emission to the fundamental guided mode [1], we show that a single photon collection efficiency...... above 80% within a 0.5 numerical aperture can be achieved using a bottom Bragg mirror and a tapering of the nanowire tip. Because this photon collection strategy does not exploit the Purcell effect, it could also be efficiently applied to broadband single photon emitters such as F-centers in diamond....

  17. Single chip camera active pixel sensor

    Science.gov (United States)

    Shaw, Timothy (Inventor); Pain, Bedabrata (Inventor); Olson, Brita (Inventor); Nixon, Robert H. (Inventor); Fossum, Eric R. (Inventor); Panicacci, Roger A. (Inventor); Mansoorian, Barmak (Inventor)

    2003-01-01

    A totally digital single chip camera includes communications to operate most of its structure in serial communication mode. The digital single chip camera include a D/A converter for converting an input digital word into an analog reference signal. The chip includes all of the necessary circuitry for operating the chip using a single pin.

  18. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    Science.gov (United States)

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  19. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Grasieli de Oliveira Ramos

    Full Text Available Cell migration is regulated by adhesion to the extracellular matrix (ECM through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC. We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad, plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization.

  20. Polarized excitons and optical activity in single-wall carbon nanotubes

    Science.gov (United States)

    Chang, Yao-Wen; Jin, Bih-Yaw

    2018-05-01

    The polarized excitons and optical activity of single-wall carbon nanotubes (SWNTs) are studied theoretically by π -electron Hamiltonian and helical-rotational symmetry. By taking advantage of the symmetrization, the single-particle energy and properties of a SWNT are characterized with the corresponding helical band structure. The dipole-moment matrix elements, magnetic-moment matrix elements, and the selection rules can also be derived. Based on different selection rules, the optical transitions can be assigned as the parallel-polarized, left-handed circularly-polarized, and right-handed circularly-polarized transitions, where the combination of the last two gives the cross-polarized transition. The absorption and circular dichroism (CD) spectra are simulated by exciton calculation. The calculated results are well comparable with the reported measurements. Built on the foundation, magnetic-field effects on the polarized excitons and optical activity of SWNTs are studied. Dark-bright exciton splitting and interband Faraday effect in the CD spectrum of SWNTs under an axial magnetic field are predicted. The Faraday rotation dispersion can be analyzed according to the selection rules of circular polarizations and the helical band structure.

  1. Modeling Single Occupant Vehicle Behavior in High-Occupancy Toll (HOT) Facilities

    Science.gov (United States)

    2009-12-14

    High-occupancy toll (HOT) lanes are in operation, under construction, and planned for in several major metropolitan areas. The premise behind HOT lanes is to allow single occupant vehicles (SOVs) to access high occupancy vehicle (HOV) lanes (and theo...

  2. High definition TV projection via single crystal faceplate technology

    Science.gov (United States)

    Kindl, H. J.; St. John, Thomas

    1993-03-01

    Single crystal phosphor faceplates are epitaxial phosphors grown on crystalline substrates with the advantages of high light output, resolution, and extended operational life. Single crystal phosphor faceplate industrial technology in the United States is capable of providing a faceplate appropriate to the projection industry of up to four (4) inches in diameter. Projection systems incorporating cathode ray tubes utilizing single crystal phosphor faceplates will produce 1500 lumens of white light with 1000 lines of resolution, non-interlaced. This 1500 lumen projection system will meet all of the currently specified luminance and resolution requirements of Visual Display systems for flight simulators. Significant logistic advantages accrue from the introduction of single crystal phosphor faceplate CRT's. Specifically, the full performance life of a CRT is expected to increase by a factor of five (5); ie, from 2000 to 10,000 hours of operation. There will be attendant reductions in maintenance time, spare CRT requirements, system down time, etc. The increased brightness of the projection system will allow use of lower gain, lower cost simulator screen material. Further, picture performance characteristics will be more balanced across the full simulator.

  3. 76 FR 60031 - Notice of Order: Revisions to Enterprise Public Use Database Incorporating High-Cost Single...

    Science.gov (United States)

    2011-09-28

    ... single-family matrix in FHFA's Public Use Database (PUDB) to include data fields for the high-cost single... Use Database Incorporating High-Cost Single-Family Securitized Loan Data Fields and Technical Data... amended, it is necessary to revise the single-family matrix of FHFA's Public Use Database (PUDB) by adding...

  4. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    Science.gov (United States)

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  5. Imaging large cohorts of single ion channels and their activity

    Directory of Open Access Journals (Sweden)

    Katia eHiersemenzel

    2013-09-01

    Full Text Available As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the sub-types of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca2+ indicators and imaginative imaging approaches can now define directly the nanoscale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca2+ indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein-protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviours, interactions and conductance activities of many thousands of channel molecules and vesicles in living cells.

  6. High-efficiency single-photon source: The photonic wire geometry

    DEFF Research Database (Denmark)

    Claudon, J.; Bazin, Maela; Malik, Nitin S.

    2009-01-01

    We present a single-photon-source design based on the emission of a quantum dot embedded in a semiconductor (GaAs) nanowire. The nanowire ends are engineered (efficient metallic mirror and tip taper) to reach a predicted record-high collection efficiency of 90% with a realistic design. Preliminar...

  7. Design of single-layer high-efficiency transmitting phase-gradient metasurface and high gain antenna

    Science.gov (United States)

    Zhang, Di; Yang, Xiaoqing; Su, Piqiang; Luo, Jiefang; Chen, Huijie; Yuan, Jianping; Li, Lixin

    2017-12-01

    In this paper, based on rotation phase-gradient principle, a single-layer, high-efficiency transmitting metasurface is designed and applied to high-gain antenna. In the case of circularly polarized incident wave, the PCR (polarization conversions ratio) of the metasurface element is greater than 90% in the band of 9.11-10.48 GHz. The transmitting wave emerges an anomalous refraction when left-handed circularly polarized wave are incident perpendicularly to the 1D phase-gradient metasurface, which is composed of cycle arrangement of 6 units with step value of 30°. The simulated anomalous refraction angle is 40.1°, coincided with the theoretical design value (40.6°). For further application, the 2D focused metasurface is designed to enhance the antenna performance while the left-handed circularly polarized antenna is placed at the focus. The simulated max gain is increased by 12 dB (182%) and the half-power beamwidth is reduced by 74.6°. The measured results are coincided with the simulations, which indicates the antenna has high directivity. The designed single-layer transmission metasurface has advantages of thin thickness (only 1.5 mm), high efficiency and light weight, and will have important application prospects in polarization conversion and beam control.

  8. Single photon detector with high polarization sensitivity.

    Science.gov (United States)

    Guo, Qi; Li, Hao; You, LiXing; Zhang, WeiJun; Zhang, Lu; Wang, Zhen; Xie, XiaoMing; Qi, Ming

    2015-04-15

    Polarization is one of the key parameters of light. Most optical detectors are intensity detectors that are insensitive to the polarization of light. A superconducting nanowire single photon detector (SNSPD) is naturally sensitive to polarization due to its nanowire structure. Previous studies focused on producing a polarization-insensitive SNSPD. In this study, by adjusting the width and pitch of the nanowire, we systematically investigate the preparation of an SNSPD with high polarization sensitivity. Subsequently, an SNSPD with a system detection efficiency of 12% and a polarization extinction ratio of 22 was successfully prepared.

  9. Single cell proteomics in biomedicine: High-dimensional data acquisition, visualization, and analysis.

    Science.gov (United States)

    Su, Yapeng; Shi, Qihui; Wei, Wei

    2017-02-01

    New insights on cellular heterogeneity in the last decade provoke the development of a variety of single cell omics tools at a lightning pace. The resultant high-dimensional single cell data generated by these tools require new theoretical approaches and analytical algorithms for effective visualization and interpretation. In this review, we briefly survey the state-of-the-art single cell proteomic tools with a particular focus on data acquisition and quantification, followed by an elaboration of a number of statistical and computational approaches developed to date for dissecting the high-dimensional single cell data. The underlying assumptions, unique features, and limitations of the analytical methods with the designated biological questions they seek to answer will be discussed. Particular attention will be given to those information theoretical approaches that are anchored in a set of first principles of physics and can yield detailed (and often surprising) predictions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A diamond-anvil high-pressure cell for X-ray diffraction on a single crystal

    International Nuclear Information System (INIS)

    Malinowski, M.

    1987-01-01

    A new diamond-anvil high-pressure cell is described which can be used in single-crystal X-ray diffraction instruments to collect X-ray intensity data from single-crystal samples up to hydrostatic pressures of about 10 GPa. A unique design allows two types of diffraction geometry to be applied in single-crystal high-pressure diffraction experiments. More than 85% of the Ewald sphere is accessible, and a continuous range of 2θ values is available from 0 up to about 160 0 . Pressure may be calibrated by the ruby fluorescence technique or by the use of an internal X-ray-standard single crystal. The design of our diamond-anvil cell would allow, with little or no modification, operation at high and low temperatures, optical studies and powder diffractometer work. (orig.)

  11. A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations

    Science.gov (United States)

    Christlieb, Andrew J.; Feng, Xiao; Seal, David C.; Tang, Qi

    2016-07-01

    We propose a high-order finite difference weighted ENO (WENO) method for the ideal magnetohydrodynamics (MHD) equations. The proposed method is single-stage (i.e., it has no internal stages to store), single-step (i.e., it has no time history that needs to be stored), maintains a discrete divergence-free condition on the magnetic field, and has the capacity to preserve the positivity of the density and pressure. To accomplish this, we use a Taylor discretization of the Picard integral formulation (PIF) of the finite difference WENO method proposed in Christlieb et al. (2015) [23], where the focus is on a high-order discretization of the fluxes (as opposed to the conserved variables). We use the version where fluxes are expanded to third-order accuracy in time, and for the fluid variables space is discretized using the classical fifth-order finite difference WENO discretization. We use constrained transport in order to obtain divergence-free magnetic fields, which means that we simultaneously evolve the magnetohydrodynamic (that has an evolution equation for the magnetic field) and magnetic potential equations alongside each other, and set the magnetic field to be the (discrete) curl of the magnetic potential after each time step. In this work, we compute these derivatives to fourth-order accuracy. In order to retain a single-stage, single-step method, we develop a novel Lax-Wendroff discretization for the evolution of the magnetic potential, where we start with technology used for Hamilton-Jacobi equations in order to construct a non-oscillatory magnetic field. The end result is an algorithm that is similar to our previous work Christlieb et al. (2014) [8], but this time the time stepping is replaced through a Taylor method with the addition of a positivity-preserving limiter. Finally, positivity preservation is realized by introducing a parameterized flux limiter that considers a linear combination of high and low-order numerical fluxes. The choice of the free

  12. Advancements in high-power high-brightness laser bars and single emitters for pumping and direct diode application

    Science.gov (United States)

    An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg

    2015-03-01

    We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.

  13. A simple and rapid method for high-resolution visualization of single-ion tracks

    Directory of Open Access Journals (Sweden)

    Masaaki Omichi

    2014-11-01

    Full Text Available Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA-N, N’-methylene bisacrylamide (MBAAm blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic force microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.

  14. A simple and rapid method for high-resolution visualization of single-ion tracks

    Energy Technology Data Exchange (ETDEWEB)

    Omichi, Masaaki [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871 (Japan); Center for Collaborative Research, Anan National College of Technology, Anan, Tokushima 774-0017 (Japan); Choi, Wookjin; Sakamaki, Daisuke; Seki, Shu, E-mail: seki@chem.eng.osaka-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871 (Japan); Tsukuda, Satoshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Sugimoto, Masaki [Japan Atomic Energy Agency, Takasaki Advanced Radiation Research Institute, Gunma, Gunma 370-1292 (Japan)

    2014-11-15

    Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA)-N, N’-methylene bisacrylamide (MBAAm) blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic force microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.

  15. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.

    Science.gov (United States)

    Hsu, Wen-Yang; Schmid, Alexandre

    2017-08-01

    Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.

  16. High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal.

    Science.gov (United States)

    Yin, Qiwei; Lu, Huadong; Su, Jing; Peng, Kunchi

    2016-05-01

    The thermal lens effect of terbium gallium garnet (TGG) crystal in a high power single-frequency laser severely limits the output power and the beam quality of the laser. By inserting a potassium dideuterium phosphate (DKDP) slice with negative thermo-optical coefficient into the laser resonator, the harmful influence of the thermal lens effect of the TGG crystal can be effectively mitigated. Using this method, the stable range of the laser is broadened, the bistability phenomenon of the laser during the process of changing the pump power is completely eliminated, the highest output power of an all-solid-state continuous-wave intracavity-frequency-doubling single-frequency laser at 532 nm is enhanced to 30.2 W, and the beam quality of the laser is significantly improved.

  17. Nature of elevated rat intestinal carbohydrase activities after high-carbohydrate diet feeding

    International Nuclear Information System (INIS)

    Tsuboi, K.K.; Kwong, L.K.; Yamada, K.; Sunshine, P.; Koldovsky, O.

    1985-01-01

    Adult rats that were maintained on a low-carbohydrate intake showed rapid increase in the activities of sucrase, maltase, and lactase along the length of the small intestine when they were fed a high-starch diet. In the present study, the authors have identified these activity increases, and showed that they reflect proportional accumulations in enzyme-protein of sucrase-isomaltase, maltase-glucoamylase, and neutral lactase. It was determined that each of these enzymes exists in adult rat intestine in single immunoreactive form and accounts as a group for all sucrase, cellobiase, and most maltase and lactase activities. Dietary change from low to high carbohydrate (starch) resulted in an increase in [ 3 H]leucine accumulation in each of the enzymes, without a change in the amount of label accumulation in total intestinal proteins. The increase in label accumulation in the brush-border carbohydrase pools was matched generally by proportional elevation in the pool concentrations of sucrase-isomaltase and lactase but not maltase. These studies suggest that the elevation of intestinal carbohydrase concentrations induced by high-carbohydrate feeding may involve selective stimulation of their synthesis

  18. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.

  19. Comparative analysis of main bio-active components in the herb pair Danshen-Honghua and its single herbs by ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry.

    Science.gov (United States)

    Qu, Cheng; Pu, Zong-Jin; Zhou, Gui-Sheng; Wang, Jun; Zhu, Zhen-Hua; Yue, Shi-Jun; Li, Jian-Ping; Shang, Li-Li; Tang, Yu-Ping; Shi, Xu-Qin; Liu, Pei; Guo, Jian-Ming; Sun, Jing; Tang, Zhi-Shu; Zhao, Jing; Zhao, Bu-Chang; Duan, Jin-Ao

    2017-09-01

    A sensitive, reliable, and powerful ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry method was developed for simultaneous quantification of the 15 main bio-active components including phenolic acids and flavonoids within 13 min for the first time. The proposed method was first reported and validated by good linearity (r 2  > 0.9975), limit of detection (1.12-7.01 ng/mL), limit of quantification (3.73-23.37 ng/mL), intra- and inter-day precisions (RSD ≤ 1.92%, RSD ≤ 2.45%), stability (RSD ≤ 5.63%), repeatability (RSD ≤ 4.34%), recovery (96.84-102.12%), and matrix effects (0.92-1.02). The established analytical methodology was successfully applied to comparative analysis of main bio-active components in the herb pair Danshen-Honghua and its single herbs. Compared to the single herb, the content of most flavonoid glycosides was remarkably increased in their herb pair, and main phenolic acids were decreased, conversely. The content changes of the main components in the herb pair supported the synergistic effects on promoting blood circulation and removing blood stasis. The results provide a scientific basis and reference for the quality control of Danshen-Honghua herb pair and the drug interactions based on variation of bio-active components in herb pairs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Detection of active alveolar bone destruction in human periodontal disease by analysis of radiopharmaceutical uptake after a single injection of 99m-Tc-methylene diphosphonate

    Energy Technology Data Exchange (ETDEWEB)

    Jeffcoat, M.K.; Williams, R.C.; Holman, B.L.; English, R.; Goldhaber, P.

    1986-01-01

    Previous studies have shown that, following a single injection of 99m-Tc-MDP, measurement of bone-seeking radiopharmaceutical uptake can detect ''active'' alveolar bone loss due to periodontal disease in beagle dogs, as determined by radiographs taken at the time of, and several months after, the nuclear medicine procedure. The efficacy of this diagnostic test, however, had not been assessed in human periodontal disease. The ability of a single boneseeking radiopharmaceutical uptake examination to detect ''active'' alveolar bone loss due to periodontal disease in human patients was assessed by comparing a single uptake measurement to the rate of bone loss determined from serial radiographs taken over a 6-month period. Uptake was expressed as a ratio of the cpm from the alveolar bone divided by the cpm from the non-tooth supporting bone of the nuchal crest. High uptake ratios were associated with ''active'' loss and low uptake ratios were associated with little if any change in alveolar bone height (p<0.001). The nuclear medicine examination was an accurate detector of periodontal disease activity in nearly 80% of the individual teeth studied. These data indicate that high bone-seeking radiopharmaceutical uptake ratios may be pathognomonic of active bone loss in human periodontal disease.

  1. Single photon imaging at ultra-high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Bellazzini, R. [INFN sez. Pisa, Pisa (Italy); Spandre, G. [INFN sez. Pisa, Pisa (Italy)], E-mail: Gloria.Spandre@pi.infn.it; Minuti, M.; Brez, A.; Baldini, L.; Latronico, L.; Omodei, N.; Sgro, C.; Bregeon, J.; Razzano, M.; Pinchera, M. [INFN sez. Pisa, Pisa (Italy); Tremsin, A.; McPhate, J.; Vallerga, J.V.; Siegmund, O. [SSL, Berkeley (United States)

    2008-06-11

    We present a detection system capable of imaging both single photon/positive ion and multiple coincidence photons/positive ions with extremely high spatial resolution. In this detector the photoelectrons excited by the incoming photons are multiplied by microchannel plate(s) (MCP). The process of multiplication is spatially constrained within an MCP pore, which can be as small as 4 {mu}m for commercially available MCPs. An electron cloud originated by a single photoelectron is then encoded by a pixellated custom analog ASIC consisting of 105 K charge sensitive pixels of 50 {mu}m in size arranged on a hexagonal grid. Each pixel registers the charge with an accuracy of <100 electrons rms. Computation of the event centroid from the readout charges results in an accurate event position. A large number of simultaneous photons spatially separated by {approx}0.4 mm can be detected simultaneously allowing multiple coincidence operation for the experiments where a large number of incoming photons/positive ions have to be detected simultaneously. The experimental results prove that the spatial resolution of the readout system itself is {approx}3 {mu}m FWHM enabling detection resolution better than 6 {mu}m for the small pore MCPs. An attractive feature of the detection system is its capability to register the timing of each incoming photon/positive ion (in single photon detection mode) or of the first incoming particle (for the multiple coincidence detection) with an accuracy of {approx}130 ps FWHM. There is also virtually no dark count noise in the detection system making it suitable for low count rate applications.

  2. Single dose of fluoxetine increases muscle activation in chronic stroke patients.

    NARCIS (Netherlands)

    van Genderen, Hanneke Irene; Nijlant, Juliette M.M.; van Putten, Michel Johannes Antonius Maria; Movig, Kris L.L.; IJzerman, Maarten Joost

    2009-01-01

    Objectives: This pilot study explores the influence of a single dose of fluoxetine (20 mg) on the muscle activation patterns and functional ability of the muscles in the lower part of the arm in chronic stroke patients. Methods: A crossover, placebo-controlled clinical trial was conducted in 10

  3. Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaolong; He, Yongning, E-mail: yongning@mail.xjtu.edu.cn; Peng, Wenbo; Huang, Zhiyong; Qi, Xiaomeng; Pan, Zijian; Zhang, Wenting [School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Liang; Liu, Jinliang; Zhang, Zhongbing; Ouyang, Xiaoping [Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-04-25

    The pulse radiation detectors are sorely needed in the fields of nuclear reaction monitoring, material analysis, astronomy study, spacecraft navigation, and space communication. In this work, we demonstrate a nanosecond X-ray detector based on ZnO single crystal semiconductor, which emerges as a promising compound-semiconductor radiation detection material for its high radiation tolerance and advanced large-size bulk crystal growth technique. The resistivity of the ZnO single crystal is as high as 10{sup 13} Ω cm due to the compensation of the donor defects (V{sub O}) and acceptor defects (V{sub Zn} and O{sub i}) after high temperature annealing in oxygen. The photoconductive X-ray detector was fabricated using the high resistivity ZnO single crystal. The rise time and fall time of the detector to a 10 ps pulse electron beam are 0.8 ns and 3.3 ns, respectively, indicating great potential for ultrafast X-ray detection applications.

  4. Source characterization of urban particles from meat smoking activities in Chongqing, China using single particle aerosol mass spectrometry.

    Science.gov (United States)

    Chen, Yang; Wenger, John C; Yang, Fumo; Cao, Junji; Huang, Rujin; Shi, Guangming; Zhang, Shumin; Tian, Mi; Wang, Huanbo

    2017-09-01

    A Single Particle Aerosol Mass Spectrometer (SPAMS) was deployed in the urban area of Chongqing to characterize the particles present during a severe particulate pollution event that occurred in winter 2014-2015. The measurements were made at a time when residents engaged in traditional outdoor meat smoking activities to preserve meat before the Chinese Spring Festival. The measurement period was predominantly characterized by stagnant weather conditions, highly elevated levels of PM 2.5 , and low visibility. Eleven major single particle types were identified, with over 92.5% of the particles attributed to biomass burning emissions. Most of the particle types showed appreciable signs of aging in the stagnant air conditions. To simulate the meat smoking activities, a series of controlled smoldering experiments was conducted using freshly cut pine and cypress branches, both with and without wood logs. SPAMS data obtained from these experiments revealed a number of biomass burning particle types, including an elemental and organic carbon (ECOC) type that proved to be the most suitable marker for meat smoking activities. The traditional activity of making preserved meat in southwestern China is shown here to be a major source of particulate pollution. Improved measures to reduce emissions from the smoking of meat should be introduced to improve air quality in regions where smoking meat activity prevails. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Science.gov (United States)

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  6. Human temporal cortical single neuron activity during working memory maintenance.

    Science.gov (United States)

    Zamora, Leona; Corina, David; Ojemann, George

    2016-06-01

    The Working Memory model of human memory, first introduced by Baddeley and Hitch (1974), has been one of the most influential psychological constructs in cognitive psychology and human neuroscience. However the neuronal correlates of core components of this model have yet to be fully elucidated. Here we present data from two studies where human temporal cortical single neuron activity was recorded during tasks differentially affecting the maintenance component of verbal working memory. In Study One we vary the presence or absence of distracting items for the entire period of memory storage. In Study Two we vary the duration of storage so that distractors filled all, or only one-third of the time the memory was stored. Extracellular single neuron recordings were obtained from 36 subjects undergoing awake temporal lobe resections for epilepsy, 25 in Study one, 11 in Study two. Recordings were obtained from a total of 166 lateral temporal cortex neurons during performance of one of these two tasks, 86 study one, 80 study two. Significant changes in activity with distractor manipulation were present in 74 of these neurons (45%), 38 Study one, 36 Study two. In 48 (65%) of those there was increased activity during the period when distracting items were absent, 26 Study One, 22 Study Two. The magnitude of this increase was greater for Study One, 47.6%, than Study Two, 8.1%, paralleling the reduction in memory errors in the absence of distracters, for Study One of 70.3%, Study Two 26.3% These findings establish that human lateral temporal cortex is part of the neural system for working memory, with activity during maintenance of that memory that parallels performance, suggesting it represents active rehearsal. In 31 of these neurons (65%) this activity was an extension of that during working memory encoding that differed significantly from the neural processes recorded during overt and silent language tasks without a recent memory component, 17 Study one, 14 Study two

  7. Human Temporal Cortical Single Neuron Activity During Working Memory Maintenance

    Science.gov (United States)

    Zamora, Leona; Corina, David; Ojemann, George

    2016-01-01

    The Working Memory model of human memory, first introduced by Baddeley and Hitch (1974), has been one of the most influential psychological constructs in cognitive psychology and human neuroscience. However the neuronal correlates of core components of this model have yet to be fully elucidated. Here we present data from two studies where human temporal cortical single neuron activity was recorded during tasks differentially affecting the maintenance component of verbal working memory. In Study One we vary the presence or absence of distracting items for the entire period of memory storage. In Study Two we vary the duration of storage so that distractors filled all, or only one-third of the time the memory was stored. Extracellular single neuron recordings were obtained from 36 subjects undergoing awake temporal lobe resections for epilepsy, 25 in Study one, 11 in Study two. Recordings were obtained from a total of 166 lateral temporal cortex neurons during performance of one of these two tasks, 86 study one, 80 study two. Significant changes in activity with distractor manipulation were present in 74 of these neurons (45%), 38 Study one, 36 Study two. In 48 (65%) of those there was increased activity during the period when distracting items were absent, 26 Study One, 22 Study Two. The magnitude of this increase was greater for Study One, 47.6%, than Study Two, 8.1%, paralleling the reduction in memory errors in the absence of distracters, for Study One of 70.3%, Study Two 26.3% These findings establish that human lateral temporal cortex is part of the neural system for working memory, with activity during maintenance of that memory that parallels performance, suggesting it represents active rehearsal. In 31 of these neurons (65%) this activity was an extension of that during working memory encoding that differed significantly from the neural processes recorded during overt and silent language tasks without a recent memory component, 17 Study one, 14 Study two

  8. Thermally activated, single component epoxy systems

    KAUST Repository

    Unruh, David A.; Pastine, Stefan J.; Moreton, Jessica C.; Frechet, Jean

    2011-01-01

    A single component epoxy system in which the resin and hardener components found in many two-component epoxies are combined onto the same molecule is described. The single molecule precursor to the epoxy resin contains both multiple epoxide moieties and a diamine held latent by thermally degradable carbamate linkages. These bis-carbamate "single molecule epoxies" have an essentially infinite shelf life and access a significant range in curing temperatures related to the structure of the carbamate linkages used. © 2011 American Chemical Society.

  9. Thermally activated, single component epoxy systems

    KAUST Repository

    Unruh, David A.

    2011-08-23

    A single component epoxy system in which the resin and hardener components found in many two-component epoxies are combined onto the same molecule is described. The single molecule precursor to the epoxy resin contains both multiple epoxide moieties and a diamine held latent by thermally degradable carbamate linkages. These bis-carbamate "single molecule epoxies" have an essentially infinite shelf life and access a significant range in curing temperatures related to the structure of the carbamate linkages used. © 2011 American Chemical Society.

  10. Gold Dispersion and Activation on the Basal Plane of Single-Layer MoS2

    KAUST Repository

    Merida, Cindy S.; Le, Duy; Echeverrí a, Elena M.; Nguyen, Ariana E.; Rawal, Takat B; Naghibi Alvillar, Sahar; Kandyba, Viktor; Al-Mahboob, Abdullah; Losovyj, Yaroslav B.; Katsiev, Khabiboulakh; Valentin, Michael D.; Huang, Chun-Yu; Gomez, Michael J.; Lu, I-Hsi; Guan, Alison; Barinov, Alexei; Rahman, Talat S; Dowben, Peter A.; Bartels, Ludwig

    2017-01-01

    Gold islands are typically associated with high binding affinity to adsorbates and catalytic activity. Here we present the growth of such dispersed nanoscale gold islands on single layer MoS2, prepared on an inert SiO2/Si support by chemical vapor deposition (CVD). This study offers a combination of growth process development, optical characterization, photoelectron spectroscopy at sub-micron spatial resolution, and advanced density functional theory modeling for detailed insight into the electronic interaction between gold and single-layer MoS2. In particular, we find the gold density of states in Au/MoS2/SiO2/Si to be far less well-defined than Au islands on other 2-dimensional materials such as graphene, for which we also provide data. We attribute this effect to the presence of heterogeneous Au adatom/MoS2-support interactions within the nanometer-scale gold cluster. As a consequence, theory predicts that CO will exhibit adsorption energies in excess of 1 eV at the Au cluster edges, where the local density of states is dominated by Au 5dz2 symmetry.

  11. Gold Dispersion and Activation on the Basal Plane of Single-Layer MoS2

    KAUST Repository

    Merida, Cindy S.

    2017-12-09

    Gold islands are typically associated with high binding affinity to adsorbates and catalytic activity. Here we present the growth of such dispersed nanoscale gold islands on single layer MoS2, prepared on an inert SiO2/Si support by chemical vapor deposition (CVD). This study offers a combination of growth process development, optical characterization, photoelectron spectroscopy at sub-micron spatial resolution, and advanced density functional theory modeling for detailed insight into the electronic interaction between gold and single-layer MoS2. In particular, we find the gold density of states in Au/MoS2/SiO2/Si to be far less well-defined than Au islands on other 2-dimensional materials such as graphene, for which we also provide data. We attribute this effect to the presence of heterogeneous Au adatom/MoS2-support interactions within the nanometer-scale gold cluster. As a consequence, theory predicts that CO will exhibit adsorption energies in excess of 1 eV at the Au cluster edges, where the local density of states is dominated by Au 5dz2 symmetry.

  12. High bit rate germanium single photon detectors for 1310nm

    Science.gov (United States)

    Seamons, J. A.; Carroll, M. S.

    2008-04-01

    There is increasing interest in development of high speed, low noise and readily fieldable near infrared (NIR) single photon detectors. InGaAs/InP Avalanche photodiodes (APD) operated in Geiger mode (GM) are a leading choice for NIR due to their preeminence in optical networking. After-pulsing is, however, a primary challenge to operating InGaAs/InP single photon detectors at high frequencies1. After-pulsing is the effect of charge being released from traps that trigger false ("dark") counts. To overcome this problem, hold-off times between detection windows are used to allow the traps to discharge to suppress after-pulsing. The hold-off time represents, however, an upper limit on detection frequency that shows degradation beginning at frequencies of ~100 kHz in InGaAs/InP. Alternatively, germanium (Ge) single photon avalanche photodiodes (SPAD) have been reported to have more than an order of magnitude smaller charge trap densities than InGaAs/InP SPADs2, which allowed them to be successfully operated with passive quenching2 (i.e., no gated hold off times necessary), which is not possible with InGaAs/InP SPADs, indicating a much weaker dark count dependence on hold-off time consistent with fewer charge traps. Despite these encouraging results suggesting a possible higher operating frequency limit for Ge SPADs, little has been reported on Ge SPAD performance at high frequencies presumably because previous work with Ge SPADs has been discouraged by a strong demand to work at 1550 nm. NIR SPADs require cooling, which in the case of Ge SPADs dramatically reduces the quantum efficiency of the Ge at 1550 nm. Recently, however, advantages to working at 1310 nm have been suggested which combined with a need to increase quantum bit rates for quantum key distribution (QKD) motivates examination of Ge detectors performance at very high detection rates where InGaAs/InP does not perform as well. Presented in this paper are measurements of a commercially available Ge APD

  13. A universal setup for active control of a single-photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qin; Skaar, Johannes [Department of Electronics and Telecommunications, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Lamas-Linares, Antía; Kurtsiefer, Christian [Centre for Quantum Technologies and Department of Physics, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Makarov, Vadim, E-mail: makarov@vad1.com [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Gerhardt, Ilja, E-mail: ilja@quantumlah.org [Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart (Germany)

    2014-01-15

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.

  14. A universal setup for active control of a single-photon detector

    International Nuclear Information System (INIS)

    Liu, Qin; Skaar, Johannes; Lamas-Linares, Antía; Kurtsiefer, Christian; Makarov, Vadim; Gerhardt, Ilja

    2014-01-01

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors

  15. High Quality Model Predictive Control for Single Phase Grid Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2018-01-01

    Single phase grid-connected inverters with LCL filter are widely used to connect the photovoltaic systems to the utility grid. Among the presented control schemes, predictive control methods are faster and more accurate but are more complex to implement. Recently, the model-predictive control...... algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the proposed approach, all switching states are tested in each switching period to achieve the control objectives. However, since the number of the switching states in single-phase inverter...... is low, the inverter output current has a high total harmonic distortions. In order to reduce the total harmonic distortions of the injected current, this paper presents a high-quality model-predictive control for one of the newest structure of the grid connected photovoltaic inverter, i.e., HERIC...

  16. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    Science.gov (United States)

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  17. High throughput single-cell and multiple-cell micro-encapsulation.

    Science.gov (United States)

    Lagus, Todd P; Edd, Jon F

    2012-06-15

    Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of controlled sizes. By combining drop generation techniques with cell and particle ordering, we demonstrate controlled encapsulation of cell-sized particles for efficient, continuous encapsulation. Using an aqueous particle suspension and immiscible fluorocarbon oil, we generate aqueous drops in oil with a flow focusing nozzle. The aqueous flow rate is sufficiently high to create ordering of particles which reach the nozzle at integer multiple frequencies of the drop generation frequency, encapsulating a controlled number of cells in each drop. For representative results, 9.9 μm polystyrene particles are used as cell surrogates. This study shows a single-particle encapsulation efficiency P(k=1) of 83.7% and a double-particle encapsulation efficiency P(k=2) of 79.5% as compared to their respective Poisson efficiencies of 39.3% and 33.3%, respectively. The effect of consistent cell and particle concentration is demonstrated to be of major importance for efficient encapsulation, and dripping to jetting transitions are also addressed. Continuous media aqueous cell suspensions share a common fluid environment which allows cells to interact in parallel and also homogenizes the effects of specific cells in measurements from the media. High-throughput encapsulation of cells into picoliter-scale drops confines the samples to protect drops from cross-contamination, enable a measure of cellular diversity within samples, prevent dilution of reagents and expressed biomarkers, and amplify

  18. Single-tube tetradecaplex panel of highly polymorphic microsatellite markers hemophilia A.

    Science.gov (United States)

    Zhao, M; Chen, M; Tan, A S C; Cheah, F S H; Mathew, J; Wong, P C; Chong, S S

    2017-07-01

    Essentials Preimplantation genetic diagnosis (PGD) of severe hemophilia A relies on linkage analysis. Simultaneous multi-marker screening can simplify selection of informative markers in a couple. We developed a single-tube tetradecaplex panel of polymorphic markers for hemophilia A PGD use. Informative markers can be used for linkage analysis alone or combined with mutation detection. Background It is currently not possible to perform single-cell preimplantation genetic diagnosis (PGD) to directly detect the common inversion mutations of the factor VIII (F8) gene responsible for severe hemophilia A (HEMA). As such, PGD for such inversion carriers relies on indirect analysis of linked polymorphic markers. Objectives To simplify linkage-based PGD of HEMA, we aimed to develop a panel of highly polymorphic microsatellite markers located near the F8 gene that could be simultaneously genotyped in a multiplex-PCR reaction. Methods We assessed the polymorphism of various microsatellite markers located ≤ 1 Mb from F8 in 177 female subjects. Highly polymorphic markers were selected for co-amplification with the AMELX/Y indel dimorphism in a single-tube reaction. Results Thirteen microsatellite markers located within 0.6 Mb of F8 were successfully co-amplified with AMELX/Y in a single-tube reaction. Observed heterozygosities of component markers ranged from 0.43 to 0.84, and ∼70-80% of individuals were heterozygous for ≥ 5 markers. The tetradecaplex panel successfully identified fully informative markers in a couple interested in PGD for HEMA because of an intragenic F8 point mutation, with haplotype phasing established through a carrier daughter. In-vitro fertilization (IVF)-PGD involved single-tube co-amplification of fully informative markers with AMELX/Y and the mutation-containing F8 amplicon, followed by microsatellite analysis and amplicon mutation-site minisequencing analysis. Conclusions The single-tube multiplex-PCR format of this highly polymorphic

  19. Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound.

