WorldWideScience

Sample records for single hfo2 trapping

  1. Effects of biased irradiation on charge trapping in HfO2 dielectric thin films

    Science.gov (United States)

    Mu, Yifei; Zhao, Ce Zhou; Lu, Qifeng; Zhao, Chun; Qi, Yanfei; Lam, Sang; Mitrovic, Ivona Z.; Taylor, Stephen; Chalker, Paul R.

    2017-09-01

    This paper reports the low-dose-rate radiation response of Al-HfO2/SiO2-Si MOS devices, in which the gate dielectric was formed by atomic layer deposition (ALD) with 5-nm equivalent oxide thickness. The degradation of the devices was characterized by a pulse capacitance-voltage (CV) and on-site radiation response technique under continuous gamma (γ) ray exposure at a relatively low dose rate of 0.116 rad (HfO2)/s. Compared with conventional CV measurements, the proposed measurements extract significant variations of flat-band voltage shift of the hafnium based MOS devices. The large flat-band voltage shift is mainly attributed to the radiation-induced oxide trapped charges, which are not readily compensated by bias-induced charges produced over the measurement timescales (for timescales less than 5 ms). A negative flat-band voltage shift up to -1.02 V was observed under a positive biased irradiation with the total dose up to 40 krad (HfO2) and with the electric field of 0.5 MV/cm. This is attributed to net positive charge generation in the HfO2 oxide layer. The generated charges are transported towards the HfO2/SiO2 interface, and then form effective trapped holes in the HfO2. Similarly, a positive flat-band voltage shift up to 1.1 V was observed from irradiation under negative bias with an electric field of -0.5 MV/cm. The positive shift is mainly due to the accumulation of trapped electrons. Analyses of the experimental results suggest that both hole and electron trapping can dominate the radiation response performance of the HfO2-based MOS devices depending upon the applied bias. It was also found there was no distinct border traps with irradiation in all cases.

  2. Deep electron traps in HfO2-based metal-oxide-semiconductor capacitors

    International Nuclear Information System (INIS)

    Salomone, L. Sambuco; Lipovetzky, J.; Carbonetto, S.H.; García Inza, M.A.; Redin, E.G.; Campabadal, F.

    2016-01-01

    Hafnium oxide (HfO 2 ) is currently considered to be a good candidate to take part as a component in charge-trapping nonvolatile memories. In this work, the electric field and time dependences of the electron trapping/detrapping processes are studied through a constant capacitance voltage transient technique on metal-oxide-semiconductor capacitors with atomic layer deposited HfO 2 as insulating layer. A tunneling-based model is proposed to reproduce the experimental results, obtaining fair agreement between experiments and simulations. From the fitting procedure, a band of defects is identified, located in the first 1.7 nm from the Si/HfO 2 interface at an energy level E t = 1.59 eV below the HfO 2 conduction band edge with density N t = 1.36 × 10 19 cm −3 . A simplified analytical version of the model is proposed in order to ease the fitting procedure for the low applied voltage case considered in this work. - Highlights: • We characterized deep electron trapping/detrapping in HfO 2 structures. • We modeled the experimental results through a tunneling-based model. • We obtained an electron trap energy level of 1.59 eV below conduction band edge. • We obtained a spatial trap distribution extending 1.7 nm within the insulator. • A simplified tunneling front model is able to reproduce the experimental results.

  3. Single layer of Ge quantum dots in HfO2for floating gate memory capacitors.

    Science.gov (United States)

    Lepadatu, A M; Palade, C; Slav, A; Maraloiu, A V; Lazanu, S; Stoica, T; Logofatu, C; Teodorescu, V S; Ciurea, M L

    2017-04-28

    High performance trilayer memory capacitors with a floating gate of a single layer of Ge quantum dots (QDs) in HfO 2 were fabricated using magnetron sputtering followed by rapid thermal annealing (RTA). The layer sequence of the capacitors is gate HfO 2 /floating gate of single layer of Ge QDs in HfO 2 /tunnel HfO 2 /p-Si wafers. Both Ge and HfO 2 are nanostructured by RTA at moderate temperatures of 600-700 °C. By nanostructuring at 600 °C, the formation of a single layer of well separated Ge QDs with diameters of 2-3 nm at a density of 4-5 × 10 15 m -2 is achieved in the floating gate (intermediate layer). The Ge QDs inside the intermediate layer are arranged in a single layer and are separated from each other by HfO 2 nanocrystals (NCs) about 8 nm in diameter with a tetragonal/orthorhombic structure. The Ge QDs in the single layer are located at the crossing of the HfO 2 NCs boundaries. In the intermediate layer, besides Ge QDs, a part of the Ge atoms is segregated by RTA at the HfO 2 NCs boundaries, while another part of the Ge atoms is present inside the HfO 2 lattice stabilizing the tetragonal/orthorhombic structure. The fabricated capacitors show a memory window of 3.8 ± 0.5 V and a capacitance-time characteristic with 14% capacitance decay in the first 3000-4000 s followed by a very slow capacitance decrease extrapolated to 50% after 10 years. This high performance is mainly due to the floating gate of a single layer of well separated Ge QDs in HfO 2 , distanced from the Si substrate by the tunnel oxide layer with a precise thickness.

  4. Distribution of electron traps in SiO2/HfO2 nMOSFET

    Science.gov (United States)

    Xiao-Hui, Hou; Xue-Feng, Zheng; Ao-Chen, Wang; Ying-Zhe, Wang; Hao-Yu, Wen; Zhi-Jing, Liu; Xiao-Wei, Li; Yin-He, Wu

    2016-05-01

    In this paper, the principle of discharge-based pulsed I-V technique is introduced. By using it, the energy and spatial distributions of electron traps within the 4-nm HfO2 layer have been extracted. Two peaks are observed, which are located at ΔE ˜ -1.0 eV and -1.43 eV, respectively. It is found that the former one is close to the SiO2/HfO2 interface and the latter one is close to the gate electrode. It is also observed that the maximum discharge time has little effect on the energy distribution. Finally, the impact of electrical stress on the HfO2 layer is also studied. During stress, no new electron traps and interface states are generated. Meanwhile, the electrical stress also has no impact on the energy and spatial distribution of as-grown traps. The results provide valuable information for theoretical modeling establishment, material assessment, and reliability improvement for advanced semiconductor devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61334002, 61106106, and 61474091), the New Experiment Development Funds for Xidian University, China (Grant No. SY1434), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China (Grant No. JY0600132501).

  5. High performance organic nonvolatile memory transistors based on HfO2 and poly(α-methylstyrene) electret hybrid charge-trapping layers

    Science.gov (United States)

    Xu, W. C.; He, H. X.; Jing, X. S.; Wu, S. J.; Zhang, Z.; Gao, J. W.; Gao, X. S.; Zhou, G. F.; Lu, X. B.; Liu, J.-M.

    2017-08-01

    In this work, we fabricated a high performance flash-type organic nonvolatile memory transistor, which adopted polymer-electret poly(α-methylstyrene) (PαMS) and HfO2 films as hybrid charge trapping layer (CTL). Compared with a single HfO2 or PαMS CTL structure, the hybrid HfO2/PαMS CTL structure can provide enhanced charge trapping efficiency to increase the device operation speed and reduce the leakage current to boost the device reliability. The fabricated nonvolatile organic memory transistors with the hybrid CTL shows excellent electrical properties, including low operation voltage (8 V), high speed (erase cycles). The present work provides useful idea for the design of future low-power consumption and highly reliable organic nonvolatile memories.

  6. MOHOS-type memory performance using HfO2 nanoparticles as charge trapping layer and low temperature annealing

    International Nuclear Information System (INIS)

    Molina, Joel; Ortega, Rafael; Calleja, Wilfrido; Rosales, Pedro; Zuniga, Carlos; Torres, Alfonso

    2012-01-01

    Highlights: ► HfO 2 nanoparticles used as charge trapping layer in MOHOS memory devices. ► Increasing HfO 2 nanoparticles concentration enhances charge injection and trapping. ► Enhancement of memory performance with low temperature annealing. ► Charge injection is done without using any hot-carrier injection mechanism. ► Using injected charge density is better for comparison of scaled memory devices. - Abstract: In this work, HfO 2 nanoparticles (np-HfO 2 ) are embedded within a spin-on glass (SOG)-based oxide matrix and used as a charge trapping layer in metal–oxide–high-k–oxide–silicon (MOHOS)-type memory applications. This charge trapping layer is obtained by a simple sol–gel spin coating method after using different concentrations of np-HfO 2 and low temperature annealing (down to 425 °C) in order to obtain charge–retention characteristics with a lower thermal budget. The memory's charge trapping characteristics are quantized by measuring both the flat-band voltage shift of MOHOS capacitors (writing/erasing operations) and their programming retention times after charge injection while correlating all these data to np-HfO 2 concentration and annealing temperature. Since a large memory window has been obtained for our MOHOS memory, the relatively easy injection/annihilation (writing/erasing) of charge injected through the substrate opens the possibility to use this material as an effective charge trapping layer. It is shown that by using lower annealing temperatures for the charge trapping layer, higher densities of injected charge are obtained along with enhanced retention times. In conclusion, by using np-HfO 2 as charge trapping layer in memory devices, moderate programming and retention characteristics have been obtained by this simple and yet low-cost spin-coating method.

  7. Influence of the oxygen concentration of atomic-layer-deposited HfO2 films on the dielectric property and interface trap density

    Science.gov (United States)

    Park, Jaehoo; Cho, Moonju; Kim, Seong Keun; Park, Tae Joo; Lee, Suk Woo; Hong, Sug Hun; Hwang, Cheol Seong

    2005-03-01

    The influence of the ozone concentration (160-370g/m3) during atomic layer deposition of HfO2-gate dielectrics on the dielectric performance of the films grown on Si was studied. Although ozone was effective in reducing the impurity concentration in the film compared to H2O, the higher concentration slightly deteriorated the dielectric performance. More importantly, the degradation in the interface trap property with increasing post-annealing temperature became more serious as the ozone concentration increased. Investigation of the interface states using x-ray photoelectron spectroscopy revealed that the excessive oxygen incorporated during the film growth made the interfacial sub-oxide species (SiO, Si2O3, and silicate) and SiO2 coordinate more with oxygen. This increased the interface trap density and degraded the interface properties.

  8. Comparative Analysis of Bandgap-Engineered Pillar Type Flash Memory with HfO2 and S3N4 as Trapping Layer

    Science.gov (United States)

    Lee, Sang-Youl; Yang, Seung-Dong; Oh, Jae-Sub; Yun, Ho-Jin; Jeong, Kwang-Seok; Kim, Yu-Mi; Lee, Hi-Deok; Lee, Ga-Won

    In this paper, we fabricated a gate-all-around bandgap- engineered (BE) silicon-oxide-nitride-oxide-silicon (SONOS) and silicon-oxide-high-k-oxide-silicon (SOHOS) flash memory device with a vertical silicon pillar type structure for a potential solution to scaling down. Silicon nitride (Si3N4) and hafnium oxide (HfO2) were used as trapping layers in the SONOS and SOHOS devices, respectively. The BE-SOHOS device has better electrical characteristics such as a lower threshold voltage (VTH) of 0.16V, a higher gm.max of 0.593µA/V and on/off current ratio of 5.76×108, than the BE-SONOS device. The memory characteristics of the BE-SONOS device, such as program/erase speed (P/E speed), endurance, and data retention, were compared with those of the BE-SOHOS device. The measured data show that the BE-SONOS device has good memory characteristics, such as program speed and data retention. Compared with the BE-SONOS device, the erase speed is enhanced about five times in BE-SOHOS, while the program speed and data retention characteristic are slightly worse, which can be explained via the many interface traps between the trapping layer and the tunneling oxide.

  9. HfO2/Pr2O3 gate dielectric stacks

    Science.gov (United States)

    Sidorov, F.; Molchanova, A.; Rogozhin, A.

    2016-12-01

    Electrical properties of MOS structures based on molecular beam epitaxy formed HfO2/Pr2O3 gate dielectric stacks have been studied by CV, GV and IV characteristics. Electrical properties of the structures with HfO2/Pr2O3 and PEALD HfO2 dielectric layers were compared. Higher gate leakage current and lower interface trap level density in the structure with HfO2/Pr2O3 dielectric layer was observed.

  10. Ab initio study of the elastic properties of single and polycrystal TiO(2), ZrO(2) and HfO(2) in the cotunnite structure.

    Science.gov (United States)

    Caravaca, M A; Miño, J C; Pérez, V J; Casali, R A; Ponce, C A

    2009-01-07

    In this work, we study theoretically the elastic properties of the orthorhombic (Pnma) high-pressure phase of IV-B group oxides: titania, zirconia and hafnia. By means of the self-consistent SIESTA code, pseudopotentials, density functional theory in the LDA and GGA approximations, the total energies, hydrostatic pressures and stress tensor components are calculated. From the stress-strain relationships, in the linear regime, the elastic constants C(ij) are determined. Derived elastic constants, such as bulk, Young's and shear modulus, Poisson coefficient and brittle/ductile behavior are estimated with the polycrystalline approach, using Voigt-Reuss-Hill theories. We have found that C(11), C(22) and C(33) elastic constants of hafnia and zirconia show increased strength with respect to the experimental values of the normal phase, P 2(1)/c. A similar situation applies to titania if these constants are compared with its normal phase, rutile. However, shear elastic constants C(44), C(55) and C(66) are similar to the values found in the normal phase. This fact increases the compound anisotropy as well as its ductile behavior. The dependence of unit-cell volumes under hydrostatic pressures is also analyzed. P-V data, fitted to third-order Birch-Murnaghan equations of state, provide the bulk modulus B(0) and its pressure derivatives B'(0). In this case, LDA estimations show good agreement with respect to recent measured bulk moduli of ZrO(2) and HfO(2). Thermo-acoustic properties, e.g. the propagation speed of transverse, longitudinal elastic waves together with associated Debye temperatures, are also estimated.

  11. Ab initio study of the elastic properties of single and polycrystal TiO2, ZrO2 and HfO2 in the cotunnite structure

    International Nuclear Information System (INIS)

    Caravaca, M A; Mino, J C; Perez, V J; Casali, R A; Ponce, C A

    2009-01-01

    In this work, we study theoretically the elastic properties of the orthorhombic (Pnma) high-pressure phase of IV-B group oxides: titania, zirconia and hafnia. By means of the self-consistent SIESTA code, pseudopotentials, density functional theory in the LDA and GGA approximations, the total energies, hydrostatic pressures and stress tensor components are calculated. From the stress-strain relationships, in the linear regime, the elastic constants C ij are determined. Derived elastic constants, such as bulk, Young's and shear modulus, Poisson coefficient and brittle/ductile behavior are estimated with the polycrystalline approach, using Voigt-Reuss-Hill theories. We have found that C 11 , C 22 and C 33 elastic constants of hafnia and zirconia show increased strength with respect to the experimental values of the normal phase, P 2 1 /c. A similar situation applies to titania if these constants are compared with its normal phase, rutile. However, shear elastic constants C 44 , C 55 and C 66 are similar to the values found in the normal phase. This fact increases the compound anisotropy as well as its ductile behavior. The dependence of unit-cell volumes under hydrostatic pressures is also analyzed. P-V data, fitted to third-order Birch-Murnaghan equations of state, provide the bulk modulus B 0 and its pressure derivatives B' 0 . In this case, LDA estimations show good agreement with respect to recent measured bulk moduli of ZrO 2 and HfO 2 . Thermo-acoustic properties, e.g. the propagation speed of transverse, longitudinal elastic waves together with associated Debye temperatures, are also estimated.

  12. Hydrogen-dependent low frequency noise and its physical mechanism of HfO2 resistance change random access memory

    Science.gov (United States)

    Chen, Y. Q.; Liu, X.; Liu, Y.; Peng, C.; Fang, W. X.; En, Y. F.; Huang, Y.

    2017-12-01

    The effect of hydrogen on low frequency noise characteristics of HfO2 resistance change random access memories (RRAMs) was investigated in this paper. The experimental results show that HfO2 RRAMs after hydrogen treatment take on the better uniformity of switch characteristics and the conduction enhancement behavior. Furthermore, it was found that the low frequency noise characteristics of the HfO2 RRAMs was significantly impacted by the hydrogen treatment, and at three kinds of typical resistance states, the low frequency noises of the HfO2 RRAMs after hydrogen treatment are larger than those of the fresh HfO2 RRAMs. The mechanism could be attributed to H induced oxygen vacancies, which serve as the additional traps for conduction due to the trap-assisted tunneling process. This will result in more random trap/detrap processes in the conducting filament, which gives rise to the larger low frequency noise in the HfO2 RRAMs. The results of this study may be useful in the design and application of HfO2 RRAMs.

  13. Optical properties of nanocrystalline HfO2 synthesized by an auto-igniting combustion synthesis

    Directory of Open Access Journals (Sweden)

    H. Padma Kumar

    2015-03-01

    Full Text Available The optical properties of nanocrystalline HfO2 synthesized using a single-step auto-igniting combustion technique is reported. Nanocrystalline hafnium oxide having particle size of the order 10–15 nm were obtained in the present method. The nanopowder was characterized using X-ray diffraction, Fourier transform infrared and Fourier transform Raman spectroscopic studies. All these studies confirm that the phase formation is complete in the combustion synthesis and monoclinic phase [P21/c(14] of HfO2 is obtained without the presence of any impurities or additional phases. The powder morphology of the as-prepared sample was studied using transmission electron microscopy and the results were in good agreement with that of the X-ray diffraction studies. The optical constants such as refractive index, extinction coefficient, optical conductivity and the band gap were estimated from UV–vis spectroscopic techniques. The band gap of nanocrystalline HfO2 was found to be 5.1 eV and the sample shows a broad PL emission at 628 nm. It is concluded that the transitions between intermediate energy levels in the band gap are responsible for the interesting photoluminescent properties of nanocrystalline HfO2.

  14. Photo-induced tunneling currents in MOS structures with various HfO2/SiO2 stacking dielectrics

    OpenAIRE

    Chin-Sheng Pang; Jenn-Gwo Hwu

    2014-01-01

    In this study, the current conduction mechanisms of structures with tandem high-k dielectric in illumination are discussed. Samples of Al/SiO2/Si (S), Al/HfO2/SiO2/Si (H), and Al/3HfO2/SiO2/Si (3H) were examined. The significant observation of electron traps of sample H compares to sample S is found under the double bias capacitance-voltage (C-V) measurements in illumination. Moreover, the photo absorption sensitivity of sample H is higher than S due to the formation of HfO2 dielectric layer,...

  15. Single photon from a single trapped atom

    International Nuclear Information System (INIS)

    Dingjan, J.; Jones, M.P.A.; Beugnon, J.; Darquiee, B.; Bergamini, S.; Browaeys, A.; Messin, G.; Grangier, P.

    2005-01-01

    Full text: A quantum treatment of the interaction between atoms and light usually begins with the simplest model system: a two-level atom interacting with a monochromatic light wave. Here we demonstrate an elegant experimental realization of this system using an optically trapped single rubidium atom illuminated by resonant light pulses. We observe Rabi oscillations, and show that this system can be used as a highly efficient triggered source of single photons with a well-defined polarisation. In contrast to other sources based on neutral atoms and trapped ions, no optical cavity is required. We achieved a flux of single photons of about 10 4 s -1 at the detector, and observe complete antibunching. This source has potential applications for distributed atom-atom entanglement using single photons. (author)

  16. Simulation and Fabrication of HfO2 Thin Films Passivating Si from a Numerical Computer and Remote Plasma ALD

    Directory of Open Access Journals (Sweden)

    Xiao-Ying Zhang

    2017-12-01

    Full Text Available Recombination of charge carriers at silicon surfaces is one of the biggest loss mechanisms in crystalline silicon (c-Si solar cells. Hafnium oxide (HfO2 has attracted much attention as a passivation layer for n-type c-Si because of its positive fixed charges and thermal stability. In this study, HfO2 films are deposited on n-type c-Si using remote plasma atomic layer deposition (RP-ALD. Post-annealing is performed using a rapid thermal processing system at different temperatures in nitrogen ambient for 10 min. The effects of post-annealing temperature on the passivation properties of the HfO2 films on c-Si are investigated. Personal computer one dimension numerical simulation for the passivated emitter and rear contact (PERC solar cells with the HfO2 passivation layer is also presented. By means of modeling and numerical computer simulation, the influence of different front surface recombination velocity (SRV and rear SRV on n-type silicon solar cell performance was investigated. Simulation results show that the n-type PERC solar cell with HfO2 single layer can have a conversion efficiency of 22.1%. The PERC using silicon nitride/HfO2 stacked passivation layer can further increase efficiency to 23.02% with an open-circuit voltage of 689 mV.

  17. Characteristics of trapped electrons and electron traps in single crystals

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Potienko, G.; Box, H.C.

    1979-01-01

    Two additional carbohydrates are reported whose crystal structures trap electrons intermolecularly in single crystals x irradiated at low temperature, namely sucrose and rhamnose. Five carbohydrate and polyhydroxy compounds are now known which exhibit this phenomenon. The following characteristics of the phenomenon were investigated: (1) the hyperfine couplings of the electron with protons of the polarized hydroxy groups forming the trap; (2) the distances between these protons and the trapped electron; (3) the spin density of the electron at the protons and (4) the relative stabilities of the electron trapped in various crystal structures

  18. Photo-induced tunneling currents in MOS structures with various HfO2/SiO2 stacking dielectrics

    Directory of Open Access Journals (Sweden)

    Chin-Sheng Pang

    2014-04-01

    Full Text Available In this study, the current conduction mechanisms of structures with tandem high-k dielectric in illumination are discussed. Samples of Al/SiO2/Si (S, Al/HfO2/SiO2/Si (H, and Al/3HfO2/SiO2/Si (3H were examined. The significant observation of electron traps of sample H compares to sample S is found under the double bias capacitance-voltage (C-V measurements in illumination. Moreover, the photo absorption sensitivity of sample H is higher than S due to the formation of HfO2 dielectric layer, which leads to larger numbers of carriers crowded through the sweep of VG before the domination of tunneling current. Additionally, the HfO2 dielectric layer would block the electrons passing through oxide from valance band, which would result in less electron-hole (e−-h+ pairs recombination effect. Also, it was found that both of the samples S and H show perimeter dependency of positive bias currents due to strong fringing field effect in dark and illumination; while sample 3H shows area dependency of positive bias currents in strong illumination. The non-uniform tunneling current through thin dielectric and through HfO2 stacking layers are importance to MOS(p tunneling photo diodes.

  19. Electrical properties of radio-frequency sputtered HfO2 thin films for advanced CMOS technology

    Science.gov (United States)

    Sarkar, Pranab Kumar; Roy, Asim

    2015-08-01

    The Hafnium oxide (HfO2) high-k thin films have been deposited by radio frequency (rf) sputtering technique on p-type Si (100) substrate. The thickness, composition and phases of films in relation to annealing temperatures have been investigated by using cross sectional FE-SEM (Field Emission Scanning Electron Microscope) and grazing incidence x-ray diffraction (GI-XRD), respectively. GI-XRD analysis revealed that at annealing temperatures of 350°C, films phases change to crystalline from amorphous. The capacitance-voltage (C-V) and current-voltage (I-V) characteristics of the annealed HfO2 film have been studied employing Al/HfO2/p-Si metal-oxide-semiconductor (MOS) structures. The electrical properties such as dielectric constant, interface trap density and leakage current density have been also extracted from C-V and I-V Measurements. The value of dielectric constant, interface trap density and leakage current density of annealed HfO2 film is obtained as 23,7.57×1011eV-1 cm-2 and 2.7×10-5 Acm-2, respectively. In this work we also reported the influence of post deposition annealing onto the trapping properties of hafnium oxide and optimized conditions under which no charge trapping is observed into the dielectric stack.

  20. Role of HfO2/SiO2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage

    Science.gov (United States)

    Papernov, Semyon; Kozlov, Alexei A.; Oliver, James B.; Smith, Chris; Jensen, Lars; Günster, Stefan; Mädebach, Heinrich; Ristau, Detlev

    2017-01-01

    The role of thin-film interfaces in the near-ultraviolet (near-UV) absorption and pulsed laser-induced damage was studied for ion-beam-sputtered and electron-beam-evaporated coatings comprised from HfO2 and SiO2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO2 single-layer film and for a film containing seven narrow HfO2 layers separated by SiO2 layers. The seven-layer film was designed to have a total optical thickness of HfO2 layers, equal to one wave at 355 nm and an E-field peak and average intensity similar to a single-layer HfO2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces as compared to HfO2 film material. The relevance of obtained absorption data to coating near-UV, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO2 film in both sputtered and evaporated coatings. The results are explained through the similarity of interfacial film structure with structure formed during the codeposition of HfO2 and SiO2 materials.

  1. Synthesis of freestanding HfO2 nanostructures

    Directory of Open Access Journals (Sweden)

    Boyle Kayla

    2011-01-01

    Full Text Available Abstract Two new methods for synthesizing nanostructured HfO2 have been developed. The first method entails exposing HfTe2 powders to air. This simple process resulted in the formation of nanometer scale crystallites of HfO2. The second method involved a two-step heating process by which macroscopic, freestanding nanosheets of HfO2 were formed as a byproduct during the synthesis of HfTe2. These highly two-dimensional sheets had side lengths measuring up to several millimeters and were stable enough to be manipulated with tweezers and other instruments. The thickness of the sheets ranged from a few to a few hundred nanometers. The thinnest sheets appeared transparent when viewed in a scanning electron microscope. It was found that the presence of Mn enhanced the formation of HfO2 by exposure to ambient conditions and was necessary for the formation of the large scale nanosheets. These results present new routes to create freestanding nanostructured hafnium dioxide. PACS: 81.07.-b, 61.46.Hk, 68.37.Hk.

  2. Properties of HfO2/ultrathin SiO2/Si structures and their comparison with Si MOS structures passivated in KCN solution

    Science.gov (United States)

    Pinčík, Emil; Kobayashi, Hikaru; Matsumoto, Taketoshi; Takahashi, Masao; Mikula, Milan; Brunner, Róbert

    2014-05-01

    Electrical, optical and partly structural properties are investigated on very thin ALD HfO2/ultrathin NAOS SiO2/n-type Si structures. An ALD layer was deposited at 250 °C and it contains amorphous and crystalline-probably monoclinic HfO2 phases. HfO2 films with both types of structural phases were not stable if thermal treatment above 200 °C was applied. On as- prepared samples, deep interface traps with activation energy of ΔW = 0.23 eV have been determined. After annealing of the structure at 200 °C, the traps were partly transformed and a mid-gap level ΔW = 0.49 eV was detected. FTIR and AFM measurements confirmed presence of HfO2 monoclinic phase in the HfO2 films. On the other side, the density of interface defect states of the structure decreased from approx. 1012 eV-1 cm-2 to 1011 eV-1 cm-2 after low temperature annealing of the reference structure. The results are compared with very similar (almost identical) development of interface defect states on the very thin thermal SiO2/Si structure before and after passivation in a 0.1 M KCN methanol solution.PACS: 78.55.Qr; 78.66.Jg; 81.16.Pr; 85.40Ls

  3. Finite element analysis of hollow out-of-plane HfO2microneedles for transdermal drug delivery applications.

    Science.gov (United States)

    Zhang, Yong-Hua; A Campbell, Stephen; Karthikeyan, Sreejith

    2018-02-17

    Transdermal drug delivery (TDD) based on microneedles is an excellent approach due to its advantages of both traditional transdermal patch and hypodermic syringes. In this paper, the fabrication method of hollow out-of-layer hafnium oxide (HfO 2 ) microneedles mainly based on deep reactive ion etching of silicon and atomic layer deposition of HfO 2  is described, and the finite element analysis of the microneedles based on ANSYS software is also presented. The fabrication process is simplified by using a single mask. The finite element analysis of a single microneedle shows that the flexibility of the microneedles can be easily adjusted for various applications. The finite element analysis of a 3 × 3 HfO 2 microneedle array applied on the skin well explains the "bed of nail" effect, i.e., the skin is not liable to be pierced when the density of microneedles in array increases. The presented research work here provides useful information for design optimization of HfO 2 microneedles used for TDD applications.

  4. Interfacial and electrical characterization of HfO2/Al2O3/InAlAs structures

    Science.gov (United States)

    Wu, Li-fan; Zhang, Yu-ming; Lu, Hong-liang; Zhang, Yi-men

    2015-11-01

    The HfO2/Al2O3 double layer has been deposited by the atomic layer deposition (ALD) technique to a InAlAs epitaxial layer. The chemical composition at the interface was revealed by angle-resolved X-ray photoelectron spectroscopy (XPS). The electrical properties of the ALD-HfO2/Al2O3/InAlAs metal-oxide-semiconductor (MOS) capacitor have been investigated and compared with those of the ALD-HfO2/InAlAs capacitor. It is demonstrated that the insertion of the Al2O3 layer can decrease interfacial oxidation and trap charge formation. Compared with the HfO2/InAlAs capacitor, the HfO2/Al2O3/InAlAs capacitor exhibits better electrical properties with reduced hysteresis and decreasing stretch-out of the capacitance-voltage (C-V) characteristics, and the oxide trapped charge (Qot) value is significantly decreased after inserting the Al2O3 interlayer.

  5. High-mobility BaSnO3 thin-film transistor with HfO2 gate insulator

    Science.gov (United States)

    Kim, Young Mo; Park, Chulkwon; Kim, Useong; Ju, Chanjong; Char, Kookrin

    2016-01-01

    Thin-film transistors have been fabricated using La-doped BaSnO3 as n-type channels and (In,Sn)2O3 as source, drain, and gate electrodes. HfO2 was grown as gate insulators by atomic layer deposition. The field-effect mobility, Ion/Ioff ratio, and subthreshold swing of the device are 24.9 cm2 V-1 s-1, 6.0 × 106, and 0.42 V dec-1, respectively. The interface trap density, evaluated to be higher than 1013 cm-2 eV-1, was found to be slightly lower than that of the thin-film transistor with an Al2O3 gate insulator. We attribute the much smaller subthreshold swing values to the higher dielectric constant of HfO2.

  6. Nanopore fabricated in pyramidal HfO2 film by dielectric breakdown method

    Science.gov (United States)

    Wang, Yifan; Chen, Qi; Deng, Tao; Liu, Zewen

    2017-10-01

    The dielectric breakdown method provides an innovative solution to fabricate solid-state nanopores on insulating films. A nanopore generation event via this method is considered to be caused by random charged traps (i.e., structural defects) and high electric fields in the membrane. Thus, the position and number of nanopores on planar films prepared by the dielectric breakdown method is hard to control. In this paper, we propose to fabricate nanopores on pyramidal HfO2 films (10-nm and 15-nm-thick) to improve the ability to control the location and number during the fabrication process. Since the electric field intensity gets enhanced at the corners of the pyramid-shaped film, the probability of nanopore occurrence at vertex and edge areas increases. This priority of appearance provides us chance to control the location and number of nanopores by monitoring a sudden irreversible discrete increase in current. The experimental results showed that the probability of nanopore occurrence decreases in an order from the vertex area, the edge area to the side face area. The sizes of nanopores ranging from 30 nm to 10 nm were obtained. Nanopores fabricated on the pyramid-shaped HfO2 film also showed an obvious ion current rectification characteristic, which might improve the nanopore performance as a biomolecule sequencing platform.

  7. Study of Direct-Contact HfO2/Si Interfaces

    Directory of Open Access Journals (Sweden)

    Noriyuki Miyata

    2012-03-01

    Full Text Available Controlling monolayer Si oxide at the HfO2/Si interface is a challenging issue in scaling the equivalent oxide thickness of HfO2/Si gate stack structures. A concept that the author proposes to control the Si oxide interface by using ultra-high vacuum electron-beam HfO2 deposition is described in this review paper, which enables the so-called direct-contact HfO2/Si structures to be prepared. The electrical characteristics of the HfO2/Si metal-oxide-semiconductor capacitors are reviewed, which suggest a sufficiently low interface state density for the operation of metal-oxide-semiconductor field-effect-transistors (MOSFETs but reveal the formation of an unexpected strong interface dipole. Kelvin probe measurements of the HfO2/Si structures provide obvious evidence for the formation of dipoles at the HfO2/Si interfaces. The author proposes that one-monolayer Si-O bonds at the HfO2/Si interface naturally lead to a large potential difference, mainly due to the large dielectric constant of the HfO2. Dipole scattering is demonstrated to not be a major concern in the channel mobility of MOSFETs.

  8. Influence of oxygen vacancies in ALD HfO2-x thin films on non-volatile resistive switching phenomena with a Ti/HfO2-x/Pt structure

    Science.gov (United States)

    Sokolov, Andrey Sergeevich; Jeon, Yu-Rim; Kim, Sohyeon; Ku, Boncheol; Lim, Donghwan; Han, Hoonhee; Chae, Myeong Gyoon; Lee, Jaeho; Ha, Beom Gil; Choi, Changhwan

    2018-03-01

    We report a modulation of oxygen vacancies profile in atomic layer deposition (ALD) HfO2-x thin films by reducing oxidant pulse time (0.7 s-0.1 s) and study its effect on resistive switching behavior with a Ti/HfO2-x/Pt structure. Hf 4f spectra of x-ray photoelectron microscopy (XPS) and depth profile confirm varied oxygen vacancies profiles by shifts of binding energies of Hf 4f5/2 and Hf 4f7/2 main peaks and its according HfO2-x sub-oxides for each device. The ultraviolet photoelectron spectroscopy (UPS) confirms different electron affinity (χ) of HfO2 and HfO2-x thin films, implying that barrier height at Ti/oxide interface is reduced. Current transport mechanism is dictated by Ohmic conduction in fully oxidized HfO2 thin films - Device A (0.7 s) and by Trap Filled Space Charge Limited Conduction (TF-SCLC) in less oxidized HfO2-x thin films - Device B (0.3 s) and Device C (0.1 s). A switching mechanism related to the oxygen vacancies modulation in Ti/HfO2-x/Pt based resistive random access memory (RRAM) devices is used to explain carefully notified current transport mechanism variations from device-to-device. A proper endurance and long-time retention characteristics of the devices are also obtained.

  9. Gamma irradiation-induced effects on the electrical properties of HfO2-based MOS devices

    Science.gov (United States)

    Manikanthababu, N.; Arun, N.; Dhanunjaya, M.; Nageswara Rao, S. V. S.; Pathak, A. P.

    2016-02-01

    Hafnium Oxide (HfO2) thin films were synthesized by e-beam evaporation and Radio frequency magnetron sputtering techniques. Au/HfO2/Si-structured Metal Oxide Semiconductor capacitors have been fabricated to study the effects of gamma irradiation on the electrical properties, leakage current versus voltage (I-V) and capacitance versus voltage (C-V) characteristics, as a function of irradiation dose. Systematic increase in leakage current as well as accumulation capacitance has been observed with increase in the irradiation dose. The influence of gamma irradiation and pre-existing defects on the evolution of oxide and interface traps have been studied in detail.

  10. Single-molecule studies using magnetic traps.

    Science.gov (United States)

    Lionnet, Timothée; Allemand, Jean-François; Revyakin, Andrey; Strick, Terence R; Saleh, Omar A; Bensimon, David; Croquette, Vincent

    2012-01-01

    In recent years, techniques have been developed to study and manipulate single molecules of DNA and other biopolymers. In one such technique, the magnetic trap, a single DNA molecule is bound at one end to a glass surface and at the other to a magnetic microbead. Small magnets, whose position and rotation can be controlled, pull on and rotate the microbead. This provides a simple method to stretch and twist the molecule. The system allows one to apply and measure forces ranging from 10(-3) to >100 pN. In contrast to other techniques, the force measurement is absolute and does not require calibration of the sensor. In this article, we describe the principle of the magnetic trap, as well as its use in the measurement of the elastic properties of DNA and the study of DNA-protein interactions.

  11. Trapping and manipulating single molecules of DNA

    Science.gov (United States)

    Shon, Min Ju

    This thesis presents the development and application of nanoscale techniques to trap and manipulate biomolecules, with a focus on DNA. These methods combine single-molecule microscopy and nano- and micro-fabrication to study biophysical properties of DNA and proteins. The Dimple Machine is a lab-on-a-chip device that can isolate and confine a small number of molecules from a bulk solution. It traps molecules in nanofabricated chambers, or "dimples", and the trapped molecules are then studied on a fluorescence microscope at the single-molecule level. The sampling of bulk solution by dimples is representative, reproducible, and automated, enabling highthroughput single-molecule experiments. The device was applied to study hybridization of oligonucleotides, particularly in the context of reaction thermodynamics and kinetics in nanoconfinement. The DNA Pulley is a system to study protein binding and the local mechanical properties of DNA. A molecule of DNA is tethered to a surface on one end, and a superparamagnetic bead is attached to the other. A magnet pulls the DNA taut, and a silicon nitride knife with a nanoscale blade scans the DNA along its contour. Information on the local properties of the DNA is extracted by tracking the bead with nanometer precision in a white-light microscope. The system can detect proteins bound to DNA and localize their recognition sites, as shown with a model protein, EcoRI restriction enzyme. Progress on the measurements of nano-mechanical properties of DNA is included.

  12. Reliability assessment of ultra-thin HfO2 films deposited on silicon wafer

    International Nuclear Information System (INIS)

    Fu, Wei-En; Chang, Chia-Wei; Chang, Yong-Qing; Yao, Chih-Kai; Liao, Jiunn-Der

    2012-01-01

    Highlights: ► Nano-mechanical properties on annealed ultra-thin HfO 2 film are studied. ► By AFM analysis, hardness of the crystallized HfO 2 film significantly increases. ► By nano-indention, the film hardness increases with less contact stiffness. ► Quality assessment on the annealed ultra-thin films can thus be achieved. - Abstract: Ultra-thin hafnium dioxide (HfO 2 ) is used to replace silicon dioxide to meet the required transistor feature size in advanced semiconductor industry. The process integration compatibility and long-term reliability for the transistors depend on the mechanical performance of ultra-thin HfO 2 films. The criteria of reliability including wear resistance, thermal fatigue, and stress-driven failure rely on film adhesion significantly. The adhesion and variations in mechanical properties induced by thermal annealing of the ultra-thin HfO 2 films deposited on silicon wafers (HfO 2 /SiO 2 /Si) are not fully understood. In this work, the mechanical properties of an atomic layer deposited HfO 2 (nominal thickness ≈10 nm) on a silicon wafer were characterized by the diamond-coated tip of an atomic force microscope and compared with those of annealed samples. The results indicate that the annealing process leads to the formation of crystallized HfO 2 phases for the atomic layer deposited HfO 2 . The HfSi x O y complex formed at the interface between HfO 2 and SiO 2 /Si, where the thermal diffusion of Hf, Si, and O atoms occurred. The annealing process increases the surface hardness of crystallized HfO 2 film and therefore the resistance to nano-scratches. In addition, the annealing process significantly decreases the harmonic contact stiffness (or thereafter eliminate the stress at the interface) and increases the nano-hardness, as measured by vertically sensitive nano-indentation. Quality assessments on as-deposited and annealed HfO 2 films can be thereafter used to estimate the mechanical properties and adhesion of ultra-thin HfO 2 films on SiO 2 /Si substrates.

  13. Electrical properties of HfO2 high- k thin-film MOS capacitors for advanced CMOS technology

    Science.gov (United States)

    Khairnar, A. G.; Patil, L. S.; Salunke, R. S.; Mahajan, A. M.

    2015-11-01

    We deposited the hafnium dioxide (HfO2) thin films on p-Si (100) substrates. The thin films were deposited with deposition time variations, viz 2, 4, 7 and 20 min using RF-sputtering technique. The thickness and refractive index of the films were measured using spectroscopic ellipsometer. The thicknesses of the films were measured to be 13.7, 21.9, 35.38 and 92.2 nm and refractive indices of 1.90, 1.93, 1.99 and 1.99, respectively, of the films deposited for 2, 4, 7 and 20 min deposition time. The crystal structures of the deposited HfO2 thin films were determined using XRD spectra and showed the monoclinic structure, confirmed with the ICDD card no 34-0104. Aluminum metallization was carried to form the Al/HfO2/ p-Si MOS structures by using thermal evaporation system with electrode area of 12.56 × 10-4 cm2. Capacitance voltage and current voltage measurements were taken to know electrical behavior of these fabricated MOS structures. The electrical parameters such as dielectric constant, flat-band shift and interface trap density determined through CV measurement were 7.99, 0.11 V and 6.94 × 1011 eV-1 cm-2, respectively. The low leakage current density was obtained from IV measurement of fabricated MOS structure at 1.5 V is 4.85 × 10-10 Acm-2. Aforesaid properties explored the suitability of the fabricated HfO2 high- k-based MOS capacitors for advanced CMOS technology.

  14. Single qubit manipulation in a microfabricated surface electrode ion trap

    Science.gov (United States)

    Mount, Emily; Baek, So-Young; Blain, Matthew; Stick, Daniel; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang

    2013-09-01

    We trap individual 171Yb+ ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms-1, indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps.

  15. Single qubit manipulation in a microfabricated surface electrode ion trap

    International Nuclear Information System (INIS)

    Mount, Emily; Baek, So-Young; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang; Blain, Matthew; Stick, Daniel

    2013-01-01

    We trap individual 171 Yb + ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms −1 , indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps. (paper)

  16. ZrO2 and HfO2 dielectrics on (001) n-InAs with atomic-layer-deposited in situ surface treatment

    Science.gov (United States)

    Babadi, Aein S.; Lind, Erik; Wernersson, Lars-Erik

    2016-03-01

    The electrical properties of ZrO2 and HfO2 gate dielectrics on n-InAs were evaluated. Particularly, an in situ surface treatment method including cyclic nitrogen plasma and trimethylaluminum pulses was used to improve the quality of the high-κ oxides. The quality of the InAs-oxide interface was evaluated with a full equivalent circuit model developed for narrow band gap metal-oxide-semiconductor (MOS) capacitors. Capacitance-voltage (C-V) measurements exhibit a total trap density profile with a minimum of 1 × 1012 cm-2 eV-1 and 4 × 1012 cm-2 eV-1 for ZrO2 and HfO2, respectively, both of which are comparable to the best values reported for high-κ/III-V devices. Our simulations showed that the measured capacitance is to a large extent affected by the border trap response suggesting a very low density of interface traps. Charge trapping in MOS structures was also investigated using the hysteresis in the C-V measurements. The experimental results demonstrated that the magnitude of the hysteresis increases with increase in accumulation voltage, indicating an increase in the charge trapping response.

  17. Growth stress evolution in HfO2/SiO2 multilayers

    International Nuclear Information System (INIS)

    Li, Jingping; Fang, Ming; He, Hongbo; Shao, Jianda; Fan, Zhengxiu; Li, Zhaoyang

    2012-01-01

    Growth stress in hafnium oxide/silicon dioxide (HfO 2 /SiO 2 ) multilayers was measured in situ to understand the role of the sublayers and the influence of the underlayers' structural features. Experiments using three- and six-layer films were performed by electron-beam evaporation. During deposition, the developing trend of the force per unit width was controlled by changing the thickness ratio of the HfO 2 and SiO 2 layers. The substrate material affected the initial stress evolution of HfO 2 film. The structural feature of the HfO 2 layer onto which SiO 2 was deposited and the whole film thickness have a combined effect on the stress evolution of the SiO 2 layer. - Highlights: ► Film radius stress relates to thickness ratio of sublayers. ► The initial stress evolutions of HfO 2 depended on the substrate material. ► The structural feature of H layer affects the stress evolution of L layer.

  18. Ferromagnetic HfO2/Si/GaAs interface for spin-polarimetry applications

    Science.gov (United States)

    Tereshchenko, O. E.; Golyashov, V. A.; Eremeev, S. V.; Maurin, I.; Bakulin, A. V.; Kulkova, S. E.; Aksenov, M. S.; Preobrazhenskii, V. V.; Putyato, M. A.; Semyagin, B. R.; Dmitriev, D. V.; Toropov, A. I.; Gutakovskii, A. K.; Khandarkhaeva, S. E.; Prosvirin, I. P.; Kalinkin, A. V.; Bukhtiyarov, V. I.; Latyshev, A. V.

    2015-09-01

    In this letter, we present electrical and magnetic characteristics of HfO2-based metal-oxide-semiconductor capacitors (MOSCAPs), along with the effect of pseudomorphic Si as a passivating interlayer on GaAs(001) grown by molecular beam epitaxy. Ultrathin HfO2 high-k gate dielectric films (3-15 nm) have been grown on Si/GaAs(001) structures through evaporation of a Hf/HfO2 target in NO2 gas. The lowest interface states density Dit at Au/HfO2/Si/GaAs(001) MOS-structures were obtained in the range of (6 -13 )×1011 eV-1 cm-2 after annealing in the 400-500 °C temperature range as a result of HfO2 crystallization and the Si layer preservation in non-oxidized state on GaAs. HfO2-based MOSCAPs demonstrated the ferromagnetic properties which were attributed to the presence of both cation and anion vacancies according to the first-principle calculations. Room-temperature ferromagnetism in HfO2 films allowed us to propose a structure for the ferromagnetic MOS spin-detector.

  19. HfO2 nanocrystal memory on SiGe channel

    Science.gov (United States)

    Lin, Yu-Hsien; Chien, Chao-Hsin

    2013-02-01

    This study proposes a novel HfO2 nanocrystal memory on epi-SiGe (Ge: 15%) channel. Because SiGe has a smaller bandgap than that of silicon, it increases electron/hole injection and the enhances program/erase speeds. This study compares the characteristics of HfO2 nanocrystal memories with different oxynitride tunnel oxide thicknesses on Si and epi-SiGe substrate. Results show that the proposed nonvolatile memory possesses superior characteristics in terms of considerably large memory window for two-bits operation, high speed program/erase for low power applications, long retention time, excellent endurance, and strong immunity to disturbance.

  20. Coherent Control of a Single Trapped Rydberg Ion

    Science.gov (United States)

    Higgins, Gerard; Pokorny, Fabian; Zhang, Chi; Bodart, Quentin; Hennrich, Markus

    2017-12-01

    Trapped Rydberg ions are a promising novel approach to quantum computing and simulations. They are envisaged to combine the exquisite control of trapped ion qubits with the fast two-qubit Rydberg gates already demonstrated in neutral atom experiments. Coherent Rydberg excitation is a key requirement for these gates. Here, we carry out the first coherent Rydberg excitation of an ion and perform a single-qubit Rydberg gate, thus demonstrating basic elements of a trapped Rydberg ion quantum computer.

  1. Impact of Band-Engineering to Performance of High-k Multilayer Based Charge Trapping Memory

    International Nuclear Information System (INIS)

    Liu Li-Fang; Pan Li-Yang; Zhang Zhi-Gang; Xu Jun

    2015-01-01

    Impact of band-engineering to the performance of charge trapping memory with HfO 2 /Ta 2 O 5 /HfO 2 (HTH) as the charge trapping layer is investigated. Compared with devices with the same total HfO 2 thickness, structures with Ta 2 O 5 closer to substrates show larger program/erase window, because the 2nd HfO 2 (next to blocking oxide) serving as part of blocking oxide reduces the current tunneling out of/in the charge trapping layer during program and erase. Moreover, trapped charge centroid is modulated and contributed more to the flat-band voltage shift. Further experiments prove that devices with a thicker 2nd HfO 2 layer exhibit larger saturate flat-band shift in both program and erase operation. The optimized device achieves a 7 V memory window and good reliability characteristics. (paper)

  2. Highly efficient dye-sensitized solar cells based on HfO2 modified TiO2 electrodes

    International Nuclear Information System (INIS)

    Ramasamy, Parthiban; Kang, Moon-Sung; Cha, Hyeon-Jung; Kim, Jinkwon

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► HfO 2 has been used to modify TiO 2 electrodes in dye sensitized solar cells. ► HfO 2 layer increases the dye adsorption. ► Diffusion coefficient (D e ) and lifetime (τ e ) of the photoelectrons were increased. ► Solar cell efficiency (η) was greatly improved from 5.67 to 9.59%. -- Abstract: In this article, we describe the use of hafnium oxide (HfO 2 ) as a new and efficient blocking layer material to modify TiO 2 electrodes in dye sensitized solar cells. Different thicknesses of HfO 2 over-layers were prepared by simple dip coating from two different precursors and their effects on the performance of DSSCs were studied. The HfO 2 modification remarkably increases dye adsorption, resulting from the fact that the surface of HfO 2 is more basic than that of TiO 2 . Furthermore, the HfO 2 coating demonstrated increased diffusion coefficient (D e ) and lifetime (τ e ) of the photoelectrons, indicating the improved retardation of the back electron transfer, which increases short-circuit current (J sc ) and open-circuit voltage (V oc ). Thereby, the photo conversion efficiency (η) of the solar cell was greatly improved from 5.67 to 9.59% (an improvement of 69.02%) as the HfO 2 layer was coated over TiO 2 films.

  3. Nanomechanical study of amorphous and polycrystalline ALD HfO2 thin films

    Science.gov (United States)

    K. Tapily; J.E. Jakes; D. Gu; H. Baumgart; A.A. Elmustafa

    2011-01-01

    Thin films of hafnium oxide (HfO2) were deposited by atomic layer deposition (ALD). The structural properties of the deposited films were characterised by transmission electron microscopy (TEM) and X-ray diffraction (XRD). We investigated the effect of phase transformations induced by thermal treatments on the mechanical properties of ALD HfO

  4. Mechanical properties of ultra-thin HfO2 films studied by nano scratches tests

    International Nuclear Information System (INIS)

    Fu, Wei-En; Chang, Yong-Qing; Chang, Chia-Wei; Yao, Chih-Kai; Liao, Jiunn-Der

    2013-01-01

    10-nm-thick atomic layer deposited HfO 2 films were characterized in terms of wear resistance and indentation hardness to investigate the thermal annealing induced impacts on mechanical properties. The wear resistance of ultra-thin films at low loads was characterized using nano-scratch tests with an atomic force microscope. The depth of the nano-scratches decreases with increasing annealing temperature, indicating that the hardness of the annealed films increases with the annealing temperatures. Surface nanoindentation was also performed to confirm the nanoscratch test results. The hardness variation of the annealed films is due to the generation of HfSi x O y induced by the thermal annealing. X-ray photoelectron spectroscopy measurements proved that the hardness of formed HfSi x O y with increasing annealing temperatures. The existence of HfSi x O y broadens the interface, and causes the increase of the interfacial layer thickness. As a result, the surface hardness increases with the increasing HfSi x O y induced by the thermal annealing. - Highlights: ► Mechanical properties of HfO 2 films were assessed by nano-scratch and indentation. ► Scratch depth of HfO 2 films decreased with the increase of annealing temperatures. ► Nano-hardness of HfO 2 films increased with the increase of annealing temperatures

  5. Thermal Conductivity and Water Vapor Stability of Ceramic HfO2-Based Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    HfO2-Y2O3 and La2Zr2O7 are candidate thermal/environmental barrier coating materials for gas turbine ceramic matrix composite (CMC) combustor liner applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature phase stability of plasma-sprayed coatings and/or hot-pressed HfO2-5mol%Y2O3, HfO2-15mol%Y2O3 and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasma-sprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC Hexoloy or CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermal/environmental barrier coating applications will also be discussed.

  6. Evaluation of AlGaN/GaN metal-oxide-semicondutor high-electron mobility transistors with plasma-enhanced atomic layer deposition HfO2/AlN date dielectric for RF power applications

    Science.gov (United States)

    Chiu, Yu Sheng; Luc, Quang Ho; Lin, Yueh Chin; Chien Huang, Jui; Dee, Chang Fu; Yeop Majlis, Burhanuddin; Chang, Edward Yi

    2017-09-01

    A plasma enhanced atomic layer deposition (PEALD) HfO2/AlN dielectric stack was used as the gate dielectric for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) for high-frequency power device applications. The capacitance-voltage (C-V) curves of the HfO2/AlN/GaN MOS capacitor (MOSCAP) showed a small frequency dispersion along with a very small hysteresis (˜50 mV). Moreover, the interface trap density (D it) was calculated to be 2.7 × 1011 cm-2 V-1 s-1 at 150 °C. Using PEALD-AlN as the interfacial passivation layer (IPL), the drain current of the HfO2/AlN MOS-HEMTs increased by about 46% and the gate leakage current decreased by six orders of magnitude as compared with those of the conventional Schottky gate AlGaN/GaN HEMTs processed using the same epitaxial wafer. The 0.3-µm-gate-length HfO2/AlN/AlGaN/GaN MOS-HEMTs demonstrated a 2.88 W/mm output power, a 23 dB power gain, a 30.2% power-added efficiency at 2.4 GHz, and an improved device linearity as compared with the conventional AlGaN/GaN HEMTs. The third-order intercept point at the output (OIP3) of the MOS-HEMTs was 28.4 as compared with that of 26.5 for the conventional GaN HEMTs. Overall, the MOS-HEMTs with a HfO2/AlN gate stack showed good potential for high-linearity RF power device applications.

  7. Single florescent nanodiamond in a three dimensional ABEL trap

    Science.gov (United States)

    Kayci, Metin; Radenovic, Aleksandra

    2015-01-01

    Three dimensional single particle trapping and manipulation is an outstanding challenge in various fields ranging from basic physics to life sciences. By monitoring the response of a trapped particle to a designed environment one can extract its characteristics. In addition, quantum dynamics of a spatially scanned well-known particle can provide environmental information. Precise tracking and positioning of such a particle in aqueous environment is crucial task for achieving nano-scale resolution. Here we experimentally demonstrate three dimensional ABEL trap operating at high frequency by employing a hybrid approach in particle tracking. The particle location in the transverse plane is detected via a scanning laser beam while the axial position is determined by defocused imaging. The scanning of the trapped particle is accomplished through a nano positioning stage integrated to the trap platform. PMID:26559890

  8. Formation of Al2O3-HfO2 Eutectic EBC Film on Silicon Carbide Substrate

    Directory of Open Access Journals (Sweden)

    Kyosuke Seya

    2015-01-01

    Full Text Available The formation mechanism of Al2O3-HfO2 eutectic structure, the preparation method, and the formation mechanism of the eutectic EBC layer on the silicon carbide substrate are summarized. Al2O3-HfO2 eutectic EBC film is prepared by optical zone melting method on the silicon carbide substrate. At high temperature, a small amount of silicon carbide decomposed into silicon and carbon. The components of Al2O3 and HfO2 in molten phase also react with the free carbon. The Al2O3 phase reacts with free carbon and vapor species of AlO phase is formed. The composition of the molten phase becomes HfO2 rich from the eutectic composition. HfO2 phase also reacts with the free carbon and HfC phase is formed on the silicon carbide substrate; then a high density intermediate layer is formed. The adhesion between the intermediate layer and the substrate is excellent by an anchor effect. When the solidification process finished before all of HfO2 phase is reduced to HfC phase, HfC-HfO2 functionally graded layer is formed on the silicon carbide substrate and the Al2O3-HfO2 eutectic structure grows from the top of the intermediate layer.

  9. Issues concerning the determination of solubility products of sparingly soluble crystalline solids. Solubility of HfO2(cr)

    International Nuclear Information System (INIS)

    Rai, Dhanpat; Kitamura, Akira; Rosso, Kevin M.; Sasaki, Takayuki; Kobayashi, Taishi

    2016-01-01

    Solubility studies were conducted with HfO 2 (cr) solid as a function HCl and ionic strength ranging from 2.0 to 0.004 mol kg -1 . These studies involved (1) using two different amounts of the solid phase, (2) acid washing the bulk solid phase, (3) preheating the solid phase to 1400 C, and (4) heating amorphous HfO 2 (am) suspensions to 90 C to ascertain whether the HfO 2 (am) converts to HfO 2 (cr) and to determine the solubility from the oversaturation direction. Based on the results of these treatments it is concluded that the HfO 2 (cr) contains a small fraction of less crystalline, but not amorphous, material [HfO 2 (lcr)] and this, rather than the HfO 2 (cr), is the solubility-controlling phase in the range of experimental variables investigated in this study. The solubility data are interpreted using both the Pitzer and SIT models and they provide log 10 K 0 values of -(59.75±0.35) and -(59.48±0.41), respectively, for the solubility product of HfO 2 (lcr)[HfO 2 (lcr) + 2H 2 O ↔ Hf 4+ + 4OH - ]. The log 10 of the solubility product of HfO 2 (cr) is estimated to be < -63. The observation of a small fraction of less crystalline higher solubility material is consistent with the general picture that mineral surfaces are often structurally and/or compositionally imperfect leading to a higher solubility than the bulk crystalline solid. This study stresses the urgent need, during interpretation of solubility data, of taking precautions to make certain that the observed solubility behavior for sparingly-soluble solids is assigned to the proper solid phase.

  10. Perpendicular magnetic anisotropy of Co/Pt bilayers on ALD HfO2

    Science.gov (United States)

    Vermeulen, Bart F.; Wu, Jackson; Swerts, Johan; Couet, Sebastien; Linten, Dimitri; Radu, Iuliana P.; Temst, Kristiaan; Rampelberg, Geert; Detavernier, Christophe; Groeseneken, Guido; Martens, Koen

    2016-10-01

    Perpendicular Magnetic Anisotropy (PMA) is a key requirement for state of the art Magnetic Random Access Memories (MRAM). Currently, PMA has been widely reported in standard Magnetic Tunnel Junction material stacks using MgO as a dielectric. In this contribution, we present the first report of PMA at the interface with a high-κ dielectric grown by Atomic Layer Deposition, HfO2. The PMA appears after annealing a HfO2/Co/Pt/Ru stack in N2 with the Keff of 0.25 mJ/m2 as determined by Vibrating Sample Magnetometry. X-Ray Diffraction and Transmission Electron Microscopy show that the appearance of PMA coincides with interdiffusion and the epitaxial ordering of the Co/Pt bilayer. High-κ dielectrics are especially interesting for Voltage Control of Magnetic Anisotropy applications and are of potential interest for low-power MRAM and spintronics technologies.

  11. Atomic layer deposition of HfO2 on graphene through controlled ion beam treatment

    International Nuclear Information System (INIS)

    Kim, Ki Seok; Oh, Il-Kwon; Jung, Hanearl; Kim, Hyungjun; Yeom, Geun Young; Kim, Kyong Nam

    2016-01-01

    The polymer residue generated during the graphene transfer process to the substrate tends to cause problems (e.g., a decrease in electron mobility, unwanted doping, and non-uniform deposition of the dielectric material). In this study, by using a controllable low-energy Ar + ion beam, we cleaned the polymer residue without damaging the graphene network. HfO 2 grown by atomic layer deposition on graphene cleaned using an Ar + ion beam showed a dense uniform structure, whereas that grown on the transferred graphene (before Ar + ion cleaning) showed a non-uniform structure. A graphene–HfO 2 –metal capacitor fabricated by growing 20-nm thick HfO 2 on graphene exhibited a very low leakage current (<10 −11 A/cm 2 ) for Ar + ion-cleaned graphene, whereas a similar capacitor grown using the transferred graphene showed high leakage current.