    Science.gov (United States)

    Gateau, Jérôme; Aubry, Jean-François; Pernot, Mathieu; Fink, Mathias; Tanter, Mickaël

    2011-03-01

    The activation of natural gas nuclei to induce larger bubbles is possible using short ultrasonic excitations of high amplitude, and is required for ultrasound cavitation therapies. However, little is known about the distribution of nuclei in tissues. Therefore, the acoustic pressure level necessary to generate bubbles in a targeted zone and their exact location are currently difficult to predict. To monitor the initiation of cavitation activity, a novel all-ultrasound technique sensitive to single nucleation events is presented here. It is based on combined passive detection and ultrafast active imaging over a large volume using the same multi-element probe. Bubble nucleation was induced using a focused transducer (660 kHz, f-number = 1) driven by a high-power electric burst (up to 300 W) of one to two cycles. Detection was performed with a linear array (4 to 7 MHz) aligned with the single-element focal point. In vitro experiments in gelatin gel and muscular tissue are presented. The synchronized passive detection enabled radio-frequency data to be recorded, comprising high-frequency coherent wave fronts as signatures of the acoustic emissions linked to the activation of the nuclei. Active change detection images were obtained by subtracting echoes collected in the unnucleated medium. These indicated the appearance of stable cavitating regions. Because of the ultrafast frame rate, active detection occurred as quickly as 330 μs after the high-amplitude excitation and the dynamics of the induced regions were studied individually.

  20. Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density

    Science.gov (United States)

    Xie, Qinxing; Bao, Rongrong; Xie, Chao; Zheng, Anran; Wu, Shihua; Zhang, Yufeng; Zhang, Renwei; Zhao, Peng

    2016-06-01

    Graphene wrapped nitrogen-doped active carbon fibers (ACF@GR) of a core-shell structure were successfully prepared by a simple dip-coating method using natural silk as template. Compared to pure silk active carbon, the as-prepared ACF@GR composites exhibit high specific surface area in a range of 1628-2035 m2 g-1, as well as superior energy storage capability, an extremely high single-electrode capacitance of 552.8 F g-1 was achieved at a current density of 0.1 A g-1 in 6 M KOH aqueous electrolyte. The assembled aqueous symmetric supercapacitors are capable of deliver both high energy density and high power density, for instance, 17.1 Wh kg-1 at a power density of 50.0 W kg-1, and 12.2 Wh kg-1 at 4.7 kW kg-1 with a retention rate of 71.3% for ACF@GR1-based supercapacitor.

  1. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.

    Science.gov (United States)

    Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert

    2014-02-01

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Substance Use, Dental Hygiene, and Physical Activity in Adult Patients with Single Ventricle Physiology

    DEFF Research Database (Denmark)

    Schrader, Anne-Marie Voss

    2013-01-01

    % are not flossing their teeth (32% in controls; OR = 1.32; P = 0.239); and 39% are not physically active (24% in controls; OR = 1.63; P = 0.069). CONCLUSIONS: While in general there was no significant differences in overall health behaviors between SVP patients and controls, SVP patients are less physically active......Substance Use, Dental Hygiene, and Physical Activity in Adult Patients with Single Ventricle Physiology. Overgaard D, Schrader AM, Lisby KH, King C, Christensen RF, Jensen HF, Moons P. Author information OBJECTIVES: The study aims to describe substance use, dental hygiene, and physical activity...... in adult survivors with single ventricle physiology (SVP) and to compare the behaviors with matched controls, while the patients are particularly at risk for general health problems. DESIGN: The present study is part of a larger research project on long-term outcomes in adult patients with SVP. A cross...

  3. High field high frequency EPR techniques and their application to single molecule magnets

    International Nuclear Information System (INIS)

    Edwards, R.S.; Hill, S.; Goy, P.; Wylde, R.; Takahashi, S.

    2004-01-01

    We present details of a new high-field/high-frequency EPR technique, and its application to measurements of single-molecule magnets (SMMs). By using a quasi-optical set-up and microwave sources covering a continuous frequency range from 170 to 600 GHz, in conjunction with a millimetre-wave vector network analyser, we are able to measure EPR to high magnetic fields. For example, a g=2 system will exhibit EPR at about 14 T at a frequency of 400 GHz. We illustrate the technique by presenting details of recent high-frequency experiments on several SMMs which are variations of the well-known SMM Mn 12 -Ac. This material has a spin ground state of S=10 and large uniaxial anisotropy, hence frequencies above 300 GHz are required in order to observe EPR from the ground state

  4. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    International Nuclear Information System (INIS)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R

    2011-01-01

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88 Sr + ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  5. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    Energy Technology Data Exchange (ETDEWEB)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R, E-mail: ozeri@weizmann.ac.il [Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2011-07-15

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped {sup 88}Sr{sup +} ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  6. Neutron activation analysis of single human hairs and possible applications for forensic purposes

    International Nuclear Information System (INIS)

    Dybczynski, R.; Boboli, K.

    1975-01-01

    A new analytical procedure that enables to determine more than 10 trace elements in single, 3 cm human hair segments by neutron activation analysis (NAA) was elaborated. Application of a special washing procedure of hair (before irradiation) made possible to lower sodium content by two orders of magnitude without affecting trace element content. After irradiation in the thermal neutron flux of about 10 14 n.cm -2 .sec -1 the activity of hair was measured with 70 cm 3 Ge(Li) detector coupled to 4000 channel pulse height analyser. As an alternative method, a destructive version of NAA with ion exchange group separation of radionuclides was applied. It was found that sometimes high gradients of element concentration along the hair length exist and that there is without any doubt a distinct influence of environmental factor on the content of some trace elements in hair. The criminalistic aspects of hair analysis were also studied using new statistical criterion for elimination (identification). Both possibilities and limitations of the method are discussed. (author)

  7. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.

    Directory of Open Access Journals (Sweden)

    Manuel Martinez-Garcia

    Full Text Available Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.

  8. A single lithium-ion battery protection circuit with high reliability and low power consumption

    International Nuclear Information System (INIS)

    Jiang Jinguang; Li Sen

    2014-01-01

    A single lithium-ion battery protection circuit with high reliability and low power consumption is proposed. The protection circuit has high reliability because the voltage and current of the battery are controlled in a safe range. The protection circuit can immediately activate a protective function when the voltage and current of the battery are beyond the safe range. In order to reduce the circuit's power consumption, a sleep state control circuit is developed. Additionally, the output frequency of the ring oscillation can be adjusted continuously and precisely by the charging capacitors and the constant-current source. The proposed protection circuit is fabricated in a 0.5 μm mixed-signal CMOS process. The measured reference voltage is 1.19 V, the overvoltage is 4.2 V and the undervoltage is 2.2 V. The total power is about 9 μW. (semiconductor integrated circuits)

  9. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Science.gov (United States)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Fulop, Jozsef A.; Farkas, Gyozo; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-08-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  10. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    International Nuclear Information System (INIS)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Farkas, Gyozo; Fulop, Jozsef A.; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-01-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  11. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Emeric [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); Kovacs, Katalin [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Dombi, Peter; Farkas, Gyozo [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary); Fulop, Jozsef A.; Hebling, Janos [Department of Experimental Physics, University of Pecs, H-7624 Pecs (Hungary); Tosa, Valer [National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Varju, Katalin [HAS Research Group on Laser Physics, University of Szeged, H-6701 Szeged (Hungary)

    2011-08-15

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  12. Atomically Monodisperse Nickel Nanoclusters as Highly Active Electrocatalysts for Water Oxidation

    KAUST Repository

    Joya, Khurram

    2016-04-08

    Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 and initiate the oxygen evolution at an amazingly low overpotential of ~1.51 V (vs RHE; η ≈ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm–2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec–1 is observed using Ni4(PET)8. These results are comparable to the state-of-the art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm–2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation.

  13. Low-cost, portable, robust and high-resolution single-camera stereo-DIC system and its application in high-temperature deformation measurements

    Science.gov (United States)

    Chi, Yuxi; Yu, Liping; Pan, Bing

    2018-05-01

    A low-cost, portable, robust and high-resolution single-camera stereo-digital image correlation (stereo-DIC) system for accurate surface three-dimensional (3D) shape and deformation measurements is described. This system adopts a single consumer-grade high-resolution digital Single Lens Reflex (SLR) camera and a four-mirror adaptor, rather than two synchronized industrial digital cameras, for stereo image acquisition. In addition, monochromatic blue light illumination and coupled bandpass filter imaging are integrated to ensure the robustness of the system against ambient light variations. In contrast to conventional binocular stereo-DIC systems, the developed pseudo-stereo-DIC system offers the advantages of low cost, portability, robustness against ambient light variations, and high resolution. The accuracy and precision of the developed single SLR camera-based stereo-DIC system were validated by measuring the 3D shape of a stationary sphere along with in-plane and out-of-plane displacements of a translated planar plate. Application of the established system to thermal deformation measurement of an alumina ceramic plate and a stainless-steel plate subjected to radiation heating was also demonstrated.

  14. Rapid single flux quantum logic in high temperature superconductor technology

    NARCIS (Netherlands)

    Shunmugavel, K.

    2006-01-01

    A Josephson junction is the basic element of rapid single flux quantum logic (RSFQ) circuits. A high operating speed and low power consumption are the main advantages of RSFQ logic over semiconductor electronic circuits. To realize complex RSFQ circuits in HTS technology one needs a reproducible

  15. Microplastic relaxations of single and polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Pichl, W.; Weiss, B. [Wien Univ. (Austria). Inst. fuer Materialphysik; Chen, D.L.

    1998-05-01

    The microplasticity of high-purity molybdenum single crystals and of Mo polycrystals of technical purity has been investigated by relaxation step tests in uniaxial compression. A new model for the evaluation of relaxation tests in the microplastic range of b.c.c metals is presented which takes into account the decrease of the mobile dislocation density due to exhaustion of non-screw dislocations. The model allows an independent determination of the activation volume and of the microstructure parameters controlling dislocation exhaustion. The results indicate that in the high-purity single crystals the deformation rate is controlled by interactions of non-screw dislocations with the grown-in network. In the polycrystals additional interactions with impurity atoms seem to occur. In the single crystals the activity and subsequent exhaustion of two different glide systems was observed, followed by a gradual onset of screw dislocation motion. (orig.) 26 refs.

  16. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System.

    Science.gov (United States)

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-02-20

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.

  17. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System

    Directory of Open Access Journals (Sweden)

    Anbang Zhao

    2017-02-01

    Full Text Available In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.

  18. Method of preparing [methyl-3H]thymine and 5-hydroxy[3H]methyluracil mixture of high molar activity

    International Nuclear Information System (INIS)

    Filip, J.; Bohacek, L.

    1981-01-01

    Non-active 5-formyluracil dissolved in 0.01 N to 1.0 N of hydrochloric acid is acted upon by gaseous carrier-free tritium at room temperature in the presence of a heterogeneous palladium/carrier catalyst, with advantage palladium on barium sulfate. The described procedure allows the preparation of [methyl- 3 H]thymine on a microscale, with a high molar activity in a single reaction stage with a high chemical (50-70%) and radiochemical (15-25%) yield. (J.P.)

  19. High resolution imaging of surface patterns of single bacterial cells

    International Nuclear Information System (INIS)

    Greif, Dominik; Wesner, Daniel; Regtmeier, Jan; Anselmetti, Dario

    2010-01-01

    We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.

  20. Highly ordered uniform single-crystal Bi nanowires: fabrication and characterization

    International Nuclear Information System (INIS)

    Bisrat, Y; Luo, Z P; Davis, D; Lagoudas, D

    2007-01-01

    A mechanical pressure injection technique has been used to fabricate uniform bismuth (Bi) nanowires in the pores of an anodic aluminum oxide (AAO) template. The AAO template was prepared from general purity aluminum by a two-step anodization followed by heat treatment to achieve highly ordered nanochannels. The nanowires were then fabricated by an injection technique whereby the molten Bi was injected into the AAO template using a hydraulic pressure method. The Bi nanowires prepared by this method were found to be dense and continuous with uniform diameter throughout the length. Electron diffraction experiments using the transmission electron microscope on cross-sectional and free-standing longitudinal Bi nanowires showed that the majority of the individual nanowires were single crystalline, with preferred orientation of growth along the [011] zone axis of the pseudo-cubic structure. The work presented here provides an inexpensive and effective way of fabricating highly ordered single-crystalline Bi nanowires, with uniform size distributions

  1. All-periodically poled, high-power, continuous-wave, single-frequency tunable UV source.

    Science.gov (United States)

    Aadhi, A; Chaitanya N, Apurv; Jabir, M V; Singh, R P; Samanta, G K

    2015-01-01

    We report on experimental demonstration of an all-periodically poled, continuous-wave (CW), high-power, single-frequency, ultra-violet (UV) source. Based on internal second-harmonic-generation (SHG) of a CW singly resonant optical parametric oscillator (OPO) pumped in the green, the UV source provides tunable radiation across 398.94-417.08 nm. The compact source comprising of a 25-mm-long MgO-doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) crystal of period Λ(SLT)=8.5  μm for OPO and a 5-mm-long, multi-grating (Λ(KTP)=3.3, 3.4, 3.6 and 3.8 μm), periodically poled potassium titanium phosphate (PPKTP) for intra-cavity SHG, provides as much as 336 mW of UV power at 398.94 nm, corresponding to a green-to-UV conversion efficiency of ∼6.7%. In addition, the singly resonant OPO (SRO) provides 840 mW of idler at 1541.61 nm and substantial signal power of 108 mW at 812.33 nm transmitted through the high reflective cavity mirrors. UV source provides single-frequency radiation with instantaneous line-width of ∼18.3  MHz and power >100  mW in Gaussian beam profile (ellipticity >92%) across the entire tuning range. Access to lower UV wavelengths requires smaller grating periods to compensate high phase-mismatch resulting from high material dispersion in the UV wavelength range. Additionally, we have measured the normalized temperature and spectral acceptance bandwidth of PPKTP crystal in the UV wavelength range to be ∼2.25°C·cm and ∼0.15  nm·cm, respectively.

  2. Heterogeneous Single-Atom Catalyst for Visible-Light-Driven High-Turnover CO2 Reduction: The Role of Electron Transfer.

    Science.gov (United States)

    Gao, Chao; Chen, Shuangming; Wang, Ying; Wang, Jiawen; Zheng, Xusheng; Zhu, Junfa; Song, Li; Zhang, Wenkai; Xiong, Yujie

    2018-03-01

    Visible-light-driven conversion of CO 2 into chemical fuels is an intriguing approach to address the energy and environmental challenges. In principle, light harvesting and catalytic reactions can be both optimized by combining the merits of homogeneous and heterogeneous photocatalysts; however, the efficiency of charge transfer between light absorbers and catalytic sites is often too low to limit the overall photocatalytic performance. In this communication, it is reported that the single-atom Co sites coordinated on the partially oxidized graphene nanosheets can serve as a highly active and durable heterogeneous catalyst for CO 2 conversion, wherein the graphene bridges homogeneous light absorbers with single-atom catalytic sites for the efficient transfer of photoexcited electrons. As a result, the turnover number for CO production reaches a high value of 678 with an unprecedented turnover frequency of 3.77 min -1 , superior to those obtained with the state-of-the-art heterogeneous photocatalysts. This work provides fresh insights into the design of catalytic sites toward photocatalytic CO 2 conversion from the angle of single-atom catalysis and highlights the role of charge kinetics in bridging the gap between heterogeneous and homogeneous photocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tension-controlled single-crystallization of copper foils for roll-to-roll synthesis of high-quality graphene films

    Science.gov (United States)

    Jo, Insu; Park, Subeom; Kim, Dongjin; San Moon, Jin; Park, Won Bae; Kim, Tae Hyeong; Hyoun Kang, Jin; Lee, Wonbae; Kim, Youngsoo; Lee, Dong Nyung; Cho, Sung-Pyo; Choi, Hyunchul; Kang, Inbyeong; Park, Jong Hyun; Lee, Jeong Soo; Hong, Byung Hee

    2018-04-01

    It has been known that the crystalline orientation of Cu substrates plays a crucial role in chemical vapor deposition (CVD) synthesis of high-quality graphene. In particular, Cu (1 1 1) surface showing the minimum lattice mismatch with graphene is expected to provide an ideal catalytic reactivity that can minimize the formation of defects, which also induces larger single-crystalline domain sizes of graphene. Usually, the Cu (1 1 1) substrates can be epitaxially grown on single-crystalline inorganic substrates or can be recrystallized by annealing for more than 12 h, which limits the cost and time-effective synthesis of graphene. Here, we demonstrate a new method to optimize the crystalline orientations of vertically suspended Cu foils by tension control during graphene growth, resulting in large-area recrystallization into Cu (1 1 1) surface as the applied tension activates the grain boundary energy of Cu and promotes its abnormal grain growth to single crystals. In addition, we found a clue that the formation of graphene cooperatively assists the recrystallization into Cu (1 1 1) by minimizing the surface energy of Cu. The domain sizes and charge carrier mobility of graphene grown on the single-crystalline Cu (1 1 1) are 5 times and ~50% increased, respectively, in comparison with those of graphene from Cu (1 0 0), indicating that the less lattice mismatch and the lower interaction energy between Cu (1 1 1) and graphene allows the growth of larger single-crystalline graphene with higher charge carrier mobility. Thus, we believe that our finding provides a crucial idea to design a roll-to-roll (R2R) graphene synthesis system where the tension control is inevitably involved, which would be of great importance for the continuous production of high-quality graphene in the future.

  4. Ion-atom collisions with laser-prepared target: High resolution study of single charge exchange process

    International Nuclear Information System (INIS)

    Leredde, Arnaud

    2012-01-01

    Single charge transfer in low-energy Na"++"8"7Rb(5s,5p) collisions is investigated using magneto-optically trapped Rb atoms and high-resolution recoil-ion momentum spectroscopy. The three-dimensional reconstruction of the recoil-ion momentum provides accurate relative cross-sections for the active channels and the projectile scattering angle distributions. Thanks to the high experimental resolution, scattering structures such as diffraction-like oscillations in angular distributions are clearly observed. The measurements are compared with molecular close-coupling calculations and an excellent agreement is found. To go further in the test of the theory, the target is prepared in an oriented state. It is the first time that such collision experiments with oriented target is performed with such a high resolution. The right-left asymmetry expected for the scattering angle distribution is evidenced. The agreement between MOCC calculations and experiments is very good. Simple models developed for collisions with oriented target are also discussed. (author) [fr

  5. Diameter-Sensitive Breakdown of Single-Walled Carbon Nanotubes upon KOH Activation.

    Science.gov (United States)

    Ye, Jianglin; Wu, Shuilin; Ni, Kun; Tan, Ziqi; Xu, Jin; Tao, Zhuchen; Zhu, Yanwu

    2017-07-19

    While potassium hydroxide (KOH) activation has been used to create pores in carbon nanotubes (CNTs) for improved energy-storage performance, the KOH activation mechanism of CNTs has been rarely investigated. In this work, the reaction between single-walled CNTs (SWCNTs) and KOH is studied in situ by thermogravimetric analysis coupled to infrared (IR) spectroscopy and gas chromatography/mass spectrometry (MS). The IR and MS results clearly demonstrate the sequential evolution of CO, hydrocarbons, CO 2 , and H 2 O in the activation process. By using the radial breathing mode of Raman spectroscopy, a diameter-sensitive selectivity is observed in the reaction between SWCNTs and KOH, leading to a preferential distribution of SWCNTs with diameters larger than 1 nm after activation at 900 °C and a preferential removal of SWCNTs with diameters below 1 nm upon activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Patterns for election of active computing nodes in high availability distributed data acquisition systems

    International Nuclear Information System (INIS)

    Nair, Preetha; Padmini, S.; Diwakar, M.P.; Gohel, Nilesh

    2013-01-01

    Computer based systems for power plant and research reactors are expected to have high availability. Redundancy is a common approach to improve the availability of a system. In redundant configuration the challenge is to select one node as active, and in case of failure of current active node provide automatic fast switchover by electing another node to function as active and restore normal operation. Additional constraints include: exactly one node should be elected as active in an n-way redundant architecture. This paper discusses various high availability configurations developed by Electronics Division and deployed in power and research reactors and patterns followed to elect active nodes of distributed data acquisition systems. The systems are categorized into two: Active/Passive where changeover takes effect only on the failure of Active node, and Active/Active, where changeover is effective in alternate cycles. A novel concept of priority driven state based Active (Master) node election pattern is described for Active/Passive systems which allows multiple redundancy and dynamic election of single master. The paper also discusses the Active/Active pattern, which uncovers failure early by activating all the nodes alternatively in a redundant system. This pattern can be extended to multiple redundant nodes. (author)

  7. 3D high- and super-resolution imaging using single-objective SPIM.

    Science.gov (United States)

    Galland, Remi; Grenci, Gianluca; Aravind, Ajay; Viasnoff, Virgile; Studer, Vincent; Sibarita, Jean-Baptiste

    2015-07-01

    Single-objective selective-plane illumination microscopy (soSPIM) is achieved with micromirrored cavities combined with a laser beam-steering unit installed on a standard inverted microscope. The illumination and detection are done through the same objective. soSPIM can be used with standard sample preparations and features high background rejection and efficient photon collection, allowing for 3D single-molecule-based super-resolution imaging of whole cells or cell aggregates. Using larger mirrors enabled us to broaden the capabilities of our system to image Drosophila embryos.

  8. Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries

    KAUST Repository

    Tu, Zhengyuan; Choudhury, Snehashis; Zachman, Michael J.; Wei, Shuya; Zhang, Kaihang; Kourkoutis, Lena F.; Archer, Lynden A.

    2017-01-01

    energy storage technologies. In lithium-ion batteries, electrolytes with single- or near-single-ion conductivity reduce losses caused by ion polarization. In emergent lithium or sodium metal batteries, they maintain high conductivity at the anode

  9. Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms

    International Nuclear Information System (INIS)

    Alcaraz, Raúl; Rieta, José Joaquín

    2008-01-01

    The proper analysis and characterization of atrial fibrillation (AF) from surface electrocardiographic (ECG) recordings requires to cancel out the ventricular activity (VA), which is composed of the QRS complex and the T wave. Historically, for single-lead ECGs, the averaged beat subtraction (ABS) has been the most widely used technique. However, this method is very sensitive to QRST wave variations and, moreover, high-quality cancelation templates may be difficult to obtain when only short length and single-lead recordings are available. In order to overcome these limitations, a new QRST cancelation method based on adaptive singular value cancelation (ASVC) applied to each single beat is proposed. In addition, an exhaustive study about the optimal set of complexes for better cancelation of every beat is also presented for the first time. The whole study has been carried out with both simulated and real AF signals. For simulated AF, the cancelation performance was evaluated making use of a cross-correlation index and the normalized mean square error (nmse) between the estimated and the original atrial activity (AA). For real AF signals, two additional new parameters were proposed. First, the ventricular residue (VR) index estimated the presence of ventricular activity in the extracted AA. Second, the similarity (S) evaluated how the algorithm preserved the AA segments out of the QRST interval. Results indicated that for simulated AF signals, mean correlation, nmse, VR and S values were 0.945 ± 0.024, 0.332 ± 0.073, 1.552 ± 0.386 and 0.986 ± 0.012, respectively, for the ASVC method and 0.866 ± 0.042, 0.424 ± 0.120, 2.161 ± 0.564 and 0.922 ± 0.051 for ABS. In the case of real signals, the mean VR and S values were 1.725 ± 0.826 and 0.983 ± 0.038, respectively, for ASVC and 3.159 ± 1.097 and 0.951 ± 0.049 for ABS. Thus, ASVC provides a more accurate beat-to-beat ventricular QRST representation than traditional techniques. As a consequence, VA cancelation

  10. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    Science.gov (United States)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  11. Determination of the activation energy of A-center in the uniaxially deformed n-Ge single crystals

    Directory of Open Access Journals (Sweden)

    S. V. Luniov

    2017-08-01

    Full Text Available Based on the decisions of electroneutrality equation and experimental results of measurements of the piezo-Hall-effect the dependences of activation energy of the deep level A-center depending on the uniaxial pressure along the crystallographic directions [100], [110] and [111] for n-Ge single crystals, irradiated by the electrons with energy 10 MeV are obtained. Using the method of least squares approximational polynomials for the calculation of these dependences are obtained. It is shown that the activation energy of A-center deep level decreases linearly for the entire range of uniaxial pressure along the crystallographic direction [100]. For the cases of uniaxial deformation along the crystallographic directions [110] and [111] decrease of the activation energy according to the linear law is observed only at high uniaxial pressures, when the A-center deep level interacts with the minima of the germanium conduction band, which proved the lower at the deformation. The various dependences of the activation energy of A-center depending on the orientation of the axis of deformation may be connected with features of its microstructure.

  12. Mapping of odor-related neuronal activity in the olfactory bulb by high-resolution 2-deoxyglucose autoradiography

    International Nuclear Information System (INIS)

    Lancet, D.; Greer, C.A.; Kauer, J.S.; Shepherd, G.M.

    1982-01-01

    The spatial distribution of odor-induced neuronal activity in the olfactory bulb, the first relay station of the olfactory pathway, is believed to reflect important aspects of chemosensory coding. We report here the application of high-resolution 2-deoxyglucose autoradiography to the mapping of spatial patterns of metabolic activity at the level of single neurons in the olfactory bulb. It was found that glomeruli, which are synaptic complexes containing the first synaptic relay, tend to be uniformly active or inactive during odor exposure. Differential 2-deoxyglucose uptake was also observed in the somata of projection neurons (mitral cells) and interneurons (periglomerular and granule cells). This confirms and extends our previous studies in which odor-specific laminar and focal uptake patterns were revealed by the conventional x-ray film 2-deoxyglucose method due to Sokoloff and colleagues [Sokoloff, L., Reivich, M., Kennedy, C., DesRosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O. and Shinohara, M. (1977) J. Neurochem. 28, 897-916]. Based on results obtained by the two methods, it is suggested that the glomerulus as a whole serves as a functional unit of activity. The high-resolution results are interpreted in terms of the well-characterized synaptic organization of the olfactory bulb and also serve to illustrate the capability of the 2-deoxyglucose autoradiographic technique to map metabolic activity in single neurons of the vertebrate central nervous system

  13. Microbial food web components, bulk metabolism, and single-cell physiology of piconeuston in surface microlayers of high-altitude lakes

    Directory of Open Access Journals (Sweden)

    Hugo eSarmento

    2015-05-01

    Full Text Available Sharp boundaries in the physical environment are usually associated with abrupt shifts in organism’s abundance, activity and diversity. Aquatic surface microlayers (SML form a steep gradient between two contrasted environments, the atmosphere and surface waters, where they regulate the gas exchange between both environments. They usually harbor an abundant and active microbial life: the neuston. Few ecosystems are subjected to such a high UVR regime as high altitude lakes during summer. Here, we measured bulk estimates of heterotrophic activity, community structure and single-cell physiological properties by flow cytometry in 19 high-altitude remote Pyrenean lakes and compared the biological processes in the SML with those in the underlying surface waters. Phototrophic picoplankton (PPP populations, were generally present in high abundances and in those lakes containing PPP populations with phycoerythrin (PE, total PPP abundance was higher at the SML. Heterotrophic nanoflagellates (HNF were also more abundant in the SML. Bacteria in the SµL had lower leucine incorporation rates, lower percentages of live cells, and higher numbers of highly-respiring cells, likely resulting in a lower growth efficiency. No simple and direct linear relationships could be found between microbial abundances or activities and environmental variables, but factor analysis revealed that, despite their physical proximity, microbial life in SML and underlying waters was governed by different and independent processes. Overall, we demonstrate that piconeuston in high altitude lakes has specific features different from those of the picoplankton, and that they are highly affected by potential stressful environmental factors, such as high UVR radiation.

  14. Comparison of physical activities of female football players in junior high school and high school.

    Science.gov (United States)

    Inoue, Yuri; Otani, Yoshitaka; Takemasa, Seiichi

    2017-08-01

    [Purpose] This study aimed to compare physical activities between junior high school and high school female football players in order to explain the factors that predispose to a higher incidence of sports injuries in high school female football players. [Subjects and Methods] Twenty-nine female football players participated. Finger floor distance, the center of pressure during single limb stance with eyes open and closed, the 40-m linear sprint time, hip abduction and extension muscle strength and isokinetic knee flexion and extension peak torque were measured. The modified Star Excursion Balance Test, the three-steps bounding test and three-steps hopping tests, agility test 1 (Step 50), agility test 2 (Forward run), curl-up test for 30 seconds and the Yo-Yo intermittent recovery test were performed. [Results] The high school group was only significantly faster than the junior high school group in the 40-m linear sprint time and in the agility tests. The distance of the bounding test in the high school group was longer than that in the junior high school group. [Conclusion] Agility and speed increase with growth; however, muscle strength and balance do not develop alongside. This unbalanced development may cause a higher incidence of sports injuries in high school football players.

  15. Synthesis of a molecularly defined single-active site heterogeneous catalyst for selective oxidation of N-heterocycles.

    Science.gov (United States)

    Zhang, Yujing; Pang, Shaofeng; Wei, Zhihong; Jiao, Haijun; Dai, Xingchao; Wang, Hongli; Shi, Feng

    2018-04-13

    Generally, a homogeneous catalyst exhibits good activity and defined active sites but it is difficult to recycle. Meanwhile, a heterogeneous catalyst can easily be reused but its active site is difficult to reveal. It is interesting to bridge the gap between homogeneous and heterogeneous catalysis via controllable construction of a heterogeneous catalyst containing defined active sites. Here, we report that a molecularly defined, single-active site heterogeneous catalyst has been designed and prepared via the oxidative polymerization of maleimide derivatives. These polymaleimide derivatives can be active catalysts for the selective oxidation of heterocyclic compounds to quinoline and indole via the recycling of -C=O and -C-OH groups, which was confirmed by tracing the reaction with GC-MS using maleimide as the catalyst and by FT-IR analysis with polymaleimide as the catalyst. These results might promote the development of heterogeneous catalysts with molecularly defined single active sites exhibiting a comparable activity to homogeneous catalysts.

  16. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    Science.gov (United States)

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  17. Dosimetry in single lung cells by means of microautoradiographic activity measurements

    International Nuclear Information System (INIS)

    Kraus, W.

    1976-01-01

    After inhalation of compounds containing promethium-147 in the lungs of mice most of the activity was deposited in the form of local concentrations (hotspots). By means of a special quantitative microautoradiographic method using stripping film ORWO K 105, measurements of the activity of single hotspots of about 10 -14 Ci were possible. A microphotometer with a variable measuring diaphragm was used for the determination of the density profile of the autoradiographic image in order to get hotspot depth within the biological specimen. To determine hotspot activity it was necessary to calibrate the film with a Pm-147 plane source. The systematic and random errors of the method are discussed in detail, giving a total error of +- 21% (SD) for one hotspot activity measurement. A few examples of biological results obtained by the method are given. Simple models were used to calculate doses absorbed in macrophage and alveolar cell nuclei from the measured activities. (author)

  18. Real-Time Visualization of Active Species in a Single-Site Metal–Organic Framework Photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sizhuo [Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States; Pattengale, Brian [Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States; Lee, Sungsik [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States; Huang, Jier [Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States

    2018-02-06

    In this work, we report a new single-site photocatalyst (Co-Ru-UIO- 67(bpy)) based on a metal-organic framework platform with incorporated molecular photosensitizer and catalyst. We show that this catalyst not only demonstrates exceptional activity for light-driven H2 production but also can be recycled without loss of activity. Using the combination of optical transient absorption spectroscopy and in situ X-ray absorption spectroscopy, we not only captured the key CoI intermediate species formed after ultrafast charge transfer from the incorporated photosensitizer but also identified the rate-limiting step in the catalytic cycle, providing insight into the catalysis mechanism of these single-site metal-organic framework photocatalysts.

  19. Improved long-term survival after intra-operative single high-dose ATG-Fresenius induction in renal transplantation: a single centre experience.

    Science.gov (United States)

    Kaden, Jürgen; May, Gottfried; Völp, Andreas; Wesslau, Claus

    2009-01-01

    In organ grafts donor-specific sensitization is initiated immediately after revascularization. Therefore, in 1990 we introduced the intra-operative single high-dose ATG-Fresenius (ATG-F) induction in addition to standard triple drug therapy (TDT) consisting of steroids, azathioprine and cyclosporin. A total of 778 first renal transplantations from deceased donors, performed between 1987 and 1998, were included in this evaluation. This retrospective analysis of clinic records and electronic databases presents data of all recipients of first kidney grafts who received two different ATG-F inductions (1(st) group: 9 mg/kg body weight as single high-dose intra-operatively, n=484; 2(nd) group: 3 mg/kg body weight on 7 or 8 consecutive days as multiple-dose starting also intra-operatively, n=78) and standard TDT alone (3(rd) group: TDT alone, n=216). The 10-year patient survival rates were 72.6+/-2.6% (TDT + ATG-F single high-dose), 79.5+/-5.1% (TDT + ATG-F multiple-dose) and 67.2+/-3.7%% (TDT alone; Kaplan-Meier estimates with standard errors; ATG-F vs TDT alone, p=0.001). The 10-year graft survival rates with censoring of patients that died with a functioning graft were 73.8+/-2.4%, 57.7+/-5.8% and 58.4+/-3.6% (Kaplan-Meier estimates with standard errors; 1(st) vs 2(nd )and 3(rd) group, respectively, p<0.001) and the 10-year graft survival rates with patient death counted as graft failure were 58.3+/-2.7%, 55.7+/-5.8% and 48.2+/-3.5% (Kaplan-Meier estimates with standard errors; ATG-F single high-dose vs TDT, p=0.023). In pre-sensitized recipients there were also significant differences in favour of ATG-F, more notably in the single high-dose ATG-F induction. A total of 69% of the patients in the two cohorts receiving ATG-F did not experience any transplant rejections compared to 56% in patients undergoing TDT alone (p=0.018). The incidence of infectious complications was comparable across all groups. According to evidence obtained from the routine documentation of 778

  20. Single-crystal silicon trench etching for fabrication of highly integrated circuits

    Science.gov (United States)

    Engelhardt, Manfred

    1991-03-01

    The development of single crystal silicon trench etching for fabrication of memory cells in 4 16 and 64Mbit DRAMs is reviewed in this paper. A variety of both etch tools and process gases used for the process development is discussed since both equipment and etch chemistry had to be improved and changed respectively to meet the increasing requirements for high fidelity pattern transfer with increasing degree of integration. In additon to DRAM cell structures etch results for deep trench isolation in advanced bipolar ICs and ASICs are presented for these applications grooves were etched into silicon through a highly doped buried layer and at the borderline of adjacent p- and n-well areas respectively. Shallow trench etching of large and small exposed areas with identical etch rates is presented as an approach to replace standard LOCOS isolation by an advanced isolation technique. The etch profiles were investigated with SEM TEM and AES to get information on contathination and damage levels and on the mechanism leading to anisotropy in the dry etch process. Thermal wave measurements were performed on processed single crystal silicon substrates for a fast evaluation of the process with respect to plasma-induced substrate degradation. This useful technique allows an optimization ofthe etch process regarding high electrical performance of the fully processed memory chip. The benefits of the use of magnetic fields for the development of innovative single crystal silicon dry

  1. High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter

    Science.gov (United States)

    Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd

    2007-01-01

    A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.

  2. The High School Environment: A Comparison of Coeducational and Single-Sex Schools.

    Science.gov (United States)

    Schneider, Frank W.; Coutts, Larry M.

    1982-01-01

    Grade 10 and 12 students from single-sex and coeducational schools were surveyed, comparing their perceptions of school emphasis on scholarship and achievement affiliation and nonacademic activities, and control and discipline. Coeducational schools were perceived to enjoy an advantage in social-emotional needs and to minimize regimentation and…

  3. X-ray phase microtomography with a single grating for high-throughput investigations of biological tissue.

    Science.gov (United States)

    Zdora, Marie-Christine; Vila-Comamala, Joan; Schulz, Georg; Khimchenko, Anna; Hipp, Alexander; Cook, Andrew C; Dilg, Daniel; David, Christian; Grünzweig, Christian; Rau, Christoph; Thibault, Pierre; Zanette, Irene

    2017-02-01

    The high-throughput 3D visualisation of biological specimens is essential for studying diseases and developmental disorders. It requires imaging methods that deliver high-contrast, high-resolution volumetric information at short sample preparation and acquisition times. Here we show that X-ray phase-contrast tomography using a single grating can provide a powerful alternative to commonly employed techniques, such as high-resolution episcopic microscopy (HREM). We present the phase tomography of a mouse embryo in paraffin obtained with an X-ray single-grating interferometer at I13-2 Beamline at Diamond Light Source and discuss the results in comparison with HREM measurements. The excellent contrast and quantitative density information achieved non-destructively and without staining using a simple, robust setup make X-ray single-grating interferometry an optimum candidate for high-throughput imaging of biological specimens as an alternative for existing methods like HREM.

  4. Acceptability and Potential Efficacy of Single-Sex After-School Activity Programs for Overweight and At-Risk Children: The Wollongong SPORT RCT.

    Science.gov (United States)

    Jones, Rachel A; Kelly, Jacque; Cliff, Dylan P; Batterham, Marijka; Okely, Anthony D

    2015-11-01

    Single sex after-school physical activity programs show potential to prevent unhealthy weight gain. The aim of this study was to assess the acceptability and potential efficacy of single-sex after-school physical activity programs for overweight and at-risk children from low-income communities. 7-month, 2-arm parallel-group, RCT, conducted at an elementary school in a disadvantaged area in Wollongong, Australia (March-November 2010). 20 boys and 17 girls were randomized to intervention (PA) or active comparison groups (HL). Primary outcomes included implementation, acceptability, percentage body fat and BMI z-score. The PA programs were acceptable with high implementation and enjoyment rates. At 7 months postintervention girls in the PA group displayed greater changes in percentage body fat (adjust diff. = -1.70, [95% CI -3.25, -0.14]; d = -0.83) and BMI z-score (-0.19 [-0.36, -0.03]; d= -1.00). At 7 months boys in the PA group showed greater changes in waist circumference (-3.87 cm [-7.80, 0.15]; d= -0.90) and waist circumference z-score (-0.33 [-0.64, -0.03]; d= -0.98). For both boys' and girls' PA groups, changes in adiposity were not maintained at 12-month follow-up. Single-sex after-school physical activity programs are acceptable and potentially efficacious in preventing unhealthy weight gain among overweight and at-risk children. However improvements are hard to sustain once programs finish operating.

  5. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    Energy Technology Data Exchange (ETDEWEB)

    Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

  6. FY16 ASME High Temperature Code Activities

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, M. J. [Chromtech Inc., Oak Ridge, TN (United States); Jetter, R. I. [R. I Jetter Consulting, Pebble Beach, CA (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is a basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.

  7. High Throughput Single-cell and Multiple-cell Micro-encapsulation

    OpenAIRE

    Lagus, Todd P.; Edd, Jon F.

    2012-01-01

    Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of ...

  8. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.

  9. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    International Nuclear Information System (INIS)

    Hui Su

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm(sub 2) for 40-(micro)m wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection

  10. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  11. A single episode of high intensity sound inhibits long-term potentiation in the hippocampus of rats.

    Science.gov (United States)

    de Deus, J L; Cunha, A O S; Terzian, A L; Resstel, L B; Elias, L L K; Antunes-Rodrigues, J; Almeida, S S; Leão, R M

    2017-10-26

    Exposure to loud sounds has become increasingly common. The most common consequences of loud sound exposure are deafness and tinnitus, but emotional and cognitive problems are also associated with loud sound exposure. Loud sounds can activate the hipothalamic-pituitary-adrenal axis resulting in the secretion of corticosterone, which affects hippocampal synaptic plasticity. Previously we have shown that long-term exposure to short episodes of high intensity sound inhibited hippocampal long-term potentiation (LTP) without affecting spatial learning and memory. Here we aimed to study the impact of short term loud sound exposure on hippocampal synaptic plasticity and function. We found that a single minute of 110 dB sound inhibits hippocampal Schaffer-CA1 LTP for 24 hours. This effect did not occur with an 80-dB sound exposure, was not correlated with corticosterone secretion and was also observed in the perforant-dentate gyrus synapse. We found that despite the deficit in the LTP these animals presented normal spatial learning and memory and fear conditioning. We conclude that a single episode of high-intensity sound impairs hippocampal LTP, without impairing memory and learning. Our results show that the hippocampus is very responsive to loud sounds which can have a potential, but not yet identified, impact on its function.

  12. Comprehensive high frequency electron paramagnetic resonance studies of single molecule magnets

    Science.gov (United States)

    Lawrence, Jonathan D.

    This dissertation presents research on a number of single molecule magnet (SMM) compounds conducted using high frequency, low temperature magnetic resonance spectroscopy of single crystals. By developing a new technique that incorporated other devices such as a piezoelectric transducer or Hall magnetometer with our high frequency microwaves, we were able to collect unique measurements on SMMs. This class of materials, which possess a negative, axial anisotropy barrier, exhibit unique magnetic properties such as quantum tunneling of a large magnetic moment vector. There are a number of spin Hamiltonians used to model these systems, the most common one being the giant spin approximation. Work done on two nickel systems with identical symmetry and microenvironments indicates that this model can contain terms that lack any physical significance. In this case, one must turn to a coupled single ion approach to model the system. This provides information on the nature of the exchange interactions between the constituent ions of the molecule. Additional studies on two similar cobalt systems show that, for these compounds, one must use a coupled single ion approach since the assumptions of the giant spin model are no longer valid. Finally, we conducted a collection of studies on the most famous SMM, Mn12Ac. Three different techniques were used to study magnetization dynamics in this system: stand-alone HFEPR in two different magnetization relaxation regimes, HFEPR combined with magnetometry, and HFEPR combined with surface acoustic waves. All of this research gives insight into the relaxation mechanisms in Mn12Ac.

  13. Bolus dose response characteristics of single chain urokinase plasminogen activator and tissue plasminogen activator in a dog model of arterial thrombosis.

    Science.gov (United States)

    Badylak, S F; Voytik, S; Klabunde, R E; Henkin, J; Leski, M

    1988-11-15

    Tissue plasminogen activator (t-PA) and single chain urokinase-plasminogen activator (scu-PA) are relatively "fibrin-specific" thrombolytic drugs with short plasma half lives of 6-8 minutes. Most treatment regimens with these agents utilize a bolus injection followed by continuous drug infusion, usually combined with anticoagulant therapy. The purpose of this study was to establish the dose-response characteristics for scu-PA and t-PA, when given as a single intravenous bolus injection, in a dog model of arterial thrombosis. Eight groups of 6 dogs each were given one of the following doses of scu-PA (mg/kg): 0.20, 0.50, 1.00, 2.00; or t-PA: 0.05, 0.10, 0.20; or an equivalent amount of saline (control group). All doses were given as a single bolus injection 60 minutes after formation of a totally occlusive femoral artery thrombus. Thrombolysis was measured by monitoring the continuous decrement of 125I activity from a radiolabelled thrombus. Ninety minutes after drug injection, all scu-PA treated dogs showed greater thrombolysis (30%, 45%, 56%, and 67%, respectively) than the control group (15%, p less than 0.01). The 0.10 and 0.20 mg/kg t-PA treated dogs showed greater thrombolysis (35% and 49%, respectively) than the control group (15%, p less than 0.01). Both scu-PA and t-PA caused a partial and dose-dependent decrease in alpha 2-antiplasmin activity but scu-PA caused a greater depletion (72% vs. 18%, respectively, p less than 0.05) at 60 minutes after the highest dose of drug administration. Both drugs showed a longer than expected thrombolytic effect based upon the known half lives. Neither drug caused significant changes in the prothrombin time, activated partial thromboplastin time, thrombin time, hematocrit, platelet count, or fibrin degradation product concentration. Single bolus injections of scu-PA and t-PA produce safe and effective thrombolysis in this dog model of arterial thrombosis.

  14. Biomimetic Nanoarchitectures for the Study of T Cell Activation with Single-Molecule Control

    Science.gov (United States)

    Cai, Haogang

    Physical factors in the environment of a cell affect its function and behavior in a variety of ways. There is increasing evidence that, among these factors, the geometric arrangement of receptor ligands plays an important role in setting the conditions for critical cellular processes. The goal of this thesis is to develop new techniques for probing the role of extracellular ligand geometry, with a focus on T cell activation. In this work, top-down molecular-scale nanofabrication and bottom-up selective self-assembly were combined in order to present functional nanomaterials (primarily biomolecules) on a surface with precise spatial control and single-molecule resolution. Such biomolecule nanoarrays are becoming an increasingly important tool in surface-based in vitro assays for biosensing, molecular and cellular studies. The nanoarrays consist of metallic nanodots patterned on glass coverslips using electron beam and nanoimprint lithography, combined with self-aligned pattern transfer. The nanodots were then used as anchors for the immobilization of biological ligands, and backfilled with a protein-repellent passivation layer of polyethylene glycol. The passivation efficiency was improved to minimize nonspecific adsorption. In order to ensure true single-molecule control, we developed an on-chip protocol to measure the molecular occupancy of nanodot arrays based on fluorescence photobleaching, while accounting for quenching effects by plasmonic absorption. We found that the molecular occupancy can be interpreted as a packing problem, with the solution depending on the nanodot size and the concentration of self-assembly reagents, where the latter can be easily adjusted to control the molecular occupancy according to the dot size. The optimized nanoarrays were used as biomimetic architectures for the study of T cell activation with single-molecule control. T cell activation involves an elaborate arrangement of signaling, adhesion, and costimulatory molecules

  15. Particles Produced in Association with High Transverse Momentum Single Photons and $\\pi^0$s in Hadronic Collision

    Energy Technology Data Exchange (ETDEWEB)

    Sinanidis, Alexandros Pericles [Northeastern U.

    1989-01-01

    The charged and neutral particles produced in association with high transverse momentum ($Pr_{\\tau}$ > 5.0 GeV /c) photons ($\\gamma$) and neutral pions ($\\pi^0$) in p(Cu+Be) and $\\pi^-$(cu+Be) collisions at vs = 31.5 GeV are studied in this thesis. It was observed that 1) The relative rapidity of the two highest Pr recoiling particles in the events have a jet - like structure. 2) The relative rapidity of the single $\\gamma$ (or $\\pi^0$ ) and the highest $P_{\\tau}$ charged particle accompanying the single $\\gamma$ (or $\\pi^0$ ) show that the high $P_{\\tau} \\pi^0$ events have a jet - like structure in the trigger hemisphere whereas the high $P_{\\tau}$ single $\\gamma$ events do not. 3) The angular distributions of the particles produced in the reactions show that high $P_{\\tau} \\pi^0$s are accompanied by other particles, whereas high $P_{\\tau}$ single photons are relatively isolated. 4) The fragmentation distributions of the recoiling particles from the high $P_{\\tau}$ single photons and $\\pi^0$s are consistent with the measurements of other experiments. 5) The recoiling particles are consistent with the fragmentation of either a quark or a gluon according to the QCD (Quantum Chromodynamics). In summary, particles produced in association with high transverse momentum single photons and $\\pi^0$s in hadronic collisions have been measured and their properties are in good agreement with the predictions of the parton model and those of QCD

  16. QSpec: online control and data analysis system for single-cell Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Lihui Ren

    2014-06-01

    Full Text Available Single-cell phenotyping is critical to the success of biological reductionism. Raman-activated cell sorting (RACS has shown promise in resolving the dynamics of living cells at the individual level and to uncover population heterogeneities in comparison to established approaches such as fluorescence-activated cell sorting (FACS. Given that the number of single-cells would be massive in any experiment, the power of Raman profiling technique for single-cell analysis would be fully utilized only when coupled with a high-throughput and intelligent process control and data analysis system. In this work, we established QSpec, an automatic system that supports high-throughput Raman-based single-cell phenotyping. Additionally, a single-cell Raman profile database has been established upon which data-mining could be applied to discover the heterogeneity among single-cells under different conditions. To test the effectiveness of this control and data analysis system, a sub-system was also developed to simulate the phenotypes of single-cells as well as the device features.

  17. Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery.

    Science.gov (United States)

    Simm, Jaak; Klambauer, Günter; Arany, Adam; Steijaert, Marvin; Wegner, Jörg Kurt; Gustin, Emmanuel; Chupakhin, Vladimir; Chong, Yolanda T; Vialard, Jorge; Buijnsters, Peter; Velter, Ingrid; Vapirev, Alexander; Singh, Shantanu; Carpenter, Anne E; Wuyts, Roel; Hochreiter, Sepp; Moreau, Yves; Ceulemans, Hugo

    2018-05-17

    In both academia and the pharmaceutical industry, large-scale assays for drug discovery are expensive and often impractical, particularly for the increasingly important physiologically relevant model systems that require primary cells, organoids, whole organisms, or expensive or rare reagents. We hypothesized that data from a single high-throughput imaging assay can be repurposed to predict the biological activity of compounds in other assays, even those targeting alternate pathways or biological processes. Indeed, quantitative information extracted from a three-channel microscopy-based screen for glucocorticoid receptor translocation was able to predict assay-specific biological activity in two ongoing drug discovery projects. In these projects, repurposing increased hit rates by 50- to 250-fold over that of the initial project assays while increasing the chemical structure diversity of the hits. Our results suggest that data from high-content screens are a rich source of information that can be used to predict and replace customized biological assays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Early Single-Sport Specialization: A Survey of 3090 High School, Collegiate, and Professional Athletes

    OpenAIRE

    Buckley, Patrick S.; Bishop, Meghan; Kane, Patrick; Ciccotti, Michael C.; Selverian, Stephen; Exume, Dominique; Emper, William; Freedman, Kevin B.; Hammoud, Sommer; Cohen, Steven B.; Ciccotti, Michael G.

    2017-01-01

    Background: Youth participation in organized sports in the United States is rising, with many athletes focusing on a single sport at an increasingly younger age. Purpose: To retrospectively compare single-sport specialization in current high school (HS), collegiate, and professional athletes with regard to the rate and age of specialization, the number of months per year of single-sport training, and the athlete?s perception of injury related to specialization. Study Design: Cross-sectional s...

  19. Single n+-i-n+ InP nanowires for highly sensitive terahertz detection.

    Science.gov (United States)

    Peng, Kun; Parkinson, Patrick; Gao, Qian; Boland, Jessica L; Li, Ziyuan; Wang, Fan; Mokkapati, Sudha; Fu, Lan; Johnston, Michael B; Tan, Hark Hoe; Jagadish, Chennupati

    2017-03-24

    Developing single-nanowire terahertz (THz) electronics and employing them as sub-wavelength components for highly-integrated THz time-domain spectroscopy (THz-TDS) applications is a promising approach to achieve future low-cost, highly integrable and high-resolution THz tools, which are desirable in many areas spanning from security, industry, environmental monitoring and medical diagnostics to fundamental science. In this work, we present the design and growth of n + -i-n + InP nanowires. The axial doping profile of the n + -i-n + InP nanowires has been calibrated and characterized using combined optical and electrical approaches to achieve nanowire devices with low contact resistances, on which the highly-sensitive InP single-nanowire photoconductive THz detectors have been demonstrated. While the n + -i-n + InP nanowire detector has a only pA-level response current, it has a 2.5 times improved signal-to-noise ratio compared with the undoped InP nanowire detector and is comparable to traditional bulk THz detectors. This performance indicates a promising path to nanowire-based THz electronics for future commercial applications.

  20. Single amino acid change in STING leads to constitutive active signaling.

    Directory of Open Access Journals (Sweden)

    Eric D Tang

    Full Text Available The production of cytokines by the immune system in response to cytosolic DNA plays an important role in host defense, autoimmune disease, and cancer immunogenicity. Recently a cytosolic DNA signaling pathway that is dependent on the endoplasmic reticulum adaptor and cyclic dinucleotide sensor protein STING has been identified. Association of cytosolic DNA with cyclic-GMP-AMP synthase (cGAS activates its enzymatic activity to synthesize the cyclic dinucleotide second messenger cGAMP from GTP and ATP. Direct detection of cGAMP by STING triggers the activation of IRF3 and NF-kB, and the production of type I interferons and proinflammatory cytokines. The mechanism of how STING is able to mediate downstream signaling remains incompletely understood although it has been shown that dimerization is a prerequisite. Here, we identify a single amino acid change in STING that confers constitutive active signaling. This mutation appears to both enhance ability of STING to both dimerize and associate with its downstream target TBK1.

  1. Single amino acid change in STING leads to constitutive active signaling.

    Science.gov (United States)

    Tang, Eric D; Wang, Cun-Yu

    2015-01-01

    The production of cytokines by the immune system in response to cytosolic DNA plays an important role in host defense, autoimmune disease, and cancer immunogenicity. Recently a cytosolic DNA signaling pathway that is dependent on the endoplasmic reticulum adaptor and cyclic dinucleotide sensor protein STING has been identified. Association of cytosolic DNA with cyclic-GMP-AMP synthase (cGAS) activates its enzymatic activity to synthesize the cyclic dinucleotide second messenger cGAMP from GTP and ATP. Direct detection of cGAMP by STING triggers the activation of IRF3 and NF-kB, and the production of type I interferons and proinflammatory cytokines. The mechanism of how STING is able to mediate downstream signaling remains incompletely understood although it has been shown that dimerization is a prerequisite. Here, we identify a single amino acid change in STING that confers constitutive active signaling. This mutation appears to both enhance ability of STING to both dimerize and associate with its downstream target TBK1.

  2. Single Whole-Body Cryostimulation Procedure versus Single Dry Sauna Bath: Comparison of Oxidative Impact on Healthy Male Volunteers

    Directory of Open Access Journals (Sweden)

    Paweł Sutkowy

    2015-01-01

    Full Text Available Exposure to extreme heat and cold is one of the environmental factors whose action is precisely based on the mechanisms involving free radicals. Fluctuations in ambient temperature are among the agents that toughen the human organism. The goal of the study was to evaluate the impact of extremely high (dry sauna, DS and low (whole-body cryostimulation, WBC environmental temperatures on the oxidant-antioxidant equilibrium in the blood of healthy male subjects. The subjects performed a single DS bath (n=10; 26.2 ± 4.6 years and a single WBC procedure (n=15; 27.5 ± 3.1 years. In the subjects’ blood taken immediately before and 20 min after the interventions, the activity of superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx and the concentration of thiobarbituric acid reactive substances in erythrocytes (TBARSer and blood plasma (TBARSpl were determined. Single WBC and DS procedures induced an increase in the activity of SOD and GPx, as well as SOD and CAT, respectively. The SOD activity was higher after WBC than after DS. Extremely high and low temperatures probably induce the formation of reactive oxygen species in the organisms of healthy men and, therefore, disturb the oxidant-antioxidant balance.

  3. Ga-Doped Pt-Ni Octahedral Nanoparticles as a Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction.

    Science.gov (United States)

    Lim, JeongHoon; Shin, Hyeyoung; Kim, MinJoong; Lee, Hoin; Lee, Kug-Seung; Kwon, YongKeun; Song, DongHoon; Oh, SeKwon; Kim, Hyungjun; Cho, EunAe

    2018-04-11

    Bimetallic PtNi nanoparticles have been considered as a promising electrocatalyst for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) owing to their high catalytic activity. However, under typical fuel cell operating conditions, Ni atoms easily dissolve into the electrolyte, resulting in degradation of the catalyst and the membrane-electrode assembly (MEA). Here, we report gallium-doped PtNi octahedral nanoparticles on a carbon support (Ga-PtNi/C). The Ga-PtNi/C shows high ORR activity, marking an 11.7-fold improvement in the mass activity (1.24 A mg Pt -1 ) and a 17.3-fold improvement in the specific activity (2.53 mA cm -2 ) compared to the commercial Pt/C (0.106 A mg Pt -1 and 0.146 mA cm -2 ). Density functional theory calculations demonstrate that addition of Ga to octahedral PtNi can cause an increase in the oxygen intermediate binding energy, leading to the enhanced catalytic activity toward ORR. In a voltage-cycling test, the Ga-PtNi/C exhibits superior stability to PtNi/C and the commercial Pt/C, maintaining the initial Ni concentration and octahedral shape of the nanoparticles. Single cell using the Ga-PtNi/C exhibits higher initial performance and durability than those using the PtNi/C and the commercial Pt/C. The majority of the Ga-PtNi nanoparticles well maintain the octahedral shape without agglomeration after the single cell durability test (30,000 cycles). This work demonstrates that the octahedral Ga-PtNi/C can be utilized as a highly active and durable ORR catalyst in practical fuel cell applications.

  4. The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts

    DEFF Research Database (Denmark)

    Topsøe, Henrik; Hinnemann, Berit; Nørskov, Jens Kehlet

    2005-01-01

    structures may be present as single sulfide sheets. Thus, stacking is not an essential feature of Type II catalysts. The article illustrates how the new scientific insight has aided the introduction of the new high activity BRIM (TM) type catalysts for FCC pre-treatment and production of ultra low sulfur...... exhibiting a metallic character are observed to be involved in adsorption, hydrogenation and C-S bond cleavage. The insight is seen to provide a new framework for understanding the DDS and HYD pathways and the role of steric hindrance and poisons. Density functional theory (DFT) calculations have illustrated...... how support interactions may influence the activity of sulfided catalysts. The brim sites and the tendency to form vacancies are seen to differ in types I and II Co-Mo-S. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) studies show that the high activity Type II...

  5. Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios

    NARCIS (Netherlands)

    Fu, Donglong|info:eu-repo/dai/nl/412516918; Schmidt, Joel E.|info:eu-repo/dai/nl/413333736; Ristanovic, Zoran|info:eu-repo/dai/nl/328233005; Chowdhury, Abhishek Dutta|info:eu-repo/dai/nl/412438003; Meirer, Florian; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2017-01-01

    Highly b-oriented zeolite ZSM-5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al3+ usually disrupts the orientation of zeolite films.

  6. Hybridized Phosphate with Ultrathin Nanoslices and Single Crystal Microplatelets for High Performance Supercapacitors

    Science.gov (United States)

    Zhao, Yufeng; Chen, Zhaoyang; Xiong, Ding-Bang; Qiao, Yuqing; Tang, Yongfu; Gao, Faming

    2016-01-01

    A novel hybridized phosphate is developed through a mild hydrothermal method to construct high performance asymmetric supercapacitor. Single layered (Ni,Co)3(PO4)2·8H2O nanoslices (∼1 nm) and single crystal (NH4)(Ni,Co)PO4·0.67H2O microplatelets are obtained through a template sacrificial method and dissolution recrystallization approach respectively in one step. This unique hybridized structure delivers a maximum specific capacitance of 1128 F g−1 at current density of 0.5 A g−1. The asymmetric supercapacitor (ASC) based on the hybrid exhibits a high energy density of 35.3 Wh kg−1 at low power density, and still holds 30.9 Wh kg−1 at 4400 W kg−1. Significantly, the ASC manifests very high cycling stability with 95.6% capacitance retention after 5000 cycles. Such excellent electrochemical performance could be attributed to the synergistic effect of the surface redox reaction from the ultrathin nanoslices and ion intercalation from the single crystal bulk structure. This material represents a novel kind of electrode material for the potential application in supercapacitors. PMID:26833204

  7. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Wan-Su, E-mail: 2010thzz@sina.com [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-04-25

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  8. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    International Nuclear Information System (INIS)

    Wang, Yang; Bao, Wan-Su; Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei

    2017-01-01

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  9. Effect of a patella support brace on myoelectric activity of knee joint muscles during single leg landing

    Directory of Open Access Journals (Sweden)

    Fatemeh Salariesker

    2013-06-01

    Full Text Available Introduction: Patellfemoral pain syndrome is one of the most common knee joint problems that affect athletes and non-athletes. Knee brace is often used as a treatment method for patellar realignment. The aim of the present study was to determine the effects of a patella support brace on myoelectric activity of selected knee muscles during single leg landing in healthy females. Materials and Methods: 19 healthy female students (Mean age: 23.6±1.98 years, height: 163.5±5.88 cm, weight: 62.3±3.6 kg participated in this study. Myoelectric activity of biceps femoris, semitendinosus, vastus medialis and vastus lateralis were collected during single leg landing in with and without using the patella support brace conditions.Results: Use of the patella support brace had no significant effect on myoelectric activity for the semitendinosus (p=0.668, vastus medialis (VM (p=0.915 and vastus lateralis (VL (P=0.134, while myoelectric activity for biceps femoris (p=0.005 and ratio of VM/VL myoelectric activity significantly increased (p=0.045. Conclusion: Our results revealed that biceps femoris activity and vastus medialis/vastus lateralis ratio increased after using patella support brace during single leg landing. Further studies on kinematic and kinetic variables are needed to describe these changes in muscular activity when using the patella support brace.

  10. Transport properties of PrxOs4Sb12 single crystals with high Pr-site filling fraction grown under high pressure

    International Nuclear Information System (INIS)

    Tanaka, Kenya; Namiki, Takahiro; Saito, Takashi; Tatsuoka, Sho; Imamura, Atsushi; Kuwahara, Keitaro; Aoki, Yuji; Sato, Hideyuki

    2009-01-01

    We have succeeded in growing Pr x Os 4 Sb 12 single crystals under ∼4GPa with high Pr-site filling fraction x. The electrical resistance measurements clearly show that the superconducting (SC) transition is sharper and the onset temperatures is lower in the single crystal samples grown under high pressure compared to that of the sample grown under ambient pressure. These results suggest that the double SC transition ascribed to sample inhomogeneity is suppressed in the sample grown under high pressure. The change of 4f-electron crystalline electric field energy splitting between the Γ 1 ground state and the Γ 4 (2) first excited state in the sample made under high pressure is proposed as one of the possible origins of the suppression of the double SC transition.

  11. Thermal deposition of intact tetrairon(III) single-molecule magnets in high-vacuum conditions.

    Science.gov (United States)

    Margheriti, Ludovica; Mannini, Matteo; Sorace, Lorenzo; Gorini, Lapo; Gatteschi, Dante; Caneschi, Andrea; Chiappe, Daniele; Moroni, Riccardo; de Mongeot, Francesco Buatier; Cornia, Andrea; Piras, Federica M; Magnani, Agnese; Sessoli, Roberta

    2009-06-01

    A tetrairon(III) single-molecule magnet is deposited using a thermal evaporation technique in high vacuum. The chemical integrity is demonstrated by time-of-flight secondary ion mass spectrometry on a film deposited on Al foil, while superconducting quantum interference device magnetometry and alternating current susceptometry of a film deposited on a kapton substrate show magnetic properties identical to the pristine powder. High-frequency electron paramagnetic resonance spectra confirm the characteristic behavior for a system with S = 5 and a large Ising-type magnetic anisotropy. All these results indicate that the molecules are not damaged during the deposition procedure keeping intact the single-molecule magnet behavior.

  12. Physical activity behavior and related characteristics of highly active eighth-grade girls.

    Science.gov (United States)

    Taverno Ross, Sharon E; Dowda, Marsha; Beets, Michael W; Pate, Russell R

    2013-06-01

    Although girls are generally less physically active than boys, some girls regularly engage in high levels of physical activity (PA); however, very little is known about these girls and how they differ from those who are less physically active. This study examined the PA behavior and related characteristics of highly active adolescent girls and compared them with those who are less active. Data from 1,866 eighth-grade girls from six field centers across the United States participating in the Trial of Activity for Adolescent Girls (TAAG) were included in the present analysis. Mixed-model analysis of variance examined differences in sociodemographic, anthropometric, psychosocial, and physical activity (accelerometry and self-report) variables between high- and low-active girls; effect sizes were calculated for the differences. High-active girls were taller, had lower body mass indices and body fat, and were less sedentary. High-active girls scored higher on self-efficacy, enjoyment of PA, self-management strategies, outcome-expectancy value, and support from family and friends than low-active girls. Low-active girls participated in more leisure time and educational sedentary activities than high-active girls. High-active girls participated in more PA classes/lessons outside of school, team sports, and individual sports. They were also more likely to participate in sports in an organized setting in the community or at school than low-active girls. Health promotion efforts should focus on decreasing the amount of time girls spend in sedentary activities and replacing that time with organized PA opportunities; such efforts should seek to minimize perceived barriers and increase self-efficacy and support for PA. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  13. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  14. Topoisomerase I as a Biomarker: Detection of Activity at the Single Molecule Level

    DEFF Research Database (Denmark)

    Proszek, Joanna; Roy, Amit; Jakobsen, Ann-Katrine

    2014-01-01

    in hTopI have been reported to result in CPT resistance. Therefore, hTOPI gene copy number, mRNA level, protein amount, and enzyme activity have been studied to explain differences in cellular response to CPT. We show that Rolling Circle Enhanced Enzyme Activity Detection (REEAD), allowing measurement...... of hTopI cleavage-religation activity at the single molecule level, may be used to detect posttranslational enzymatic differences influencing CPT response. These differences cannot be detected by analysis of hTopI gene copy number, mRNA amount, or protein amount, and only become apparent upon measuring...

  15. Note: A single-chamber tool for plasma activation and surface functionalization in microfabrication

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S., E-mail: ron.reiserer@vanderbilt.edu [Vanderbilt Institute for Integrative Biosystems Research and Education and Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)

    2015-06-15

    We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface.

  16. Instrumentation amplifier implements second-order active low-pass filter with high gain factor

    International Nuclear Information System (INIS)

    Blomqvist, Kim H; Eskelinen, Pekka; Sepponen, Raimo E

    2011-01-01

    A single-ended second-order active low-pass filter can simultaneously provide high gain factor and dc voltage subtraction. This makes it possible to reduce the number of components and signal processing stages needed in an application where small voltage changes are measured on the top of large dc voltage masked by a large amplitude oscillating carrier. The filter described in this paper is constructed from a conventional 3-op-amp instrumentation amplifier and five passive circuit elements. (technical design note)

  17. Development of a high-speed single-photon pixellated detector for visible wavelengths

    CERN Document Server

    Mac Raighne, Aaron; Mathot, Serge; McPhate, Jason; Vallerga, John; Jarron, Pierre; Brownlee, Colin; O’Shea, Val

    2009-01-01

    We present the development of a high-speed, single-photon counting, Hybrid Photo Detector (HPD). The HPD consists of a vacuum tube, containing the detector assembly, sealed with a transparent optical input window. Photons incident on the photocathode eject a photoelectron into a large electric field, which accelerates the incident electron onto a silicon detector. The silicon detector is bump bonded to a Medipix readout chip. This set-up allows for the detection and readout of low incident photon intensities at rates that are otherwise unattainable with current camera technology. Reported is the fabrication of the camera that brings together a range of sophisticated design and fabrication techniques and the expected theoretical imaging performance. Applications to cellular and molecular microscopy are also described in which single-photon-counting abilities at high frame rates are crucial

  18. High pressure adsorption isotherms of nitrogen onto granular activated carbon for a single bed pressure swing adsorption refrigeration system

    Science.gov (United States)

    Palodkar, Avinash V.; Anupam, Kumar; Roy, Zunipa; Saha, B. B.; Halder, G. N.

    2017-10-01

    Adsorption characteristics of nitrogen onto granular activated carbon for the wide range of temperature (303-323 K) and pressure (0.2027-2.0265 MPa) have been reported for a single bed pressure swing adsorption refrigeration system. The experimental data were fitted to Langmuir, Dubinin-Astakhov and Dubinin-Radushkevich (D-R) isotherms. The Langmuir and D-R isotherm models were found appropriate in correlating experimental adsorption data with an average relative error of ±2.0541% and ±0.6659% respectively. The isosteric heat of adsorption data were estimated as a function of surface coverage of nitrogen and temperature using D-R isotherm. The heat of adsorption was observed to decrease from 12.65 to 6.98 kJ.mol-1 with an increase in surface concentration at 303 K and it followed the same pattern for other temperatures. It was found that an increase in temperature enhances the magnitude of the heat of adsorption.

  19. Microstructural evolution of reduced-activation martensitic steel under single and sequential ion irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Jin, Shuoxue; Li, Tiecheng; Zheng, Zhongcheng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yang, Feng; Xiong, Xuesong; Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-07-15

    Microstructural evolution of super-clean reduced-activation martensitic steels irradiated with single-beam (Fe{sup +}) and sequential-beam (Fe{sup +} plus He{sup +}) at 350 °C and 550 °C was studied. Sequential-beam irradiation induced smaller size and larger number density of precipitates compared to single-beam irradiation at 350 °C. The largest size of cavities was observed after sequential-beam irradiation at 550 °C. The segregation of Cr and W and depletion of Fe in carbides were observed, and the maximum depletion of Fe and enrichment of Cr occurred under irradiation at 350 °C.

  20. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    Science.gov (United States)

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  1. Pulsed laser activated cell sorter (PLACS) for high-throughput fluorescent mammalian cell sorting

    Science.gov (United States)

    Chen, Yue; Wu, Ting-Hsiang; Chung, Aram; Kung, Yu-Chung; Teitell, Michael A.; Di Carlo, Dino; Chiou, Pei-Yu

    2014-09-01

    We present a Pulsed Laser Activated Cell Sorter (PLACS) realized by exciting laser induced cavitation bubbles in a PDMS microfluidic channel to create high speed liquid jets to deflect detected fluorescent samples for high speed sorting. Pulse laser triggered cavitation bubbles can expand in few microseconds and provide a pressure higher than tens of MPa for fluid perturbation near the focused spot. This ultrafast switching mechanism has a complete on-off cycle less than 20 μsec. Two approaches have been utilized to achieve 3D sample focusing in PLACS. One is relying on multilayer PDMS channels to provide 3D hydrodynamic sheath flows. It offers accurate timing control of fast (2 m sec-1) passing particles so that synchronization with laser bubble excitation is possible, an critically important factor for high purity and high throughput sorting. PLACS with 3D hydrodynamic focusing is capable of sorting at 11,000 cells/sec with >95% purity, and 45,000 cells/sec with 45% purity using a single channel in a single step. We have also demonstrated 3D focusing using inertial flows in PLACS. This sheathless focusing approach requires 10 times lower initial cell concentration than that in sheath-based focusing and avoids severe sample dilution from high volume sheath flows. Inertia PLACS is capable of sorting at 10,000 particles sec-1 with >90% sort purity.