  12. Role of Al doping in the filament disruption in HfO2 resistance switches

    Science.gov (United States)

    Brivio, Stefano; Frascaroli, Jacopo; Spiga, Sabina

    2017-09-01

    Resistance switching devices, whose operation is driven by formation (SET) and dissolution (RESET) of conductive paths shorting and disconnecting the two metal electrodes, have recently received great attention and a deep general comprehension of their operation has been achieved. However, the link between switching characteristics and material properties is still quite weak. In particular, doping of the switching oxide layer has often been investigated only for looking at performance upgrade and rarely for a meticulous investigation of the switching mechanism. In this paper, the impact of Al doping of HfO2 devices on their switching operations, retention loss mechanisms and random telegraph noise traces is investigated. In addition, phenomenological modeling of the switching operation is performed for device employing both undoped and doped HfO2. We demonstrate that Al doping influences the filament disruption process during the RESET operation and, in particular, it contributes in preventing an efficient restoration of the oxide with respect to undoped devices.

  13. Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles

    Directory of Open Access Journals (Sweden)

    T. S. N. Sales

    2017-05-01

    Full Text Available In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2 nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM with electron back scattering diffraction (EBSD, and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%.

  14. Characterization, integration and reliability of HfO2 and LaLuO3 high-κ/metal gate stacks for CMOS applications

    International Nuclear Information System (INIS)

    Nichau, Alexander

    2013-01-01

    . A lower limit found was EOT=5 Aa for Al doping inside TiN. The doping of TiN on LaLuO 3 is proven by electron energy loss spectroscopy (EELS) studies to modify the interfacial silicate layer to La-rich silicates or even reduce the layer. The oxide quality in Si/HfO 2 /TiN gate stacks is characterized by charge pumping and carrier mobility measurements on 3d MOSFETs a.k.a. FinFETs. The oxide quality in terms of the number of interface (and oxide) traps on top- and sidewall of FinFETs is compared for three different annealing processes. A high temperature anneal of HfO 2 improves significantly the oxide quality and mobility. The gate oxide integrity (GOI) of gate stacks below 1 nm EOT is determined by time-dependent dielectric breakdown (TDDB) measurements on FinFETs with HfO 2 /TiN gate stacks. A successful EOT scaling has always to consider the oxide quality and resulting reliability. Degraded oxide quality leads to mobility degradation and earlier soft-breakdown, i.e. leakage current increase.

  15. Field-enhanced route to generating anti-Frenkel pairs in HfO2

    Science.gov (United States)

    Schie, Marcel; Menzel, Stephan; Robertson, John; Waser, Rainer; De Souza, Roger A.

    2018-03-01

    The generation of anti-Frenkel pairs (oxygen vacancies and oxygen interstitials) in monoclinic and cubic HfO2 under an applied electric field is examined. A thermodynamic model is used to derive an expression for the critical field strength required to generate an anti-Frenkel pair. The critical field strength of EaFcr˜101GVm-1 obtained for HfO2 exceeds substantially the field strengths routinely employed in the forming and switching operations of resistive switching HfO2 devices, suggesting that field-enhanced defect generation is negligible. Atomistic simulations with molecular static (MS) and molecular dynamic (MD) approaches support this finding. The MS calculations indicated a high formation energy of Δ EaF≈8 eV for the infinitely separated anti-Frenkel pair, and only a decrease to Δ EaF≈6 eV for the adjacent anti-Frenkel pair. The MD simulations showed no defect generation in either phase for E <3 GVm-1 , and only sporadic defect generation in the monoclinic phase (at E =3 GVm-1 ) with fast (trec<4 ps ) recombination. At even higher E but below EaFcr both monoclinic and cubic structures became unstable as a result of field-induced deformation of the ionic potential wells. Further MD investigations starting with preexisting anti-Frenkel pairs revealed recombination of all pairs within trec<1 ps , even for the case of neutral vacancies and charged interstitials, for which formally there is no electrostatic attraction between the defects. In conclusion, we find no physically reasonable route to generating point-defects in HfO2 by an applied field.

  16. Design and Fabrication of Interdigital Nanocapacitors Coated with HfO2

    Directory of Open Access Journals (Sweden)

    Gabriel González

    2015-01-01

    Full Text Available In this article nickel interdigital capacitors were fabricated on top of silicon substrates. The capacitance of the interdigital capacitor was optimized by coating the electrodes with a 60 nm layer of HfO2. An analytical solution of the capacitance was compared to electromagnetic simulations using COMSOL and with experimental measurements. Results show that modeling interdigital capacitors using Finite Element Method software such as COMSOL is effective in the design and electrical characterization of these transducers.

  17. Structural transformation of HfO2 nano-particles under compression

    International Nuclear Information System (INIS)

    Pathak, Santanu; Mandal, Guruprasad; Das, Parnika

    2016-01-01

    In recent years, nano-structured materials are extensively investigated for their wide applications in electronics, optics, magnetic data storage, catalysis, ceramics and many others as it show new physical and chemical properties with reduction of size. HfO 2 has a very high dielectric constant compared to SiO 2 and this is being considered as a gate insulator in FET as a replacement of SiO 2 . So HfO 2 has become very important material for study in modern electronic world. In order to know the structure under compression, we have performed the high pressure X-ray diffraction of HfO 2 nano-particles using XPRESS beamline at Elettra synchrotron facility, Trieste. The pressure evolution of XRD is given. A new peak is observed at about 7.8 GPa pressure at an angle (2ϴ) 9.80 between the peaks for (-111) and (111) planes. Also a new peak is observed at about 11.3 GPa pressure at angle(2ϴ) 15.04°. We observe an increase in peak width as pressure increases indicating grain size decreases. We have estimated the grain size of HfO 2 nano-particle from the peak for (011) plane using the Scherrer formula and variation with pressure is shown. A change in slope of grain size variation is seen near 6.7 GPa and 11.3 GPa where a new peak appeared. However we observe discontinuity in grain size 3.3 GPa and 37 GPa. The intensity of peak from (011) plane decreases with increasing pressure and vanished above 11.3 GPa. The peak shifting with pressure is plotted and we observe a decrease in slope with increasing pressure indicating an increase in stiffness. The lines are for visual impression

  18. Enhanced non-volatile memory characteristics with quattro-layer graphene nanoplatelets vs. 2.85-nm Si nanoparticles with asymmetric Al2O 3/HfO 2 tunnel oxide.

    Science.gov (United States)

    El-Atab, Nazek; Turgut, Berk Berkan; Okyay, Ali K; Nayfeh, Munir; Nayfeh, Ammar

    2015-12-01

    In this work, we demonstrate a non-volatile metal-oxide semiconductor (MOS) memory with Quattro-layer graphene nanoplatelets as charge storage layer with asymmetric Al2O3/HfO2 tunnel oxide and we compare it to the same memory structure with 2.85-nm Si nanoparticles charge trapping layer. The results show that graphene nanoplatelets with Al2O3/HfO2 tunnel oxide allow for larger memory windows at the same operating voltages, enhanced retention, and endurance characteristics. The measurements are further confirmed by plotting the energy band diagram of the structures, calculating the quantum tunneling probabilities, and analyzing the charge transport mechanism. Also, the required program time of the memory with ultra-thin asymmetric Al2O3/HfO2 tunnel oxide with graphene nanoplatelets storage layer is calculated under Fowler-Nordheim tunneling regime and found to be 4.1 ns making it the fastest fully programmed MOS memory due to the observed pure electrons storage in the graphene nanoplatelets. With Si nanoparticles, however, the program time is larger due to the mixed charge storage. The results confirm that band-engineering of both tunnel oxide and charge trapping layer is required to enhance the current non-volatile memory characteristics.

  19. Silicon surface passivation using thin HfO2 films by atomic layer deposition

    International Nuclear Information System (INIS)

    Gope, Jhuma; Vandana; Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir; Maurya, K.K.; Srivastava, Ritu; Singh, P.K.

    2015-01-01

    Graphical abstract: - Highlights: • HfO 2 films using thermal ALD are studied for silicon surface passivation. • As-deposited thin film (∼8 nm) shows better passivation with surface recombination velocity (SRV) <100 cm/s. • Annealing improves passivation quality with SRV ∼20 cm/s for ∼8 nm film. - Abstract: Hafnium oxide (HfO 2 ) is a potential material for equivalent oxide thickness (EOT) scaling in microelectronics; however, its surface passivation properties particularly on silicon are not well explored. This paper reports investigation on passivation properties of thermally deposited thin HfO 2 films by atomic layer deposition system (ALD) on silicon surface. As-deposited pristine film (∼8 nm) shows better passivation with <100 cm/s surface recombination velocity (SRV) vis-à-vis thicker films. Further improvement in passivation quality is achieved with annealing at 400 °C for 10 min where the SRV reduces to ∼20 cm/s. Conductance measurements show that the interface defect density (D it ) increases with film thickness whereas its value decreases after annealing. XRR data corroborate with the observations made by FTIR and SRV data.

  20. Oxygen vacancy effects in HfO2-based resistive switching memory: First principle study

    Directory of Open Access Journals (Sweden)

    Yuehua Dai

    2016-08-01

    Full Text Available The work investigated the shape and orientation of oxygen vacancy clusters in HfO2-base resistive random access memory (ReRAM by using the first-principle method based on the density functional theory. Firstly, the formation energy of different local Vo clusters was calculated in four established orientation systems. Then, the optimized orientation and charger conductor shape were identified by comparing the isosurface plots of partial charge density, formation energy, and the highest isosurface value of oxygen vacancy. The calculated results revealed that the [010] orientation was the optimal migration path of Vo, and the shape of system D4 was the best charge conductor in HfO2, which effectively influenced the SET voltage, formation voltage and the ON/OFF ratio of the device. Afterwards, the PDOS of Hf near Vo and total density of states of the system D4_010 were obtained, revealing the composition of charge conductor was oxygen vacancy instead of metal Hf. Furthermore, the migration barriers of the Vo hopping between neighboring unit cells were calculated along four different orientations. The motion was proved along [010] orientation. The optimal circulation path for Vo migration in the HfO2 super-cell was obtained.

  1. Thermal ammonia nitridation on HfO2 and hafnium silicates thin films

    International Nuclear Information System (INIS)

    Ganem, J.-J.; Trimaille, I.; Vickridge, I.C.; Gusev, E.P.

    2006-01-01

    In this paper we use isotopic tracing experiments with 15 NH 3 and 14 NH 3 to investigate the nitridation mechanisms on both hafnium silicates films (40-175 A) and HfO 2 (50 A) films deposited by MOCVD on silicon substrate covered by a 10-15 A interfacial SiO 2 layer. Nitrogen profiles in the films were obtained through nuclear resonance profiling (NRP) with the 15 N(p,αγ) 12 C resonance at 429 keV and the total amounts of atomic species and the overall stoichiometry were obtained by RBS and NRA. In the silicate films, nitrogen is incorporated both into surface and bulk regions. For HfO 2 , lowering the ammonia pressure favors the fixation of nitrogen in the near surface region of film. This phenomenon is not observed in the case of silicate films. The pressure dependence of near surface nitrogen incorporation in HfO 2 films could be related to the formation of oxygen vacancies and opens a way to control the diffusion barrier needed in the gate dielectric

  2. Single Ion Trapping for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  3. Trapped electrons in irradiated single crystals of polyhydroxy compounds

    International Nuclear Information System (INIS)

    Box, H.C.; Budzinski, E.E.; Freund, H.G.; Potter, W.R.

    1979-01-01

    The intermolecular trapping of electrons has been observed in single crystals of dulcitol and L(+) arabinose x-irradiated at 4.2 0 K. Attribution of a major component of the ESR absorption to trapped electrons is based upon the character of the hyperfine pattern, which arises from multiple anisotropic hyperfine interactions with exchangeable protons, and on the g value of the absorption, which is always less than the free spin value. The removal of the trapped electron absorption upon irradiation with visible light has also been demonstrated. In these experiments all of the electrons are trapped in identical sites. This circumstance provides some important advantages in the study of the factors affecting the stabilization of charge in an environment of polarizable molecules

  4. Electronic excitation induced defect dynamics in HfO2 based MOS devices investigated by in-situ electrical measurements

    Science.gov (United States)

    Manikanthababu, N.; Vajandar, S.; Arun, N.; Pathak, A. P.; Asokan, K.; Osipowicz, T.; Basu, T.; Nageswara Rao, S. V. S.

    2018-03-01

    In-situ I-V and C-V characterization studies were carried out to determine the device quality of atomic layer deposited HfO2 (2.7 nm)/SiO2 (0.6 nm)/Si-based metal oxide semiconductor devices during 120 MeV Ag ion irradiation. The influence of various tunneling mechanisms has been investigated by analyzing the I-V characteristics as a function of ion fluence. The nature of the defects created is tentatively identified by the determination of the significant tunneling processes. While the ion induced annealing of defects is observed at lower fluences, ion induced intermixing and radiation damage is found to be significant at higher fluences. The C-V characteristics also reveal significant changes at the interface and oxide trap densities: an increase in the oxide layer thickness occurs through the formation of an HfSiO interlayer. The interlayer is due to the swift heavy ion induced intermixing, which has been confirmed by X-TEM and X-ray photoelectron spectroscopy measurements.

  5. High-temperature x-ray diffraction study of HfTiO4-HfO2 solid solutions

    International Nuclear Information System (INIS)

    Carpenter, D.A.

    1975-01-01

    High-temperature x-ray diffraction techniques were used to determine the axial thermal expansion curves of HfTiO 4 -HfO 2 solid solutions as a function of composition. Data show increasing anisotropy with increasing HfO 2 content. An orthorhombic-to-monoclinic phase transformation was detected near room temperature for compositions near the high HfO 2 end of the orthorhombic phase field and for compositions within the two-phase region (HfTiO 4 solid solution plus HfO 2 solid solution). An orthorhombic-to-cubic phase transformation is indicated by data from oxygen-deficient materials at greater than 1873 0 K. (U.S.)

  6. Effects of N2, O2, and Ar plasma treatments on the removal of crystallized HfO2 film

    International Nuclear Information System (INIS)

    Chen Jinghao; Yoo, Won Jong; Chan, Daniel S.H.

    2006-01-01

    The effects of plasma treatment using Ar, N 2 , and O 2 on the removal of crystallized HfO 2 films in a dilute HF solution were studied. The resulting damage in source and drain regions, and recess in isolation regions were also investigated. It was found that plasma nitridation with an ion energy of several hundred electron volts can lower the wet etch resistance of crystallized HfO 2 films up to 70 A thick through the generation of Hf-N bonds. However, thermal nitridation did not introduce sufficient nitrogen into bulk crystallized HfO 2 films to lower wet etch resistance. Plasma nitridation without bias power introduced nitrogen to the crystallized HfO 2 in the region only within 10 A of the surface. The enhancement of the etch rate of crystallized HfO 2 in dilute HF and the amount of recess in the active and isolation regions using N 2 , O 2 , and Ar plasma treatment have been evaluated. Results show that N 2 plasma treatment is the most effective in enhancing the removal rate of crystallized HfO 2 in dilute HF and minimizing recess on substrate among the plasmas studied

  7. Self-diffusion of Er and Hf inpure and HfO2-doped polycrystalline Er2O3

    International Nuclear Information System (INIS)

    Scheidecker, R.W.

    1979-01-01

    Using a tracer technique, self-diffusion of Er and Hf was measured over the approximate temperature interval of 1600 to 1970 0 C in pure and HfO 2 -doped polycryatalline Er 2 O 3 . Up to about 10 m/o HfO 2 dopant level, the Er self-diffusion coefficients followed a relationship based on cation vacancies. Above 10 m/o HfO 2 , deviation from this relationship occurred, apparently due to clustering of cation vacancies and oxygen interstitials around the dopant hafnia ion. The activation energy for the self-diffusion of Er in pure Er 2 O 3 was 82.2 Kcal/mole and increased with the HfO 2 dopant level present. Self-diffusion of Hf was measured in pure Er 2 O 3 having two impurity levels, and a separation of the grain boundary. The volume diffusion of Hf showed both extrinsic and intrinsic behavior with the transition temperature increasing with the impurity level present in Er 2 O 3 . The activation energy for Hf volume diffusion in the intrinsic region was high, i.e. 235 -+ 9.5 Kcal/mole. The grain boundary diffusion was apparently extrinsic over the entire temperature interval Very low Hf self diffusion rates were found in both pure and HfO 2 doped Er 2 O 3 compositions. Despite a clustering effect, the HfO 2 dopant increased the Hf volume diffusion coefficients

  8. A single-sampling hair trap for mesocarnivores

    Science.gov (United States)

    Jonathan N. Pauli; Matthew B. Hamilton; Edward B. Crain; Steven W. Buskirk

    2007-01-01

    Although techniques to analyze and quantifY DNA-based data have progressed, methods to noninvasively collect samples lag behind. Samples are generally collected from devices that permit coincident sampling of multiple individuals. Because of cross-contamination, substantive genotyping errors can arise. We developed a cost-effective (US$4.60/trap) single-capture hair...

  9. New apparatus of single particle trap system for aerosol visualization

    Science.gov (United States)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  10. Laser conditioning and multi-shot laser damage accumulation effects of HfO2/SiO2 antireflective coatings

    International Nuclear Information System (INIS)

    Zhao Yuanan; Wang Tao; Zhang Dawei; Shao Jianda; Fan Zhengxiu

    2005-01-01

    Laser conditioning effects of the HfO 2 /SiO 2 antireflective (AR) coatings at 1064 nm and the accumulation effects of multi-shot laser radiation were investigated. The HfO 2 /SiO 2 AR coatings were prepared by E-beam evaporation (EBE). The single-shot and multi-shot laser induced damage threshold was detected following ISO standard 11254-1.2, and the laser conditioning was conducted by three-step raster scanning method. It was found that the single-shot LIDT and multi-shot LIDT was almost the same. The damage mostly >80% occurred in the first shot under multi-shot laser radiation, and after that the damage occurring probability plummeted to <5%. There was no obvious enhancement of the laser damage resistance for both the single-shot and multi-shot laser radiation of the AR coatings after laser conditioning. A Nomarski microscope was employed to map the damage morphology, and it found that the damage behavior is defect-initiated for both unconditioned and conditioned samples

  11. HfO2 as gate dielectric on Ge: Interfaces and deposition techniques

    International Nuclear Information System (INIS)

    Caymax, M.; Van Elshocht, S.; Houssa, M.; Delabie, A.; Conard, T.; Meuris, M.; Heyns, M.M.; Dimoulas, A.; Spiga, S.; Fanciulli, M.; Seo, J.W.; Goncharova, L.V.

    2006-01-01

    To fabricate MOS gate stacks on Ge, one can choose from a multitude of metal oxides as dielectric material which can be deposited by many chemical or physical vapor deposition techniques. As a few typical examples, we will discuss here the results from atomic layer deposition (ALD), metal organic CVD (MOCVD) and molecular beam deposition (MBD) using HfO 2 /Ge as materials model system. It appears that a completely interface layer free HfO 2 /Ge combination can be made in MBD, but this results in very bad capacitors. The same bad result we find if HfGe y (Hf germanides) are formed like in the case of MOCVD on HF-dipped Ge. A GeO x interfacial layer appears to be indispensable (if no other passivating materials are applied), but the composition of this interfacial layer (as determined by XPS, TOFSIMS and MEIS) is determining for the C/V quality. On the other hand, the presence of Ge in the HfO 2 layer is not the most important factor that can be responsible for poor C/V, although it can still induce bumps in C/V curves, especially in the form of germanates (Hf-O-Ge). We find that most of these interfacial GeO x layers are in fact sub-oxides, and that this could be (part of) the explanation for the high interfacial state densities. In conclusion, we find that the Ge surface preparation is determining for the gate stack quality, but it needs to be adapted to the specific deposition technique

  12. Atomic scale engineering of HfO2-based dielectrics for future DRAM applications

    International Nuclear Information System (INIS)

    Dudek, Piotr

    2011-01-01

    Modern dielectrics in combination with appropriate metal electrodes have a great potential to solve many difficulties associated with continuing miniaturization process in the microelectronic industry. One significant branch of microelectronics incorporates dynamic random access memory (DRAM) market. The DRAM devices scaled for over 35 years starting from 4 kb density to several Gb nowadays. The scaling process led to the dielectric material thickness reduction, resulting in higher leakage current density, and as a consequence higher power consumption. As a possible solution for this problem, alternative dielectric materials with improved electrical and material science parameters were intensively studied by many research groups. The higher dielectric constant allows the use of physically thicker layers with high capacitance but strongly reduced leakage current density. This work focused on deposition and characterization of thin insulating layers. The material engineering process was based on Si cleanroom compatible HfO 2 thin films deposited on TiN metal electrodes. A combined materials science and dielectric characterization study showed that Ba-added HfO 2 (BaHfO 3 ) films and Ti-added BaHfO 3 (BaHf 0.5 Ti 0.5 O 3 ) layers are promising candidates for future generation of state-of-the-art DRAMs. In especial a strong increase of the dielectric permittivity k was achieved for thin films of cubic BaHfO 3 (k∝38) and BaHf 0.5 Ti 0.5 O 3 (k∝90) with respect to monoclinic HfO 2 (k∝19). Meanwhile the CET values scaled down to 1 nm for BaHfO 3 and ∝0.8 nm for BaHf 0.5 Ti 0.5 O 3 with respect to HfO 2 (CET=1.5 nm). The Hf 4+ ions substitution in BaHfO 3 by Ti 4+ ions led to a significant decrease of thermal budget from 900 C for BaHfO 3 to 700 C for BaHf 0.5 Ti 0.5 O 3 . Future studies need to focus on the use of appropriate metal electrodes (high work function) and on film deposition process (homogeneity) for better current leakage control. (orig.)

  13. Effects of different dopants on switching behavior of HfO2-based resistive random access memory

    International Nuclear Information System (INIS)

    Deng Ning; Pang Hua; Wu Wei

    2014-01-01

    In this study the effects of doping atoms (Al, Cu, and N) with different electro-negativities and ionic radii on resistive switching of HfO 2 -based resistive random access memory (RRAM) are systematically investigated. The results show that forming voltages and set voltages of Al/Cu-doped devices are reduced. Among all devices, Cu-doped device shows the narrowest device-to-device distributions of set voltage and low resistance. The effects of different dopants on switching behavior are explained with deferent types of CFs formed in HfO 2 depending on dopants: oxygen vacancy (Vo) filaments for Al-doped HfO 2 devices, hybrid filaments composed of oxygen vacancies and Cu atoms for Cu-doped HfO 2 devices, and nitrogen/oxygen vacancy filaments for N-doped HfO 2 devices. The results suggest that a metal dopant with a larger electro-negativity than host metal atom offers the best comprehensive performance. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Morphology and Photoluminescence of HfO2Obtained by Microwave-Hydrothermal

    Directory of Open Access Journals (Sweden)

    Cavalcante LS

    2009-01-01

    Full Text Available Abstract In this letter, we report on the obtention of hafnium oxide (HfO2 nanostructures by the microwave-hydrothermal method. These nanostructures were analyzed by X-ray diffraction (XRD, field-emission gum scanning electron microscopy (FEG-SEM, transmission electron microscopy (TEM, energy dispersive X-ray spectrometry (EDXS, ultraviolet–visible (UV–vis spectroscopy, and photoluminescence (PL measurements. XRD patterns confirmed that this material crystallizes in a monoclinic structure. FEG-SEM and TEM micrographs indicated that the rice-like morphologies were formed due to an increase in the effective collisions between the nanoparticles during the MH processing. The EDXS spectrum was used to verify the chemical compositional of this oxide. UV–vis spectrum revealed that this material have an indirect optical band gap. When excited with 488 nm wavelength at room temperature, the HfO2nanostructures exhibited only one broad PL band with a maximum at around 548 nm (green emission.

  15. Theoretical prediction of ion conductivity in solid state HfO2

    Science.gov (United States)

    Zhang, Wei; Chen, Wen-Zhou; Sun, Jiu-Yu; Jiang, Zhen-Yi

    2013-01-01

    A theoretical prediction of ion conductivity for solid state HfO2 is carried out in analogy to ZrO2 based on the density functional calculation. Geometric and electronic structures of pure bulks exhibit similarity for the two materials. Negative formation enthalpy and negative vacancy formation energy are found for YSH (yttria-stabilized hafnia) and YSZ (yttria-stabilized zirconia), suggesting the stability of both materials. Low activation energies (below 0.7 eV) of diffusion are found in both materials, and YSH's is a little higher than that of YSZ. In addition, for both HfO2 and ZrO2, the supercells with native oxygen vacancies are also studied. The so-called defect states are observed in the supercells with neutral and +1 charge native vacancy but not in the +2 charge one. It can give an explanation to the relatively lower activation energies of yttria-doped oxides and +2 charge vacancy supercells. A brief discussion is presented to explain the different YSH ion conductivities in the experiment and obtained by us, and we attribute this to the different ion vibrations at different temperatures.

  16. Perpendicular magnetic anisotropy of CoFeB\\Ta bilayers on ALD HfO2

    Directory of Open Access Journals (Sweden)

    Bart F. Vermeulen

    2017-05-01

    Full Text Available Perpendicular magnetic anisotropy (PMA is an essential condition for CoFe thin films used in magnetic random access memories. Until recently, interfacial PMA was mainly known to occur in materials stacks with MgO\\CoFe(B interfaces or using an adjacent crystalline heavy metal film. Here, PMA is reported in a CoFeB\\Ta bilayer deposited on amorphous high-κ dielectric (relative permittivity κ=20 HfO2, grown by atomic layer deposition (ALD. PMA with interfacial anisotropy energy Ki up to 0.49 mJ/m2 appears after annealing the stacks between 200°C and 350°C, as shown with vibrating sample magnetometry. Transmission electron microscopy shows that the decrease of PMA starting from 350°C coincides with the onset of interdiffusion in the materials. High-κ dielectrics are potential enablers for giant voltage control of magnetic anisotropy (VCMA. The absence of VCMA in these experiments is ascribed to a 0.6 nm thick magnetic dead layer between HfO2 and CoFeB. The results show PMA can be easily obtained on ALD high-κ dielectrics.

  17. Characteristics of single-atom trapping in a magneto-optical trap with a high magnetic-field gradient

    International Nuclear Information System (INIS)

    Yoon, Seokchan; Choi, Youngwoon; Park, Sangbum; Ji, Wangxi; Lee, Jai-Hyung; An, Kyungwon

    2007-01-01

    A quantitative study on characteristics of a magneto-optical trap with a single or a few atoms is presented. A very small number of 85 Rb atoms were trapped in a micron-size magneto-optical trap with a high magnetic-field gradient. In order to find the optimum condition for a single-atom trap, we have investigated how the number of atoms and the size of atomic cloud change as various experimental parameters, such as a magnetic-field gradient and the trapping laser intensity and detuning. The averaged number of atoms was measured very accurately with a calibration procedure based on the single-atom saturation curve of resonance fluorescence. In addition, the number of atoms in a trap could be controlled by suppressing stochastic loading events by means of a real-time active feedback on the magnetic-field gradient

  18. Decoherence Assisted Single Electron Trapping at Room Temperature

    Science.gov (United States)

    Elhalawany, Ahmed; Leuenberger, Michael

    2012-02-01

    In this work, we theoretically investigate electron transport in heterostructure semiconductor nanowire (NW). We develop a new mechanism to trap an electron in a quantum dot (QD) by means of decoherence. There are six QDs in the NW. Bias voltage (Vb) is applied across the NW and gate voltage (Vg) is applied to the auxiliary QD to control single charge tunneling. The single electron dynamics along the NW is calculated by means of the generalized master equation based on the tight binding model taking into account electron LO phonon interaction (ELOPI) and thermal broadening inside the QDs. It is shown that the decoherence, which is in the pico-second (ps) regime, speeds up the trapping of the electron in the central QD with probability of 70% in less than 2 ps. Our results can be used for the implementation of high temperature single photon source (SPS) or single electron transistor (SET). We acknowledge support from NSF (Grant No. ECCS-0725514), DARPA/MTO (Grant No. HR0011-08-1-0059), NSF (Grant No. ECCS-0901784), AFOSR (Grant No. FA9550-09-1-0450), and NSF (Grant No. ECCS-1128597).

  19. Properties of phases in HfO2-TiO2 system

    International Nuclear Information System (INIS)

    Red'ko, V.P.; Terekhovskij, P.B.; Majster, I.M.; Shevchenko, A.V.; Lopato, L.M.; Dvernyakova, A.A.

    1990-01-01

    A study was made on axial and linear coefficients of thermal expansion (CTE) of HfO 2 -TiO 2 system samples in concentration range of 25-50 mol% TiO 2 . Samples, containing 35 and 37 mol% TiO 2 , are characterized by the lowest values of linear CTE. Dispersion of the basic substances doesn't affect CTE value. Correlation with axial and linear CTE of samples in ZrO 2 -TiO 2 system was conducted. Presence of anisotropy of change of lattice parameters was supported for samples, containing 37.5 and 40 mol% TiO 2 . Polymorphous transformations for hafnium titanate were not revealed

  20. Study of strained-Si p-channel MOSFETs with HfO2 gate dielectric

    Science.gov (United States)

    Pradhan, Diana; Das, Sanghamitra; Dash, Tara Prasanna

    2016-10-01

    In this work, the transconductance of strained-Si p-MOSFETs with high-K dielectric (HfO2) as gate oxide, has been presented through simulation using the TCAD tool Silvaco-ATLAS. The results have been compared with a SiO2/strained-Si p-MOSFET device. Peak transconductance enhancement factors of 2.97 and 2.73 has been obtained for strained-Si p-MOSFETs in comparison to bulk Si channel p-MOSFETs with SiO2 and high-K dielectric respectively. This behavior is in good agreement with the reported experimental results. The transconductance of the strained-Si device at low temperatures has also been simulated. As expected, the mobility and hence the transconductance increases at lower temperatures due to reduced phonon scattering. However, the enhancements with high-K gate dielectric is less as compared to that with SiO2.

  1. Effects of substrate heating and post-deposition annealing on characteristics of thin MOCVD HfO2 films

    Science.gov (United States)

    Gopalan, Sundararaman; Ramesh, Sivaramakrishnan; Dutta, Shibesh; Virajit Garbhapu, Venkata

    2018-02-01

    It is well known that Hf-based dielectrics have replaced the traditional SiO2 and SiON as gate dielectric materials for conventional CMOS devices. By using thicker high-k materials such as HfO2 rather than ultra-thin SiO2, we can bring down leakage current densities in MOS devices to acceptable levels. HfO2 is also one of the potential candidates as a blocking dielectric for Flash memory applications for the same reason. In this study, effects of substrate heating and oxygen flow rate while depositing HfO2 thin films using CVD and effects of post deposition annealing on the physical and electrical characteristics of HfO2 thin films are presented. It was observed that substrate heating during deposition helps improve the density and electrical characteristics of the films. At higher substrate temperature, Vfb moved closer to zero and also resulted in significant reduction in hysteresis. Higher O2 flow rates may improve capacitance, but also results in slightly higher leakage. The effect of PDA depended on film thickness and O2 PDA improved characteristics only for thick films. For thinner films forming gas anneal resulted in better electrical characteristics.

  2. Temperature Effects on a-IGZO Thin Film Transistors Using HfO2 Gate Dielectric Material

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2014-01-01

    Full Text Available This study investigated the temperature effect on amorphous indium gallium zinc oxide (a-IGZO thin film transistors (TFTs using hafnium oxide (HfO2 gate dielectric material. HfO2 is an attractive candidate as a high-κ dielectric material for gate oxide because it has great potential to exhibit superior electrical properties with a high drive current. In the process of integrating the gate dielectric and IGZO thin film, postannealing treatment is an essential process for completing the chemical reaction of the IGZO thin film and enhancing the gate oxide quality to adjust the electrical characteristics of the TFTs. However, the hafnium atom diffused the IGZO thin film, causing interface roughness because of the stability of the HfO2 dielectric thin film during high-temperature annealing. In this study, the annealing temperature was optimized at 200°C for a HfO2 gate dielectric TFT exhibiting high mobility, a high ION/IOFF ratio, low IOFF current, and excellent subthreshold swing (SS.

  3. Influence of O2 flow rate on HfO2 gate dielectrics for back-gated graphene transistors

    Science.gov (United States)

    Lakshmi Ganapathi, Kolla; Bhat, Navakanta; Mohan, Sangeneni

    2014-05-01

    HfO2 thin films deposited on Si substrate using electron beam evaporation, are evaluated for back-gated graphene transistors. The amount of O2 flow rate, during evaporation is optimized for 35 nm thick HfO2 films, to achieve the best optical, chemical and electrical properties. It has been observed that with increasing oxygen flow rate, thickness of the films increased and refractive index decreased due to increase in porosity resulting from the scattering of the evaporant. The films deposited at low O2 flow rates (1 and 3 SCCM) show better optical and compositional properties. The effects of post-deposition annealing and post-metallization annealing in forming gas ambience (FGA) on the optical and electrical properties of the films have been analyzed. The film deposited at 3 SCCM O2 flow rate shows the best properties as measured on MOS capacitors. To evaluate the performance of device properties, back-gated bilayer graphene transistors on HfO2 films deposited at two O2 flow rates of 3 and 20 SCCM have been fabricated and characterized. The transistor with HfO2 film deposited at 3 SCCM O2 flow rate shows better electrical properties consistent with the observations on MOS capacitor structures. This suggests that an optimum oxygen pressure is necessary to get good quality films for high performance devices.

  4. Coexistence of different charge states in Ta-doped monoclinic HfO2: Theoretical and experimental approaches

    DEFF Research Database (Denmark)

    Taylor, M.A.; Alonso, R.E.; Errico, L.A.

    2010-01-01

    A combination of experiments and ab initio quantum-mechanical calculations has been applied to examine hyperfine interactions in Ta-doped hafnium dioxide. Although the properties of monoclinic HfO2 have been the subject of several earlier studies, some aspects remain open. In particular, time dif...

  5. Optical trap for both transparent and absorbing particles in air using a single shaped laser beam.

    Science.gov (United States)

    Redding, Brandon; Pan, Yong-Le

    2015-06-15

    Optical trapping of airborne particles is emerging as an essential tool in applications ranging from online characterization of living cells and aerosols to particle transport and delivery. However, existing optical trapping techniques using a single laser beam can trap only transparent particles (via the radiative pressure force) or absorbing particles (via the photophoretic force), but not particles of either type-limiting the utility of trapping-enabled aerosol characterization techniques. Here, we present the first optical trapping technique capable of trapping both transparent and absorbing particles with arbitrary morphology using a single shaped laser beam. Such a general-purpose optical trapping mechanism could enable new applications such as trapping-enabled aerosol characterization with high specificity.

  6. Gas-phase reaction studies of dipositive hafnium and hafnium oxide ions: generation of the peroxide HfO2(2+).

    Science.gov (United States)

    Lourenço, Célia; Michelini, Maria del Carmen; Marçalo, Joaquim; Gibson, John K; Oliveira, Maria Conceição

    2012-12-27

    Fourier transform ion cyclotron resonance mass spectrometry was used to characterize the gas-phase reactivity of Hf dipositive ions, Hf(2+)and HfO(2+), toward several oxidants: thermodynamically facile O-atom donor N(2)O, ineffective donor CO, and intermediate donors O(2), CO(2), NO, and CH(2)O. The Hf(2+) ion exhibited electron transfer with N(2)O, O(2), NO, and CH(2)O, reflecting the high ionization energy of Hf(+). The HfO(2+) ion was produced by O-atom transfer to Hf(2+) from N(2)O, O(2), and CO(2), and the HfO(2)(2+) ion by O-atom transfer to HfO(2+) from N(2)O; these reactions were fairly efficient. Density functional theory revealed the structure of HfO(2)(2+) as a peroxide. The HfO(2)(2+) ion reacted by electron transfer with N(2)O, CO(2), and CO to give HfO(2)(+). Estimates were made for the second ionization energies of Hf (14.5 ± 0.5 eV), HfO (14.3 ± 0.5 eV), and HfO(2) (16.2 ± 0.5 eV), and also for the bond dissociation energies, D[Hf(2+)-O] = 686 ± 69 kJ mol(-1) and D[OHf(2+)-O] = 186 ± 98 kJ mol(-1). The computed bond dissociation energies, 751 and 270 kJ mol(-1), respectively, are within these experimental ranges. Additionally, it was found that HfO(2)(2+) oxidized CO to CO(2) and is thus a catalyst in the oxidation of CO by N(2)O and that Hf(2+) activates methane to produce a carbene, HfCH(2)(2+).

  7. Mechanistic Insight into the Stability of HfO2-Coated MoS2 Nanosheet Anodes for Sodium Ion Batteries

    KAUST Repository

    Ahmed, Bilal

    2015-06-01

    It is demonstrated for the first time that surface passivation of 2D nanosheets of MoS2 by an ultrathin and uniform layer of HfO2 can significantly improve the cyclic performance of sodium ion batteries. After 50 charge/discharge cycles, bare MoS2 and HfO2 coated MoS2 electrodes deliver the specific capacity of 435 and 636 mAh g-1, respectively, at current density of 100 mA g-1. These results imply that batteries using HfO2 coated MoS2 anodes retain 91% of the initial capacity; in contrast, bare MoS2 anodes retain only 63%. Also, HfO2 coated MoS2 anodes show one of the highest reported capacity values for MoS2. Cyclic voltammetry and X-ray photoelectron spectroscopy results suggest that HfO2 does not take part in electrochemical reaction. The mechanism of capacity retention with HfO2 coating is explained by ex situ transmission electron microscope imaging and electrical impedance spectroscopy. It is illustrated that HfO2 acts as a passivation layer at the anode/electrolyte interface and prevents structural degradation during charge/discharge process. Moreover, the amorphous nature of HfO2 allows facile diffusion of Na ions. These results clearly show the potential of HfO2 coated MoS2 anodes, which performance is significantly higher than previous reports where bulk MoS2 or composites of MoS2 with carbonaceous materials are used. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Accurate prediction of band gaps and optical properties of HfO2

    International Nuclear Information System (INIS)

    Ondračka, Pavel; Zajíčková, Lenka; Holec, David; Nečas, David

    2016-01-01

    We report on optical properties of various polymorphs of hafnia predicted within the framework of density functional theory. The full potential linearised augmented plane wave method was employed together with the Tran–Blaha modified Becke–Johnson potential (TB-mBJ) for exchange and local density approximation for correlation. Unit cells of monoclinic, cubic and tetragonal crystalline, and a simulated annealing-based model of amorphous hafnia were fully relaxed with respect to internal positions and lattice parameters. Electronic structures and band gaps for monoclinic, cubic, tetragonal and amorphous hafnia were calculated using three different TB-mBJ parametrisations and the results were critically compared with the available experimental and theoretical reports. Conceptual differences between a straightforward comparison of experimental measurements to a calculated band gap on the one hand and to a whole electronic structure (density of electronic states) on the other hand, were pointed out, suggesting the latter should be used whenever possible. Finally, dielectric functions were calculated at two levels, using the random phase approximation without local field effects and with a more accurate Bethe–Salpether equation (BSE) to account for excitonic effects. We conclude that a satisfactory agreement with experimental data for HfO 2 was obtained only in the latter case. (paper)

  9. Interface engineered HfO2-based 3D vertical ReRAM

    International Nuclear Information System (INIS)

    Hudec, Boris; Wang, I-Ting; Lai, Wei-Li; Chang, Che-Chia; Hou, Tuo-Hung; Jančovič, Peter; Fröhlich, Karol; Mičušík, Matej; Omastová, Mária

    2016-01-01

    We demonstrate a double-layer 3D vertical resistive random access memory (ReRAM) stack implementing a Pt/HfO 2 /TiN memory cell. The HfO 2 switching layer is grown by atomic layer deposition on the sidewall of a SiO 2 /TiN/SiO 2 /TiN/SiO 2 multilayer pillar. A steep vertical profile was achieved using CMOS-compatible TiN dry etching. We employ in situ TiN bottom interface engineering by ozone, which results in (a) significant forming voltage reduction which allows for forming-free operation in AC pulsed mode, and (b) non-linearity tuning of low resistance state by current compliance during Set operation. The vertical ReRAM shows excellent read and write disturb immunity between vertically stacked cells, retention over 10 4 s and excellent switching stability at 400 K. Endurance of 10 7 write cycles was achieved using 100 ns wide AC pulses while fast switching speed using pulses of only 10 ns width is also demonstrated. The active switching region was evaluated to be located closer to the bottom interface which allows for the observed high endurance. (paper)

  10. Effects of Ti doping on the dielectric properties of HfO2 nanoparticles

    Science.gov (United States)

    Pokhriyal, S.; Biswas, S.

    2016-05-01

    We report the effects of Ti doping on the dielectric properties of HfO2 [Hf1-xTixO2 (x = 0.2-0.8)] nanoparticles at room temperature. The Hf1-xTixO2 nanoparticles were synthesized by a wet chemical process. The structural and morphological properties of the derived samples were analyzed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM). Impedance analysis was performed in pelletized samples in the frequency range of 1 MHz to 1 GHz. The obtained results were analyzed in correlation with microstructure and doping concentration in the derived samples. The average size of the Hf1-xTixO2 nanoparticles is typically in the range of 4-8 nm depending on the processing temperature. The Hf1-xTixO2 nanoparticles show reduction in crystallinity with the increase in Ti doping. The dielectric constants of the derived samples decrease with the increase in frequency. The ac-conductivity in the samples increases with the increase in frequency irrespective of Ti concentration and shows significant drop with the increase in Ti concentration at all frequencies.

  11. Sub-10 nm Ta Channel Responsible for Superior Performance of a HfO2 Memristor

    Science.gov (United States)

    Jiang, Hao; Han, Lili; Lin, Peng; Wang, Zhongrui; Jang, Moon Hyung; Wu, Qing; Barnell, Mark; Yang, J. Joshua; Xin, Huolin L.; Xia, Qiangfei

    2016-06-01

    Memristive devices are promising candidates for the next generation non-volatile memory and neuromorphic computing. It has been widely accepted that the motion of oxygen anions leads to the resistance changes for valence-change-memory (VCM) type of materials. Only very recently it was speculated that metal cations could also play an important role, but no direct physical characterizations have been reported yet. Here we report a Ta/HfO2/Pt memristor with fast switching speed, record high endurance (120 billion cycles) and reliable retention. We programmed the device to 24 discrete resistance levels, and also demonstrated over a million (220) epochs of potentiation and depression, suggesting that our devices can be used for both multi-level non-volatile memory and neuromorphic computing applications. More importantly, we directly observed a sub-10 nm Ta-rich and O-deficient conduction channel within the HfO2 layer that is responsible for the switching. This work deepens our understanding of the resistance switching mechanism behind oxide-based memristive devices and paves the way for further device performance optimization for a broad spectrum of applications.

  12. Thermoluminescence in HfO2:Eu3+ powders irradiated in UV

    International Nuclear Information System (INIS)

    Ceron R, P. V.; Montes R, E.; Rivera M, T.; Diaz G, J. A. I.; Guzman M, J.

    2016-10-01

    Various inorganic compounds synthesized for photo luminescent applications have also presented a thermoluminescent (Tl) response, for example the metal oxides doped with rare earths. This property extends the use of these materials to the radiation dosimetry. For this reason, in this work the Tl response is presented in HfO 2 :Eu 3+ powders synthesized by the hydrothermal path, exposed to ultraviolet (UV) radiation of 254 nm. The kinetic parameters of its brightness curve were also calculated using the Chen expressions and the analysis method based on the shape of the curve. For the powders irradiated for 10 min the highest Tl response corresponds to the sample with 5% of the impurity, which is 6.5 times higher than the signal corresponding to the intrinsic sample. Its bright curve shows a main peak with a maximum in 148 degrees Celsius and a second order kinetics. Another test with the same material shows the Tl response against the exposure time, with a maximum in the 3 minutes. These calculations and tests constitute a first approach for the study of these powders as Tl dosimeter for UV radiation. (Author)

  13. Single Particle Studies of Heterogeneous Atmospheric Chemistry on Aluminum Oxide Particles in a Quadrupole Trap

    National Research Council Canada - National Science Library

    Hunter, A

    2000-01-01

    ... on upper atmospheric chemical cycles and ozone. The experimental investigation employs a laboratory quadrupole trap electrodynamic levitation apparatus to study heterogeneous processes on single aluminum oxide particles representative...

  14. Enhancement of Endurance in HfO2-Based CBRAM Device by Introduction of a TaN Diffusion Blocking Layer

    KAUST Repository

    Chand, Umesh

    2017-08-05

    We propose a new method to improve resistive switching properties in HfO2 based CBRAM crossbar structure device by introducing a TaN thin diffusion blocking layer between the Cu top electrode and HfO2 switching layer. The Cu/TaN/HfO2/TiN device structure exhibits high resistance ratio of OFF/ON states without any degradation in switching during endurance test. The improvement in the endurance properties of the Cu/TaN/HfO2/TiN CBRAM device is thus attributed to the relatively low amount of Cu migration into HfO2 switching layer.

  15. Electronic structure and relative stability of the coherent and semi-coherent HfO2/III-V interfaces

    Science.gov (United States)

    Lahti, A.; Levämäki, H.; Mäkelä, J.; Tuominen, M.; Yasir, M.; Dahl, J.; Kuzmin, M.; Laukkanen, P.; Kokko, K.; Punkkinen, M. P. J.

    2018-01-01

    III-V semiconductors are prominent alternatives to silicon in metal oxide semiconductor devices. Hafnium dioxide (HfO2) is a promising oxide with a high dielectric constant to replace silicon dioxide (SiO2). The potentiality of the oxide/III-V semiconductor interfaces is diminished due to high density of defects leading to the Fermi level pinning. The character of the harmful defects has been intensively debated. It is very important to understand thermodynamics and atomic structures of the interfaces to interpret experiments and design methods to reduce the defect density. Various realistic gap defect state free models for the HfO2/III-V(100) interfaces are presented. Relative energies of several coherent and semi-coherent oxide/III-V semiconductor interfaces are determined for the first time. The coherent and semi-coherent interfaces represent the main interface types, based on the Ga-O bridges and As (P) dimers, respectively.

  16. MeV-Si ion irradiation effects on the electrical properties of HfO2 thin films on Si

    International Nuclear Information System (INIS)

    Yu Xiangkun; Shao Lin; Chen, Q.Y.; Trombetta, L.; Wang Chunyu; Dharmaiahgari, Bhanu; Wang Xuemei; Chen Hui; Ma, K.B.; Liu Jiarui; Chu, W.-K.

    2006-01-01

    We studied the irradiation effect of 2-MeV Si ions on HfO 2 films deposited on Si substrates. HfO 2 films ∼11 nm thick were deposited onto Si substrates by chemical vapor deposition. The samples were then irradiated by 2-MeV Si ions at a fluence of 1 x 10 14 cm -2 at room temperature, followed by rapid thermal annealing at 1000 deg. C for 10 s. After annealing, a layer of aluminum was deposited on the samples as the gate electrode to form metal-oxide-semiconductor (MOS) capacitor structures. Rutherford backscattering spectrometry and electrical measurement of both capacitance and current as a function of voltage were used to characterize the samples before and after annealing. Non-insulating properties of the HfO 2 films deteriorated immediately after the ion irradiation, but rapid thermal annealing effectively repaired the irradiation damages, as reflected in improved capacitance versus voltage characteristics and significant reduction of leakage current in the MOS capacitors

  17. Ion-radical synergy in HfO2 etching studied with a XeF2/Ar+ beam setup

    International Nuclear Information System (INIS)

    Gevers, P. M.; Beijerinck, H. C. W.; Sanden, M. C. M. van de; Kessels, W. M. M.

    2008-01-01

    To gain more insight into fundamental aspects of the etching behavior of Hf-based high-k materials in plasma etch reactors, HfO 2 films were etched in a multiple-beam setup consisting of a low energy Ar + ion beam and a XeF 2 radical beam. The etch rate and etch products were monitored by real-time ellipsometry and mass spectrometry, respectively. Although etching of HfO 2 in XeF 2 /Ar + chemistry is mainly a physical effect, an unambiguous proof of the ion-radical synergistic effect for the etching of HfO 2 is presented. The etch yield for 400 eV Ar + ions at a substrate temperature of 300 deg. C was 0.3 atoms/ion for Ar + sputtering and increased to 2 atoms/ion when XeF 2 was also supplied. The etch yield proved to follow the common square root of ion energy dependence both for pure sputtering and radical enhanced etching, with a threshold energy at room temperature of 69±17 eV for Ar + ions and 54±14 eV for Ar + ions with XeF 2

  18. SHI induced effects on the electrical and optical properties of HfO2 thin films deposited by RF sputtering

    Science.gov (United States)

    Manikanthababu, N.; Dhanunjaya, M.; Nageswara Rao, S. V. S.; Pathak, A. P.

    2016-07-01

    The continuous downscaling of Metal Oxide Semiconductor (MOS) devices has reached a limit with SiO2 as a gate dielectric material. Introducing high-k dielectric materials as a replacement for the conservative SiO2 is the only alternative to reduce the leakage current. HfO2 is a reliable and an impending material for the wide usage as a gate dielectric in semiconductor industry. HfO2 thin films were synthesized by RF sputtering technique. Here, we present a study of Swift Heavy Ion (SHI) irradiation with100 MeV Ag ions for studying the optical properties as well as 80 MeV Ni ions for studying the electrical properties of HfO2/Si thin films. Rutherford Backscattering Spectrometry (RBS), Field Emission Scanning Electron Microscope (FESEM), energy-dispersive X-ray spectroscopy (EDS), profilometer and I-V (leakage current) measurements have been employed to study the SHI induced effects on both the structural, electrical and optical properties.

  19. HfO2/SiO2 multilayer based reflective and transmissive optics from the IR to the UV

    Science.gov (United States)

    Wang, Jue; Hart, Gary A.; Oudard, Jean Francois; Wamboldt, Leonard; Roy, Brian P.

    2016-05-01

    HfO2/SiO2 multilayer based reflective optics enable threat detection in the short-wave/middle-wave infrared and high power laser targeting capability in the near infrared. On the other hand, HfO2/SiO2 multilayer based transmissive optics empower early missile warning by taking advantage of the extremely low noise light detection in the deep-ultraviolet region where solar irradiation is strongly absorbed by the ozone layer of the earth's atmosphere. The former requires high laser damage resistance, whereas the latter needs a solar-blind property, i.e., high transmission of the radiation below 290 nm and strong suppression of the solar background from 300 nm above. The technical challenges in both cases are revealed. The spectral limits associated with the HfO2 and SiO2 films are discussed and design concepts are schematically illustrated. Spectral performances are realized for potential A and D and commercial applications.

  20. Annealing Effect of Al2O3 Tunnel Barriers in HfO2-Based ReRAM Devices on Nonlinear Resistive Switching Characteristics.

    Science.gov (United States)

    Park, Sukhyung; Cho, Kyoungah; Jung, Jungwoo; Kim, Sangsig

    2015-10-01

    In this study, we demonstrate the enhancement of the nonlinear resistive switching characteristics of HfO2-based resistive random access memory (ReRAM) devices by carrying out thermal annealing of Al2O3 tunnel barriers. The nonlinearity of ReRAM device with an annealed Al2O3 tunnel barrier is determined to be 10.1, which is larger than that of the ReRAM device with an as-deposited Al2O3 tunnel barrier. From the electrical characteristics of the ReRAM devices with as-deposited and annealed Al2O3 tunnel barriers, it reveals that there is a trade-off relationship between nonlinearity in low-resistance state (LRS) current and the ratio of the high-resistance state (HRS) and the LRS. The enhancement of nonlinearity is attributed to a change in the conduction mechanism in the LRS of the ReRAM after the annealing. While the conduction mechanism before the annealing follows Ohmic conduction, the conduction of the ReRAM after the annealing is controlled by a trap-controlled space charge limited conduction mechanism. Additionally, the annealing of the Al2O3 tunnel barriers is also shown to improve the endurance and retention characteristics.

  1. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application

    Directory of Open Access Journals (Sweden)

    Amelia Ahmad Khalili

    2015-11-01

    Full Text Available Single-cell analysis has become the interest of a wide range of biological and biomedical engineering research. It could provide precise information on individual cells, leading to important knowledge regarding human diseases. To perform single-cell analysis, it is crucial to isolate the individual cells before further manipulation is carried out. Recently, microfluidic biochips have been widely used for cell trapping and single cell analysis, such as mechanical and electrical detection. This work focuses on developing a finite element simulation model of single-cell trapping system for any types of cells or particles based on the hydrodynamic flow resistance (Rh manipulations in the main channel and trap channel to achieve successful trapping. Analysis is carried out using finite element ABAQUS-FEA™ software. A guideline to design and optimize single-cell trapping model is proposed and the example of a thorough optimization analysis is carried out using a yeast cell model. The results show the finite element model is able to trap a single cell inside the fluidic environment. Fluid’s velocity profile and streamline plots for successful and unsuccessful single yeast cell trapping are presented according to the hydrodynamic concept. The single-cell trapping model can be a significant important guideline in designing a new chip for biomedical applications.

  2. SnO2 anode surface passivation by atomic layer deposited HfO2 improves li-ion battery performance

    KAUST Repository

    Yesibolati, Nulati

    2014-03-14

    For the first time, it is demonstrated that nanoscale HfO2 surface passivation layers formed by atomic layer deposition (ALD) significantly improve the performance of Li ion batteries with SnO2-based anodes. Specifically, the measured battery capacity at a current density of 150 mAg -1 after 100 cycles is 548 and 853 mAhg-1 for the uncoated and HfO2-coated anodes, respectively. Material analysis reveals that the HfO2 layers are amorphous in nature and conformably coat the SnO2-based anodes. In addition, the analysis reveals that ALD HfO2 not only protects the SnO2-based anodes from irreversible reactions with the electrolyte and buffers its volume change, but also chemically interacts with the SnO2 anodes to increase battery capacity, despite the fact that HfO2 is itself electrochemically inactive. The amorphous nature of HfO2 is an important factor in explaining its behavior, as it still allows sufficient Li diffusion for an efficient anode lithiation/delithiation process to occur, leading to higher battery capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    Directory of Open Access Journals (Sweden)

    Brandon Redding

    2015-08-01

    Full Text Available The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field.

  4. Fabrication of Metal Nanoparticle Arrays in the ZrO2(Y, HfO2(Y, and GeOx Films by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Oleg Gorshkov

    2017-01-01

    Full Text Available The single sheet arrays of Au nanoparticles (NPs embedded into the ZrO2(Y, HfO2(Y, and GeOx (x≈2 films have been fabricated by the alternating deposition of the nanometer-thick dielectric and metal films using Magnetron Sputtering followed by annealing. The structure and optical properties of the NP arrays have been studied, subject to the fabrication technology parameters. The possibility of fabricating dense single sheet Au NP arrays in the matrices listed above with controlled NP sizes (within 1 to 3 nm and surface density has been demonstrated. A red shift of the plasmonic optical absorption peak in the optical transmission spectra of the nanocomposite films (in the wavelength band of 500 to 650 nm has been observed. The effect was attributed to the excitation of the collective surface plasmon-polaritons in the dense Au NP arrays. The nanocomposite films fabricated in the present study can find various applications in nanoelectronics (e.g., single electronics, nonvolatile memory devices, integrated optics, and plasmonics.

  5. Theoretical comparison of optical traps created by standing wave and single beam

    Czech Academy of Sciences Publication Activity Database

    Zemánek, Pavel; Jonáš, Alexandr; Jákl, Petr; Ježek, Jan; Šerý, Mojmír; Liška, M.

    2003-01-01

    Roč. 220, 4-6 (2003), s. 401 - 412 ISSN 0030-4018 R&D Projects: GA ČR GA101/00/0974 Institutional research plan: CEZ:AV0Z2065902 Keywords : single beam trap * optical trapping * optical tweezers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.482, year: 2003

  6. Hafnium carbamates and ureates: new class of precursors for low-temperature growth of HfO2 thin films.

    Science.gov (United States)

    Pothiraja, Ramasamy; Milanov, Andrian P; Barreca, Davide; Gasparotto, Alberto; Becker, Hans-Werner; Winter, Manuela; Fischer, Roland A; Devi, Anjana

    2009-04-21

    Novel volatile compounds of hafnium, namely tetrakis-N,O-dialkylcarbamato hafnium(iv) [Hf((i)PrNC(O)O(i)Pr)(4)] () and tetrakis-N,N,N'-trialkylureato hafnium(iv) [Hf((i)PrNC(O)N-(Me)Et)(4)] (), have been synthesized through the simple insertion reaction of isopropyl isocyanate into hafnium isopropoxide and hafnium ethylmethylamide, respectively; based on the promising thermal properties, compound has been evaluated as a precursor for metalorganic chemical vapor deposition (MOCVD) of HfO(2) thin films, which resulted in the growth of stoichiometric and crystalline layers with a uniform morphology at temperature as low as 250 degrees C.

  7. Rapid formation of nanocrystalline HfO2 powders from amorphous hafnium hydroxide under ultrasonically assisted hydrothermal treatment

    International Nuclear Information System (INIS)

    Meskin, Pavel E.; Sharikov, Felix Yu.; Ivanov, Vladimir K.; Churagulov, Bulat R.; Tretyakov, Yury D.

    2007-01-01

    Peculiarities of hafnium hydroxide hydrothermal decomposition were studied by in situ heat flux calorimetry for the first time. It was shown that this process occurs in one exothermal stage (ΔH = -17.95 kJ mol -1 ) at 180-250 deg. C resulting in complete crystallization of amorphous phase with formation of pure monoclinic HfO 2 . It was found that the rate of m-HfO 2 formation can be significantly increased by combining hydrothermal treatment with simultaneous ultrasonic activation

  8. Integrated microfluidic device for single-cell trapping and spectroscopy

    KAUST Repository

    Liberale, Carlo

    2013-02-13

    Optofluidic microsystems are key components towards lab-on-a-chip devices for manipulation and analysis of biological specimens. In particular, the integration of optical tweezers (OT) in these devices allows stable sample trapping, while making available mechanical, chemical and spectroscopic analyses.