  2. Coupling single NV-centres to high-Q whispering gallery modes of a preselected frequency-matched microresonator

    International Nuclear Information System (INIS)

    Schietinger, Stefan; Benson, Oliver

    2009-01-01

    In this paper, we report the controlled coupling of fluorescence from a single NV-centre in a single nanodiamond to the high-Q modes of a preselected microsphere. Microspheres from an ensemble with a finite size distribution can be characterized precisely via white light Mie-scattering. The mode spectrum of individual spheres can be determined with high precision. A sphere with an appropriate spectrum can be selected, and a nanodiamond containing a single NV-centre can be coupled to it. The spectral position of the calculated lowest order whispering gallery modes are found to be in very good agreement with the experimentally observed resonances of the coupled fluorescence from the single NV-re.

  3. Correlates of a single cortical action potential in the epidural EEG

    Science.gov (United States)

    Teleńczuk, Bartosz; Baker, Stuart N; Kempter, Richard; Curio, Gabriel

    2015-01-01

    To identify the correlates of a single cortical action potential in surface EEG, we recorded simultaneously epidural EEG and single-unit activity in the primary somatosensory cortex of awake macaque monkeys. By averaging over EEG segments coincident with more than hundred thousand single spikes, we found short-lived (≈ 0.5 ms) triphasic EEG deflections dominated by high-frequency components > 800 Hz. The peak-to-peak amplitude of the grand-averaged spike correlate was 80 nV, which matched theoretical predictions, while single-neuron amplitudes ranged from 12 to 966 nV. Combining these estimates with post-stimulus-time histograms of single-unit responses to median-nerve stimulation allowed us to predict the shape of the evoked epidural EEG response and to estimate the number of contributing neurons. These findings establish spiking activity of cortical neurons as a primary building block of high-frequency epidural EEG, which thus can serve as a quantitative macroscopic marker of neuronal spikes. PMID:25554430

  4. 3D Restoration Microscopy Improves Quantification of Enzyme-Labeled Fluorescence-Based Single-Cell Phosphatase Activity in Plankton

    OpenAIRE

    Diaz-de-Quijano, Daniel; Palacios, Pilar; Hornák, Karel; Felip, Marisol

    2014-01-01

    The ELF or fluorescence-labeled enzyme activity (FLEA) technique is a culture-independent single-cell tool for assessing plankton enzyme activity in close-to-in situ conditions. We demonstrate that single-cell FLEA quantifications based on two-dimensional (2D) image analysis were biased by up to one order of magnitude relative to deconvolved 3D. This was basically attributed to out-of-focus light, and partially to object size. Nevertheless, if sufficient cells were measured (25-40 cells), bia...

  5. Synthesis of uniform CdS nanowires in high yield and its single nanowire electrical property

    International Nuclear Information System (INIS)

    Yan Shancheng; Sun Litao; Qu Peng; Huang Ninping; Song Yinchen; Xiao Zhongdang

    2009-01-01

    Large-scale high quality CdS nanowires with uniform diameter were synthesized by using a rapid and simple solvothermal route. Field emission scan electron microscopy (FESEM) and transmission electron microscopy (TEM) images show that the CdS nanowires have diameter of about 26 nm and length up to several micrometres. High resolution TEM (HRTEM) study indicates the single-crystalline nature of CdS nanowires with an oriented growth along the c-axis direction. The optical properties of the products were characterized by UV-vis absorption spectra, photoluminescence spectra and Raman spectra. The resistivity, electron concentration and electron mobility of single NW are calculated by fitting the symmetric I-V curves measured on single NW by the metal-semiconductor-metal model based on thermionic field emission theory. - Graphical abstract: Large-scale high quality CdS nanowires (NWs) with uniform diameter were synthesized by using a rapid and simple solvothermal route. The reaction time is reduced to 2 h, comparing to other synthesis which needed long reaction time up to 12 h. In addition, the as-prepared CdS nanowires have more uniform diameter and high yield. More importantly, the I-V curve of present single CdS nanowire has a good symmetric characteristic as expected by the theory.

  6. Esophageal Toxicity From High-Dose, Single-Fraction Paraspinal Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Cox, Brett W.; Jackson, Andrew; Hunt, Margie; Bilsky, Mark; Yamada, Yoshiya

    2012-01-01

    Purpose: To report the esophageal toxicity from single-fraction paraspinal stereotactic radiosurgery (SRS) and identify dosimetric and clinical risk factors for toxicity. Methods and Materials: A total of 204 spinal metastases abutting the esophagus (182 patients) were treated with high-dose single-fraction SRS during 2003-2010. Toxicity was scored using the National Cancer Institute Common Toxicity Criteria for Adverse Events, version 4.0. Dose-volume histograms were combined to generate a comprehensive atlas of complication incidence that identifies risk factors for toxicity. Correlation of dose-volume factors with esophageal toxicity was assessed using Fisher’s exact test and logistic regression. Clinical factors were correlated with toxicity. Results: The median dose to the planning treatment volume was 24 Gy. Median follow-up was 12 months (range, 3-81). There were 31 (15%) acute and 24 (12%) late esophageal toxicities. The rate of grade ≥3 acute or late toxicity was 6.8% (14 patients). Fisher’s exact test resulted in significant median splits for grade ≥3 toxicity at V12 = 3.78 cm 3 (relative risk [RR] 3.7, P=.05), V15 = 1.87 cm 3 (RR 13, P=.0013), V20 = 0.11 cm 3 (RR 6, P=0.01), and V22 = 0.0 cm 3 (RR 13, P=.0013). The median split for D2.5 cm 3 (14.02 Gy) was also a significant predictor of toxicity (RR 6; P=.01). A highly significant logistic regression model was generated on the basis of D2.5 cm 3 . One hundred percent (n = 7) of grade ≥4 toxicities were associated with radiation recall reactions after doxorubicin or gemcitabine chemotherapy or iatrogenic manipulation of the irradiated esophagus. Conclusions: High-dose, single-fraction paraspinal SRS has a low rate of grade ≥3 esophageal toxicity. Severe esophageal toxicity is minimized with careful attention to esophageal doses during treatment planning. Iatrogenic manipulation of the irradiated esophagus and systemic agents classically associated with radiation recall reactions are

  7. Single-cell regulome data analysis by SCRAT.

    Science.gov (United States)

    Ji, Zhicheng; Zhou, Weiqiang; Ji, Hongkai

    2017-09-15

    Emerging single-cell technologies (e.g. single-cell ATAC-seq, DNase-seq or ChIP-seq) have made it possible to assay regulome of individual cells. Single-cell regulome data are highly sparse and discrete. Analyzing such data is challenging. User-friendly software tools are still lacking. We present SCRAT, a Single-Cell Regulome Analysis Toolbox with a graphical user interface, for studying cell heterogeneity using single-cell regulome data. SCRAT can be used to conveniently summarize regulatory activities according to different features (e.g. gene sets, transcription factor binding motif sites, etc.). Using these features, users can identify cell subpopulations in a heterogeneous biological sample, infer cell identities of each subpopulation, and discover distinguishing features such as gene sets and transcription factors that show different activities among subpopulations. SCRAT is freely available at https://zhiji.shinyapps.io/scrat as an online web service and at https://github.com/zji90/SCRAT as an R package. hji@jhu.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  8. The secrets of highly active older adults.

    Science.gov (United States)

    Franke, Thea; Tong, Catherine; Ashe, Maureen C; McKay, Heather; Sims-Gould, Joanie

    2013-12-01

    Although physical activity is a recognized component in the management of many chronic diseases associated with aging, activity levels tend to progressively decline with increasing age (Manini & Pahor, 2009; Schutzer & Graves, 2004). In this article we examine the key factors that facilitate physical activity in highly active community-dwelling older adults. Using a strengths based approach, we examined the factors that facilitated physical activity in our sample of highly active older adults. Twenty-seven older adults participated in face-to face interviews. We extracted a sub-sample of 10 highly active older adults to be included in the analyses. Based on a framework analysis of our transcripts we identified three factors that facilitate physical activity in our sample, these include: 1) resourcefulness: engagement in self-help strategies such as self-efficacy, self-control and adaptability; 2) social connections: the presence of relationships (friend, neighborhood, institutions) and social activities that support or facilitate high levels of physical activity; and 3) the role of the built and natural environments: features of places and spaces that support and facilitate high levels of physical activity. Findings provide insight into, and factors that facilitate older adults' physical activity. We discuss implications for programs (e.g., accessible community centers, with appropriate programming throughout the lifecourse) and policies geared towards the promotion of physical activity (e.g., the development of spaces that facilitate both physical and social activities). © 2013.

  9. Single molecule measurements of DNA helicase activity with magnetic tweezers and t-test based step-finding analysis

    Science.gov (United States)

    Seol, Yeonee; Strub, Marie-Paule; Neuman, Keir C.

    2016-01-01

    Magnetic tweezers is a versatile and easy to implement single-molecule technique that has become increasingly prevalent in the study of nucleic acid based molecular motors. Here, we provide a description of the magnetic tweezers instrument and guidelines for measuring and analyzing DNA helicase activity. Along with experimental methods, we describe a robust method of single-molecule trajectory analysis based on the Student’s t-test that accommodates continuous transitions in addition to the discrete transitions assumed in most widely employed analysis routines. To illustrate the single-molecule unwinding assay and the analysis routine, we provide DNA unwinding measurements of Escherichia coli RecQ helicase under a variety of conditions (Na+, ATP, temperature, and DNA substrate geometry). These examples reveal that DNA unwinding measurements under various conditions can aid in elucidating the unwinding mechanism of DNA helicase but also emphasize that environmental effects on DNA helicase activity must be considered in relation to in vivo activity and mechanism. PMID:27131595

  10. Anatase TiO2 single crystals with dominant {0 0 1} facets: Synthesis, shape-control mechanism and photocatalytic activity

    Science.gov (United States)

    Tong, Huifen; Zhou, Yingying; Chang, Gang; Li, Pai; Zhu, Ruizhi; He, Yunbin

    2018-06-01

    Anatase TiO2 micro-crystals with 51% surface exposing highly active {0 0 1} facets are prepared by hydrothermal synthesis using TiF4 as Ti resource and HF as morphology control agent. In addition, anatase TiO2 single crystals exposing large {0 0 1} crystal facets are facilely synthesized with "green" NaF plus HCl replacing HF for the morphology control. A series of comparative experiments are carried out for separately studying the effects of F- and H+ concentrations on the growth of TiO2 crystals, which have not been understood very much in depth so far. The results indicate that both F- and H+ synergistically affect the synthesis of truncated anatase octahedrons, where F- is preferentially adsorbed on the {0 0 1} facets resulting in lateral growth of these facets and H+ adjusts the growth rate of anatase TiO2 along different orientations by tuning the hydrolysis rate. Based on this information, anatase TiO2 single crystals with small size (1.3 μm) and large exposure of {0 0 1} facets (45%) are successfully prepared under optimal conditions ([H+]/[F-] = 20:1). Photocatalytic activities of the as-prepared products toward methylene blue photo-degradation are further tested. It is revealed that both crystal size and percentage of {0 0 1} facets are decisive for the photocatalytic performance, and the crystals with a small size (1.3 μm) and large exposure of {0 0 1} facets (45%) are catalytically most active. This work has clarified the main factors that control the growth process and morphology of anatase TiO2 single crystals for achieving superior photocatalytic properties.

  11. Irradiation of optically activated SI-GaAs high-voltage switches with low and high energy protons

    CERN Document Server

    Bertolucci, Ennio; Mettivier, G; Russo, P; Bisogni, M G; Bottigli, U; Fantacci, M E; Stefanini, A; Cola, A; Quaranta, F; Vasanelli, L; Stefanini, G

    1999-01-01

    Semi-Insulating Gallium Arsenide (SI-GaAs) devices have been tested for radiation hardness with 3-4 MeV or 24 GeV proton beams. These devices can be operated in dc mode as optically activated electrical switches up to 1 kV. Both single switches (vertical Schottky diodes) and multiple (8) switches (planar devices) have been studied, by analyzing their current-voltage (I-V) reverse characteristics in the dark and under red light illumination, both before and after irradiation. We propose to use them in the system of high-voltage (-600 V) switches for the microstrip gas chambers for the CMS experiment at CERN. Low energy protons (3-4 MeV) were used in order to produce a surface damage below the Schottky contact: their fluence (up to 2.6*10/sup 15/ p/cm/sup 2/) gives a high-dose irradiation. The high energy proton irradiation (energy: 24 GeV, fluence: 1.1*10/sup 14/ p/cm/sup 2/) reproduced a ten years long proton exposure of the devices in CMS experiment conditions. For low energy irradiation, limited changes of ...

  12. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Kaname [Department of Electronics, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yamashita, Kenichi, E-mail: yamasita@kit.ac.jp [Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yanagi, Hisao [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Yamao, Takeshi; Hotta, Shu [Faculty of Materials Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2016-08-08

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  13. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Science.gov (United States)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-08-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ˜100 meV even in the "half-vertical cavity surface emitting lasing" microcavity structure.

  14. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    International Nuclear Information System (INIS)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-01-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  15. Very High Cycle Fatigue of Ni-Based Single-Crystal Superalloys at High Temperature

    Science.gov (United States)

    Cervellon, A.; Cormier, J.; Mauget, F.; Hervier, Z.; Nadot, Y.

    2018-05-01

    Very high cycle fatigue (VHCF) properties at high temperature of Ni-based single-crystal (SX) superalloys and of a directionally solidified (DS) superalloy have been investigated at 20 kHz and a temperature of 1000 °C. Under fully reversed conditions (R = - 1), no noticeable difference in VHCF lifetimes between all investigated alloys has been observed. Internal casting pores size is the main VHCF lifetime-controlling factor whatever the chemical composition of the alloys. Other types of microstructural defects (eutectics, carbides), if present, may act as stress concentration sites when the number of cycles exceed 109 cycles or when porosity is absent by applying a prior hot isostatic pressing treatment. For longer tests (> 30 hours), oxidation also controls the main crack initiation sites leading to a mode I crack initiation from oxidized layer. Under such conditions, alloy's resistance to oxidation has a prominent role in controlling the VHCF. When creep damage is present at high ratios (R ≥ 0.8), creep resistance of SX/DS alloys governs VHCF lifetime. Under such high mean stress conditions, SX alloys developed to retard the initiation and creep propagation of mode I micro-cracks from pores have better VHCF lifetimes.

  16. Effect of sorbitol, single, and multidose activated charcoal administration on carprofen absorption following experimental overdose in dogs.

    Science.gov (United States)

    Koenigshof, Amy M; Beal, Matthew W; Poppenga, Robert H; Jutkowitz, L Ari

    2015-01-01

    To compare the effectiveness of single dose activated charcoal, single dose activated charcoal with sorbitol, and multidose activated charcoal in reducing plasma carprofen concentrations following experimental overdose in dogs. Randomized, four period cross-over study. University research setting. Eight healthy Beagles. A 120 mg/kg of carprofen was administered orally to each dog followed by either (i) a single 2 g/kg activated charcoal administration 1 hour following carprofen ingestion (AC); (ii) 2 g/kg activated charcoal with 3.84 g/kg sorbitol 1 hour following carprofen ingestion (ACS); (iii) 2 g/kg activated charcoal 1 hour after carprofen ingestion and repeated every 6 hours for a total of 4 doses (MD); (iv) no treatment (control). Plasma carprofen concentrations were obtained over a 36-hour period following carprofen ingestion for each protocol. Pharmacokinetic modeling was performed and time versus concentration, area under the curve, maximum plasma concentration, time to maximum concentration, and elimination half-life were calculated and compared among the groups using ANOVA followed by Tukey's multiple comparisons test. Activated charcoal, activated charcoal with sorbitol (ACS), and multiple-dose activated charcoal (MD) significantly reduced the area under the curve compared to the control group. AC and MD significantly reduced the maximum concentration when compared to the control group. MD significantly reduced elimination half-life when compared to ACS and the control group. There were no other significant differences among the treatment groups. Activated charcoal and ACS are as effective as MD in reducing serum carprofen concentrations following experimental overdose in dogs. Prospective studies are warranted to evaluate the effectiveness of AC, ACS, and MD in the clinical setting. © Veterinary Emergency and Critical Care Society 2015.

  17. Simple single-emitting layer hybrid white organic light emitting with high color stability

    Science.gov (United States)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  18. High-energy heavy ion testing of VLSI devices for single event ...

    Indian Academy of Sciences (India)

    Unknown

    per describes the high-energy heavy ion radiation testing of VLSI devices for single event upset (SEU) ... The experimental set up employed to produce low flux of heavy ions viz. silicon ... through which they pass, leaving behind a wake of elec- ... for use in Bus Management Unit (BMU) and bulk CMOS ... was scheduled.

  19. High-resolution phenotypic profiling of natural products-induced effects on the single-cell level

    KAUST Repository

    Kremb, Stephan Georg; Voolstra, Christian R.

    2017-01-01

    Natural products (NPs) are highly evolved molecules making them a valuable resource for new therapeutics. Here we demonstrate the usefulness of broad-spectrum phenotypic profiling of NP-induced perturbations on single cells with imaging-based High

  20. Simulating the 2012 High Plains Drought Using Three Single Column Models (SCM)

    Science.gov (United States)

    Medina, I. D.; Baker, I. T.; Denning, S.; Dazlich, D. A.

    2015-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited, and have used conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought and perform numerical simulations using three single column model (SCM) versions of BUGS5 (Colorado State University (CSU) GCM coupled to the Simple Biosphere Model (SiB3)). In the first version of BUGS5, the model is used in its standard bulk setting (single atmospheric column coupled to a single instance of SiB3), secondly, the Super-Parameterized Community Atmospheric Model (SP-CAM), a cloud resolving model (CRM) (CRM consists of 32 atmospheric columns), replaces the single CSU GCM atmospheric parameterization and is coupled to a single instance of SiB3, and for the third version of BUGS5, an instance of SiB3 is coupled to each CRM column of the SP-CAM (32 CRM columns coupled to 32 instances of SiB3). To assess the physical realism of the land-atmosphere feedbacks simulated by all three versions of BUGS5, differences in simulated energy and moisture fluxes are computed between the 2011 and 2012 period and are compared to those calculated using observational data from the AmeriFlux Tower Network for the same period at the ARM Site in Lamont, OK. This research

  1. Inactivation of single-chain urokinase-type plasminogen activator by thrombin in human subjects

    NARCIS (Netherlands)

    Braat, E. A.; Levi, M. [=Marcel M.; Bos, R.; Haverkate, F.; Lassen, M. R.; de Maat, M. P.; Rijken, D. C.

    1999-01-01

    Thrombin cleaves single-chain urokinase-type plasminogen activator (scu-PA) into a virtually inactive two-chain form (tcu-PA/T), a process that may protect a blood clot from early fibrinolysis. It is not known under what circumstances tcu-PA/T can be generated in vivo. We have studied the occurrence

  2. Five-Year Outcomes of High-Dose Single-Fraction Spinal Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Moussazadeh, Nelson; Lis, Eric; Katsoulakis, Evangelia; Kahn, Sweena; Svoboda, Marek; DiStefano, Natalie M.; McLaughlin, Lily; Bilsky, Mark H.; Yamada, Yoshiya; Laufer, Ilya

    2015-01-01

    Purpose: To characterize local tumor control and toxicity risk in very long-term survivors (>5 years) after high-dose spinal image guided, intensity modulated radiation therapy delivered as single-dose stereotactic radiosurgery (SRS). Previously published spinal SRS outcome analyses have included a heterogeneous population of cancer patients, mostly with short survival. This is the first study reporting the long-term tumor control and toxicity profiles after high-dose single-fraction spinal SRS. Methods and Materials: The study population included all patients treated from June 2004 to July 2009 with single-fraction spinal SRS (dose 24 Gy) who had survived at least 5 years after treatment. The endpoints examined included disease progression, surgical or radiation retreatment, in-field fracture development, and radiation-associated toxicity, scored using the Radiation Therapy Oncology Group radiation morbidity scoring criteria and the Common Terminology Criteria for Adverse Events, version 4.0. Local control and fracture development were assessed using Kaplan-Meier analysis. Results: Of 278 patients, 31 (11.1%), with 36 segments treated for spinal tumors, survived at least 5 years after treatment and were followed up radiographically and clinically for a median of 6.1 years (maximum 102 months). The histopathologic findings for the 5-year survivors included radiation-resistant metastases in 58%, radiation-sensitive metastases in 22%, and primary bone tumors in 19%. In this selected cohort, 3 treatment failures occurred at a median of 48.6 months, including 2 recurrences in the radiation field and 1 patient with demonstrated progression at the treatment margins. Ten lesions (27.8%) were associated with acute grade 1 cutaneous or gastrointestinal toxicity. Delayed toxicity ≥3 months after treatment included 8 cases (22.2%) of mild neuropathy, 2 (5.6%) of gastrointestinal discomfort, 8 (22.2%) of dermatitides, and 3 (8.3%) of myalgias/myositis. Thirteen

  3. Five-Year Outcomes of High-Dose Single-Fraction Spinal Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Moussazadeh, Nelson [Division of Neurological Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York (United States); Lis, Eric [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Katsoulakis, Evangelia [Department of Radiation Oncology, New York Methodist Hospital, Brooklyn, New York (United States); Kahn, Sweena; Svoboda, Marek; DiStefano, Natalie M.; McLaughlin, Lily [Division of Neurological Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Bilsky, Mark H. [Division of Neurological Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York (United States); Yamada, Yoshiya [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Laufer, Ilya, E-mail: lauferi@mskcc.org [Division of Neurological Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York (United States)

    2015-10-01

    Purpose: To characterize local tumor control and toxicity risk in very long-term survivors (>5 years) after high-dose spinal image guided, intensity modulated radiation therapy delivered as single-dose stereotactic radiosurgery (SRS). Previously published spinal SRS outcome analyses have included a heterogeneous population of cancer patients, mostly with short survival. This is the first study reporting the long-term tumor control and toxicity profiles after high-dose single-fraction spinal SRS. Methods and Materials: The study population included all patients treated from June 2004 to July 2009 with single-fraction spinal SRS (dose 24 Gy) who had survived at least 5 years after treatment. The endpoints examined included disease progression, surgical or radiation retreatment, in-field fracture development, and radiation-associated toxicity, scored using the Radiation Therapy Oncology Group radiation morbidity scoring criteria and the Common Terminology Criteria for Adverse Events, version 4.0. Local control and fracture development were assessed using Kaplan-Meier analysis. Results: Of 278 patients, 31 (11.1%), with 36 segments treated for spinal tumors, survived at least 5 years after treatment and were followed up radiographically and clinically for a median of 6.1 years (maximum 102 months). The histopathologic findings for the 5-year survivors included radiation-resistant metastases in 58%, radiation-sensitive metastases in 22%, and primary bone tumors in 19%. In this selected cohort, 3 treatment failures occurred at a median of 48.6 months, including 2 recurrences in the radiation field and 1 patient with demonstrated progression at the treatment margins. Ten lesions (27.8%) were associated with acute grade 1 cutaneous or gastrointestinal toxicity. Delayed toxicity ≥3 months after treatment included 8 cases (22.2%) of mild neuropathy, 2 (5.6%) of gastrointestinal discomfort, 8 (22.2%) of dermatitides, and 3 (8.3%) of myalgias/myositis. Thirteen

  4. Persistent humoral immune defect in highly active antiretroviral therapy-treated children with HIV-1 infection: loss of specific antibodies against attenuated vaccine strains and natural viral infection

    NARCIS (Netherlands)

    Bekker, Vincent; Scherpbier, Henriëtte; Pajkrt, Dasja; Jurriaans, Suzanne; Zaaijer, Hans; Kuijpers, Taco W.

    2006-01-01

    OBJECTIVE: In the pre-highly active antiretroviral therapy era, a loss of specific antibodies was seen. Our objective with this study was to describe the loss of specific antibodies during treatment with highly active antiretroviral therapy. METHODS: In a prospective, single-center, cohort study of

  5. A high efficiency superconducting nanowire single electron detector

    NARCIS (Netherlands)

    Rosticher, M.; Ladan, F.R.; Maneval, J.P.; Dorenbos, S.N.; Zijlstra, T.; Klapwijk, T.M.; Zwiller, V.; Lupa?cu, A.; Nogues, G.

    2010-01-01

    We report the detection of single electrons using a Nb0.7Ti0.3N superconducting wire deposited on an oxidized silicon substrate. While it is known that this device is sensitive to single photons, we show that it also detects single electrons with kilo-electron-volt energy emitted from the cathode of

  6. Preparation of high purity yttrium single crystals by electrotransport

    International Nuclear Information System (INIS)

    Volkov, V.T.; Nikiforova, T.V.; Ionov, A.M.; Pustovit, A.N.; Sikharulidse, G.G.

    1981-01-01

    The possibility of obtaining yttrium crystals of high purity by the method of solid state electrotransport (SSE) was investigated in the present work. The behaviour of low contents of iron, aluminium, silicon, tantalum, copper, silver and vanadium as metallic impurities was studied using mass spectrometry. It is shown that all the impurities investigated, except copper, migrate to the anode. During electrotransfer a purification with respect to these impurities by a factor of 4 - 6 is obtained. It is proposed that the diffusion coefficients of the metallic impurities investigated are anomalously high and that the behaviour of the impurities during SSE in adapters necessitates further investigation. By using a three-stage process with intermediate removal of the anode end yttrium single crystals with a resistance ratio rho 293 /rhosub(4.2)=570 were produced. (Auth.)

  7. Easy and Rapid Purification of Highly Active Nisin

    NARCIS (Netherlands)

    Abts, André; Mavaro, Antonino; Stindt, Jan; Bakkes, Patrick J.; Metzger, Sabine; Driessen, Arnold J.M.; Smits, Sander H.J.; Schmitt, Lutz

    2011-01-01

    Nisin is an antimicrobial peptide produced and secreted by several L. lactis strains and is specifically active against Gram-positive bacteria. In previous studies, nisin was purified via cation exchange chromatography at low pH employing a single-step elution using 1M NaCl. Here, we describe an

  8. Overexpression of cypin alters dendrite morphology, single neuron activity, and network properties via distinct mechanisms

    Science.gov (United States)

    Rodríguez, Ana R.; O'Neill, Kate M.; Swiatkowski, Przemyslaw; Patel, Mihir V.; Firestein, Bonnie L.

    2018-02-01

    Objective. This study investigates the effect that overexpression of cytosolic PSD-95 interactor (cypin), a regulator of synaptic PSD-95 protein localization and a core regulator of dendrite branching, exerts on the electrical activity of rat hippocampal neurons and networks. Approach. We cultured rat hippocampal neurons and used lipid-mediated transfection and lentiviral gene transfer to achieve high levels of cypin or cypin mutant (cypinΔPDZ PSD-95 non-binding) expression cellularly and network-wide, respectively. Main results. Our analysis revealed that although overexpression of cypin and cypinΔPDZ increase dendrite numbers and decrease spine density, cypin and cypinΔPDZ distinctly regulate neuronal activity. At the single cell level, cypin promotes decreases in bursting activity while cypinΔPDZ reduces sEPSC frequency and further decreases bursting compared to cypin. At the network level, by using the Fano factor as a measure of spike count variability, cypin overexpression results in an increase in variability of spike count, and this effect is abolished when cypin cannot bind PSD-95. This variability is also dependent on baseline activity levels and on mean spike rate over time. Finally, our spike sorting data show that overexpression of cypin results in a more complex distribution of spike waveforms and that binding to PSD-95 is essential for this complexity. Significance. Our data suggest that dendrite morphology does not play a major role in cypin action on electrical activity.

  9. Synthesis of single- and double-chain fluorocarbon and hydrocarbon galactosyl amphiphiles and their anti-HIV-1 activity.

    Science.gov (United States)

    Faroux-Corlay, B; Clary, L; Gadras, C; Hammache, D; Greiner, J; Santaella, C; Aubertin, A M; Vierling, P; Fantini, J

    2000-07-24

    Galactosylceramide (GalCer) is an alternative receptor allowing HIV-1 entry into CD4(-)/GalCer(+) cells. This glycosphingolipid recognizes the V3 loop of HIV gp120, which plays a key role in the fusion of the HIV envelope and cellular membrane. To inhibit HIV uptake and infection, we designed and synthesized analogs of GalCer. These amphiphiles and bolaamphiphiles consist of single and double hydrocarbon and/or fluorocarbon chain beta-linked to galactose and galactosamine. They derive from serine (GalSer), cysteine (GalCys), and ethanolamine (GalAE). The anti-HIV activity and cytotoxicity of these galactolipids were evaluated in vitro on CEM-SS (a CD4(+) cell line), HT-29, a CD4(-) cell line expressing high levels of GalCer receptor, and/or HT29 genetically modified to express CD4. GalSer and GalAE derivatives, tested in aqueous medium or as part of liposome preparation, showed moderate anti-HIV-1 activities (IC50 in the 20-220 microM range), whereas none of the GalCys derivatives was found to be active. Moreover, only some of these anti-HIV active analogs inhibited the binding of [3H]suramin (a polysulfonyl compound which displays a high affinity for the V3 loop) to SPC3, a synthetic peptide which contains the conserved GPGRAF region of the V3 loop. Our results most likely indicate that the neutralization of the virion through masking of this conserved V3 loop region is not the only mechanism involved in the HIV-1 antiviral activity of our GalCer analogs.

  10. Highly damped quasinormal modes of generic single-horizon black holes

    Energy Technology Data Exchange (ETDEWEB)

    Daghigh, Ramin G [Physics Department, University of Winnipeg, Winnipeg, Manitoba R3B 2E9 (Canada); Kunstatter, Gabor [Winnipeg Institute for Theoretical Physics, Winnipeg, Manitoba (Canada)

    2005-10-07

    We calculate analytically the highly damped quasinormal mode spectra of generic single-horizon black holes using the rigorous WKB techniques of Andersson and Howls (2004 Class. Quantum Grav. 21 1623). We thereby provide a firm foundation for previous analysis, and point out some of their possible limitations. The numerical coefficient in the real part of the highly damped frequency is generically determined by the behaviour of coupling of the perturbation to the gravitational field near the origin, as expressed in tortoise coordinates. This fact makes it difficult to understand how the famous ln(3) could be related to the quantum gravitational microstates near the horizon.

  11. Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays

    Directory of Open Access Journals (Sweden)

    Emilio Sciacca

    2008-08-01

    Full Text Available Single photon detection is one of the most challenging goals of photonics. In recent years, the study of ultra-fast and/or low-intensity phenomena has received renewed attention from the academic and industrial communities. Intense research activity has been focused on bio-imaging applications, bio-luminescence, bio-scattering methods, and, more in general, on several applications requiring high speed operation and high timing resolution. In this paper we present design and characterization of bi-dimensional arrays of a next generation of single photon avalanche diodes (SPADs. Single photon sensitivity, dark noise, afterpulsing and timing resolution of the single SPAD have been examined in several experimental conditions. Moreover, the effects arising from their integration and the readout mode have also been deeply investigated.

  12. Microwave testing of high-Tc based direct current to a single flux quantum converter

    DEFF Research Database (Denmark)

    Kaplunenko, V. K.; Fischer, Gerd Michael; Ivanov, Z. G.

    1994-01-01

    Design, simulation, and experimental investigations of a direct current to a single flux quantum converter loaded with a Josephson transmission line and driven by an external 70 GHz microwave oscillator are reported. The test circuit includes nine YBaCuO Josephson junctions aligned on the grain...... boundary of a 0°–32° asymmetric Y-ZrO2 bicrystal substrate. The performance of such converters is important for the development of the fast Josephson samplers required for testing of high-Tc rapid single flux quantum circuits in high-speed digital superconducting electronics. Journal of Applied Physics...

  13. Single Crystal Piezomotor for Large Stroke, High Precision and Cryogenic Actuations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes a novel single crystal piezomotor for large stroke, high precision, and cryogenic actuations with capability of position set-hold with...

  14. Heterogeneous activation of H_2O_2 by defect-engineered TiO_2_−_x single crystals for refractory pollutants degradation: A Fenton-like mechanism

    International Nuclear Information System (INIS)

    Zhang, Ai-Yong; Lin, Tan; He, Yuan-Yi; Mou, Yu-Xuan

    2016-01-01

    Highlights: • Facet- and defect-engineered TiO_2 is proposed for water treatment as Fenton-like catalyst. • The =Ti(III) center serves as lattice shuttle for electron transfer in H_2O_2 activation. • TiO_2 is promising due to low cost, high abundance, no toxicity and stable performance. - Abstract: The heterogeneous catalyst plays a key role in Fenton-like reaction for advanced oxidation of refractory pollutants in water treatment. Titanium dioxide (TiO_2) is a typical semiconductor with high industrial importance due to its earth abundance, low cost and no toxicity. In this work, it is found that TiO_2 can heterogeneously activate hydrogen peroxide (H_2O_2, E° = 1.78 eV), a common chemical oxidant, to efficiently generate highly-powerful hydroxyl radical, ·OH (E"0 = 2.80 eV), for advanced water treatment, when its crystal shape, exposed facet and oxygen-stoichiometry are finely tuned. The defect-engineered TiO_2 single crystals exposed by high-energy {0 0 1} facets exhibited an excellent Fenton-like activity and stability for degrading typical refractory organic pollutants such as methyl orange and p-nitrophenol. Its defect-centered Fenton-like superiority is mainly attributed to the crystal oxygen-vacancy, single-crystalline structure and exposed polar {0 0 1} facet. Our findings could provide new chance to utilize TiO_2 for Fenton-like technology, and develop novel heterogeneous catalyst for advanced water treatment.

  15. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang

    2018-04-04

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  16. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang; Guan, Erjia; Zhang, Jian; Yang, Junhao; Zhu, Yihan; Han, Yu; Yang, Ming; Cen, Cheng; Fu, Gang; Gates, Bruce C.; Xiao, Feng-Shou

    2018-01-01

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  17. Inkjet printing of single-crystal films.

    Science.gov (United States)

    Minemawari, Hiromi; Yamada, Toshikazu; Matsui, Hiroyuki; Tsutsumi, Jun'ya; Haas, Simon; Chiba, Ryosuke; Kumai, Reiji; Hasegawa, Tatsuo

    2011-07-13

    The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science. Whether based on inorganic or organic materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. 'Printed electronics' is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials. However, because of the strong self-organizing tendency of the deposited materials, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid-air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C(8)-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4 cm(2) V(-1) s(-1). This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.

  18. Electrochemical monitoring of intracellular enzyme activity of single living mammalian cells by using a double-mediator system

    International Nuclear Information System (INIS)

    Matsumae, Yoshiharu; Takahashi, Yasufumi; Ino, Kosuke; Shiku, Hitoshi; Matsue, Tomokazu

    2014-01-01

    Graphical abstract: NAD(P)H:quinone oxidoreductase (NQO) activity of single HeLa cells were evaluated by using the menadione–ferrocyanide double mediator system combined with scanning electrochemical microscopy (SECM). - Highlights: • NAD(P)H:quinone oxidoreductase activity of single cells were evaluated with SECM. • Fe(CN) 6 3− /menadione concentrations were optimized for long-term SECM monitoring. • Menadione affect the intracellular levels of reactive oxygen species and GSH. • At 100 μM menadione, the Fe(CN) 6 3− generation rate decreased rapidly within 30 min. - Abstract: We evaluated the intracellular NAD(P)H:quinone oxidoreductase (NQO) activity of single HeLa cells by using the menadione–ferrocyanide double-mediator system combined with scanning electrochemical microscopy (SECM). The double-mediator system was used to amplify the current response from the intracellular NQO activity and to reduce menadione-induced cell damage. The electron shuttle between the electrode and menadione was mediated by the ferrocyanide/ferricyanide redox couple. Generation of ferrocyanide was observed immediately after the addition of a lower concentration (10 μM) of menadione. The ferrocyanide generation rate was constant for 120 min. At a higher menadione concentration (100 μM), the ferrocyanide generation rate decreased within 30 min because of the cytotoxic effect of menadione. We also investigated the relationship between intracellular reactive oxygen species or glutathione levels and exposure to different menadione concentrations to determine the optimal condition for SECM with minimal invasiveness. The present study clearly demonstrates that SECM is useful for the analysis of intracellular enzymatic activities in single cells with a double-mediator system

  19. Electrochemical monitoring of intracellular enzyme activity of single living mammalian cells by using a double-mediator system

    Energy Technology Data Exchange (ETDEWEB)

    Matsumae, Yoshiharu [Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579 (Japan); Takahashi, Yasufumi [Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba, Sendai 980-8577 (Japan); Ino, Kosuke [Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579 (Japan); Shiku, Hitoshi, E-mail: shiku@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579 (Japan); Matsue, Tomokazu, E-mail: matsue@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, Aramaki 6-6-11-605, Aoba, Sendai 980-8579 (Japan); Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba, Sendai 980-8577 (Japan)

    2014-09-09

    Graphical abstract: NAD(P)H:quinone oxidoreductase (NQO) activity of single HeLa cells were evaluated by using the menadione–ferrocyanide double mediator system combined with scanning electrochemical microscopy (SECM). - Highlights: • NAD(P)H:quinone oxidoreductase activity of single cells were evaluated with SECM. • Fe(CN){sub 6}{sup 3−}/menadione concentrations were optimized for long-term SECM monitoring. • Menadione affect the intracellular levels of reactive oxygen species and GSH. • At 100 μM menadione, the Fe(CN){sub 6}{sup 3−} generation rate decreased rapidly within 30 min. - Abstract: We evaluated the intracellular NAD(P)H:quinone oxidoreductase (NQO) activity of single HeLa cells by using the menadione–ferrocyanide double-mediator system combined with scanning electrochemical microscopy (SECM). The double-mediator system was used to amplify the current response from the intracellular NQO activity and to reduce menadione-induced cell damage. The electron shuttle between the electrode and menadione was mediated by the ferrocyanide/ferricyanide redox couple. Generation of ferrocyanide was observed immediately after the addition of a lower concentration (10 μM) of menadione. The ferrocyanide generation rate was constant for 120 min. At a higher menadione concentration (100 μM), the ferrocyanide generation rate decreased within 30 min because of the cytotoxic effect of menadione. We also investigated the relationship between intracellular reactive oxygen species or glutathione levels and exposure to different menadione concentrations to determine the optimal condition for SECM with minimal invasiveness. The present study clearly demonstrates that SECM is useful for the analysis of intracellular enzymatic activities in single cells with a double-mediator system.

  20. Antimicrobial Activity of Single-Walled Carbon Nanotubes Suspended in Different Surfactants

    Directory of Open Access Journals (Sweden)

    Lifeng Dong

    2012-01-01

    Full Text Available We investigated the antibacterial activity of single-walled carbon nanotubes (SWCNTs dispersed in surfactant solutions of sodium cholate, sodium dodecylbenzene sulfonate, and sodium dodecyl sulfate. Among the three surfactants, sodium cholate demonstrated the weakest antibacterial activity against Salmonella enterica, Escherichia coli, and Enterococcus faecium and thereby was used to disperse bundled SWCNTs in order to study nanotube antibiotic activity. SWCNTs exhibited antibacterial characteristics for both S. enterica and E. coli. With the increase of nanotube concentrations from 0.3 mg/mL to 1.5 mg/mL, the growth curves had plateaus at lower absorbance values whereas the absorbance value was not obviously affected by the incubation ranging from 5 min to 2 h. Our findings indicate that carbon nanotubes could become an effective alternative to antibiotics in dealing with drug-resistant and multidrug-resistant bacterial strains because of the physical mode of bactericidal action that SWCNTs display.

  1. Single event upsets in semiconductor devices induced by highly ionising particles.

    Science.gov (United States)

    Sannikov, A V

    2004-01-01

    A new model of single event upsets (SEUs), created in memory cells by heavy ions and high energy hadrons, has been developed. The model takes into account the spatial distribution of charge collection efficiency over the cell area not considered in previous approaches. Three-dimensional calculations made by the HADRON code have shown good agreement with experimental data for the energy dependence of proton SEU cross sections, sensitive depths and other SEU observables. The model is promising for prediction of SEU rates for memory chips exposed in space and in high-energy experiments as well as for the development of a high-energy neutron dosemeter based on the SEU effect.

  2. FPGA applications for single dish activity at Medicina radio telescopes

    Science.gov (United States)

    Bartolini, M.; Naldi, G.; Mattana, A.; Maccaferri, A.; De Biaggi, M.

    FPGA technologies are gaining major attention in the recent years in the field of radio astronomy. At Medicina radio telescopes, FPGAs have been used in the last ten years for a number of purposes and in this article we will take into exam the applications developed and installed for the Medicina Single Dish 32m Antenna: these range from high performance digital signal processing to instrument control developed on top of smaller FPGAs.

  3. Gold-coated polydimethylsiloxane microwells for high-throughput electrochemiluminescence analysis of intracellular glucose at single cells.

    Science.gov (United States)

    Xia, Juan; Zhou, Junyu; Zhang, Ronggui; Jiang, Dechen; Jiang, Depeng

    2018-06-04

    In this communication, a gold-coated polydimethylsiloxane (PDMS) chip with cell-sized microwells was prepared through a stamping and spraying process that was applied directly for high-throughput electrochemiluminescence (ECL) analysis of intracellular glucose at single cells. As compared with the previous multiple-step fabrication of photoresist-based microwells on the electrode, the preparation process is simple and offers fresh electrode surface for higher luminescence intensity. More luminescence intensity was recorded from cell-retained microwells than that at the planar region among the microwells that was correlated with the content of intracellular glucose. The successful monitoring of intracellular glucose at single cells using this PDMS chip will provide an alternative strategy for high-throughput single-cell analysis. Graphical abstract ᅟ.

  4. Probing Single Pt Atoms in Complex Intermetallic Al13Fe4.

    Science.gov (United States)

    Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang

    2018-03-21

    The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

  5. Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems

    Science.gov (United States)

    Jiang, Mu-Sheng; Sun, Shi-Hai; Tang, Guang-Zhao; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2013-12-01

    Thanks to the high-speed self-differencing single-photon detector (SD-SPD), the secret key rate of quantum key distribution (QKD), which can, in principle, offer unconditionally secure private communications between two users (Alice and Bob), can exceed 1 Mbit/s. However, the SD-SPD may contain loopholes, which can be exploited by an eavesdropper (Eve) to hack into the unconditional security of the high-speed QKD systems. In this paper, we analyze the fact that the SD-SPD can be remotely controlled by Eve in order to spy on full information without being discovered, then proof-of-principle experiments are demonstrated. Here, we point out that this loophole is introduced directly by the operating principle of the SD-SPD, thus, it cannot be removed, except for the fact that some active countermeasures are applied by the legitimate parties.

  6. Salicylate-induced changes in spontaneous activity of single units in the inferior colliculus of the guinea pig.

    Science.gov (United States)

    Jastreboff, P J; Sasaki, C T

    1986-11-01

    Changes in spontaneous neuronal activity of the inferior colliculus in albino guinea pigs before and after administration of sodium salicylate were analyzed. Animals were anesthetized with pentobarbital, and two microelectrodes separated by a few hundred microns were driven through the inferior colliculus. After collecting a sufficiently large sample of cells, sodium salicylate (450 mg/kg) was injected i.p. and recordings again made 2 h after the injection. Comparison of spontaneous activity recorded before and after salicylate administration revealed highly statistically significant differences (p less than 0.001). After salicylate, the mean rate of the cell population increased from 29 to 83 Hz and the median from 26 to 74 Hz. Control experiments in which sodium salicylate was replaced by saline injection revealed no statistically significant differences in cell discharges. Recordings made during the same experiments from lobulus V of the cerebellar vermis revealed no changes in response to salicylate. The observed changes in single-unit activity due to salicylate administration may represent the first systematic evidence of a tinnituslike phenomenon in animals.

  7. mPeriod2 Brdm1 and other single Period mutant mice have normal food anticipatory activity.

    Science.gov (United States)

    Pendergast, Julie S; Wendroth, Robert H; Stenner, Rio C; Keil, Charles D; Yamazaki, Shin

    2017-11-14

    Animals anticipate the timing of food availability via the food-entrainable oscillator (FEO). The anatomical location and timekeeping mechanism of the FEO are unknown. Several studies showed the circadian gene, Period 2, is critical for FEO timekeeping. However, other studies concluded that canonical circadian genes are not essential for FEO timekeeping. In this study, we re-examined the effects of the Per2 Brdm1 mutation on food entrainment using methods that have revealed robust food anticipatory activity in other mutant lines. We examined food anticipatory activity, which is the output of the FEO, in single Period mutant mice. Single Per1, Per2, and Per3 mutant mice had robust food anticipatory activity during restricted feeding. In addition, we found that two different lines of Per2 mutant mice (ldc and Brdm1) anticipated restricted food availability. To determine if FEO timekeeping persisted in the absence of the food cue, we assessed activity during fasting. Food anticipatory (wheel-running) activity in all Period mutant mice was also robust during food deprivation. Together, our studies demonstrate that the Period genes are not necessary for the expression of food anticipatory activity.

  8. Untangling reaction pathways through modern approaches to high-throughput single-molecule force-spectroscopy experiments

    NARCIS (Netherlands)

    Dulin, D.; Berghuis, B.A.; Depken, S.M.; Dekker, N.H.

    2015-01-01

    Single-molecule experiments provide a unique means for real-time observation of the activity of individual biomolecular machines. Through such techniques, insights into the mechanics of for example, polymerases, helicases, and packaging motors have been gleaned. Here we describe the recent advances

  9. 200-W single frequency laser based on short active double clad tapered fiber

    Science.gov (United States)

    Pierre, Christophe; Guiraud, Germain; Yehouessi, Jean-Paul; Santarelli, Giorgio; Boullet, Johan; Traynor, Nicholas; Vincont, Cyril

    2018-02-01

    High power single frequency lasers are very attractive for a wide range of applications such as nonlinear conversion, gravitational wave sensing or atom trapping. Power scaling in single frequency regime is a challenging domain of research. In fact, nonlinear effect as stimulated Brillouin scattering (SBS) is the primary power limitation in single frequency amplifiers. To mitigate SBS, different well-known techniques has been improved. These techniques allow generation of several hundred of watts [1]. Large mode area (LMA) fibers, transverse acoustically tailored fibers [2], coherent beam combining and also tapered fiber [3] seem to be serious candidates to continue the power scaling. We have demonstrated the generation of stable 200W output power with nearly diffraction limited output, and narrow linewidth (Δν<30kHz) by using a tapered Yb-doped fiber which allow an adiabatic transition from a small purely single mode input to a large core output.

  10. Single-longitudinal mode distributed-feedback fiber laser with low-threshold and high-efficiency

    Science.gov (United States)

    Jiang, Man; Zhou, Pu; Gu, Xijia

    2018-01-01

    Single-frequency fiber laser has attracted a lot of interest in recent years due to its numerous application potentials in telecommunications, LIDAR, high resolution sensing, atom frequency standard, etc. Phosphate glass fiber is one of the candidates for building compact high gain fiber lasers because of its capability of high-concentration of rare-earth ions doping in fiber core. Nevertheless, it is challenging for the integration of UV-written intra-core fiber Bragg gratings into the fiber laser cavity due to the low photosensitivity of phosphate glass fiber. The research presented in this paper will focus on demonstration of UV-written Bragg gratings in phosphate glass fiber and its application in direct-written short monolithic single-frequency fiber lasers. Strong π-phase shift Bragg grating structure is direct-inscribed into the Er/Yb co-doped gain fiber using an excimer laser, and a 5-cm-long phase mask is used to inscribe a laser cavity into the Er/Yb co-doped phosphate glass fibers. The phase mask is a uniform mask with a 50 μm gap in the middle. The fiber laser device emits output power of 10.44 mW with a slope efficiency of 21.5% and the threshold power is about 42.8 mW. Single-longitudinal mode operation is validated by radio frequency spectrum measurement. Moreover, the output spectrum at the highest power shows an excellent optical signal to noise ratio of about 70 dB. These results, to the best of our knowledge, show the lowest power threshold and highest efficiency among the reports that using the same structure to achieve single-longitudinal mode laser output.

  11. Single-Run Single-Mask Inductively-Coupled-Plasma Reactive-Ion-Etching Process for Fabricating Suspended High-Aspect-Ratio Microstructures

    Science.gov (United States)

    Yang, Yao-Joe; Kuo, Wen-Cheng; Fan, Kuang-Chao

    2006-01-01

    In this work, we present a single-run single-mask (SRM) process for fabricating suspended high-aspect-ratio structures on standard silicon wafers using an inductively coupled plasma-reactive ion etching (ICP-RIE) etcher. This process eliminates extra fabrication steps which are required for structure release after trench etching. Released microstructures with 120 μm thickness are obtained by this process. The corresponding maximum aspect ratio of the trench is 28. The SRM process is an extended version of the standard process proposed by BOSCH GmbH (BOSCH process). The first step of the SRM process is a standard BOSCH process for trench etching, then a polymer layer is deposited on trench sidewalls as a protective layer for the subsequent structure-releasing step. The structure is released by dry isotropic etching after the polymer layer on the trench floor is removed. All the steps can be integrated into a single-run ICP process. Also, only one mask is required. Therefore, the process complexity and fabrication cost can be effectively reduced. Discussions on each SRM step and considerations for avoiding undesired etching of the silicon structures during the release process are also presented.

  12. High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Wang, J.J.; Yin, G.P.; Zhang, J.; Wang, Z.B.; Gao, Y.Z.

    2007-01-01

    This research aims to enhance the activity of Pt catalysts, thus to lower the loading of Pt metal in fuel cell. Highly dispersed platinum supported on single-walled carbon nanotubes (SWNTs) as catalyst was prepared by ion exchange method. The homemade Pt/SWNTs underwent a repetition of ion exchange and reduction process in order to achieve an increase of the metal loading. For comparison, the similar loading of Pt catalyst supported on carbon nanotubes was prepared by borohydride reduction method. The catalysts were characterized by using energy dispersive analysis of X-ray (EDAX), transmission electron micrograph (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrum (XPS). Compared with the Pt/SWNTs catalyst prepared by borohydride method, higher Pt utilization was achieved on the SWNTs by ion exchange method. Furthermore, in comparison to the E-TEK 20 wt.% Pt/C catalyst with the support of carbon black, the results from electrochemical measurement indicated that the Pt/SWNTs prepared by ion exchange method displayed a higher catalytic activity for methanol oxidation and higher Pt utilization, while no significant increasing in the catalytic activity of the Pt/SWNTs catalyst obtained by borohydride method

  13. Ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukaemia: a single-arm, phase 2 study

    Science.gov (United States)

    Burger, Jan A.; Keating, Michael J.; Wierda, William G.; Hartmann, Elena; Hoellenriegel, Julia; Rosin, Nathalie Y.; de Weerdt, Iris; Jeyakumar, Ghayathri; Ferrajoli, Alessandra; Cardenas-Turanzas, Marylou; Lerner, Susan; Jorgensen, Jeffrey L; Nogueras-González, Graciela M.; Zacharian, Gracy; Huang, Xuelin; Kantarjian, Hagop; Garg, Naveen; Rosenwald, Andreas; O’Brien, Susan

    2014-01-01

    Summary Background Ibrutinib, an orally administered covalent inhibitor of Bruton tyrosine kinase (BTK), is an effective therapy for patients with relapsed chronic lymphocytic leukemia (CLL). We investigated the activity and safety of the combination of ibrutinib with the monoclonal antibody rituximab (iR) in patients with high-risk CLL. Methods In this single-arm, phase 2 studywe enrolled 40 patients with high-risk CLL at MD Anderson Cancer Center, Houston, Texas, USA. Patients with symptomatic CLL requiring therapy received 28 day cycles of once-daily ibrutinib 420 mg , together with rituximab (weekly during cycle 1, then once per cycle until cycle 6), followed by continuous single-agent ibrutinib. The primary endpoint was progression-free survival (PFS) in the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT01520519 and is no longer accruing patients. Findings Between February 28, 2012 and September 11, 2012, we enrolled 40 CLL patients with high-risk disease features. 20 patients had del17p or TP53 mutations (16 previously treated, 4 untreated), 13 had relapsed CLL with del11q, and 7 patients a PFS infections occurred in 4 patients (10%), no grade 4 or 5 infections occurred. At 18 months, the Kaplan Meier estimate of progression-free survival was 78% (95% CI 60.6–88.5) (del[17p] or TP53 mutation: 72%, 95% CI: 45.6–87.6) Interpretation Ibrutinib in combination with rituximab is a well-tolerated regimen for patients with high-risk CLL. It induces high rates of remissions and has positive impact on QOL in this difficult-to-treat patient population. These encouraging data merit further investigation of the added benefit of rituximab as combination partner for ibrutinib in an ongoing randomized trial, in which single-agent ibrutinib is compared to iR combination therapy (NCT02007044). Funding Pharmacyclics, Inc., Cancer Prevention and Research Institute of Texas (CPRIT), Leukemia & Lymphoma Society, NCI Grant P30 CA

  14. Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane Proteins on Chip.

    Science.gov (United States)

    Diederichs, Tim; Nguyen, Quoc Hung; Urban, Michael; Tampé, Robert; Tornow, Marc

    2018-06-13

    Membrane proteins involved in transport processes are key targets for pharmaceutical research and industry. Despite continuous improvements and new developments in the field of electrical readouts for the analysis of transport kinetics, a well-suited methodology for high-throughput characterization of single transporters with nonionic substrates and slow turnover rates is still lacking. Here, we report on a novel architecture of silicon chips with embedded nanopore microcavities, based on a silicon-on-insulator technology for high-throughput optical readouts. Arrays containing more than 14 000 inverted-pyramidal cavities of 50 femtoliter volumes and 80 nm circular pore openings were constructed via high-resolution electron-beam lithography in combination with reactive ion etching and anisotropic wet etching. These cavities feature both, an optically transparent bottom and top cap. Atomic force microscopy analysis reveals an overall extremely smooth chip surface, particularly in the vicinity of the nanopores, which exhibits well-defined edges. Our unprecedented transparent chip design provides parallel and independent fluorescent readout of both cavities and buffer reservoir for unbiased single-transporter recordings. Spreading of large unilamellar vesicles with efficiencies up to 96% created nanopore-supported lipid bilayers, which are stable for more than 1 day. A high lipid mobility in the supported membrane was determined by fluorescent recovery after photobleaching. Flux kinetics of α-hemolysin were characterized at single-pore resolution with a rate constant of 0.96 ± 0.06 × 10 -3 s -1 . Here, we deliver an ideal chip platform for pharmaceutical research, which features high parallelism and throughput, synergistically combined with single-transporter resolution.

  15. Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.

    Science.gov (United States)

    Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young

    2014-08-29

    Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.

  16. Sexual behavior of single adult American women.

    Science.gov (United States)

    Duberstein Lindberg, Laura; Singh, Susheela

    2008-03-01

    Public policies promoting abstinence until marriage attempt to influence the sexual behavior of the more than 18 million American women who are currently single. An analysis of these women's behavior is needed to inform policies that are responsive to their sexual and reproductive health needs. Sexual behaviors, risk factors and reproductive health needs were examined among a nationally representative sample of 6,493 women aged 20-44 from the 2002 National Survey of Family Growth. Paired t tests were used to assess differences among single, married and cohabiting women by selected demographic, behavioral and risk measures. Thirty-six percent of women aged 20-44 are single, and nine in 10 single women are sexually experienced. Seventy percent of the latter women are currently sexually active; on average, they had intercourse in seven of the last 12 months. A higher proportion of single women (22%) than of cohabiting (9%) or married women (2%) have had two or more partners in the past year, and half of single women are at risk of unintended pregnancy. Furthermore, single women and cohabiting women are more likely to lack health insurance than are married women (21-25% vs. 12%). Because of the high level of sexual activity among single adult women, providers must address their reproductive health care needs and offer appropriate counseling and services. Government policies aimed at encouraging adult women to have sex only within marriage appear out of touch with the reality of the sexual behavior of single women.

  17. Platforms for Single-Cell Collection and Analysis

    Directory of Open Access Journals (Sweden)

    Lukas Valihrach

    2018-03-01

    Full Text Available Single-cell analysis has become an established method to study cell heterogeneity and for rare cell characterization. Despite the high cost and technical constraints, applications are increasing every year in all fields of biology. Following the trend, there is a tremendous development of tools for single-cell analysis, especially in the RNA sequencing field. Every improvement increases sensitivity and throughput. Collecting a large amount of data also stimulates the development of new approaches for bioinformatic analysis and interpretation. However, the essential requirement for any analysis is the collection of single cells of high quality. The single-cell isolation must be fast, effective, and gentle to maintain the native expression profiles. Classical methods for single-cell isolation are micromanipulation, microdissection, and fluorescence-activated cell sorting (FACS. In the last decade several new and highly efficient approaches have been developed, which not just supplement but may fully replace the traditional ones. These new techniques are based on microfluidic chips, droplets, micro-well plates, and automatic collection of cells using capillaries, magnets, an electric field, or a punching probe. In this review we summarize the current methods and developments in this field. We discuss the advantages of the different commercially available platforms and their applicability, and also provide remarks on future developments.

  18. Platforms for Single-Cell Collection and Analysis.

    Science.gov (United States)

    Valihrach, Lukas; Androvic, Peter; Kubista, Mikael

    2018-03-11

    Single-cell analysis has become an established method to study cell heterogeneity and for rare cell characterization. Despite the high cost and technical constraints, applications are increasing every year in all fields of biology. Following the trend, there is a tremendous development of tools for single-cell analysis, especially in the RNA sequencing field. Every improvement increases sensitivity and throughput. Collecting a large amount of data also stimulates the development of new approaches for bioinformatic analysis and interpretation. However, the essential requirement for any analysis is the collection of single cells of high quality. The single-cell isolation must be fast, effective, and gentle to maintain the native expression profiles. Classical methods for single-cell isolation are micromanipulation, microdissection, and fluorescence-activated cell sorting (FACS). In the last decade several new and highly efficient approaches have been developed, which not just supplement but may fully replace the traditional ones. These new techniques are based on microfluidic chips, droplets, micro-well plates, and automatic collection of cells using capillaries, magnets, an electric field, or a punching probe. In this review we summarize the current methods and developments in this field. We discuss the advantages of the different commercially available platforms and their applicability, and also provide remarks on future developments.

  19. Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes

    DEFF Research Database (Denmark)

    Mathiasen, Signe; Christensen, Sune M.; Fung, Juan José

    2014-01-01

    Proteoliposome reconstitution is a standard method to stabilize purified transmembrane proteins in membranes for structural and functional assays. Here we quantified intrareconstitution heterogeneities in single proteoliposomes using fluorescence microscopy. Our results suggest that compositional...... heterogeneities can severely skew ensemble-average proteoliposome measurements but also enable ultraminiaturized high-content screens. We took advantage of this screening capability to map the oligomerization energy of the β2-adrenergic receptor using ∼10(9)-fold less protein than conventional assays....

  20. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation.

    Science.gov (United States)

    Ali, Sajjad; Fu Liu, Tian; Lian, Zan; Li, Bo; Sheng Su, Dang

    2017-08-23

    The mechanism of CO oxidation by O 2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory. We determine that single Au atoms can be trapped effectively by the defects on SWCNTs. The defects on SWCNTs can enhance both the binding strength and catalytic activity of the supported single Au atom. Fundamental aspects such as adsorption energy and charge transfer are elucidated to analyze the adsorption properties of CO and O 2 and co-adsorption of CO and O 2 molecules. It is found that CO binds stronger than O 2 on Au supported SWCNT. We clearly demonstrate that the defected SWCNT surface promotes electron transfer from the supported single Au atom to O 2 molecules. On the other hand, this effect is weaker for pristine SWCNTs. It is observed that the high density of spin-polarized states are localized in the region of the Fermi level due to the strong interactions between Au (5d orbital) and the adjacent carbon (2p orbital) atoms, which influence the catalytic performance. In addition, we elucidate both the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms of CO oxidation by O 2 . For the LH pathway, the barriers of the rate-limiting step are calculated to be 0.02 eV and 0.05 eV for Au/m-SWCNT and Au/di-SWCNT, respectively. To regenerate the active sites, an ER-like reaction occurs to form a second CO 2 molecule. The ER pathway is observed on Au/m-SWCNT, Au/SW-SWCNT and Au/SWCNT in which the Au/m-SWCNT has a smaller barrier. The comparison with a previous study (Lu et al., J. Phys. Chem. C, 2009, 113, 20156-20160.) indicates that the curvature effect of SWCNTs is important for the catalytic property of the supported single Au. Overall, Au/m-SWCNT is identified as the most active catalyst for CO oxidation compared to pristine SWCNT, SW-SWCNT and di-SWCNT. Our findings give a

  1. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    Science.gov (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal [Univ. of Chicago, Chicago, IL (United States); Zhang, Teng [Univ. of Chicago, Chicago, IL (United States); Greene, Francis X. [Univ. of Chicago, Chicago, IL (United States); Lin, Wenbin [Univ. of Chicago, Chicago, IL (United States)

    2015-02-16

    We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal–organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)]2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as well as C–H borylation of arenes using B₂pin₂. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17000 for C–H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations.

  3. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    International Nuclear Information System (INIS)

    Mejia, J.; Reis, M.A.; Miranda, A.C.C.; Batista, I.R.; Barboza, M.R.F.; Shih, M.C.; Fu, G.; Chen, C.T.; Meng, L.J.; Bressan, R.A.; Amaro, E. Jr

    2013-01-01

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s -1 ·MBq -1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99m Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99m Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity

  4. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Reis, M.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Miranda, A.C.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Batista, I.R. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Barboza, M.R.F.; Shih, M.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Fu, G. [GE Global Research, Schenectady, NY (United States); Chen, C.T. [Department of Radiology, University of Chicago, Chicago, IL (United States); Meng, L.J. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign, IL (United States); Bressan, R.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Amaro, E. Jr [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil)

    2013-11-06

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s{sup -1}·MBq{sup -1} were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging {sup 99m}Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using {sup 99m}Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  5. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Directory of Open Access Journals (Sweden)

    J. Mejia

    2013-11-01

    Full Text Available The single photon emission microscope (SPEM is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD. Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  6. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    Science.gov (United States)

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  7. Single ion implantation for single donor devices using Geiger mode detectors

    International Nuclear Information System (INIS)

    Bielejec, E; Seamons, J A; Carroll, M S

    2010-01-01

    Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Ion implantation, an industry standard for atom placement in materials, requires augmentation for single ion capability including a method for detecting a single ion arrival. Integrating single ion detection techniques with the single donor device construction region allows single ion arrival to be assured. Improving detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 μm from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ∼600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example a 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of -1 and 10 -4 for operation temperatures of ∼300 K and ∼77 K, respectively. Low temperature operation and reduced false, 'dark', counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of >98% for counting one and only one ion for a false count probability of 10 -4 at an average ion number per gated window of 0.015.

  8. Single-photon sources based on single molecules in solids

    International Nuclear Information System (INIS)

    Moerner, W E

    2004-01-01

    Single molecules in suitable host crystals have been demonstrated to be useful single-photon emitters both at liquid-helium temperatures and at room temperature. The low-temperature source achieved controllable emission of single photons from a single terrylene molecule in p-terphenyl by an adiabatic rapid passage technique. In contrast with almost all other single-molecule systems, terrylene single molecules show extremely high photostability under continuous, high-intensity irradiation. A room-temperature source utilizing this material has been demonstrated, in which fast pumping into vibrational sidebands of the electronically excited state achieved efficient inversion of the emissive level. This source yielded a single-photon emission probability p(1) of 0.86 at a detected count rate near 300 000 photons s -1 , with very small probability of emission of more than one photon. Thus, single molecules in solids can be considered as contenders for applications of single-photon sources such as quantum key distribution

  9. Reliability Evaluation of a Single-phase H-bridge Inverter with Integrated Active Power Decoupling

    DEFF Research Database (Denmark)

    Tang, Junchaojie; Wang, Haoran; Ma, Siyuan

    2016-01-01

    it with the traditional passive DC-link solution. The converter level reliability is obtained by component level electro-thermal stress modeling, lifetime model, Weibull distribution, and Reliability Block Diagram (RBD) method. The results are demonstrated by a 2 kW single-phase inverter application.......Various power decoupling methods have been proposed recently to replace the DC-link Electrolytic Capacitors (E-caps) in single-phase conversion system, in order to extend the lifetime and improve the reliability of the DC-link. However, it is still an open question whether the converter level...... reliability becomes better or not, since additional components are introduced and the loading of the existing components may be changed. This paper aims to study the converter level reliability of a single-phase full-bridge inverter with two kinds of active power decoupling module and to compare...

  10. A New Generation of FRET Sensors for Robust Measurement of Gαi1, Gαi2 and Gαi3 Activation Kinetics in Single Cells.

    Directory of Open Access Journals (Sweden)

    Jakobus van Unen

    Full Text Available G-protein coupled receptors (GPCRs can activate a heterotrimeric G-protein complex with subsecond kinetics. Genetically encoded biosensors based on Förster resonance energy transfer (FRET are ideally suited for the study of such fast signaling events in single living cells. Here we report on the construction and characterization of three FRET biosensors for the measurement of Gαi1, Gαi2 and Gαi3 activation. To enable quantitative long-term imaging of FRET biosensors with high dynamic range, fluorescent proteins with enhanced photophysical properties are required. Therefore, we use the currently brightest and most photostable CFP variant, mTurquoise2, as donor fused to Gαi subunit, and cp173Venus fused to the Gγ2 subunit as acceptor. The Gαi FRET biosensors constructs are expressed together with Gβ1 from a single plasmid, providing preferred relative expression levels with reduced variation in mammalian cells. The Gαi FRET sensors showed a robust response to activation of endogenous or over-expressed alpha-2A-adrenergic receptors, which was inhibited by pertussis toxin. Moreover, we observed activation of the Gαi FRET sensor in single cells upon stimulation of several GPCRs, including the LPA2, M3 and BK2 receptor. Furthermore, we show that the sensors are well suited to extract kinetic parameters from fast measurements in the millisecond time range. This new generation of FRET biosensors for Gαi1, Gαi2 and Gαi3 activation will be valuable for live-cell measurements that probe Gαi activation.

  11. Single-Step Fabrication of High-Density Microdroplet Arrays of Low-Surface-Tension Liquids.

    Science.gov (United States)

    Feng, Wenqian; Li, Linxian; Du, Xin; Welle, Alexander; Levkin, Pavel A

    2016-04-01

    A facile approach for surface patterning that enables single-step fabrication of high-density arrays of low-surface-tension organic-liquid microdroplets is described. This approach enables miniaturized and parallel high-throughput screenings in organic solvents, formation of homogeneous arrays of hydrophobic nanoparticles, polymer micropads of specific shapes, and polymer microlens arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Constructing MnO{sub 2}/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Weiwei [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Liu, Tiangui, E-mail: tianguiliu@gmail.com [College of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Cao, Shiyi; Wang, Chen [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Chen, Chuansheng, E-mail: 1666423158@qq.com [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China)

    2016-07-15

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO{sub 2} nanoparticles (MnO{sub 2}/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO{sub 2} nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO{sub 2}/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancement for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO{sub 2} nanoparticles. - Graphical abstract: The MnO{sub 2}/single crystalline ZnO nanorods hybrids, which MnO{sub 2} nanoparticles are loaded on the surface of ZnO nanorods, were prepared by the step-by-step precipitation method under the assistance of ammonia and hydrogen peroxide. Display Omitted - Highlights: • MnO{sub 2}/ZnO nanorod hybrids were prepared by the step-by-step assembly method. • Single crystalline ZnO nanorods can be decorated by MnO{sub 2} nanoparticles. • MnO{sub 2}/ZnO nanorod hybrids possess good photocatalytic and antibacterial activity. • MnO{sub 2} can improve the photocatalytic activity of ZnO nanorods under visible light.

  13. HOW DOES FINGOLIMOD (GILENYA® FIT IN THE TREATMENT ALGORITHM FOR HIGHLY ACTIVE RELAPSING-REMITTING MULTIPLE SCLEROSIS?

    Directory of Open Access Journals (Sweden)

    Franz eFazekas

    2013-05-01

    Full Text Available Multiple sclerosis (MS is a neurological disorder characterised by inflammatory demyelination and neurodegeneration in the central nervous system (CNS. Until recently, disease modifying treatment was based on agents requiring parenteral delivery, thus limiting long-term compliance. Basic treatments such as beta-interferon provide only moderate efficacy, and although therapies for second-line treatment and highly active MS are more effective, they are associated with potentially severe side effects. Fingolimod (Gilenya® is the first oral treatment of MS and has recently been approved as single disease-modifying therapy in highly active relapsing-remitting multiple sclerosis (RRMS for adult patients with high disease activity despite basic treatment (beta-interferon and for treatment-naïve patients with rapidly evolving severe RRMS. At a scientific meeting that took place in Vienna on November 18th, 2011, experts from 10 Central and Eastern European countries discussed the clinical benefits and potential risks of fingolimod for MS, suggested how the new therapy fits within the current treatment algorithm and provided expert opinion for the selection and management of patients.

  14. Highly significant association between two common single nucleotide polymorphisms in CORIN gene and preeclampsia in Caucasian women.

    Directory of Open Access Journals (Sweden)

    Alain Stepanian

    Full Text Available Preeclampsia is a frequent medical complication during pregnancy. Corin, a serine protease which activates pro-atrial natriuretic peptide, has recently been shown to be involved in the pathophysiology of preeclampsia. The aim of this study was to search for CORIN gene variations and their association to preeclampsia in Caucasian and African women. Our study population was composed of 571 pregnant women (295 with preeclampsia and 276 normotensive controls matched for maternal and gestational age, and ethnic origin. The 22 exons of the CORIN gene were sequenced in a discovery sample (n = 260, where 31 single nucleotide polymorphisms were identified. In a replication sample (n = 311, 4 single nucleotide polymorphisms were tested. Two minor alleles (C for rs2271036 and G for rs2271037 were significantly associated to preeclampsia. Adjusted odds ratios [95% confidence interval] were 2.5 [1.2-3.8] (p = 0.007 and 2.3 [1.5-3.5] (p = 1.3 × 10(-4, respectively. These associations were ethnic-specific, as only found in the Caucasian of subjects (odds ratio = 3.5 [1.8-6.6], p = 1.1 × 10(-4; odds ratio = 3.1 [1.7-5.8], p = 2.1 × 10(-4, for each single nucleotide polymorphism, respectively. The two single nucleotide polymorphisms are in almost perfect linkage disequilibrium (r(2 = 0.93. No specific association was found with severe preeclampsia, early-onset preeclampsia nor fetal growth retardation. In conclusion, this is the first report of a highly significant association between these two single nucleotide polymorphisms in CORIN gene and preeclampsia. Our findings further support the probability of a critical role of corin in preeclamspia pathophysiology at the uteroplacental interface.