  9. Studies of the hyperfine interaction in semiconducting or isolating oxides on the examples HfO2, Ga2O3, and Al2O3

    International Nuclear Information System (INIS)

    Steffens, Michael

    2014-01-01

    On the example of the three oxide compounds of the hafnium, gallium, and aluminium among others the method of the perturbed γ-γ angular correlation (PAC) was applied in dependence on the sample temperature. Applied were thereby the PAC probe nuclei 111 Cd and 181 Ga, which were inserted in the samples by ion implantation or proced by neutron activation in the samples. In HfO 2 thereby especially the hyperfine interaction of thin layers with thicknesses from 2.7 to 17 nm and 100 nm were studied. Strongly disagreeing field gradients and a great influence of the sample surface on the measurement are shown. It could be shown that ν qO x should scale with the layer thickness of the oxide and that the temperature-dependent behaviour, which is influenced by the thermal expansion of the lattice, underlies also this scaling. Conditioned by the neighbourhood to the surface at high temperature oxygen can escape from the samples and so degrade the oxide. The studied Ga 2 O 3 layers were produced by oxidation of GaN at 1223 K in air. The structure of the oxide layer was thereby stepwise pursued with the PAC and could be modelled with an exponential time dependence. The oxidation was repeated with several samples at equal absolute oxidation time but different partition in intermediate steps. Altogether the result were shown as reproducable, the occuring differences of the hyperfine interactions are probably given by external quantities fluctuating in the oxidation. The measurement of the Al 2 O 3 sample in the PAC furnace and cryostat represents mainly a reproduction of the preceding experiments of Penner et al. In this materials the attempt held the spotlight to manipulate the temperature-dependent behaviour of the hyperfine interaction by additional doping. Over the experiments of the single materials was set the more precise consideration of dynamic hyperfine interactions on the probe nucleus 111 Cd. In the spin-correlation functions R(t) these were manifested by an

  10. Influence of modulation method on using LC-traps with single-phase voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Min, Huang; Bai, Haofeng

    2015-01-01

    The switching-frequency LC-trap filter has recently been employed with high-order passive filters for Voltage Source Inverters (VSIs). This paper investigates the influence of modulation method on using the LC-traps with single-phase VSIs. Two-level (bipolar) and three-level (unipolar) modulations...... that include phase distortion and alternative phase opposition distortion methods are analyzed. Harmonic filtering performances of four LC-trap-based filters with different locations of LC-traps are compared. It is shown that the use of parallel-LC-traps in series with filter inductors, either grid...... or converter side, has a worse harmonic filtering performance than using series-LC-trap in the shunt branch. Simulations and experimental results are presented for verifications....

  11. High-temperature mass spectrometric study of the vaporization processes and thermodynamic properties in the Gd2O3-Y2O3-HfO2system.

    Science.gov (United States)

    Kablov, Eugene N; Stolyarova, Valentina L; Lopatin, Sergey I; Vorozhtcov, Viktor A; Karachevtsev, Fedor N; Folomeikin, Yuriy I

    2017-07-15

    The refractory properties of the Gd 2 O 3 -Y 2 O 3 -HfO 2 system are considered promising for the production of many high-temperature materials, e.g., thermal barrier coatings and casting molds for gas turbine engine blades. At high temperatures, components of the Gd 2 O 3 -Y 2 O 3 -HfO 2 system may vaporize selectively and this may significantly change the physicochemical properties of the materials. Therefore, information on vaporization processes and thermodynamic properties of the Gd 2 O 3 -Y 2 O 3 -HfO 2 system is of great importance. The vaporization processes and thermodynamic properties of the Gd 2 O 3 -Y 2 O 3 -HfO 2 system were studied using high-temperature Knudsen effusion mass spectrometry with a MS-1301 mass spectrometer. Vaporization was carried out using a tungsten twin effusion cell containing the samples under study and pure Gd 2 O 3 as a reference substance. Electron ionization at an energy of 25 eV was employed in the present study. It was shown that at a temperature of 2500 K the vapor over the samples in the Gd 2 O 3 -Y 2 O 3 -HfO 2 system consisted of the GdO, YO and O vapor species. The Gd 2 O 3 and Y 2 O 3 activities in the samples in the Gd 2 O 3 -Y 2 O 3 -HfO 2 system as well as their vaporization rates were derived from the partial pressures of the vapor species. Using these data the HfO 2 activities, the Gibbs energy of mixing and the excess Gibbs energy in this system were calculated at 2500 K. The thermodynamic properties of the Gd 2 O 3 -Y 2 O 3 -HfO 2 system, i.e., the component activities in the samples and the excess Gibbs energy, obtained in the present study at 2500 K, exhibited negative deviations from ideal behavior. The concentration dependence of excess Gibbs energy of the Gd 2 O 3 -Y 2 O 3 -HfO 2 system was approximated with an empirical equation. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Material parameters from frequency dispersion simulation of floating gate memory with Ge nanocrystals in HfO2

    Science.gov (United States)

    Palade, C.; Lepadatu, A. M.; Slav, A.; Lazanu, S.; Teodorescu, V. S.; Stoica, T.; Ciurea, M. L.

    2018-01-01

    Trilayer memory capacitors with Ge nanocrystals (NCs) floating gate in HfO2 were obtained by magnetron sputtering deposition on p-type Si substrate followed by rapid thermal annealing at relatively low temperature of 600 °C. The frequency dispersion of capacitance and resistance was measured in accumulation regime of Al/HfO2 gate oxide/Ge NCs in HfO2 floating gate/HfO2 tunnel oxide/SiOx/p-Si/Al memory capacitors. For simulation of the frequency dispersion a complex circuit model was used considering an equivalent parallel RC circuit for each layer of the trilayer structure. A series resistance due to metallic contacts and Si substrate was necessary to be included in the model. A very good fit to the experimental data was obtained and the parameters of each layer in the memory capacitor, i.e. capacitances and resistances were determined and in turn the intrinsic material parameters, i.e. dielectric constants and resistivities of layers were evaluated. The results are very important for the study and optimization of the hysteresis behaviour of floating gate memories based on NCs embedded in oxide.

  13. Photoluminescence properties of Eu3+ doped HfO2 coatings formed by plasma electrolytic oxidation of hafnium

    Science.gov (United States)

    Stojadinović, Stevan; Tadić, Nenad; Ćirić, Aleksandar; Vasilić, Rastko

    2018-03-01

    Plasma electrolytic oxidation was used for synthesis of Eu3+ doped monoclinic HfO2 coatings on hafnium substrate. Results of photoluminescence (PL) measurements show the existence of two distinct regions: one that is related to the blue emission originating from oxygen vacancy defects in HfO2 and the other one characterized with a series of sharp orange-red emission peaks related to f-f transitions of Eu3+ from excited level 5D0 to lower levels 7FJ (J = 0, 1, 2, 3, and 4). PL peaks appearing in excitation spectra of obtained coatings are attributed either to charge transfer state of Eu3+ or to direct excitation of the Eu3+ ground state 7F0 into higher levels of the 4f-manifold. PL of formed coatings increases with PEO time due to an increase of oxygen vacancy defects and the content of Eu3+. Acquired experimental data suggest that hypersensitive electrical dipole transition is much more intense than the magnetic dipole transition, indicating that Eu3+ ions occupy a non-inversion symmetry sites.

  14. Synthesis, characterization and radiation damage studies of high-k dielectric (HfO2) films for MOS device applications

    Science.gov (United States)

    Manikanthababu, N.; Arun, N.; Dhanunjaya, M.; Saikiran, V.; Nageswara Rao, S. V. S.; Pathak, A. P.

    2015-03-01

    The current trend in miniaturization of metal oxide semiconductor devices needs high-k dielectric materials as gate dielectrics. Among all the high-k dielectric materials, HfO2 enticed the most attention, and it has already been introduced as a new gate dielectric by the semiconductor industry. High dielectric constant (HfO2) films (10 nm) were deposited on Si substrates using the e-beam evaporation technique. These samples were characterized by various structural and electrical characterization techniques. Rutherford backscattering spectrometry, X-ray reflectivity, and energy-dispersive X-ray analysis measurements were performed to determine the thickness and stoichiometry of these films. The results obtained from various measurements are found to be consistent with each other. These samples were further characterized by I-V (leakage current) and C-V measurements after depositing suitable metal contacts. A significant decrease in the leakage current and the corresponding increase in device capacitance are observed when these samples were annealed in oxygen atmosphere. Furthermore, we have studied the influence of gamma irradiation on the electrical properties of these films as a function of the irradiation dose. The observed increase in the leakage current accompanied by changes in various other parameters, such as accumulation capacitance, inversion capacitance, flat band voltage, mid-gap voltage, etc., indicates the presence of various types of defects in irradiated samples.

  15. High temperature X-ray diffraction studies on HfO2-Gd2O3 system

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Ananthasivan, K.; Joseph, M.

    2016-01-01

    High temperature X-ray diffraction (HTXRD) technique is an important experimental tool for measuring thermal expansion of materials of interest. A series of solid solutions containing GdO 1.5 in HfO 2 ,Hf 1-y Gd y )O 2 (y = 0.15, 0.2, 0.3, 0.41 and 0.505) were prepared by solid state method. Structural characterization and computation of lattice parameter was carried out by using room temperature X-ray diffraction measurements. The room temperature lattice parameter estimated for (Hf 1-y Gd y )O 2 (y=0.15, 0.2, 0.3, 0.41 and 0.505) are 0.51714 nm, 0.51929 nm, 0.52359nm, 0.52789nm and 0.53241 nm, respectively. Thermal expansion coefficients and percentage linear thermal expansion of the HfO 2 -Gd 2 O 3 solid solutions containing 20 and 41 mol% GdO 1.5 were determined using HTXRD in the temperature range 298 to 1673K. The mean linear thermal expansion coefficients of the solid solutions containing 20 and 41 mol. %Gd are 11.65 x 10 -6 K -1 and 12.07 x 10 -6 K -1 , respectively. (author)

  16. Effects of HfO2/Al2O3 gate stacks on electrical performance of planar In x Ga1- x As tunneling field-effect transistors

    Science.gov (United States)

    Ahn, Dae-Hwan; Yoon, Sang-Hee; Takenaka, Mitsuru; Takagi, Shinichi

    2017-08-01

    We study the impact of gate stacks on the electrical characteristics of Zn-diffused source In x Ga1- x As tunneling field-effect transistors (TFETs) with Al2O3 or HfO2/Al2O3 gate insulators. Ta and W gate electrodes are compared in terms of the interface trap density (D it) of InGaAs MOS interfaces. It is found that D it is lower at the W/HfO2/Al2O3 InGaAs MOS interface than at the Ta/HfO2/Al2O3 interface. The In0.53Ga0.47As TFET with a W/HfO2 (2.7 nm)/Al2O3 (0.3 nm) gate stack of 1.4-nm-thick capacitance equivalent thickness (CET) has a steep minimum subthreshold swing (SS) of 57 mV/dec, which is attributed to the thin CET and low D it. Also, the In0.53Ga0.47As (2.6 nm)/In0.67Ga0.33As (3.2 nm)/In0.53Ga0.47As (96.5 nm) quantum-well (QW) TFET supplemented with this 1.4-nm-thick CET gate stack exhibits a steeper minimum SS of 54 mV/dec and a higher on-current (I on) than those of the In0.53Ga0.47As TFET.

  17. Performance improvement of charge trap flash memory by using a composition-modulated high-k trapping layer

    International Nuclear Information System (INIS)

    Tang Zhen-Jie; Li Rong; Yin Jiang

    2013-01-01

    A composition-modulated (HfO 2 ) x (Al 2 O3) 1−x charge trapping layer is proposed for charge trap flash memory by controlling the Al atom content to form a peak and valley shaped band gap. It is found that the memory device using the composition-modulated (HfO 2 ) x (Al 2 O 3 ) 1−x as the charge trapping layer exhibits a larger memory window of 11.5 V, improves data retention even at high temperature, and enhances the program/erase speed. Improvements of the memory characteristics are attributed to the special band-gap structure resulting from the composition-modulated trapping layer. Therefore, the composition-modulated charge trapping layer may be useful in future nonvolatile flash memory device application. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Comparative study of Laser induce damage of HfO2/SiO2 and TiO2/SiO2 mirrors at 1064 nm.

    Science.gov (United States)

    Jiao, Hongfei; Ding, Tao; Zhang, Qian

    2011-02-28

    A comparative study of laser induced damage of HfO2/SiO2 and TiO2/SiO2 mirrors at 1064 nm has been carried out. One TiO2/SiO2 mirror with absorption of 300 ppm and two HfO2/SiO2 mirrors with absorption of 40 and 4.5 ppm were fabricated using electron beam evaporation method. For r-on-1 test, all HfO2/SiO2 mirrors with low average absorption are above 150 J/cm2 at 10 ns. However, the TiO2/SiO2 mirrors with high average absorption are just 9.5 J/cm2, which are probably due to the rather high absorption and rather low band gap energy. Meanwhile, all the samples were irradiated from front and back side respectively using the raster scan test mode. In case of front side irradiation, it is found that: for TiO2/SiO2 high reflectors, the representative damage morphologies are shallow pits that were probably caused by absorbing centers. However, for HfO2/SiO2 high reflectors, the dominant damage morphologies are micrometer-sized nodules ejected pits and the delamination initiating from the pits. The absorption of HfO2/SiO2 coatings is low enough to have minor influence on the laser damage resistance. In case of backside irradiation, the morphology of TiO2/SiO2 mirrors is mainly center melted pits that are thermal melting induced damage. Meanwhile, HfO2/SiO2 mirrors with isometrical fracture rings damage morphology are thermal induced stress damage.

  19. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zgdeng@gmail.co [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-05-15

    Highlights: {yields} Rectangular YBCO bulks to realize a compact combination. {yields} The gap effect was added to consider in the trapped flux density mapping. {yields} The trapped-flux dependence between single and combined bulks is gap related. {yields} It is possible to estimate the total magnetic flux of bulk combinations. - Abstract: Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y{sub 1.65}Ba{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  20. Direct observation of electrically active interfacial layer defects which may cause threshold voltage instabilities in HfO2 based metal-oxide-silicon field-effect transistors

    Science.gov (United States)

    Ryan, J. T.; Lenahan, P. M.; Robertson, J.; Bersuker, G.

    2008-03-01

    We show that a Si /HfO2 interfacial layer defect with an electron spin resonance spectrum similar to that of some E' center variants responds to oxide bias consistent with an amphoteric defect. The spectrum is weakly orientation dependent indicating that the defect does not reside in a completely amorphous matrix. The defect's spin lattice relaxation time is much shorter than that of conventional E' centers suggesting that the defect involves some coupling of a Hf atom to a nearby oxygen deficient silicon dangling bond defect. This defect very likely plays an important role in widely reported instabilities in HfO2 based transistors.

  1. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    Science.gov (United States)

    Deng, Z.; Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M.

    2011-05-01

    Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y 1.65Ba 2Cu 3O 7-x (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  2. Single Qubit Manipulation in a Microfabricated Surface Electrode Ion Trap (Open Access, Publisher’s Version)

    Science.gov (United States)

    2013-09-13

    electrode ion trap with field compensation using a modulated Raman effect D T C Allcock, J A Sherman, D N Stacey et al. Spatially uniform single-qubit gate...in thermal states of motion G Kirchmair, J Benhelm, F Zähringer et al. Normal modes of trapped ions in the presence of anharmonic trap potentials J P...Qloaded = 280) [35]. New Journal of Physics 15 (2013) 093018 (http://www.njp.org/) 5 2.1 GHz Zeeman = 1.4 MHz/G 36 9. 5 nm HF = 12.6 GHz 171Yb+ 2P 1

  3. Mass sensors with mechanical traps for weighing single cells in different fluids.

    Science.gov (United States)

    Weng, Yaochung; Delgado, Francisco Feijó; Son, Sungmin; Burg, Thomas P; Wasserman, Steven C; Manalis, Scott R

    2011-12-21

    We present two methods by which single cells can be mechanically trapped and continuously monitored within the suspended microchannel resonator (SMR) mass sensor. Since the fluid surrounding the trapped cell can be quickly and completely replaced on demand, our methods are well suited for measuring changes in cell size and growth in response to drugs or other chemical stimuli. We validate our methods by measuring the density of single polystyrene beads and Saccharomyces cerevisiae yeast cells with a precision of approximately 10(-3) g cm(-3), and by monitoring the growth of single mouse lymphoblast cells before and after drug treatment.

  4. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.

    Science.gov (United States)

    Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo

    2013-07-15

    We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.

  5. Memory characteristics of cobalt-silicide nanocrystals embedded in HfO2 gate oxide for nonvolatile nanocrystal flash devices

    Science.gov (United States)

    Kim, JooHyung; Yang, JungYup; Lee, JunSeok; Hong, JinPyo

    2008-01-01

    Cobalt-silicide (CoSi2) nanocrystals (NCs) were investigated for use in charge storage for metal oxide semiconductor (MOS) devices with thin HfO2 tunneling and control oxide layers. CoSi2 NCs were synthesized by exposure of Co /Si/HfO2 tunneling oxide/Si stacks to an external UV laser. Observations from transmission electron microscopy and x-ray photoelectron spectroscopy clearly confirm the formation of CoSi2 NCs and the values of Co-Si bonding energies that are shifted 0.3eV from original values, respectively. The CoSi2 NCs in MOS devices exhibited a large memory window of 3.4V as well as efficient programming/erasing speeds, good retention, and endurance times.

  6. A facile one-step hydrothermal synthesis of HfO2/graphene nanocomposite and its physio-chemical properties

    Science.gov (United States)

    Sagadevan, Suresh; Zaman Chowdhury, Zaira; Johan, Mohd. Rafie Bin; Rafique, Rahman F.

    2018-03-01

    A facile one-step hydrothermal synthesis of Hafnium oxide/Graphene (HfO2/Gr) Nanocomposite was successfully synthesized. The crystallinity index and the overall phase transformation process during the synthesis process was observed using x-ray diffraction (XRD) pattern. The surface morphology of the prepared composite was analyzed using Scanning electron microscopy (SEM). Transmission electron microscopy studies (HR-TEM) were conducted to measure the particle sizes. The presence of different types of functional groups was confirmed using FT Raman spectroscopy. UV–Visible spectrum analysis with optical ingestion was conducted to observe the optical properties of the prepared sample. The dielectric properties and conductivity of the prepared sample were investigated whereby the frequencies and the temperatures were altered. The results showed that both the phenomenon of the dielectric consistent and the dielectric loss were frequency and temperature dependent. The thermal conductivity behavior of the prepared samples was checked by calculating AC conductivity values at various temperatures.

  7. Single trap dynamics in electrolyte-gated Si-nanowire field effect transistors

    Science.gov (United States)

    Pud, S.; Gasparyan, F.; Petrychuk, M.; Li, J.; Offenhäusser, A.; Vitusevich, S. A.

    2014-06-01

    Liquid-gated silicon nanowire (NW) field effect transistors (FETs) are fabricated and their transport and dynamic properties are investigated experimentally and theoretically. Random telegraph signal (RTS) fluctuations were registered in the nanolength channel FETs and used for the experimental and theoretical analysis of transport properties. The drain current and the carrier interaction processes with a single trap are analyzed using a quantum-mechanical evaluation of carrier distribution in the channel and also a classical evaluation. Both approaches are applied to treat the experimental data and to define an appropriate solution for describing the drain current behavior influenced by single trap resulting in RTS fluctuations in the Si NW FETs. It is shown that quantization and tunneling effects explain the behavior of the electron capture time on the single trap. Based on the experimental data, parameters of the single trap were determined. The trap is located at a distance of about 2 nm from the interface Si/SiO2 and has a repulsive character. The theory of dynamic processes in liquid-gated Si NW FET put forward here is in good agreement with experimental observations of transport in the structures and highlights the importance of quantization in carrier distribution for analyzing dynamic processes in the nanostructures.

  8. Corrosion Protection of Copper Using Al2O3, TiO2, ZnO, HfO2, and ZrO2Atomic Layer Deposition.

    Science.gov (United States)

    Daubert, James S; Hill, Grant T; Gotsch, Hannah N; Gremaud, Antoine P; Ovental, Jennifer S; Williams, Philip S; Oldham, Christopher J; Parsons, Gregory N

    2017-02-01

    Atomic layer deposition (ALD) is a viable means to add corrosion protection to copper metal. Ultrathin films of Al 2 O 3 , TiO 2 , ZnO, HfO 2 , and ZrO 2 were deposited on copper metal using ALD, and their corrosion protection properties were measured using electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV). Analysis of ∼50 nm thick films of each metal oxide demonstrated low electrochemical porosity and provided enhanced corrosion protection from aqueous NaCl solution. The surface pretreatment and roughness was found to affect the extent of the corrosion protection. Films of Al 2 O 3 or HfO 2 provided the highest level of initial corrosion protection, but films of HfO 2 exhibited the best coating quality after extended exposure. This is the first reported instance of using ultrathin films of HfO 2 or ZrO 2 produced with ALD for corrosion protection, and both are promising materials for corrosion protection.

  9. Fabrication of HfO2 patterns by laser interference nanolithography and selective dry etching for III-V CMOS application

    Directory of Open Access Journals (Sweden)

    Molina-Aldareguia Jon

    2011-01-01

    Full Text Available Abstract Nanostructuring of ultrathin HfO2 films deposited on GaAs (001 substrates by high-resolution Lloyd's mirror laser interference nanolithography is described. Pattern transfer to the HfO2 film was carried out by reactive ion beam etching using CF4 and O2 plasmas. A combination of atomic force microscopy, high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy microanalysis was used to characterise the various etching steps of the process and the resulting HfO2/GaAs pattern morphology, structure, and chemical composition. We show that the patterning process can be applied to fabricate uniform arrays of HfO2 mesa stripes with tapered sidewalls and linewidths of 100 nm. The exposed GaAs trenches were found to be residue-free and atomically smooth with a root-mean-square line roughness of 0.18 nm after plasma etching. PACS: Dielectric oxides 77.84.Bw, Nanoscale pattern formation 81.16.Rf, Plasma etching 52.77.Bn, Fabrication of III-V semiconductors 81.05.Ea

  10. The influence of thermal treatment on the phase development in HfO2-Al2O3 and ZrO2-Al2O3 systems

    International Nuclear Information System (INIS)

    Stefanic, G.; Music, S.; Trojko, R.

    2005-01-01

    Amorphous precursors of HfO 2 -AlO 1.5 and ZrO 2 -AlO 1.5 systems covering the whole concentration range were co-precipitated from aqueous solutions of the corresponding salts. The thermal behaviour of the amorphous precursors was examined by differential thermal analysis, X-ray powder diffraction (XRD), laser Raman spectroscopy and scanning electron microscopy. The crystallization temperature of both systems increased with increase in the AlO 1.5 content, from 530 to 940 deg. C in the HfO 2 -AlO 1.5 system, and from 405 to 915 deg. C in the ZrO 2 -AlO 1.5 system. The results of phase analysis indicate an extended capability for the incorporation of Al 3+ ions in the metastable HfO 2 - and ZrO 2 -type solid solutions obtained after crystallization of amorphous co-gels. Precise determination of lattice parameters, performed using whole-powder-pattern decomposition method, showed that the axial ratio c f /a f in the ZrO 2 - and HfO 2 -type solid solutions with 10 mol% or more of Al 3+ approach 1. The tetragonal symmetry of these samples, as determined by laser Raman spectroscopy, was attributed to the displacement of the oxygen sublattice from the ideal fluorite positions. It was found that the lattice parameters of the ZrO 2 -type solid solutions decreased with increasing Al 3+ content up to ∼10 mol%, whereas above 10 mol%, further increase of the Al 3+ content has very small influence on the unit-cell volume of both HfO 2 - and ZrO 2 -type solid solutions. The reason for such behaviour was discussed. The solubility of Hf 4+ and Zr 4+ ions in the aluminium oxides lattice appeared to be negligible

  11. Investigation of various properties of HfO2-TiO2 thin film composites deposited by multi-magnetron sputtering system

    Science.gov (United States)

    Mazur, M.; Poniedziałek, A.; Kaczmarek, D.; Wojcieszak, D.; Domaradzki, J.; Gibson, D.

    2017-11-01

    In this work the properties of hafnium dioxide (HfO2), titanium dioxide (TiO2) and mixed HfO2-TiO2 thin films with various amount of titanium addition, deposited by magnetron sputtering were described. Structural, surface, optical and mechanical properties of deposited coatings were analyzed. Based on X-ray diffraction and Raman scattering measuremets it was observed that there was a significant influence of titanium concentration in mixed TiO2-HfO2 thin films on their microstructure. Increase of Ti content in prepared mixed oxides coatings caused, e.g. a decrease of average crystallite size and amorphisation of the coatings. As-deposited hafnia and titania thin films exhibited nanocrystalline structure of monoclinic phase and mixed anatase-rutile phase for HfO2 and TiO2 thin films, respectively. Atomic force microscopy investigations showed that the surface of deposited thin films was densely packed, crack-free and composed of visible grains. Surface roughness and the value of water contact angle decreased with the increase of Ti content in mixed oxides. Results of optical studies showed that all deposited thin films were well transparent in a visible light range. The effect of the change of material composition on the cut-off wavelength, refractive index and packing density was also investigated. Performed measurements of mechanical properties revealed that hardness and Young's elastic modulus of thin films were dependent on material composition. Hardness of thin films increased with an increase of Ti content in thin films, from 4.90 GPa to 13.7 GPa for HfO2 and TiO2, respectively. The results of the scratch resistance showed that thin films with proper material composition can be used as protective coatings in optical devices.

  12. Modeling of the effect of intentionally introduced traps on hole transport in single-crystal rubrene

    KAUST Repository

    Dacuña, Javier

    2014-06-05

    Defects have been intentionally introduced in a rubrene single crystal by means of two different mechanisms: ultraviolet ozone (UVO) exposure and x-ray irradiation. A complete drift-diffusion model based on the mobility edge (ME) concept, which takes into account asymmetries and nonuniformities in the semiconductor, is used to estimate the energetic and spatial distribution of trap states. The trap distribution for pristine devices can be decomposed into two well defined regions: a shallow region ascribed to structural disorder and a deeper region ascribed to defects. UVO and x ray increase the hole trap concentration in the semiconductor with different energetic and spatial signatures. The former creates traps near the top surface in the 0.3-0.4 eV region, while the latter induces a wider distribution of traps extending from the band edge with a spatial distribution that peaks near the top and bottom interfaces. In addition to inducing hole trap states in the transport gap, both processes are shown to reduce the mobility with respect to a pristine crystal. © 2014 American Physical Society.

  13. Real-time identification of the singleness of a trapped bead in optical tweezers.

    Science.gov (United States)

    Hu, Chunguang; Su, Chenguang; Yun, Zelin; Wang, Sirong; He, Chengzhi; Gao, Xiaoqing; Li, Shuai; Li, Hongbin; Hu, Xiaodong; Hu, Xiaotang

    2018-02-10

    Beads trapped in optical tweezers are aligned along the optical propagation direction, which makes it difficult to determine the number of beads with bright-field microscopy. This problem also dramatically influences the measurement of the optical trapping based single-molecule force spectroscopy. Here, we propose a video processing approach to count the number of trapped micro-objects in real time. The approach uses a normalized cross-correlation algorithm and image enhancement techniques to amplify a slight change of the image induced by the entry of an exotic object. As tested, this method introduces a ∼10% change per bead to the image similarity, and up to four beads, one-by-one falling into the trap, are identified. Moreover, the feasibility of the above analysis in a moving trap is investigated. A movement of the trap leads to a fluctuation of less than 2% for the similarity signal and can be ignored in most cases. The experimental results prove that image similarity measurement is a sensitive way to monitor the interruption, which is very useful, especially during experiments. In addition, the approach is easy to apply to an existing optical tweezers system.

  14. O-vacancies in (i) nano-crystalline HfO2 and (i) non-crystalline SiO2 and Si3N4 studied by X-ray absorption spectroscopy.

    Science.gov (United States)

    Lucovsky, Gerald; Miotti, Leonardo; Bastos, Karen Paz

    2012-06-01

    Performance and reliability in semiconductor devices are limited by electronically active defects, primarily O-atom and N-atom vacancies. Synchrotron X-ray spectroscopy results, interpreted in the context of two-electron multiplet theories, have been used to analyze conduction band edge, and O-vacancy defect states in nano-crystalline transition metal oxides, e.g., HfO2, and the noncrystalline dielectrics, SiO2, Si3N4 and Si-oxynitride alloys. Two-electron multiplet theory been used to develop a high-spin state equivalent d2 model for O-vacancy allowed transitions and negative ion states as detected by X-ray absorption spectroscopy in the O K pre-edge regime. Comparisons between theory and experiment have used Tanabe-Sugano energy level diagrams for determining the symmetries and relative energies of intra-d-state transitions for an equivalent d2 ground state occupancy. Trap-assisted-tunneling, Poole-Frenkel hopping transport, and the negative bias temperature instability have been explained in terms of injection and/or trapping into O-atom and N-atom vacancy sites, and applied to gate dielectric, and metal-insulator-metal structures.

  15. Parallel single cell analysis on an integrated microfluidic platform for cell trapping, lysis and analysis

    NARCIS (Netherlands)

    le Gac, Severine; de Boer, Hans L.; Wijnperle, Daniël; Meuleman, W.; Carlen, Edwin; van den Berg, Albert; Kim, Tae Song; Lee, Yoon-Sik; Chung, Taek-Dong; Jeon, Noo Li; Lee, Sang-Hoon; Suh, Kahp-Yang; Choo, Jaebum; Kim, Yong-Kweon

    2009-01-01

    We report here a novel and easily scalable microfluidic platform for the parallel analysis of hundreds of individual cells, with controlled single cell trapping, followed by their lysis and subsequent retrieval of the cellular content for on-chip analysis. The device consists of a main channel and

  16. Trapping effects and acoustoelectric current saturation in ZnO single crystals

    DEFF Research Database (Denmark)

    Mosekilde, Erik

    1970-01-01

    Measurements of current-voltage characteristics for ZnO single crystals at temperatures between 77 and 640 °K are reported. Because of the buildup of an intense acoustic flux, a strong current saturation sets in when the trap-controlled electron drift velocity is equal to the velocity of sound...

  17. Detection and characterization of chemical aerosol using laser-trapping single-particle Raman spectroscopy.

    Science.gov (United States)

    Kalume, Aimable; Beresnev, Leonid A; Santarpia, Joshua; Pan, Yong-Le

    2017-08-10

    Detection and characterization of the presence of chemical agent aerosols in various complex atmospheric environments is an essential defense mission. Raman spectroscopy has the ability to identify chemical molecules, but there are limited numbers of photons detectable from single airborne aerosol particles as they are flowing through a detection system. In this paper, we report on a single-particle Raman spectrometer system that can measure strong spontaneous, stimulated, and resonance Raman spectral peaks from a single laser-trapped chemical aerosol particle, such as a droplet of the VX nerve agent chemical simulant diethyl phthalate. Using this system, time-resolved Raman spectra and elastic scattered intensities were recorded to monitor the chemical properties and size variation of the trapped particle. Such a system supplies a new approach for the detection and characterization of single airborne chemical aerosol particles.

  18. Single-atom trapping and transport in DMD-controlled optical tweezers

    OpenAIRE

    Stuart, Dustin; Kuhn, Axel

    2017-01-01

    We demonstrate the trapping and manipulation of single neutral atoms in reconfigurable arrays of optical tweezers. Our approach offers unparalleled speed by using a Texas Instruments Digital Micro-mirror Device (DMD) as a holographic amplitude modulator with a frame rate of 20,000 per second. We show the trapping of static arrays of up to 20 atoms, as well as transport of individually selected atoms over a distance of 25{\\mu}m with laser cooling and 4{\\mu}m without. We discuss the limitations...

  19. Single-atom trapping and transport in DMD-controlled optical tweezers

    Science.gov (United States)

    Stuart, Dustin; Kuhn, Axel

    2018-02-01

    We demonstrate the trapping and manipulation of single neutral atoms in reconfigurable arrays of optical tweezers. Our approach offers unparalleled speed by using a Texas instruments digital micro-mirror device as a holographic amplitude modulator with a frame rate of 20 000 per second. We show the trapping of static arrays of up to 20 atoms, as well as transport of individually selected atoms over a distance of 25 μm with laser cooling and 4 μm without. We discuss the limitations of the technique and the scope for technical improvements.

  20. Dynamics of a single ion in a perturbed Penning trap: Octupolar perturbation

    International Nuclear Information System (INIS)

    Lara, Martin; Salas, J. Pablo

    2004-01-01

    Imperfections in the design or implementation of Penning traps may give rise to electrostatic perturbations that introduce nonlinearities in the dynamics. In this paper we investigate, from the point of view of classical mechanics, the dynamics of a single ion trapped in a Penning trap perturbed by an octupolar perturbation. Because of the axial symmetry of the problem, the system has two degrees of freedom. Hence, this model is ideal to be managed by numerical techniques like continuation of families of periodic orbits and Poincare surfaces of section. We find that, through the variation of the two parameters controlling the dynamics, several periodic orbits emanate from two fundamental periodic orbits. This process produces important changes (bifurcations) in the phase space structure leading to chaotic behavior

  1. High magnetic field trapping in monolithic single-grain YBa2Cu3O(7-delta) bulk materials

    Science.gov (United States)

    Gao, L.; Xue, Y. Y.; Ramirez, D.; Huang, Z. J.; Meng, R. L.; Chu, C. W.

    1993-01-01

    Results of our study on high magnetic field trapping in unirradiated, high quality monolithic single-grain YBa2Cu3O(7-delta) disks are reported. A record high 4 T trapped field at the surface of the unirradiated disks is observed. However, below 11 K, large flux avalanches caused by thermal instability severely limit the remnant trapped field. Therefore, flux avalanche, rather than Jc x d, dictates the maximum trapped field at low temperatures. To overcome this problem, a strong high temperature superconductor trapped field magnet is proposed. A novel application of the avalanche effect is also mentioned.

  2. Study of HfO2/SiO2 dichroic laser mirrors with refractive index inhomogeneity.

    Science.gov (United States)

    Jiao, Hongfei; Cheng, Xinbin; Bao, Ganghua; Han, Jin; Zhang, Jinlong; Wang, Zhanshan; Trubetskov, M; Tikhonravov, Alexander V

    2014-02-01

    HfO2/SiO2 dichroic mirrors, having high reflectance at 1064 nm and high transmittance at 532 nm, play an important role in high-power laser systems. However, the half-wave hole effect, caused mainly by the refractive index inhomogeneity of hafnia, affects the spectra and application of these mirrors. Two approaches to eliminate the half-wave hole effect have been proposed. Both approaches attempt to shift the location of the half-wave hole in comparison with the original wavelength. One approach broadens the reflectance band of the first harmonic wavelength and simultaneously adjusts the central reflectance band to a longer wavelength, whereas the other approach combines the two stacks to adjust the location of the half-wave hole far away from the wavelength of interest. Two kinds of dichroic mirrors have been successfully fabricated; moreover, it was found that the method of a two-stack combination, 0.9(HL)8 and 1.1(HL)8, provides designs that can be fabricated more easily and with better quality spectral characteristics.

  3. Wide band antireflective coatings Al2O3 / HfO2 / MgF2 for UV region

    Science.gov (United States)

    Winkowski, P.; Marszałek, Konstanty W.

    2013-07-01

    Deposition technology of the three layers antireflective coatings consists of hafnium compound are presented in this paper. Oxide films were deposited by means of e-gun evaporation in vacuum of 5x10-5 mbar in presence of oxygen and fluoride films by thermal evaporation. Substrate temperature was 250°C. Coatings were deposited onto optical lenses made from quartz glass (Corning HPFS). Thickness and deposition rate were controlled by thickness measuring system Inficon XTC/2. Simulations leading to optimization of thickness and experimental results of optical measurements carried during and after deposition process were presented. Physical thickness measurements were made during deposition process and were equal to 43 nm/74 nm/51 nm for Al2O3 / HfO2 / MgF2 respectively. Optimization was carried out for ultraviolet region from 230nm to the beginning of visible region 400 nm. In this region the average reflectance of the antireflective coating was less than 0.5% in the whole range of application.

  4. Effect of annealing on structural changes and oxygen diffusion in amorphous HfO2 using classical molecular dynamics

    Science.gov (United States)

    Shen, Wenqing; Kumari, Niru; Gibson, Gary; Jeon, Yoocharn; Henze, Dick; Silverthorn, Sarah; Bash, Cullen; Kumar, Satish

    2018-02-01

    Non-volatile memory is a promising alternative to present memory technologies. Oxygen vacancy diffusion has been widely accepted as one of the reasons for the resistive switching mechanism of transition-metal-oxide based resistive random access memory. In this study, molecular dynamics simulation is applied to investigate the diffusion coefficient and activation energy of oxygen in amorphous hafnia. Two sets of empirical potential, Charge-Optimized Many-Body (COMB) and Morse-BKS (MBKS), were considered to investigate the structural and diffusion properties at different temperatures. COMB predicts the activation energy of 0.53 eV for the temperature range of 1000-2000 K, while MBKS predicts 2.2 eV at high temperature (1600-2000 K) and 0.36 eV at low temperature (1000-1600 K). Structural changes and appearance of nano-crystalline phases with increasing temperature might affect the activation energy of oxygen diffusion predicted by MBKS, which is evident from the change in coordination number distribution and radial distribution function. None of the potentials make predictions that are fully consistent with density functional theory simulations of both the structure and diffusion properties of HfO2. This suggests the necessity of developing a better multi-body potential that considers charge exchange.

  5. Ball milling induced solid-state reactions in the La2O3-HfO2 ceramic system

    International Nuclear Information System (INIS)

    Chain, C.Y.; Quille, R.A.; Pasquevich, A.F.

    2010-01-01

    Ball milling of oxide blends can result in the formation of solid solutions depending on the characteristics of the oxides. In this paper the possibility of doping oxides with radioactive 181 Hf through the formation of these solutions is analyzed. The 181 Hf isotope decays to 181 Ta, which is an adequate probe for perturbed angular correlations (PAC) studies. Through the measurement of the hyperfine interactions of 181 Ta nuclei it is possible to determine the atomic distribution around the probes. We have thus studied the behavior of the La 2 O 3 -HfO 2 ceramic system subjected to high-energy ball milling. An oxide blend, containing few atomic percent of hafnium oxide, was milled during several hours resulting in the formation of hafnium oxide defective phases. The sample was finally annealed at high temperatures in order to facilitate the formation of solid solutions. This thermal treatment produced a solid-state reaction given place to Hf 2 La 2 O 7 pyrochlore and also the apparition of another phase or compound. The possibility of associating this last finding with a stabilized cubic phase of hafnium oxide resulting from lanthanum doping is analyzed.

  6. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet

    Science.gov (United States)

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-01-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197

  7. Direct exchange between silicon nanocrystals and tunnel oxide traps under illumination on single electron photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Chatbouri, S., E-mail: Samir.chatbouri@yahoo.com; Troudi, M.; Sghaier, N.; Kalboussi, A. [Avenue de I’environnement, Université de Monastir, Laboratoire de Micro électronique et Instrumentation (LR13ES12), Faculté des Sciences de Monastir (Tunisia); Aimez, V. [Université de Sherbrooke, Laboratoire Nanotechnologies et Nanosystémes (UMI-LN2 3463), Université de Sherbrooke—CNRS—INSA de Lyon-ECL-UJF-CPE Lyon, Institut Interdisciplinaire d’Innovation Technologique (Canada); Drouin, D. [Avenue de I’environnement, Université de Monastir, Laboratoire de Micro électronique et Instrumentation (LR13ES12), Faculté des Sciences de Monastir (Tunisia); Souifi, A. [Institut des Nanotechnologies de Lyon—site INSA de Lyon, UMR CNRS 5270 (France)

    2016-09-15

    In this paper we present the trapping of photogenerated charge carriers for 300 s resulted by their direct exchange under illumination between a few silicon nanocrystals (ncs-Si) embedded in an oxide tunnel layer (SiO{sub x} = 1.5) and the tunnel oxide traps levels for a single electron photodetector (photo-SET or nanopixel). At first place, the presence of a photocurrent limited in the inversion zone under illumination in the I–V curves confirms the creation of a pair electron/hole (e–h) at high energy. This photogenerated charge carriers can be trapped in the oxide. Using the capacitance-voltage under illumination (the photo-CV measurements) we show a hysteresis chargement limited in the inversion area, indicating that the photo-generated charge carriers are stored at traps levels at the interface and within ncs-Si. The direct exchange of the photogenerated charge carriers between the interface traps levels and the ncs-Si contributed on the photomemory effect for 300 s for our nanopixel at room temperature.

  8. Ab initio study of mechanical and thermo-acoustic properties of tough ceramics: applications to HfO2 in its cubic and orthorhombic phase

    International Nuclear Information System (INIS)

    Ponce, C A; Casali, R A; Caravaca, M A

    2008-01-01

    By means of the ab initio all-electron new full-potential linear-muffin-tin orbitals method, calculations were made for elastic constants C 11 , C 12 and C 44 for Si, ZrO 2 and HfO 2 in their cubic phase, and constants C 11 , C 22 , C 33 , C 12 , C 13 , C 23 , C 44 , C 55 and C 66 for HfO 2 in its orthorhombic phase. Using the Voigt and Reuss theory, estimations were made for polycrystals of their bulk, shear and Young moduli, and Poisson coefficients. The speed of elastic wave propagations and Debye temperatures were estimated for polycrystals built from Si and the above mentioned compounds. The semicore 4f 14 electrons should be included in the valence set of Hf atom in this all-electron approach if accurate results for elastic properties under pressures are looked for

  9. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  10. Low-temperature fabrication of sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors

    Science.gov (United States)

    Yao, Rihui; Zheng, Zeke; Xiong, Mei; Zhang, Xiaochen; Li, Xiaoqing; Ning, Honglong; Fang, Zhiqiang; Xie, Weiguang; Lu, Xubing; Peng, Junbiao

    2018-03-01

    In this work, low temperature fabrication of a sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors (TFTs) on polyimide substrates was investigated. The effects of Ar-pressure during the sputtering process and then especially the post-annealing treatments at low temperature (≤200 °C) for HfO2 on reducing the density of defects in the bulk and on the surface were systematically studied. X-ray reflectivity, UV-vis and X-ray photoelectron spectroscopy, and micro-wave photoconductivity decay measurements were carried out and indicated that the high quality of optimized HfO2 film and its high dielectric properties contributed to the low concentration of structural defects and shallow localized defects such as oxygen vacancies. As a result, the well-structured HfO2 gate dielectric exhibited a high density of 9.7 g/cm3, a high dielectric constant of 28.5, a wide optical bandgap of 4.75 eV, and relatively low leakage current. The corresponding flexible a-IGZO TFT on polyimide exhibited an optimal device performance with a saturation mobility of 10.3 cm2 V-1 s-1, an Ion/Ioff ratio of 4.3 × 107, a SS value of 0.28 V dec-1, and a threshold voltage (Vth) of 1.1 V, as well as favorable stability under NBS/PBS gate bias and bending stress.

  11. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping

    Energy Technology Data Exchange (ETDEWEB)

    Jones, John; Xiong, Haifeng; DelaRiva, Andrew; Peterson, Eric J.; Pham, Hien; Challa, Sivakumar R.; Qi, Gongshin; Oh, Se H.; Wiebenga, Michelle H.; Pereira Hernandez, Xavier I.; Wang, Yong; Datye, Abhaya K.

    2016-07-08

    Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures are detrimental to catalyst performance unless these mobile atoms can be trapped. We used ceria powders having similar surface areas but different exposed surface facets. When mixed with a platinum/ aluminum oxide catalyst and aged in air at 800°C, the platinum transferred to the ceria and was trapped. Polyhedral ceria and nanorods were more effective than ceria cubes at anchoring the platinum. Performing synthesis at high temperatures ensures that only the most stable binding sites are occupied, yielding a sinter-resistant, atomically dispersed catalyst.

  12. Influence of Optimization of Process Parameters on Threshold Voltage for Development of HfO2/TiSi2 18 nm PMOS

    Directory of Open Access Journals (Sweden)

    Atan N.

    2016-01-01

    Full Text Available Manufacturing a 18-nm transistor requires a variety of parameters, materials, temperatures, and methods. In this research, HfO2 was used as the gate dielectric ad TiO2 was used as the gate material. The transistor HfO2/TiSi2 18-nm PMOS was invented using SILVACO TCAD. Ion implantation was adopted in the fabrication process for the method’s practicality and ability to be used to suppress short channel effects. The study involved ion implantation methods: compensation implantation, halo implantation energy, halo tilt, and source–drain implantation. Taguchi method is the best optimization process for a threshold voltage of HfO2/TiSi2 18-nm PMOS. In this case, the method adopted was Taguchi orthogonal array L9. The process parameters (ion implantations and noise factors were evaluated by examining the Taguchi’s signal-to-noise ratio (SNR and nominal-the-best for the threshold voltage (VTH. After optimization, the result showed that the VTH value of the 18-nm PMOS device was -0.291339.

  13. Effect of current compliance and voltage sweep rate on the resistive switching of HfO2/ITO/Invar structure as measured by conductive atomic force microscopy

    Science.gov (United States)

    Wu, You-Lin; Liao, Chun-Wei; Ling, Jing-Jenn

    2014-06-01

    The electrical characterization of HfO2/ITO/Invar resistive switching memory structure was studied using conductive atomic force microscopy (AFM) with a semiconductor parameter analyzer, Agilent 4156C. The metal alloy Invar was used as the metal substrate to ensure good ohmic contact with the substrate holder of the AFM. A conductive Pt/Ir AFM tip was placed in direct contact with the HfO2 surface, such that it acted as the top electrode. Nanoscale current-voltage (I-V) characteristics of the HfO2/ITO/Invar structure were measured by applying a ramp voltage through the conductive AFM tip at various current compliances and ramp voltage sweep rates. It was found that the resistance of the low resistance state (RLRS) decreased with increasing current compliance value, but resistance of high resistance state (RHRS) barely changed. However, both the RHRS and RLRS decreased as the voltage sweep rate increased. The reasons for this dependency on current compliance and voltage sweep rate are discussed.

  14. A generalized Jaynes-Cummings model: The relativistic parametric amplifier and a single trapped ion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dojedag@ipn.mx [Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz esq. Av. Miguel Othón de Mendizábal, Col. Lindavista, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430 Ciudad de México (Mexico); Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico)

    2016-06-15

    We introduce a generalization of the Jaynes-Cummings model and study some of its properties. We obtain the energy spectrum and eigenfunctions of this model by using the tilting transformation and the squeezed number states of the one-dimensional harmonic oscillator. As physical applications, we connect this new model to two important and novelty problems: the relativistic parametric amplifier and the quantum simulation of a single trapped ion.

  15. A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells

    KAUST Repository

    Perozziello, Gerardo

    2013-11-01

    In this work we developed a microfluidic device integrating nanoplasmonic devices combined with fluidic trapping regions. The microfuidic traps allow to capture single cells in areas where plasmonic sensors are placed. In this way it is possible to perform Enhanced Raman analysis on the cell membranes. Moreover, by changing direction of the flux it is possible to change the orientation of the cell in the trap, so that it is possible to analyze different points of the membrane of the same cell. We shows an innovative procedure to fabricate and assembly the microfluidic device which combine photolithography, focused ion beam machining, and hybrid bonding between a polymer substrate and lid of Calcium fluoride. This procedure is compatible with the fabrication of the plasmonic sensors in close proximity of the microfluidic traps. Moreover, the use of Calcium fluoride as lid allows full compatibility with Raman measurements producing negligible Raman background signal and avoids Raman artifacts. Finally, we performed Raman analysis on cells to monitor their oxidative stress under particular non physiological conditions. © 2013 Elsevier B.V. All rights reserved.

  16. Ab initio localized basis set study of structural parameters and elastic properties of HfO2 polymorphs

    International Nuclear Information System (INIS)

    Caravaca, M A; Casali, R A

    2005-01-01

    The SIESTA approach based on pseudopotentials and a localized basis set is used to calculate the electronic, elastic and equilibrium properties of P 2 1 /c, Pbca, Pnma, Fm3m, P4 2 nmc and Pa3 phases of HfO 2 . Using separable Troullier-Martins norm-conserving pseudopotentials which include partial core corrections for Hf, we tested important physical properties as a function of the basis set size, grid size and cut-off ratio of the pseudo-atomic orbitals (PAOs). We found that calculations in this oxide with the LDA approach and using a minimal basis set (simple zeta, SZ) improve calculated phase transition pressures with respect to the double-zeta basis set and LDA (DZ-LDA), and show similar accuracy to that determined with the PPPW and GGA approach. Still, the equilibrium volumes and structural properties calculated with SZ-LDA compare better with experiments than the GGA approach. The bandgaps and elastic and structural properties calculated with DZ-LDA are accurate in agreement with previous state of the art ab initio calculations and experimental evidence and cannot be improved with a polarized basis set. These calculated properties show low sensitivity to the PAO localization parameter range between 40 and 100 meV. However, this is not true for the relative energy, which improves upon decrease of the mentioned parameter. We found a non-linear behaviour in the lattice parameters with pressure in the P 2 1 /c phase, showing a discontinuity of the derivative of the a lattice parameter with respect to external pressure, as found in experiments. The common enthalpy values calculated with the minimal basis set give pressure transitions of 3.3 and 10.8?GPa for P2 1 /c → Pbca and Pbca → Pnma, respectively, in accordance with different high pressure experimental values

  17. A highly-occupied, single-cell trapping microarray for determination of cell membrane permeability.

    Science.gov (United States)

    Weng, Lindong; Ellett, Felix; Edd, Jon; Wong, Keith H K; Uygun, Korkut; Irimia, Daniel; Stott, Shannon L; Toner, Mehmet

    2017-11-21

    Semi- and selective permeability is a fundamentally important characteristic of the cell membrane. Membrane permeability can be determined by monitoring the volumetric change of cells following exposure to a non-isotonic environment. For this purpose, several microfluidic perfusion chambers have been developed recently. However, these devices only allow the observation of one single cell or a group of cells that may interact with one another in an uncontrolled way. Some of these devices have integrated on-chip temperature control to investigate the temperature-dependence of membrane permeability, but they inevitably require sophisticated fabrication and assembly, and delicate temperature and pressure calibration. Therefore, it is highly desirable to design a simple single-cell trapping device that allows parallel monitoring of multiple separate, individual cells subjected to non-isotonic exposure at various temperatures. In this study, we developed a pumpless, single-layer microarray with high trap occupancy of single cells. The benchmark performance of the device was conducted by targeting spherical particles of 18.8 μm in diameter as a model, yielding trap occupancy of up to 86.8% with a row-to-row shift of 10-30 μm. It was also revealed that in each array the particles larger than a corresponding critical size would be excluded by the traps in a deterministic lateral displacement mode. Demonstrating the utility of this approach, we used the single-cell trapping device to determine the membrane permeability of rat hepatocytes and patient-derived circulating tumor cells (Brx-142) at 4, 22 and 37 °C. The membrane of rat hepatocytes was found to be highly permeable to water and small molecules such as DMSO and glycerol, via both lipid- and aquaporin-mediated pathways. Brx-142 cells, however, displayed lower membrane permeability than rat hepatocytes, which was associated with strong coupling of water and DMSO transport but less interaction between water and

  18. Kinetic Monte Carlo simulation of single-electron multiple-trapping transport in disordered media

    Science.gov (United States)

    Javadi, Mohammad; Abdi, Yaser

    2017-12-01

    The conventional single-particle Monte Carlo simulation of charge transport in disordered media is based on the truncated density of localized states (DOLS) which benefits from very short time execution. Although this model successfully clarifies the properties of electron transport in moderately disordered media, it overestimates the electron diffusion coefficient for strongly disordered media. The origin of this deviation is discussed in terms of zero-temperature approximation in the truncated DOLS and the ignorance of spatial occupation of localized states. Here, based on the multiple-trapping regime we introduce a modified single-particle kinetic Monte Carlo model that can be used to investigate the electron transport in any disordered media independent from the value of disorder parameter. In the proposed model, instead of using a truncated DOLS we imply the raw DOLS. In addition, we have introduced an occupation index for localized states to consider the effect of spatial occupation of trap sites. The proposed model is justified in a simple cubic lattice of trap sites for broad interval of disorder parameters, Fermi levels, and temperatures.

  19. Towards hybrid quantum systems: Trapping a single atom near a nanoscale solid-state structure

    Directory of Open Access Journals (Sweden)

    Tiecke T.G.

    2013-08-01

    Full Text Available We describe and demonstrate a method to deterministically trap single atoms near nanoscale solid-state objects. The trap is formed by the interference of an optical tweezer and its reflection from the nano object, creating a one-dimensional optical lattice where the first lattice site is at z0 ∼ λ/4 from the surface. Using a tapered optical fiber as the nanoscopic object, we characterize the loading into different lattice sites by means of the AC-Stark shift induced by a guided fiber mode. We demonstrate a loading efficiency of 94(6% into the first lattice site, and measure the cooperativity for the emission of the atom into the guided mode of the nanofiber. We show that by tailoring the dimensions of the nanofiber the distance of the trap to the surface can be adjusted. This method is applicable to a large variety of nanostructures and represents a promising starting point for interfacing single atoms with arbitrary nanoscale solid-state systems.

  20. Trapping, manipulation and rapid rotation of NBD-C8 fluorescent single microcrystals in optical tweezers

    International Nuclear Information System (INIS)

    GALAUP, Jean-Pierre; RODRIGUEZ-OTAZO, Mariela; AUGIER-CALDERIN, Angel; LAMERE; Jean-Francois; FERY-FORGUES, Suzanne

    2009-01-01

    We have built an optical tweezers experiment based on an inverted microscope to trap and manipulate single crystals of micro or sub-micrometer size made from fluorescent molecules of 4-octylamino-7-nitrobenzoxadiazole (NBD-C8). These single crystals have parallelepiped shapes and exhibit birefringence properties evidenced through optical experiments between crossed polarizers in a polarizing microscope. The crystals are uniaxial with their optical axis oriented along their largest dimension. Trapped in the optical trap, the organic micro-crystals are oriented in such a way that their long axis is along the direction of the beam propagation, and their short axis follows the direction of the linear polarization. Therefore, with linearly polarized light, simply rotating the light polarization can orient the crystal. When using circularly or only elliptically polarized light, the crystal can spontaneously rotate and reach rotation speed of several hundreds of turns per second. A surprising result has been observed: when the incident power is growing up, the rotation speed increases to reach a maximum value and then decreases even when the power is still growing up. Moreover, this evolution is irreversible. Different possible explanations can be considered. The development of a 3D control of the crystals by dynamical holography using liquid crystal spatial modulators will be presented and discussed on the basis of the most recent results obtained. (Author)

  1. Excellent resistive switching properties of atomic layer-deposited Al2O3/HfO2/Al2O3 trilayer structures for non-volatile memory applications.

    Science.gov (United States)

    Wang, Lai-Guo; Qian, Xu; Cao, Yan-Qiang; Cao, Zheng-Yi; Fang, Guo-Yong; Li, Ai-Dong; Wu, Di

    2015-01-01

    We have demonstrated a flexible resistive random access memory unit with trilayer structure by atomic layer deposition (ALD). The device unit is composed of Al2O3/HfO2/Al2O3-based functional stacks on TiN-coated Si substrate. The cross-sectional HRTEM image and XPS depth profile of Al2O3/HfO2/Al2O3 on TiN-coated Si confirm the existence of interfacial layers between trilayer structures of Al2O3/HfO2/Al2O3 after 600°C post-annealing. The memory units of Pt/Al2O3/HfO2/Al2O3/TiN/Si exhibit a typical bipolar, reliable, and reproducible resistive switching behavior, such as stable resistance ratio (>10) of OFF/ON states, sharp distribution of set and reset voltages, better switching endurance up to 10(3) cycles, and longer data retention at 85°C over 10 years. The possible switching mechanism of trilayer structure of Al2O3/HfO2/Al2O3 has been proposed. The trilayer structure device units of Al2O3/HfO2/Al2O3 on TiN-coated Si prepared by ALD may be a potential candidate for oxide-based resistive random access memory.

  2. Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation

    Directory of Open Access Journals (Sweden)

    Liang Huang

    2016-08-01

    Full Text Available Single cell manipulation technology has been widely applied in biological fields, such as cell injection/enucleation, cell physiological measurement, and cell imaging. Recently, a biochip platform with a novel configuration of electrodes for cell 3D rotation has been successfully developed by generating rotating electric fields. However, the rotation platform still has two major shortcomings that need to be improved. The primary problem is that there is no on-chip module to facilitate the placement of a single cell into the rotation chamber, which causes very low efficiency in experiment to manually pipette single 10-micron-scale cells into rotation position. Secondly, the cell in the chamber may suffer from unstable rotation, which includes gravity-induced sinking down to the chamber bottom or electric-force-induced on-plane movement. To solve the two problems, in this paper we propose a new microfluidic chip with manipulation capabilities of single cell trap and single cell 3D stable rotation, both on one chip. The new microfluidic chip consists of two parts. The top capture part is based on the least flow resistance principle and is used to capture a single cell and to transport it to the rotation chamber. The bottom rotation part is based on dielectrophoresis (DEP and is used to 3D rotate the single cell in the rotation chamber with enhanced stability. The two parts are aligned and bonded together to form closed channels for microfluidic handling. Using COMSOL simulation and preliminary experiments, we have verified, in principle, the concept of on-chip single cell traps and 3D stable rotation, and identified key parameters for chip structures, microfluidic handling, and electrode configurations. The work has laid a solid foundation for on-going chip fabrication and experiment validation.

  3. Preparation of single rice chromosome for construction of a DNA library using a laser microbeam trap.

    Science.gov (United States)

    Liu, Xiaohui; Wang, Haowei; Li, Yinmei; Tang, Yesheng; Liu, Yilei; Hu, Xin; Jia, Peixin; Ying, Kai; Feng, Qi; Guan, Jianping; Jin, Chaoqing; Zhang, Lei; Lou, Liren; Zhou, Zhuan; Han, Bin

    2004-04-29

    We report the development of a laser micromanipulation system and its application in the isolation of individual rice chromosomes directly from a metaphase cell. Microdissection and flow sorting are two major methods for the isolation of single chromosome. These methods are dependent on the techniques of chromosome spread and chromosome suspension, respectively. In the development of this system, we avoided using chromosome spread and cell suspension was used instead. The cell wall of metaphase rice cell was cut by optical scissors. The released single chromosome was captured by an optical trap and transported to an area without cell debris. The isolated single chromosome was then collected and specific library was constructed by linker adaptor PCR. The average insert size of the library was about 300 bp. Two hundred inserts of chromosome 4 library were sequenced, and 96.5% were aligned to the corresponding sequences of rice chromosome 4. These results suggest the possible application of this method for the preparation of other subcellular structures and for the cloning of single macromolecule through a laser microbeam trap.

  4. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals

    KAUST Repository

    Shi, Dong

    2015-01-29

    The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3(MA = CH3NH3 +; X = Br- or I- ) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics.We observed exceptionally low trap-state densities on the order of 109 to 1010 per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.