  15. Indirect Control of a low power Single-Phase Active Power Filter

    Directory of Open Access Journals (Sweden)

    SILVIU EPURE

    2010-12-01

    Full Text Available This paper deals with a low power, single phase active filter used to compensate nonlinear loads. The filter uses the indirect control method and it is based on a particular connection between filter, polluting load and grid to avoid timeconsuming mathematic operations or signal processing computations and assures good rejection of harmonic currents injected by the nonlinear load into the grid. A scale model was first simulated in Simulink and then physically implemented. The paper presents simulation and experimental results, and highlight problems encountered during experiments.

  16. Detection efficiency characteristics of free-running InGaAs/InP single photon detector using passive quenching active reset IC

    International Nuclear Information System (INIS)

    Zheng Fu; Wang Chao; Sun Zhi-Bin; Zhai Guang-Jie

    2016-01-01

    InGaAs/InP avalanche photodiodes (APD) are rarely used in a free-running regime for near-infrared single photon detection. In order to overcome the detrimental afterpulsing, we demonstrate a passive quenching active reset integrated circuit. Taking advantage of the inherent fast passive quenching process and active reset to reduce reset time, the integrated circuit is useful for reducing afterpulses and is also area-efficient. We investigate the free-running single photon detector’s afterpulsing effect, de-trapping time, dark count rate, and photon detection efficiency, and also compare with gated regime operation. After correction for deadtime and afterpulse, we find that the passive quenching active reset free-running single photon detector’s performance is consistent with gated operation. (paper)

  17. Auger electron spectroscopy analysis for growth interface of cubic boron nitride single crystals synthesized under high pressure and high temperature

    Science.gov (United States)

    Lv, Meizhe; Xu, Bin; Cai, Lichao; Guo, Xiaofei; Yuan, Xingdong

    2018-05-01

    After rapid cooling, cubic boron nitride (c-BN) single crystals synthesized under high pressure and high temperature (HPHT) are wrapped in the white film powders which are defined as growth interface. In order to make clear that the transition mechanism of c-BN single crystals, the variation of B and N atomic hybrid states in the growth interface is analyzed with the help of auger electron spectroscopy in the Li-based system. It is found that the sp2 fractions of B and N atoms decreases, and their sp3 fractions increases from the outer to the inner in the growth interface. In addition, Lithium nitride (Li3N) are not found in the growth interface by X-ray diffraction (XRD) experiment. It is suggested that lithium boron nitride (Li3BN2) is produced by the reaction of hexagonal boron nitride (h-BN) and Li3N at the first step, and then B and N atoms transform from sp2 into sp3 state with the catalysis of Li3BN2 in c-BN single crystals synthesis process.

  18. A Hybrid Estimator for Active/Reactive Power Control of Single-Phase Distributed Generation Systems with Energy Storage

    DEFF Research Database (Denmark)

    Pahlevani, Majid; Eren, Suzan; Guerrero, Josep M.

    2016-01-01

    This paper presents a new active/reactive power closed-loop control system for a hybrid renewable energy generation system used for single-phase residential/commercial applications. The proposed active/reactive control method includes a hybrid estimator, which is able to quickly and accurately es...

  19. High-definition, single-scan 2D MRI in inhomogeneous fields using spatial encoding methods.

    Science.gov (United States)

    Ben-Eliezer, Noam; Shrot, Yoav; Frydman, Lucio

    2010-01-01

    An approach has been recently introduced for acquiring two-dimensional (2D) nuclear magnetic resonance images in a single scan, based on the spatial encoding of the spin interactions. This article explores the potential of integrating this spatial encoding together with conventional temporal encoding principles, to produce 2D single-shot images with moderate field of views. The resulting "hybrid" imaging scheme is shown to be superior to traditional schemes in non-homogeneous magnetic field environments. An enhancement of previously discussed pulse sequences is also proposed, whereby distortions affecting the image along the spatially encoded axis are eliminated. This new variant is also characterized by a refocusing of T(2)(*) effects, leading to a restoration of high-definition images for regions which would otherwise be highly dephased and thus not visible. These single-scan 2D images are characterized by improved signal-to-noise ratios and a genuine T(2) contrast, albeit not free from inhomogeneity distortions. Simple postprocessing algorithms relying on inhomogeneity phase maps of the imaged object can successfully remove most of these residual distortions. Initial results suggest that this acquisition scheme has the potential to overcome strong field inhomogeneities acting over extended acquisition durations, exceeding 100 ms for a single-shot image.

  20. Western Canada: high prices, high activity

    International Nuclear Information System (INIS)

    Savidant, S

    2000-01-01

    The forces responsible for the high drilling and exploration activity in Western Canada (recent high prices, excess pipeline capacity, and the promise of as yet undiscovered natural gas resources) are discussed. Supply and demand signposts, among them weather impacts, political response by governments, the high demand for rigs and services, the intense competition for land, the scarcity of qualified human resources, are reviewed/. The geological potential of Western Canada, the implications of falling average pool sizes, the industry's ability to catch up to increasing declines, are explored. The disappearance of easy large discoveries, rising development costs involved in smaller, more complex hence more expensive pools are assessed and the Canadian equity and capital markets are reviewed. The predicted likely outcome of all the above factors is fewer players, increasing expectation of higher returns, and more discipline among the remaining players

  1. Ionization and single electron capture in collision of highly charged Ar16+ ions with helium

    International Nuclear Information System (INIS)

    Wang Fei; Gou Bingcong

    2008-01-01

    This paper uses the two-centre atomic orbital close-coupling method to study the ionization and the single electron capture in collision of highly charged Ar 16+ ions with He atoms in the velocity range of 1.2–1.9 a.u. The relative importance of single ionization (SI) to single capture (SC) is explored. The comparison between the calculation and experimental data shows that the SI/SC cross section ratios from this work are in good agreement with experimental data. The total single electron ionization cross sections and the total single electron capture cross sections are also given for this collision. The investigation of the partial electron capture cross section shows a general tendency of capture to larger n and l with increasing velocity from 1.2 to 1.9 a.u

  2. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization

    OpenAIRE

    Fan, Beiyuan; Li, Xiufeng; Chen, Deyong; Peng, Hongshang; Wang, Junbo; Chen, Jian

    2016-01-01

    This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research oppor...

  3. Growth and characterization of high-purity SiC single crystals

    Science.gov (United States)

    Augustine, G.; Balakrishna, V.; Brandt, C. D.

    2000-04-01

    High-purity SiC single crystals with diameter up to 50 mm have been grown by the physical vapor transport method. Finite element analysis was used for thermal modeling of the crystal growth cavity in order to reduce stress in the grown crystal. Crystals are grown in high-purity growth ambient using purified graphite furniture and high-purity SiC sublimation sources. Undoped crystals up to 50 mm in diameter with micropipe density less than 100 cm -2 have been grown using this method. These undoped crystals exhibit resistivities in the 10 3 Ω cm range and are p-type due to the presence of residual acceptor impurities, mainly boron. Semi-insulating SiC material is obtained by doping the crystal with vanadium. Vanadium has a deep donor level located near the middle of the band gap, which compensates the residual acceptor resulting in semi-insulating behavior.

  4. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Keller, Sandro

    2015-04-01

    Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Design and evaluation of a single-span bridge using ultra-high performance concrete.

    Science.gov (United States)

    2009-09-01

    "Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a : single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possib...

  6. Activated platelets in carotid artery thrombosis in mice can be selectively targeted with a radiolabeled single-chain antibody.

    Directory of Open Access Journals (Sweden)

    Timo Heidt

    Full Text Available BACKGROUND: Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. METHODOLOGY/PRINCIPAL FINDINGS: LIBS as well as an unspecific control single-chain antibody were labeled with (111Indium ((111In via bifunctional DTPA ( = (111In-LIBS/(111In-control. Autoradiography after incubation with (111In-LIBS on activated platelets in vitro (mean 3866 ± 28 DLU/mm(2, 4010 ± 630 DLU/mm(2 and 4520 ± 293 DLU/mm(2 produced a significantly higher ligand uptake compared to (111In-control (2101 ± 76 DLU/mm(2, 1181 ± 96 DLU/mm(2 and 1866 ± 246 DLU/mm(2 indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of (111In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630 ± 10650 DLU/mm(2 vs. 17390 ± 7470 DLU/mm(2; P<0.05. These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with (111In-LIBS resulted in a significant increase of the target-to-background ratio compared to (111In-control (1.99 ± 0.36 vs. 1.1 ± 0.24; P < 0.01. CONCLUSIONS/SIGNIFICANCE: Nuclear imaging with (111In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of

  7. Single-phase highly densified SrBi{sub 2}Ta{sub 2}O{sub 9} compacts produced by high-pressure sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Altair Soria; Souza, Ricson Rocha de; Sousa, Vania Caldas de, E-mail: altair@if.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil)

    2016-07-01

    Full text: The development of high-performance lead-free piezoelectric ceramics is an important scientific and technological challenge, as environmental and health issues have imposed restrictions to the use of lead zirconate titanates, the most employed material in ferroelectric devices [1]. Strontium bismuth tantalate (SBT),SrBi{sub 2}Ta{sub 2}O{sub 9}, is an interesting alternative ferroelectric material as its polarization can be modified at low voltages and it shows limited polarization switching fatigue. However, the production of highly densified single-phase bulk SBT by conventional sintering procedures is strongly compromised by stoichiometric changes due to bismuth loss. In this work, high-pressure sintering has been exploited as an alternative procedure to obtain SBT highly-densified single-phase compacts. Using toroidal-type high-pressure chambers, samples were produced by reaction sintering of BiTaO{sub 4} and SrCO{sub 3} powders, mixed in the stoichiometric ratio corresponding to SrBi{sub 2}Ta{sub 2}O{sub 9}, at pressures of 2.5 GPa and 7.7 GPa, and temperatures up to 1250°C, during 10 min. X-ray diffraction and scanning electron microscopy associated to energy-dispersive X-ray spectroscopy were used to follow the phase composition and the microstructure evolution as a function of the processing conditions. A single-phase SBT compact, with a relative density of 93% and a homogeneous microstructure, was produced by sintering at 2.5 GPa/900°C [2]. References: [1] K. Panda, J. Mater. Sci. 44, 5049-5062 (2009). [2] Ricson R.Souza, Rejane K. Kirchner, Jose R. Jurado, Altair S. Pereira, Vania C. Sousa. Journal of Solid State Chemistry 233, 259-268 (2016). (author)

  8. Transient alterations in neurotransmitter activity in the caudate nucleus of rat brain after a high dose of ionizing radiation

    International Nuclear Information System (INIS)

    Hunt, W.A.; Dalton, T.K.; Darden, J.H.

    1979-01-01

    A single 10,000-rad dose of high-energy electrons induced an increase in dopaminergic and cholinergic activity in the caudate nucleus of the rat brain as assessed by K + -stimulated dopamine release in vitro and high-affinity choline uptake. These alterations occur during early transient incapacitation (ETI) and dissipate as the animal recovers behaviorally, in about 30 min after irradiation. Although the responses observed resemble those that result from blockade of dopamine receptors, no radiation-induced changes were found in dopamine-sensitive adenylate cyclase activity and [ 3 H]haloperidol binding, two indices of dopaminergic receptor function. The data suggest that changes in dopaminergic and cholinergic activity are associated with the development of ETI and may play a role in the behavioral decrement observed under this condition

  9. High-performance imaging of stem cells using single-photon emissions

    Science.gov (United States)

    Wagenaar, Douglas J.; Moats, Rex A.; Hartsough, Neal E.; Meier, Dirk; Hugg, James W.; Yang, Tang; Gazit, Dan; Pelled, Gadi; Patt, Bradley E.

    2011-10-01

    Radiolabeled cells have been imaged for decades in the field of autoradiography. Recent advances in detector and microelectronics technologies have enabled the new field of "digital autoradiography" which remains limited to ex vivo specimens of thin tissue slices. The 3D field-of-view (FOV) of single cell imaging can be extended to millimeters if the low energy (10-30 keV) photon emissions of radionuclides are used for single-photon nuclear imaging. This new microscope uses a coded aperture foil made of highly attenuating elements such as gold or platinum to form the image as a kind of "lens". The detectors used for single-photon emission microscopy are typically silicon detectors with a pixel pitch less than 60 μm. The goal of this work is to image radiolabeled mesenchymal stem cells in vivo in an animal model of tendon repair processes. Single-photon nuclear imaging is an attractive modality for translational medicine since the labeled cells can be imaged simultaneously with the reparative processes by using the dual-isotope imaging technique. The details our microscope's two-layer gold aperture and the operation of the energy-dispersive, pixellated silicon detector are presented along with the first demonstration of energy discrimination with a 57Co source. Cell labeling techniques have been augmented by genetic engineering with the sodium-iodide symporter, a type of reporter gene imaging method that enables in vivo uptake of free 99mTc or an iodine isotope at a time point days or weeks after the insertion of the genetically modified stem cells into the animal model. This microscopy work in animal research may expand to the imaging of reporter-enabled stem cells simultaneously with the expected biological repair process in human clinical trials of stem cell therapies.

  10. Single-photon interference experiment for high schools

    Science.gov (United States)

    Bondani, Maria

    2014-07-01

    We follow the reductio ad absurdum reasoning described in the book "Sneaking a Look at God's Cards" by Giancarlo Ghirardi to demonstrate the wave-particle duality of light in a Mach-Zehnder interferometric setup analog to the conventional Young double-slit experiment. We aim at showing the double nature of light by measuring the existence of interference fringes down to the single-photon level. The setup includes a strongly attenuated laser, polarizing beam splitters, half-waveplates, polarizers and single-photon detectors.

  11. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    KAUST Repository

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Banavoth, Murali; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tao; Mohammed, Omar F.; Bakr, Osman

    2015-01-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process

  12. Single photon sources with single semiconductor quantum dots

    Science.gov (United States)

    Shan, Guang-Cun; Yin, Zhang-Qi; Shek, Chan Hung; Huang, Wei

    2014-04-01

    In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.

  13. Single Pt Atoms Confined into a Metal-Organic Framework for Efficient Photocatalysis.

    Science.gov (United States)

    Fang, Xinzuo; Shang, Qichao; Wang, Yu; Jiao, Long; Yao, Tao; Li, Yafei; Zhang, Qun; Luo, Yi; Jiang, Hai-Long

    2018-02-01

    It is highly desirable yet remains challenging to improve the dispersion and usage of noble metal cocatalysts, beneficial to charge transfer in photocatalysis. Herein, for the first time, single Pt atoms are successfully confined into a metal-organic framework (MOF), in which electrons transfer from the MOF photosensitizer to the Pt acceptor for hydrogen production by water splitting under visible-light irradiation. Remarkably, the single Pt atoms exhibit a superb activity, giving a turnover frequency of 35 h -1 , ≈30 times that of Pt nanoparticles stabilized by the same MOF. Ultrafast transient absorption spectroscopy further unveils that the single Pt atoms confined into the MOF provide highly efficient electron transfer channels and density functional theory calculations indicate that the introduction of single Pt atoms into the MOF improves the hydrogen binding energy, thus greatly boosting the photocatalytic H 2 production activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Exploring in vivo cholesterol-mediated interactions between activated EGF receptors in plasma membrane with single-molecule optical tracking

    International Nuclear Information System (INIS)

    Lin, Chien Y.; Huang, Jung Y.; Lo, Leu-Wei

    2016-01-01

    The first step in many cellular signaling processes occurs at various types of receptors in the plasma membrane. Membrane cholesterol can alter these signaling pathways of living cells. However, the process in which the interaction of activated receptors is modulated by cholesterol remains unclear. In this study, we measured single-molecule optical trajectories of epidermal growth factor receptors moving in the plasma membranes of two cancerous cell lines and one normal endothelial cell line. A stochastic model was developed and applied to identify critical information from single-molecule trajectories. We discovered that unliganded epidermal growth factor receptors may reside nearby cholesterol-riched regions of the plasma membrane and can move into these lipid domains when subjected to ligand binding. The amount of membrane cholesterol considerably affects the stability of correlated motion of activated epidermal growth factor receptors. Our results provide single-molecule evidence of membrane cholesterol in regulating signaling receptors. Because the three cell lines used for this study are quite diverse, our results may be useful to shed light on the mechanism of cholesterol-mediated interaction between activated receptors in live cells

  15. High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments.

    Science.gov (United States)

    Babazadeh, Amin; Erhard, Manuel; Wang, Feiran; Malik, Mehul; Nouroozi, Rahman; Krenn, Mario; Zeilinger, Anton

    2017-11-03

    Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.

  16. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties.

    Science.gov (United States)

    Jaffe, Adam; Lin, Yu; Beavers, Christine M; Voss, Johannes; Mao, Wendy L; Karunadasa, Hemamala I

    2016-04-27

    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3 (+), X = Br(-) or I(-)) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites' precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material's resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(Br x I1-x )3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors.

  17. Single molecule force spectroscopy at high data acquisition: A Bayesian nonparametric analysis

    Science.gov (United States)

    Sgouralis, Ioannis; Whitmore, Miles; Lapidus, Lisa; Comstock, Matthew J.; Pressé, Steve

    2018-03-01

    Bayesian nonparametrics (BNPs) are poised to have a deep impact in the analysis of single molecule data as they provide posterior probabilities over entire models consistent with the supplied data, not just model parameters of one preferred model. Thus they provide an elegant and rigorous solution to the difficult problem encountered when selecting an appropriate candidate model. Nevertheless, BNPs' flexibility to learn models and their associated parameters from experimental data is a double-edged sword. Most importantly, BNPs are prone to increasing the complexity of the estimated models due to artifactual features present in time traces. Thus, because of experimental challenges unique to single molecule methods, naive application of available BNP tools is not possible. Here we consider traces with time correlations and, as a specific example, we deal with force spectroscopy traces collected at high acquisition rates. While high acquisition rates are required in order to capture dwells in short-lived molecular states, in this setup, a slow response of the optical trap instrumentation (i.e., trapped beads, ambient fluid, and tethering handles) distorts the molecular signals introducing time correlations into the data that may be misinterpreted as true states by naive BNPs. Our adaptation of BNP tools explicitly takes into consideration these response dynamics, in addition to drift and noise, and makes unsupervised time series analysis of correlated single molecule force spectroscopy measurements possible, even at acquisition rates similar to or below the trap's response times.

  18. Highly Oriented Growth of Catalytically Active Zeolite ZSM‐5 Films with a Broad Range of Si/Al Ratios

    OpenAIRE

    Fu, Donglong; Schmidt, Joel E.; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian; Weckhuysen, Bert M.

    2017-01-01

    Abstract Highly b‐oriented zeolite ZSM‐5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al3+ usually disrupts the orientation of zeolite films. Herein, using structure‐directing agents with hydroxy groups, we demonstrate a new method to prepare highly b‐oriented zeolite ZSM‐5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞)...

  19. Activity concentrations of 137Cs in meat of broiler chicken after single and continuous application

    International Nuclear Information System (INIS)

    Poeschl, M.; Balas, J.

    1998-01-01

    Previously we examined the transfer, distribution and half-live of radiocaesium in broiler chicken after the application of artificially contaminated feed mixture or wheat wheat contaminated from the Chernobyl accident. Our results pointed to a different dynamics of radiocaesium in breast meat compared to leg meat in the chicken after short-time application (3 oral applications in 1 day). The aim of the present study was to find if the results are similar also after single and repeated (long-time) applications of an artificially contaminated feed mixture. Two experiments were carried out with broiler chickens (White Leghorn hybrid, race ISA VEDETTE). In experiment 1, one artificially contaminated oral dose of 5160 Bq of 137 Cs (activity concentration 1664 Bq/g) was administered to 18-day-old chickens. In experiment 2, artificially contaminated oral doses of 500 Bq of 137 Cs (activity concentration 161.3 Bq/g) were administered to 14-day-old chickens twice a day (at 8:00 and 20:00 h.) for 10 days. In either experiment, four chickens were slaughtered for activity determination in meat (breast and leg muscles) 6, 12, 24, 48 and 96 hours and 2, 4, 8, 10 days, respectively, after the first application of 137 Cs. The uptake of the single oral 137 Cs was rapid and the maximum 137 Cs activity concentrations were found in breast meat (0.783 Bq/g) 24 hours and in leg meat (1.005 Bq/g) 6 hours after 137 Cs application. From the 24th hour of the experiment, radiocaesium activity concentrations in breast and leg meat decreased with the biological half-life (T 1/2b ) of 84 and 66 hours, respectively. During a 10-day application of continuous doses of 137 Cs, the Cs activity concentrations increased and were 3.988 Bq/g in breast meat and 5.610 Bq/g in leg meat on day 2, and 7.427 Bq/g and 7.698 Bq/g, respectively, on day 10. Immediately after the administration of radiocaesium was stopped, the 137 Cs activity concentrations decreased rapidly with T 1/2b = 4.5 and 3.8 days in

  20. Female PFP patients present alterations in eccentric muscle activity but not the temporal order of activation of the vastus lateralis muscle during the single leg triple hop test.

    Science.gov (United States)

    Kalytczak, Marcelo Martins; Lucareli, Paulo Roberto Garcia; Dos Reis, Amir Curcio; Bley, André Serra; Biasotto-Gonzalez, Daniela Aparecida; Correa, João Carlos Ferrari; Politti, Fabiano

    2018-04-07

    This study aimed to compare the concentric and eccentric activity and the temporal order of peak activity of the hip and knee muscles between women with patellofemoral pain (PFP) and healthy women during the single leg triple hop test (SLTHT). Electromyographic (EMG) and Kinematic data were collected from 14 healthy women (CG) and 14 women diagnosed with PFP (PFG) during a single session of the single leg triple hop test. Integral surface electromyography (iEMG) data of the hip and knee muscles in eccentric and concentric phases and the length of time that each muscle needed to reach the maximal peak of muscle activity were calculated. The iEMG in the eccentric phase was significantly higher (p < 0.05) than the concentric phase, for the gluteus maximus and gluteus medius muscles (CG and PFG) and for the vastus lateralis muscle (PFG). The vastus lateralis muscle was the first muscle to reach the highest peak of activity in the PFG, and the third to reach this peak in the CG. In the present study, the activity of the vastus lateralis muscle during the eccentric phase of the jump was greater than concentric phase, as a temporal anticipation of its peak in activity among women with PFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Solidification of highly active wastes

    International Nuclear Information System (INIS)

    Morris, J.B.

    1986-07-01

    This document contains the annual reports for the contracts: (A) Glass Technology; (B) Calcination of Highly Active Waste Liquors; (C) Formation and Trapping of Volatile Ruthenium; (D) Deposition of Ruthenium; (E) Enhancement of Off-Gas Aerosol Collection; (F) Volatilisation of Cs, Tc and Te in High Level Waste Vitrification. (author)

  2. Ferroelectric InMnO{sub 3}: Growth of single crystals, structure and high-temperature phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Bekheet, Maged F., E-mail: maged.bekheet@ceramics.tu-berlin.de [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Fachgebiet Keramische Werkstoffe / Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin (Germany); Svoboda, Ingrid; Liu, Na [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Bayarjargal, Lkhamsuren [Institut für Geowissenschaften, Goethe-Universität, Altenhöferallee 1, d-60438 Frankfurt a.M. (Germany); Irran, Elisabeth [Institut für Chemie, Technische Universität Berlin, Straße des 17, Juni 135, 10623 Berlin (Germany); Dietz, Christian; Stark, Robert W.; Riedel, Ralf [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Gurlo, Aleksander [Fachgebiet Keramische Werkstoffe / Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin (Germany)

    2016-09-15

    To understand the origin of the ferroelectricity in InMnO{sub 3}, single crystals with average size of 1 mm were grown in PbF{sub 2} flux at 950 °C. The results of single crystal X-ray diffraction, second harmonic generation and piezoresponse force microscopy studies of high-quality InMnO{sub 3} single crystals reveal that the room-temperature state in this material is ferroelectric with P6{sub 3}cm symmetry. The polar InMnO{sub 3} specimen undergoes a reversible phase transition from non-centrosymmetric P6{sub 3}cm structure to a centrosymmetric P6{sub 3}/mmc structure at 700 °C as confirmed by the in situ high-temperature Raman spectroscopic and synchrotron X-ray diffraction experiments. - Graphical abstract: Piezoresponse fore microscopy (PFM) studies of high quality InMnO{sub 3} single crystal revealed that the room-temperature state of this material is ferroelectric with a clear cloverleaf pattern corresponding to six antiphase ferroelectric domains with alternating polarization ±P{sub z}. Display Omitted - Highlights: • InMnO{sub 3} single crystals with average size of 1 mm were grown in PbF{sub 2} flux at 950 °C. • The room-temperature state of InMnO{sub 3} is ferroelectric with polar P6{sub 3}cm structure. • PolarInMnO{sub 3} reversibly transforms to a centrosymmetric P6{sub 3}/mmc structure above 700 °C.

  3. Active learning of geometrical optics in high school: the ALOP approach

    Science.gov (United States)

    Alborch, Alejandra; Pandiella, Susana; Benegas, Julio

    2017-09-01

    A group comparison experiment of two high school classes with pre and post instruction testing has been carried out to study the suitability and advantages of using the active learning of optics and photonics (ALOP) curricula in high schools of developing countries. Two parallel, mixed gender, 12th grade classes of a high school run by the local university were chosen. One course was randomly selected to follow the experimental instruction, based on teacher and student activities contained in the ALOP Manual. The other course followed the traditional, teacher-centered, instruction previously practiced. Conceptual knowledge of the characteristics of image formation by plane mirrors and single convergent and divergent lenses was measured by applying, in both courses, the multiple-choice test, light and optics conceptual evaluation (LOCE). Measurement before instruction showed that initial knowledge was almost null, and therefore equivalent, in both courses. After instruction testing showed that the conceptual knowledge of students following the ALOP curricula more than doubled that achieved by students in the control course, a situation maintained throughout the six conceptual dimensions tested by the 34 questions of the LOCE test used in this experiment. Using a 60% performance level on the LOCE test as the threshold of satisfactory performance, most (about 90%) of the experimental group achieved this level—independent of initial knowledge, while no student following traditional instruction reached this level of understanding. Some considerations and recommendations for prospective users are also included.

  4. Single Assignment C (SAC): High Productivity meets High Performance

    NARCIS (Netherlands)

    Grelck, C.; Zsók, V.; Horváth, Z.; Plasmeijer, R.

    2012-01-01

    We present the ins and outs of the purely functional, data parallel programming language SaC (Single Assignment C). SaC defines state- and side-effect-free semantics on top of a syntax resembling that of imperative languages like C/C++/C# or Java: functional programming with curly brackets. In

  5. Ultrahigh-speed, high-sensitivity color camera with 300,000-pixel single CCD

    Science.gov (United States)

    Kitamura, K.; Arai, T.; Yonai, J.; Hayashida, T.; Ohtake, H.; Kurita, T.; Tanioka, K.; Maruyama, H.; Namiki, J.; Yanagi, T.; Yoshida, T.; van Kuijk, H.; Bosiers, Jan T.; Etoh, T. G.

    2007-01-01

    We have developed an ultrahigh-speed, high-sensitivity portable color camera with a new 300,000-pixel single CCD. The 300,000-pixel CCD, which has four times the number of pixels of our initial model, was developed by seamlessly joining two 150,000-pixel CCDs. A green-red-green-blue (GRGB) Bayer filter is used to realize a color camera with the single-chip CCD. The camera is capable of ultrahigh-speed video recording at up to 1,000,000 frames/sec, and small enough to be handheld. We also developed a technology for dividing the CCD output signal to enable parallel, highspeed readout and recording in external memory; this makes possible long, continuous shots up to 1,000 frames/second. As a result of an experiment, video footage was imaged at an athletics meet. Because of high-speed shooting, even detailed movements of athletes' muscles were captured. This camera can capture clear slow-motion videos, so it enables previously impossible live footage to be imaged for various TV broadcasting programs.

  6. Single-enzyme analysis in a droplet-based micro- and nanofluidic system

    NARCIS (Netherlands)

    Arayanarakool, Rerngchai; Shui, Lingling; Kengen, Servé W.M.; van den Berg, Albert; Eijkel, Jan C.T.

    2013-01-01

    The kinetic activity of individual enzyme molecules was determined in aqueous droplets generated in a nano- and microfluidic device. To avoid high background noise, the enzyme and substrate solution was confined into femtoliter carriers, achieving high product concentrations from single-molecule

  7. Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads.

    Science.gov (United States)

    Sasagawa, Yohei; Danno, Hiroki; Takada, Hitomi; Ebisawa, Masashi; Tanaka, Kaori; Hayashi, Tetsutaro; Kurisaki, Akira; Nikaido, Itoshi

    2018-03-09

    High-throughput single-cell RNA-seq methods assign limited unique molecular identifier (UMI) counts as gene expression values to single cells from shallow sequence reads and detect limited gene counts. We thus developed a high-throughput single-cell RNA-seq method, Quartz-Seq2, to overcome these issues. Our improvements in the reaction steps make it possible to effectively convert initial reads to UMI counts, at a rate of 30-50%, and detect more genes. To demonstrate the power of Quartz-Seq2, we analyzed approximately 10,000 transcriptomes from in vitro embryonic stem cells and an in vivo stromal vascular fraction with a limited number of reads.

  8. Antimicrobial Activity of Single-Walled Carbon Nano tubes Suspended in Different Surfactants

    International Nuclear Information System (INIS)

    Dong, L.; Alex Henderson, A.; Field, Ch.

    2012-01-01

    We investigated the antibacterial activity of single-walled carbon nano tubes (SWCNTs) dispersed in surfactant solutions of sodium cholate, sodium dodecylbenzene sulfonate, and sodium dodecyl sulfate. Among the three surfactants, sodium cholate demonstrated the weakest antibacterial activity against Salmonella enterica, Escherichia coli, and Enterococcus faecium and thereby was used to disperse bundled SWCNTs in order to study nano tube antibiotic activity. SWCNTs exhibited antibacterial characteristics for both S. enterica and E. coli. With the increase of nano tube concentrations from 0.3 mg/mL to 1.5 mg/mL, the growth curves had plateaus at lower absorbance values whereas the absorbance value was not obviously affected by the incubation ranging from 5?min to 2 h. Our findings indicate that carbon nano tubes could become an effective alternative to antibiotics in dealing with drug-resistant and multidrug-resistant bacterial strains because of the physical mode of bactericidal action that SWCNTs display

  9. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification

    Directory of Open Access Journals (Sweden)

    Sun Zhenyu

    2001-08-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the foundation of powerful complex trait and pharmacogenomic analyses. The availability of large SNP databases, however, has emphasized a need for inexpensive SNP genotyping methods of commensurate simplicity, robustness, and scalability. We describe a solution-based, microtiter plate method for SNP genotyping of human genomic DNA. The method is based upon allele discrimination by ligation of open circle probes followed by rolling circle amplification of the signal using fluorescent primers. Only the probe with a 3' base complementary to the SNP is circularized by ligation. Results SNP scoring by ligation was optimized to a 100,000 fold discrimination against probe mismatched to the SNP. The assay was used to genotype 10 SNPs from a set of 192 genomic DNA samples in a high-throughput format. Assay directly from genomic DNA eliminates the need to preamplify the target as done for many other genotyping methods. The sensitivity of the assay was demonstrated by genotyping from 1 ng of genomic DNA. We demonstrate that the assay can detect a single molecule of the circularized probe. Conclusions Compatibility with homogeneous formats and the ability to assay small amounts of genomic DNA meets the exacting requirements of automated, high-throughput SNP scoring.

  10. Mechanically activated self-propagated high-temperature synthesis of nanometer-structured MgB2

    International Nuclear Information System (INIS)

    Radev, D.D.; Marinov, M.; Tumbalev, V.; Radev, I.; Konstantinov, L.

    2005-01-01

    Nanometer-sized MgB 2 was prepared via a two-step modification of the mechanically activated self-propagated high-temperature synthesis. The experimental conditions and some structural and phase characteristics of the synthesized product are reported. It is shown that a single-phase material can be prepared after 2 h of intense mechanical treatment of the starting magnesium and boron powders and a synthesis induced at a current-pulse density of 30 A cm -2 . The average size of MgB 2 particles synthesized in this way is 70-80 nm. It is also shown that using the same reagents and the 'classic' high-temperature interaction at 850 deg C with a protective atmosphere of pure Ar, mean particle size of the MgB 2 obtained is 50 μm

  11. Monolithic array of 32 SPAD pixels for single-photon imaging at high frame rates

    International Nuclear Information System (INIS)

    Tisa, Simone; Guerrieri, Fabrizio; Zappa, Franco

    2009-01-01

    We present a single-chip monolithic array of 32 Single-Photon Avalanche Diodes (SPAD) and associated electronics for imaging at high frame rates and high sensitivity. Photodetectors, front-end circuitry and control electronics used to manage the array are monolithically integrated on the same chip in a standard 0.35 μm CMOS high-voltage technology. The array is composed of 32 'smart' pixels working in photon counting mode and functioning in a parallel fashion. Every cell comprises of an integrated SPAD photodetector, a novel quenching circuit named as Variable Load Quenching Circuit (VLQC), counting electronics and a buffer memory. Proper ancillary electronics that perform the arbitration of photon counts between two consecutive frames is integrated as well. Thanks to the presence of in-pixel memory registers, the inter-frame dead time between subsequent frames is limited to few nanoseconds. Since integration and download are performed simultaneously and the array can be addressed like a standard digital memory, the achievable maximum frame rate is very high in the order of hundreds of thousands of frame/s.

  12. Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator

    NARCIS (Netherlands)

    Herpen, M.M.J.W. van; Bisson, S.E.; Ngai, A.K.Y.; Harren, F.J.M.