  5. A robust single-beam optical trap for a gram-scale mechanical oscillator.

    Science.gov (United States)

    Altin, P A; Nguyen, T T-H; Slagmolen, B J J; Ward, R L; Shaddock, D A; McClelland, D E

    2017-11-06

    Precise optical control of microscopic particles has been mastered over the past three decades, with atoms, molecules and nano-particles now routinely trapped and cooled with extraordinary precision, enabling rapid progress in the study of quantum phenomena. Achieving the same level of control over macroscopic objects is expected to bring further advances in precision measurement, quantum information processing and fundamental tests of quantum mechanics. However, cavity optomechanical systems dominated by radiation pressure - so-called 'optical springs' - are inherently unstable due to the delayed dynamical response of the cavity. Here we demonstrate a fully stable, single-beam optical trap for a gram-scale mechanical oscillator. The interaction of radiation pressure with thermo-optic feedback generates damping that exceeds the mechanical loss by four orders of magnitude. The stability of the resultant spring is robust to changes in laser power and detuning, and allows purely passive self-locking of the cavity. Our results open up a new way of trapping and cooling macroscopic objects for optomechanical experiments.

  6. Single-Qubit-Gate Error below 0.0001 in a Trapped Ion

    Science.gov (United States)

    2011-01-01

    nuclear spins in liquid-state nuclear-magnetic resonance experiments [6] and with neutral atoms confined in optical lattices [7]; here we demonstrate...Single trapped ion 2.0(2)×10−5 Reference [6] (2009) Nuclear magnetic resonance 1.3(1)×10−4 Reference [7] (2010) Atoms in an optical lattice 1.4(1)×10...determined by comparing the qubit frequency measured in a Ramsey experiment with that of a Rabi experiment. Such back-to-back comparisons yielded values

  7. The impact of ultrathin Al2O3 films on the electrical response of p-Ge/Al2O3/HfO2/Au MOS structures

    Science.gov (United States)

    Botzakaki, M. A.; Skoulatakis, G.; Kennou, S.; Ladas, S.; Tsamis, C.; Georga, S. N.; Krontiras, C. A.

    2016-09-01

    It is well known that the most critical issue in Ge CMOS technology is the successful growth of high-k gate dielectrics on Ge substrates. The high interface quality of Ge/high-k dielectric is connected with advanced electrical responses of Ge based MOS devices. Following this trend, atomic layer deposition deposited ultrathin Al2O3 and HfO2 films were grown on p-Ge. Al2O3 acts as a passivation layer between p-Ge and high-k HfO2 films. An extensive set of p-Ge/Al2O3/HfO2 structures were fabricated with Al2O3 thickness ranging from 0.5 nm to 1.5 nm and HfO2 thickness varying from 2.0 nm to 3.0 nm. All structures were characterized by x-ray photoelectron spectroscopy (XPS) and AFM. XPS analysis revealed the stoichiometric growth of both films in the absence of Ge sub-oxides between p-Ge and Al2O3 films. AFM analysis revealed the growth of smooth and cohesive films, which exhibited minimal roughness (~0.2 nm) comparable to that of clean bare p-Ge surfaces. The electrical response of all structures was analyzed by C-V, G-V, C-f, G-f and J-V characteristics, from 80 K to 300 K. It is found that the incorporation of ultrathin Al2O3 passivation layers between p-Ge and HfO2 films leads to superior electrical responses of the structures. All structures exhibit well defined C-V curves with parasitic effects, gradually diminishing and becoming absent below 170 K. D it values were calculated at each temperature, using both Hill-Coleman and Conductance methods. Structures of p-Ge/0.5 nm Al2O3/2.0 nm HfO2/Au, with an equivalent oxide thickness (EOT) equal to 1.3 nm, exhibit D it values as low as ~7.4  ×  1010 eV-1 cm-2. To our knowledge, these values are among the lowest reported. J-V measurements reveal leakage currents in the order of 10-1 A cm-2, which are comparable to previously published results for structures with the same EOT. A complete mapping of the energy distribution of D its into the energy bandgap of p-Ge, from the valence band towards midgap, is also reported. These promising results contribute to the challenge of switching to high-k dielectrics as gate materials for future high-performance metal-oxide-semiconductor field-effect transistors based on Ge substrates. Making the switch to such devices would allow us toexploit its superior properties.

  8. On the mechanisms of cation injection in conducting bridge memories: The case of HfO2 in contact with noble metal anodes (Au, Cu, Ag)

    International Nuclear Information System (INIS)

    Saadi, M.; Gonon, P.; Vallée, C.; Mannequin, C.; Bsiesy, A.; Grampeix, H.; Jalaguier, E.; Jomni, F.

    2016-01-01

    Resistance switching is studied in HfO 2 as a function of the anode metal (Au, Cu, and Ag) in view of its application to resistive memories (resistive random access memories, RRAM). Current-voltage (I-V) and current-time (I-t) characteristics are presented. For Au anodes, resistance transition is controlled by oxygen vacancies (oxygen-based resistive random access memory, OxRRAM). For Ag anodes, resistance switching is governed by cation injection (Conducting Bridge random access memory, CBRAM). Cu anodes lead to an intermediate case. I-t experiments are shown to be a valuable tool to distinguish between OxRRAM and CBRAM behaviors. A model is proposed to explain the high-to-low resistance transition in CBRAMs. The model is based on the theory of low-temperature oxidation of metals (Cabrera-Mott theory). Upon electron injection, oxygen vacancies and oxygen ions are generated in the oxide. Oxygen ions are drifted to the anode, and an interfacial oxide is formed at the HfO 2 /anode interface. If oxygen ion mobility is low in the interfacial oxide, a negative space charge builds-up at the HfO 2 /oxide interface. This negative space charge is the source of a strong electric field across the interfacial oxide thickness, which pulls out cations from the anode (CBRAM case). Inversely, if oxygen ions migration through the interfacial oxide is important (or if the anode does not oxidize such as Au), bulk oxygen vacancies govern resistance transition (OxRRAM case).

  9. Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis.

    Science.gov (United States)

    Wu, Yupan; Ren, Yukun; Tao, Ye; Hou, Likai; Jiang, Hongyuan

    2016-12-06

    We propose a simple, inexpensive microfluidic chip for large-scale trapping of single particles and cells based on induced-charge electroosmosis in a rotating electric field (ROT-ICEO). A central floating electrode array, was placed in the center of the gap between four driving electrodes with a quadrature configuration and used to immobilize single particles or cells. Cells were trapped on the electrode array by the interaction between ROT-ICEO flow and buoyancy flow. We experimentally optimized the efficiency of trapping single particles by investigating important parameters like particle or cell density and electric potential. Experimental and numerical results showed good agreement. The operation of the chip was verified by trapping single polystyrene (PS) microspheres with diameters of 5 and 20 μm and single yeast cells. The highest single particle occupancy of 73% was obtained using a floating electrode array with a diameter of 20 μm with an amplitude voltage of 5 V and frequency of 10 kHz for PS microbeads with a 5-μm diameter and density of 800 particles/μL. The ROT-ICEO flow could hold cells against fluid flows with a rate of less than 0.45 μL/min. This novel, simple, robust method to trap single cells has enormous potential in genetic and metabolic engineering.

  10. Polydimethylsiloxane (PDMS Sub-Micron Traps for Single-Cell Analysis of Bacteria

    Directory of Open Access Journals (Sweden)

    Dietrich Kohlheyer

    2013-10-01

    Full Text Available Microfluidics has become an essential tool in single-cell analysis assays for gaining more accurate insights into cell behavior. Various microfluidics methods have been introduced facilitating single-cell analysis of a broad range of cell types. However, the study of prokaryotic cells such as Escherichia coli and others still faces the challenge of achieving proper single-cell immobilization simply due to their small size and often fast growth rates. Recently, new approaches were presented to investigate bacteria growing in monolayers and single-cell tracks under environmental control. This allows for high-resolution time-lapse observation of cell proliferation, cell morphology and fluorescence-coupled bioreporters. Inside microcolonies, interactions between nearby cells are likely and may cause interference during perturbation studies. In this paper, we present a microfluidic device containing hundred sub-micron sized trapping barrier structures for single E. coli cells. Descendant cells are rapidly washed away as well as components secreted by growing cells. Experiments show excellent growth rates, indicating high cell viability. Analyses of elongation and growth rates as well as morphology were successfully performed. This device will find application in prokaryotic single-cell studies under constant environment where by-product interference is undesired.

  11. Single trap in liquid gated nanowire FETs: Capture time behavior as a function of current

    Science.gov (United States)

    Gasparyan, F.; Zadorozhnyi, I.; Vitusevich, S.

    2015-05-01

    The basic reason for enhanced electron capture time, τ c , of the oxide single trap dependence on drain current in the linear operation regime of p+-p-p+ silicon field effect transistors (FETs) was established, using a quantum-mechanical approach. A strong increase of τ c slope dependence on channel current is explained using quantization and tunneling concepts in terms of strong field dependence of the oxide layer single trap effective cross-section, which can be described by an amplification factor. Physical interpretation of this parameter deals with the amplification of the electron cross-section determined by both decreasing the critical field influence as a result of the minority carrier depletion and the potential barrier growth for electron capture. For the NW channel of n+-p-n+ FETs, the experimentally observed slope of τ c equals (-1). On the contrary, for the case of p+-p-p+ Si FETs in the accumulation regime, the experimentally observed slope of τ c equals (-2.8). It can be achieved when the amplification factor is about 12. Extraordinary high capture time slope values versus current are explained by the effective capture cross-section growth with decreasing electron concentration close to the nanowire-oxide interface.

  12. Nanowire assembly, e.g. for optical probes, comprises optically trapping high aspect ratio semiconductor nanowire with infrared single-beam optical trap and attaching nanowire to organic or inorganic structure

    OpenAIRE

    Pauzauskie, P.; Radenovic, A.; Trepagnier, E.; Liphardt, J.; Yang, P.

    2007-01-01

    NOVELTY - A nanowire assembly method comprises optically trapping a semiconductor nanowire with an infrared single-beam optical trap and attaching the nanowire to an organic or inorganic structure by laser fusing. The nanowire is further trapped in a fluid environment. The optical trap has a beam wavelength of 1064 nm. The nanowire has an aspect ratio greater than 100 and a diameter less than 100 (preferably less than 80) nm. The nanowire and the organic or inorganic structure form a heterost...

  13. A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs).

    Science.gov (United States)

    Lanigan, Peter M P; Ninkovic, Tanja; Chan, Karen; de Mello, Andrew J; Willison, Keith R; Klug, David R; Templer, Richard H; Neil, Mark A A; Ces, Oscar

    2009-04-21

    We recently introduced a novel platform based upon optically trapped lipid coated oil droplets (Smart Droplet Microtools-SDMs) that were able to form membrane tethers upon fusion with the plasma membrane of single cells. Material transfer from the plasma membrane to the droplet via the tether was seen to occur. Here we present a customised version of the SDM approach based upon detergent coated droplets deployed within a microfluidic format. These droplets are able to differentially solubilise the plasma membrane of single cells with spatial selectivity and without forming membrane tethers. The microfluidic format facilitates separation of the target cells from the bulk SDM population and from downstream analysis modules. Material transfer from the cell to the SDM was monitored by tracking membrane localized EGFP.

  14. Electrical trapping mechanism of single-microparticles in a pore sensor

    Directory of Open Access Journals (Sweden)

    Akihide Arima

    2016-11-01

    Full Text Available Nanopore sensing via resistive pulse technique are utilized as a potent tool to characterize physical and chemical property of single –molecules and –particles. In this article, we studied the influence of particle trajectory to the ionic conductance through a pore. We performed the optical/electrical simultaneous sensing of electrophoretic capture dynamics of single-particles at a pore using a microchannel/nanopore system. We detected ionic current drops synchronous to a fluorescently dyed particle being electrophoretically drawn and become immobilized at a pore in the optical imaging. We also identified anomalous trapping events wherein particles were captured at nanoscale pin-holes formed unintentionally in a SiN membrane that gave rise to relatively small current drops. This method is expected to be a useful platform for testing novel nanopore sensor design wherein current behaves in unpredictable manner.

  15. Experimental Verification of a Jarzynski-Related Information-Theoretic Equality by a Single Trapped Ion

    Science.gov (United States)

    Xiong, T. P.; Yan, L. L.; Zhou, F.; Rehan, K.; Liang, D. F.; Chen, L.; Yang, W. L.; Ma, Z. H.; Feng, M.; Vedral, V.

    2018-01-01

    Most nonequilibrium processes in thermodynamics are quantified only by inequalities; however, the Jarzynski relation presents a remarkably simple and general equality relating nonequilibrium quantities with the equilibrium free energy, and this equality holds in both the classical and quantum regimes. We report a single-spin test and confirmation of the Jarzynski relation in the quantum regime using a single ultracold Ca40 + ion trapped in a harmonic potential, based on a general information-theoretic equality for a temporal evolution of the system sandwiched between two projective measurements. By considering both initially pure and mixed states, respectively, we verify, in an exact and fundamental fashion, the nonequilibrium quantum thermodynamics relevant to the mutual information and Jarzynski equality.

  16. Hyperfine interaction study in RCoO3 (R = Gd and Tb) and HfO2 thin film oxides by perturbed angular correlation technique

    International Nuclear Information System (INIS)

    Cavalcante, Fabio Henrique de Moraes

    2009-01-01

    In the present work, the Perturbed Angular Gamma-Gamma Correlation technique (PAC) was used to measure the Electric Field Gradient (EFG) in two oxide systems: RCoO 3 (R = Gd, Tb) perovskite oxide and HfO 2 in order to study the behavior of the EFG as a function of temperature. Electric quadrupole hyperfine interaction measurements were carried out using 111 In → 111 Cd and 181 Hf → 181 Ta radioactive probe nuclei. The samples were prepared through a chemical route known as Sol-Gel technique and analyzed with x-ray diffraction. Both nuclei were introduced in to the perovskite samples during the chemical procedure. The thin films were provided by the Laboratory of Hyperfine Interactions at the University of 181 Hf Lisbon and the probe nuclei was activated by the irradiation of the thin film in the reactor of IPEN IEA-R1 at an appropriate time regarding the thickness of the film. The measurements were taken in the temperature range from 4 K to 1560 K. The results for the perovskite oxides measurements show a site-dependence of the EFG with probe-nuclei occupation and a temperature dependence of EFG that can be explained if spins transitions in Co are considered. The results of EFG measurements in the 25 nm thin film of HfO 2 show a second fraction besides that corresponding to bulk. (author)

  17. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition.

    Science.gov (United States)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-06-17

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

  18. The impact of charge compensated and uncompensated strontium defects on the stabilization of the ferroelectric phase in HfO2

    Science.gov (United States)

    Materlik, Robin; Künneth, Christopher; Mikolajick, Thomas; Kersch, Alfred

    2017-08-01

    Different dopants with their specific dopant concentration can be utilized to produce ferroelectric HfO2 thin films. In this work, it is explored for Sr in a comprehensive first-principles study. Density functional calculations reveal structure, formation energy, and total energy of the Sr related defects in HfO2. We found the charge compensated defect with an associated oxygen vacancy SrHfVO to strongly favour the non-ferroelectric, tetragonal P42/mnc phase energetically. In contrast, the uncompensated defect without oxygen vacancy SrHf favours the ferroelectric, orthorhombic Pca21 phase. According to the formation energy, the uncompensated defect can form easily under oxygen rich conditions in the production process. Low oxygen partial pressure existing over the lifetime promotes the loss of oxygen leading to VO, and thus, the destabilization of the ferroelectric, orthorhombic Pca21 phase is accompanied by an increase of the leakage current. This study attempts to fundamentally explain the stabilization of the ferroelectric, orthorhombic Pca21 phase by doping.

  19. Annealing effects on microstructure and laser-induced damage threshold of HfO2/SiO2 multilayer mirrors.

    Science.gov (United States)

    Jena, Shuvendu; Tokas, Raj Bahadur; Rao, K Divakar; Thakur, Sudhakar; Sahoo, Naba Kishore

    2016-08-01

    HfO2/SiO2 periodic multilayer high reflection mirrors have been prepared by a reactive electron-beam evaporation technique. The deposited mirrors were annealed in the temperature range from 300°C to 500°C. The effects of annealing on optical, microstructural, and laser-induced damage characteristics of the mirrors have been investigated. The high reflection band of the mirror shifts toward a shorter wavelength with increasing annealing temperature. As-deposited and annealed mirrors show polycrystalline structure with a monoclinic phase of HfO2. Crystalinity and grain size increase upon annealing. The laser-induced damage threshold (LIDT) has been assessed using a 532 nm pulsed laser at a pulse width of 7 ns. The LIDT value of the multilayer mirror increases from 44.1  J/cm2 to 77.6  J/cm2 with annealing up to 400°C. The improvement of LIDT with annealing is explained through oxygen vacancy defects as well as grain-size-dependent thermal conductivity. Finally, the observed laser damage morphology, such as circular scalds and ablated multilayer stacks with terrace structure, are analyzed.

  20. Integration of lead-free ferroelectric on HfO2/Si (100) for high performance non-volatile memory applications.

    Science.gov (United States)

    Kundu, Souvik; Maurya, Deepam; Clavel, Michael; Zhou, Yuan; Halder, Nripendra N; Hudait, Mantu K; Banerji, Pallab; Priya, Shashank

    2015-02-16

    We introduce a novel lead-free ferroelectric thin film (1-x)BaTiO3-xBa(Cu1/3Nb2/3)O3 (x = 0.025) (BT-BCN) integrated on to HfO2 buffered Si for non-volatile memory (NVM) applications. Piezoelectric force microscopy (PFM), x-ray diffraction, and high resolution transmission electron microscopy were employed to establish the ferroelectricity in BT-BCN thin films. PFM study reveals that the domains reversal occurs with 180° phase change by applying external voltage, demonstrating its effectiveness for NVM device applications. X-ray photoelectron microscopy was used to investigate the band alignments between atomic layer deposited HfO2 and pulsed laser deposited BT-BCN films. Programming and erasing operations were explained on the basis of band-alignments. The structure offers large memory window, low leakage current, and high and low capacitance values that were easily distinguishable even after ~10(6) s, indicating strong charge storage potential. This study explains a new approach towards the realization of ferroelectric based memory devices integrated on Si platform and also opens up a new possibility to embed the system within current complementary metal-oxide-semiconductor processing technology.

  1. Formation of hafnium sulfates with potassium and ammonium in the HfO2-H2SO4-Me2SO4-H2O systems

    International Nuclear Information System (INIS)

    Sozinova, Yu.P.; Motov, D.L.

    1978-01-01

    The formation of double hafnium sulfates with potassium and ammonium has been studied by the method of isothermal solubility at 60 deg C. In systems with potassium double hafnium salts have been obtained for the first time for which the ratio between the components is HfO 2 :H 2 SO 4 :K 2 SO 4 :H 2 O=2:2:1:3, 1:1:1:3, and 1:2:1:0.5. In the system with ammonia double salts have been obtained with the ratio between the components HfO 2 :H 2 SO 4 :(NH 4 )SO 4 :H 2 O=2:1:1:1, 2:3:1:-1, 1:2:1:0, and 1:2:2:2. In contrast to potassium salts, solubility of ammonium salts depends to a greater extent on the solution acidity, and to a lesser extent on the content of (NH 4 ) 2 SO 4 . The transition of simple sulfates into double in the system with (NH 4 ) 2 SO 4 takes place at a high content of (NH 4 ) 2 SO 4 in the solution (about 10 mass.%), whereas in the presence of potassium double salts are formed at about 3.5% of K 2 SO 4 in the solution

  2. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

    Science.gov (United States)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-06-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

  3. Resistive switching of Sn-doped In2O3/HfO2core-shell nanowire: geometry architecture engineering for nonvolatile memory.

    Science.gov (United States)

    Huang, Chi-Hsin; Chang, Wen-Chih; Huang, Jian-Shiou; Lin, Shih-Ming; Chueh, Yu-Lun

    2017-05-25

    Core-shell NWs offer an innovative approach to achieve nanoscale metal-insulator-metal (MIM) heterostructures along the wire radial direction, realizing three-dimensional geometry architecture rather than planar type thin film devices. This work demonstrated the tunable resistive switching characteristics of ITO/HfO 2 core-shell nanowires with controllable shell thicknesses by the atomic layer deposition (ALD) process for the first time. Compared to planar HfO 2 thin film device configuration, ITO/HfO 2 core-shell nanowire shows a prominent resistive memory behavior, including lower power consumption with a smaller SET voltage of ∼0.6 V and better switching voltage uniformity with variations (standard deviation(σ)/mean value (μ)) of V SET and V RESET from 0.38 to 0.14 and from 0.33 to 0.05 for ITO/HfO 2 core-shell nanowire and planar HfO 2 thin film, respectively. In addition, endurance over 10 3 cycles resulting from the local electric field enhancement can be achieved, which is attributed to geometry architecture engineering. The concept of geometry architecture engineering provides a promising strategy to modify the electric-field distribution for solving the non-uniformity issue of future RRAM.

  4. Trapped-ion anomalous diffusion coefficient on the basis of single mode saturation

    International Nuclear Information System (INIS)

    Koshi, Yuji; Hatayama, Akiyoshi; Ogasawara, Masatada.

    1982-03-01

    Expressions of the anomalous diffusion coefficient due to the dissipative trapped ion instability (DTII) are derived for the case with and without the effect of magnetic shear. Derivation is made by taking into account of the single mode saturation of the DTII previously obtained numerically. In the absence of the shear effect, the diffusion coefficient is proportional to #betta#sub(i)a 2 (#betta#sub(i) is the effective collision frequency of the trapped ions and a is the minor radius of a torus) and is much larger than the neoclassical ion heat conductivity. In the presence of the shear effect, the diffusion coefficient is much smaller than the Kadomtsev and Pogutse's value and is the same order of magnitude as the neoclassical ion heat conductivity. Dependences of the diffusion coefficient on the temperature and on the total particle number density are rather complicated due to the additional spectral cut-off, which is introduced to regularize the short wavelength modes in the numerical analysis. (author)

  5. Low-Threshold Light Amplification in Bifluorene Single Crystals: Role of the Trap States.

    Science.gov (United States)

    Baronas, Paulius; Kreiza, Gediminas; Adomėnas, Povilas; Adomėnienė, Ona; Kazlauskas, Karolis; Ribierre, Jean-Charles; Adachi, Chihaya; Juršėnas, Saulius

    2018-01-24

    Organic single crystals (SCs) expressing long-range periodicity and dense molecular packing are an attractive amplifying medium for the realization of electrically driven organic lasers. However, the amplified spontaneous emission (ASE) threshold (1-10 kW/cm 2 ) of SCs is still significantly higher compared to those of amorphous neat or doped films. The current study addresses this issue by investigating ASE properties of rigid bridging group-containing bifluorene SCs. Introduction of the rigid bridges in bifluorenes enables considerable reduction of nonradiative decay, which, along with enhanced fluorescence quantum yield (72-82%) and short excited state lifetime (1.5-2.5 ns), results in high radiative decay rates (∼0.5 × 10 9 s -1 ) of the SCs, making them highly attractive for lasing applications. The revealed ASE threshold of 400 W/cm 2 in acetylene-bridged bifluorene SCs is found to be among the lowest ever reported for organic crystals. Ultrafast transient absorption spectroscopy enabled one to disclose pronounced differences in the excited state dynamics of the studied SCs, pointing out the essential role of radiative traps in achieving a record low ASE threshold. Although the origin of the trap states was not completely unveiled, the obtained results clearly evidence that the crystal doping approach can be successful in achieving extremely low ASE thresholds required for electrically pumped organic laser.

  6. Detection of individual spin transitions of a single proton confined in a cryogenic Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Kracke, Holger

    2013-02-27

    The presented experiment for the determination of the magnetic moment of the proton is based on the measurement of the ratio of cyclotron frequency and Larmor frequency of a single proton confined in a cryogenic double-Penning trap. In the course of this thesis, the simultaneous non-destructive measurement of two of the three eigenfrequencies of the proton in thermal equilibrium with corresponding detection systems was demonstrated, which reduces the measurement time of the cyclotron frequency by a factor of two. Furthermore, this thesis presents the first detection of individual spin transitions of a single proton, which allows for the determination of the Larmor frequency. The continuous Stern-Gerlach effect is utilized to couple the magnetic moment to the axial mode of the trapped proton by means of a magnetic bottle. Thus, a spin flip causes a jump of the axial frequency, which can be measured non-destructively with highly-sensitive detection systems. However, not only the spin momentum is coupled to the axial motion but also the angular momentum. Thus, the main experimental challenge is the elimination of energy fluctuations in the radial modes in order to maintain spin flip resolution. Due to systematic studies on the stability of the axial frequency and a complete revision of the experimental setup, this goal was achieved. The spin state of the proton can be determined with very high fidelity for the very first time. Thus, this thesis represents an important step towards a high-precision determination of the magnetic moment of the proton.

  7. Single-Camera Trap Survey Designs Miss Detections: Impacts on Estimates of Occupancy and Community Metrics

    OpenAIRE

    Pease, Brent S.; Nielsen, Clayton K.; Holzmueller, Eric J.

    2016-01-01

    The use of camera traps as a tool for studying wildlife populations is commonplace. However, few have considered how the number of detections of wildlife differ depending upon the number of camera traps placed at cameras-sites, and how this impacts estimates of occupancy and community composition. During December 2015-February 2016, we deployed four camera traps per camera-site, separated into treatment groups of one, two, and four camera traps, in southern Illinois to compare whether estimat...

  8. Verifying Heisenberg's error-disturbance relation using a single trapped ion.

    Science.gov (United States)

    Zhou, Fei; Yan, Leilei; Gong, Shijie; Ma, Zhihao; He, Jiuzhou; Xiong, Taiping; Chen, Liang; Yang, Wanli; Feng, Mang; Vedral, Vlatko

    2016-10-01

    Heisenberg's uncertainty relations have played an essential role in quantum physics since its very beginning. The uncertainty relations in the modern quantum formalism have become a fundamental limitation on the joint measurements of general quantum mechanical observables, going much beyond the original discussion of the trade-off between knowing a particle's position and momentum. Recently, the uncertainty relations have generated a considerable amount of lively debate as a result of the new inequalities proposed as extensions of the original uncertainty relations. We report an experimental test of one of the new Heisenberg's uncertainty relations using a single 40 Ca + ion trapped in a harmonic potential. By performing unitary operations under carrier transitions, we verify the uncertainty relation proposed by Busch, Lahti, and Werner (BLW) based on a general error-trade-off relation for joint measurements on two compatible observables. The positive operator-valued measure, required by the compatible observables, is constructed by single-qubit operations, and the lower bound of the uncertainty, as observed, is satisfied in a state-independent manner. Our results provide the first evidence confirming the BLW-formulated uncertainty at a single-spin level and will stimulate broad interests in various fields associated with quantum mechanics.

  9. Verifying Heisenberg’s error-disturbance relation using a single trapped ion

    Science.gov (United States)

    Zhou, Fei; Yan, Leilei; Gong, Shijie; Ma, Zhihao; He, Jiuzhou; Xiong, Taiping; Chen, Liang; Yang, Wanli; Feng, Mang; Vedral, Vlatko

    2016-01-01

    Heisenberg’s uncertainty relations have played an essential role in quantum physics since its very beginning. The uncertainty relations in the modern quantum formalism have become a fundamental limitation on the joint measurements of general quantum mechanical observables, going much beyond the original discussion of the trade-off between knowing a particle’s position and momentum. Recently, the uncertainty relations have generated a considerable amount of lively debate as a result of the new inequalities proposed as extensions of the original uncertainty relations. We report an experimental test of one of the new Heisenberg’s uncertainty relations using a single 40Ca+ ion trapped in a harmonic potential. By performing unitary operations under carrier transitions, we verify the uncertainty relation proposed by Busch, Lahti, and Werner (BLW) based on a general error–trade-off relation for joint measurements on two compatible observables. The positive operator-valued measure, required by the compatible observables, is constructed by single-qubit operations, and the lower bound of the uncertainty, as observed, is satisfied in a state-independent manner. Our results provide the first evidence confirming the BLW-formulated uncertainty at a single-spin level and will stimulate broad interests in various fields associated with quantum mechanics. PMID:28861461

  10. Estimation of the spatial distribution of traps using space-charge-limited current measurements in an organic single crystal

    KAUST Repository

    Dacuña, Javier

    2012-09-06

    We used a mobility edge transport model and solved the drift-diffusion equation to characterize the space-charge-limited current of a rubrene single-crystal hole-only diode. The current-voltage characteristics suggest that current is injection-limited at high voltage when holes are injected from the bottom contact (reverse bias). In contrast, the low-voltage regime shows that the current is higher when holes are injected from the bottom contact as compared to hole injection from the top contact (forward bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact. Accounting for a localized trap distribution near the contact allows us to reproduce the temperature-dependent current-voltage characteristics in forward and reverse bias simultaneously, i.e., with a single set of model parameters. We estimated that the local trap distribution contains 1.19×1011 cm -2 states and decays as exp(-x/32.3nm) away from the semiconductor-contact interface. The local trap distribution near one contact mainly affects injection from the same contact, hence breaking the symmetry in the charge transport. The model also provides information of the band mobility, energy barrier at the contacts, and bulk trap distribution with their corresponding confidence intervals. © 2012 American Physical Society.

  11. A Comparison of Herpetofaunal Sampling Effectiveness of Pitfall, Single-ended, and Double-ended Funnel Traps Used with Drift Fences

    Science.gov (United States)

    Cathryn H. Greenberg; Daniel G. Neary; Larry D. Harris

    1994-01-01

    We assessed the relative effectiveness of pitfalls, single-ended, and double-ended funnel traps at 12 replicate sites in sand pine scrub using drift fence arrays. Pitfalls captured fewer species but yielded more individuals of many species and higher average species richness than funnel traps. Pitfalls and funnel traps exhibited differential capture bias probably due...

  12. A laser desorption-electron impact ionization ion trap mass spectrometer for real-time analysis of single atmospheric particles

    Science.gov (United States)

    Simpson, E. A.; Campuzano-Jost, P.; Hanna, S. J.; Robb, D. B.; Hepburn, J. H.; Blades, M. W.; Bertram, A. K.

    2009-04-01

    A novel aerosol ion trap mass spectrometer combining pulsed IR laser desorption with electron impact (EI) ionization for single particle studies is described. The strengths of this instrument include a two-step desorption and ionization process to minimize matrix effects; electron impact ionization, a universal and well-characterized ionization technique; vaporization and ionization inside the ion trap to improve sensitivity; and an ion trap mass spectrometer for MSn experiments. The instrument has been used for mass spectral identification of laboratory generated pure aerosols in the 600 nm-1.1 [mu]m geometric diameter range of a variety of aromatic and aliphatic compounds, as well as for tandem mass spectrometry studies (up to MS3) of single caffeine particles. We investigate the effect of various operational parameters on the mass spectrum and fragmentation patterns. The single particle detection limit of the instrument was found to be a 325 nm geometric diameter particle (8.7 × 107 molecules or 22 fg) for 2,4-dihydroxybenzoic acid. Lower single particle detection limits are predicted to be attainable by modifying the EI pulse. The use of laser desorption-electron impact (LD-EI) in an ion trap is a promising technique for determining the size and chemical composition of single aerosol particles in real time.

  13. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering. Organic semiconductors are emerging as viable materials for low-cost electronics and optoelectronics, such as organic photovoltaics (OPV), organic field effect transistors (OFETs), and organic light emitting diodes (OLEDs). Despite extensive studies spanning many decades, a clear understanding of the nature of charge carriers in organic semiconductors is still lacking. It is generally appreciated that polaron formation and charge carrier trapping are two hallmarks associated with electrical transport in organic semiconductors; the former results from the low dielectric constants and weak intermolecular electronic overlap while the latter can be attributed to the prevalence of structural disorder. These properties have lead to the common observation of low charge carrier mobilities, e.g., in the range of 10-5 - 10-3 cm2/Vs, particularly at low carrier concentrations. However, there is also growing evidence that charge carrier mobility approaching those of inorganic semiconductors and metals can exist in some crystalline organic semiconductors, such as pentacene, tetracene and rubrene. A particularly striking example is single crystal rubrene (Figure 1), in which hole mobilities well above 10 cm2/Vs have been observed in OFETs operating at room temperature. Temperature dependent transport and spectroscopic measurements both revealed evidence of free carriers in rubrene. Outstanding questions are: what are the structural features and physical properties that make rubrene so unique? How do we establish fundamental design principles for the development of other organic semiconductors of high mobility? These questions are critically important but not comprehensive, as the nature of

  14. Chemical characterization of single micro- and nano-particles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy

    Science.gov (United States)

    Fortes, Francisco J.; Fernández-Bravo, Angel; Javier Laserna, J.

    2014-10-01

    Spectral identification of individual micro- and nano-sized particles by the sequential intervention of optical catapulting, optical trapping and laser-induced breakdown spectroscopy is presented. The three techniques are used for different purposes. Optical catapulting (OC) serves to put the particulate material under inspection in aerosol form. Optical trapping (OT) permits the isolation and manipulation of individual particles from the aerosol, which are subsequently analyzed by laser-induced breakdown spectroscopy (LIBS). Once catapulted, the dynamics of particle trapping depends both on the laser beam characteristics (power and intensity gradient) and on the particle properties (size, mass and shape). Particles are stably trapped in air at atmospheric pressure and can be conveniently manipulated for a precise positioning for LIBS analysis. The spectra acquired from the individually trapped particles permit a straightforward identification of the material inspected. Variability of LIBS signal for the inspection of Ni microspheres was 30% relative standard deviation. OC-OT-LIBS permits the separation of particles in a heterogeneous mixture and the subsequent analysis of the isolated particle of interest. In order to evaluate the sensitivity of the approach, the number of absolute photons emitted by a single trapped particle was calculated. The limit of detection (LOD) for Al2O3 particles was calculated to be 200 attograms aluminium.

  15. Voltage and oxide thickness dependent tunneling current density and tunnel resistivity model: Application to high-k material HfO2 based MOS devices

    Science.gov (United States)

    Maity, N. P.; Maity, Reshmi; Baishya, Srimanta

    2017-11-01

    In this paper presents a straightforward efficient investigation of tunneling current density for ultra thin oxide layer based metal-oxide-semiconductor (MOS) devices to realization the gate current as a function of applied potential and oxide thickness. Solutions to the Schrödinger's wave equation are evolved for the different potential energy regions of the MOS device considering appropriate effective mass for each region. For finding approximate mathematical solutions to linear differential equations using spatially changeable coefficients the Wentzel-Kramers-Brillouin (WKB) approximation technique is considered. A p-substrate based n-channel MOS device has been analyzed consisting of SiO2 material as the oxide dielectric along with high-k material HfO2. The tunnel resistivity is correspondingly assessed employing this tunneling current density model. Synopsys Technology Computer Aided Design (TCAD) tool results are employed to validate the analytical model. Tremendous agreements among the results are observed.

  16. Study of Interface Charge Densities for ZrO2 and HfO2 Based Metal-Oxide-Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    N. P. Maity

    2014-01-01

    Full Text Available A thickness-dependent interfacial distribution of oxide charges for thin metal oxide semiconductor (MOS structures using high-k materials ZrO2 and HfO2 has been methodically investigated. The interface charge densities are analyzed using capacitance-voltage (C-V method and also conductance (G-V method. It indicates that, by reducing the effective oxide thickness (EOT, the interface charge densities (Dit increases linearly. For the same EOT, Dit has been found for the materials to be of the order of 1012 cm−2 eV−1 and it is originated to be in good agreement with published fabrication results at p-type doping level of 1×1017 cm−3. Numerical calculations and solutions are performed by MATLAB and device simulation is done by ATLAS.

  17. Carbon-coated ZnO mat passivation by atomic-layer-deposited HfO2as an anode material for lithium-ion batteries.

    Science.gov (United States)

    Jung, Mi-Hee

    2017-11-01

    ZnO has had little consideration as an anode material in lithium-ion batteries compared with other transition-metal oxides due to its inherent poor electrical conductivity and large volume expansion upon cycling and pulverization of ZnO-based electrodes. A logical design and facile synthesis of ZnO with well-controlled particle sizes and a specific morphology is essential to improving the performance of ZnO in lithium-ion batteries. In this paper, a simple approach is reported that uses a cation surfactant and a chelating agent to synthesize three-dimensional hierarchical nanostructured carbon-coated ZnO mats, in which the ZnO mats are composed of stacked individual ZnO nanowires and form well-defined nanoporous structures with high surface areas. In order to improve the performance of lithium-ion batteries, HfO 2 is deposited on the carbon-coated ZnO mat electrode via atomic layer deposition. Lithium-ion battery devices based on the carbon-coated ZnO mat passivation by atomic layer deposited HfO 2 exhibit an excellent initial discharge and charge capacities of 2684.01 and 963.21mAhg -1 , respectively, at a current density of 100mAg -1 in the voltage range of 0.01-3V. They also exhibit cycle stability after 125 cycles with a capacity of 740mAhg -1 and a remarkable rate capability. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. An efficient single-step scheme for manipulating quantum information of two trapped ions beyond the Lamb-Dicke limit

    International Nuclear Information System (INIS)

    Wei, L.F.; Nori, Franco

    2003-01-01

    Based on the exact conditional quantum dynamics for a two-ion system, we propose an efficient single-step scheme for coherently manipulating quantum information of two trapped cold ions by using a pair of synchronous laser pulses. Neither the auxiliary atomic level nor the Lamb-Dicke approximation are needed

  19. Strong coupling between a single nitrogen-vacancy spin and the rotational mode of diamonds levitating in an ion trap

    Science.gov (United States)

    Delord, T.; Nicolas, L.; Chassagneux, Y.; Hétet, G.

    2017-12-01

    A scheme for strong coupling between a single atomic spin and the rotational mode of levitating nanoparticles is proposed. The idea is based on spin readout of nitrogen-vacancy centers embedded in aspherical nanodiamonds levitating in an ion trap. We show that the asymmetry of the diamond induces a rotational confinement in the ion trap. Using a weak homogeneous magnetic field and a strong microwave driving we then demonstrate that the spin of the nitrogen-vacancy center can be strongly coupled to the rotational mode of the diamond.

  20. Transparent Flash Memory using Single Ta2O5 Layer for both Charge Trapping and Tunneling Dielectrics

    KAUST Repository

    Hota, Mrinal Kanti

    2017-06-08

    We report reproducible multibit transparent flash memory in which a single solution-derived Ta2O5 layer is used simultaneously as charge trapping and tunneling layer. This is different from conventional flash cells, where two different dielectric layers are typically used. Under optimized programming/erasing operations, the memory device shows excellent programmable memory characteristics with a maximum memory window of ~10 V. Moreover, the flash memory device shows a stable 2-bit memory performance, good reliability, including data retention for more than 104 sec and endurance performance for more than 100 cycles. The use of a common charge trapping and tunneling layer can simplify advanced flash memory fabrication.

  1. Energy-band alignment of (HfO2)x(Al2O3)1-x gate dielectrics deposited by atomic layer deposition on β-Ga2O3 (-201)

    Science.gov (United States)

    Yuan, Lei; Zhang, Hongpeng; Jia, Renxu; Guo, Lixin; Zhang, Yimen; Zhang, Yuming

    2018-03-01

    Energy band alignments between series band of Al-rich high-k materials (HfO2)x(Al2O3)1-x and β-Ga2O3 are investigated using X-Ray Photoelectron Spectroscopy (XPS). The results exhibit sufficient conduction band offsets (1.42-1.53 eV) in (HfO2)x(Al2O3)1-x/β-Ga2O3. In addition, it is also obtained that the value of Eg, △Ec, and △Ev for (HfO2)x(Al2O3)1-x/β-Ga2O3 change linearly with x, which can be expressed by 6.98-1.27x, 1.65-0.56x, and 0.48-0.70x, respectively. The higher dielectric constant and higher effective breakdown electric field of (HfO2)x(Al2O3)1-x compared with Al2O3, coupled with sufficient barrier height and lower gate leakage makes it a potential dielectric for high voltage β-Ga2O3 power MOSFET, and also provokes interest in further investigation of HfAlO/β-Ga2O3 interface properties.

  2. Nanomechanical investigation of ion implanted single crystals - Challenges, possibilities and pitfall traps related to nanoindentation

    Science.gov (United States)

    Kurpaska, Lukasz

    2017-10-01

    Nanoindentation technique have developed considerably over last thirty years. Nowadays, commercially available systems offer very precise measurement in nano- and microscale, environmental noise cancelling (or at least noise suppressing), in situ high temperature indentation in controlled atmosphere and vacuum conditions and different additional options, among them dedicated indentation is one of the most popular. Due to its high precision, and ability to measure mechanical properties from very small depths (tens of nm), this technique become quite popular in the nuclear society. It is known that ion implantation (to some extent) can simulate the influence of neutron flux. However, depth of the material damage is very limited resulting in creation of thin layer of modified material over unmodified bulk. Therefore, only very precise technique, offering possibility to control depth of the measurement can be used to study functional properties of the material. For this reason, nanoindentation technique seems to be a perfect tool to investigate mechanical properties of ion implanted specimens. However, conducting correct nanomechanical experiment and extracting valuable mechanical parameters is not an easy task. In this paper a discussion about the nanoindentation tests performed on ion irradiated YSZ single crystal is presented. The goal of this paper is to discuss possible traps when studying mechanical properties of such materials and thin coatings.

  3. ESR of phosphite radicals trapped in x-irradiated single crystals of o-phosphorylethanolamine

    Energy Technology Data Exchange (ETDEWEB)

    Fouse, G.W.; Bernhard, W.A.

    1979-02-15

    Two different species of phosphite radicals are trapped at 300 K in x-irradiated single crystals of o-phosphorylethanolamine, H/sub 3/N/sup +/CH/sub 2/CH/sub 2/OPO/sub 3/H/sup -/. One radical, resulting from cleavage of the P--OH bond, is characterized by eigenvalues of 2173 +- 16 MHz, 1733 +- 19 MHz, and 1713 +- 19 MHz, and 2.0065 +- 0.0004, 2.0045 +- 0.0004, and 2.0038 +- 0.0004, for the hyperfine coupling tensor and g tensor, respectively. The other radical, produced by cleavage of the P--OCH/sub 2/CH/sub 2/NH/sup +//sub 3/ bond, has corresponding eigenvalues of 2131 +- 15 MHz, 1710 +- 15 MHz, and 1689 +- 13 MHz, and 2.0054 +- 0.0004, 2.0052 +- 0.0004, and 2.0044 +- 0.0004. Both radical species are present in approximately equal concentrations in the crystal, suggesting that both the P--OH and P--OCH/sub 2/CH/sub 2/NH/sup +//sub 3/ bonds are equally susceptable to electron dissociative capture, the assumed mechanism for radical formation.

  4. Single carrier trapping and de-trapping in scaled silicon complementary metal-oxide-semiconductor field-effect transistors at low temperatures

    Science.gov (United States)

    Li, Zuo; Khaled Husain, Muhammad; Yoshimoto, Hiroyuki; Tani, Kazuki; Sasago, Yoshitaka; Hisamoto, Digh; Fletcher, Jonathan David; Kataoka, Masaya; Tsuchiya, Yoshishige; Saito, Shinichi

    2017-07-01

    The scaling of Silicon (Si) technology is approaching the physical limit, where various quantum effects such as direct tunnelling and quantum confinement are observed, even at room temperatures. We have measured standard complementary metal-oxide-semiconductor field-effect-transistors (CMOSFETs) with wide and short channels at low temperatures to observe single electron/hole characteristics due to local structural disturbances such as roughness and defects. In fact, we observed Coulomb blockades in sub-threshold regimes of both p-type and n-type Si CMOSFETs, showing the presence of quantum dots in the channels. The stability diagrams for the Coulomb blockade were explained by the potential minima due to poly-Si grains. We have also observed sharp current peaks at narrow bias windows at the edges of the Coulomb diamonds, showing resonant tunnelling of single carriers through charge traps.

  5. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    Science.gov (United States)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from

  6. Intensity-gradient induced Sisyphus cooling of a single atom in a localized hollow-beam trap

    International Nuclear Information System (INIS)

    Yin, Yaling; Xia, Yong; Ren, Ruimin; Du, Xiangli; Yin, Jianping

    2015-01-01

    In order to realize a convenient and efficient laser cooling of a single atom, we propose a simple and promising scheme to cool a single neutral atom in a blue-detuned localized hollow-beam trap by intensity-gradient induced Sisyphus cooling, and study the dynamic process of the intensity-gradient cooling of a single 87 Rb atom in the localized hollow-beam trap by using Monte-Carlo simulations. Our study shows that a single 87 Rb atom with a temperature of 120 μK from a magneto-optical trap (MOT) can be directly cooled to a final temperature of 4.64 μK in our proposed scheme. We also investigate the dependences of the cooling results on the laser detuning δ of the localized hollow-beam, the power RP 0 of the re-pumping laser beam, the sizes of both the localized hollow-beam and the re-pumping beam, and find that there is a pair of optimal cooling parameters (δ and RP 0 ) for an expected lowest temperature, and the cooling results strongly depend on the size of the re-pumping beam, but weakly depend on the size of the localized hollow-beam. Finally, we further study the cooling potential of our localized hollow-beam trap for the initial temperature of a single atom, and find that a single 87 Rb atom with an initial temperature of higher than 1 mK can also be cooled directly to about 6.6 μK. (paper)

  7. Soliton trapping and comb self-referencing in a single microresonator with χ(2) and χ(3) nonlinearities.

    Science.gov (United States)

    Xue, Xiaoxiao; Zheng, Xiaoping; Weiner, Andrew M

    2017-10-15

    A shaped doublet pump pulse is proposed for a simultaneous octave-spanning soliton Kerr frequency comb generation and second-harmonic conversion in a single microresonator. The temporal soliton in the cavity is trapped atop a doublet-pulse pedestal, resulting in a greatly expanded soliton region compared to that with a general Gaussian pulse pump. The possibility of single-microresonator comb self-referencing in a single silicon nitride microring that can facilitate compact on-chip optical clocks is demonstrated via simulation.

  8. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang [Columbia Univ., New York, NY (United States); Frisbie, Daniel [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  9. Ion/Ioff ratio enhancement and scalability of gate-all-around nanowire negative-capacitance FET with ferroelectric HfO2

    Science.gov (United States)

    Jang, Kyungmin; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro

    2017-10-01

    We have investigated the energy efficiency and scalability of ferroelectric HfO2 (FE:HfO2)-based negative-capacitance field-effect-transistor (NCFET) with gate-all-around (GAA) nanowire (NW) channel structure. Analytic simulation is conducted to characterize NW-NCFET by varying NW diameter and/or thickness of gate insulator as device structural parameters. Due to the negative-capacitance effect and GAA NW channel structure, NW-NCFET is found to have 5× higher Ion/Ioff ratio than classical NW-MOSFET and 2× higher than double-gate (DG) NCFET, which results in wider design window for high Ion/Ioff ratio. To analyze these obtained results from the viewpoint of the device scalability, we have considered constraints regarding very limited device structural spaces to fit by the gate insulator and NW channel for aggresively scaled gate length (Lg) and/or very tight NW pitch. NW-NCFET still has design point with very thinned gate insulator and/or narrowed NW. Therefore, FE:HfO2-based NW-NCFET is applicable to the aggressively scaled technology node of sub-10 nm Lg and to the very tight NW integration of sub-30 nm NW pitch for beyond 7 nm technology. From 2011 to 2014, he engaged in developing high-speed optical transceiver module as an alternative military service in Republic of Korea. His research interest includes the development of steep slope MOSFETs for high energy-efficient operation and ferroelectric HfO2-based semiconductor devices, and fabrication of nanostructured devices. He joined the IBM T.J. Watson Research Center, Yorktown Heights, NY, in 2010, where he worked on advanced CMOS technologies such as FinFET, nanowire FET, SiGe channel and III-V channel. He was also engaged in launching 14 nm SOI FinFET and RMG technology development. Since 2014, he has been an Associate Professor in Institute of Industrial Science, University of Tokyo, Tokyo, Japan, where he has been working on ultralow power transistor and memory technology. Dr. Kobayashi is a member of IEEE and the Japan Society of Applied Physics. Dr. Hiramoto is a fellow of Japan Society of Applied Physics and a member of IEEE and IEICE. He served as the General Chair of Silicon Nanoelectronics Workshop in 2003 and the Program Chair in 1997, 1999, and 2001. He was on Committee of IEDM from 2003 to 2009. He was the Program Chair of Symposium on VLSI Technology in 2013 and was the General Chair in 2015. He is the Program Chair of International Conference on Solid-State Devices and Materials (SSDM) in 2016.

  10. Vaporization and thermodynamics of ceramics based on the La2O3-Y2O3-HfO2system studied by the high temperature mass spectrometric method.

    Science.gov (United States)

    Kablov, Eugene N; Stolyarova, Valentina L; Vorozhtcov, Viktor A; Lopatin, Sergey I; Fabrichnaya, Olga В; Ilatovskaya, Mariia O; Karachevtsev, Fedor N

    2018-02-27

    Materials based on the La 2 O 3 -Y 2 O 3 -HfO 2 system are promising for the production of highly refractory ceramics, e.g., thermal barrier coatings and molds for casting of elements of gas turbine engines. When these ceramics are synthesized or used at high temperatures, selective vaporization of components may take place, resulting in changes in the physicochemical The verties of the materials. Consequently, development of materials based on the La 2 O 3 -Y 2 O 3 -HfO 2 system requires information on vaporization in this system as well as on its thermodynamics, without which prediction and modeling of their physicochemical properties are impossible. Vaporization processes and thermodynamic properties in the La 2 O 3 -Y 2 O 3 -HfO 2 system were studied by the high temperature Knudsen effusion mass spectrometric method using a MS-1301 mass spectrometer. Electron ionization of vapor species was employed at an ionization energy of 25 eV. The samples under study and reference substances were vaporized from a tungsten twin effusion cell. At 2337 K the main vapor species over samples in the La 2 O 3 -Y 2 O 3 -HfO 2 system were shown to be LaO, YO and O. The partial pressures of the vapor species mentioned and the La 2 O 3 and Y 2 O 3 activities in the samples were obtained at 2337 K. The Gibbs energies of mixing and excess Gibbs energies were found in the solid solution of this system. Vaporization of ceramics based on the La 2 O 3 -Y 2 O 3 -HfO 2 system at 2337 K led to selective transition of La 2 O 3 and Y 2 O 3 to the gaseous phase, with the La 2 O 3 vaporization rate being higher than that of Y 2 O 3 . The directions of composition changes of samples due to their vaporization at 2337 K were determined. In the solid solution of this system negative deviations from ideal behavior were found. The ability to estimate the excess Gibbs energies in the solid solution of the La 2 O 3 -Y 2 O 3 -HfO 2 system by the Kohler method was shown. This article is protected by copyright. All rights reserved.

  11. Single well push-pull CO2 injection experiment for evaluating in-situ residual trapping at Heletz, Israel

    Science.gov (United States)

    Niemi, Auli; Bensabat, Jacob; Fagerlund, Fritjof; Ronen, Rona; Goren, Yoni; Perez, Lily; Tsarfis, Igal; Joodaki, Saba; Yang, Zhibing; Liang, Tian; Sauter, Martin; Hassan, Jawad; Gouze, Philippe; Rasmusson, Kristina

    2017-04-01

    The Heletz sands is a depleted oil reservoir at 1.6 km depth with saline water at its edges. In the saline part of the reservoir a CO2 injection experiment site has been developed for the purpose of scientifically motivated injection experiments, especially in the context of EU FP7 projects MUSTANG and TRUST. This presentation describes the single-well CO2 injection experiment carried out in September 2016, with the objective of determining field scale values of key CO2 trapping mechanisms, the residual and dissolution trapping. The sequence consisted in creating a residually trapped CO2 zone as well as reference hydraulic and heater tests prior and after the establishment of the zone, in order to determine the in-situ residual trapping. Monitoring included down-hole pressure and temperature measurement, distributed temperature sensing along the well via an optical fiber (DTS), U-tube sampling and tracers. We here present the experimental sequence, the monitoring and sampling system, the key results as well as the first interpretations.

  12. Correlated motion of two atoms trapped in a single-mode cavity field

    International Nuclear Information System (INIS)

    Asboth, Janos K.; Domokos, Peter; Ritsch, Helmut

    2004-01-01

    We study the motion of two atoms trapped at distant positions in the field of a driven standing-wave high-Q optical resonator. Even without any direct atom-atom interaction the atoms are coupled through their position dependent influence on the intracavity field. For sufficiently good trapping and low cavity losses the atomic motion becomes significantly correlated and the two particles oscillate in their wells preferentially with a 90 deg. relative phase shift. The onset of correlations seriously limits cavity cooling efficiency, raising the achievable temperature to the Doppler limit. The physical origin of the correlation can be traced back to a cavity mediated crossfriction, i.e., a friction force on one particle depending on the velocity of the second particle. Choosing appropriate operating conditions allows for engineering these long range correlations. In addition this cross-friction effect can provide a basis for sympathetic cooling of distant trapped clouds

  13. Single-Camera Trap Survey Designs Miss Detections: Impacts on Estimates of Occupancy and Community Metrics.

    Science.gov (United States)

    Pease, Brent S; Nielsen, Clayton K; Holzmueller, Eric J

    2016-01-01

    The use of camera traps as a tool for studying wildlife populations is commonplace. However, few have considered how the number of detections of wildlife differ depending upon the number of camera traps placed at cameras-sites, and how this impacts estimates of occupancy and community composition. During December 2015-February 2016, we deployed four camera traps per camera-site, separated into treatment groups of one, two, and four camera traps, in southern Illinois to compare whether estimates of wildlife community metrics and occupancy probabilities differed among survey methods. The overall number of species detected per camera-site was greatest with the four-camera survey method (Pcamera survey method detected 1.25 additional species per camera-site than the one-camera survey method, and was the only survey method to completely detect the ground-dwelling silvicolous community. The four-camera survey method recorded individual species at 3.57 additional camera-sites (P = 0.003) and nearly doubled the number of camera-sites where white-tailed deer (Odocoileus virginianus) were detected compared to one- and two-camera survey methods. We also compared occupancy rates estimated by survey methods; as the number of cameras deployed per camera-site increased, occupancy estimates were closer to naïve estimates, detection probabilities increased, and standard errors of detection probabilities decreased. Additionally, each survey method resulted in differing top-ranked, species-specific occupancy models when habitat covariates were included. Underestimates of occurrence and misrepresented community metrics can have significant impacts on species of conservation concern, particularly in areas where habitat manipulation is likely. Having multiple camera traps per site revealed significant shortcomings with the common one-camera trap survey method. While we realize survey design is often constrained logistically, we suggest increasing effort to at least two camera traps

  14. On gate stack scalability of double-gate negative-capacitance FET with ferroelectric HfO2 for energy efficient sub-0.2 V operation

    Science.gov (United States)

    Jang, Kyungmin; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro

    2018-02-01

    We have investigated the gate stack scalability and energy efficiency of double-gate negative-capacitance FET (DGNCFET) with a CMOS-compatible ferroelectric HfO2 (FE:HfO2). Analytic model-based simulation is conducted to investigate the impacts of ferroelectric characteristic of FE:HfO2 and gate stack thickness on the I on/I off ratio of DGNCFET. DGNCFET has wider design window for the gate stack where higher I on/I off ratio can be achieved than DG classical MOSFET. Under a process-induced constraint with sub-10 nm gate length (L g), FE:HfO2-based DGNCFET still has a design point for high I on/I off ratio. With an optimized gate stack thickness for sub-10 nm L g, FE:HfO2-based DGNCFET has 2.5× higher energy efficiency than DG classical MOSFET even at ultralow operation voltage of sub-0.2 V.

  15. Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure

    Science.gov (United States)

    Liu, Jian; Yang, Huafeng; Ma, Zhongyuan; Chen, Kunji; Zhang, Xinxin; Huang, Xinfan; Oda, Shunri

    2018-01-01

    We reported an Al2O3/HfO2/Al2O3 sandwich structure resistive switching device with significant improvement of multilevel cell (MLC) operation capability, which exhibited that four stable and distinct resistance states (one low resistance state and three high resistance states) can be achieved by controlling the Reset stop voltages (V Reset-stop) during the Reset operation. The improved MLC operation capability can be attributed to the R HRS/R LRS ratio enhancement resulting from increasing of the series resistance and decreasing of leakage current by inserting two Al2O3 layers. For the high-speed switching applications, we studied the initial switching dynamics by using the measurements of the pulse width and amplitude dependence of Set and Reset switching characteristics. The results showed that under the same pulse amplitude conditions, the initial Set progress is faster than the initial Reset progress, which can be explained by thermal-assisted electric field induced rupture model in the oxygen vacancies conductive filament. Thus, proper combination of varying pulse amplitude and width can help us to optimize the device operation parameters. Moreover, the device demonstrated ultrafast program/erase speed (10 ns) and good pulse switching endurance (105 cycles) characteristics, which are suitable for high-density and fast-speed nonvolatile memory applications.

  16. Mechanochemical synthesis and electrical conductivity of nanocrystalline delta-Bi2O3 stabilized by HfO2 and ZrO2

    Directory of Open Access Journals (Sweden)

    LJILJANA KARANOVIĆ

    2009-12-01

    Full Text Available A powder mixture of a-Bi2O3 and HfO2, in the molar ratio 2:3, was mechanochemically treated in a planetary ball mill under air, using zirconium oxide vials and balls as the milling medium. After 50 h of milling, the mechanochemical reaction led to the formation of a nanocrystalline a-Bi2O3 phase (fluorite-type solid solution Bi0.87Hf0.59Zr0.63O3.61, with a crystallite size of 20 nm. The mechanochemical reaction started at a very beginning of milling accompanied by an accumulation of ZrO2 arising from the milling tools. The samples prepared after various milling times were characterized by X-ray powder diffraction and DSC analysis. The electrical properties of the as-milled and pressed Bi0.87Hf0.59Zr0.63O3.61powder were studied using impedance spectroscopy in the temperature range from 100 to 700 °C under air. The electrical conductivity was determined to be 9.43×10-6 and 0.080 S cm-1 for the temperatures of 300 and 700 °C, respectively.

  17. The effect of a Ta oxygen scavenger layer on HfO2-based resistive switching behavior: thermodynamic stability, electronic structure, and low-bias transport.

    Science.gov (United States)

    Zhong, Xiaoliang; Rungger, Ivan; Zapol, Peter; Nakamura, Hisao; Asai, Yoshihiro; Heinonen, Olle

    2016-03-14

    Reversible resistive switching between high-resistance and low-resistance states in metal-oxide-metal heterostructures makes them very interesting for applications in random access memories. While recent experimental work has shown that inserting a metallic "oxygen scavenger layer" between the positive electrode and oxide improves device performance, the fundamental understanding of how the scavenger layer modifies the heterostructure properties is lacking. We use density functional theory to calculate thermodynamic properties and conductance of TiN/HfO2/TiN heterostructures with and without a Ta scavenger layer. First, we show that Ta insertion lowers the formation energy of low-resistance states. Second, while the Ta scavenger layer reduces the Schottky barrier height in the high-resistance state by modifying the interface charge at the oxide-electrode interface, the heterostructure maintains a high resistance ratio between high- and low-resistance states. Finally, we show that the low-bias conductance of device on-states becomes much less sensitive to the spatial distribution of oxygen removed from the HfO2 in the presence of the Ta layer. By providing a fundamental understanding of the observed improvements with scavenger layers, we open a path to engineer interfaces with oxygen scavenger layers to control and enhance device performance. In turn, this may enable the realization of a non-volatile low-power memory technology with concomitant reduction in energy consumption by consumer electronics and offering significant benefits to society.

  18. Fabrication of a membrane filter with controlled pore shape and its application to cell separation and strong single cell trapping

    International Nuclear Information System (INIS)

    Choi, Dong-Hoon; Yoon, Gun-Wook; Yoon, Jun-Bo; Park, Jeong Won; Lee, Dae-Sik; Ihm, Chunhwa

    2015-01-01

    A porous membrane filter is one of the key components for sample preparation in lab-on-a-chip applications. However, most of the membranes reported to date have only been used for size-based separation since it is difficult to provide functionality to the membrane or improve the performance of the membrane. In this work, as a method to functionalize the membrane filter, controlling the shape of the membrane pores is suggested, and a convenient and mass-producible fabrication method is provided. With the proposed method, membrane filters with round, conical and funnel shape pores were successfully fabricated, and we demonstrated that the sidewall slope of the conical shape pores could be precisely controlled. To verify that the membrane filter can be functionalized by controlled pore shape, we investigated filtration and trapping performance of the membrane filter with conical shape pores. In a filtration test of 1000 cancer cells (MCF-7, a breast cancer cell line) spiked in phosphate buffered saline (PBS) solution, 77% of the total cancer cells were retained on the membrane, and each cell from among 99.3% of the retained cells was automatically isolated in a single conical pore during the filtration process. Thanks to its engineered pore shape, trapping ability of the membrane with conical pores is dramatically improved. Microparticles trapped in the conical pores maintain their locations without any losses even at a more than 30 times faster external flow rate com-pared with those mounted on conventional cylindrical pores. Also, 78% of the cells trapped in the conical pores withstand an external flow of over 300 μl min −1 whereas only 18% of the cells trapped in the cylindrical pores remain on the membrane after 120 μl min −1 of an external flow is applied. (paper)

  19. Shalow traps in YAlO.sub.3./sub. : Ce single crystal perovskites

    Czech Academy of Sciences Publication Activity Database

    Fasoli, M.; Fontana, I.; Moretti, F.; Vedda, A.; Nikl, Martin; Mihóková, Eva; Zorenko, Y.V.; Gorbenko, V.I.

    2008-01-01

    Roč. 55, č. 3 (2008), s. 1114-1117 ISSN 0018-9499 R&D Projects: GA ČR GA202/05/2471 Institutional research plan: CEZ:AV0Z10100521 Keywords : scintillator * Ce 3+ -doped YAlO 3 * shallow traps * complex oxide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.518, year: 2008

  20. Transparent Flash Memory Using Single Ta2O5Layer for Both Charge-Trapping and Tunneling Dielectrics.

    Science.gov (United States)

    Hota, Mrinal K; Alshammari, Fwzah H; Salama, Khaled N; Alshareef, Husam N

    2017-07-05

    We report reproducible multibit transparent flash memory in which a single solution-derived Ta 2 O 5 layer is used simultaneously as a charge-trapping layer and a tunneling layer. This is different from conventional flash memory cells where two different dielectric layers are typically used. Under optimized programming/erasing operations, the memory device shows excellent programmable memory characteristics with a maximum memory window of ∼10.7 V. Moreover, the flash memory device shows a stable 2-bit memory performance and good reliability, including data retention for more than 10 4 s and endurance performance for more than 100 cycles. The use of a common charge-trapping and tunneling layer can simplify the fabrication of advanced flash memories.

  1. Application of deposited by ALD HfO2 and Al2O3 layers in double-gate dielectric stacks for non-volatile semiconductor memory (NVSM) devices

    International Nuclear Information System (INIS)

    Mroczyński, Robert; Taube, Andrzej; Gierałtowska, Sylwia; Guziewicz, Elżbieta; Godlewski, Marek

    2012-01-01

    The feasibility of the application of double-gate dielectric stacks with fabricated by atomic layer deposited (ALD) HfO 2 and Al 2 O 3 layers in non-volatile semiconductor memory (NVSM) devices was investigated. Significant improvement in retention at elevated temperatures after the application of ALD high-k oxides was demonstrated. Superior memory window (extrapolated at 10 years) of flat-band voltage (U fb ) value of the order of 2.6 V and 4.55 V at 85 °C, for stack with HfO 2 and Al 2 O 3 , respectively, was obtained. Moreover, the analysis of conduction mechanisms in the investigated stacks under negative voltage revealed F-N tunneling in the range of high values of electric field intensity and lowering of barrier height with increasing temperature.

  2. Comparative study of the breakdown transients of thin Al2O3 and HfO2 films in MIM structures and their connection with the thermal properties of materials

    Science.gov (United States)

    Pazos, S.; Aguirre, F.; Miranda, E.; Lombardo, S.; Palumbo, F.

    2017-03-01

    In this work, the breakdown transients of A l 2 O 3 - and HfO2-based metal-insulator-metal (MIM) stacks with the same oxide thickness and identical metal electrodes were compared. Their connection with the thermal properties of the materials was investigated using alternative experimental setups. The differences and similarities between these transients in the fast and progressive breakdown regimes were assessed. According to the obtained results, A l 2 O 3 exhibits longer breakdown transients than HfO2 and requires a higher voltage to initiate a very fast current runaway across the dielectric film. This distinctive behavior is ascribed to the higher thermal conductivity of A l 2 O 3 . Overall results link the breakdown process to the thermal properties of the oxides under test rather than to dissipation effects occurring at the metal electrodes.

  3. On device design for steep-slope negative-capacitance field-effect-transistor operating at sub-0.2V supply voltage with ferroelectric HfO2 thin film

    Directory of Open Access Journals (Sweden)

    Masaharu Kobayashi

    2016-02-01

    Full Text Available Internet-of-Things (IoT technologies require a new energy-efficient transistor which operates at ultralow voltage and ultralow power for sensor node devices employing energy-harvesting techniques as power supply. In this paper, a practical device design guideline for low voltage operation of steep-slope negative-capacitance field-effect-transistors (NCFETs operating at sub-0.2V supply voltage is investigated regarding operation speed, material requirement and energy efficiency in the case of ferroelectric HfO2 gate insulator, which is the material fully compatible to Complementary Metal-Oxide-Semiconductor (CMOS process technologies. A physics-based numerical simulator was built to design NCFETs with the use of experimental HfO2 material parameters by modeling the ferroelectric gate insulator and FET channel simultaneously. The simulator revealed that NCFETs with ferroelectric HfO2 gate insulator enable hysteresis-free operation by setting appropriate operation point with a few nm thick gate insulator. It also revealed that, if the finite response time of spontaneous polarization of the ferroelectric gate insulator is 10-100psec, 1-10MHz operation speed can be achieved with negligible hysteresis. Finally, by optimizing material parameters and tuning negative capacitance, 2.5 times higher energy efficiency can be achieved by NCFET than by conventional MOSFETs. Thus, NCFET is expected to be a new CMOS technology platform for ultralow power IoT.

  4. Subthreshold swing improvement in MoS2transistors by the negative-capacitance effect in a ferroelectric Al-doped-HfO2/HfO2gate dielectric stack.

    Science.gov (United States)

    Nourbakhsh, Amirhasan; Zubair, Ahmad; Joglekar, Sameer; Dresselhaus, Mildred; Palacios, Tomás

    2017-05-11

    Obtaining a subthreshold swing (SS) below the thermionic limit of 60 mV dec -1 by exploiting the negative-capacitance (NC) effect in ferroelectric (FE) materials is a novel effective technique to allow the reduction of the supply voltage and power consumption in field effect transistors (FETs). At the same time, two-dimensional layered semiconductors, such as molybdenum disulfide (MoS 2 ), have been shown to be promising candidates to replace silicon MOSFETs in sub-5 nm-channel technology nodes. In this paper, we demonstrate NC MoS 2 FETs by incorporating a ferroelectric Al-doped HfO 2 (Al : HfO 2 ), a technologically compatible material, in the FET gate stack. Al : HfO 2 thin films were deposited on Si wafers by atomic layer deposition. Voltage amplification up to 1.25 times was observed in a FE bilayer stack of Al : HfO 2 /HfO 2 with a Ni metallic intermediate layer. The minimum SS (SS min ) of the NC-MoS 2 FET built on the FE bilayer improved to 57 mV dec -1 at room temperature, compared with SS min = 67 mV dec -1 for the MoS 2 FET with only HfO 2 as a gate dielectric.

  5. Effect of SiO2 protective layer on the femtosecond laser-induced damage of HfO2/SiO2 multilayer high-reflective coatings

    International Nuclear Information System (INIS)

    Yuan Lei; Zhao Yuanan; Wang Congjuan; He Hongbo; Fan Zhengxiu; Shao Jianda

    2007-01-01

    Two kinds of HfO 2 /SiO 2 800 nm high-reflective (HR) coatings, with and without SiO 2 protective layer were deposited by electron beam evaporation. Laser-induced damage thresholds (LIDT) were measured for all samples with femtosecond laser pulses. The surface morphologies and the depth information of all samples were observed by Leica optical microscopy and WYKO surface profiler, respectively. It is found that SiO 2 protective layer had no positive effect on improving the LIDT of HR coating. A simple model including the conduction band electron production via multiphoton ionization and impact ionization is used to explain this phenomenon. Theoretical calculations show that the damage occurs first in the SiO 2 protective layer for HfO 2 /SiO 2 HR coating with SiO 2 protective layer. The relation of LIDT for two kinds of HfO 2 /SiO 2 HR coatings in calculation agrees with the experiment result

  6. Effects of layer sequence and postdeposition annealing temperature on performance of La2O3 and HfO2 multilayer composite oxides on In0.53Ga0.47As for MOS capacitor application

    Science.gov (United States)

    Wu, Wen-Hao; Lin, Yueh-Chin; Chuang, Ting-Wei; Chen, Yu-Chen; Hou, Tzu-Ching; Yao, Jing-Neng; Chang, Po-Chun; Iwai, Hiroshi; Kakushima, Kuniyuki; Chang, Edward Yi

    2014-03-01

    In this paper, we report on high-k composite oxides that are formed by depositing multiple layers of HfO2 and La2O3 on In0.53Ga0.47As for MOS device application. Both multilayer HfO2 (0.8 nm)/La2O3 (0.8 nm)/In0.53Ga0.47As and La2O3 (0.8 nm)/HfO2 (0.8 nm)/In0.53Ga0.47As MOS structures were investigated. The effects of oxide thickness and postdeposition annealing (PDA) temperature on the interface properties of the composite oxide MOS capacitors were studied. It was found that a low CET of 1.41 nm at 1 kHz was achieved using three-layer composite oxides. On the other hand, a small frequency dispersion of 2.8% and an excellent Dit of 7.0 × 1011 cm-2·eV-1 can be achieved using multiple layers of La2O3 (0.8 nm) and HfO2 (0.8 nm) on the In0.53Ga0.47As MOS capacitor with optimum thermal treatment and layer thickness.

  7. Thermal Conductivity and Stability of HfO2-Y2O3 and La2Zr2O7 Evaluated for 1650 Deg C Thermal/Environmental Barrier Coating Applications

    Science.gov (United States)

    Zhu, Dong-Ming; Bansal, Narottam P.; Miller, Robert A.

    2003-01-01

    HfO2-Y2O3 and La2Zr2O7 are candidate thermal and environmental barrier coating (T/EBC) materials for gas turbine ceramic matrix composite (CMC) combustor applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature stability of hot-pressed and plasma sprayed specimens with representative partially-stabilized and fully-cubic HfO2-Y2O3 compositions and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasmasprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC hexoloy or SiC/SiC CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermal/environmental barrier coating applications are also discussed.

  8. Immobilization mechanisms of deoxyribonucleic acid (DNA) to hafnium dioxide (HfO2) surfaces for biosensing applications.

    Science.gov (United States)

    Fahrenkopf, Nicholas M; Rice, P Zachary; Bergkvist, Magnus; Deskins, N Aaron; Cady, Nathaniel C

    2012-10-24

    Immobilization of biomolecular probes to the sensing substrate is a critical step for biosensor fabrication. In this work we investigated the phosphate-dependent, oriented immobilization of DNA to hafnium dioxide surfaces for biosensing applications. Phosphate-dependent immobilization was confirmed on a wide range of hafnium oxide surfaces; however, a second interaction mode was observed on monoclinic hafnium dioxide. On the basis of previous materials studies on these films, DNA immobilization studies, and density functional theory (DFT) modeling, we propose that this secondary interaction is between the exposed nucleobases of single stranded DNA and the surface. The lattice spacing of monoclinic hafnium dioxide matches the base-to-base pitch of DNA. Monoclinic hafnium dioxide is advantageous for nanoelectronic applications, yet because of this secondary DNA immobilization mechanism, it could impede DNA hybridization or cause nonspecific surface intereactions. Nonetheless, DNA immobilization on polycrystalline and amorphous hafnium dioxide is predominately mediated by the terminal phosphate in an oriented manner which is desirable for biosensing applications.

  9. Physical and chemical study of single aerosol particles using optical trapping cavity ringdown spectroscopy

    Science.gov (United States)

    2016-08-30

    both physical and chemical properties as well as their evolving dynamics. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of...photophoretic trap for continuous sampling and analysis, Applied Physics Letters, (03 2014): 113507. doi: TOTAL: 4 Received Paper TOTAL: Number of...Particles Optical manipulation of microscopic objects using light is an emerging tool used in diverse research fields such as physics , chemistry

  10. Imaging Heterogeneously Distributed Photo-Active Traps in Perovskite Single Crystals.

    Science.gov (United States)

    Yuan, Haifeng; Debroye, Elke; Bladt, Eva; Lu, Gang; Keshavarz, Masoumeh; Janssen, Kris P F; Roeffaers, Maarten B J; Bals, Sara; Sargent, Edward H; Hofkens, Johan

    2018-03-01

    Organic-inorganic halide perovskites (OIHPs) have demonstrated outstanding energy conversion efficiency in solar cells and light-emitting devices. In spite of intensive developments in both materials and devices, electronic traps and defects that significantly affect their device properties remain under-investigated. Particularly, it remains challenging to identify and to resolve traps individually at the nanoscopic scale. Here, photo-active traps (PATs) are mapped over OIHP nanocrystal morphology of different crystallinity by means of correlative optical differential super-resolution localization microscopy (Δ-SRLM) and electron microscopy. Stochastic and monolithic photoluminescence intermittency due to individual PATs is observed on monocrystalline and polycrystalline OIHP nanocrystals. Δ-SRLM reveals a heterogeneous PAT distribution across nanocrystals and determines the PAT density to be 1.3 × 10 14 and 8 × 10 13 cm -3 for polycrystalline and for monocrystalline nanocrystals, respectively. The higher PAT density in polycrystalline nanocrystals is likely related to an increased defect density. Moreover, monocrystalline nanocrystals that are prepared in an oxygen- and moisture-free environment show a similar PAT density as that prepared at ambient conditions, excluding oxygen or moisture as chief causes of PATs. Hence, it is concluded that the PATs come from inherent structural defects in the material, which suggests that the PAT density can be reduced by improving crystalline quality of the material. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Single-Molecule Propyne Trap: Highly Efficient Removal of Propyne from Propylene with Anion-Pillared Ultramicroporous Materials.

    Science.gov (United States)

    Yang, Lifeng; Cui, Xili; Yang, Qiwei; Qian, Siheng; Wu, Hui; Bao, Zongbi; Zhang, Zhiguo; Ren, Qilong; Zhou, Wei; Chen, Banglin; Xing, Huabin

    2018-03-01

    Propyne/propylene (C 3 H 4 /C 3 H 6 ) separation is a critical process for the production of polymer-grade C 3 H 6 . However, optimization of the structure of porous materials for the highly efficient removal of C 3 H 4 from C 3 H 6 remains challenging due to their similar structures and ultralow C 3 H 4 concentration. Here, it is first reported that hybrid ultramicroporous materials with pillared inorganic anions (SiF 6 2- = SIFSIX, NbOF 5 2- = NbOFFIVE) can serve as highly selective C 3 H 4 traps for the removal of trace C 3 H 4 from C 3 H 6 . Especially, it is revealed that the pyrazine-based ultramicroporous material with square grid structure for which the pore shape and functional site disposition can be varied in 0.1-0.5 Å scale to match both the shape and interacting sites of guest molecule is an interesting single-molecule trap for C 3 H 4 molecule. The pyrazine-based single-molecule trap enables extremely high C 3 H 4 uptake under ultralow concentration (2.65 mmol g -1 at 3000 ppm, one C 3 H 4 per unit cell) and record selectivity over C 3 H 6 at 298 K (>250). The single-molecule binding mode for C 3 H 4 within ultramicroporous material is validated by X-ray diffraction experiments and modeling studies. The breakthrough experiments confirm that anion-pillared ultramicroporous materials set new benchmarks for the removal of ultralow concentration C 3 H 4 (1000 ppm on SIFSIX-3-Ni, and 10 000 ppm on SIFSIX-2-Cu-i) from C 3 H 6 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap

    Science.gov (United States)

    Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.

  13. Multifunctional role of rare earth doping in optical materials: nonaqueous sol-gel synthesis of stabilized cubic HfO2 luminescent nanoparticles.

    Science.gov (United States)

    Lauria, Alessandro; Villa, Irene; Fasoli, Mauro; Niederberger, Markus; Vedda, Anna

    2013-08-27

    In this work a strategy for the control of structure and optical properties of inorganic luminescent oxide-based nanoparticles is presented. The nonaqueous sol-gel route is found to be suitable for the synthesis of hafnia nanoparticles and their doping with rare earths (RE) ions, which gives rise to their luminescence either under UV and X-ray irradiation. Moreover, we have revealed the capability of the technique to achieve the low-temperature stabilization of the cubic phase through the effective incorporation of trivalent RE ions into the crystal lattice. Particular attention has been paid to doping with europium, causing a red luminescence, and with lutetium. Structure and morphology characterization by XRD, TEM/SEM, elemental analysis, and Raman/IR vibrational spectroscopies have confirmed the occurrence of the HfO2 cubic polymorph for dopant concentrations exceeding a threshold value of nominal 5 mol %, for either Lu(3+) or Eu(3+). The optical properties of the nanopowders were investigated by room temperature radio- and photoluminescence experiments. Specific features of Eu(3+) luminescence sensitive to the local crystal field were employed for probing the lattice modifications at the atomic scale. Moreover, we detected an intrinsic blue emission, allowing for a luminescence color switch depending on excitation wavelength in the UV region. We also demonstrate the possibility of changing the emission spectrum by multiple RE doping in minor concentration, while deputing the cubic phase stabilization to a larger concentration of optically inactive Lu(3+) ions. The peculiar properties arising from the solvothermal nonaqueous synthesis here used are described through the comparison with thermally treated powders.

  14. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  15. Controlled shrinkage and re-expansion of a single aqueous droplet inside an optical vortex trap.

    Science.gov (United States)

    Jeffries, Gavin D M; Kuo, Jason S; Chiu, Daniel T

    2007-03-22

    This paper describes the shrinkage and re-expansion of individual femtoliter-volume aqueous droplets that were suspended in an organic medium and held in an optical vortex trap. To elucidate the mechanism behind this phenomenon, we constructed a heat- and mass-transfer model and carried out experimental verifications of our model. From these studies, we conclude that an evaporation mechanism sufficiently describes the shrinkage of aqueous droplets held in a vortex trap, whereas a mechanism based on the supersaturation of the organic phase by water that surrounds the droplet adequately explains the re-expansion of the shrunk droplet. The proposed mechanisms correlated well with experimental observations using different organic media, when H2O was replaced with D2O and when an optical tweezer was used to induce droplet shrinkage rather than an optical vortex trap. For H2O droplets, the temperature rise within the droplet during shrinkage was on the order of 1 K or less, owing to the rapid thermal conduction of heat away from the droplet at the microscale and the sharp increase in solubility for water by the organic phase with slight elevations in temperature. Because most chemical species confined to droplets can be made impenetrable to the aqueous/organic interface, a change in the volume of aqueous droplets translates into a change in concentration of the dissolved species within the droplets. Therefore, this phenomenon should find use in the study of fundamental chemical processes that are sensitive to concentration, such as macromolecular crowding and protein nucleation and crystallization.

  16. Simulation-assisted design of microfluidic sample traps for optimal trapping and culture of non-adherent single cells, tissues, and spheroids.

    Science.gov (United States)

    Rousset, Nassim; Monet, Frédéric; Gervais, Thomas

    2017-03-21

    This work focuses on modelling design and operation of "microfluidic sample traps" (MSTs). MSTs regroup a widely used class of microdevices that incorporate wells, recesses or chambers adjacent to a channel to individually trap, culture and/or release submicroliter 3D tissue samples ranging from simple cell aggregates and spheroids, to ex vivo tissue samples and other submillimetre-scale tissue models. Numerous MST designs employing various trapping mechanisms have been proposed in the literature, spurring the development of 3D tissue models for drug discovery and personalized medicine. Yet, there lacks a general framework to optimize trapping stability, trapping time, shear stress, and sample metabolism. Herein, the effects of hydrodynamics and diffusion-reaction on tissue viability and device operation are investigated using analytical and finite element methods with systematic parametric sweeps over independent design variables chosen to correspond to the four design degrees of freedom. Combining different results, we show that, for a spherical tissue of diameter d < 500 μm, the simplest, closest to optimal trap shape is a cube of dimensions w equal to twice the tissue diameter: w = 2d. Furthermore, to sustain tissues without perfusion, available medium volume per trap needs to be 100× the tissue volume to ensure optimal metabolism for at least 24 hours.

  17. Versatile Gap Mode Plasmon under ATR Geometry towards Single Molecule Raman, Laser Trapping and Photocatalytic Reactions.

    Science.gov (United States)

    Futamata, Masayuki; Akai, Keitaro; Iida, Chiaki; Akiba, Natsumi

    2017-01-01

    We have investigated various aspects of a gap mode plasmon to establish it as an analytical tool. First, markedly large (10 7 - 10 9 ) enhancement factors for the Raman scattering intensity from a thiophenol (TP) monolayer sandwiched by Ag films on a prism and silver nanoparticles (AgNPs) were obtained under attenuated total reflection (ATR) geometry. Second, AgNPs with a radius of ∼20 nm were optically trapped and immobilized on TP-covered Ag films under a gap mode resonance with extremely weak laser power density of ∼1 μW/μm 2 at 532 nm. The observed optical trapping and immobilization were theoretically rationalized using a dipole-dipole coupling and van der Waals interaction between AgNPs and Ag films. Third, p-alkyl TP molecules such as p-methyl TP, p-ethyl TP, p-isopropyl TP, and p-tertiary butyl TP were photocatalytically oxidized into p-carboxyl TP, whereas o- and m-methyl TP did not show such reactions.

  18. Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device.

    Science.gov (United States)

    Han, Chao; Zhang, Qiufang; Ma, Rui; Xie, Lan; Qiu, Tian; Wang, Lei; Mitchelson, Keith; Wang, Jundong; Huang, Guoliang; Qiao, Jie; Cheng, Jing

    2010-11-07

    In vitro fertilization (IVF) therapy is an important treatment for human infertility. However, the methods for clinical IVF have only changed slightly over decades: culture medium is held in oil-covered drops in Petri dishes and manipulation occurs by manual pipetting. Here we report a novel microwell-structured microfluidic device that integrates single oocyte trapping, fertilization and subsequent embryo culture. A microwell array was used to capture and hold individual oocytes during the flow-through process of oocyte and sperm loading, medium substitution and debris cleaning. Different microwell depths were compared by computational modeling and flow washing experiments for their effectiveness in oocyte trapping and debris removal. Fertilization was achieved in the microfluidic devices with similar fertilization rates to standard oil-covered drops in Petri dishes. Embryos could be cultured to blastocyst stages in our devices with developmental status individually monitored and tracked. The results suggest that the microfluidic device may bring several advantages to IVF practices by simplifying oocyte handling and manipulation, allowing rapid and convenient medium changing, and enabling automated tracking of any single embryo development.

  19. Single Particle Differentiation through 2D Optical Fiber Trapping and Back-Scattered Signal Statistical Analysis: An Exploratory Approach.

    Science.gov (United States)

    Paiva, Joana S; Ribeiro, Rita S R; Cunha, João P S; Rosa, Carla C; Jorge, Pedro A S

    2018-02-27

    Recent trends on microbiology point out the urge to develop optical micro-tools with multifunctionalities such as simultaneous manipulation and sensing. Considering that miniaturization has been recognized as one of the most important paradigms of emerging sensing biotechnologies, optical fiber tools, including Optical Fiber Tweezers (OFTs), are suitable candidates for developing multifunctional small sensors for Medicine and Biology. OFTs are flexible and versatile optotools based on fibers with one extremity patterned to form a micro-lens. These are able to focus laser beams and exert forces onto microparticles strong enough (piconewtons) to trap and manipulate them. In this paper, through an exploratory analysis of a 45 features set, including time and frequency-domain parameters of the back-scattered signal of particles trapped by a polymeric lens, we created a novel single feature able to differentiate synthetic particles (PMMA and Polystyrene) from living yeasts cells. This single statistical feature can be useful for the development of label-free hybrid optical fiber sensors with applications in infectious diseases detection or cells sorting. It can also contribute, by revealing the most significant information that can be extracted from the scattered signal, to the development of a simpler method for particles characterization (in terms of composition, heterogeneity degree) than existent technologies.

  20. Intra-Species Bacterial Quorum Sensing Studied at Single Cell Level in a Double Droplet Trapping System

    Directory of Open Access Journals (Sweden)

    Wilhelm T. S. Huck

    2013-05-01

    Full Text Available In this paper, we investigated the intra-species bacterial quorum sensing at the single cell level using a double droplet trapping system. Escherichia coli transformed to express the quorum sensing receptor protein, LasR, were encapsulated in microdroplets that were positioned adjacent to microdroplets containing the autoinducer, N-(3-oxododecanoyl-L-homoserine lactone (OdDHL. Functional activation of the LasR protein by diffusion of the OdDHL across the droplet interface was measured by monitoring the expression of green fluorescent protein (GFP from a LasR-dependent promoter. A threshold concentration of OdDHL was found to induce production of quorum-sensing associated GFP by E. coli. Additionally, we demonstrated that LasR-dependent activation of GFP expression was also initiated when the adjacent droplets contained single E. coli transformed with the OdDHL synthase gene, LasI, representing a simple quorum sensing circuit between two droplets.

  1. Development of an Interaction Assay between Single-Stranded Nucleic Acids Trapped with Silica Particles and Fluorescent Compounds

    Directory of Open Access Journals (Sweden)

    R. Maeda

    2012-09-01

    Full Text Available Biopolymers are easily denatured by heating, a change in pH or chemical substances when they are immobilized on a substrate. To prevent denaturation of biopolymers, we developed a method to trap a polynucleotide on a substrate by hydrogen bonding using silica particles with surfaces modified by aminoalkyl chains ([A-AM silane]/SiO2. [A-AM silane]/SiO2 was synthesized by silane coupling reaction of N-2-(aminoethyl-3-aminopropyltrimethoxysilane (A-AM silane with SiO2 particles with a diameter of 5 μm at 100 °C for 20 min. The surface chemical structure of [A-AM silane]/SiO2 was characterized by Fourier transform infrared spectroscopy and molecular orbital calculations. The surface of the silica particles was modified with A-AM silane and primary amine groups were formed. [A-AM silane]/SiO2 was trapped with single-stranded nucleic acids [(Poly-X; X = A (adenine, G (guanine and C (cytosine] in PBS solution at 37 °C for 1 h. The single-stranded nucleic acids were trapped on the surface of the [A-AM silane]/SiO2 by hydrogen bonding to form conjugated materials. The resulting complexes were further conjugated by derivatives of acridine orange (AO as fluorescent labels under the same conditions to form [AO:Poly-X:A-AM silane]/SiO2 complexes. Changes in the fluorescence intensity of these complexes originating from interactions between the single-stranded nucleic acid and aromatic compounds were also evaluated. The change in intensity displayed the order [AO: Poly-G: A-AM silane]/SiO2 > [AO:Poly-A:A-AM silane]/SiO2 >> [AO:Poly-C:A-AM silane]/SiO2. This suggests that the single-stranded nucleic acids conjugated with aminoalkyl chains on the surfaces of SiO2 particles and the change in fluorescence intensity reflected the molecular interaction between AO and the nucleic-acid base in a polynucleotide.

  2. Direct observation of a single proton in a Penning trap. Towards a direct measurement of the proton g-factor

    Energy Technology Data Exchange (ETDEWEB)

    Kreim, Susanne Waltraud

    2009-08-25

    This PhD thesis presents experiments performed on a single proton stored in a Penning trap. The eigenmotion of an isolated, free proton could be detected electronically via a coupling to a resonance circuit. This represents a non-destructive measurement, i.e. the particle is not lost during the measurement. The free cyclotron frequency emerging from the measured eigenfrequencies is one of the two frequencies required for the determination of the magnetic moment. This enables a direct determination of the g-factor contrary to already existing works. Design, developing, and commissioning of the experimental setup have been accomplished within the scope of this work leading to a measuring accuracy of 10{sup -7}. The technical challenges for the determination of the second frequency (the Larmor frequency) arising from the smallness of the magnetic moment were mastered. Since the spin state required for this measurement is an internal degree of freedom, it can only be accessed through a coupling of the magnetic moment to the eigenmotion. A novel, hybrid penning trap is presented in this work, which imprints the spin information onto the eigenmotion, thus, realizing a quantum jump spectrometer. Therewith, the frequency shift of the two spin states resulting from the magnetic coupling reaches for the first time an electronically detectable range. (orig.)

  3. New theory of effective work functions at metal/high-k dielectric interfaces : application to metal/high-k HfO2 and la2O 3 dielectric interfaces

    OpenAIRE

    Shiraishi, Kenji; Nakayama, Takashi; Akasaka, Yasushi; Miyazaki, Seiichi; Nakaoka, Takashi; Ohmori, Kenji; Ahmet, Parhat; Torii, Kazuyoshi; Watanabe, Heiji; Chikyow, Toyohiro; Nara, Yasuo; Iwai, Hiroshi; Yamada, Keisaku

    2006-01-01

    We have constructed a universal theory of the work functions at metal/high-k HfO2 and La2O3 dielectric interfaces by introducing a new concept of generalized charge neutrality levels. Our theory systematically reproduces the experimentally observed work functions of various gate metals on Hf-based high-k dielectrics, including the hitherto unpredictable behaviors of the work functions of p-metals. Our new concept provides effective guiding principles to achieving near-bandedge work functions ...

  4. Trapping a single atom with a fraction of a photon using a photonic crystal nanocavity

    NARCIS (Netherlands)

    van Oosten, D.; Kuipers, L.

    2011-01-01

    We consider the interaction between a single rubidium atom and a photonic crystal nanocavity. Because of the ultrasmall mode volume of the nanocavity, an extremely strong coupling regime can be achieved in which the atom can shift the cavity resonance by many cavity linewidths. We show that this

  5. Ionic exchange and the local structure in the HfO2/Ho2O3 system studied by PAC spectroscopy

    International Nuclear Information System (INIS)

    Richard, D.; Darriba, G.N.; Muñoz, E.L.; Errico, L.A.; Rentería, M.

    2014-01-01

    Highlights: • Suitability of PAC spectroscopy to study inter-diffusion processes. • High level of ionic exchange obtained by ball-milling and thermal treatments. • EFG characterization of 181 Ta impurities at defect-free cation sites of Ho 2 O 3 . • Excellent agreement with other EFG results in bixbyites and ab initio calculations. • A new Ho-doped m-HfO 2 phase was characterized. - Abstract: The ionic exchange of Hf and Ho atoms in the HfO 2 /Ho 2 O 3 system was studied at the atomic level applying the nuclear solid-state Time-Differential γ–γ Perturbed-Angular-Correlation (PAC) spectroscopy. This exchange was promoted by a ball-milling-assisted solid-state reaction between Ho 2 O 3 and m-HfO 2 initial powders. In order to follow and to elucidate the effect of different variables (milling time, temperature, pressure) on the exchange process and the appearance of new phases, 181 Hf(→ 181 Ta) ions were used as local probes in the PAC experiments. The measured hyperfine interactions enabled the electric-field gradient tensor (EFG) characterization at Hf sites at each step of the process. At the final stages of the solid-state reaction, 75–90% Hf-doping at both substitutional defect-free cation sites of Ho 2 O 3 was achieved, being the EFG measured at these sites in excellent agreement with those determined in 181 Hf-implanted Ho 2 O 3 samples and to those predicted by the EFG systematics established in rare-earth bixbyites doped by ion-implantation of 181 Hf(→ 181 Ta) ions. Ab initio electronic structure calculations of the EFG at Ta impurities localized at both cation sites in Ho 2 O 3 also confirm the 181 Hf cationic substitution in both PAC experiments. Additional ab initio calculations at Hf impurity sites in Ho 2 O 3 and Tm 2 O 3 were performed to study the relative Hf preference for the symmetric site of the structure. We showed that high-energy milling plus high temperature treatments are both necessary to achieve a high degree of Hf substitution in the cation sublattice of the Ho 2 O 3 structure. Also, we found that the pressure effect on the crystal structure favors the impurity substitution at cationic sites closer to a homogenous distribution of the probes and with much less local and far disorder. Additional spurious hyperfine interactions that were always present in 181 Hf-implanted Ho 2 O 3 samples were not observed when using this solid-state reaction method. The appearance of a modified m-HfO 2 phase produced after heavy Ho-doping was also discussed

  6. Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap.

    Science.gov (United States)

    Cotterell, Michael I; Mason, Bernard J; Carruthers, Antonia E; Walker, Jim S; Orr-Ewing, Andrew J; Reid, Jonathan P

    2014-02-07

    A single horizontally-propagating zeroth order Bessel laser beam with a counter-propagating gas flow was used to confine single fine-mode aerosol particles over extended periods of time, during which process measurements were performed. Particle sizes were measured by the analysis of the angular variation of light scattered at 532 nm by a particle in the Bessel beam, using either a probe beam at 405 nm or 633 nm. The vapour pressures of glycerol and 1,2,6-hexanetriol particles were determined to be 7.5 ± 2.6 mPa and 0.20 ± 0.02 mPa respectively. The lower volatility of hexanetriol allowed better definition of the trapping environment relative humidity profile over the measurement time period, thus higher precision measurements were obtained compared to those for glycerol. The size evolution of a hexanetriol particle, as well as its refractive index at wavelengths 532 nm and 405 nm, were determined by modelling its position along the Bessel beam propagation length while collecting phase functions with the 405 nm probe beam. Measurements of the hygroscopic growth of sodium chloride and ammonium sulfate have been performed on particles as small as 350 nm in radius, with growth curves well described by widely used equilibrium state models. These are the smallest particles for which single-particle hygroscopicity has been measured and represent the first measurements of hygroscopicity on fine mode and near-accumulation mode aerosols, the size regimes bearing the most atmospheric relevance in terms of loading, light extinction and scattering. Finally, the technique is contrasted with other single particle and ensemble methods, and limitations are assessed.

  7. Properties of slow traps of ALD Al2O3/GeOx/Ge nMOSFETs with plasma post oxidation

    Science.gov (United States)

    Ke, M.; Yu, X.; Chang, C.; Takenaka, M.; Takagi, S.

    2016-07-01

    The realization of Ge gate stacks with a small amount of slow trap density as well as thin equivalent oxide thickness and low interface state density (Dit) is a crucial issue for Ge CMOS. In this study, we examine the properties of slow traps, particularly the location of slow traps, of Al2O3/GeOx/n-Ge and HfO2/Al2O3/GeOx/n-Ge MOS interfaces with changing the process and structural parameters, formed by atomic layer deposition (ALD) of Al2O3 and HfO2/Al2O3 combined with plasma post oxidation. It is found that the slow traps can locate in the GeOx interfacial layer, not in the ALD Al2O3 layer. Furthermore, we study the time dependence of channel currents in the Ge n-MOSFETs with 5-nm-thick Al2O3/GeOx/Ge gate stacks, with changing the thickness of GeOx, in order to further clarify the position of slow traps. The time dependence of the current drift and the effective time constant of slow traps do not change among the MOSFETs with the different thickness GeOx, demonstrating that the slow traps mainly exist near the interfaces between Ge and GeOx.

  8. Exploring both sequence detection and restriction endonuclease cleavage kinetics by recognition site via single-molecule microfluidic trapping.

    Science.gov (United States)

    Xu, Weilin; Muller, Susan J

    2011-02-07

    We demonstrate the feasibility of a single-molecule microfluidic approach to both sequence detection and obtaining kinetic information for restriction endonucleases on dsDNA. In this method, a microfluidic stagnation point flow is designed to trap, hold, and linearize double-stranded (ds) genomic DNA to which a restriction endonuclease has been pre-bound sequence-specifically. By introducing the cofactor magnesium, we determine the binding location of the enzyme by the cleavage process of dsDNA as in optical restriction mapping, however here the DNA need not be immobilized on a surface. We note that no special labeling of the enzyme is required, which makes it simpler than our previous scheme using stagnation point flows for sequence detection. Our accuracy in determining the location of the recognition site is comparable to or better than other single molecule techniques due to the fidelity with which we can control the linearization of the DNA molecules. In addition, since the cleavage process can be followed in real time, information about the cleavage kinetics, and subtle differences in binding and cleavage frequencies among the recognition sites, may also be obtained. Data for the five recognition sites for the type II restriction endonuclease EcoRI on λ-DNA are presented as a model system. While the roles of the varying fluid velocity and tension along the chain backbone on the measured kinetics remain to be determined, we believe this new method holds promise for a broad range of studies of DNA-protein interactions, including the kinetics of other DNA cleavage processes, the dissociation of a restriction enzyme from the cleaved substrate, and other macromolecular cleavage processes.

  9. Development and Performance Evaluations of HfO2-Si and Rare Earth-Si Based Environmental Barrier Bond Coat Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when integrated with advanced EBC top coats, showed promise to achieve 1500 C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and long-term durability.

  10. UV-laser-light-controlled photoluminescence of metal oxide nanoparticles in different gas atmospheres: BaTiO3, SrTiO3 and HfO2

    International Nuclear Information System (INIS)

    Mochizuki, Shosuke; Saito, Takashi; Yoshida, Kaori

    2012-01-01

    The photoluminescence (PL) enhancement has been studied at room temperature using various specimen atmospheres (O 2 gas, CO 2 gas, CO 2 -H 2 mixture gas, Ar-H 2 mixture gas and vacuum) under 325 nm laser light irradiation on various metal oxides. Of them, the results obtained for BaTiO 3 nanocrystals, SrTiO 3 ones and HfO 2 powder crystal are given in the present paper. Their PL were considerably increased in intensity by irradiation of 325 nm laser light in CO 2 gas and CO 2 -H 2 mixture gas. The cause of the PL intensity enhancements is discussed in the light of the exciton theory, the defect chemistry and the photocatalytic theory. The results may be applied for the utilization of greenhouse gas (CO 2 ) and the optical sensor for CO 2 gas.

  11. Torque and optical traps

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... Optical traps are an important tool for research in the field of single molecule biophysics. Recent advances in optical trapping have extended their functionality from simple linear manipulation and measurement of forces, to now the ability to rotate objects and measure torques. This mini review summarizes ...

  12. Quadrupole Ion Traps

    Indian Academy of Sciences (India)

    electron bound to the gravitational field, the 'geonium atom'. The first atomic hyperfine structure experiment on trapped ions was performed by Dehmelt's group using the stored-ion exchange-collision technique in a Paul trap which paved the way for some of the subsequent experiment for atomic frequency. A single atom at.

  13. Inflation threshold: A nonlinear trapping-induced threshold for the rapid onset of stimulated Raman scattering from a single laser speckle

    International Nuclear Information System (INIS)

    Vu, H. X.; DuBois, D. F.; Bezzerides, B.

    2007-01-01

    The rapid onset, with increasing laser intensity, of levels of backward stimulated Raman scattering (BSRS) exceeding linear convective predictions, from single laser hot spots was predicted by simulations [Vu et al., Phys. Plasmas 9, 1745 (2002)], and has been observed [Montgomery et al., Phys. Plasmas 9, 2311 (2002)] in nonlinear regimes dominated by electron trapping. A theory for this inflation threshold is given here. The threshold is the result of competition between velocity diffusion and trapping, and is exceeded when the convectively amplified SRS Langmuir wave (LW) achieves an amplitude for which the coherent trapping velocity increment of electrons in the LW (the half-width of the trapping separatrix) exceeds the rms diffusion velocity (resulting from background plasma fluctuations), accumulated in one bounce time, for electrons with mean velocities near the phase velocity of the LW. The results of this theory, when the kinetic theory of the one-dimensional (1D) reduced-description particle-in-cell (RPIC) simulation is used, are in good agreement with a series of 1D RPIC simulations. The theory is naturally generalized to three dimensions, and is compatible with macroscopic laser interaction codes such as pF3d [Berger et al., Phys. Plasmas 5, 4337 (1998)]. Comparison of the LW trapping-induced inflation threshold to the LW threshold for the Langmuir decay instability provides an estimate for the transition between nonlinear saturation regimes. In an independent hot spot model of many hot spots, statistics suggests that the inflation threshold intensity will control the rapid onset of strong BSRS in laser beams smoothed by random phase plates

  14. Electron and hole traps in yttrium orthosilicate single crystals: the critical role of Si-unbound oxygen

    Czech Academy of Sciences Publication Activity Database

    Laguta, Valentyn; Buryi, Maksym; Rosa, Jan; Savchenko, Dariia; Hybler, Jiří; Nikl, Martin; Zazubovich, S.; Kärner, T.; Stanek, C.R.; McClellan, K.J.

    2014-01-01

    Roč. 90, č. 6 (2014), "064104-1"-"064104-12" ISSN 1098-0121 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GAP204/12/0805 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : ESR * yttrium orthosilicates * ESEEM * charge traps * F + centers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  15. Electron Spin Resonance study of charge trapping in α-ZnMoO.sub.4./sub. single crystal scintillator

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Spassky, D.A.; Hybler, Jiří; Laguta, Valentyn; Nikl, Martin

    2015-01-01

    Roč. 47, Sep (2015), 244-250 ISSN 0925- 3467 R&D Projects: GA MŠk LO1409; GA MŠk(CZ) LM2011029; GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : Electron Spin Resonance * scintillator * charge traps * zinc molybdate Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2015

  16. Charge trapping and storage by composite P3HT/PC60BM nanoparticles investigated by fluorescence-voltage/single particle spectroscopy.

    Science.gov (United States)

    Hu, Zhongjian; Gesquiere, Andre J

    2011-12-28

    Fluorescence-voltage/single particle spectroscopy (F-V/SPS) was employed to study exciton-hole polaron interactions and interfacial charge transfer processes for pure poly(3-hexylthiophene) (P3HT) nanoparticles (NPs) and composite P3HT/PC(60)BM NPs in functioning hole-injection devices. F-V/SPS data collected on a particle-by-particle basis reveal an apparent bistability in the fluorescence-voltage modulation curves for composite NPs of P3HT and [6,6]-phenyl-C(61)-butyric acid methyl ester (PC(60)BM) that is absent for pure P3HT NPs. A pronounced deep trapping of free electrons photogenerated from the composite P3HT/PC(60)BM NPs at the NP/dielectric interface and hole trapping by fullerene anions in composite P3HT/PC(60)BM NPs under photoexcitation lies at the basis of this finding. The deep electron trapping effect reported here for composite conjugated polymer/fullerene NPs presents an opportunity for future application of these NPs in nanoscale memory and imaging devices. © 2011 American Chemical Society

  17. Optimized green fluorescent protein fused to FoF1-ATP synthase for single-molecule FRET using a fast anti-Brownian electrokinetic trap

    Science.gov (United States)

    Dienerowitz, Maria; Ilchenko, Mykhailo; Su, Bertram; Deckers-Hebestreit, Gabriele; Mayer, Günter; Henkel, Thomas; Heitkamp, Thomas; Börsch, Michael

    2016-02-01

    Observation times of freely diffusing single molecules in solution are limited by the photophysics of the attached fluorescence markers and by a small observation volume in the femtolitre range that is required for a sufficient signal-to-background ratio. To extend diffusion-limited observation times through a confocal detection volume, A. E. Cohen and W. E. Moerner have invented and built the ABELtrap -- a microfluidic device to actively counteract Brownian motion of single nanoparticles with an electrokinetic trap. Here we present a version of an ABELtrap with a laser focus pattern generated by electro-optical beam deflectors and controlled by a programmable FPGA chip. This ABELtrap holds single fluorescent nanoparticles for more than 100 seconds, increasing the observation time of fluorescent nanoparticles compared to free diffusion by a factor of 10000. To monitor conformational changes of individual membrane proteins in real time, we record sequential distance changes between two specifically attached dyes using Förster resonance energy transfer (smFRET). Fusing the a-subunit of the FoF1-ATP synthase with mNeonGreen results in an improved signal-to-background ratio at lower laser excitation powers. This increases our measured trap duration of proteoliposomes beyond 2 s. Additionally, we observe different smFRET levels attributed to varying distances between the FRET donor (mNeonGreen) and acceptor (Alexa568) fluorophore attached at the a- and c-subunit of the FoF1-ATP synthase respectively.

  18. Feedback trap using optical force

    Science.gov (United States)

    Jun, Yonggun; Pak, Hyuk Kyu

    Recently, the feedback trap using electrophoretic force (ABEL trap) has been used in the experimental study of non-equilibrium thermodynamics such as Landauer's erasure principle. This trap can trap and manipulate a small particle in solution by canceling the Brownian fluctuations. Here, we propose a simple way to control a bead using optical force with feedback and show the dynamics of a single particle in the virtual potential.

  19. Interface traps and dangling-bond defects in (100)Ge/HfO2

    Science.gov (United States)

    Afanas'ev, V. V.; Fedorenko, Y. G.; Stesmans, A.

    2005-07-01

    Combined electrical and electron spin resonance analysis reveals dramatic differences in the interface defect properties of the (100)Ge/GeOxNy/HfO2 and (100)Ge/GeO2 interfaces from the seemingly similar interfaces of (100)Si with the HfO2 and SiO2. No dangling bond centers associated with Ge crystal surface atoms are detected. Only paramagnetic defects in the near-interfacial Ge oxide or Ge (oxy)nitride layers are observed. In contrast to the amphoteric traps related to the dangling bonds (Pb-type centers) commonly observed at the silicon/insulator interfaces, the major component of the Ge/insulator interface trap spectrum comes from slow acceptor states which show no correlation with paramagnetic centers and are resistant to passivation by hydrogen.

  20. First-principles study of fission product (Xe, Cs, Sr) incorporation and segregation in alkaline earth metal oxides, HfO(2), and the MgO-HfO(2) interface.

    Science.gov (United States)

    Liu, Xiang-Yang; Uberuaga, Blas P; Sickafus, Kurt E

    2009-01-28

    In order to close the nuclear fuel cycle, advanced concepts for separating out fission products are necessary. One approach is to use a dispersion fuel form in which a fissile core is surrounded by an inert matrix that captures and immobilizes the fission products from the core. If this inert matrix can be easily separated from the fuel, via e.g. solution chemistry, the fission products can be separated from the fissile material. We examine a surrogate dispersion fuel composition, in which hafnia (HfO(2)) is a surrogate for the fissile core and alkaline earth metal oxides are used as the inert matrix. The questions of fission product incorporation in these oxides and possible segregation behavior at interfaces are considered. Density functional theory based calculations for fission product elements (Xe, Sr, and Cs) in these oxides are carried out. We find smaller incorporation energy in hafnia than in MgO for Cs and Sr, and Xe if variation of charge state is allowed. We also find that this trend is reversed or reduced for alkaline earth metal oxides with large cation sizes. Model interfacial calculations show a strong tendency of segregation from bulk MgO to MgO-HfO(2) interfaces.

  1. Development and Property Evaluation of Selected HfO2-Silicon and Rare Earth-Silicon Based Bond Coats and Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    Ceramic environmental barrier coatings (EBC) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiC/SiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si and rare earth Si based EBC bond coat EBC systems for SiC/SiC CMC combustor and turbine airfoil applications are investigated. High temperature properties of the advanced EBC systems, including the strength, fracture toughness, creep and oxidation resistance have been studied and summarized. The advanced NASA EBC systems showed some promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  2. Environmental Stability and Oxidation Behavior of HfO2-Si and YbGd(O) Based Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Farmer, Serene; McCue, Terry R.; Harder, Bryan; Hurst, Janet B.

    2017-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, environmental durable environmental barrier coating systems. In this paper, the durability and performance of advanced Electron Beam-Physical Vapor Deposition (EB-PVD) NASA HfO2-Si and YbGdSi(O) EBC bond coat top coat systems for SiCSiC CMC have been summarized. The high temperature thermomechanical creep, fatigue and oxidation resistance have been investigated in the laboratory simulated high-heat-flux environmental test conditions. The advanced NASA EBC systems showed promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.

  3. Comparison of HfCl4, HfI4, TEMA-Hf, and TDMA-Hf as precursors in early growing stages of HfO2 films deposited by ALD: A DFT study

    International Nuclear Information System (INIS)

    Cortez-Valadez, M.; Fierro, C.; Farias-Mancilla, J.R.; Vargas-Ortiz, A.; Flores-Acosta, M.; Ramírez-Bon, R.; Enriquez-Carrejo, J.L.

    2016-01-01

    Highlights: • Hafnium oxide growth on Si(100) by atomic layer deposition was simulated. • The interface structure was considered as silicate and silicide. • The interface was studied employing DFT. • TDMA-Hf precursor show better interface stability. - Abstract: The final structure of HfO 2 films grown by atomic layer deposition (ALD) after reaction with OH − ions has been analyzed by DFT (density functional theory). The interaction of the precursors: HfCl 4 (hafnium tetrachloride), HfI 4 (hafnium tetraiodide), TEMA-Hf (tetrakis-ethylmethylamino hafnium), and TDMA-Hf (tetrakis-dimethylamino hafnium) with HO–H was studied employing the B3LYP (Becke 3-parameter, Lee–Yang–Parr) hybrid functional and the PBE (Perdew–Burke–Ernzerhof) generalized gradient functional. The structural evolution at the Si(100) surface has been analyzed by LDA (local density approximation). The structural parameters: bond length and bond angle, and the vibrational parameters for the optimized structures are also reported. The presence of hafnium silicate at the interface was detected. The infrared spectra and structural parameters obtained in this work agree with previously reported experimental results.

  4. COLD TRAPS

    Science.gov (United States)

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  5. Effect of ion implantation energy for the synthesis of Ge nanocrystals in SiN films with HfO2/SiO2 stack tunnel dielectrics for memory application

    Directory of Open Access Journals (Sweden)

    Gloux Florence

    2011-01-01

    Full Text Available Abstract Ge nanocrystals (Ge-NCs embedded in SiN dielectrics with HfO2/SiO2 stack tunnel dielectrics were synthesized by utilizing low-energy (≤5 keV ion implantation method followed by conventional thermal annealing at 800°C, the key variable being Ge+ ion implantation energy. Two different energies (3 and 5 keV have been chosen for the evolution of Ge-NCs, which have been found to possess significant changes in structural and chemical properties of the Ge+-implanted dielectric films, and well reflected in the charge storage properties of the Al/SiN/Ge-NC + SiN/HfO2/SiO2/Si metal-insulator-semiconductor (MIS memory structures. No Ge-NC was detected with a lower implantation energy of 3 keV at a dose of 1.5 × 1016 cm-2, whereas a well-defined 2D-array of nearly spherical and well-separated Ge-NCs within the SiN matrix was observed for the higher-energy-implanted (5 keV sample for the same implanted dose. The MIS memory structures implanted with 5 keV exhibits better charge storage and retention characteristics compared to the low-energy-implanted sample, indicating that the charge storage is predominantly in Ge-NCs in the memory capacitor. A significant memory window of 3.95 V has been observed under the low operating voltage of ± 6 V with good retention properties, indicating the feasibility of these stack structures for low operating voltage, non-volatile memory devices.

  6. Analysis of single-cell differences by use of an on-chip microculture system and optical trapping.

    Science.gov (United States)

    Wakamoto, Y; Inoue, I; Moriguchi, H; Yasuda, K

    2001-09-01

    A method is described for continuous observation of isolated single cells that enables genetically identical cells to be compared; it uses an on-chip microculture system and optical tweezers. Photolithography is used to construct microchambers with 5-microm-high walls made of thick photoresist (SU-8) on the surface of a glass slide. These microchambers are connected by a channel through which cells are transported, by means of optical tweezers, from a cultivation microchamber to an analysis microchamber, or from the analysis microchamber to a waste microchamber. The microchambers are covered with a semi-permeable membrane to separate them from nutrient medium circulating through a "cover chamber" above. Differential analysis of isolated direct descendants of single cells showed that this system could be used to compare genetically identical cells under contamination-free conditions. It should thus help in the clarification of heterogeneous phenomena, for example unequal cell division and cell differentiation.

  7. Sympathetic Cooling of Trapped Cd+ Isotopes

    OpenAIRE

    Blinov, B. B.; Deslauriers, L.; Lee, P.; Madsen, M. J.; Miller, R.; Monroe, C.

    2001-01-01

    We sympathetically cool a trapped 112Cd+ ion by directly Doppler-cooling a 114Cd+ ion in the same trap. This is the first demonstration of optically addressing a single trapped ion being sympathetically cooled by a different species ion. Notably, the experiment uses a single laser source, and does not require strong focusing. This paves the way toward reducing decoherence in an ion trap quantum computer based on Cd+ isotopes.

  8. High-Q energy trapping of temperature-stable shear waves with Lamé cross-sectional polarization in a single crystal silicon waveguide

    Science.gov (United States)

    Tabrizian, R.; Daruwalla, A.; Ayazi, F.

    2016-03-01

    A multi-port electrostatically driven silicon acoustic cavity is implemented that efficiently traps the energy of a temperature-stable eigen-mode with Lamé cross-sectional polarization. Dispersive behavior of propagating and evanescent guided waves in a ⟨100⟩-aligned single crystal silicon waveguide is used to engineer the acoustic energy distribution of a specific shear eigen-mode that is well known for its low temperature sensitivity when implemented in doped single crystal silicon. Such an acoustic energy trapping in the central region of the acoustic cavity geometry and far from substrate obviates the need for narrow tethers that are conventionally used for non-destructive and high quality factor (Q) energy suspension in MEMS resonators; therefore, the acoustically engineered waveguide can simultaneously serve as in-situ self-oven by passing large uniformly distributed DC currents through its body and without any concern about perturbing the mode shape or deforming narrow supports. Such a stable thermo-structural performance besides large turnover temperatures than can be realized in Lamé eigen-modes make this device suitable for implementation of ultra-stable oven-controlled oscillators. 78 MHz prototypes implemented in arsenic-doped single crystal silicon substrates with different resistivity are transduced by in- and out-of-plane narrow-gap capacitive ports, showing high Q of ˜43k. The low resistivity device shows an overall temperature-induced frequency drift of 200 ppm over the range of -20 °C to 80 °C, which is ˜15× smaller compared to overall frequency drift measured for the similar yet high resistivity device in the same temperature range. Furthermore, a frequency tuning of ˜2100 ppm is achieved in high resistivity device by passing 45 mA DC current through its body. Continuous operation of the device under such a self-ovenizing current over 10 days did not induce frequency instability or degradation in Q.

  9. Synergistic effect of single-electron-trapped oxygen vacancies and carbon species on the visible light photocatalytic activity of carbon-modified TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong, E-mail: donguser@henu.edu.cn; Xue, Xiaoxiao; Liu, Xiaogang; Xing, Xing; Li, Qiuye; Yang, Jianjun

    2015-03-01

    Carbon-modified TiO{sub 2} (CT) nanoparticles were prepared via a two-step method of heat treatment without the resorcinol-formaldehyde (RF) polymer. As-prepared CT nanoparticles were characterized by means of X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UV–Vis/DRS), transmission electron microscopy (TEM), N{sub 2} adsorption–desorption isotherms, thermal analysis (TA), electron spin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activities were evaluated on the basis of the degradation of methyl orange (MO). The synergistic effect of single-electron-trapped oxygen vacancies (SETOVs) and the carbon species on the visible light photocatalytic activities of the CT nanoparticles were discussed. It was found that the crystalline phase, the morphology, and particle size of the CT nanoparticles depended on the second heat-treatment temperature instead of the first heat-treatment temperature. The visible light photocatalytic activities were attributed to the synergistic effect of SETOVs and the carbon species, and also depended on the specific surface area of the photocatalysts. - Highlights: • Carbon-modified TiO{sub 2} particles have been prepared without RF polymer. • The visible light photocatalytic activities of the particles have been evaluated. • The band gap energy structure of the carbon-modified TiO{sub 2} has been proposed. • Synergistic effect of SETOVs and carbon species has been discussed. • The activities also depend on the specific surface area of the catalysts.

  10. Temperature dependence of photoluminescence spectra of bilayer two-dimensional electron gases in LaAlO3/SrTiO3 superlattices: coexistence of Auger recombination and single-carrier trapping

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-06-01

    Full Text Available We report emerging photoluminescence (PL of bilayer two-dimensional electron gases (2DEG in LaAlO3/SrTiO3 (LAO/STO systems. A strong blue PL emerges in bilayer-2DEGs in LAO/STO/LAO/STO which doesn’t show in LAO/STO. PL band in bilayer-2DEGs includes both nearly temperature independent Auger recombination and temperature dependent free electron trapping while it crossovers from Auger recombination to single carrier trapping in LAO/STO. The PL signal of free electron trapping appears at high temperatures and it is much stronger than Auger recombination in the conducting channel in bilayer 2DEGs. This observation shows that high mobility carriers dominate the carrier dynamics in bilayer-2DEGs in LAO/STO superlattices.

  11. A thermodynamic model for the solubility of HfO2(am) in the aqueous K +– HCO3-– CO32-–O-–H2O system

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat; Kitamura, Akira; Rosso, Kevin M.

    2017-01-01

    Solubility of HfO2(am) was determined as a function of KHCO3 concentrations ranging from 0.001 mol·kg-1 to 0.1 mol·kg-1. The solubility of HfO2(am) increased dramatically with the increase in KHCO3 concentrations, indicating that Hf(IV) makes strong complexes with carbonate. Thermodynamic equilibrium constants for the formation of Hf-carbonate complexes were determined using both the Pitzer and SIT models. The dramatic increase in Hf concentrations with the increase in KHCO3 concentrations can best be described by the formation of Hf(OH-)2(CO3)22- and Hf(CO3)56-. The log10 K0 values for the reactions [Hf4++2CO32-+2OH-⇌Hf(OH)2(CO3)22-] and [Hf4++5CO32-⇌Hf(CO3)56-], based on the SIT model, were determined to be 44.53±0.46 and 41.53±0.46, respectively, and based on the Pitzer model they were 44.56±0.48 and 40.20±0.48, respectively.