    2004-01-01

    A new singly resonant, single-frequency optical parametric oscillator (OPO) has been developed for the 2.6-4.7 mum infrared wavelength region, using a high power (>20 W), widely tunable (1024-1034 nm) Yb:YAG pump source. With the OPO frequency stabilized with an intracavity etalon, the OPO achieved

  13. High-capacity neutron activation analysis facility

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1979-01-01

    A high-capacity neutron activation analysis facility, the Reactor Activation Facility, was designed and built and has been in operation for about a year at one of the Savannah River Plant's production reactors. The facility determines uranium and about 19 other trace elements in hydrogeochemical samples collected in the National Uranium Resource Evaluation program. The facility has a demonstrated average analysis rate of over 10,000 samples per month, and a peak rate of over 16,000 samples per month. Uranium is determined by cyclic activation and delayed neutron counting of the U-235 fission products; other elements are determined from gamma-ray spectra recorded in subsequent irradiation, decay, and counting steps. The method relies on the absolute activation technique and is highly automated for round-the-clock unattended operation

  14. Effect of manganese doping on PIN-PMN-PT single crystals for high power applications

    Science.gov (United States)

    Sahul, Raffi

    Single crystals based on relaxor-lead titanate (relaxor-PT) solid solutions have advanced the world of piezoelectric materials for the past two decades with their giant piezoelectric properties achieved by domain engineered configurations. When single crystals of lead magnesium niobate-lead titanate (PMN-PT) solid solution in the rhombohedral phase were poled along [001]c direction with "4R" domain configuration, they exhibited high piezoelectric charge coefficient (d33 >2000 pC/N) and high electromechanical coupling (k33 >0.9) which led to their widespread use in advanced medical imaging systems and underwater acoustic devices. However, PMN-PT crystals suffer from low phase transition temperature (Trt ˜85-95 °C) and lower coercive field (depolarizing electric field, Ec ˜2-3 kV/cm). Lead indium niobate - lead magnesium niobate - lead titanate (PIN-PMN-PT) ternary single crystals formed by adding indium as another constituent exhibit higher coercive field (E c ˜5kV/cm) and higher Curie temperature (Tc >210 °C) than the binary PMN-PT crystals (Ec ˜2.5 kV/cm and Tc high mechanical Q-factor (Qm >600) compared to the undoped binary crystals (Qm of PMN-PT 2000 pC/N for PMN-PT) occurs in the [001]c poled crystals, which is attributed to the polarization rotation mechanisms. Hence, domain engineering configurations induced by poling these crystals in orientations other than their polarization axis are critical for achieving large piezoelectric effects. Based on the phase diagram of these solid solutions, with the increase in PT content beyond the rhombohedral phase region, orthorhombic/monoclinic and tetragonal phases are formed. In the orthorhombic and tetragonal phases, the spontaneous polarization directions are in the [011]c and [001] c directions respectively. Similar to the "4R" domain configuration achieved in [001]c poled rhombohedral crystals, other domain configurations can be achieved by poling the single crystals in different orientations, leading to

  15. Kink structures induced in nickel-based single crystal superalloys by high-Z element migration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei; Zhang, Jianxin [Key Laboratory for Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Mao, Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Jiang, Ying [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Feng, Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Shen, Zhenju; Li, Jixue; Zhang, Ze [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Han, Xiaodong [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2015-01-05

    Highlights: • Innovative kink structures generate at the γ/γ′ interfaces in the crept superalloy. • Clusters of heavy elements congregate at the apex of the kinks. • Dislocation core absorbs hexagonal structural high-Z elements. - Abstract: Here, we investigate a new type of kink structure that is found at γ/γ′ interfaces in nickel-based single crystal superalloys. We studied these structures at the atomic and elemental level using aberration corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The core of the dislocation absorbs high-Z elements (i.e., Co and Re) that adopt hexagonal arrangements, and it extrudes elements (i.e., Ni and Al) that adopt face centered cubic (fcc) structures. High-Z elements (i.e., Ta and W) and Cr, which is a low-Z element, are stabilized in body centered cubic (bcc) arrangements; Cr tends to behave like Re. High-Z elements, which migrate and adopt a hexagonal structure, induce kink formation at γ/γ′ interfaces. This process must be analyzed to fully understand the kinetics and dynamics of creep in nickel-based single crystal superalloys.

  16. A high frequency test bench for rapid single-flux-quantum circuits

    International Nuclear Information System (INIS)

    Engseth, H; Intiso, S; Rafique, M R; Tolkacheva, E; Kidiyarova-Shevchenko, A

    2006-01-01

    We have designed and experimentally verified a test bench for high frequency testing of rapid single-flux-quantum (RSFQ) circuits. This test bench uses an external tunable clock signal that is stable in amplitude, phase and frequency. The high frequency external clock reads out the clock pattern stored in a long shift register. The clock pattern is consequently shifted out at high speed and split to feed both the circuit under test and an additional shift register in the test bench for later verification at low speed. This method can be employed for reliable high speed verification of RSFQ circuit operation, with use of only low speed read-out electronics. The test bench consists of 158 Josephson junctions and the occupied area is 3300 x 660 μm 2 . It was experimentally verified up to 33 GHz with ± 21.7% margins on the global bias supply current

  17. Highly reproducible alkali metal doping system for organic crystals through enhanced diffusion of alkali metal by secondary thermal activation.

    Science.gov (United States)

    Lee, Jinho; Park, Chibeom; Song, Intek; Koo, Jin Young; Yoon, Taekyung; Kim, Jun Sung; Choi, Hee Cheul

    2018-05-16

    In this paper, we report an efficient alkali metal doping system for organic single crystals. Our system employs an enhanced diffusion method for the introduction of alkali metal into organic single crystals by controlling the sample temperature to induce secondary thermal activation. Using this system, we achieved intercalation of potassium into picene single crystals with closed packed crystal structures. Using optical microscopy and Raman spectroscopy, we confirmed that the resulting samples were uniformly doped and became K 2 picene single crystal, while only parts of the crystal are doped and transformed into K 2 picene without secondary thermal activation. Moreover, using a customized electrical measurement system, the insulator-to-semiconductor transition of picene single crystals upon doping was confirmed by in situ electrical conductivity and ex situ temperature-dependent resistivity measurements. X-ray diffraction studies showed that potassium atoms were intercalated between molecular layers of picene, and doped samples did not show any KH- nor KOH-related peaks, indicating that picene molecules are retained without structural decomposition. During recent decades, tremendous efforts have been exerted to develop high-performance organic semiconductors and superconductors, whereas as little attention has been devoted to doped organic crystals. Our method will enable efficient alkali metal doping of organic crystals and will be a resource for future systematic studies on the electrical property changes of these organic crystals upon doping.

  18. High performance mode locking characteristics of single section quantum dash lasers.

    Science.gov (United States)

    Rosales, Ricardo; Murdoch, S G; Watts, R T; Merghem, K; Martinez, Anthony; Lelarge, Francois; Accard, Alain; Barry, L P; Ramdane, Abderrahim

    2012-04-09

    Mode locking features of single section quantum dash based lasers are investigated. Particular interest is given to the static spectral phase profile determining the shape of the mode locked pulses. The phase profile dependence on cavity length and injection current is experimentally evaluated, demonstrating the possibility of efficiently using the wide spectral bandwidth exhibited by these quantum dash structures for the generation of high peak power sub-picosecond pulses with low radio frequency linewidths.

  19. Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution

    Science.gov (United States)

    Senavirathne, Gayan; Bertram, Jeffrey G.; Jaszczur, Malgorzata; Chaurasiya, Kathy R.; Pham, Phuong; Mak, Chi H.; Goodman, Myron F.; Rueda, David

    2015-12-01

    Activation-induced deoxycytidine deaminase (AID) generates antibody diversity in B cells by initiating somatic hypermutation (SHM) and class-switch recombination (CSR) during transcription of immunoglobulin variable (IgV) and switch region (IgS) DNA. Using single-molecule FRET, we show that AID binds to transcribed dsDNA and translocates unidirectionally in concert with RNA polymerase (RNAP) on moving transcription bubbles, while increasing the fraction of stalled bubbles. AID scans randomly when constrained in an 8 nt model bubble. When unconstrained on single-stranded (ss) DNA, AID moves in random bidirectional short slides/hops over the entire molecule while remaining bound for ~5 min. Our analysis distinguishes dynamic scanning from static ssDNA creasing. That AID alone can track along with RNAP during transcription and scan within stalled transcription bubbles suggests a mechanism by which AID can initiate SHM and CSR when properly regulated, yet when unregulated can access non-Ig genes and cause cancer.

  20. Single-mode fiber laser based on core-cladding mode conversion.

    Science.gov (United States)

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  1. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui

    2018-01-16

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  2. Ordered macro-microporous metal-organic framework single crystals

    Science.gov (United States)

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  3. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  4. Design of flapping wings for application to single active degree of freedom micro air vehicles

    Science.gov (United States)

    Chang, Kelvin Thomas

    This dissertation covers an experimental program to understand how wing compliance influences the performance of flapping micro air vehicle wings. The focus is the design of a membraned flapping wing for a single active degree of freedom mechanism, looking to maximize thrust performance in hover conditions. The optimization approach is unique in that experiments were the chosen engine as opposed to a computation model; this is because of the complexity involved in hover-mode flapping aerodynamics. The flapping mechanism and manufacturing process for fabricating the wings were carefully developed. The uncertainty in the thrust measurement was identified and reduced by implementing precision machining and repeatable techniques for fabrication. This resulted in a reduction of the manufacturing coefficient of variation from 16.8% to 2.6%. Optimization was then conducted for a single objective (Maximize thrust), using a three parameter design space, finding the highest thrust performance in wings with high aspect ratio; then, a multi-objective optimization was conducted with two objectives (Thrust and Power) and a four parameter space. The research then shifted focus to identifying the stiffness and deformation characteristics of high performance wing designs. Static stiffness measurements with a simple line load suggested that high chordwise stiffness or lower spanwise stiffness would be favorable for aerodynamic performance. To explore more components of the deformation, a full-field imaging technique was used and a uniform load was substituted to engage with the membrane. It was found that there is a range of torsional compliance where the wing is most efficient especially at higher flapping frequencies. The final component of the study was the dynamic deformation measurement. The two system, four camera digital image correlation setup uses stroboscopic measurement to capture the wing deformation. The phase shift between the twist and stroke, and the tip deflection

  5. Xanthine oxidase activity is associated with risk factors for cardiovascular disease and inflammatory and oxidative status markers in metabolic syndrome: effects of a single exercise session.

    Science.gov (United States)

    Feoli, Ana Maria Pandolfo; Macagnan, Fabrício Edler; Piovesan, Carla Haas; Bodanese, Luiz Carlos; Siqueira, Ionara Rodrigues

    2014-01-01

    The main goal of the present study was to investigate the xanthine oxidase (XO) activity in metabolic syndrome in subjects submitted to a single exercise session. We also investigated parameters of oxidative and inflammatory status. A case-control study (9 healthy and 8 MS volunteers) was performed to measure XO, superoxide dismutase (SOD), glutathione peroxidase activities, lipid peroxidation, high-sensitivity C-reactive protein (hsCRP) content, glucose levels, and lipid profile. Body mass indices, abdominal circumference, systolic and diastolic blood pressure, and TG levels were also determined. The exercise session consisted of 3 minutes of stretching, 3 minutes of warm-up, 30 minutes at a constant dynamic workload at a moderate intensity, and 3 minutes at a low speed. The blood samples were collected before and 15 minutes after the exercise session. Serum XO activity was higher in MS group compared to control group. SOD activity was lower in MS subjects. XO activity was correlated with SOD, abdominal circumference, body mass indices, and hsCRP. The single exercise session reduced the SOD activity in the control group. Our data support the association between oxidative stress and risk factors for cardiovascular diseases and suggest XO is present in the pathogenesis of metabolic syndrome.

  6. Xanthine Oxidase Activity Is Associated with Risk Factors for Cardiovascular Disease and Inflammatory and Oxidative Status Markers in Metabolic Syndrome: Effects of a Single Exercise Session

    Directory of Open Access Journals (Sweden)

    Ana Maria Pandolfo Feoli

    2014-01-01

    Full Text Available Objective. The main goal of the present study was to investigate the xanthine oxidase (XO activity in metabolic syndrome in subjects submitted to a single exercise session. We also investigated parameters of oxidative and inflammatory status. Materials/Methods. A case-control study (9 healthy and 8 MS volunteers was performed to measure XO, superoxide dismutase (SOD, glutathione peroxidase activities, lipid peroxidation, high-sensitivity C-reactive protein (hsCRP content, glucose levels, and lipid profile. Body mass indices, abdominal circumference, systolic and diastolic blood pressure, and TG levels were also determined. The exercise session consisted of 3 minutes of stretching, 3 minutes of warm-up, 30 minutes at a constant dynamic workload at a moderate intensity, and 3 minutes at a low speed. The blood samples were collected before and 15 minutes after the exercise session. Results. Serum XO activity was higher in MS group compared to control group. SOD activity was lower in MS subjects. XO activity was correlated with SOD, abdominal circumference, body mass indices, and hsCRP. The single exercise session reduced the SOD activity in the control group. Conclusions. Our data support the association between oxidative stress and risk factors for cardiovascular diseases and suggest XO is present in the pathogenesis of metabolic syndrome.

  7. Comparison of Deformation in High-Purity Single/Large Grain and Polycrystalline Niobium Superconducting Cavities

    International Nuclear Information System (INIS)

    Ganapati Rao Myneni; Peter Kneisel

    2005-01-01

    The current approach for the fabrication of superconducting radio frequency (SRF) cavities is to roll and deep draw sheets of polycrystalline high-purity niobium. Recently, a new technique was developed at Jefferson Laboratory that enables the fabrication of single-crystal high-purity Nb SRF cavities. To better understand the differences between SRF cavities fabricated out of fine-grained polycrystalline sheet in the standard manner and single crystal cavities fabricated by the new technique, two half-cells were produced according to the two different procedures and compared using a variety of analytical techniques including optical microscopy, scanning laser confocal microscopy, profilometry, and X-ray diffraction. Crystallographic orientations, texture, and residual stresses were determined in the samples before and after forming and this poster presents the results of this ongoing study

  8. Allele specific hybridization using oligonucleotide probes of very high specific activity: Discrimination of the human β/sup A/ and β/sup S/-globin genes

    International Nuclear Information System (INIS)

    Studencki, A.B.; Wallace, R.B.

    1984-01-01

    The repair activity of E. coli DNA polymerase I (Klenow fragment) was used to prepare nonadecanucleotide hybridization probes which were complementary either to the normal human β-globin (β/sup A/) or to the sickle cell human β-globin (β/sup S/) gene. Template directed polymerization of highly radiolabeled α-/sup 32/P-deoxyribonucleoside triphosphates (3200, 5000 and/or 7800 Ci/mmol) onto nonamer and decamer primers produced probes with specific activities ranging from 1.0 - 2.0 x 10/sup 10/ dpm/μg. The extremely high specific activities of these probes made it possible to detect the β/sup A/ and β/sup S/ single copy gene sequences in as little as 1 μg of total human genomic DNA as well as to discriminate between the homozygous and heterozygous states. This means that it was possible to detect 0.5 - 1.0 x 10/sup -18/ moles of a given single copy sequence

  9. A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9.

    Science.gov (United States)

    Demoulin, J B; Uyttenhove, C; Van Roost, E; DeLestré, B; Donckers, D; Van Snick, J; Renauld, J C

    1996-09-01

    Interleukin-9 (IL-9), a T-cell-derived cytokine, interacts with a specific receptor associated with the IL-2 receptor gamma chain. In this report, we analyze the functional domains of the human IL-9 receptor transfected into mouse lymphoid cell lines. Three different functions were examined: growth stimulation in factor-dependent pro-B Ba/F3 cells, protection against dexamethasone-induced apoptosis, and Ly-6A2 induction in BW5147 lymphoma cells. The results indicated that a single tyrosine, at position 116 in the cytoplasmic domain, was required for all three activities. In addition, we observed that human IL-9 reduced the proliferation rate of transfected BW5147 cells, an effect also dependent on the same tyrosine. This amino acid was necessary for IL-9-mediated tyrosine phosphorylation of the receptor and for STAT activation but not for IRS-2/4PS activation or for JAK1 phosphorylation, which depended on a domain closer to the plasma membrane. We also showed that JAK1 was constitutively associated with the IL-9 receptor. Activated STAT complexes induced by IL-9 were found to contain STAT1, STAT3, and STAT5 transcription factors. Moreover, sequence homologies between human IL-9 receptor tyrosine 116 and tyrosines (of other receptors activating STAT3 and STAT5 were observed. Taken together, these data indicate that a single tyrosine of the IL-9 receptor, required for activation of three different STAT proteins, is necessary for distinct activities of this cytokine, including proliferative responses.

  10. Revealing properties of single-walled carbon nanotubes under high pressure

    CERN Document Server

    Tang Jie; Sasaki, T; Yudasaka, M; Matsushita, A; Iijima, S

    2002-01-01

    It was found by the x-ray diffraction experiment under hydrostatic pressure that the carbon nanotubes are compressed easily with a high volume compressibility of 0.024 GPa sup - sup 1. The single-walled carbon nanotubes are polygonized when they form bundles of hexagonal close-packed structure and the inter-tubular gap is smaller than the equilibrium spacing of graphite. Under high pressure, further polygonization occurs to accommodate the extra amount of volume reduction. The ratio of the short and the long diagonals in the hexagonalized cross section is found to have changed from 0.991 at zero pressure to 0.982 at 1.5 GPa pressure, when the Bragg reflection from the nanotube lattice diminished. Accompanying polygonization, a discontinuous change in electrical resistivity was observed at 1.5 GPa pressure, suggesting a phase transition had occurred.

  11. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation

    Science.gov (United States)

    Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.

    2018-04-01

    Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.

  12. A SiGe High Gain and Highly Linear F-Band Single-Balanced Subharmonic Mixer

    OpenAIRE

    Seyedhosseinzadeh, Neda; Nabavi, Abdolreza; Carpenter, Sona; He, Zhongxia Simon; Bao, Mingquan; Zirath, Herbert

    2017-01-01

    A compact, broadband, high gain, second-order active down-converter subharmonic mixer is demonstrated using a 130-nm SiGe BiCMOS technology. The mixer adopts a bottom-LO Gilbert topology, on-chip RF and LO baluns and two emitter-follower buffers to realize a high gain wideband operation in both RF and IF frequencies. The measured performance exhibits a flat conversion gain (CG) of about 11 dB from 90 to 130 GHz with an average LO power of +3 dBm and high 2LO-RF isolation better than 60 dB. Th...

  13. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    Science.gov (United States)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  14. Elemental Characterization of Single-Wall Carbon Nanotube Certified Reference Material by Neutron and Prompt gamma Activation Analysis

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Bennett, J. W.; Oflaz, R.; Paul, R. L.; De Nadai Fernandes, E. A.; Kubešová, Marie; Bacchi, M. A.; Stopic, A. J.; Sturgeon, R. E.; Grinberg, P.

    2015-01-01

    Roč. 87, č. 7 (2015), s. 3699-3705 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : Neutron Activation Analyses * nanotechnology * Carbon nanotubes * Chemical activation * Single-walled carbon nanotubes (SWCN) Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.886, year: 2015

  15. High performance gel imaging with a commercial single lens reflex camera

    Science.gov (United States)

    Slobodan, J.; Corbett, R.; Wye, N.; Schein, J. E.; Marra, M. A.; Coope, R. J. N.

    2011-03-01

    A high performance gel imaging system was constructed using a digital single lens reflex camera with epi-illumination to image 19 × 23 cm agarose gels with up to 10,000 DNA bands each. It was found to give equivalent performance to a laser scanner in this high throughput DNA fingerprinting application using the fluorophore SYBR Green®. The specificity and sensitivity of the imager and scanner were within 1% using the same band identification software. Low and high cost color filters were also compared and it was found that with care, good results could be obtained with inexpensive dyed acrylic filters in combination with more costly dielectric interference filters, but that very poor combinations were also possible. Methods for determining resolution, dynamic range, and optical efficiency for imagers are also proposed to facilitate comparison between systems.

  16. Challenging Stereotypes: Sexual Functioning of Single Adults with High Functioning Autism Spectrum Disorder

    Science.gov (United States)

    Byers, E. Sandra; Nichols, Shana; Voyer, Susan D.

    2013-01-01

    This study examined the sexual functioning of single adults (61 men, 68 women) with high functioning autism and Asperger syndrome living in the community with and without prior relationship experience. Participants completed an on-line questionnaire assessing autism symptoms, psychological functioning, and various aspects of sexual functioning. In…

  17. High-capacity neutron activation analysis facility

    International Nuclear Information System (INIS)

    Hochel, R.C.; Bowman, W.W.; Zeh, C.W.

    1980-01-01

    A high-capacity neutron activation analysis facility, the Reactor Activation Facility, was designed and built and has been in operation for about a year at one of the Savannah River Plant's production reactors. The facility determines uranium and about 19 other elements in hydrogeochemical samples collected in the National Uranium Resource Evaluation program, which is sponsored and funded by the United States Department of Energy, Grand Junction Office. The facility has a demonstrated average analysis rate of over 10,000 samples per month, and a peak rate of over 16,000 samples per month. Uranium is determined by cyclic activation and delayed neutron counting of the U-235 fission products; other elements are determined from gamma-ray spectra recorded in subsequent irradiation, decay, and counting steps. The method relies on the absolute activation technique and is highly automated for round-the-clock unattended operation

  18. Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules.

    Directory of Open Access Journals (Sweden)

    Antonino Ingargiola

    Full Text Available We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics consistent with those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions.

  19. Highly efficient electron gun with a single-atom electron source

    International Nuclear Information System (INIS)

    Ishikawa, Tsuyoshi; Urata, Tomohiro; Cho, Boklae; Rokuta, Eiji; Oshima, Chuhei; Terui, Yoshinori; Saito, Hidekazu; Yonezawa, Akira; Tsong, Tien T.

    2007-01-01

    The authors have demonstrated highly collimated electron-beam emission from a practical electron gun with a single-atom electron source; ∼80% of the total emission current entered the electron optics. This ratio was two or three orders of magnitude higher than those of the conventional electron sources such as a cold field emission gun and a Zr/O/W Schottky gun. At the pressure of less than 1x10 -9 Pa, the authors observed stable emission of 20 nA, which generates the specimen current of 5 pA required for scanning electron microscopes

  20. High PT leptons and single W boson production at HERA

    International Nuclear Information System (INIS)

    Korcsak-Gorzo, Katherine

    2010-12-01

    A search for isolated electrons and muons with high transverse momentum in events with large missing transverse momentum has been conducted. The results have been found to be compatible with the Standard Model expectations. The cross section for single W production has been measured and the total cross section in electron-proton collisions at HERA has been found to be σ(ep → eWX) = 0.93 -0.23 +0.26 (stat.)±0.08(syst.) pb. The measurements are based on the complete available ZEUS data sets from the HERA I and II running periods taken between 1994-2007. (orig.)

  1. High activity gamma irradiators developed in Hungary

    International Nuclear Information System (INIS)

    Stenger, V.

    1997-01-01

    The development of high activity Gamma irradiators began in Hungary already in the early years of 60s. The very first designs were serving research in irradiation chemistry, radiation physics, food and agricultural research, radiation sterilization, plastic radiation chemistry, radiobiology, cancer therapy, personal and high dose dosimetry, following the international trends. Domestic and new international demands forced us to design and construct High Activity Gamma Irradiators: Multipurpose Pilot, Portable and Large scale bulk, Multipurpose Industrial scale types

  2. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    KAUST Repository

    Wang, Liang

    2015-04-22

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen.

  3. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds

    Science.gov (United States)

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  4. New highly sensitive method of simultaneous instrumental neutron activation determination of 12 microelements in vine

    International Nuclear Information System (INIS)

    Shoniya, N.I.

    1977-01-01

    The main principles and methods of simultaneous multi-element instrumental neutron activation determination of microelements in vine seeds are presented. The methods permit to carry out quantitative evaluation for every single corn of the seeds. It is shown that the method of instrumental neutron activation analysis with the utilization of a semiconductor spectrometer of high resolution and mini electronic computer permit to carry out serial determinations of 12 microelements in the individual corns of vine seeds of different sorts. This method will permit to determine the missing or excess content of this or that biologically important microelement in soils, plants, fruit and genetic material - seeds, and so to determine the optimum conditions of growing plants by applying microelement fertilizers as extra nutrient means

  5. Characterization of biomass combustion at high temperatures based on an upgraded single particle model

    International Nuclear Information System (INIS)

    Li, Jun; Paul, Manosh C.; Younger, Paul L.; Watson, Ian; Hossain, Mamdud; Welch, Stephen

    2015-01-01

    Highlights: • High temperature rapid biomass combustion is studied based on single particle model. • Particle size changes in devolatilization and char oxidation models are addressed. • Time scales of various thermal sub-processes are compared and discussed. • Potential solutions are suggested to achieve better biomass co-firing performances. - Abstract: Biomass co-firing is becoming a promising solution to reduce CO 2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is employed to study high-temperature rapid biomass combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used for those two models were from high temperatures and high heating rates tests. The particle size changes during the devolatilization and char burnout are also considered. The mass loss properties and temperature profile during the biomass devolatilization and combustion processes are predicted; and the timescales of particle heating up, drying, devolatilization, and char burnout are compared and discussed. Finally, the results shed light on the effects of particle size on the combustion behavior of biomass particle

  6. Highly Stable and Active Catalyst for Sabatier Reactions

    Science.gov (United States)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  7. Control of a White Organic Light Emitting Diode emission parameters using a single doped RGB active layer

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, D. [Departamento de Ciência dos Materiais e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica (Portugal); Pinto, A.; Califórnia, A.; Gomes, J. [CeNTI – Centro de Nanotecnologia, Materiais Técnicos, Funcionais e Inteligentes, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão (Portugal); Pereira, L., E-mail: luiz@ua.pt [Departmento de Física e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Universidade de Aveiro, 3810-193 Aveiro (Portugal)

    2016-09-15

    Highlights: • A simple WOLED for Solid State Lighting is proposed with high color stability. • Energy transfer and electroluminescence dynamics of a single RGB layer for WOLEDs. • White shade modulation and stability over large emitting areas and applied voltages. - Abstract: Solid State Lighting technologies based on Organic Light Emitting Diodes, became an interesting focus due to their unique properties. The use of a unique RGB active layer for white emission, although simple in theory, shows difficulty to stabilize both CIE coordinates and color modulation. In this work, a WOLED using a simple RGB layer, was developed achieving a high color stability and shade modulation. The RGB matrix comprises a blue host material NPB, doped with two guests, a green (Coumarin 153) and a red (DCM1) in low concentrations. The RGB layer carrier dynamics allows for the white emission in low device complexity and high stability. This was also shown independent of the white shade, obtained through small changes in the red dopant resulting in devices ranging from warm to cool white i.e. an easy color tuning. A detailed analysis of the opto-electrical behavior is made.

  8. Control of a White Organic Light Emitting Diode emission parameters using a single doped RGB active layer

    International Nuclear Information System (INIS)

    Pereira, D.; Pinto, A.; Califórnia, A.; Gomes, J.; Pereira, L.

    2016-01-01

    Highlights: • A simple WOLED for Solid State Lighting is proposed with high color stability. • Energy transfer and electroluminescence dynamics of a single RGB layer for WOLEDs. • White shade modulation and stability over large emitting areas and applied voltages. - Abstract: Solid State Lighting technologies based on Organic Light Emitting Diodes, became an interesting focus due to their unique properties. The use of a unique RGB active layer for white emission, although simple in theory, shows difficulty to stabilize both CIE coordinates and color modulation. In this work, a WOLED using a simple RGB layer, was developed achieving a high color stability and shade modulation. The RGB matrix comprises a blue host material NPB, doped with two guests, a green (Coumarin 153) and a red (DCM1) in low concentrations. The RGB layer carrier dynamics allows for the white emission in low device complexity and high stability. This was also shown independent of the white shade, obtained through small changes in the red dopant resulting in devices ranging from warm to cool white i.e. an easy color tuning. A detailed analysis of the opto-electrical behavior is made.

  9. Calibration of high-resolution electronic autocollimators with demanded low uncertainties using single reading head angle encoders

    International Nuclear Information System (INIS)

    Yandayan, Tanfer; Akgoz, S Asli; Asar, Muharrem

    2014-01-01

    Calibration of high-resolution electronic autocollimators is carried out in TUBITAK UME using an angle comparator to ensure direct traceability to the SI unit of plane angle, radian (rad). The device is a specially designed air-bearing rotary table fitted with a commercially available angular encoder utilizing a single reading head. It is shown that high-resolution electronic autocollimators in the large measurement range (e.g. ±1000 arcsec) can be calibrated with an expanded uncertainty of 0.035 arcsec (k = 2) in conventional dimensional laboratory conditions, applying good measurement strategy for single reading head angle encoders and taking simple but smart precautions. Description of the angle comparator is presented with various test results derived using different high-precision autocollimators, and a detailed uncertainty budget is given for the calibration of a high-resolution electronic autocollimator. (paper)

  10. High-surface-area active carbon

    International Nuclear Information System (INIS)

    O'Grady, T.M.; Wennerberg, A.N.

    1986-01-01

    This paper describes the preparation and properties of a unique active carbon having exceptionally high surface areas, over 2500 m 2 /gm, and extraordinary adsorptive capacities. The carbon is made by a direct chemical activation route in which petroleum coke or other carbonaceous sources are reacted with excess potassium hydroxide at 400 0 to 500 0 C to an intermediate product that is subsequently pyrolyzed at 800 0 to 900 0 C to active carbon containing potassium salts. These are removed by water washing and the carbon is dried to produce a powdered product. A granular carbon can also be made by further processing the powdered carbon by using specialized granulation techniques. Typical properties of the carbon include Iodine Numbers of 3000 to 3600, methylene blue adsorption of 650 to 750 mg/gm, pore volumes of 2.0 to 2.6 cc/gm and less than 3.0% ash. This carbon's high adsorption capacities make it uniquely suited for numerous demanding applications in the medical area, purifications, removal of toxic substances, as catalyst carriers, etc

  11. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications....

  12. High-Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    2010-01-01

    We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 27...

  13. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.

    Science.gov (United States)

    Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M

    2016-12-28

    Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m 2 /g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.

  14. Integrated experimental and computational studies of deformation of single crystal copper at high strain rates

    Science.gov (United States)

    Rawat, S.; Chandra, S.; Chavan, V. M.; Sharma, S.; Warrier, M.; Chaturvedi, S.; Patel, R. J.

    2014-12-01

    Quasi-static (0.0033 s-1) and dynamic (103 s-1) compression experiments were performed on single crystal copper along ⟨100⟩ and ⟨110⟩ directions and best-fit parameters for the Johnson-Cook (JC) material model, which is an important input to hydrodynamic simulations for shock induced fracture, have been obtained. The deformation of single crystal copper along the ⟨110⟩ direction showed high yield strength, more strain hardening, and less strain rate sensitivity as compared to the ⟨100⟩ direction. Although the JC model at the macro-scale is easy to apply and describes a general response of material deformation, it lacks physical mechanisms that describe the influence of texture and initial orientation on the material response. Hence, a crystal plasticity model based on the theory of thermally activated motion of dislocations was used at the meso-scale, in which the evolution equations permit one to study and quantify the influence of initial orientation on the material response. Hardening parameters of the crystal plasticity model show less strain rate sensitivity along the ⟨110⟩ orientation as compared to the ⟨100⟩ orientation, as also shown by the JC model. Since the deformation process is inherently multiscale in nature, the shape changes observed in the experiments due to loading along ⟨100⟩ and ⟨110⟩ directions are also validated by molecular dynamics simulations at the nano-scale.

  15. Determination of selenium in BCR single cell protein via destructive neutron activation analysis

    International Nuclear Information System (INIS)

    Goeij, J.J.M. de; Zegers, C.

    1978-10-01

    The amount of selenium in single cell protein (SCP), a product of BP Research Centre at Sunbury-at-Thames, England, was determined by neutron activation analysis. The SCP-samples were irradiated in the reactor of the Interuniversity Reactor Institute at Delft, in a neutron flux of 1.0 x 10 13 n/cm 2 s for 24 hours. After chemical destruction of the samples the amount of selenium was determined by measuring the γ-peaks of selenium-75

  16. Single Sport Specialization in Youth Sports: A Survey of 3,090 High School, Collegiate, and Professional Athletes

    OpenAIRE

    Buckley, Patrick S.; Bishop, Meghan; Kane, Patrick; Ciccotti, Michael C.; Selverian, Stephen; Exume, Dominique; Emper, William D.; Freedman, Kevin B.; Hammoud, Sommer; Cohen, Steven B.; Ciccotti, Michael G.

    2017-01-01

    Objectives: Youth participation in organized sports in the United States is rising, with many athletes focusing on a single sport at an increasingly younger age. There is considerable debate regarding the rationale, optimal timing, injury risk, and the psychosocial health of a young athlete specializing early in a single sport. The purpose of our study was to compare youth single sport specialization in high school (HS), collegiate, and professional athletes with respect to the age of special...

  17. Production of high-specific activity radionuclides using SM high-flux reactor

    International Nuclear Information System (INIS)

    Karelin, Ye.A.; Toporov, Yu.G.; Filimonov, V.T.; Vakhetov, F.Z.; Tarasov, V.A.; Kuznetsov, R.A.; Lebedev, V.M.; Andreev, O.I.; Melnik, M.I.; Gavrilov, V.D.

    1997-01-01

    The development of High Specific Activity (HSA) radionuclides production technologies is one of the directions of RIAR activity, and the high flux research reactor SM, having neutron flux density up to 2.10 15 cm -2 s 1 in a wide range of neutron spectra hardness, plays the principal role in this development. The use of a high-flux reactor for radionuclide production provides the following advantages: production of radionuclides with extremely high specific activity, decreasing of impurities content in irradiated targets (both radioactive and non-radioactive), cost-effective use of expensive isotopically enriched target materials. The production technologies of P-33, Gd-153, W-188, Ni-63, Fe-55,59, Sn-113,117m,119m, Sr- 89, applied in industry, nuclear medicine, research, etc, were developed by RIAR during the last 5-10 years. The research work included the development of calculation procedures for radionuclide reactor accumulation forecast, experimental determination of neutron cross-sections, the development of irradiated materials reprocessing procedures, isolation and purification of radionuclides. The principal results are reviewed in the paper. (authors)

  18. Fluorescence-based high-throughput functional profiling of ligand-gated ion channels at the level of single cells.

    Directory of Open Access Journals (Sweden)

    Sahil Talwar

    Full Text Available Ion channels are involved in many physiological processes and are attractive targets for therapeutic intervention. Their functional properties vary according to their subunit composition, which in turn varies in a developmental and tissue-specific manner and as a consequence of pathophysiological events. Understanding this diversity requires functional analysis of ion channel properties in large numbers of individual cells. Functional characterisation of ligand-gated channels involves quantitating agonist and drug dose-response relationships using electrophysiological or fluorescence-based techniques. Electrophysiology is limited by low throughput and high-throughput fluorescence-based functional evaluation generally does not enable the characterization of the functional properties of each individual cell. Here we describe a fluorescence-based assay that characterizes functional channel properties at single cell resolution in high throughput mode. It is based on progressive receptor activation and iterative fluorescence imaging and delivers >100 dose-responses in a single well of a 384-well plate, using α1-3 homomeric and αβ heteromeric glycine receptor (GlyR chloride channels as a model system. We applied this assay with transiently transfected HEK293 cells co-expressing halide-sensitive yellow fluorescent protein and different GlyR subunit combinations. Glycine EC50 values of different GlyR isoforms were highly correlated with published electrophysiological data and confirm previously reported pharmacological profiles for the GlyR inhibitors, picrotoxin, strychnine and lindane. We show that inter and intra well variability is low and that clustering of functional phenotypes permits identification of drugs with subunit-specific pharmacological profiles. As this method dramatically improves the efficiency with which ion channel populations can be characterized in the context of cellular heterogeneity, it should facilitate systems

  19. High resolution surface scanning of Thick-GEM for single photo-electron detection

    International Nuclear Information System (INIS)

    Hamar, G.; Varga, D.

    2012-01-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10–100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: ► First demonstration of Thick GEM surface scanning with single photo-electrons. ► Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. ► Gain and detection efficiency and separately measurable. ► Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  20. RF Application of High Temperature Single Domain Superconductors

    International Nuclear Information System (INIS)

    Ferendeci, M.

    2004-01-01

    Large single domain YBa2Cu3Ox materials have been successfully fabricated with superb RF properties by employing the seeded-melt growth (SMG) method. Commercially available Y-123 and Y-211 phase precursor powders were mixed thoroughly and pressed into various solid and cavity shapes. The solid pieces were then diced into cylindrical flat plates and polished. Following the growth procedure, the materials were then oxygenated in an oven for at least 7 days. The plates were then used as a part of a dielectric resonator cavity and the surface resistances were measured. The cavities were also tested in a closed cycle cryo cooler. The cavity resonance frequencies for the TM010 and TE111 modes, and the corresponding quality factors (Q values) were measured. From the measured Q values, the surface resistances of the cavity surfaces were calculated. Experimentally measured surface resistance values and various combinations of cavity structures for realizing highly selective RF filters will be presented

  1. Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries.