  12. Trapped antihydrogen

    CERN Document Server

    Butler, E; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kemp, S L; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki,Y

    2012-01-01

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ∼1 T (∼0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be ‘born’ inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been ...

  13. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  14. VACUUM TRAP

    Science.gov (United States)

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  15. Operation mode switchable charge-trap memory based on few-layer MoS2

    Science.gov (United States)

    Hou, Xiang; Yan, Xiao; Liu, Chunsen; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2018-03-01

    Ultrathin layered two-dimensional (2D) semiconductors like MoS2 and WSe2 have received a lot of attention because of their excellent electrical properties and potential applications in electronic devices. We demonstrate a charge-trap memory with two different tunable operation modes based on a few-layer MoS2 channel and an Al2O3/HfO2/Al2O3 charge storage stack. Our device shows excellent memory properties under the traditional three-terminal operation mode. More importantly, unlike conventional charge-trap devices, this device can also realize the memory performance with just two terminals (drain and source) because of the unique atomic crystal electrical characteristics. Under the two-terminal operation mode, the erase/program current ratio can reach up to 104 with a stable retention property. Our study indicates that the conventional charge-trap memory cell can also realize the memory performance without the gate terminal based on novel two dimensional materials, which is meaningful for low power consumption and high integration density applications.

  16. Trapped Ion Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm

    2017-04-01

    Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systems of 5 to 15 qubits [6–8].

  17. Globalisation Trapped

    Directory of Open Access Journals (Sweden)

    João Caraça

    2017-05-01

    Full Text Available The promise of making society progress through the direct applications of science was finally fulfilled in the mid-20th century. Science progressed immensely, propelled by the effects of the two world wars. The first science-based technologies saw the daylight during the 1940s and their transformative power was such that neither the military, nor subsequently the markets, allowed science to return intact to its curiosity-driven nest. Technoscience was born then and (being progressively pulled away from curiosity-driven science was able to grow enormously, erecting a formidable structure of networks of institutions that impacted decisively on the economy. It is a paradox, or maybe a trap, that the fulfillment of science’s solemn promise of ‘transforming nature’ means seeing ourselves and our Western societies entangled in crises after crises with no clear outcome in view. A redistribution of geopolitical power is under way, along with the deployment of information and communication technologies, forcing dominant structures to oscillate, as knowledge about organization and methods, marketing, design, and software begins to challenge the role of technoscience as the main vector of economic growth and wealth accumulation. What ought to be done?

  18. Collective excitations of harmonically trapped ideal gases

    NARCIS (Netherlands)

    Van Schaeybroeck, B.; Lazarides, A.

    2009-01-01

    We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show

  19. Optical trapping at low numerical aperture

    NARCIS (Netherlands)

    Stallinga, S.

    2011-01-01

    A theory of optical trapping at low Numerical Aperture (NA) is presented. The theory offers an analytical description of the competition between the stabilizing gradient and destabilizing scattering force. The trade-off can be characterized by a single dimensionless trapping parameter, which

  20. A new method for charge trapping measurement during electron beam irradiation: application to glass containing alkali ions and single-crystalline quartz

    International Nuclear Information System (INIS)

    Fakhfakh, S; Ghorbel, N; Jbara, O; Rondot, S; Martin, D; Fakhfakh, Z; Kallel, A

    2004-01-01

    The aim of this work is to study the electron irradiation behaviour of an insulating material surface using a scanning electron microscope (SEM). The charging phenomena caused in two kinds of insulating materials (quartz and glass) by continuous electron irradiation have been observed. The discharging phenomena following switching off of irradiation have also been studied. The trapped charge density is determined by using the so-called electrostatic influence method based on the measurement, during and after the irradiation, of the influence and leakage currents using an arrangement adapted to the SEM. The experimental results reveal that the behaviour under irradiation of glass is entirely different from that of quartz. The trapped charges are found to be different, and the dependence of charging on the primary beam energy is discussed. The charging and discharging time constants have been determined accurately, and their evolution versus the mean electron penetration depth is qualitatively explained. Moreover, the role of secondary electron emission in the regulation mechanism of charging is underlined

  1. A new method for charge trapping measurement during electron beam irradiation: application to glass containing alkali ions and single-crystalline quartz

    Energy Technology Data Exchange (ETDEWEB)

    Fakhfakh, S [LASSI/DTI UMR CNRS 6107, Faculte des Sciences BP 1039, 51687 Reims CDX 2 (France); Ghorbel, N [LASSI/DTI UMR CNRS 6107, Faculte des Sciences BP 1039, 51687 Reims CDX 2 (France); Jbara, O [LASSI/DTI UMR CNRS 6107, Faculte des Sciences BP 1039, 51687 Reims CDX 2 (France); Rondot, S [LASSI/DTI UMR CNRS 6107, Faculte des Sciences BP 1039, 51687 Reims CDX 2 (France); Martin, D [Saint Gobain Recherche, 39 quai Lucien Lefranc, BP 135, 93303 Aubervilliers CDX (France); Fakhfakh, Z [LaMaCop, Faculte des Sciences de SFAX, Route Soukra km 3, BP 802, 3018 Sfax (Tunisia); Kallel, A [LaMaCop, Faculte des Sciences de SFAX, Route Soukra km 3, BP 802, 3018 Sfax (Tunisia)

    2004-08-07

    The aim of this work is to study the electron irradiation behaviour of an insulating material surface using a scanning electron microscope (SEM). The charging phenomena caused in two kinds of insulating materials (quartz and glass) by continuous electron irradiation have been observed. The discharging phenomena following switching off of irradiation have also been studied. The trapped charge density is determined by using the so-called electrostatic influence method based on the measurement, during and after the irradiation, of the influence and leakage currents using an arrangement adapted to the SEM. The experimental results reveal that the behaviour under irradiation of glass is entirely different from that of quartz. The trapped charges are found to be different, and the dependence of charging on the primary beam energy is discussed. The charging and discharging time constants have been determined accurately, and their evolution versus the mean electron penetration depth is qualitatively explained. Moreover, the role of secondary electron emission in the regulation mechanism of charging is underlined.

  2. Relationship between lung function and quantitative computed tomographic parameters of airway remodeling, air trapping, and emphysema in patients with asthma and chronic obstructive pulmonary disease: A single-center study.

    Science.gov (United States)

    Hartley, Ruth A; Barker, Bethan L; Newby, Chris; Pakkal, Mini; Baldi, Simonetta; Kajekar, Radhika; Kay, Richard; Laurencin, Marie; Marshall, Richard P; Sousa, Ana R; Parmar, Harsukh; Siddiqui, Salman; Gupta, Sumit; Brightling, Chris E

    2016-05-01

    There is a paucity of studies comparing asthma and chronic obstructive pulmonary disease (COPD) based on thoracic quantitative computed tomographic (QCT) parameters. We sought to compare QCT parameters of airway remodeling, air trapping, and emphysema between asthmatic patients and patients with COPD and explore their relationship with airflow limitation. Asthmatic patients (n = 171), patients with COPD (n = 81), and healthy subjects (n = 49) recruited from a single center underwent QCT and clinical characterization. Proximal airway percentage wall area (%WA) was significantly increased in asthmatic patients (62.5% [SD, 2.2]) and patients with COPD (62.7% [SD, 2.3]) compared with that in healthy control subjects (60.3% [SD, 2.2], P lung density expiratory/inspiratory ratio was significantly increased in patients with COPD (mean, 0.922 [SD, 0.037]) and asthmatic patients (mean, 0.852 [SD, 0.061]) compared with that in healthy subjects (mean, 0.816 [SD, 0.066], P Emphysema assessed based on lung density measured by using Hounsfield units below which 15% of the voxels lie (Perc15) was a feature of COPD only (patients with COPD: mean, -964 [SD, 19.62] vs asthmatic patients: mean, -937 [SD, 22.7] and healthy subjects: mean, -937 [SD, 17.1], P lung function impairment in asthmatic patients was %WA, whereas in the COPD and asthma subgrouped with postbronchodilator FEV1 percent predicted value of less than 80%, it was air trapping. Factor analysis of QCT parameters in asthmatic patients and patients with COPD combined determined 3 components, with %WA, air trapping, and Perc15 values being the highest loading factors. Cluster analysis identified 3 clusters with mild, moderate, or severe lung function impairment with corresponding decreased lung density (Perc15 values) and increased air trapping. In asthmatic patients and patients with COPD, lung function impairment is strongly associated with air trapping, with a contribution from proximal airway narrowing in

  3. Cape Vulture Gyps coprotheres caught in gin trap

    African Journals Online (AJOL)

    campbell

    one investigation reported 24% of traded birds as having been trapped. (Beilis & Esterhuizen 2005,. Mander et al. 2007). It would seem likely that gin traps are implicated in at least some of these instances. We can trace only a single record of a Cape Vulture G. coprotheres being caught in a gin trap, a bird killed in Lesotho.

  4. Improvements in Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) Trapping Systems.

    Science.gov (United States)

    Navarro-Llopis, Vicente; Primo, Jaime; Vacas, Sandra

    2018-03-20

    Improved trap efficacy is crucial for implementing control methods for red palm weevil, Rhynchophorus ferrugineus (Olivier; Coleoptera: Dryophthoridae), based on trapping systems, such as mass trapping, attract and infect or attract and sterilize techniques. Although new trap designs have been proposed and aggregation pheromone dispensers have been optimized, aspects such as the use of co-attractants (molasses) and trap placement are still not well defined and standardized. The efficacy of three concentrations of molasses and different formulations to reduce water evaporation in traps was studied in different field trials to improve trapping systems and to prolong trap servicing periods. In addition, the performance of installing groups of traps or single traps was also evaluated with the aim of improving the attracted/captured weevils ratio. Our results showed that captures increased when molasses were added at 15% to the water contained in the trap and that a thin layer of oil, created by adding 2-3% of paraffinic oil to water, was able to effectively reduce evaporation and prolong trap servicing periods. Moreover, 3.5-fold more weevils were captured when placing five traps instead of one at the same trapping point. Results obtained allow improved efficacy and may have an impact in the economic viability of trapping systems and, therefore, in integrated pest management programs.

  5. Modular Universal Scalable Ion-trap Quantum Computer

    Science.gov (United States)

    2016-06-02

    trap quantum computer . This architecture has two separate layers of scalability: the first is to increase the number of ion qubits in a single trap...Distribution Unlimited UU UU UU UU 02-06-2016 1-Aug-2010 31-Jan-2016 Final Report: Modular Universal Scalable Ion-trap Quantum Computer The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 Ion trap quantum computation , scalable modular architectures REPORT DOCUMENTATION PAGE 11

  6. Improved charge trapping flash device with Al2O3/HfSiO stack as blocking layer

    International Nuclear Information System (INIS)

    Zheng Zhi-Wei; Huo Zong-Liang; Zhu Chen-Xin; Xu Zhong-Guang; Liu Jing; Liu Ming

    2011-01-01

    In this paper, we investigate an Al 2 O 3 /HfSiO stack as the blocking layer of a metal—oxide—nitride—oxide—silicon-type (MONOS) memory capacitor. Compared with a memory capacitor with a single HfSiO layer as the blocking layer or an Al 2 O 3 /HfO 2 stack as the blocking layer, the sample with the Al 2 O 3 /HfSiO stack as the blocking layer shows high program/erase (P/E) speed and good data retention characteristics. These improved performances can be explained by energy band engineering. The experimental results demonstrate that the memory device with an Al 2 O 3 /HfSiO stack as the blocking layer has great potential for further high-performance nonvolatile memory applications. (interdisciplinary physics and related areas of science and technology)

  7. Synthesis of [11C]palmitic acid for PET imaging using a single molecular sieve 13X cartridge for reagent trapping, radiolabeling and selective purification.

    Science.gov (United States)

    Amor-Coarasa, Alejandro; Kelly, James M; Babich, John W

    2015-08-01

    Radiolabeled fatty acids are valuable metabolic tracers for PET imaging. Carbon-11 is widely used in clinical PET studies due to the prevalence of facile techniques enabling the incorporation of [(11)C]CO2 and [(11)C]CH3 into molecules and a short half-life (20.4 min) that translates into low patient dose. However, the short half-life considerably limits the time for radiosynthesis. Furthermore, the majority of the syntheses of [(11)C]palmitic acid in common use employ high starting [(11)C]CO2 activities and/or expensive equipment. [(11)C]CO2 was trapped with greater than 99.99% efficiency by a three stage cartridge packed with molecular sieve 13X, 100-120 mesh. The labeling of n-pentadecylmagnesium bromide took place in 5 min in the cartridge, and the [(11)C]palmitic acid product was selectively eluted in ethanol following alkaline and acidic washes of the column. The system reliably produced more than 925 MBq (25 mCi) of [(11)C]palmitic acid suitable for human use from 7.4 GBq (200 mCi) of [(11)C]CO2 in 8 min from end-of-bombardment. We have exploited the properties of the inexpensive molecular sieve 13X to develop a miniature, disposable and leak tight "gas capture" system for the rapid labeling and purification of [(11)C]fatty acids in good yield and >99% radiochemical purity. The rapidity of the synthesis and purification allows small [(11)C]CO2 starting activities to be used, and with no requirement for expensive synthesis equipment or facilities, the system can be implemented in any radiopharmaceutical center. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Ball-grid array architecture for microfabricated ion traps

    Science.gov (United States)

    Guise, Nicholas D.; Fallek, Spencer D.; Stevens, Kelly E.; Brown, K. R.; Volin, Curtis; Harter, Alexa W.; Amini, Jason M.; Higashi, Robert E.; Lu, Son Thai; Chanhvongsak, Helen M.; Nguyen, Thi A.; Marcus, Matthew S.; Ohnstein, Thomas R.; Youngner, Daniel W.

    2015-05-01

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with 40Ca+ ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with 171Yb+ ions in a second BGA trap.

  9. Ball-grid array architecture for microfabricated ion traps

    International Nuclear Information System (INIS)

    Guise, Nicholas D.; Fallek, Spencer D.; Stevens, Kelly E.; Brown, K. R.; Volin, Curtis; Harter, Alexa W.; Amini, Jason M.; Higashi, Robert E.; Lu, Son Thai; Chanhvongsak, Helen M.; Nguyen, Thi A.; Marcus, Matthew S.; Ohnstein, Thomas R.; Youngner, Daniel W.

    2015-01-01

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with 40 Ca + ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with 171 Yb + ions in a second BGA trap

  10. Shrew trap efficiency

    DEFF Research Database (Denmark)

    Gambalemoke, Mbalitini; Mukinzi, Itoka; Amundala, Drazo

    2008-01-01

    We investigated the efficiency of four trap types (pitfall, Sherman LFA, Victor snap and Museum Special snap traps) to capture shrews. This experiment was conducted in five inter-riverine forest blocks in the region of Kisangani. The total trapping effort was 6,300, 9,240, 5,280 and 5,460 trap......-nights for the pitfall, Sherman, Victor and Museum Special traps, respectively. In total, we captured 366 shrews. The use of pitfall traps yielded the highest trapping success (4.1) with at least 18 shrew species identified. Trapping success and the number of species collected was lower for the Sherman (0.6, at least 11...... species), Victor (0.6, at least 8 species) and Museum Special (0.5, at least 6 species) traps. Although Crocidura olivieri and C. denti were caught using all four trap types, captures with different trap types did not produce a sample with the same taxonomic composition. In agreement with previous studies...

  11. Light-erasable embedded charge-trapping memory based on MoS2 for system-on-panel applications

    Science.gov (United States)

    He, Long-Fei; Zhu, Hao; Xu, Jing; Liu, Hao; Nie, Xin-Ran; Chen, Lin; Sun, Qing-Qing; Xia, Yang; Wei Zhang, David

    2017-11-01

    The continuous scaling and challenges in device integrations in modern portable electronic products have aroused many scientific interests, and a great deal of effort has been made in seeking solutions towards a more microminiaturized package assembled with smaller and more powerful components. In this study, an embedded light-erasable charge-trapping memory with a high-k dielectric stack (Al2O3/HfO2/Al2O3) and an atomically thin MoS2 channel has been fabricated and fully characterized. The memory exhibits a sufficient memory window, fast programming and erasing (P/E) speed, and high On/Off current ratio up to 107. Less than 25% memory window degradation is observed after projected 10-year retention, and the device functions perfectly after 8000 P/E operation cycles. Furthermore, the programmed device can be fully erased by incident light without electrical assistance. Such excellent memory performance originates from the intrinsic properties of two-dimensional (2D) MoS2 and the engineered back-gate dielectric stack. Our integration of 2D semiconductors in the infrastructure of light-erasable charge-trapping memory is very promising for future system-on-panel applications like storage of metadata and flexible imaging arrays.

  12. Luminescence and charge trapping in Cs.sub.2./sub.HfCl.sub.6./sub. single crystals: optical and magnetic resonance spectroscopy study

    Czech Academy of Sciences Publication Activity Database

    Král, Robert; Babin, Vladimir; Mihóková, Eva; Buryi, Maksym; Laguta, Valentyn; Nitsch, Karel; Nikl, Martin

    2017-01-01

    Roč. 121, č. 22 (2017), s. 12375-12382 ISSN 1932-7447 R&D Projects: GA MŠk LO1409; GA ČR GA17-09933S Institutional support: RVO:68378271 Keywords : Cs2HfCl6 * single crystal * luminescence * temperature dependence * EPR spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.536, year: 2016

  13. Photodiode Based Detection for Multiple Trap Optical Tweezers

    DEFF Research Database (Denmark)

    Ott, Dino

    This thesis is concerned with the position tracking of microscopic, optically trapped particles and the quantification of the forces acting on them. A new detection method for simultaneous, three-dimensional tracking of multiple particles is presented, its performance is evaluated, and its...... usefulness is illustrated in specific application examples. Optical traps enable contact-less, all-optical manipulation of microscopic objects. Over the last decades, this laser-based micro-manipulation tool has facilitated numerous exciting discoveries within biology and physics, and it is today regarded...... as one of the workhorses of biophysical research. There exists a variety of implementations of optical traps, from simple single traps to complex multiple traps with engineered three-dimensional light fields. In comparison to single beam optical traps, multiple beam optical traps offer more freedom...

  14. Trap style influences wild pig behavior and trapping success

    Science.gov (United States)

    Williams, B.L.; Holtfreter, R.W.; Ditchkoff, S.S.; Grand, J.B.

    2011-01-01

    Despite the efforts of many natural resource professionals, wild pig (Sus scrofa) populations are expanding in many areas of the world. Although many creative techniques for controlling pig populations are being explored, trapping has been and still is themost commonly usedmethod of population control formany public and private land managers. We conducted an observational study to examine the efficiency of 2 frequently used trap styles: a small, portable box-style trap and a larger, semi-permanent, corral-style trap.We used game cameras to examine patterns of trap entry by wild pigs around each style of trap, and we conducted a trapping session to compare trapping success between trap styles. Adult female and juvenile wild pigs entered both styles of trap more readily than did adult males, and adult males seemed particularly averse to entering box traps. Less than 10% of adult male visits to box traps resulted in entries, easily the least percentage of any class at any style of trap. Adult females entered corral traps approximately 2.2 times more often per visit than box traps and re-entered corral traps >2 times more frequently. Juveniles entered and reentered both box and corral traps at similar rates. Overall (all-class) entry-per-visit rates at corral traps (0.71) were nearly double that of box traps (0.37). Subsequent trapping data supported these preliminary entry data; the capture rate for corral traps was >4 times that of box traps. Our data suggest that corral traps are temporally and economically superior to box traps with respect to efficiency; that is, corral traps effectively trap more pigs per trap night at a lower cost per pig than do box traps. ?? 2011 The Wildlife Society.

  15. Neutral atom traps.

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  16. Versatile electrostatic trap

    NARCIS (Netherlands)

    van Veldhoven, J.; Bethlem, H.L.; Schnell, M.; Meijer, G.

    2006-01-01

    A four electrode electrostatic trap geometry is demonstrated that can be used to combine a dipole, quadrupole, and hexapole field. A cold packet of ND315 molecules is confined in both a purely quadrupolar and hexapolar trapping field and additionally, a dipole field is added to a hexapole field to

  17. Optical characterization of HfO(2) thin films

    Czech Academy of Sciences Publication Activity Database

    Franta, D.; Ohlídal, I.; Nečas, D.; Vižďa, F.; Caha, O.; Hasoň, M.; Pokorný, Pavel

    2011-01-01

    Roč. 519, č. 18 (2011), s. 6085-6091 ISSN 0040-6090 Institutional research plan: CEZ:AV0Z20650511 Keywords : optical properties * ellipsometry * spectrophotometry * hafnium oxide * transition-metal oxide * Urbach tail Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.890, year: 2011

  18. Management of insect pests using semiochemical traps

    DEFF Research Database (Denmark)

    Baroffio, C. A.; Guibert, V.; Richoz, P.

    2016-01-01

    In the absence of effective control measures, the strawberry blossom weevil (Anthonomus rubi) (SBW) and the raspberry beetle (Byturus tomentosus) (RB) cause large (10 - >80%) losses in yield and quality in organically grown raspberry. Attractive lures for both pests were combined into a single....... The aim is to develop optimized lures and cost-effective trap designs for mass trapping and to determine the optimum density and spatial and temporal patterns of deployment of the traps for controlling these pests by mass trapping. The combination between an aggregation pheromone that attracts Anthonomus...... multitrap for the economical management of both of these pests at the same time. This is one of the first approaches to pest management of non-lepidopteran insect pests of horticultural crops using semiochemicals in the EU, and probably the first to target multiple species from different insect orders...

  19. Research on the practical parameters of sex pheromone traps for the oriental fruit moth.

    Science.gov (United States)

    Zhao, Zhi-guo; Rong, Er-hua; Li, Sheng-Cai; Zhang, Li-jun; Kong, Wei-na; Hu, Rong-shan; Zhang, Jin-tong; Ma, Rui-yan

    2013-10-01

    The oriental fruit moth (OFM) is a worldwide fruit-boring insect pest. In China, OFM monitoring traps use a sex pheromone lure, but their overall design is varied. As such, there is a critical need to develop a standardised OFM trap design. In this field study, ten different trap shapes in varying combinations of colours and sizes (such as trap length and surface area) were examined. The results showed that there was no significant difference in the trapping efficiency between eight colours. The ship-shaped trap could kill more OFM in a short period, whereas the automatic watering basin trap could be more effective in the long run. The optimal trapping diameter of the basin trap was 25 cm. The trapping efficiency of triangle traps with diameters of less than 10 cm was better than that of triangle traps with diameters of over 30 cm. The trapping number of pasteboard traps obviously declined when the surface area increased, and the pasteboard trap with a single board possessed excellent trapping efficiency. The results provide useful information for the design of standardised sex pheromone traps for monitoring as well as trapping of OFM in the field. © 2013 Society of Chemical Industry.

  20. Studies on cold atoms trapped in a Quasi-Electrostatic optical dipole trap

    International Nuclear Information System (INIS)

    Roy, Sanjukta; Chaudhuri, Saptarishi; Unnikrishnan, C S

    2007-01-01

    We discuss the results of measurements of the temperature and density distribution of cold Rubidium atoms trapped and cooled in an optical dipole trap formed by focussed CO 2 laser beams at a wavelength of 10.6 μm from a cold, collimated and intense atomic beam of flux 2 x 10 10 atoms/s produced using an elongated 2D + MOT. A large number of rubidium atoms (≥ 10 10 ) were trapped in the MOT and the number density of atoms were further increased by making a temporal dark MOT to prevent density-limiting processes like photon rescattering by atoms at the trap centre. Subsequently, between 10 7 to 10 8 cold atoms at a temperature below 30 μK were transferred into a Quasi-Electrostatic trap (QUEST) formed by focussed CO 2 laser beams at the MOT centre. Both single beam and crossed dual beam dipole traps were studied with a total output power of 50 W from the CO 2 laser with focal spot sizes less than 100 microns. Various measurements were done on the cold atoms trapped in the dipole trap. The total atom number in the dipole trap and the spatial atom number density distribution in the trap was measured by absorption imaging technique. The temperature was determined from time-of-flight (TOF) data as well as from the absorption images after ballistic expansion of the atom cloud released from the dipole trap. The results from measurements are used to maximize the initial phase-space density prior to forced evaporative cooling to produce a Bose-Einstein Condensate

  1. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  2. Investigation of HIV-1 infected and uninfected cells using the optical trapping technique

    CSIR Research Space (South Africa)

    Ombinda-Lemboumba, Saturnin

    2017-02-01

    Full Text Available Optical trapping has emerged as an essential tool for manipulating single biological material and performing sophisticated spectroscopy analysis on individual cell. The optical trapping technique has been used to grab and immobilize cells from a...

  3. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  4. Ion Trap Quantum Computing

    Science.gov (United States)

    2011-12-01

    stored ions,” Adv. Atom Mol. Phys., vol. Volume 3, pp. 53–72 1968. [48] P. H. Dawson, Quadrupole Mass Spectometry and Its Applications, Melville, NY... DATE December 2011 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Ion trap Quantum Computing 5. FUNDING NUMBERS 6...researcher [30] that introduced the concept of ion traps in the 1950s. His experiments focused on separating atoms with different masses in order to

  5. Search For Trapped Antihydrogen

    CERN Document Server

    Andresen, Gorm B.; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D.; Bray, Crystal C.; Butler, Eoin; Cesar, Claudio L.; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C.; Gill, David R.; Hangst, Jeffrey S.; Hardy, Walter N.; Hayano, Ryugo S.; Hayden, Michael E.; Humphries, Andrew J.; Hydomako, Richard; Jonsell, Svante; Jorgensen, Lars V.; Kurchaninov, Lenoid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Nasr, Sarah Seif El; Silveira, Daniel M.; So, Chukman; Storey, James W.; Thompson, Robert I.; van der Werf, Dirk P.; Wilding, Dean; Wurtele, Jonathan S.; Yamazaki, Yasunori

    2011-01-01

    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consist...

  6. Evaluation of double-decker traps for emerald ash borer (Coleoptera: Buprestidae).

    Science.gov (United States)

    Poland, Therese M; McCullough, Deborah G; Anulewicz, Andrea C

    2011-04-01

    Improved detection tools are needed for the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive forest insect from Asia that has killed millions of ash (Fraxinus spp.) trees in North America since its discovery in Michigan in 2002. We evaluated attraction of adult A. planipennis to artificial traps incorporating visual (e.g., height, color, silhouette) and olfactory cues (e.g., host volatiles) at field sites in Michigan. We developed a double-decker trap consisting of a 3-m-tall polyvinyl pipe with two purple prisms attached near the top. In 2006, we compared A. planipennis attraction to double-decker traps baited with various combinations of manuka oil (containing sesquiterpenes present in ash bark), a blend of four ash leaf volatiles (leaf blend), and a rough texture to simulate bark. Significantly more A. planipennis were captured per trap when traps without the rough texture were baited with the leaf blend and manuka oil lures than on traps with texture and manuka oil but no leaf blend. In 2007, we also tested single prism traps set 1.5 m above ground and tower traps, similar to double-decker traps but 6 m tall. Double-decker traps baited with the leaf blend and manuka oil, with or without the addition of ash leaf and bark extracts, captured significantly more A. planipennis than similarly baited single prism traps, tower traps, or unbaited double-decker traps. A baited double-decker trap captured A. planipennis at a field site that was not previously known to be infested, representing the first detection event using artificial traps and lures. In 2008, we compared purple or green double-decker traps, single prisms suspended 3-5 m above ground in the ash canopy (canopy traps), and large flat purple traps (billboard traps). Significantly more A. planipennis were captured in purple versus green traps, baited traps versus unbaited traps, and double-decker versus canopy traps, whereas billboard traps were intermediate. At sites

  7. A search for mixotrophy and mucus trap production in Alexandrium spp. and the dynamics of mucus trap formation in Alexandrium pseudogonyaulax

    DEFF Research Database (Denmark)

    Blossom, Hannah Eva; Bædkel, Tina Dencker; Tillmann, Urban

    2017-01-01

    , such as speed and frequency of trap formation as well as what happens to the trap after the A. pseudogonyaulax cell detaches from it. The percentage of A. pseudogonyaulax cells producing a mucus trap and the number of prey cells caught increased with increasing prey concentration, whereas the physical size...... by a single A. pseudogonyaulax cell after only 24 h. The attachment of an A. pseudogonyaulax cell to the trap only ceased during, and just following, cell division. Prey cells were, to some extent, capable of escaping from the mucus trap, but the trap remained sticky and continued catching prey for up to 48 h...

  8. Electrostatic model of semiconductor nanoparticles trapped

    Indian Academy of Sciences (India)

    A simple electrostatic model is applied to study the solvation energy and localization energy to inorganic semiconductor nanocrystallites trapped in polymer and ion conducting polymer electrolytes. The effective mass approximation has been applied to the system. In the single charge configuration, the dielectric constant of ...

  9. Electrostatic model of semiconductor nanoparticles trapped in ...

    Indian Academy of Sciences (India)

    A simple electrostatic model is applied to study the solvation energy and localization energy to inorganic semiconductor nanocrystallites trapped in polymer and ion conducting polymer electrolytes. The effective mass approximation has been applied to the system. In the single charge configuration, the dielectric constant of ...

  10. Torque and optical traps | Ibeneche | African Journal of Biotechnology

    African Journals Online (AJOL)

    Optical traps are an important tool for research in the field of single molecule biophysics. Recent advances in optical trapping have extended their functionality from simple linear manipulation and measurement of forces, to now the ability to rotate objects and measure torques. This mini review summarizes these recent ...

  11. A Rotating-Bears Optical Dipole Trap for Cold Aatoms

    International Nuclear Information System (INIS)

    Friedman, N.; Ozeri, R.; Khaykovich, L.; Davidson, N.

    1999-01-01

    In the last few years, several optical dipole traps for cold atoms were demonstrated and used to study cold atomic collisions, long atomic coherence times and quantum collective effects. Blue-detuned dipole traps, where repulsive light forces confines atoms mostly in dark, offer long storage, and photon-scattering times, combined with strong confinement forces. Unfortunately, such blue-detuned dipole traps involve complicated light intensity distributions that require either multiple laser beams or complicated phase elements. Here, we propose and demonstrate a novel configuration for a single-beam blue-detuned dipole trap, which enables larger trapping volume, and fast temporal changes in the trap size and shape. Our trap consists of a tightly-focused laser beam which is rapidly rotated (with rotation frequency up to 400 khz) with two orthogonal acousto optical scanners. For very high rotation frequencies the atoms feel a time-averaged static dipole potential. Therefore, when the radius of rotation is larger than the beam size, a dark volume which is completely surrounded by light is obtained around the focal region. By changing the rotation radius and the trapping laser intensity and detuning, the trap dimensions and oscillation frequency could be changed over a large parameter range. In particular trap diameters were changed between 50 to 220 microns and trap length was changed between 3.5 to 16 mm. ∼10 6 atoms were loaded into the rotating-beam dipole trap from a magneto optical trap. The density of the trapped atoms was 4x10 10 atoms/cm 3 ,their temperature was -6 pK. and the trap (1/e) lifetime was 0.65 sec, limited by collisions with background atoms. When the rotation frequency was decreased below the oscillation frequency of the atoms in the trap, the trap became unstable, and a sharp reduction of the trap lifetime was observed, in agreement with our theoretical analysis. Finally, we demonstrated adiabatic compression of atoms in the trap by decreasing

  12. Optimal optical trap for bacterial viability

    Science.gov (United States)

    Mirsaidov, Utkur; Timp, Winston; Timp, Kaethe; Mir, Mustafa; Matsudaira, Paul; Timp, Gregory

    2008-08-01

    Optical trapping is a powerful tool for the micromanipulation of living cells—especially bacteria—but photodamage induced by the laser beam can adversely affect viability. We have explored optical trapping conditions in the near infrared (840-930nm) that preserve the viability of E. coli, as measured by gene expression of green fluorescent protein. We have found that time-sharing the optical traps, i.e., dwelling only 10μs-1ms on the cell, improves viability relative to continuous wave (CW) exposure for the same exposure time. We have also observed that similar to CW traps the photodamage in a time-shared trap depends weakly on wavelength, but linearly on peak power, implying an effect induced by single photon absorption. Taken altogether, integrating the exposure time and peak power, the data indicate that there is a lethal energy dose of about 5J for E. coli. Thus a single parameter—the energy—can be used to describe the limitation on viability.

  13. Engineering of tunnel barrier for highly integrated nonvolatile memory applications

    Science.gov (United States)

    You, Hee-Wook; Son, Jung-Woo; Cho, Won-Ju

    2011-03-01

    In this paper, the engineered tunnel barrier technology is introduced by using the engineered tunnel barrier of VARIOT type (SiO2/Si3N4/SiO2) and CRESTED type (Si3N4/SiO2/Si3N4) with Si3N4 and high- k HfO2 layers as charge trapping layers, respectively. In addition, the high- k stacked VARIOT type of SiO2/HfO2/Al2O3 and Al2O3/HfO2/Al2O3 are compared with O/N/O tunnel barrier memory. As a result, the engineered tunnel barrier memory device showed excellent memory characteristics compared to the single SiO2 tunnel barrier memory device, such as very high P/E (program/erase) speed, good retention time and no degradation in endurance characteristics.

  14. Effect of Lures and Colors on Capture of Lady Beetles (Coleoptera: Coccinellidae) in Tedders Pyramidal Traps.

    Science.gov (United States)

    Kemp, E A; Cottrell, T E

    2015-10-01

    Purposeful attraction and aggregation of adult Coccinellidae at target sites would be useful for sampling purposes and pest suppression. We field-tested 1) lures in yellow and black pyramidal traps and 2) pyramidal traps that had been painted one or two colors (without lures) to determine if lures or trap color affected capture of adult Coccinellidae. In only one experiment with lures did a single rate of limonene increase trap capture, whereas no other lure ever did. Yellow traps, regardless of using a lure, always captured significantly more lady beetles than black traps. When single-color red, orange, yellow, green, blue, purple, black, and white traps (without lures) were tested, yellow traps captured significantly more lady beetles. Of all species of Coccinellidae captured in these single-color traps, 95% were the exotic species Harmonia axyridis (Pallas) and Coccinella septempunctata L. H. axyridis alone dominated trap capture comprising 74.1% of all lady beetles. Two-color traps (yellow-green, yellow-orange, yellow-white, and yellow-black) never captured more than single-color yellow traps. These results demonstrate that yellow pyramidal traps can be used to purposefully attract, and when used without a collection device, possibly aggregate adult Coccinellidae at targeted field sites. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  15. Antihydrogen formation and trapping

    CERN Document Server

    Madsen, Niels

    2014-01-01

    Antihydrogen, the bound state of a positron and an antiproton, is the only neutral pure antimatter system available to date, and as such provides an excellent testbed for probing fundamental symmetries between matter and antimatter. In this chapter we will concentrate on the physics issues that were addressed in order to achieve the first trapping of antihydrogen. Antihydrogen can be created by merging antiprotons and positrons in a Penning–Malmberg trap. However, traps for antihydrogen are at best about ∼50 μeV deep and, as no readily available cooling techniques exist, the antihydrogen must be formed trapped. Antiprotons are sourced from an accelerator and arrive with a typical energy of 5.3 MeV. The large numbers of positrons needed means that the self-potential of the positrons are of order 2–5 V. With such energetic ingredients a range of plasma control and diagnostic techniques must be brought to bear on the particles to succeed in making any antihydrogen cold enough to be trapped.

  16. Thermoelectrically cooled water trap

    Science.gov (United States)

    Micheels, Ronald H [Concord, MA

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  17. Angular trapping of anisometric nano-objects in a fluid.

    Science.gov (United States)

    Celebrano, Michele; Rosman, Christina; Sönnichsen, Carsten; Krishnan, Madhavi

    2012-11-14

    We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the object, the method is insensitive to the object's dielectric function. Furthermore, levitation of the assembled objects renders them amenable to individual manipulation using externally applied optical, electrical, or hydrodynamic fields, raising prospects for reconfigurable chip-based nano-object assemblies.

  18. Optimising camera traps for monitoring small mammals.

    Directory of Open Access Journals (Sweden)

    Alistair S Glen

    Full Text Available Practical techniques are required to monitor invasive animals, which are often cryptic and occur at low density. Camera traps have potential for this purpose, but may have problems detecting and identifying small species. A further challenge is how to standardise the size of each camera's field of view so capture rates are comparable between different places and times. We investigated the optimal specifications for a low-cost camera trap for small mammals. The factors tested were 1 trigger speed, 2 passive infrared vs. microwave sensor, 3 white vs. infrared flash, and 4 still photographs vs. video. We also tested a new approach to standardise each camera's field of view. We compared the success rates of four camera trap designs in detecting and taking recognisable photographs of captive stoats (Mustelaerminea, feral cats (Felis catus and hedgehogs (Erinaceuseuropaeus. Trigger speeds of 0.2-2.1 s captured photographs of all three target species unless the animal was running at high speed. The camera with a microwave sensor was prone to false triggers, and often failed to trigger when an animal moved in front of it. A white flash produced photographs that were more readily identified to species than those obtained under infrared light. However, a white flash may be more likely to frighten target animals, potentially affecting detection probabilities. Video footage achieved similar success rates to still cameras but required more processing time and computer memory. Placing two camera traps side by side achieved a higher success rate than using a single camera. Camera traps show considerable promise for monitoring invasive mammal control operations. Further research should address how best to standardise the size of each camera's field of view, maximise the probability that an animal encountering a camera trap will be detected, and eliminate visible or audible cues emitted by camera traps.

  19. Optimising camera traps for monitoring small mammals.

    Science.gov (United States)

    Glen, Alistair S; Cockburn, Stuart; Nichols, Margaret; Ekanayake, Jagath; Warburton, Bruce

    2013-01-01

    Practical techniques are required to monitor invasive animals, which are often cryptic and occur at low density. Camera traps have potential for this purpose, but may have problems detecting and identifying small species. A further challenge is how to standardise the size of each camera's field of view so capture rates are comparable between different places and times. We investigated the optimal specifications for a low-cost camera trap for small mammals. The factors tested were 1) trigger speed, 2) passive infrared vs. microwave sensor, 3) white vs. infrared flash, and 4) still photographs vs. video. We also tested a new approach to standardise each camera's field of view. We compared the success rates of four camera trap designs in detecting and taking recognisable photographs of captive stoats (Mustelaerminea), feral cats (Felis catus) and hedgehogs (Erinaceuseuropaeus). Trigger speeds of 0.2-2.1 s captured photographs of all three target species unless the animal was running at high speed. The camera with a microwave sensor was prone to false triggers, and often failed to trigger when an animal moved in front of it. A white flash produced photographs that were more readily identified to species than those obtained under infrared light. However, a white flash may be more likely to frighten target animals, potentially affecting detection probabilities. Video footage achieved similar success rates to still cameras but required more processing time and computer memory. Placing two camera traps side by side achieved a higher success rate than using a single camera. Camera traps show considerable promise for monitoring invasive mammal control operations. Further research should address how best to standardise the size of each camera's field of view, maximise the probability that an animal encountering a camera trap will be detected, and eliminate visible or audible cues emitted by camera traps.

  20. An Atomic Abacus: Trapped ion quantum computing experiments at NIST

    Science.gov (United States)

    Demarco, Brian

    2003-03-01

    Trapped atomic ions are an ideal system for exploring quantum information science because deterministic state preparation and efficient state detection are possible and coherent manipulation of atomic systems is relatively advanced. In our experiment, a few singly charged Be ions are confined by static and radio-frequency electric fields in a micro-machined linear Paul trap. The internal and motional states of the ions are coherently manipulated using applied laser light. Our current work focuses on demonstrating the necessary ingredients to produce a scalable quantum computing scheme and on simplifying and improving quantum logic gates. I will speak about a new set of experiments that was made possible by recent improvements in trap technology. A novel trap with multiple trapping regions was used to demonstrate the first steps towards a fully scalable quantum computing scheme. Single ions were ``shuttled" between trapping regions without disturbing the ion's motional and internal state, and two ions were separated from a single to two different trapping zones. Improvements in the trap manufacturing process has led to a reduction of nearly two orders of magnitude in the ion's motional heating rate, making possible two new improved logic gates. The first gate utilizes the wave-packet nature of the ions to tune the laser-atom interaction and achieve a controlled-NOT gate between a single ion's spin and motional states. The second, a two-ion phase gate, uses phase-space dynamics to produce a state-sensitive geometric phase. I will end with a quick look at experiments using a Mg ion to sympathetically cool a simultaneously trapped Be ion and a glimpse of the next generation of ions traps currently under construction.

  1. Redesigning octopus traps

    Directory of Open Access Journals (Sweden)

    Eduarda Gomes

    2014-06-01

    In order to minimise the identified problems in the actual traps, the present work proposes a new design with the aim of reducing the volume and weight during transport, and also during onshore storage. Alternative materials to avoid corrosion and formation of encrustations were also proposed.

  2. Progress Towards a Practical Multicell Positron Trap

    Science.gov (United States)

    Danielson, J. R.

    2013-10-01

    The physics and technology of positron confinement is central to a range of applications at the forefront of antimatter science. Progress in this area has been driven by the development of a suite of novel non-neutral plasma techniques whereby up to 4 ×109 positrons have now been trapped and stored. However the next generation of experiments will require orders of magnitude more positrons. This talk describes techniques to increase storage capacity to >=1012 using a novel multi-cell trap architecture. Plasmas will be stored in separate Penning-Malmberg traps (``cells'') arranged in parallel off the magnetic axis to maximize use of the magnetic field volume while minimizing the required confinement voltages. Experiments with electrons in a test structure will be described to explore the basic physics and technology of the multicell concept and to set the design of a 21-cell trap for 1012 positrons. Over 50% of a trapped plasma has been injected into an off-axis cell, and hour-long confinement of 2 ×108 particles has been achieved using rotating electric fields. Experiments are under way to identify the limits of the injection process and demonstrate confinement >1010 particles in a single off-axis cell using kilovolt confinement potentials. In collaboration with N. C. Hurst, C. J. Baker, and C. M. Surko. This work is supported by U.S. DTRA and the U.S. DOE/NSF plasma partnership.

  3. The Initial Rise Method in the case of multiple trapping levels

    Energy Technology Data Exchange (ETDEWEB)

    Furetta, C. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Guzman, S.; Cruz Z, E. [Instituto de Ciencias Nucleares, UNAM, A. P. 70-543, 04510 Mexico D. F. (Mexico)

    2009-10-15

    The aim of the paper is to extent the well known Initial Rise Method (IR) to the case of multiple trapping levels. The IR method is applied to the minerals extracted from Nopal herb and Oregano spice because the thermoluminescent glow curves shape suggests a trap distribution instead of a single trapping level. (Author)

  4. Trapping metastable chromium atoms in a crossed optical dipole trap

    Science.gov (United States)

    Beaufils, Q.; Chicireanu, R.; Pouderous, A.; Laburthe-Tolra, B.; Maréchal, E.; Vernac, L.; Keller, J.-C.; Gorceix, O.

    We report the fast accumulation of up to 1 million 52Cr metastable atoms in a mixed trap formed by the superposition of a quadrupolar magnetic trap and a strongly confining optical trap. The cloud is at a temperature of 100 μK with a peak density of 1018 atoms/m3, which is a promising starting point to reach quantum degeneracy by forced evaporation in an optical trap.

  5. A live-trap and trapping technique for fossorial mammals

    African Journals Online (AJOL)

    injuries, the trauma involved in such capture does not promote acclimatization ... involved in the evolution of trap design for use in various field conditions and live capture of other fossorial mammals are discussed. Materials and Methods. Constructing the .... work of setting traps halved by placing only one trap instead of the ...

  6. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  7. Escaping the tolerance trap

    International Nuclear Information System (INIS)

    Hammoudeh, S.; Madan, V.

    1994-01-01

    In order to examine the implications of the weakening of OPEC's responsiveness in adjusting its production levels, this paper explicitly incorporates rigidity in the quantity adjustment mechanism, thereby extending previous research which assumed smooth quantity adjustments. The rigidity is manifested in a tolerance range for the discrepancy between the declared target price and that of the market. This environment gives rise to a 'tolerance trap' which impedes the convergence process and inevitably brings the market to a standstill before its reaches the targeted price and revenue objectives. OPEC's reaction to the standstill has important implications for the achievement of the target-based equilibrium and for the potential collapse of the market price. This paper examines OPEC's policy options in the tolerance trap and reveals that the optional policy in order to break this impasse and move closer to the equilibrium point is gradually to reduce output and not to flood the market. (Author)

  8. Sediment Trapping in Estuaries

    Science.gov (United States)

    Burchard, Hans; Schuttelaars, Henk M.; Ralston, David K.

    2018-01-01

    Estuarine turbidity maxima (ETMs) are generated by a large suite of hydrodynamic and sediment dynamic processes, leading to longitudinal convergence of cross-sectionally integrated and tidally averaged transport of cohesive and noncohesive suspended particulate matter (SPM). The relative importance of these processes for SPM trapping varies substantially among estuaries depending on topography, fluvial and tidal forcing, and SPM composition. The high-frequency dynamics of ETMs are constrained by interactions with the low-frequency dynamics of the bottom pool of easily erodible sediments. Here, we use a transport decomposition to present processes that lead to convergent SPM transport, and review trapping mechanisms that lead to ETMs at the landward limit of the salt intrusion, in the freshwater zone, at topographic transitions, and by lateral processes within the cross section. We use model simulations of example estuaries to demonstrate the complex concurrence of ETM formation mechanisms. We also discuss how changes in SPM trapping mechanisms, often caused by direct human interference, can lead to the generation of hyperturbid estuaries.

  9. Decelerating and Trapping Large Polar Molecules.

    Science.gov (United States)

    Patterson, David

    2016-11-18

    Manipulating the motion of large polyatomic molecules, such as benzonitrile (C 6 H 5 CN), presents significant difficulties compared to the manipulation of diatomic molecules. Although recent impressive results have demonstrated manipulation, trapping, and cooling of molecules as large as CH 3 F, no general technique for trapping such molecules has been demonstrated, and cold neutral molecules larger than 5 atoms have not been trapped (M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, G. Rempe, Nature 2012, 491, 570-573). In particular, extending Stark deceleration and electrostatic trapping to such species remains challenging. Here, we propose to combine a novel "asymmetric doublet state" Stark decelerator with recently demonstrated slow, cold, buffer-gas-cooled beams of closed-shell volatile molecules to realize a general system for decelerating and trapping samples of a broad range of volatile neutral polar prolate asymmetric top molecules. The technique is applicable to most stable volatile molecules in the 100-500 AMU range, and would be capable of producing trapped samples in a single rotational state and at a motional temperature of hundreds of mK. Such samples would immediately allow for spectroscopy of unprecedented resolution, and extensions would allow for further cooling and direct observation of slow intramolecular processes such as vibrational relaxation and Hertz-level tunneling dynamics. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Screening the Hanford tanks for trapped gas

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, P.

    1995-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford`s nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology is not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list.

  11. Quantum interference from remotely trapped ions

    International Nuclear Information System (INIS)

    Gerber, S; Rotter, D; Hennrich, M; Blatt, R; Rohde, F; Schuck, C; Almendros, M; Gehr, R; Dubin, F; Eschner, J

    2009-01-01

    We observe quantum interference of photons emitted by two continuously laser-excited single ions, independently trapped in distinct vacuum vessels. High contrast two-photon interference is observed in two experiments with different ion species, Ca + and Ba + . Our experimental findings are quantitatively reproduced by Bloch equation calculations. In particular, we show that the coherence of the individual resonance fluorescence light field is determined from the observed interference.

  12. Quantum interference from remotely trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, S; Rotter, D; Hennrich, M; Blatt, R [Institute for Experimental Physics, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Rohde, F; Schuck, C; Almendros, M; Gehr, R; Dubin, F; Eschner, J [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Av del Canal OlImpic, E-08860 Castelldefels (Spain)], E-mail: francois.dubin@icfo.es

    2009-01-15

    We observe quantum interference of photons emitted by two continuously laser-excited single ions, independently trapped in distinct vacuum vessels. High contrast two-photon interference is observed in two experiments with different ion species, Ca{sup +} and Ba{sup +}. Our experimental findings are quantitatively reproduced by Bloch equation calculations. In particular, we show that the coherence of the individual resonance fluorescence light field is determined from the observed interference.

  13. Can camera traps monitor Komodo dragons a large ectothermic predator?

    Science.gov (United States)

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species.

  14. Entropic cages for trapping DNA near a nanopore

    Science.gov (United States)

    Liu, Xu; Skanata, Mirna Mihovilovic; Stein, Derek

    2015-02-01

    Nanopores can probe the structure of biopolymers in solution; however, diffusion makes it difficult to study the same molecule for extended periods. Here we report devices that entropically trap single DNA molecules in a 6.2-femtolitre cage near a solid-state nanopore. We electrophoretically inject DNA molecules into the cage through the nanopore, pause for preset times and then drive the DNA back out through the nanopore. The saturating recapture time and high recapture probability after long pauses, their agreement with a convection-diffusion model and the observation of trapped DNA under fluorescence microscopy all confirm that the cage stably traps DNA. Meanwhile, the cages have 200 nm openings that make them permeable to small molecules, like the restriction endonuclease we use to sequence-specifically cut trapped DNA into fragments whose number and sizes are analysed upon exiting through the nanopore. Entropic cages thus serve as reactors for chemically modifying single DNA molecules.

  15. The Honey Trap

    DEFF Research Database (Denmark)

    Wagner, Michael

    Michael F. Wagner: The Honey Trap –The democratization of leisure through automobilism The automobile has achieved a central position in modern everyday life as an essential artefact to mobility. This raises the question how automobiles have been mediated for mass consumption? The central thesis...... demonstrates the manner in which automobilism in Denmark was invented, constructed, represented, and appropriated as a leisure culture after 1900 through a mediation and consumption junction that was initiated and promoted by FDM. This is basically the story of unlimited access to Sunday driving or the daytrip...

  16. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  17. Particle trapping induced by the interplay between coherence and decoherence

    International Nuclear Information System (INIS)

    Yi Sangyong; Choi, Mahn-Soo; Kim, Sang Wook

    2009-01-01

    We propose a novel scheme to trap a particle based on a delicate interplay between coherence and decoherence. If the decoherence occurs as a particle is located in the scattering region and subsequently the appropriate destructive interference takes place, the particle can be trapped in the scattering area. We consider two possible experimental realizations of such trapping: a ring attached to a single lead and a ring attached to two leads. Our scheme has nothing to do with a quasi-bound state of the system, but has a close analogy with the weak localization phenomena in disordered conductors.

  18. Magnetic traps with a spherical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1981-01-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphasis on Tornado spiral coil configurations. The confinement and heating of static plasms in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In addition, the mode of rotating plasma operation by crossed electric and magnetic fields is described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps in the creation and containment of hot plasmas. (orig.)

  19. Electronic traps in OLED transport layers: influence of doping and accelerated aging

    Science.gov (United States)

    Steiger, Juergen; Karg, Siegfried; von Seggern, Heinz

    2001-02-01

    The methods of thermally stimulated currents (TSC) and thermally stimulated luminescence (TSL) were employed to reveal the trap structure of the most prominent organic semiconductors materials such as tris-8-(hydroxyquinoline) (Alq3), N-N'-di(1-naphtyl)-N-N'-diphenylbenzidine ((alpha) -NPD), and 4,4',4'-tris-(N-2-naphtyl)-N-phenylamino- triphenylamine (1-Naph-DATA). The energetic trap depths and a lower limit of the trap densities were derived for all investigated materials by means of the initial-rise method and curve fitting techniques. Typical activation energies range between 0.1 and 0.6 eV and trap concentrations differ between 1014 and 1017 cm-3. Most materials exhibit trap levels with a single activation energy, however, in Alq3 a brought distribution of trap depths will be reported. In addition, the polarity of the dominant trap levels was determined by a comparison of TSC spectra from optically and electrically filled traps. Besides the trap detection and characterization the effect of doping and accelerated aging on the trap structure will be shown. TSC and TSL results on rubrene doped Alq3 reveals a characteristic shift in the trap depth indicating new rubrene related trapping site. The effect of aging on the trap structure of organic semiconductors in 'potentially harmful' atmospheres such as oxygen and humidity and their correlation to I-V characteristics will also be reported.

  20. Quantum Rabi Model with Trapped Ions.

    Science.gov (United States)

    Pedernales, J S; Lizuain, I; Felicetti, S; Romero, G; Lamata, L; Solano, E

    2015-10-20

    We propose the quantum simulation of the quantum Rabi model in all parameter regimes by means of detuned bichromatic sideband excitations of a single trapped ion. We show that current setups can reproduce, in particular, the ultrastrong and deep strong coupling regimes of such a paradigmatic light-matter interaction. Furthermore, associated with these extreme dipolar regimes, we study the controlled generation and detection of their entangled ground states by means of adiabatic methods. Ion traps have arguably performed the first quantum simulation of the Jaynes-Cummings model, a restricted regime of the quantum Rabi model where the rotating-wave approximation holds. We show that one can go beyond and experimentally investigate the quantum simulation of coupling regimes of the quantum Rabi model that are difficult to achieve with natural dipolar interactions.

  1. Scalable quantum search using trapped ions

    International Nuclear Information System (INIS)

    Ivanov, S. S.; Ivanov, P. A.; Linington, I. E.; Vitanov, N. V.

    2010-01-01

    We propose a scalable implementation of Grover's quantum search algorithm in a trapped-ion quantum information processor. The system is initialized in an entangled Dicke state by using adiabatic techniques. The inversion-about-average and oracle operators take the form of single off-resonant laser pulses. This is made possible by utilizing the physical symmetries of the trapped-ion linear crystal. The physical realization of the algorithm represents a dramatic simplification: each logical iteration (oracle and inversion about average) requires only two physical interaction steps, in contrast to the large number of concatenated gates required by previous approaches. This not only facilitates the implementation but also increases the overall fidelity of the algorithm.

  2. Trapped individual ion at absolute zero temperature

    Science.gov (United States)

    Yu, Nan; Dehmelt, Hans; Nagourney, Warren

    1989-01-01

    Laser cooling and ion trapping have progressed to such an extent that one can now speak of realizing a confined atom at absolute zero temperature. In this short publication, we analyze an experiment toward such realization using a single Ba+ ion in a miniature rf trap. The Ba+ ion is first laser-cooled to the limit where the ion spends most of its time in the zero-point energy state. Then a test sequence allows one to verify whether or not the ion is actually in its zero-point state. The test sequence may also serve as a device for state selection of an atom at absolute zero temperature. PMID:16594054

  3. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  4. A minimal optical trapping and imaging microscopy system.

    Directory of Open Access Journals (Sweden)

    Carmen Noemí Hernández Candia

    Full Text Available We report the construction and testing of a simple and versatile optical trapping apparatus, suitable for visualizing individual microtubules (∼25 nm in diameter and performing single-molecule studies, using a minimal set of components. This design is based on a conventional, inverted microscope, operating under plain bright field illumination. A single laser beam enables standard optical trapping and the measurement of molecular displacements and forces, whereas digital image processing affords real-time sample visualization with reduced noise and enhanced contrast. We have tested our trapping and imaging instrument by measuring the persistence length of individual double-stranded DNA molecules, and by following the stepping of single kinesin motor proteins along clearly imaged microtubules. The approach presented here provides a straightforward alternative for studies of biomaterials and individual biomolecules.

  5. Injection into electron plasma traps

    International Nuclear Information System (INIS)

    Gorgadze, Vladimir; Pasquini, Thomas A.; Fajans, Joel; Wurtele, Jonathan S.

    2003-01-01

    Computational studies and experimental measurements of plasma injection into a Malmberg-Penning trap reveal that the number of trapped particles can be an order of magnitude higher than predicted by a simple estimates based on a ballistic trapping model. Enhanced trapping is associated with a rich nonlinear dynamics generated by the space-charge forces of the evolving trapped electron density. A particle-in-cell simulation is used to identify the physical mechanisms that lead to the increase in trapped electrons. The simulations initially show strong two-stream interactions between the electrons emitted from the cathode and those reflected off the end plug of the trap. This is followed by virtual cathode oscillations near the injection region. As electrons are trapped, the initially hollow longitudinal phase-space is filled, and the transverse radial density profile evolves so that the plasma potential matches that of the cathode. Simple theoretical arguments are given that describe the different dynamical regimes. Good agreement is found between simulation and theory

  6. Quantum computing with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.

    1998-01-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  7. Raman microspectroscopy of optically trapped micro- and nanoobjects

    Science.gov (United States)

    Jonáš, Alexandr; Ježek, Jan; Šerý, Mojmír; Zemánek, Pavel

    2008-12-01

    We describe and characterize an experimental system for Raman microspectroscopy of micro- and nanoobjects optically trapped in aqueous suspensions with the use of a single-beam gradient optical trap (Raman tweezers). This system features two separate lasers providing light for the optical trapping and excitation of the Raman scattering spectra from the trapped specimen, respectively. Using independent laser beams for trapping and spectroscopy enables optimizing the parameters of both beams for their respective purposes. Moreover, it is possible to modulate the position of the trapped object relative to the Raman beam focus for maximizing the detected Raman signal and obtaining spatially resolved images of the trapped specimen. Using this experimental system, we have obtained Raman scattering spectra of individual optically confined micron and sub-micron sized polystyrene beads and baker's yeast cells. Sufficiently high signal-to-noise ratio of the spectra could be achieved using a few tens of milliwatts of the Raman beam power and detector integration times on the order of seconds.

  8. Electromagnetic trapping of cold atoms

    International Nuclear Information System (INIS)

    Balykin, V.I.; Minogin, V.G.; Letokhov, V.S.

    2000-01-01

    This review describes the methods of trapping cold atoms in electromagnetic fields and in the combined electromagnetic and gravity fields. We discuss first the basic types of the dipole radiation forces used for cooling and trapping atoms in the laser fields. We outline next the fundamentals of the laser cooling of atoms and classify the temperature limits for basic laser cooling processes. The main body of the review is devoted to discussion of atom traps based on the dipole radiation forces, dipole magnetic forces, combined dipole radiation-magnetic forces, and the forces combined of the dipole radiation-magnetic and gravity forces. Physical fundamentals of atom traps operating as waveguides and cavities for cold atoms are also considered. The review ends with the applications of cold and trapped atoms in atomic, molecular and optical physics. (author)

  9. Intracavity optical trapping with Ytterbium doped fiber ring laser

    Science.gov (United States)

    Sayed, Rania; Kalantarifard, Fatemeh; Elahi, Parviz; Ilday, F. Omer; Volpe, Giovanni; Maragò, Onofrio M.

    2013-09-01

    We propose a novel approach for trapping micron-sized particles and living cells based on optical feedback. This approach can be implemented at low numerical aperture (NA=0.5, 20X) and long working distance. In this configuration, an optical tweezers is constructed inside a ring cavity fiber laser and the optical feedback in the ring cavity is controlled by the light scattered from a trapped particle. In particular, once the particle is trapped, the laser operation, optical feedback and intracavity power are affected by the particle motion. We demonstrate that using this configuration is possible to stably hold micron-sized particles and single living cells in the focal spot of the laser beam. The calibration of the optical forces is achieved by tracking the Brownian motion of a trapped particle or cell and analysing its position distribution.

  10. Trapped quintessential inflation

    International Nuclear Information System (INIS)

    Bueno Sanchez, J.C.; Dimopoulos, K.

    2006-01-01

    Quintessential inflation is studied using a string modulus as the inflaton-quintessence field. The modulus begins its evolution at the steep part of its scalar potential, which is due to non-perturbative effects (e.g. gaugino condensation). It is assumed that the modulus crosses an enhanced symmetry point (ESP) in field space. Particle production at the ESP temporarily traps the modulus resulting in a brief period of inflation. More inflation follows, due to the flatness of the potential, since the ESP generates either an extremum (maximum or minimum) or a flat inflection point in the scalar potential. Eventually, the potential becomes steep again and inflation is terminated. After reheating the modulus freezes due to cosmological friction at a large value, such that its scalar potential is dominated by contributions due to fluxes in the extra dimensions or other effects. The modulus remains frozen until the present, when it can become quintessence and account for the dark energy necessary to explain the observed accelerated expansion

  11. Trap-mulching Argentine ants.

    Science.gov (United States)

    Silverman, Jules; Sorenson, Clyde E; Waldvogel, Michael G

    2006-10-01

    Argentine ant, Linepithema humile (Mayr), management is constrained, in large part, by polydomy where nestmates are distributed extensively across urban landscapes, particularly within mulch. Management with trap-mulching is a novel approach derived from trap-cropping where ants are repelled from a broad domain of nest sites to smaller defined areas, which are subsequently treated with insecticide. This concept was field-tested with mulch surrounding ornamental trees replaced with a narrow band of pine (Pinus spp.) needle mulch (trap) within a much larger patch of repellent aromatic cedar (Juniperus spp.) mulch. After ants reestablished around the trees, the pine needle mulch band was treated with 0.06% fipronil (Termidor). Poor results were obtained when the trap extended from the tree trunk to the edge of the mulched area. When the trap was applied as a circular band around the tree trunk reductions in the number of foraging ants were recorded through 14 d compared with an untreated mulch control, but not for longer periods. Reductions in the number of ant nests within mulch were no different between the trap mulch and any of the other treatments. We conclude that trap-mulching offers limited benefits, and that successful management of Argentine ants will require implementation of complementary or perhaps alternative strategies.

  12. Cryogenic setup for trapped ion quantum computing.

    Science.gov (United States)

    Brandl, M F; van Mourik, M W; Postler, L; Nolf, A; Lakhmanskiy, K; Paiva, R R; Möller, S; Daniilidis, N; Häffner, H; Kaushal, V; Ruster, T; Warschburger, C; Kaufmann, H; Poschinger, U G; Schmidt-Kaler, F; Schindler, P; Monz, T; Blatt, R

    2016-11-01

    We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with 40 Ca + and 88 Sr + ions. The instability of the laser manipulating the optical qubits in 40 Ca + is characterized by yielding a minimum of its Allan deviation of 2.4 ⋅ 10 -15 at 0.33 s. To evaluate the performance of the apparatus, we trapped 40 Ca + ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.

  13. A reservoir trap for antiprotons

    CERN Document Server

    Smorra, Christian; Franke, Kurt; Nagahama, Hiroki; Schneider, Georg; Higuchi, Takashi; Van Gorp, Simon; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Yamazaki, Yasunori; Ulmer, Stefan

    2015-01-01

    We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic particles.

  14. Optical trapping of nanoparticles with significantly reduced laser powers by using counter-propagating beams (Presentation Recording)

    Science.gov (United States)

    Zhao, Chenglong; LeBrun, Thomas W.

    2015-08-01

    Gold nanoparticles (GNP) have wide applications ranging from nanoscale heating to cancer therapy and biological sensing. Optical trapping of GNPs as small as 18 nm has been successfully achieved with laser power as high as 855 mW, but such high powers can damage trapped particles (particularly biological systems) as well heat the fluid, thereby destabilizing the trap. In this article, we show that counter propagating beams (CPB) can successfully trap GNP with laser powers reduced by a factor of 50 compared to that with a single beam. The trapping position of a GNP inside a counter-propagating trap can be easily modulated by either changing the relative power or position of the two beams. Furthermore, we find that under our conditions while a single-beam most stably traps a single particle, the counter-propagating beam can more easily trap multiple particles. This (CPB) trap is compatible with the feedback control system we recently demonstrated to increase the trapping lifetimes of nanoparticles by more than an order of magnitude. Thus, we believe that the future development of advanced trapping techniques combining counter-propagating traps together with control systems should significantly extend the capabilities of optical manipulation of nanoparticles for prototyping and testing 3D nanodevices and bio-sensing.

  15. Single cell electroporation on chip

    NARCIS (Netherlands)

    Valero, Ana

    2006-01-01

    In this thesis the results of the development of microfluidic cell trap devices for single cell electroporation are described, which are to be used for gene transfection. The performance of two types of Lab-on-a-Chip trapping devices was tested using beads and cells, whereas the functionality for

  16. Urban fall traps

    Directory of Open Access Journals (Sweden)

    Vera Lucia de Almeida Valsecchi

    2007-06-01

    Full Text Available Objectives: To evaluate the repercussion of falls in the elderly peoplewho live in the city of São Paulo and address - though synthetically- some questions regarding the city and its relation to aging and thequality of life of the elderly. Methods: This is a qualitative study. As fordata collection, “in-depth individual interviews” were applied. Selectionof subjects was guided by a procedure named as “network”. Results:Ten interviews were performed, nine with elderly individuals who werevictims of falls and one with a public authority representative. Dataresulting from interviews confirmed that significant changes occurin live of the elderly, who are victims of what has been called “urbantraps”, and that, by extrapolating mobility and dependence contexts,invade feelings, emotions and desires. The inappropriate environmentprovided by the city of São Paulo is confirmed by absence of adequateurban planning and lack of commitment of public authorities. It alsorevealed that the particular way of being old and living an elderlylife, in addition to right to citizenship, is reflected by major or lesserdifficulties imposed to the elderly to fight for their rights and have theirpublic space respected. Conclusion: The city of São Paulo is not anideal locus for an older person to live in. To the traps that are found inpublic places one can add those that are found in private places andthat contribute to the hard experience of falls among the elderly, anexperience that is sometimes fatal. In Brazil, the attention is basicallyfocused on the consequences of falls and not on prevention, by meansof urban planning that should meet the needs of the most vulnerablegroups - the physically disabled and the elderly.

  17. Innovation: the classic traps.

    Science.gov (United States)

    Kanter, Rosabeth Moss

    2006-11-01

    these traps.

  18. Funnel traps capture a higher proportion of juvenile Great Tits Parus major than automatic traps

    Science.gov (United States)

    Senar, J.C.; Domenech, J.; Conroy, M.J.

    1999-01-01

    We compared capture rates of Great Tits at funnel traps, where several birds can be captured at once so that some decoy effect may appear, to those obtained at automatic traps, where only one bird can be trapped at a time, at trapping stations in northeastern Spain. Juvenile birds were mainly captured at funnel traps (79% of juvenile captures), whereas adult plumaged birds were captured at both types of traps (51% of captures were at the funnel traps) (test between ages, Pfunnel traps, which may be acting as decoy traps, and thus are vulnerable to the same kinds of biases (eg age or body condition) that have been previously documented for decoy traps.

  19. The generic strategy trap.

    Science.gov (United States)

    Miller, D

    1992-01-01

    Management experts claim that for a company to thrive, it must concentrate on a single generic strategy--on one thing it does better than its rivals. But specialization also has its disadvantages. The author suggests that a broader, mixed approach may be preferable.

  20. Quadrupole Ion Traps

    Indian Academy of Sciences (India)

    elimination of transit-time broadening making it possible to do precision spectroscopic measurements on these ions. Several important experiments with single electron or ion have been undertaken to address problems related to basic physics, such as the measurement of the electron radius, precision measurements of ...

  1. Trapping Triatominae in Silvatic Habitats

    Directory of Open Access Journals (Sweden)

    Noireau François

    2002-01-01

    Full Text Available Large-scale trials of a trapping system designed to collect silvatic Triatominae are reported. Live-baited adhesive traps were tested in various ecosystems and different triatomine habitats (arboreal and terrestrial. The trials were always successful, with a rate of positive habitats generally over 20% and reaching 48.4% for palm trees of the Amazon basin. Eleven species of Triatominae belonging to the three genera of public health importance (Triatoma, Rhodnius and Panstrongylus were captured. This trapping system provides an effective way to detect the presence of triatomines in terrestrial and arboreal silvatic habitats and represents a promising tool for ecological studies. Various lines of research are contemplated to improve the performance of this trapping system.

  2. Evaporative cooling of trapped atoms

    International Nuclear Information System (INIS)

    Ketterle, W.; Van Druten, N.J.

    1996-01-01

    This report discusses the following topics on evaporative cooling of trapped atoms: Theoretical models for evaporative cooling; the role of collisions for real atoms; experimental techniques and summary of evaporative cooling experiments. 166 refs., 6 figs., 3 tabs

  3. PENTATRAP. A novel Penning-trap system for high-precision mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, Andreas

    2015-01-21

    The novel Penning-trap mass spectrometer PENTATRAP aims at mass-ratio determinations of medium-heavy to heavy ions with relative uncertainties below 10{sup -11}. From the mass ratios of certain ion species, the corresponding mass differences will be determined with sub-eV/c{sup 2} uncertainties. These mass differences are relevant for neutrino-mass experiments, a test of special relativity and tests of bound-state QED. Means to obtain the required precision are very stable trapping fields, the use of highly-charged ions produced by EBITs, a non-destructive cyclotron-frequency determination scheme employing detectors with single-ion sensitivity and a five-trap tower, that allows for measurement schemes being insensitive to magnetic field drifts. Within this thesis, part of the detection electronics was set up and tested under experimental conditions. A single-trap setup was realized. A Faraday cup in the trap tower enabled the proper adjustment of the settings of the beamline connecting the EBIT and the Penning-trap system, resulting in the first trapping of ions at PENTATRAP. A stabilization of switched voltages in the beamline and detailed studies of ion bunch characteristics allowed for reproducible loading of only a few ions. Detection of the axial oscillation of the trapped ions gave hints that in some cases, even single ions had been trapped. Furthermore, valuable conclusions about necessary modifications of the setup could be drawn.

  4. Science, conservation, and camera traps

    Science.gov (United States)

    Nichols, James D.; Karanth, K. Ullas; O'Connel, Allan F.; O'Connell, Allan F.; Nichols, James D.; Karanth, K. Ullas

    2011-01-01

    Biologists commonly perceive camera traps as a new tool that enables them to enter the hitherto secret world of wild animals. Camera traps are being used in a wide range of studies dealing with animal ecology, behavior, and conservation. Our intention in this volume is not to simply present the various uses of camera traps, but to focus on their use in the conduct of science and conservation. In this chapter, we provide an overview of these two broad classes of endeavor and sketch the manner in which camera traps are likely to be able to contribute to them. Our main point here is that neither photographs of individual animals, nor detection history data, nor parameter estimates generated from detection histories are the ultimate objective of a camera trap study directed at either science or management. Instead, the ultimate objectives are best viewed as either gaining an understanding of how ecological systems work (science) or trying to make wise decisions that move systems from less desirable to more desirable states (conservation, management). Therefore, we briefly describe here basic approaches to science and management, emphasizing the role of field data and associated analyses in these processes. We provide examples of ways in which camera trap data can inform science and management.

  5. Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds

    Science.gov (United States)

    Juan, Mathieu L.; Bradac, Carlo; Besga, Benjamin; Johnsson, Mattias; Brennen, Gavin; Molina-Terriza, Gabriel; Volz, Thomas

    2017-03-01

    Optical trapping is a powerful tool to manipulate small particles, from micrometre-size beads in liquid environments to single atoms in vacuum. The trapping mechanism relies on the interaction between a dipole and the electric field of laser light. In atom trapping, the dominant contribution to the associated force typically comes from the allowed optical transition closest to the laser wavelength, whereas for mesoscopic particles it is given by the polarizability of the bulk material. Here, we show that for nanoscale diamond crystals containing a large number of artificial atoms, nitrogen-vacancy colour centres, the contributions from both the nanodiamond and the colour centres to the optical trapping strength can be simultaneously observed in a noisy liquid environment. For wavelengths around the zero-phonon line transition of the colour centres, we observe a 10% increase of overall trapping strength. The magnitude of this effect suggests that due to the large density of centres, cooperative effects between the artificial atoms contribute to the observed modification of the trapping strength. Our approach may enable the study of cooperativity in nanoscale solid-state systems and the use of atomic physics techniques in the field of nano-manipulation.

  6. Experimental Investigation of Trapped Sine-Gordon Solitons

    DEFF Research Database (Denmark)

    Davidson, A.; Dueholm, B.; Kryger, B.

    1985-01-01

    We have observed for the first time a single sine-Gordon soliton trapped in an annular Josephson junction. This system offers a unique possibility to study undisturbed soliton motion. In the context of perturbation theory, the soliton may be viewed as a relativistic particle moving under a uniform...

  7. Neutral tripodal receptors towards efficient trapping of oxalate

    Indian Academy of Sciences (India)

    2O 4 2 − ) in semi-aqueous environment. A single crystal X-ray study shows trapping of planar conformer of C2O 4 2 − in both the cases. Further solution state binding of C2O 4 2 − is probed by 1H-NMR titration study in semi-aqueous solvent.

  8. Y-Trap Cancer Immunotherapy Drug Targets Two Proteins

    Science.gov (United States)

    Two groups of researchers, working independently, have fused a TGF-beta receptor to a monoclonal antibody that targets a checkpoint protein. The result, this Cancer Currents blog describes, is a single hybrid molecule called a Y-trap that blocks two pathways used by tumors to evade the immune system.

  9. Practical aspects of trapped ion mass spectrometry, 4 theory and instrumentation

    CERN Document Server

    March, Raymond E

    2010-01-01

    The expansion of the use of ion trapping in different areas of mass spectrometry and different areas of application indicates the value of a single source of information drawing together diverse inputs. This book provides an account of the theory and instrumentation of mass spectrometric applications and an introduction to ion trapping devices.

  10. A magnetic particle micro-trap for large trapping surfaces

    KAUST Repository

    Gooneratne, Chinthaka P.

    2012-01-08

    Manipulation of micron-size magnetic particles of the superparamagnetic type contributes significantly in many applications like controlling the antibody/antigen binding process in immunoassays. Specifically, more target biomolecules can be attached/tagged and analyzed since the three dimensional structure of the magnetic particles increases the surface to volume ratio. Additionally, such biomolecular-tagged magnetic particles can be easily manipulated by an external magnetic field due to their superparamagnetic behavior. Therefore, magnetic particle- based immunoassays are extensively applied in micro-flow cytometry. The design of a square-loop micro-trap as a magnetic particle manipulator as well as numerical and experimental analysis is presented. Experimental results showed that the micro-trap could successfully trap and concentrate magnetic particles from a large to a small area with a high spatial range.

  11. Tuning the Electronic and Dynamical Properties of a Molecule by Atom Trapping Chemistry.

    Science.gov (United States)

    Pham, Van Dong; Repain, Vincent; Chacon, Cyril; Bellec, Amandine; Girard, Yann; Rousset, Sylvie; Abad, Enrique; Dappe, Yannick J; Smogunov, Alexander; Lagoute, Jérôme

    2017-11-28

    The ability to trap adatoms with an organic molecule on a surface has been used to obtain a range of molecular functionalities controlled by the choice of the molecular trapping site and local deprotonation. The tetraphenylporphyrin molecule used in this study contains three types of trapping sites: two carbon rings (phenyl and pyrrole) and the center of a macrocycle. Catching a gold adatom on the carbon rings leads to an electronic doping of the molecule, whereas trapping the adatom at the macrocycle center with single deprotonation leads to a molecular rotor and a second deprotonation leads to a molecular jumper. We call "atom trapping chemistry" the control of the structure, electronic, and dynamical properties of a molecule achieved by trapping metallic atoms with a molecule on a surface. In addition to the examples previously described, we show that more complex structures can be envisaged.

  12. Trapped-ion quantum logic gates based on oscillating magnetic fields

    Science.gov (United States)

    Ospelkaus, Christian; Langer, Christopher E.; Amini, Jason M.; Brown, Kenton R.; Leibfried, Dietrich; Wineland, David J.

    2009-05-01

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing. With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ions and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering decoherence, a fundamental source of decoherence in laser-mediated gates. A potentially beneficial environment for the implementation of such schemes is a cryogenic ion trap, because small length scale traps with low motional heating rates can be realized. A cryogenic ion trap experiment is currently under construction at NIST.

  13. Trap pumping schemes for the Euclid CCD273 detector: characterisation of electrodes and defects

    Science.gov (United States)

    Skottfelt, J.; Hall, D. J.; Dryer, B.; Bush, N.; Campa, J.; Gow, J. P. D.; Holland, A. D.; Jordan, D.; Burt, D.

    2017-12-01

    The VISible imager instrument (VIS) on board the Euclid mission will deliver high resolution shape measurements of galaxies down to very faint limits (R ~ 25 at 10σ) in a large part of the sky, in order to infer the distribution of dark matter in the Universe. To help mitigate radiation damage effects that will accumulate in the detectors over the mission lifetime, the properties of the radiation induced traps needs to be known with as high precision as possible. For this purpose the trap pumping method will be employed as part of the in-orbit calibration routines. Using trap pumping it is possible to identify and characterise single traps in a Charge-Coupled Device (CCD), thus providing information such as the density, emission time constants and sub-pixel positions of the traps in the detectors. This paper presents the trap pumping algorithms used for the radiation testing campaign of the CCD273 detectors, performed by the Centre for Electronic Imaging (CEI) at the Open University, that will be used for the VIS instrument. The CCD273 is a four-phase device with uneven phase widths, which complicates the trap pumping analysis. However, we find that by optimising the trap pumping algorithms and analysis routines, it is possible to obtain sub-pixel and even sub-phase positional information about the traps. Further, by comparing trap pumping data with simulations, it is possible to gain more information about the effective electrode widths of the device.

  14. Responses of Tabanidae (Diptera) to canopy traps baited with 4-methylphenol, 3-isopropylphenol, and naphthalene.

    Science.gov (United States)

    Krcmar, Stjepan

    2007-12-01

    The attraction of female tabanids to unbaited and single-baited canopy traps using 4-methylphenol, 3-isopropylphenol, and naphthalene was studied in three forest localities in eastern Croatia. Tabanids were collected in a significantly higher number in traps baited with these chemicals compared to unbaited control traps. The number of females of Tabanus bromius, Tabanus sudeticus, Tabanus tergestinus, Hybomitra ciureai, Haematopota pluvialis, and Tabanus maculicornis collected from 4-methylphenol baited canopy traps and traps baited with other attractants differed significantly. A total of 89.0% of tabanids collected belonged to these six species. The response of the other species to used chemicals was not analyzed because of small sample sizes. Moreover, the results with 3-isopropylphenol and naphthalene are very similar and not significant for some tabanids. Tabanus bromius was the most abundant species with 48.4% in the sample collected by canopy traps. Finally, the 4-methylphenol baited canopy traps collected 16 times more tabanids than unbaited traps, while 3-isopropylphenol and naphthalene baited traps collected 3.5 and 2 times as many tabanids, respectively, than unbaited traps. Also, 4-methylphenol appeared to be a very effective attractant for Lucilia caesar (Calliphoridae), Sarcophaga carnaria (Sarcophagidae), and Musca domestica (Muscidae).

  15. High-quality trapped modes in all-dielectric metamaterials

    Science.gov (United States)

    Tuz, Vladimir R.; Khardikov, Vyacheslav V.; Kupriianov, Anton S.; Domina, Kateryna L.; Xu, Su; Wang, Hai; Sun, Hong-Bo

    2018-02-01

    A planar all-dielectric metamaterial made of a double-periodic lattice whose unit cell consists of a single subwavelength dielectric particle having the form of a disk possessing a penetrating hole is considered. The resonant states in the transmitted spectra of the metamaterial are identified considering modes inherent to the individual cylindrical dielectric resonator. A correlation between the asymmetry in particle's geometry, which arises from the off-centered displacement of the hole, and formation of the Mie-type and trapped modes is established. The advantages of using a coaxial-sector notch instead of a round hole for the trapped mode excitation are explained.

  16. Neutral atom traps of radioactives

    International Nuclear Information System (INIS)

    Behr, J.A.

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear β decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left up to other presenters

  17. Neutral atom traps of radioactives

    CERN Document Server

    Behr, J A

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear beta decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left...

  18. High-spin nuclear traps

    International Nuclear Information System (INIS)

    Walker, P.; Dracoulis, G.

    1994-01-01

    The reaction pathways in stars, where all the heavy elements in the Universe were formed, are inextricably linked with isomers that live long enough to capture a neutron or proton before they decay. These isomers usually have excitation energies below 0.1 MeV. It is also possible to find highly excited isomers, with several MeV of excitation energy, that are trapped because of their large angular momentum (or spin). But attempts to understand the long-lived highly excited isomers, sometimes known as ''spin traps'', have been hampered by the difficulty of producing this exotic form of nuclear matter. Now, a new generation of radioactive ion beams promises a revolution in the study of high-spin nuclear traps. (author)

  19. Laser traps for radioactive isotopes

    International Nuclear Information System (INIS)

    Voytas, P.A.; Behr, J.A.; Ghosh, A.; Gwinner, G.; Orozco, L.A.; Simsarian, J.E.; Sprouse, G.D.; Xu, F.

    1996-01-01

    The techniques of laser cooling and trapping now make it possible to observe large samples of stable atoms in a small volume at low temperature. This capability was recently extended to radioactive isotopes. This opens up new opportunities for the investigation of fundamental symmetries through measurements using radioactive atoms. In this paper we will discuss several fundamental measurements in atomic systems and how the ability to trap radioactive atoms will play an important role in improving the precision of such measurements. Measurements of the effects of the weak interaction are of particular note since they are becoming quite precise. In particular, we will describe in detail the system developed at Stony Brook to trap radioactive alkali atoms and measure weak interaction effects in francium isotopes. (orig.)

  20. Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect

    International Nuclear Information System (INIS)

    Allcock, D T C; Sherman, J A; Stacey, D N; Burrell, A H; Curtis, M J; Imreh, G; Linke, N M; Szwer, D J; Webster, S C; Steane, A M; Lucas, D M

    2010-01-01

    We describe a new electrode design for a surface-electrode Paul trap, which allows rotation of the normal modes out of the trap plane, and a technique for micromotion compensation in all directions using a two-photon process, which avoids the need for an ultraviolet laser directed to the trap plane. The fabrication and characterization of the trap are described, as well as its implementation for the trapping and cooling of single Ca + ions. We also propose a repumping scheme that increases ion fluorescence and simplifies heating rate measurements obtained by time-resolved ion fluorescence during Doppler cooling.

  1. Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect

    Science.gov (United States)

    Allcock, D. T. C.; Sherman, J. A.; Stacey, D. N.; Burrell, A. H.; Curtis, M. J.; Imreh, G.; Linke, N. M.; Szwer, D. J.; Webster, S. C.; Steane, A. M.; Lucas, D. M.

    2010-05-01

    We describe a new electrode design for a surface-electrode Paul trap, which allows rotation of the normal modes out of the trap plane, and a technique for micromotion compensation in all directions using a two-photon process, which avoids the need for an ultraviolet laser directed to the trap plane. The fabrication and characterization of the trap are described, as well as its implementation for the trapping and cooling of single Ca+ ions. We also propose a repumping scheme that increases ion fluorescence and simplifies heating rate measurements obtained by time-resolved ion fluorescence during Doppler cooling.

  2. Simultaneous three-dimensional tracking of individual signals from multi-trap optical tweezers using fast and accurate photodiode detection.

    Science.gov (United States)

    Ott, Dino; Nader, S; Reihani, S; Oddershede, Lene B

    2014-09-22

    Multiple-beam optical traps facilitate advanced trapping geometries and exciting discoveries. However, the increased manipulation capabilities come at the price of more challenging position and force detection. Due to unrivaled bandwidth and resolution, photodiode based detection is preferred over camera based detection in most single/dual-beam optical traps assays. However, it has not been trivial to implement photodiode based detection for multiple-beam optical traps. Here, we present a simple and efficient method based on spatial filtering for parallel photodiode detection of multiple traps. The technique enables fast and accurate 3D force and distance detection of multiple objects simultaneously manipulated by multiple-beam optical tweezers.

  3. Maximizing Information Yield From Pheromone-Baited Monitoring Traps: Estimating Plume Reach, Trapping Radius, and Absolute Density of Cydia pomonella (Lepidoptera: Tortricidae) in Michigan Apple.

    Science.gov (United States)

    Adams, C G; Schenker, J H; McGhee, P S; Gut, L J; Brunner, J F; Miller, J R

    2017-04-01

    Novel methods of data analysis were used to interpret codling moth (Cydia pomonella) catch data from central-trap, multiple-release experiments using a standard codlemone-baited monitoring trap in commercial apple orchards not under mating disruption. The main objectives were to determine consistency and reliability for measures of: 1) the trapping radius, composed of the trap's behaviorally effective plume reach and the maximum dispersive distance of a responder population; and 2) the proportion of the population present in the trapping area that is caught. Two moth release designs were used: 1) moth releases at regular intervals in the four cardinal directions, and 2) evenly distributed moth releases across entire approximately 18-ha orchard blocks using both high and low codling moth populations. For both release designs, at high populations, the mean proportion catch was 0.01, and for the even release of low populations, that value was approximately 0.02. Mean maximum dispersive distance for released codling moth males was approximately 260 m. Behaviorally effective plume reach for the standard codling moth trap was < 5 m, and total trapping area for a single trap was approximately 21 ha. These estimates were consistent across three growing seasons and are supported by extraordinarily high replication for this type of field experiment. Knowing the trapping area and mean proportion caught, catch number per single monitoring trap can be translated into absolute pest density using the equation: males per trapping area = catch per trapping area/proportion caught. Thus, catches of 1, 3, 10, and 30 codling moth males per trap translate to approximately 5, 14, 48, and 143 males/ha, respectively, and reflect equal densities of females, because the codling moth sex ratio is 1:1. Combined with life-table data on codling moth fecundity and mortality, along with data on crop yield per trapping area, this fundamental knowledge of how to interpret catch numbers

  4. Investigation of HIV-1 infected and uninfected cells using the optical trapping technique

    CSIR Research Space (South Africa)

    Ombinda-Lemboumba, Saturnin

    2017-02-01

    Full Text Available pathological information as possible, we use a home-build optical trapping and spectroscopy system for real time probing human immunodeficiency virus (HIV-1) infected and uninfected single cells. Briefly, our experimental rig comprises an infrared continuous...

  5. Sound trapping and dredging barriers.

    Science.gov (United States)

    Wang, Xu; Wang, Xiaonan; Yu, Wuzhou; Jiang, Zaixiu; Mao, Dongxing

    2017-06-01

    When sound barriers are installed on both sides of a noise source, degradation in performance is observed. Barriers having negative-phase-gradient surfaces successfully eliminate this drawback by trapping sound energy in between the barriers. In contrast, barriers can also be designed to "dredge" the energy flux out. An extended model considering higher-order diffractions, which resulted from the interplay of the induced surface wave and barrier surface periodicity, is presented. It is found that the sound dredging barriers provide a remarkable enhancement over the trapping ones, and hence have the potential to be widely used in noise control engineering.

  6. A live-trap and trapping technique for fossorial mammals

    African Journals Online (AJOL)

    comer of the door and prevents reopening by sliding into the slit at the top of the door. A hole is drilled through the back of the door housing unit and the door to accommodate an L-shaped wire (bent bicycle spoke) measuring 185 mm along the top of the trap, and a 60 mm portion which extends down into the interior.

  7. Ion trap architectures and new directions

    Science.gov (United States)

    Siverns, James D.; Quraishi, Qudsia

    2017-12-01

    Trapped ion technology has seen advances in performance, robustness and versatility over the last decade. With increasing numbers of trapped ion groups worldwide, a myriad of trap architectures are currently in use. Applications of trapped ions include: quantum simulation, computing and networking, time standards and fundamental studies in quantum dynamics. Design of such traps is driven by these various research aims, but some universally desirable properties have lead to the development of ion trap foundries. Additionally, the excellent control achievable with trapped ions and the ability to do photonic readout has allowed progress on quantum networking using entanglement between remotely situated ion-based nodes. Here, we present a selection of trap architectures currently in use by the community and present their most salient characteristics, identifying features particularly suited for quantum networking. We also discuss our own in-house research efforts aimed at long-distance trapped ion networking.

  8. Evaporative Cooling of Atoms to Quantum Degeneracy in an Optical Dipole Trap

    International Nuclear Information System (INIS)

    Chaudhuri, Saptarishi; Roy, Sanjukta; Unnikrishnan, C S

    2007-01-01

    We discuss our experimental results on forced evaporative cooling of cold rubidium 87 Rb atoms to quantum degeneracy in an Optical Dipole Trap. The atoms are first trapped and cooled in a magneto-optical trap (MOT) loaded from a continuous beam of cold atoms. More than 10 10 atoms are trapped in the MOT and then about 10 8 atoms are transferred to a Quasi-Electrostatic Trap (QUEST) formed by tightly focused CO2 laser (λ = 10.6μm) beams intersecting at their foci in an orthogonal configuration in the horizontal plane. Before loading the atoms into the dipole trap, the phase-space density of the atomic ensemble was increased making use of sub-doppler cooling at large detuning and the temporal dark MOT technique. In a MOT the phase-space density of the atomic ensemble is six orders of magnitude less than what is required to achieve quantum degeneracy. After transferring atoms into the dipole trap efficiently, phase-space density increases by a factor of 10 3 . Further increase in phase-space density to quantum degeneracy is achieved by forced evaporative cooling of atoms in the dipole trap. The evaporative cooling process involves a gradual reduction of the trap depth by ramping down the trapping laser intensity over a second. The temperature of the cold atomic cloud was measured by time-of-flight (TOF) technique. The spatial distribution of the atoms is measured using absorption imaging. We report results of evaporative cooling in a single beam and in a crossed double-beam dipole traps. Due to the large initial phase space density, and large initial number of atoms trapped, the quantum phase transition occurs after about 600 ms of evaporative cooling in our optimized crossed dipole trap

  9. Classical Dynamics of Excitations of Bose Condensates in Anisotropic Traps

    Science.gov (United States)

    Graham, Robert

    This lecture discusses some aspects of the dynamics of the collective and single-particle excitations at zero temperature of Bose-Einstein condensates of alkali-vapors in magnetic traps. We shall discuss those aspects which can be understood by taking the short-wavelength or 'eikonal' limit of the excitations. Trapped Bose-Einstein condensates can be excited experimentally either directly via periodic modulations of the trap potential or by scattering light off the condensate. My discussion here will closely follow some theoretical work published in [1-3] that has recently been done in collaboration with Andras Csordas and Peter Szepfalusy at the Research Institute for solid State Physics and Optics in Budapest, Hungary and with Martin Fliesser at the University of Essen, Germany.

  10. Resolved-Sideband Laser Cooling in a Penning Trap.

    Science.gov (United States)

    Goodwin, J F; Stutter, G; Thompson, R C; Segal, D M

    2016-04-08

    We report the laser cooling of a single ^{40}Ca^{+} ion in a Penning trap to the motional ground state in one dimension. Cooling is performed in the strong binding limit on the 729-nm electric quadrupole S_{1/2}↔D_{5/2} transition, broadened by a quench laser coupling the D_{5/2} and P_{3/2} levels. We find the final ground-state occupation to be 98(1)%. We measure the heating rate of the trap to be very low with n[over ¯][over ˙]≈0.3(2)  s^{-1} for trap frequencies from 150-400 kHz, consistent with the large ion-electrode distance.

  11. Magneto-mechanical trapping systems for biological target detection

    KAUST Repository

    Li, Fuquan

    2014-03-29

    We demonstrate a magnetic microsystem capable of detecting nucleic acids via the size difference between bare magnetic beads and bead compounds. The bead compounds are formed through linking nonmagnetic beads and magnetic beads by the target nucleic acids. The system comprises a tunnel magneto-resistive (TMR) sensor, a trapping well, and a bead-concentrator. The TMR sensor detects the stray field of magnetic beads inside the trapping well, while the sensor output depends on the number of beads. The size of the bead compounds is larger than that of bare magnetic beads, and fewer magnetic beads are required to fill the trapping well. The bead-concentrator, in turn, is capable of filling the trap in a controlled fashion and so to shorten the assay time. The bead-concentrator includes conducting loops surrounding the trapping well and a conducting line underneath. The central conducting line serves to attract magnetic beads in the trapping well and provides a magnetic field to magnetize them so to make them detectable by the TMR sensor. This system excels by its simplicity in that the DNA is incubated with magnetic and nonmagnetic beads, and the solution is then applied to the chip and analyzed in a single step. In current experiments, a signal-to-noise ratio of 40.3 dB was obtained for a solution containing 20.8 nM of DNA. The sensitivity and applicability of this method can be controlled by the size or concentration of the nonmagnetic bead, or by the dimension of the trapping well.

  12. Bose-Einstein condensate in a rapidly rotating nonsymmetric trap

    Science.gov (United States)

    Fetter, Alexander L.

    2010-03-01

    A rapidly rotating Bose-Einstein condensate in a symmetric two-dimensional harmonic trap can be described with the lowest Landau-level set of single-particle states. The condensate wave function ψ(x,y) is a Gaussian ∝exp(-r2/2), multiplied by an analytic function f(z) of the complex variable z=x+iy. The criterion for a quantum phase transition to a non-superfluid correlated many-body state is usually expressed in terms of the ratio of the number of particles to the number of vortices. Here a similar description applies to a rapidly rotating nonsymmetric two-dimensional trap with arbitrary quadratic anisotropy (ωx2<ωy2). The corresponding condensate wave function ψ(x,y) is a complex anisotropic Gaussian with a phase proportional to xy, multiplied by an analytic function f(z), where z=x+iβ-y is a stretched complex variable and 0⩽β-⩽1 is a real parameter that depends on the trap anisotropy and the rotation frequency. Both in the mean-field Thomas-Fermi approximation and in the mean-field lowest Landau level approximation with many visible vortices, an anisotropic parabolic density profile minimizes the energy. An elongated condensate grows along the soft trap direction yet ultimately shrinks along the tight trap direction. The criterion for the quantum phase transition to a correlated state is generalized (1) in terms of N/Lz, which suggests that a nonsymmetric trap should make it easier to observe this transition, or (2) in terms of a “fragmented” correlated state, which suggests that a nonsymmetric trap should make it harder to observe this transition. An alternative scenario involves a crossover to a quasi one-dimensional condensate without visible vortices, as suggested by Aftalion , Phys. Rev. A 79, 011603(R) (2009).

  13. Microfabricated linear Paul-Straubel ion trap

    Science.gov (United States)

    Mangan, Michael A [Albuquerque, NM; Blain, Matthew G [Albuquerque, NM; Tigges, Chris P [Albuquerque, NM; Linker, Kevin L [Albuquerque, NM

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  14. Landau damping in trapped Bose condensed gases

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, B; Zaremba, E [Department of Physics, Queen' s University, Kingston, ON K7L 3N6 (Canada)

    2003-07-01

    We study Landau damping in dilute Bose-Einstein condensed gases in both spherical and prolate ellipsoidal harmonic traps. We solve the Bogoliubov equations for the mode spectrum in both of these cases, and calculate the damping by summing over transitions between excited quasiparticle states. The results for the spherical case are compared to those obtained in the Hartree-Fock (HF) approximation, where the excitations take on a single-particle character, and excellent agreement between the two approaches is found. We have also taken the semiclassical limit of the HF approximation and obtain a novel expression for the Landau damping rate involving the time-dependent self-diffusion function of the thermal cloud. As a final approach, we study the decay of a condensate mode by making use of dynamical simulations in which both the condensate and thermal cloud are evolved explicitly as a function of time. A detailed comparison of all these methods over a wide range of sample sizes and trap geometries is presented.

  15. Indeterminacy, sunspots, and development traps

    Czech Academy of Sciences Publication Activity Database

    Slobodyan, Sergey

    2005-01-01

    Roč. 29, 1-2 (2005), s. 159-185 ISSN 0165-1889 Institutional research plan: CEZ:AV0Z70850503 Keywords : indeterminacy * development trap * stochastic stability Subject RIV: AH - Economics Impact factor: 0.691, year: 2005 http://dx.doi.org/10.1016/j.jedc.2003.04.011

  16. Efficiency of antlion trap construction.

    Science.gov (United States)

    Fertin, Arnold; Casas, Jérôme

    2006-09-01

    Assessing the architectural optimality of animal constructions is in most cases extremely difficult, but is feasible for antlion larvae, which dig simple pits in sand to catch ants. Slope angle, conicity and the distance between the head and the trap bottom, known as off-centring, were measured using a precise scanning device. Complete attack sequences in the same pits were then quantified, with predation cost related to the number of behavioural items before capture. Off-centring leads to a loss of architectural efficiency that is compensated by complex attack behaviour. Off-centring happened in half of the cases and corresponded to post-construction movements. In the absence of off-centring, the trap is perfectly conical and the angle is significantly smaller than the crater angle, a physical constant of sand that defines the steepest possible slope. Antlions produce efficient traps, with slopes steep enough to guide preys to their mouths without any attack, and shallow enough to avoid the likelihood of avalanches typical of crater angles. The reasons for the paucity of simplest and most efficient traps such as theses in the animal kingdom are discussed.

  17. Quantum computing with trapped ions

    International Nuclear Information System (INIS)

    Haeffner, H.; Roos, C.F.; Blatt, R.

    2008-01-01

    Quantum computers hold the promise of solving certain computational tasks much more efficiently than classical computers. We review recent experimental advances towards a quantum computer with trapped ions. In particular, various implementations of qubits, quantum gates and some key experiments are discussed. Furthermore, we review some implementations of quantum algorithms such as a deterministic teleportation of quantum information and an error correction scheme

  18. Efficiency of subaquatic light traps

    Czech Academy of Sciences Publication Activity Database

    Ditrich, Tomáš; Čihák, P.

    2017-01-01

    Roč. 38, č. 3 (2017), s. 171-184 ISSN 0165-0424 R&D Projects: GA ČR(CZ) GA14-29857S Institutional support: RVO:60077344 Keywords : Heteroptera * Diptera * light trap Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 0.524, year: 2016

  19. Quantum Games in ion traps

    International Nuclear Information System (INIS)

    Buluta, Iulia Maria; Fujiwara, Shingo; Hasegawa, Shuichi

    2006-01-01

    We propose a general, scalable framework for implementing two-choices-multiplayer Quantum Games in ion traps. In particular, we discuss two famous examples: the Quantum Prisoners' Dilemma and the Quantum Minority Game. An analysis of decoherence due to intensity fluctuations in the applied laser fields is also provided

  20. The rise of trapped populations

    Directory of Open Access Journals (Sweden)

    April T Humble

    2014-02-01

    Full Text Available As border security increases and borders become less permeable, cross-border migration is becoming increasingly difficult, selective and dangerous. Growing numbers of people are becoming trapped in their own countries or in transit countries, or being forced to roam border areas, unable to access legal protection or basic social necessities.

  1. Quantum Games in ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Buluta, Iulia Maria [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: noa@lyman.q.t.u-tokyo.ac.jp; Fujiwara, Shingo [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: fujiwara@lyman.q.t.u-tokyo.ac.jp; Hasegawa, Shuichi [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)]. E-mail: hasegawa@q.t.u-tokyo.ac.jp

    2006-10-09

    We propose a general, scalable framework for implementing two-choices-multiplayer Quantum Games in ion traps. In particular, we discuss two famous examples: the Quantum Prisoners' Dilemma and the Quantum Minority Game. An analysis of decoherence due to intensity fluctuations in the applied laser fields is also provided.

  2. Ion Motion Stability in Asymmetric Surface Electrode Ion Traps

    Science.gov (United States)

    Shaikh, Fayaz; Ozakin, Arkadas

    2010-03-01

    Many recently developed designs of the surface electrode ion traps for quantum information processing have asymmetry built into their geometries. The asymmetry helps rotate the trap axes to angles with respect to electrode surface that facilitate laser cooling of ions but introduces a relative angle between the RF and DC fields and invalidates the classical stability analysis of the symmetric case for which the equations of motion are decoupled. For asymmetric case the classical motion of a single ion is given by a coupled, multi-dimensional version of Mathieu's equation. In this poster we discuss the stability diagram of asymmetric surface traps by performing an approximate multiple scale perturbation analysis of the coupled Mathieu equations, and validate the results with numerical simulations. After obtaining the stability diagram for the linear fields, we simulate the motion of an ion in a given asymmetric surface trap, utilizing a method-of-moments calculation of the electrode fields. We obtain the stability diagram and compare it with the ideal case to find the region of validity. Finally, we compare the results of our stability analysis to experiments conducted on a microfabricated asymmetric surface trap.

  3. A versatile electrostatic trap with open optical access

    Science.gov (United States)

    Li, Sheng-Qiang; Yin, Jian-Ping

    2018-04-01

    A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help of a finite element software, the spatial distribution of the electrostatic field is calculated. The results indicate that a three-dimensional closed electrostatic trap is formed. Taking ND3 molecules as an example, the dynamic process of loading and trapping is simulated. The results show that when the velocity of the molecular beam is 10 m/s and the loading time is 0.9964 ms, the maximum loading efficiency reaches 94.25% and the temperature of the trapped molecules reaches about 30.3 mK. A single well can be split into two wells, which is of significant importance to the precision measurement and interference of matter waves. This scheme, in addition, can be further miniaturized to construct one-dimensional, two-dimensional, and three-dimensional spatial electrostatic lattices.

  4. Measuring the Neutron Lifetime using Magnetically Trapped Ultracold Neutrons

    Science.gov (United States)

    Mumm, H. P.; Coakley, K. J.; Dewey, M. S.; Huber, M. G.; Hughes, P. P.; Thompson, A. K.; Golub, R.; Huffer, C. R.; Huffman, P. R.; O'Shaughnessy, C. M.; Schelhammer, K. W.

    2010-11-01

    The neutron beta-decay lifetime is important in both theoretical predictions of the primordial abundance of ^4He and providing a strong unitarity test of the CKM mixing matrix. We have previously demonstrated trapping of Ultracold Neutrons (UCN) in a magnetic trap, and, though statistically limited, measured a lifetime consistent with the world average. A major upgrade of the apparatus has now been completed at NIST. In our unique approach, a 0.89 nm neutron beam is incident on a superfluid ^4He target within the minimum field region of an Ioffe-type magnetic trap. Neutrons are downscattered by single phonon scattering in liquid helium to near rest and trapped; at sufficiently low temperatures, the low phonon density in the helium suppresses upscatter. The electron accompanying neutron decay produces scintillation in the superfluid helium and can be detected in real time. Previous statistical limitations as well as systematics related to neutron material bottling will be reduced by significant increases in field strength and trap volume. Details of analyses of the systematics as well as the initial performance benchmarks of the new apparatus will be presented.

  5. Simplified Quantum Logic with Trapped Ions

    Science.gov (United States)

    2016-06-23

    oscillating faster than g j (g j!v ,v0) have been neglected. Here, h [(k• ẑ)z0 is the Lamb -Dicke parameter, which controls the amount of cou- pling between...nonlinearity mediated by the Lamb -Dicke parameter h @15,16#. The reduced CN gate @Eq. ~1!# can be achieved in a single pulse by setting h so that V1,1 /V0,05...mod 2p) on the un&5u1& component, TABLE I. Selected ‘‘magic’’ values of the Lamb -Dicke param- eter h which satisfy 12h25(2k11)/2m . When the trapped

  6. Scaling ion traps for quantum computing

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available The design, fabrication and preliminary testing of a chipscale, multi-zone, surface electrode ion trap is reported. The modular design and fabrication techniques used are anticipated to advance scalability of ion trap quantum computing architectures...

  7. Unusual Case of Suicide With a Modified Trap Gun.

    Science.gov (United States)

    Vadysinghe, Amal; Dassanayake, Prasanna; Wickramasinghe, Medhani

    2017-06-01

    Trap gun is an illegal, locally manufactured gun with a basic trip system used to hunt wild animals. The body of a 28-year-old man was found in the jungle in supine position with both legs apart. A trap gun was between the legs pointing toward the cranial side of the body. It had 2 free wires that were not connected together. There was no evidence of foul play.The body had a single-entry wound (2.5-cm diameter) in the anterior chest, with blackening, burning, and tattooing. Six metal particles and nylon clothing material were embedded into soft tissue. No exit wound was found. Toxicology analysis reported an alcohol level of 72 mg/dL. The cause of death was multiple shrapnel injury to the chest at close to intermediate range by a single discharge from a trap gun. Circumstance was concluded as suicide.Ballistic and firearm experts opined that an illegal, manually operated, battery-powered ignition device was used to ignite the gun powder. We report the first case of suicide by a modified trap gun in literature.

  8. Axicon-based annular laser trap for studies on sperm activity

    Science.gov (United States)

    Shao, Bing; Vinson, Jaclyn M.; Botvinick, Elliot L.; Esener, Sadik C.; Berns, Michael W.

    2005-08-01

    As a powerful and noninvasive tool, laser trapping has been widely applied for the confinement and physiological study of biological cells and organelles. Researchers have used the single spot laser trap to hold individual sperm and quantitatively evaluated the motile force generated by a sperm. Early studies revealed the relationship between sperm motility and swimming behavior and helped the investigations in medical aspects of sperm activity. As sperm chemotaxis draws more and more interest in fertilization research, the studies on sperm-egg communication may help to explain male or female infertility and provide exciting new approaches to contraception. However, single spot laser trapping can only be used to investigate an individual target, which has limits in efficiency and throughput. To study the chemotactic response of sperm to eggs and to characterize sperm motility, an annular laser trap with a diameter of several hundred microns is designed, simulated with ray tracing tool, and implemented. An axicon transforms the wavefront such that the laser beam is incident on the microscope objective from all directions while filling the back aperture completely for high efficiency trapping. A trapping experiment with microspheres is carried out to evaluate the system performance. The power requirement for annular sperm trapping is determined experimentally and compared with theoretical calculations. With a chemo-attractant located in the center and sperm approaching from all directions, the annular laser trapping could serve as a speed bump for sperm so that motility characterization and fertility sorting can be performed efficiently.

  9. A synthesized mating pheromone component increases adult sea lamprey (Petromyzon marinus) trap capture in management scenarios

    Science.gov (United States)

    Johnson, Nicholas S.; Siefkes, Michael J.; Wagner, C. Michael; Dawson, Heather; Wang, Huiyong; Steeves, Todd; Twohey, Michael; Li, Weiming

    2013-01-01

    Application of chemical cues to manipulate adult sea lamprey (Petromyzon marinus) behavior is among the options considered for new sea lamprey control techniques in the Laurentian Great Lakes. A male mating pheromone component, 7a,12a,24-trihydroxy-3-one-5a-cholan-24-sulfate (3kPZS), lures ovulated female sea lamprey upstream into baited traps in experimental contexts with no odorant competition. A critical knowledge gap is whether this single pheromone component influences adult sea lamprey behavior in management contexts containing free-ranging sea lampreys. A solution of 3kPZS to reach a final in-stream concentration of 10-12 mol·L-1 was applied to eight Michigan streams at existing sea lamprey traps over 3 years, and catch rates were compared between paired 3kPZS-baited and unbaited traps. 3kPZS-baited traps captured significantly more sexually immature and mature sea lampreys, and overall yearly trapping efficiency within a stream averaged 10% higher during years when 3kPZS was applied. Video analysis of a trap funnel showed that the likelihood of sea lamprey trap entry after trap encounter was higher when the trap was 3kPZS baited. Our approach serves as a model for the development of similar control tools for sea lamprey and other aquatic invaders.

  10. Stokes Trap: Multiplexed particle trapping and manipulation using fluidics

    Science.gov (United States)

    Shenoy, Anish; Schroeder, Charles

    We report the development of the Stokes Trap, which is a multiplexed microfluidic trap for control over an arbitrary number of small particles in a microfluidic device. Our work involves the design and implementation of ``smart'' flow-based devices by coupling feedback control with microfluidics, thereby enabling new routes for the fluidic-directed assembly of particles. Here, we discuss the development of a new method to achieve multiplexed microfluidic trapping of an arbitrary number of particles using the sole action of fluid flow. In particular, we use a Hele-Shaw microfluidic cell to generate hydrodynamic forces on particles in a viscous-dominated flow defined by the microdevice geometry and imposed peripheral flow rates. This platform allows for a high degree of flow control over individual particles and can be used for manufacturing novel particles for fundamental studies, using fluidic-directed assembly. From a broader perspective, our work provides a solid framework for guiding the design of next-generation, automated on-chip assays.

  11. The Use of Camera Traps in Wildlife

    OpenAIRE

    Yasin Uçarlı; Bülent Sağlam

    2013-01-01

    Camera traps are increasingly used in the abundance and density estimates of wildlife species. Camera traps are very good alternative for direct observation in case, particularly, steep terrain, dense vegetation covered areas or nocturnal species. The main reason for the use of camera traps is eliminated that the economic, personnel and time loss in a continuous manner at the same time in different points. Camera traps, motion and heat sensitive, can take a photo or video according to the mod...

  12. Polarization-dependent atomic dipole traps behind a circular aperture for neutral-atom quantum computing

    International Nuclear Information System (INIS)

    Gillen-Christandl, Katharina; Copsey, Bert D.

    2011-01-01

    The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular, for moderate laser intensities (∼100 W/cm 2 ) and comparatively small detunings (∼1000-10 000 linewidths), trap depths of ∼1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.

  13. Dynamic array of dark optical traps

    DEFF Research Database (Denmark)

    Daria, V.R.; Rodrigo, P.J.; Glückstad, J.

    2004-01-01

    A dynamic array of dark optical traps is generated for simultaneous trapping and arbitrary manipulation of multiple low-index microstructures. The dynamic intensity patterns forming the dark optical trap arrays are generated using a nearly loss-less phase-to-intensity conversion of a phase-encode...

  14. 50 CFR 31.16 - Trapping program.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Trapping program. 31.16 Section 31.16 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE... Disposal § 31.16 Trapping program. Except as hereafter noted, persons trapping animals on wildlife refuge...

  15. An Open Standard for Camera Trap Data

    NARCIS (Netherlands)

    Forrester, Tavis; O'Brien, Tim; Fegraus, Eric; Jansen, P.A.; Palmer, Jonathan; Kays, Roland; Ahumada, Jorge; Stern, Beth; McShea, William

    2016-01-01

    Camera traps that capture photos of animals are a valuable tool for monitoring biodiversity. The use of camera traps is rapidly increasing and there is an urgent need for standardization to facilitate data management, reporting and data sharing. Here we offer the Camera Trap Metadata Standard as an

  16. The Aarhus Ion Micro-Trap Project

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Nielsen, Otto; Poulsen, Gregers

    and installed in an ultra high vacuum chamber, which includes an ablation oven for all-optical loading of the trap [2]. The next steps on the project are to demonstrate the operation of the micro-trap and the cooling of ions using fiber delivered light. [1] D. Grant, Development of Micro-Scale Ion traps, Master...

  17. Biased trapping issue on weighted hierarchical networks

    Indian Academy of Sciences (India)

    Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping issue. Let parameter (0 < < 1) be the weight factor. We show that the efficiency of the trapping process depends on the parameter a; the smaller the value of a, the more efficient is the trapping ...

  18. Revealing trap depth distributions in persistent phosphors

    NARCIS (Netherlands)

    Van den Eeckhout, K.; Bos, A.J.J.; Poelman, D.; Smet, P.F.

    2013-01-01

    Persistent luminescence or afterglow is caused by a gradual release of charge carriers from trapping centers. The energy needed to release these charge carriers is determined by the trap depths. Knowledge of these trap depths is therefore crucial in the understanding of the persistent luminescence

  19. Microscale ion trap mass spectrometer

    Science.gov (United States)

    Ramsey, J. Michael; Witten, William B.; Kornienko, Oleg

    2002-01-01

    An ion trap for mass spectrometric chemical analysis of ions is delineated. The ion trap includes a central electrode having an aperture; a pair of insulators, each having an aperture; a pair of end cap electrodes, each having an aperture; a first electronic signal source coupled to the central electrode; a second electronic signal source coupled to the end cap electrodes. The central electrode, insulators, and end cap electrodes are united in a sandwich construction where their respective apertures are coaxially aligned and symmetric about an axis to form a partially enclosed cavity having an effective radius r.sub.0 and an effective length 2z.sub.0, wherein r.sub.0 and/or z.sub.0 are less than 1.0 mm, and a ratio z.sub.0 /r.sub.0 is greater than 0.83.

  20. Rotation sensing with trapped ions

    Science.gov (United States)

    Campbell, W. C.; Hamilton, P.

    2017-03-01

    We present a protocol for rotation measurement via matter-wave Sagnac interferometry using trapped ions. The ion trap based interferometer encloses a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without contrast loss. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, Doppler laser cooling should be sufficient to reach a sensitivity of { S }=1.4× {10}-6 {{rad}} {{{s}}}-1 {{{H}}{{z}}}-1/2. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Wes Campbell was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  1. Centrifugal trapping in the magnetotail

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    1995-03-01

    Full Text Available Particles leaving the neutral sheet in the distant magnetotail at times display adiabatic trajectory sequences characterized by an inflection toward the equator and subsequent mirroring in its vicinity. We demonstrate that this low-latitude mirroring results primarily from a centrifugal deceleration due to the fast direction-changing E×B drift. This effect which we refer to as "centrifugal trapping" appears both in guiding centre and full particle treatments. It thus does not directly relate to nonadiabatic motion. However, pitch angle scattering due to nonadiabatic neutral sheet interaction does play a role in reducing the parallel speed of the particles. We show that centrifugal trapping is an important mechanism for the confinement of the slowest (typically below the equatorial E×B drift speed plasma sheet populations to the midplane vicinity.

  2. Poverty Traps and Climate Change

    OpenAIRE

    Tol, Richard S. J.

    2011-01-01

    PUBLISHED We use a demo-economic model to examine the question of whether climate change could widen or deepen poverty traps. The model includes two crucial mechanisms. Parents are risk averse when deciding how many children to have; fertility is high when infant survival is low. High fertility spreads scarce household resources thin, resulting in children being poorly educated. At the macro level, technological progress is slow because of decreasing returns to scale in agriculture. With h...

  3. Entrapment Bias of Arthropods in Miocene Amber Revealed by Trapping Experiments in a Tropical Forest in Chiapas, Mexico

    Science.gov (United States)

    Solórzano Kraemer, Mónica M.; Kraemer, Atahualpa S.; Stebner, Frauke; Bickel, Daniel J.; Rust, Jes

    2015-01-01

    All entomological traps have a capturing bias, and amber, viewed as a trap, is no exception. Thus the fauna trapped in amber does not represent the total existing fauna of the former amber forest, rather the fauna living in and around the resin producing tree. In this paper we compare arthropods from a forest very similar to the reconstruction of the Miocene Mexican amber forest, and determine the bias of different trapping methods, including amber. We also show, using cluster analyses, measurements of the trapped arthropods, and guild distribution, that the amber trap is a complex entomological trap not comparable with a single artificial trap. At the order level, the most similar trap to amber is the sticky trap. However, in the case of Diptera, at the family level, the Malaise trap is also very similar to amber. Amber captured a higher diversity of arthropods than each of the artificial traps, based on our study of Mexican amber from the Middle Miocene, a time of climate optimum, where temperature and humidity were probably higher than in modern Central America. We conclude that the size bias is qualitatively independent of the kind of trap for non–extreme values. We suggest that frequent specimens in amber were not necessarily the most frequent arthropods in the former amber forest. Selected taxa with higher numbers of specimens appear in amber because of their ecology and behavior, usually closely related with a tree–inhabiting life. Finally, changes of diversity from the Middle Miocene to Recent time in Central and South America can be analyzed by comparing the rich amber faunas from Mexico and the Dominican Republic with the fauna trapped using sticky and Malaise traps in Central America. PMID:25785584

  4. Entrapment bias of arthropods in Miocene amber revealed by trapping experiments in a tropical forest in Chiapas, Mexico.

    Science.gov (United States)

    Solórzano Kraemer, Mónica M; Kraemer, Mónica M Solórzano; Kraemer, Atahualpa S; Stebner, Frauke; Bickel, Daniel J; Rust, Jes

    2015-01-01

    All entomological traps have a capturing bias, and amber, viewed as a trap, is no exception. Thus the fauna trapped in amber does not represent the total existing fauna of the former amber forest, rather the fauna living in and around the resin producing tree. In this paper we compare arthropods from a forest very similar to the reconstruction of the Miocene Mexican amber forest, and determine the bias of different trapping methods, including amber. We also show, using cluster analyses, measurements of the trapped arthropods, and guild distribution, that the amber trap is a complex entomological trap not comparable with a single artificial trap. At the order level, the most similar trap to amber is the sticky trap. However, in the case of Diptera, at the family level, the Malaise trap is also very similar to amber. Amber captured a higher diversity of arthropods than each of the artificial traps, based on our study of Mexican amber from the Middle Miocene, a time of climate optimum, where temperature and humidity were probably higher than in modern Central America. We conclude that the size bias is qualitatively independent of the kind of trap for non-extreme values. We suggest that frequent specimens in amber were not necessarily the most frequent arthropods in the former amber forest. Selected taxa with higher numbers of specimens appear in amber because of their ecology and behavior, usually closely related with a tree-inhabiting life. Finally, changes of diversity from the Middle Miocene to Recent time in Central and South America can be analyzed by comparing the rich amber faunas from Mexico and the Dominican Republic with the fauna trapped using sticky and Malaise traps in Central America.

  5. Laser tweezers: spectroscopy of optically trapped micron-sized particles

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, K.M.; Livett, M.K.; Nugent, K.W. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Information is often obtained about biological systems by analysis of single cells in the system. The optimum conditions for this analysis are when the cells are living and in their natural surroundings as they will be performing their normal functions and interactions. Analysis of cells can be difficult due to their mobility. Laser tweezing is a non contact method that can be employed to overcome this problem and provides a powerful tool in the analysis of functions and interactions at single cell level. In this investigation Raman spectra of a molecule of {beta} - carotene, dissolved in microdroplets of oil was obtained. The droplets were trapped using Nd-YAG beam and a low intensity Ar{sup +} beam was used to analyse the trapped particles. 2 refs., 5 figs.