    Science.gov (United States)

    Zhao, Yu; Peng, Lele; Liu, Borui; Yu, Guihua

    2014-05-14

    The lithiation/delithiation in LiFePO4 is highly anisotropic with lithium-ion diffusion being mainly confined to channels along the b-axis. Controlling the orientation of LiFePO4 crystals therefore plays an important role for efficient mass transport within this material. We report here the preparation of single crystalline LiFePO4 nanosheets with a large percentage of highly oriented {010} facets, which provide the highest pore density for lithium-ion insertion/extraction. The LiFePO4 nanosheets show a high specific capacity at low charge/discharge rates and retain significant capacities at high C-rates, which may benefit the development of lithium batteries with both favorable energy and power density.

  2. Comparison of cortical activation in an upper limb added-purpose task versus a single-purpose task: a near-infrared spectroscopy study

    OpenAIRE

    Huang, Fubiao; Hirano, Daisuke; Shi, Yun; Taniguchi, Takamichi

    2015-01-01

    [Purpose] The purpose of this study was to compare prefrontal activations during an added-purpose task with those during a single-purpose task using functional near-infrared spectroscopy. [Subjects] Six healthy right-handed adults were included in this study. [Methods] The participants were instructed to complete both added-purpose and single-purpose activities separately with each hand. The near-infrared spectroscopy probes were placed on the scalp overlying the prefrontal cortex, according ...

  3. High Performance Harmonic Isolation By Means of The Single-phase Series Active Filter Employing The Waveform Reconstruction Method

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Hava, Ahmet M.

    2009-01-01

    current sampling delay reduction method (SDRM), a single-phase SAF compensated system provides higher harmonic isolation performance and higher stability margins compared to the system using conventional synchronous reference frame based methods. The analytical, simulation, and experimental studies of a 2...

  4. ECL-IAA and ECL-GADA Can Identify High-Risk Single Autoantibody-Positive Relatives in the TrialNet Pathway to Prevention Study.

    Science.gov (United States)

    Steck, Andrea K; Fouts, Alexandra; Miao, Dongmei; Zhao, Zhiyuan; Dong, Fran; Sosenko, Jay; Gottlieb, Peter; Rewers, Marian J; Yu, Liping

    2016-07-01

    Relatives with single positive islet autoantibodies have a much lower risk of progression to diabetes than those with multiple autoantibodies. TrialNet subjects positive for single autoantibody to insulin (mIAA) (n = 50) or single autoantibody to glutamic acid decarboxylase (GADA) (n = 50) were analyzed using new electrochemiluminescence (ECL) assays (ECL-IAA and ECL-GADA, respectively) at their initial visit and longitudinally over time. Affinity assays were performed on a subset of single autoantibody-positive subjects at initial and most recent visits. After a mean follow-up of 5.3 years, 20 subjects developed type 1 diabetes. Among either single GADA or single mIAA subjects, those who were positive in the ECL assay showed higher affinity at the initial visit, and affinity results stayed consistent over time. No converting events from low to high or high to low affinity were seen over time. Confirmed positivity for ECL is associated with high affinity and can help staging of risk for type 1 diabetes in single autoantibody-positive subjects.

  5. Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions

    Science.gov (United States)

    Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad

    2015-01-01

    This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.

  6. Nonlinear convergence active vibration absorber for single and multiple frequency vibration control

    Science.gov (United States)

    Wang, Xi; Yang, Bintang; Guo, Shufeng; Zhao, Wenqiang

    2017-12-01

    This paper presents a nonlinear convergence algorithm for active dynamic undamped vibration absorber (ADUVA). The damping of absorber is ignored in this algorithm to strengthen the vibration suppressing effect and simplify the algorithm at the same time. The simulation and experimental results indicate that this nonlinear convergence ADUVA can help significantly suppress vibration caused by excitation of both single and multiple frequency. The proposed nonlinear algorithm is composed of equivalent dynamic modeling equations and frequency estimator. Both the single and multiple frequency ADUVA are mathematically imitated by the same mechanical structure with a mass body and a voice coil motor (VCM). The nonlinear convergence estimator is applied to simultaneously satisfy the requirements of fast convergence rate and small steady state frequency error, which are incompatible for linear convergence estimator. The convergence of the nonlinear algorithm is mathematically proofed, and its non-divergent characteristic is theoretically guaranteed. The vibration suppressing experiments demonstrate that the nonlinear ADUVA can accelerate the convergence rate of vibration suppressing and achieve more decrement of oscillation attenuation than the linear ADUVA.

  7. Combinatorial selection of a two-dimensional 3d-TM-tetracyanoquinodimethane (TM-TCNQ) monolayer as a high-activity nanocatalyst for CO oxidation

    DEFF Research Database (Denmark)

    Deng, Qingming; Wu, Tiantian; Chen, Guibin

    2018-01-01

    catalyzed by Sc-TCNQ (CO + O2* → OOCO*) can follow the LH mechanism with free energy barriers as low as 0.73 eV at 300 K. The second step of CO + O* → CO2 can occur with rather small energy barriers via either LH or ER mechanisms. The high activity of Sc-TCNQ can be attributed to its unique structural...... and thermodynamics of all the ten candidates (Sc-Zn), Sc-TCNQ is found to display the lowest activation energies and yield the highest catalytic activity for room temperature CO oxidation. Exploring the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms, we find that the rate-limiting step of CO oxidation...... and electronic features by possessing high stability, optimum adsorption energies with adsorbates, and fast reaction kinetics. These results have significant implications for the synthesis of two-dimensional single atom catalysis for CO oxidation with low-cost and high activity at low temperature....

  8. Frontend electronics for high-precision single photo-electron timing using FPGA-TDCs

    Energy Technology Data Exchange (ETDEWEB)

    Cardinali, M., E-mail: cardinal@kph.uni-mainz.de [Institut für Kernphysik, Johannes Gutenberg-University Mainz, Mainz (Germany); Helmholtz Institut Mainz, Mainz (Germany); Dzyhgadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Ugur, C.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Dodokhov, V.Kh. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Britting, A. [Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); and others

    2014-12-01

    The next generation of high-luminosity experiments requires excellent particle identification detectors which calls for Imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better than 100 ps is required by the Barrel DIRC to disentangle the complicated patterns created on the image plane. R and D studies have been performed to provide a design based on the TRB3 readout using FPGA-TDCs with a precision better than 20 ps RMS and custom frontend electronics with high-bandwidth pre-amplifiers and fast discriminators. The discriminators also provide time-over-threshold information thus enabling walk corrections to improve the timing resolution. Two types of frontend electronics cards optimised for reading out 64-channel PHOTONIS Planacon MCP-PMTs were tested: one based on the NINO ASIC and the other, called PADIWA, on FPGA discriminators. Promising results were obtained in a full characterisation using a fast laser setup and in a test experiment at MAMI, Mainz, with a small scale DIRC prototype. - Highlights: • Frontend electronics for Cherenkov detectors have been developed. • FPGA-TDCs have been used for high precision timing. • Time over threshold has been utilised for walk correction. • Single photo-electron timing resolution less than 100 ps has been achieved.

  9. Single intra-articular injection of high molecular weight hyaluronic acid for hip osteoarthritis.

    Science.gov (United States)

    Rivera, Fabrizio

    2016-03-01

    Intra-articular (IA) injection of hyaluronic acid (HA) into the hip joint appears to be safe and well tolerated but only a small number of randomized clinical trials in humans has been published. The objective of this prospective study was to evaluate the efficacy and safety of a single IA injection of high-molecular-weight (2800 kDa) HA (Coxarthrum) for hip osteoarthritis. All patients received a single IA administration of 2.5 % sodium hyaluronate (75 mg/3 mL) of high molecular weight. Fluoroscopy requires an iodized contrast medium (iopamidol, 1 ml) which highlights the capsule before administering HA. Patients were evaluated before IA injection (T0), after 3 months, after 6 months and after 1 year from injection. Results were evaluated by the Brief Pain Inventory (BPI II), Harris Hip Score and a visual analog scale of pain (pain VAS). All treated patients were considered for statistical analysis. Two hundred seven patients were included at T0. The mean age was 67 years (range 46-81). Regarding BPI severity score, changes in pain between T0 and the three following visits were statistically highly significant (p injection of Coxarthrum is effective from the third month and that the results are stable or continue to improve up to 1 year. IV.

  10. Analyzing cell fate control by cytokines through continuous single cell biochemistry.

    Science.gov (United States)

    Rieger, Michael A; Schroeder, Timm

    2009-10-01

    Cytokines are important regulators of cell fates with high clinical and commercial relevance. However, despite decades of intense academic and industrial research, it proved surprisingly difficult to describe the biological functions of cytokines in a precise and comprehensive manner. The exact analysis of cytokine biology is complicated by the fact that individual cytokines control many different cell fates and activate a multitude of intracellular signaling pathways. Moreover, although activating different molecular programs, different cytokines can be redundant in their biological effects. In addition, cytokines with different biological effects can activate overlapping signaling pathways. This prospect article will outline the necessity of continuous single cell biochemistry to unravel the biological functions of molecular cytokine signaling. It focuses on potentials and limitations of recent technical developments in fluorescent time-lapse imaging and single cell tracking allowing constant long-term observation of molecules and behavior of single cells. (c) 2009 Wiley-Liss, Inc.

  11. High-order harmonic generation in solid slabs beyond the single-active-electron approximation

    Science.gov (United States)

    Hansen, Kenneth K.; Deffge, Tobias; Bauer, Dieter

    2017-11-01

    High-harmonic generation by a laser-driven solid slab is simulated using time-dependent density functional theory. Multiple harmonic plateaus up to very high harmonic orders are observed already at surprisingly low field strengths. The full all-electron harmonic spectra are, in general, very different from those of any individual Kohn-Sham orbital. Freezing the Kohn-Sham potential instead is found to be a good approximation for the laser intensities and harmonic orders considered. The origins of the plateau cutoffs are explained in terms of band gaps that can be reached by Kohn-Sham electrons and holes moving through the band structure.

  12. Highly stable single-crystal LaB6 cathode for conventional electron microprobe instruments

    International Nuclear Information System (INIS)

    Shimizu, R.; Shinike, T.; Ichimura, S.; Kawaii, S.; Tanaka, T.

    1978-01-01

    The performance of single-crystal LaB 6 cathode was examined by measuring the brightness and current stability under the same conditions as for the conventional W hairpin cathode. The LaB 6 cathode was mounted in Vogel-type electron gun assembly of an electron probe microanalyser JAX-3 specifically modified for this purpose. The result shows that the present LaB 6 cathode provides not only high brightness of 2 x 10 5 A/cm 2 str. at 20 kV, but also high-current stability better than 1 x 10 - 3 Ah - 1 in standard operation without any specific aid for current stabilization. Thus an order of magnitude increase in both the brightness and service lifetime can easily be obtained provided that the vacuum of the system is adequate, namely better than 1 x 10 - 5 Torr (1.33 x 10 - 3 Pa). This substantial improvement of the present single-crystal LaB 6 cathode over the conventional W hairpin was also confirmed in a practical way by use in a commercial-type scanning Auger electron microscope, JAMP III

  13. Optimal Shape of a Gamma-ray Collimator: single vs double knife edge

    Science.gov (United States)

    Metz, Albert; Hogenbirk, Alfred

    2017-09-01

    Gamma-ray collimators in nuclear waste scanners are used for selecting a narrow vertical segment in activity measurements of waste vessels. The system that is used by NRG uses tapered slit collimators of both the single and double knife edge type. The properties of these collimators were investigated by means of Monte Carlo simulations. We found that single knife edge collimators are highly preferable for a conservative estimate of the activity of the waste vessels. These collimators show much less dependence on the angle of incidence of the radiation than double knife edge collimators. This conclusion also applies to cylindrical collimators of the single knife edge type, that are generally used in medical imaging spectroscopy.

  14. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites

    Science.gov (United States)

    Pothof, F.; Bonini, L.; Lanzilotto, M.; Livi, A.; Fogassi, L.; Orban, G. A.; Paul, O.; Ruther, P.

    2016-08-01

    Objective. Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localisation using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Approach. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are integrated with a minimal feature size of 5 μm. The polyimide foils are rolled into the cylindrical probe shape at a diameter of 0.8 mm. The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Main results. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. Significance. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localisation in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the

  15. Thermally activated flux flow effects in single crystalline Bi2Sr2CaCu2O8 observed via magnetic measurements

    International Nuclear Information System (INIS)

    Vandenberg, J.; Vanderbeek, C.J.; Koorevaar, P.; Kes, P.H.; Mydosh, J.A.; Menken, M.J.V.; Menovsky, A.A.

    1989-01-01

    In this paper the authors present time-dependent magnetization and high-temperature, low-field critical-current measurements on single crystalline Bi 2 Sr 2 CaCu 2 O 8 . A short introduction to thermally activated flux-flow theory (TAFF) is given based on solving a continuity equation for fluxlines with several boundary conditions. A comparison between this theory and experiments indicates the self consistency of the TAFF model, by relating the temperature dependences of J c and of the typical relaxation time τ 0 of M(t). Furthermore, values for the pinning potential U are obtained at several temperatures

  16. Activities of everyday life with high spinal loads.

    Directory of Open Access Journals (Sweden)

    Antonius Rohlmann

    Full Text Available Activities with high spinal loads should be avoided by patients with back problems. Awareness about these activities and knowledge of the associated loads are important for the proper design and pre-clinical testing of spinal implants. The loads on an instrumented vertebral body replacement have been telemetrically measured for approximately 1000 combinations of activities and parameters in 5 patients over a period up to 65 months postoperatively. A database containing, among others, extreme values for load components in more than 13,500 datasets was searched for 10 activities that cause the highest resultant force, bending moment, torsional moment, or shear force in an anatomical direction. The following activities caused high resultant forces: lifting a weight from the ground, forward elevation of straight arms with a weight in hands, moving a weight laterally in front of the body with hanging arms, changing the body position, staircase walking, tying shoes, and upper body flexion. All activities have in common that the center of mass of the upper body was moved anteriorly. Forces up to 1650 N were measured for these activities of daily life. However, there was a large intra- and inter-individual variation in the implant loads for the various activities depending on how exercises were performed. Measured shear forces were usually higher in the posterior direction than in the anterior direction. Activities with high resultant forces usually caused high values of other load components.

  17. Classification of team sport activities using a single wearable tracking device.

    Science.gov (United States)

    Wundersitz, Daniel W T; Josman, Casey; Gupta, Ritu; Netto, Kevin J; Gastin, Paul B; Robertson, Sam

    2015-11-26

    Wearable tracking devices incorporating accelerometers and gyroscopes are increasingly being used for activity analysis in sports. However, minimal research exists relating to their ability to classify common activities. The purpose of this study was to determine whether data obtained from a single wearable tracking device can be used to classify team sport-related activities. Seventy-six non-elite sporting participants were tested during a simulated team sport circuit (involving stationary, walking, jogging, running, changing direction, counter-movement jumping, jumping for distance and tackling activities) in a laboratory setting. A MinimaxX S4 wearable tracking device was worn below the neck, in-line and dorsal to the first to fifth thoracic vertebrae of the spine, with tri-axial accelerometer and gyroscope data collected at 100Hz. Multiple time domain, frequency domain and custom features were extracted from each sensor using 0.5, 1.0, and 1.5s movement capture durations. Features were further screened using a combination of ANOVA and Lasso methods. Relevant features were used to classify the eight activities performed using the Random Forest (RF), Support Vector Machine (SVM) and Logistic Model Tree (LMT) algorithms. The LMT (79-92% classification accuracy) outperformed RF (32-43%) and SVM algorithms (27-40%), obtaining strongest performance using the full model (accelerometer and gyroscope inputs). Processing time can be reduced through feature selection methods (range 1.5-30.2%), however a trade-off exists between classification accuracy and processing time. Movement capture duration also had little impact on classification accuracy or processing time. In sporting scenarios where wearable tracking devices are employed, it is both possible and feasible to accurately classify team sport-related activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Safety basis for selected activities in single-shell tanks with flammable gas concerns. Revision 1

    International Nuclear Information System (INIS)

    Schlosser, R.L.

    1996-01-01

    This is full revision to Revision 0 of this report. The purpose of this report is to provide a summary of analyses done to support activities performed for single-shell tanks. These activities are encompassed by the flammable gas Unreviewed Safety Question (USQ). The basic controls required to perform these activities involve the identification, elimination and/or control of ignition sources and monitoring for flammable gases. Controls are implemented through the Interim Safety Basis (ISB), IOSRs, and OSDs. Since this report only provides a historical compendium of issues and activities, it is not to be used as a basis to perform USQ screenings and evaluations. Furthermore, these analyses and others in process will be used as the basis for developing the Flammable Gas Topical Report for the ISB Upgrade

  19. Life cycle cost analysis of single slope hybrid (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, G.N.

    2009-01-01

    This paper presents the life cycle cost analysis of the single slope passive and hybrid photovoltaic (PV/T) active solar stills, based on the annual performance at 0.05 m water depth. Effects of various parameters, namely interest rate, life of the system and the maintenance cost have been taken into account. The comparative cost of distilled water produced from passive solar still (Rs. 0.70/kg) is found to be less than hybrid (PV/T) active solar still (Rs. 1.93/kg) for 30 years life time of the systems. The payback periods of the passive and hybrid (PV/T) active solar still are estimated to be in the range of 1.1-6.2 years and 3.3-23.9 years, respectively, based on selling price of distilled water in the range of Rs. 10/kg to Rs. 2/kg. The energy payback time (EPBT) has been estimated as 2.9 and 4.7 years, respectively. (author)

  20. Heterogeneous activation of H{sub 2}O{sub 2} by defect-engineered TiO{sub 2−x} single crystals for refractory pollutants degradation: A Fenton-like mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ai-Yong, E-mail: ayzhang@hfut.edu.cn; Lin, Tan; He, Yuan-Yi; Mou, Yu-Xuan

    2016-07-05

    Highlights: • Facet- and defect-engineered TiO{sub 2} is proposed for water treatment as Fenton-like catalyst. • The =Ti(III) center serves as lattice shuttle for electron transfer in H{sub 2}O{sub 2} activation. • TiO{sub 2} is promising due to low cost, high abundance, no toxicity and stable performance. - Abstract: The heterogeneous catalyst plays a key role in Fenton-like reaction for advanced oxidation of refractory pollutants in water treatment. Titanium dioxide (TiO{sub 2}) is a typical semiconductor with high industrial importance due to its earth abundance, low cost and no toxicity. In this work, it is found that TiO{sub 2} can heterogeneously activate hydrogen peroxide (H{sub 2}O{sub 2}, E° = 1.78 eV), a common chemical oxidant, to efficiently generate highly-powerful hydroxyl radical, ·OH (E{sup 0} = 2.80 eV), for advanced water treatment, when its crystal shape, exposed facet and oxygen-stoichiometry are finely tuned. The defect-engineered TiO{sub 2} single crystals exposed by high-energy {0 0 1} facets exhibited an excellent Fenton-like activity and stability for degrading typical refractory organic pollutants such as methyl orange and p-nitrophenol. Its defect-centered Fenton-like superiority is mainly attributed to the crystal oxygen-vacancy, single-crystalline structure and exposed polar {0 0 1} facet. Our findings could provide new chance to utilize TiO{sub 2} for Fenton-like technology, and develop novel heterogeneous catalyst for advanced water treatment.

  1. Single-particle characterization of the high-Arctic summertime aerosol

    Directory of Open Access Journals (Sweden)

    B. Sierau

    2014-07-01

    Full Text Available Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS. The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol–cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of

  2. Single-particle characterization of the high-Arctic summertime aerosol

    Science.gov (United States)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-07-01

    Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition

  3. Single-particle characterization of the High Arctic summertime aerosol

    Science.gov (United States)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-01-01

    Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a particle type of unknown composition

  4. Strategies for real-time position control of a single atom in cavity QED

    International Nuclear Information System (INIS)

    Lynn, T W; Birnbaum, K; Kimble, H J

    2005-01-01

    Recent realizations of single-atom trapping and tracking in cavity QED open the door for feedback schemes which actively stabilize the motion of a single atom in real time. We present feedback algorithms for cooling the radial component of motion for a single atom trapped by strong coupling to single-photon fields in an optical cavity. Performance of various algorithms is studied through simulations of single-atom trajectories, with full dynamical and measurement noise included. Closed loop feedback algorithms compare favourably to open loop 'switching' analogues, demonstrating the importance of applying actual position information in real time. The high optical information rate in current experiments enables real-time tracking that approaches the standard quantum limit for broadband position measurements, suggesting that realistic active feedback schemes may reach a regime where measurement backaction appreciably alters the motional dynamics

  5. Productivity and cost of marking activities for single-tree selection and thinning treatments in Arkansas

    Science.gov (United States)

    Tymur Sydor; Richard A. Kluender; Rodney L. Busby; Matthew Pelkki

    2004-01-01

    An activity algorithm was developed for standard marking methods for natural pine stands in Arkansas. For the two types of marking methods examined, thinning (selection from below) and single-tree selection (selection from above), cycle time and cost models were developed. Basal area (BA) removed was the major influencing factor in both models. Marking method was...

  6. High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source.

    Science.gov (United States)

    Devi, Kavita; Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2012-12-15

    We report a high-power, single-frequency, continuous-wave (cw) source tunable across 775-807 nm in the near-infrared, based on internal second harmonic generation (SHG) of a cw singly-resonant optical parametric oscillator (OPO) pumped by a Yb-fiber laser. The compact, all-periodically-poled source employs a 48-mm-long, multigrating MgO doped periodically poled lithium niobate (MgO:PPLN) crystal for the OPO and a 30-mm-long, fan-out grating MgO-doped stoichiometric periodically poled lithium tantalate (MgO:sPPLT) crystal for intracavity SHG, providing as much as 3.7 W of near-infrared power at 793 nm, together with 4 W of idler power at 3232 nm, at an overall extraction efficiency of 28%. Further, the cw OPO is tunable across 3125-3396 nm in the idler, providing as much as 4.3 W at 3133 nm with >3.8  W over 77% of the tuning range together with >3  W of near-infrared power across 56% of SHG tuning range, in high-spatial beam-quality with M2<1.4. The SHG output has an instantaneous linewidth of 8.5 MHz and exhibits a passive power stability better than 3.5% rms over more than 1 min.

  7. Single unit approaches to human vision and memory.

    Science.gov (United States)

    Kreiman, Gabriel

    2007-08-01

    Research on the visual system focuses on using electrophysiology, pharmacology and other invasive tools in animal models. Non-invasive tools such as scalp electroencephalography and imaging allow examining humans but show a much lower spatial and/or temporal resolution. Under special clinical conditions, it is possible to monitor single-unit activity in humans when invasive procedures are required due to particular pathological conditions including epilepsy and Parkinson's disease. We review our knowledge about the visual system and visual memories in the human brain at the single neuron level. The properties of the human brain seem to be broadly compatible with the knowledge derived from animal models. The possibility of examining high-resolution brain activity in conscious human subjects allows investigators to ask novel questions that are challenging to address in animal models.

  8. New generation of single-chip microcomputers focused on cost performance

    Energy Technology Data Exchange (ETDEWEB)

    Akao, Y.; Iwashita, H. (Hitachi, Ltd., Tokyo (Japan))

    1993-06-01

    A single-chip microcomputer which incorporates a CPU (central processing unit), memory, and peripheral functions in one chip has been increasingly applied to various fields as the heart of electronic equipment in terms of its economy, compactness, lightness, and suitability for mass production. In response to a wide variety of needs, a lineup must have substantial breadth with regard to performance, on-chip memory capacity, on-chip peripheral functions, operating voltage, and packaging. In particular, low-voltage high-speed operation, high integration, expanded address space, and improved software productivity, which are required for mobile communication terminals, are the common needs for single-chip microcomputers. In accordance with these needs, Hitachi has been actively developing new products. The present paper introduces Hitachi's lineup of single-chip microcomputers. 10 figs., 1 tab.

  9. Numerical study of slip system activity and crystal lattice rotation under wedge nanoindents in tungsten single crystals

    Science.gov (United States)

    Volz, T.; Schwaiger, R.; Wang, J.; Weygand, S. M.

    2018-05-01

    Tungsten is a promising material for plasma facing components in future nuclear fusion reactors. In the present work, we numerically investigate the deformation behavior of unirradiated tungsten (a body-centered cubic (bcc) single crystal) underneath nanoindents. A finite element (FE) model is presented to simulate wedge indentation. Crystal plasticity finite element (CPFE) simulations were performed for face-centered and body-centered single crystals accounting for the slip system family {110} in the bcc crystal system and the {111} slip family in the fcc system. The 90° wedge indenter was aligned parallel to the [1 ¯01 ]-direction and indented the crystal in the [0 1 ¯0 ]-direction up to a maximum indentation depth of 2 µm. In both, the fcc and bcc single crystals, the activity of slip systems was investigated and compared. Good agreement with the results from former investigations on fcc single crystals was observed. Furthermore, the in-plane lattice rotation in the material underneath an indent was determined and compared for the fcc and bcc single crystals.

  10. Generating a high brightness multi-kilowatt laser by dense spectral combination of VBG stabilized single emitter laser diodes

    Science.gov (United States)

    Fritsche, H.; Koch, Ralf; Krusche, B.; Ferrario, F.; Grohe, Andreas; Pflueger, S.; Gries, W.

    2014-05-01

    Generating high power laser radiation with diode lasers is commonly realized by geometrical stacking of diode bars, which results in high output power but poor beam parameter product (BPP). The accessible brightness in this approach is limited by the fill factor, both in slow and fast axis. By using a geometry that accesses the BPP of the individual diodes, generating a multi kilowatt diode laser with a BPP comparable to fiber lasers is possible. We will demonstrate such a modular approach for generating multi kilowatt lasers by combining single emitter diode lasers. Single emitter diodes have advantages over bars, mainly a simplified cooling, better reliability and a higher brightness per emitter. Additionally, because single emitters can be arranged in many different geometries, they allow building laser modules where the brightness of the single emitters is preserved. In order to maintain the high brightness of the single emitter we developed a modular laser design which uses single emitters in a staircase arrangement, then coupling two of those bases with polarization combination which is our basic module. Those modules generate up to 160 W with a BPP better than 7.5 mm*mrad. For further power scaling wavelength stabilization is crucial. The wavelength is stabilized with only one Volume Bragg Grating (VBG) in front of a base providing the very same feedback to all of the laser diodes. This results in a bandwidth of BPP better than 7.5 mm*mrad, which can easily coupled into a 100 μm fiber and 0.15 NA.

  11. High-Fidelity Single-Shot Toffoli Gate via Quantum Control.

    Science.gov (United States)

    Zahedinejad, Ehsan; Ghosh, Joydip; Sanders, Barry C

    2015-05-22

    A single-shot Toffoli, or controlled-controlled-not, gate is desirable for classical and quantum information processing. The Toffoli gate alone is universal for reversible computing and, accompanied by the Hadamard gate, forms a universal gate set for quantum computing. The Toffoli gate is also a key ingredient for (nontopological) quantum error correction. Currently Toffoli gates are achieved by decomposing into sequentially implemented single- and two-qubit gates, which require much longer times and yields lower overall fidelities compared to a single-shot implementation. We develop a quantum-control procedure to construct a single-shot Toffoli gate for three nearest-neighbor-coupled superconducting transmon systems such that the fidelity is 99.9% and is as fast as an entangling two-qubit gate under the same realistic conditions. The gate is achieved by a nongreedy quantum control procedure using our enhanced version of the differential evolution algorithm.

  12. Awareness of single and multiple emotions in high-functioning childeren with autism

    OpenAIRE

    Rieffe, C.J.; Meerum Terwogt, M.; Kotronopoulo, K.

    2007-01-01

    This study examined emotional awareness in children with autism. Twenty-two high functioning children with autism (mean age 10 years and 2 months) and 22 typically developing children, matched for age and gender, were presented with the four basic emotions (happiness, anger, sadness and fear) in single and multiple emotion tasks. Findings suggest that children with autism have difficulties identifying their own emotions and less developed emotion concepts (which causes an impaired capacity to...

  13. High resolution surface scanning of Thick-GEM for single photo-electron detection

    Energy Technology Data Exchange (ETDEWEB)

    Hamar, G., E-mail: hamar.gergo@wigner.mta.hu [Wigner Research Centre for Physics, Budapest (Hungary); Varga, D., E-mail: vdezso@mail.cern.ch [Eoetvoes Lorand University, Budapest (Hungary)

    2012-12-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10-100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: Black-Right-Pointing-Pointer First demonstration of Thick GEM surface scanning with single photo-electrons. Black-Right-Pointing-Pointer Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. Black-Right-Pointing-Pointer Gain and detection efficiency and separately measurable. Black-Right-Pointing-Pointer Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  14. Approaches to single-nanoparticle catalysis.

    Science.gov (United States)

    Sambur, Justin B; Chen, Peng

    2014-01-01

    Nanoparticles are among the most important industrial catalysts, with applications ranging from chemical manufacturing to energy conversion and storage. Heterogeneity is a general feature among these nanoparticles, with their individual differences in size, shape, and surface sites leading to variable, particle-specific catalytic activity. Assessing the activity of individual nanoparticles, preferably with subparticle resolution, is thus desired and vital to the development of efficient catalysts. It is challenging to measure the activity of single-nanoparticle catalysts, however. Several experimental approaches have been developed to monitor catalysis on single nanoparticles, including electrochemical methods, single-molecule fluorescence microscopy, surface plasmon resonance spectroscopy, X-ray microscopy, and surface-enhanced Raman spectroscopy. This review focuses on these experimental approaches, the associated methods and strategies, and selected applications in studying single-nanoparticle catalysis with chemical selectivity, sensitivity, or subparticle spatial resolution.

  15. Modelling and Simulation of Single-Phase Series Active Compensator for Power Quality Improvement

    Science.gov (United States)

    Verma, Arun Kumar; Mathuria, Kirti; Singh, Bhim; Bhuvaneshwari, G.

    2017-10-01

    A single-phase active series compensator is proposed in this work to reduce harmonic currents at the ac mains and to regulate the dc link voltage of a diode bridge rectifier (DBR) that acts as the front end converter for a voltage source inverter feeding an ac motor. This ac motor drive is used in any of the domestic, commercial or industrial appliances. Under fluctuating ac mains voltages, the dc link voltage of the DBR depicts wide variations and hence the ac motor is used at reduced rating as compared to its name-plate rating. The active series compensator proposed here provides dual functions of improving the power quality at the ac mains and regulating the dc link voltage thus averting the need for derating of the ac motor.

  16. Management of synchronized network activity by highly active neurons

    International Nuclear Information System (INIS)

    Shein, Mark; Raichman, Nadav; Ben-Jacob, Eshel; Volman, Vladislav; Hanein, Yael

    2008-01-01

    Increasing evidence supports the idea that spontaneous brain activity may have an important functional role. Cultured neuronal networks provide a suitable model system to search for the mechanisms by which neuronal spontaneous activity is maintained and regulated. This activity is marked by synchronized bursting events (SBEs)—short time windows (hundreds of milliseconds) of rapid neuronal firing separated by long quiescent periods (seconds). However, there exists a special subset of rapidly firing neurons whose activity also persists between SBEs. It has been proposed that these highly active (HA) neurons play an important role in the management (i.e. establishment, maintenance and regulation) of the synchronized network activity. Here, we studied the dynamical properties and the functional role of HA neurons in homogeneous and engineered networks, during early network development, upon recovery from chemical inhibition and in response to electrical stimulations. We found that their sequences of inter-spike intervals (ISI) exhibit long time correlations and a unimodal distribution. During the network's development and under intense inhibition, the observed activity follows a transition period during which mostly HA neurons are active. Studying networks with engineered geometry, we found that HA neurons are precursors (the first to fire) of the spontaneous SBEs and are more responsive to electrical stimulations

  17. High brightness single photon sources based on photonic wires

    DEFF Research Database (Denmark)

    Claudon, J.; Bleuse, J.; Bazin, M.

    2009-01-01

    We present a novel single-photon-source based on the emission of a semiconductor quantum dot embedded in a single-mode photonic wire. This geometry ensures a very large coupling (> 95%) of the spontaneous emission to the guided mode. Numerical simulations show that a photon collection efficiency...

  18. Single Step Formation of C-TiO2 Nanotubes: Influence of Applied Voltage and Their Photocatalytic Activity under Solar Illumination

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2013-01-01

    Full Text Available Self-aligned and high-uniformity carbon (C- titania (TiO2 nanotube arrays were successfully formed via single step anodization of titanium (Ti foil at 30 V for 1 h in a bath composed of ethylene glycol (EG, ammonium fluoride (NH4F, and hydrogen peroxide (H2O2. It was well established that applied voltage played an important role in controlling field-assisted oxidation and field-assisted dissolution during electrochemical anodization process. Therefore, the influences of applied voltage on the formation of C-TiO2 nanotube arrays were discussed. It was found that a minimal applied voltage of 30 V was required to form the self-aligned and high-uniformity C-TiO2 nanotube arrays with diameter of ~75 nm and length of ~2 μm. The samples synthesized using different applied voltages were then subjected to heat treatment for the conversion of amorphous phase to crystalline phase. The photocatalytic activity evaluation of C-TiO2 samples was made under degradation of organic dye (methyl orange (MO solution. The results revealed that controlled nanoarchitecture C-TiO2 photocatalyst led to a significant enhancement in photocatalytic activity due to the creation of more specific active surface areas for incident photons absorption from the solar illumination.

  19. Simulating the 2012 High Plains drought using three single column versions (SCM) of BUGS5

    Science.gov (United States)

    Medina, I. D.; Denning, S.

    2013-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited, and have used conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we will focus on the 2012 High Plains drought and will perform numerical simulations using three single column versions (SCM) of BUGS5 (Colorado State University (CSU) GCM coupled to the Simple Biosphere Model (SiB3)) at multiple sites overlying the Ogallala Aquifer for the 2011-2012 periods. In the first version of BUGS5, the model will be used in its standard bulk setting (single atmospheric column coupled to a single instance of SiB3), secondly, the Super-Parameterized Community Atmospheric Model (SP-CAM), a cloud resolving model (CRM consists of 64 atmospheric columns), will replace the single CSU GCM atmospheric parameterization and will be coupled to a single instance of SiB3, and for the third version of BUGS5, an instance of SiB3 will be coupled to each CRM column of the SP-CAM (64 CRM columns coupled to 64 instances of SiB3). To assess the physical realism of the land-atmosphere feedbacks simulated at each site by all versions of BUGS5, differences in simulated energy and moisture fluxes will be computed between the 2011 and 2012 period and will be compared to differences calculated using

  20. Causal Effects of Single-Sex Schools on College Entrance Exams and College Attendance: Random Assignment in Seoul High Schools

    OpenAIRE

    Park, Hyunjoon; Behrman, Jere R.; Choi, Jaesung

    2013-01-01

    Despite the voluminous literature on the potentials of single-sex schools, there is no consensus on the effects of single-sex schools because of student selection of school types. We exploit a unique feature of schooling in Seoul—the random assignment of students into single-sex versus coeducational high schools—to assess causal effects of single-sex schools on college entrance exam scores and college attendance. Our validation of the random assignment shows comparable socioeconomic backgroun...