  6. Positron trapping at dislocations in metals

    International Nuclear Information System (INIS)

    Bergersen, B.; McMullen, T.

    1977-01-01

    The trapping rate of positrons at dislocations in metals, and its temperature dependence, are calculated. Two different trapping processes, with the excess energy absorbed in either electron-hole pair formation or by phonon creation, are considered and the former is found to be the most important. An extension of the theory to include depletion of the positron density around the dislocations in a diffusion approximation is included. The trapping is found to be transition limited if the temperature is low or the trap potential shallow. At room temperature diffusion is important for deep traps. (author)

  7. Nonadiabatic transitions in electrostatically trapped ammonia molecules

    International Nuclear Information System (INIS)

    Kirste, Moritz; Schnell, Melanie; Meijer, Gerard; Sartakov, Boris G.

    2009-01-01

    Nonadiabatic transitions are known to be major loss channels for atoms in magnetic traps but have thus far not been experimentally reported upon for trapped molecules. We have observed and quantified losses due to nonadiabatic transitions for three isotopologues of ammonia in electrostatic traps by comparing the trapping times in traps with a zero and a nonzero electric field at the center. Nonadiabatic transitions are seen to dominate the overall loss rate even for the present samples that are at relatively high temperatures of 30 mK. It is anticipated that losses due to nonadiabatic transitions in electric fields are omnipresent in ongoing experiments on cold molecules.

  8. A Penning trap for advanced studies with particles in extreme laser fields

    International Nuclear Information System (INIS)

    Vogel, M.; Quint, W.; Paulus, G.G.; Stöhlker, Th.

    2012-01-01

    We present a Penning trap as a tool for advanced studies of particles in extreme laser fields. Particularly, trap-specific manipulation techniques allow control over the confined particles’ localization and spatial density by use of trap electrodes as ‘electrostatic tweezers’ and by application of a ‘rotating wall’, respectively. It is thereby possible to select and prepare well-defined ion ensembles and to optimize the laser–particle interaction. Non-destructive detection of reaction educts and products with up to single-ion sensitivity supports advanced studies by maintaining the products for further studies at extended confinement times of minutes and above. The trap features endcaps with conical openings for applications with strongly focused lasers. We show that such a modification of a cylindrical trap is possible while harmonicity and tunability are maintained.

  9. A Penning trap for advanced studies with particles in extreme laser fields

    Science.gov (United States)

    Vogel, M.; Quint, W.; Paulus, G. G.; Stöhlker, Th.

    2012-08-01

    We present a Penning trap as a tool for advanced studies of particles in extreme laser fields. Particularly, trap-specific manipulation techniques allow control over the confined particles' localization and spatial density by use of trap electrodes as 'electrostatic tweezers' and by application of a 'rotating wall', respectively. It is thereby possible to select and prepare well-defined ion ensembles and to optimize the laser-particle interaction. Non-destructive detection of reaction educts and products with up to single-ion sensitivity supports advanced studies by maintaining the products for further studies at extended confinement times of minutes and above. The trap features endcaps with conical openings for applications with strongly focused lasers. We show that such a modification of a cylindrical trap is possible while harmonicity and tunability are maintained.

  10. Intrinsic electron trapping in amorphous oxide

    Science.gov (United States)

    Strand, Jack; Kaviani, Moloud; Afanas’ev, Valeri V.; Lisoni, Judit G.; Shluger, Alexander L.

    2018-03-01

    We demonstrate that electron trapping at intrinsic precursor sites is endemic in non-glass-forming amorphous oxide films. The energy distributions of trapped electron states in ultra-pure prototype amorphous (a)-HfO2 insulator obtained from exhaustive photo-depopulation experiments demonstrate electron states in the energy range of 2–3 eV below the oxide conduction band. These energy distributions are compared to the results of density functional calculations of a-HfO2 models of realistic density. The experimental results can be explained by the presence of intrinsic charge trapping sites formed by under-coordinated Hf cations and elongated Hf–O bonds in a-HfO2. These charge trapping states can capture up to two electrons, forming polarons and bi-polarons. The corresponding trapping sites are different from the dangling-bond type defects responsible for trapping in glass-forming oxides, such as SiO2, in that the traps are formed without bonds being broken. Furthermore, introduction of hydrogen causes formation of somewhat energetically deeper electron traps when a proton is immobilized next to the trapped electron bi-polaron. The proposed novel mechanism of intrinsic charge trapping in a-HfO2 represents a new paradigm for charge trapping in a broad class of non-glass-forming amorphous insulators.

  11. Algae commensal community in Genlisea traps

    Directory of Open Access Journals (Sweden)

    Konrad Wołowski

    2011-01-01

    Full Text Available The community of algae occurring in Genlisea traps and on the external traps surface in laboratory conditions were studied. A total of 29 taxa were found inside the traps, with abundant diatoms, green algae (Chlamydophyceae and four morphotypes of chrysophytes stomatocysts. One morphotype is described as new for science. There are two ways of algae getting into Genlisea traps. The majority of those recorded inside the traps, are mobile; swimming freely by flagella or moving exuding mucilage like diatoms being ablate to colonize the traps themselves. Another possibility is transport of algae by invertebrates such as mites and crustaceans. In any case algae in the Genlisea traps come from the surrounding environment. Two dominant groups of algae (Chladymonas div. and diatoms in the trap environment, show ability to hydrolyze phosphomonoseters. We suggest that algae in carnivorous plant traps can compete with plant (host for organic phosphate (phosphomonoseters. From the spectrum and ecological requirements of algal species found in the traps, environment inside the traps seems to be acidic. However, further studies are needed to test the relations between algae and carnivorous plants both in laboratory conditions and in the natural environment. All the reported taxa are described briefly and documented with 74 LM and SEM micrographs.

  12. Trapping Dust to Form Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Growing a planet from a dust grain is hard work! A new study explores how vortices in protoplanetary disks can assist this process.When Dust Growth FailsTop: ALMA image of the protoplanetary disk of V1247 Orionis, with different emission components labeled. Bottom: Synthetic image constructed from the best-fit model. [Kraus et al. 2017]Gradual accretion onto a seed particle seems like a reasonable way to grow a planet from a grain of dust; after all, planetary embryos orbit within dusty protoplanetary disks, which provides them with plenty of fuel to accrete so they can grow. Theres a challenge to this picture, though: the radial drift problem.The radial drift problem acknowledges that, as growing dust grains orbit within the disk, the drag force on them continues to grow as well. For large enough dust grains perhaps around 1 millimeter the drag force will cause the grains orbits to decay, and the particles drift into the star before they are able to grow into planetesimals and planets.A Close-Up Look with ALMASo how do we overcome the radial drift problem in order to form planets? A commonly proposed mechanism is dust trapping, in which long-lived vortices in the disk trap the dust particles, preventing them from falling inwards. This allows the particles to persist for millions of years long enough to grow beyond the radial drift barrier.Observationally, these dust-trapping vortices should have signatures: we would expect to see, at millimeter wavelengths, specific bright, asymmetric structures where the trapping occurs in protoplanetary disks. Such disk structures have been difficult to spot with past instrumentation, but the Atacama Large Millimeter/submillimeter Array (ALMA) has made some new observations of the disk V1247 Orionis that might be just what were looking for.Schematic of the authors model for the disk of V1247 Orionis. [Kraus et al. 2017]Trapped in a Vortex?ALMAs observations of V1247 Orionis are reported by a team of scientists led by Stefan

  13. Nonlinear saturation of the trapped-ion mode

    International Nuclear Information System (INIS)

    LaQuey, R.E.; Mahajan, S.M.; Rutherford, P.H.; Tang, W.M.

    1974-11-01

    A nonlinear model of the collisional trapped-ion mode in tokamak geometry is presented, in which the energy in long wavelength instabilities is transferred to short wavelength modes which are then damped by ion bounce resonances. Near marginal stability, the saturation of a single unstable Fourier mode is computed. Far from marginal stability, steady state nonlinear solitary waves containing many Fourier modes are found. Particle transport is computed in both cases. (auth)

  14. Hafnia-rich mixed oxide ceramics of the system HfO2-ZrO2-TiO2 for heaters and heat exchangers in electrothermal thrusters: The effects of titania on selected electrical and mechanical properties of Hafnia-rich mixed oxides in the system Hafnia-Zirconia-Titania, volume 1

    Science.gov (United States)

    Staszak, Paul Russell; Wirtz, G. P.; Berg, M.; Brown, S. D.

    1988-01-01

    A study of the effects of titania on selected properties of hafnia-rich mixed oxides in the system hafnia-zirconia-titania (HZT) was made in the region 5 to 20 mol percent titania. The studied properties included electrical conductivity, thermal expansion, and fracture strength and toughness. The effects of titania on the properties were studied for the reduced state as well as the oxidized state of the sintered mixed oxides. X-ray analysis showed that the materials were not always single phase. The oxidized compositions went from being monoclinic solid solutions at low titania additions to having three phases (two monoclinic and a titanate phase) at high additions of titania. The reduced compositions showed an increasing cubic phase presence mixed with the monoclinic phase as titania was added. The electrical conductivity increased with temperature at approximately 0.1 mhos/cm at 1700 C for all compositions. The thermal expansion coefficient decreased with increasing titania as did the monoclinic to tetragonal transformation temperature. The fracture strength of the oxidized bars tended to decrease with the addition of titania owing to the presence of the second phase titania. The fracture strength of the reduced bars exhibited a minimum corresponding to a two-phase region of monoclinic and cubic phases. When the second phases were suppressed, the titania tended to increase the fracture strength slightly in both the oxidized and reduced states. The fracture toughness followed similar trends.

  15. Damping of Collective Oscillations in a Box Trap

    Science.gov (United States)

    Proukakis, Nick; Lee, Kean Loon; Zaremba, Eugene; Turzak, Patrik; Eigen, Chris; Gaunt, Alex; Smith, Rob; Hadzibabic, Zoran; Navon, Nir

    2017-04-01

    We model numerically the lowest-lying collective mode of a Bose gas in a box trap excited by a kick in the potential, as in a recent experiment. Our analysis is performed at finite temperatures (below the critical region), based on the so-called ``ZNG'' model, in which the condensate is described by a dissipative Gross-Pitaevskii equation which is itself self-consistently coupled to a dynamical thermal cloud described by a quantum Boltzmann equation `` a model which has proven most successful in describing damping observed in harmonic traps. For typical parameters probed far from the hydrodynamic region, we find a single oscillation - whose frequency agrees well with experiments - with the thermal cloud rapidly damping out higher frequency modes primarily through self-consistent dynamical mean-field coupling. Our results are confirmed by an independent analysis with the stochastic projected Gross-Pitaevskii equation. Intuitively, we find damping in a box trap to depend much more weakly on temperature than in harmonic traps, in broad agreement with experimental data. EPSRC; NSERC; ERC; Royal Society.

  16. Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap

    CERN Document Server

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Kurchaninov, L; Jonsell, S; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-01-01

    Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antipr...

  17. Portable Pbars, traps that travel

    International Nuclear Information System (INIS)

    Howe, S.D.; Hynes, M.V.; Picklesimer, A.

    1987-10-01

    The advent of antiproton research utilizing relatively small scale storage devices for very large numbers of these particles opens the possibility of transporting these devices to a research site removed from the accelerator center that produced the antiprotons. Such a portable source of antiprotons could open many new areas of research and make antiprotons available to a new research community. At present antiprotons are available at energies down to 1 MeV. From a portable source these particles can be made available at energies ranging from several tens of kilovolts down to a few millielectron volts. These low energies are in the domain of interest to the atomic and condensed matter physicist. In addition such a source can be used as an injector for an accelerator which could increase the energy domain even further. Moreover, the availability of such a source at a university will open research with antiprotons to a broader range of students than possible at a centralized research facility. This report focuses on the use of ion traps, in particular cylindrical traps, for the antiproton storage device. These devices store the charged antiprotons in a combination of electric and magnet fields. At high enough density and low enough temperature the charged cloud will be susceptible to plasma instabilities. Present day ion trap work is just starting to explore this domain. Our assessment of feasibility is based on what could be done with present day technology and what future technology could achieve. We conclude our report with a radiation safety study that shows that about 10 11 antiprotons can be transported safely, however the federal guidelines for this transport must be reviewed in detail. More antiprotons than this will require special transportation arrangements. 28 refs., 8 figs

  18. The composite insect trap: an innovative combination trap for biologically diverse sampling.

    Directory of Open Access Journals (Sweden)

    Laura Russo

    Full Text Available Documentation of insect diversity is an important component of the study of biodiversity, community dynamics, and global change. Accurate identification of insects usually requires catching individuals for close inspection. However, because insects are so diverse, most trapping methods are specifically tailored to a particular taxonomic group. For scientists interested in the broadest possible spectrum of insect taxa, whether for long term monitoring of an ecosystem or for a species inventory, the use of several different trapping methods is usually necessary. We describe a novel composite method for capturing a diverse spectrum of insect taxa. The Composite Insect Trap incorporates elements from four different existing trapping methods: the cone trap, malaise trap, pan trap, and flight intercept trap. It is affordable, resistant, easy to assemble and disassemble, and collects a wide variety of insect taxa. Here we describe the design, construction, and effectiveness of the Composite Insect Trap tested during a study of insect diversity. The trap catches a broad array of insects and can eliminate the need to use multiple trap types in biodiversity studies. We propose that the Composite Insect Trap is a useful addition to the trapping methods currently available to ecologists and will be extremely effective for monitoring community level dynamics, biodiversity assessment, and conservation and restoration work. In addition, the Composite Insect Trap will be of use to other insect specialists, such as taxonomists, that are interested in describing the insect taxa in a given area.

  19. Solar Trap for Banana Drying Method

    Directory of Open Access Journals (Sweden)

    Musa S.

    2017-01-01

    Full Text Available Food drying methods nowadays are mostly in high use of electricity and fuel which lead to high operational cost. This has resulted in a waste of energy and money due to the use of modern tools requires significant costs for implementation. Meanwhile, the traditional food drying process only uses sun rays in their process, where the process is far more efficient than the modern drying method. In this study, the test was conducted to determine the trapped solar heat energy requirements for the process of drying foods such as agricultural products, particularly bananas. The solar trap test by using solar trap container was carried out include determining the thermal energy requirement for drying, preparing equipment (solar trap container to trap solar energy, handling and drying tests on samples of bananas. The percentage amount of water removal and energy required for the drying process was found to be 48% and 134 J. The results of this study can determine that solar trap drying method is easier, quicker and more effective than the usual method of drying because it use natural solar energy. Several proposals have been suggested for improvement for future study, such as controlling the solar trap air in the container, replacing the trap solar wall with a darker color, examining the floors slope so that more solar traps collected and installing a small hose on the base of the container so that the water evaporated in the solar trap may exit through the route.

  20. Trapping leidenfrost drops with crenelations.

    Science.gov (United States)

    Dupeux, Guillaume; Le Merrer, Marie; Clanet, Christophe; Quéré, David

    2011-09-09

    Drops placed on very hot solids levitate on a cushion of their own vapor, as discovered by Leidenfrost. This confers to these drops a remarkable mobility, which makes problematic their control and manipulation. Here we show how crenelated surfaces can be used to increase the friction of Leidenfrost drops by a factor on the order of 100, making them decelerate and be trapped on centimetric distances instead of the usual metric ones. We measure and characterize the friction force as a function of the design of the crenelations.

  1. Bose condensation in (random traps

    Directory of Open Access Journals (Sweden)

    V.A. Zagrebnov

    2009-01-01

    Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.

  2. Origins of hole traps in hydrogenated nanocrystalline and amorphous silicon revealed through machine learning

    Science.gov (United States)

    Mueller, Tim; Johlin, Eric; Grossman, Jeffrey C.

    2014-03-01

    Genetic programming is used to identify the structural features most strongly associated with hole traps in hydrogenated nanocrystalline silicon with very low crystalline volume fraction. The genetic programming algorithm reveals that hole traps are most strongly associated with local structures within the amorphous region in which a single hydrogen atom is bound to two silicon atoms (bridge bonds), near fivefold coordinated silicon (floating bonds), or where there is a particularly dense cluster of many silicon atoms. Based on these results, we propose a mechanism by which deep hole traps associated with bridge bonds may contribute to the Staebler-Wronski effect.

  3. Dual-stage trapped-flux magnet cryostat for measurements at high magnetic fields

    Science.gov (United States)

    Islam, Zahirul; Das, Ritesh K.; Weinstein, Roy

    2015-04-14

    A method and a dual-stage trapped-flux magnet cryostat apparatus are provided for implementing enhanced measurements at high magnetic fields. The dual-stage trapped-flux magnet cryostat system includes a trapped-flux magnet (TFM). A sample, for example, a single crystal, is adjustably positioned proximate to the surface of the TFM, using a translation stage such that the distance between the sample and the surface is selectively adjusted. A cryostat is provided with a first separate thermal stage provided for cooling the TFM and with a second separate thermal stage provided for cooling sample.

  4. Collapse and revival dynamics of two entangled trapped ions

    International Nuclear Information System (INIS)

    Svandal, A.; Hansen, J.P.

    2002-01-01

    We study the long-time dynamics of two entangled ions coupled by a single vibrational mode and two lasers with different frequencies as proposed by Moelmer and Soerensen [Phys. Rev. Lett. 82, 1835 (1999)]. It is shown that the time development involves collapses and revivals well known from the dynamics of a single atom in a cavity or in a trap. The revival time is found to be insensitive to the details of the initial collective vibrational state. Therefore, revival and collapse phenomena are obtained for coherent, thermal as well as other vibrational states

  5. Distribution of the energy levels of individual interface traps and a fundamental refinement in charge pumping theory

    Science.gov (United States)

    Tsuchiya, Toshiaki; Lenahan, Patrick M.

    2017-03-01

    We carried out a unique and systematic characterization of single amphoteric Si/SiO2 interface traps using the charge pumping (CP) method. As a result, we obtained the distribution of the energy levels of these traps for the first time. The distribution is reasonably similar to that of the P b0 density of states reported previously. By considering the essential nature of these traps (i.e., those with two energy levels), factors depending on the energy levels, and the Coulomb interactions between traps, we fundamentally corrected the conventional CP theory.

  6. A versatile MOF-based trap for heavy metal ion capture and dispersion

    OpenAIRE

    Peng, Yaguang; Huang, Hongliang; Zhang, Yuxi; Kang, Chufan; Chen, Shuangming; Song, Li; Liu, Dahuan; Zhong, Chongli

    2018-01-01

    Current technologies for removing heavy metal ions are typically metal ion specific. Herein we report the development of a broad-spectrum heavy metal ion trap by incorporation of ethylenediaminetetraacetic acid into a robust metal-organic framework. The capture experiments for a total of 22 heavy metal ions, covering hard, soft, and borderline Lewis metal ions, show that the trap is very effective, with removal efficiencies of >99% for single-component adsorption, multi-component adsorption, ...

  7. On the trap depth of the IR-sensitive trap in Na- and K-feldspar

    DEFF Research Database (Denmark)

    Kars, Romée H.; Poolton, Nigel R.J.; Jain, Mayank

    2013-01-01

    and facilitates the monitoring of mainly optical transitions. Additional experiments at room temperature were performed for comparison. The continuous wave OSL and the post-stimulation phosphorescence were recorded in the ultra violet (3.2e4.8 eV) for stimulation energies ranging between 1.7 and 2.8 eV. From......, the trap depth is tentatively estimated to be ∼2.1 and ∼2.5 eV for Na- and K-feldspar, respectively. The fast phosphorescence following IRSL in both crystals is likely the result of tunnelling from bandtail states in the vicinity of the excited state of the IR-trap. The post-OSL phosphorescence decay...... is an order of magnitude slower, owing to the contribution from tunnelling of charge from a range of occupied band-tail states. The lack of dependence of the phosphorescence decay rate on the excitation energy (in the range of 1.7e2.8 eV), unambiguously indicates that a single mechanism causes the post...

  8. Virtual potentials for feedback traps.

    Science.gov (United States)

    Jun, Yonggun; Bechhoefer, John

    2012-12-01

    The recently developed feedback trap can be used to create arbitrary virtual potentials, to explore the dynamics of small particles or large molecules in complex situations. Experimentally, feedback traps introduce several finite time scales: There is a delay between the measurement of a particle's position and the feedback response, the feedback response is applied for a finite update time, and a finite camera exposure integrates motion. We show how to incorporate such timing effects into the description of particle motion. For the test case of a virtual quadratic potential, we give the first accurate description of particle dynamics, calculating the power spectrum and variance of fluctuations as a function of feedback gain, testing against simulations. We show that for small feedback gains, the motion approximates that of a particle in an ordinary harmonic potential. Moreover, if the potential is varied in time, for example by varying its stiffness, the work that is calculated approximates that done in an ordinary changing potential. The quality of the approximation is set by the ratio of the update time of the feedback loop to the relaxation time of motion in the virtual potential.

  9. Single-run determination of polybrominated diphenyl ethers (PBDEs) di- to deca-brominated in fish meal, fish oil and fish feed by isotope dilution: Application of automated sample purification and gas chromatography/ion trap tandem mass spectrometry (GC/ITMS)

    International Nuclear Information System (INIS)

    Blanco, Sonia Lucia; Vieites, Juan M.

    2010-01-01

    The present paper describes the application of automated cleanup and fractionation procedures of the Power Prep system (Fluid Management Systems) for the determination of polybrominated diphenyl ethers (PBDEs) in feeding stuffs and fish meal and oil. Gas chromatography (GC) separation followed by ion trap tandem mass spectrometry detection in EI mode (ITMS) allowed the analysis of di- to deca-BDEs in the samples matrices used in fish aquaculture. The method developed enabled the determination of 26 native PBDE congeners and 11 13 C 12 -labelled congeners, including deca-BDE 209, in a single-run analysis, using isotope dilution. The automated cleanup, consisting of a succession of multilayer silica and basic alumina columns previously applied by Wyrzykowska et al. (2009) in combustion flue gas, was succesfully applied in our complex matrices. The method allowed an increase in productivity, i.e. lower time was required to process samples, and simultaneous purification of several samples was achieved at a time, reducing analyst dedication and human error input. Average recoveries of 43-96% were obtained. GC/ITMS can overcome the complexity originating from the sample matrix, eliminating matrix effects by tandem MS, to enable the detection of congeners penta- to nona-BDEs where interferent masses were present. The provisional detection limits, estimated in the samples, were 5-30 pg for di-, tri-, tetra-, and penta-BDEs, 20-65 pg for hexa-, hepta-, octa- and nona-BDEs, and 105 pg for deca-BDE. Reduction of deca-BDE 209 blank values is of concern to ongoing research. Good accuracy was obtained by application of the whole procedure, representing an efficient, low-cost and fast alternative for routine analyses.

  10. Production and trapping of francium atoms

    International Nuclear Information System (INIS)

    Atutov, S.N.; Biancalana, V.; Burchianti, A.; Calabrese, R.; Corradi, L.; Dainelli, A.; Guidi, V.; Khanbekyan, A.; Mai, B.; Marinelli, C.; Mariotti, E.; Moi, L.; Sanguinetti, S.; Stancari, G.; Tomassetti, L.; Veronesi, S.

    2004-01-01

    A new facility has been constructed at the INFN Legnaro National Laboratory (LNL) for the production of francium isotopes via a fusion-evaporation nuclear reaction and a laser laboratory has been set up for francium trapping. Francium is produced inside a gold target and after diffusion desorbs from its surface as an ion. A secondary beam line delivers the francium ions to the trapping cell where they are neutralized and trapped in a magneto-optical trap (MOT). Details on the production, delivery and neutralization methods are presented. Preliminary results on trapped francium are also shown. Production rate of ≅ 10 6 ions/s and a trap population of about 100 atoms have been achieved

  11. Case Study: Trap Crop with Pheromone Traps for Suppressing Euschistus servus (Heteroptera: Pentatomidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available The brown stink bug, Euschistus servus (Say, can disperse from source habitats, including corn, Zea mays L., and peanut, Arachis hypogaea L., into cotton, Gossypium hirsutum L. Therefore, a 2-year on-farm experiment was conducted to determine the effectiveness of a sorghum (Sorghum bicolor (L. Moench spp. bicolor trap crop, with or without Euschistus spp. pheromone traps, to suppress dispersal of this pest to cotton. In 2004, density of E. servus was lower in cotton fields with sorghum trap crops (with or without pheromone traps compared to control cotton fields. Similarly, in 2006, density of E. servus was lower in cotton fields with sorghum trap crops and pheromone traps compared to control cotton fields. Thus, the combination of the sorghum trap crop and pheromone traps effectively suppressed dispersal of E. servus into cotton. Inclusion of pheromone traps with trap crops potentially offers additional benefits, including: (1 reducing the density of E. servus adults in a trap crop, especially females, to possibly decrease the local population over time and reduce the overwintering population, (2 reducing dispersal of E. servus adults from the trap crop into cotton, and (3 potentially attracting more dispersing E. servus adults into a trap crop during a period of time when preferred food is not prevalent in the landscape.

  12. Laser induced fluorescence of trapped molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references.

  13. How to detect trap cluster systems?

    International Nuclear Information System (INIS)

    Mandowski, Arkadiusz

    2008-01-01

    Spatially correlated traps and recombination centres (trap-recombination centre pairs and larger clusters) are responsible for many anomalous phenomena that are difficult to explain in the framework of both classical models, i.e. model of localized transitions (LT) and the simple trap model (STM), even with a number of discrete energy levels. However, these 'anomalous' effects may provide a good platform for identifying trap cluster systems. This paper considers selected cluster-type effects, mainly relating to an anomalous dependence of TL on absorbed dose in the system of isolated clusters (ICs). Some consequences for interacting cluster (IAC) systems, involving both localized and delocalized transitions occurring simultaneously, are also discussed

  14. Laser cooling and trapping of atoms

    International Nuclear Information System (INIS)

    Chu, S.

    1995-01-01

    The basic ideas of laser cooling and atom trapping will be discussed. These techniques have applications in spectroscopy, metrology, nuclear physics, biophysics, geophysics, and polymer science. (author)

  15. Laser induced fluorescence of trapped molecular ions

    International Nuclear Information System (INIS)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references

  16. High Optical Access Trap 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-26

    The High Optical Access (HOA) trap was designed in collaboration with the Modular Universal Scalable Ion-trap Quantum Computer (MUSIQC) team, funded along with Sandia National Laboratories through IARPA's Multi Qubit Coherent Operations (MQCO) program. The design of version 1 of the HOA trap was completed in September 2012 and initial devices were completed and packaged in February 2013. The second version of the High Optical Access Trap (HOA-2) was completed in September 2014 and is available at IARPA's disposal.

  17. Optical macro-tweezers: trapping of highly motile micro-organisms

    International Nuclear Information System (INIS)

    Thalhammer, G; Steiger, R; Bernet, S; Ritsch-Marte, M

    2011-01-01

    Optical micromanipulation stands for contact-free handling of microscopic particles by light. Optical forces can manipulate non-absorbing objects in a large range of sizes, e.g., from biological cells down to cold atoms. Recently much progress has been made going from the micro- down to the nanoscale. Less attention has been paid to going the other way, trapping increasingly large particles. Optical tweezers typically employ a single laser beam tightly focused by a microscope objective of high numerical aperture to stably trap a particle in three dimensions (3D). As the particle size increases, stable 3D trapping in a single-beam trap requires scaling up the optical power, which eventually induces adverse biological effects. Moreover, the restricted field of view of standard optical tweezers, dictated by the use of high NA objectives, is particularly unfavorable for catching actively moving specimens. Both problems can be overcome by traps with counter-propagating beams. Our 'macro-tweezers' are especially designed to trap highly motile organisms, as they enable three-dimensional all-optical trapping and guiding in a volume of 2 × 1 × 2 mm 3 . Here we report for the first time the optical trapping of large actively swimming organisms, such as for instance Euglena protists and dinoflagellates of up to 70 µm length. Adverse bio-effects are kept low since trapping occurs outside high intensity regions, e.g., focal spots. We expect our approach to open various possibilities in the contact-free handling of 50–100 µm sized objects that could hitherto not be envisaged, for instance all-optical holding of individual micro-organisms for taxonomic identification, selective collecting or tagging

  18. Laser-cooling and electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Phillips, W.D.; Migdall, A.L.; Metcalf, H.J.

    1986-01-01

    Until recently it has been impossible to confine and trap neutral atoms using electromagnetic fields. While many proposals for such traps exist, the small potential energy depth of the traps and the high kinetic energy of available atoms prevented trapping. We review various schemes for atom trapping, the advances in laser cooling of atomic beams which have now made trapping possible, and the successful magnetic trapping of cold sodium atoms

  19. Optimizing Trap Design and Trapping Protocols for Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Renkema, Justin M; Buitenhuis, Rosemarije; Hallett, Rebecca H

    2014-12-01

    Drosophila suzukii Matsumura (Diptera: Drosophilidae) is a recent invasive pest of fruit crops in North America and Europe. Carpophagous larvae render fruit unmarketable and may promote secondary rot-causing organisms. To monitor spread and develop programs to time application of controls, further work is needed to optimize trap design and trapping protocols for adult D. suzukii. We compared commercial traps and developed a new, easy-to-use plastic jar trap that performed well compared with other designs. For some trap types, increasing the entry area led to increased D. suzukii captures and improved selectivity for D. suzukii when populations were low. However, progressive entry area enlargement had diminishing returns, particularly for commercial traps. Unlike previous studies, we found putting holes in trap lids under a close-fitting cover improved captures compared with holes on sides of traps. Also, red and black traps outperformed yellow and clear traps when traps of all colors were positioned 10-15 cm apart above crop foliage. In smaller traps, attractant surface area and entry area, but not other trap features (e.g., headspace volume), appeared to affect D. suzukii captures. In the new, plastic jar trap, tripling attractant volume (360 vs 120 ml) and weekly attractant replacement resulted in the highest D. suzukii captures, but in the larger commercial trap these measures only increased by-catch of large-bodied Diptera. Overall, the plastic jar trap with large entry area is affordable, durable, and can hold high attractant volumes to maximize D. suzukii capture and selectivity. © 2014 Entomological Society of America.

  20. The non-neutral ion trap at Brigham Young University

    Science.gov (United States)

    Peterson, Bryan; Williams, Chad; Hall, William; Hart, Grant

    2011-10-01

    We have constructed a non-neutral ion trap with the eventual goal of measuring the rate of decay of singly-ionized 7Be. Since 7Be decays exclusively by electron capture a Malmberg-Penning trap provides an ideal environment for this measurement due to the near absence of free electrons. We will use the FTICR (Fourier Transform Ion Cyclotron Resonance) mass spectrometry technique to measure the ratio of 7Be to 7Li to determine the decay rate. We are using an enriched boron carbide target (77.7% 10B, 2.3% 11B, 20% 12C) to provide the ions for the test plasma. This allows us to test the FTICR technique through the presence of three different ions at very different concentrations. We will discuss the current status of the experiment.

  1. Genetic labeling of neuronal subsets through enhancer trapping in mice.

    Directory of Open Access Journals (Sweden)

    Wolfgang Kelsch

    Full Text Available The ability to label, visualize, and manipulate subsets of neurons is critical for elucidating the structure and function of individual cell types in the brain. Enhancer trapping has proved extremely useful for the genetic manipulation of selective cell types in Drosophila. We have developed an enhancer trap strategy in mammals by generating transgenic mice with lentiviral vectors carrying single-copy enhancer-detector probes encoding either the marker gene lacZ or Cre recombinase. This transgenic strategy allowed us to genetically identify a wide variety of neuronal subpopulations in distinct brain regions. Enhancer detection by lentiviral transgenesis could thus provide a complementary method for generating transgenic mouse libraries for the genetic labeling and manipulation of neuronal subsets.

  2. Microchip traps: the quantum lab on a chip

    International Nuclear Information System (INIS)

    Reichel, J.

    2005-01-01

    Full text: Experiments with Bose-Einstein condensates (BECs) of cold atoms have accelerated progress in our understanding of the quantum world. Microchip traps ('atom chips') accelerate and miniaturize the production and manipulation of BECs. On an atom chip, the BEC is located only microns away from the chip surface, making it easy to manipulate its state with on-chip current-carrying conductors or other micro- and nanostructures. Despite the fact that the chip surface is at room-temperature, internal-state coherence of the trapped atoms can live for seconds. Thus, the atom chip is developing into a quantum laboratory on a chip. We are now working to measure and control the number of atoms in the condensate with single-atom precision, and to make such condensates interact in a controlled way with one another and with a nanofabricated device on the chip. (author)

  3. C60 as an Atom Trap to Capture Co Adatoms

    DEFF Research Database (Denmark)

    Yang, Peng; Li, Dongzhe; Repain, Vincent

    2015-01-01

    C60 molecules were used to trap Co adatoms and clusters on a Au(111) surface using atomic/molecular manipulation with a scanning tunneling microscope. Two manipulation pathways (successive integration of single Co atoms in one molecule or direct integration of a Co cluster) were found...... to efficiently allow the formation of complexes mixing a C60 molecule with Co atoms. Scanning tunneling spectroscopy reveals the robustness of the pi states of C60 that are preserved after Co trapping. Scanning tunneling microscopy images and density functional theory calculations reveal that dissociated Co...... clusters of up to nine atoms can be formed at the molecule-substrate interface. These results open new perspectives in the interactions between metal adatoms and molecules, for applications in metal-organic devices...

  4. Superconducting qubits can be coupled and addressed as trapped ions

    Science.gov (United States)

    Liu, Y. X.; Wei, L. F.; Johansson, J. R.; Tsai, J. S.; Nori, F.

    2009-03-01

    Exploiting the intrinsic nonlinearity of superconducting Josephson junctions, we propose a scalable circuit with superconducting qubits (SCQs) which is very similar to the successful one now being used for trapped ions. The SCQs are coupled to the ``vibrational'' mode provided by a superconducting LC circuit or its equivalent (e.g., a superconducting quantum interference device). Both single-qubit rotations and qubit-LC-circuit couplings and/or decouplings can be controlled by the frequencies of the time-dependent magnetic fluxes. The circuit is scalable since the qubit-qubit interactions, mediated by the LC circuit, can be selectively performed, and the information transfer can be realized in a controllable way. [4pt] Y.X. Liu, L.F. Wei, J.R. Johansson, J.S. Tsai, F. Nori, Superconducting qubits can be coupled and addressed as trapped ions, Phys. Rev. B 76, 144518 (2007). URL: http://link.aps.org/abstract/PRB/v76/e144518

  5. A New Trapped Ion Clock Based on Hg-201(+)

    Science.gov (United States)

    Taghavi-Larigani, S.; Burt, E. A.; Lea, S. N.; Prestage, J. D.; Tjoelker, R. L.

    2009-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave clock: Hg-199(+) and Hg-201(+). Virtually all trapped mercury ion clocks to date have used the 199 isotope. We have begun to investigate the viability of a trapped ion clock based on Hg-201(+). We have measured the unperturbed frequency of the (S-2)(sub 1/2) F = 1, m(sub F) = 0 to (S-2)(sub 1/2) F = 2, m(sub F) = 0 clock transition to be 29.9543658211(2) GHz. In this paper we describe initial measurements with Hg-201(+) and new applications to clocks and fundamental physics.

  6. Secretion Trap Tagging of Secreted and Membrane-Spanning Proteins Using Arabidopsis Gene Traps

    Science.gov (United States)

    Andrew T. Groover; Joseph R. Fontana; Juana M. Arroyo; Cristina Yordan; W. Richard McCombie; Robert A. Martienssen

    2003-01-01

    Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a ß-glucuronidase reporter enzyme...

  7. Variable angle spectroscopic ellipsometric characterization of HfO2 thin film

    Science.gov (United States)

    Kumar, M.; Kumari, N.; Karar, V.; Sharma, A. L.

    2018-02-01

    Hafnium Oxide film was deposited on BK7 glass substrate using reactive oxygenated E-Beam deposition technique. The film was deposited using in-situ quartz crystal thickness monitoring to control the film thickness and rate of evaporation. The thin film was grown with a rate of deposition of 0.3 nm/s. The coated substrate was optically characterized using spectrophotometer to determine its transmission spectra. The optical constants as well as film thickness of the hafnia film were extracted by variable angle spectroscopic ellipsometry with Cauchy fitting at incidence angles of 65˚, 70˚ and 75˚.

  8. Current Thermal Emission from Photonic Nanostructures Composed of TA, W, GE, and HFO2 Thin Films

    Science.gov (United States)

    2015-03-01

    41) Potter evaluated the Sellmeier...Hunt, A. Vredenberg, T. Harris , J. Poate, D. Jacobson, Y. Wong and G. Zydzik, ’Enhanced photoluminescence by resonant absorption in Er...Optical Society of America, vol. 69, no. 1, p. 179-180, 1979. [76] R. F. Potter , ‘Germanium (Ge),’ in Handbook of optical Constants of Solids

  9. Coherent population trapping with polarization modulation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Peter, E-mail: enxue.yun@obspm.fr; Guérandel, Stéphane; Clercq, Emeric de [LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 avenue de l' Observatoire, 75014 Paris (France)

    2016-06-28

    Coherent population trapping (CPT) is extensively studied for future vapor cell clocks of high frequency stability. In the constructive polarization modulation CPT scheme, a bichromatic laser field with polarization and phase synchronously modulated is applied on an atomic medium. A high contrast CPT signal is observed in this so-called double-modulation configuration, due to the fact that the atomic population does not leak to the extreme Zeeman states, and that the two CPT dark states, which are produced successively by the alternate polarizations, add constructively. Here, we experimentally investigate CPT signal dynamics first in the usual configuration, a single circular polarization. The double-modulation scheme is then addressed in both cases: one pulse Rabi interaction and two pulses Ramsey interaction. The impact and the optimization of the experimental parameters involved in the time sequence are reviewed. We show that a simple seven-level model explains the experimental observations. The double-modulation scheme yields a high contrast similar to the one of other high contrast configurations like push-pull optical pumping or crossed linear polarization scheme, with a setup allowing a higher compactness. The constructive polarization modulation is attractive for atomic clock, atomic magnetometer, and high precision spectroscopy applications.

  10. Quantum absorption refrigerator with trapped ions

    Science.gov (United States)

    Gan, Jaren; Maslennikov, Gleb; Hablützel Marrero, Roland; Ding, Shiqian; Nimmrichter, Stefan; Roulet, Alexandre; Dai, Jibo; Scarani, Valerio; Matsukevich, Dzmitry

    2017-04-01

    We report on an experimental realization of a quantum absorption refrigerator in a system of the three trapped 171Yb+ ions. The normal modes of motion are coupled by a trilinear Hamiltonian a† bc + h . c . and represent ``hot'', ``work'' and ``cold'' bodies of the refrigerator. We investigate the equilibrium properties of the refrigerator, and demonstrate the absorption refrigeration effect with the modes being prepared in thermal states. We also investigate the coherent dynamics and steady state properties of such a system away from equilibrium operation. We compare the cooling capabilities of thermal versus squeezed thermal states prepared in the work mode as a quantum resource for cooling. Finally, we exploit the coherent dynamics of the system and demonstrate single-shot cooling in the refrigerator. By stopping the evolution in the right moment, we show a significant advantage in cooling as compared to both the steady state and equilibrium performance. This research is supported by the National Research Foundation, Prime Minister's Office, Singapore and the Ministry of Education, Singapore under the Research Centres of Excellence programme.

  11. The five traps of performance measurement.

    Science.gov (United States)

    Likierman, Andrew

    2009-10-01

    Evaluating a company's performance often entails wading through a thicket of numbers produced by a few simple metrics, writes the author, and senior executives leave measurement to those whose specialty is spreadsheets. To take ownership of performance assessment, those executives should find qualitative, forward-looking measures that will help them avoid five common traps: Measuring against yourself. Find data from outside the company, and reward relative, rather than absolute, performance. Enterprise Rent-A-Car uses a service quality index to measure customers' repeat purchase intentions. Looking backward. Use measures that lead rather than lag the profits in your business. Humana, a health insurer, found that the sickest 10% of its patients account for 80% of its costs; now it offers customers incentives for early screening. Putting your faith in numbers. The soft drinks company Britvic evaluates its executive coaching program not by trying to assign it an ROI number but by tracking participants' careers for a year. Gaming your metrics. The law firm Clifford Chance replaced its single, easy-to-game metric of billable hours with seven criteria on which to base bonuses. Sticking to your numbers too long. Be precise about what you want to assess and explicit about what metrics are assessing it. Such clarity would have helped investors interpret the AAA ratings involved in the financial meltdown. Really good assessment will combine finance managers' relative independence with line managers' expertise.

  12. Finding traps in nonlinear spin arrays

    International Nuclear Information System (INIS)

    Wiesniak, Marcin; Markiewicz, Marcin

    2010-01-01

    Precise knowledge of the Hamiltonian of a system is a key to many of its applications. Tasks such as the state transfer or quantum computation have been well studied with a linear chain, but rarely with systems, which do not possess a linear structure. While this difference does not disturb the end-to-end dynamics of a single excitation, the evolution is significantly changed in other subspaces. Here we quantify the difference between a linear chain and a pseudochain, which have more than one spin at some site (in such a case we will call the site a block). We show how to estimate a number of all spins in the system and the intrablock coupling constants. We also suggest how it is possible to eliminate excitations trapped in such blocks, which may disturb the state transfer. Importantly, one uses only at-ends data and needs to be able to put the system to either the maximally magnetized or the maximally mixed state. This can obtained by controlling a global decoherence parameter, such as temperature.

  13. Modes of oscillation in radiofrequency Paul traps

    DEFF Research Database (Denmark)

    Landa, H.; Reznik, B.; Drewsen, M.

    2012-01-01

    We examine the time-dependent dynamics of ion crystals in radiofrequency traps. The problem of stable trapping of general threedimensional crystals is considered and the validity of the pseudopotential approximation is discussed. We analytically derive the micromotion amplitude of the ions...

  14. An Experimental Analysis of Social Traps

    Science.gov (United States)

    Brechner, Kevin C.

    1977-01-01

    Social traps, such as the overgrazing of pasturelands, overpopulation, and the extinction of species, are situations where individuals in a group respond for their own advantage in a manner damaging to the group. Alaboratory analog was devised to simulate conditions that produce social traps. The intent was to cause an immediate positive…

  15. Tunneling of trapped-atom Bose condensates

    Indian Academy of Sciences (India)

    Tunneling of trapped-atom Bose condensates. SUBODH R SHENOY. Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, Trieste 34100, Italy. Abstract. We obtain the dynamics in number and phase difference, for Bose condensates that tun- nel between two wells of a double-well atomic trap, using the ...

  16. Biased trapping issue on weighted hierarchical networks

    Indian Academy of Sciences (India)

    hierarchical network. Here, we focus on a particular case with the trap located at the node with the highest degree. We derive rigorous solution to the MFPT that characterizes the trapping process. Moreover ..... The weighted networks can mimic some real-world natural and social systems to some extent [20–22]. We focus ...

  17. Lobster trap detection at the Saba Bank

    NARCIS (Netherlands)

    Beek, van I.J.M.

    2012-01-01

    According to previous studies and anecdotal evidence there are a lot of lost lobster traps at the Saba Bank. One study estimated the loss to be between 210 and 795 lobster traps per year. The Saba Bank is an approximately 2,200 km2 submerged area and spiny lobster (Panulirus argus) is one of the

  18. Astroturf seed traps for studying hydrochory

    NARCIS (Netherlands)

    Wolters, M; Geertsema, J; Chang, ER; Veeneklaas, RM; Carey, PD; Bakker, JP

    1. Astroturf mats can effectively trap diaspores dispersed by tidal water. 2. Within four tidal inundations, up to 745 propagules per m(2) and between three and eight different species per astroturf mat were trapped. Overall, 15 different species were collected on the astroturf mats, 10 of which

  19. Measuring oxide trapping parameters in MOS structure

    Science.gov (United States)

    Maserjian, J.

    1978-01-01

    System for controlled injection of electrons or holes into oxide layer of MOS capacitor can be used to measure oxide trapping parameters. Since trapping mechanisms can cause degradation and ultimate failure of MOS elements exposed to ionizing radiation, system can be helpful in predicting device tolerance.

  20. Insects in IBL-4 pine weevil traps

    Science.gov (United States)

    I. Skrzecz

    2003-01-01

    Pipe traps (IBL-4) are used in Polish coniferous plantations to monitor and control the pine weevil (Hylobius abietis L.). This study was conducted in a one-year old pine plantation established on a reforested clear-cut area in order to evaluate the impact of these traps on non-target insects. Evaluation of the catches indicated that species of

  1. Spectral intensity distribution of trapped fermions

    Indian Academy of Sciences (India)

    The temperature being very low, trapped cold atomic gases are in the quantum degener- acy regime. In this regime bosons ... that this ideal Fermi system, in the presence of an isotropic harmonic trapping potential, is very interesting and we consider ... function of the system as an example. The dynamical response function, ...

  2. Inelastic collision rates of trapped metastable hydrogen

    NARCIS (Netherlands)

    Landhuis, D; Matos, L; Moss, SC; Steinberger, JK; Vant, K; Willmann, L; Greytak, TJ; Kleppner, D

    We report the first detailed decay studies of trapped metastable (2S) hydrogen. By two-photon excitation of ultracold H samples, we have produced clouds of at least 5x10(7) magnetically trapped 2S atoms at densities greater than 4x10(10) cm(-3) and temperatures below 100 muK. At these densities and

  3. Influence of trap construction on mosquito capture

    Czech Academy of Sciences Publication Activity Database

    Šebesta, Oldřich; Peško, Juraj; Gelbič, Ivan

    2012-01-01

    Roč. 6, č. 2 (2012), s. 209-215 ISSN 1934-7391 R&D Projects: GA MŠk 2B08003 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:68081766 ; RVO:60077344 Keywords : CDC miniature light traps * baited lard-can traps * mosquitoes Subject RIV: EG - Zoology

  4. Depolarization of UCN stored in material traps

    CERN Document Server

    Serebrov, A; Lasakov, M; Rudnev, Y; Krasnoschekova, I A; Geltenbort, P; Butterworth, J; Bowles, T; Morris, C; Seestrom, S; Smith, D; Young, A R

    2000-01-01

    Depolarization of ultra-cold neutrons (UCN) stored in material traps was first observed. The probability of UCN spin flip per reflection depends on the trap material and varies from 7x10 sup - sup 6 (beryllium) to 10 sup - sup 4 (glass).

  5. Depolarization of UCN stored in material traps

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A.; Vasiliev, A.; Lasakov, M.; Rudnev, Yu.; Krasnoshekova, I.; Geltenbort, P.; Butterworth, J.; Bowles, T.; Morris, C.; Seestrom, S.; Smith, D.; Young, A.R

    2000-02-11

    Depolarization of ultra-cold neutrons (UCN) stored in material traps was first observed. The probability of UCN spin flip per reflection depends on the trap material and varies from 7x10{sup -6} (beryllium) to 10{sup -4} (glass)

  6. Cold and trapped metastable noble gases

    NARCIS (Netherlands)

    Vassen, W.; Cohen-Tannoudji, C.; Leduc, M.; Boiron, D.; Westbrook, C.I.; Truscott, A.; Baldwin, K.; Birkl, G.; Cancio, P.; Trippenbach, M.

    2012-01-01

    Experimental work on cold, trapped metastable noble gases is reviewed. The aspects which distinguish work with these atoms from the large body of work on cold, trapped atoms in general is emphasized. These aspects include detection techniques and collision processes unique to metastable atoms.

  7. Cryptography, quantum computation and trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard J.

    1998-03-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  8. Recent progress in the understanding of H transport and trapping in W

    Science.gov (United States)

    Schmid, K.; Bauer, J.; Schwarz-Selinger, T.; Markelj, S.; Toussaint, U. v.; Manhard, A.; Jacob, W.

    2017-12-01

    The retention of hydrogen isotopes (HIs) (H, D and T) in the first, plasma exposed wall is one of the key concerns for the operation of future long pulse fusion devices. It affects the particle-, momentum- and energy balance in the scrape off layer as well as the retention of HIs and their permeation into the coolant. The currently accepted picture that is used for interpreting current laboratory and tokamak experiments is that of diffusion hindered by trapping at lattice defects. This paper summarises recent results that show that this current picture of how HIs are transported and retained in W needs to be extended: the modification of the surface (e.g. blistering) can lead to the formation of fast loss channels for near surface HIs. Trapping at single occupancy traps with fixed de-trapping energy fails to explain isotope exchange experiments, instead a trapping model with multi occupancy traps and fill level dependent de-trapping energies is required. The presence of interstitial impurities like N or C may affect the transport of solute HI. The presence of HIs during damage creation by e.g. neutrons stabilises defects and reduces defect annealing at elevated temperatures.

  9. Influence of grain boundary connectivity on the trapped magnetic flux of multi-seeded bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zgdeng@gmail.com [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Hara, S.; Uetake, T.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-09-15

    Four different performance multi-seeded YBCO bulks as representatives. A coupling ratio to reflect the coupling quality of GBs inside multi-seeded bulks. An averaged trapped magnetic flux density parameter was introduced. The top-seeded melt-growth process with multi-seeding technique provides a promising way to fabricate large-sized bulk superconductors in an economical way. To understand the essential characteristics of the multi-seeded bulks, the paper reports the influence of the grain boundary (GB) coupling or connectivity on the total trapped magnetic flux. The coupling ratio, the lowest trapped flux density in the GB area to the averaged top value of the two neighboring peak trapped fields, is introduced to reflect the coupling quality of GBs inside a multi-seeded bulk. By the trapped flux density measurement of four different performance multi-seeded YBCO bulk samples as representatives, it was found that the GB coupling plays an important role for the improvement of the total trapped magnetic flux; moreover, somewhat more significant than the widely used parameter of the peak trapped fields to evaluate the physical performance of bulk samples. This characteristic is different with the case of the well-grown single-grain bulks.

  10. Enhanced trapping of stable flies via olfactory and visual cues

    Science.gov (United States)

    Adult stable flies are highly attracted to the so-called Alsynite cylinder trap; however this trap is expensive. Here we report the development of a cheaper and better white panel trap with options of adding visual and olfactory stimuli for enhanced stable fly trapping. The white panel trap attracte...

  11. GAMMASPHERE: Correction technique for detector charge trapping

    Energy Technology Data Exchange (ETDEWEB)

    Goulding, F.S.; Landis, D.A.

    1993-11-01

    GAMMASPHERE uses 110 very large germanium detectors. Such detectors exhibit charge trapping effects on energy resolution initially due to a native electron trap that is present in virtually all germanium. Furthermore, radiation damage is a serious problem in GAMMASPHERE experiments, producing hole traps that degrade resolution and eventually require annealing to restore the original performance. The technique discussed here uses the current pulse shape from a detector to develop a parameter related to the radius of the largest interaction in the ``track`` of a gamma ray in the detector. Since the charge trapping loss in a signal can be related to the distance carriers travel, the ``radius`` parameter can be used by software to apply a trap correction to the signal.

  12. Magnetic trapping of cold bromine atoms.

    Science.gov (United States)

    Rennick, C J; Lam, J; Doherty, W G; Softley, T P

    2014-01-17

    Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.

  13. Theoretical study of time-resolved luminescence in semiconductors. III. Trap states in the band gap

    International Nuclear Information System (INIS)

    Maiberg, Matthias; Hölscher, Torsten; Zahedi-Azad, Setareh; Scheer, Roland

    2015-01-01

    In the third part of this series, we study the influence of trap states in the band gap of semiconductors on the time-resolved luminescence decay (TRL) after a pulsed excitation. The results based on simulations with Synopsys TCAD ® and analytical approximations are given for p-doped Cu(In,Ga)Se 2 as a working example. We show that a single trap can be mostly described by two parameters which are assigned to minority carrier capture and emission. We analyze their influence on the luminescence decay and study the difference between a single trap and an energetic Gaussian trap distribution. It is found that trap states artificially increase the TRL decay and obscure the recombination dynamics. Thus, there is a demand for experimental methods which can reveal the recombination of minority carriers in a TRL experiment without trapping effect. In this regard, a variation of the device temperature, the excitation frequency, the injection level, as well as a bias illumination may be promising approaches. We study these methods, discuss advantages and disadvantages, and show experimental TRL for prove of concept. At the end, we validate our approach of simulating only band-to-band radiative recombination although photoluminescence spectra often exhibit free-to-bound radiative recombination of charge carriers

  14. TrapTech R-Octenol Lure Does Not Improve the Capture Rates of Aedes albopictus (Diptera: Culicidae) and Other Container-Inhabiting Species in Biogents Sentinel Traps.

    Science.gov (United States)

    Unlu, Isik; Faraji, Ary; Indelicato, Nicholas; Rochlin, Ilia

    2016-07-01

    Aedes albopictus (Skuse) and other container-inhabiting species have become important public health concerns due to the transmission of dengue, chikungunya, and Zika viruses. Effective surveillance is dependent on the ability to collect a sufficient number of mosquitoes for population monitoring and pathogen isolation. The Biogents Sentinel (BGS) trap supplied with a proprietary human skin lure has become the standard tool for container-inhabiting Aedes species collections worldwide. Recently, R-octenol, a single isomer of the well characterized mosquito attractant octenol, was shown to greatly improve the capture rate of some Aedes species when utilized with the Center for Disease Control and Prevention (CDC) light traps and Mosquito Magnet traps. This study evaluated the effectiveness of the TrapTech lure (TT lure), containing R-octenol, alone or in combination with the human skin lure in a BGS trap to capture Ae. albopictus and other species. BGS traps with human skin lures or a combination of the two lures collected approximately twice as many Ae. albopictus females compared to those with TT lures. Unlike previous studies, baiting BGS traps with TT lures did not result in increased diversity of mosquito species, or in higher numbers of other container-inhabiting Aedes species. Although human skin lures were clearly superior to TT R-octenol lures in BGS traps, R-octenol lures are more widely available and might still be used as an alternative lure, especially when Ae. albopictus populations are high. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Thermally Stable and Regenerable Platinum-Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria

    NARCIS (Netherlands)

    Xiong, Haifeng; Lin, Sen; Goetze, Joris; Pletcher, Paul; Guo, Hua; Kovarik, Libor; Artyushkova, Kateryna; Weckhuysen, Bert M.; Datye, Abhaya K.

    2017-01-01

    Ceria (CeO2) supports are unique in their ability to trap ionic platinum (Pt), providing exceptional stability for isolated single atoms of Pt. The reactivity and stability of single-atom Pt species was explored for the industrially important light alkane dehydrogenation reaction. The single-atom

  16. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance

    Directory of Open Access Journals (Sweden)

    Carolin Marlen Degener

    2015-06-01

    Full Text Available The objective of this study was to evaluate the effectiveness of Aedes aegypti mass trapping using the sticky trap MosquiTRAP (MQT by performing a cluster randomised controlled trial in Manaus, state of Amazonas, Brazil. After an initial questionnaire and baseline monitoring of adult Ae. aegypti abundance with BG-Sentinel (BGS traps in six clusters, three clusters were randomly assigned to the intervention arm where each participating household received three MQTs for mass trapping during 17 months. The remaining three clusters (control arm did not receive traps. The effect of mass trapping on adult Ae. aegypti abundance was monitored fortnightly with BGS traps. During the last two months of the study, a serological survey was conducted. After the study, a second questionnaire was applied in the intervention arm. Entomological monitoring indicated that MQT mass trapping did not reduce adult Ae. aegypti abundance. The serological survey indicated that recent dengue infections were equally frequent in the intervention and the control arm. Most participants responded positively to questions concerning user satisfaction. According to the results, there is no evidence that mass trapping with MQTs can be used as a part of dengue control programs. The use of this sticky trap is only recommendable for dengue vector monitoring.

  17. TRAP230/ARC240 and TRAP240/ARC250 Mediator subunits are functionally conserved through evolution

    DEFF Research Database (Denmark)

    Samuelsen, Camilla O; Baraznenok, Vera; Khorosjutina, Olga

    2003-01-01

    for Srb8 and Srb9. Here, we identify a TRAP240/ARC250 homologue in Schizosaccharomyces pombe and demonstrate that this protein, spTrap240, is stably associated with a larger form of Mediator, which also contains conserved homologues of Srb8, Srb10, and Srb11. We find that spTrap240 and Sch. pombe Srb8 (sp...... with the polymerase. Our findings provide experimental evidence for recent suggestions that TRAP230/ARC240 and TRAP240/ARC250 may indeed be the Srb8 and Srb9 homologues of mammalian Mediator. Apparently Srb8/TRAP230/ARC240, Srb9/TRAP240/ARC250, Srb10, and Srb11 constitute a conserved Mediator submodule, which...

  18. Optical Trapping of Beads and Jurkat Cells Using Micromachined Fresnel Zone Plate Integrated with Microfluidic Chip

    Science.gov (United States)

    Kuo, Ju-Nan; Hu, Han-Zhong

    2011-10-01

    This paper presents a method for trapping beads and cells using a single-beam optical tweezer and a Fresnel zone plate integrated with a microfluidic chip. The experimental results show that a laser power of 2.4 mW is sufficient to trap 3-µm-diameter polystyrene beads, while a laser power of 1.5 mW is sufficient to trap individual Jurkat cells. The Fresnel zone plate developed in this study has many advantages, including a small size, a straightforward fabrication process, and a simple integration with microfluidic chips. Consequently, it provides an ideal solution for the trapping of a wide range of biological cells for analysis purposes.

  19. Implications of surface noise for the motional coherence of trapped ions

    Science.gov (United States)

    Talukdar, I.; Gorman, D. J.; Daniilidis, N.; Schindler, P.; Ebadi, S.; Kaufmann, H.; Zhang, T.; Häffner, H.

    2016-04-01

    Electric noise from metallic surfaces is a major obstacle towards quantum applications with trapped ions due to motional heating of the ions. Here, we discuss how the same noise source can also lead to pure dephasing of motional quantum states. The mechanism is particularly relevant at small ion-surface distances, thus imposing a constraint on trap miniaturization. By means of a free induction decay experiment, we measure the dephasing time of the motion of a single ion trapped 50 μ m above a Cu-Al surface. From the dephasing times we extract the integrated noise below the secular frequency of the ion. We find that none of the most commonly discussed surface noise models for ion traps describes both the observed heating as well as the measured dephasing satisfactorily. Thus, our measurements provide a benchmark for future models for the electric noise emitted by metallic surfaces.

  20. Simulating quantum effects of cosmological expansion using a static ion trap

    Science.gov (United States)

    Menicucci, Nicolas C.; Olson, S. Jay; Milburn, Gerard J.

    2010-09-01

    We propose a new experimental test bed that uses ions in the collective ground state of a static trap to study the analogue of quantum-field effects in cosmological spacetimes, including the Gibbons-Hawking effect for a single detector in de Sitter spacetime, as well as the possibility of modeling inflationary structure formation and the entanglement signature of de Sitter spacetime. To date, proposals for using trapped ions in analogue gravity experiments have simulated the effect of gravity on the field modes by directly manipulating the ions' motion. In contrast, by associating laboratory time with conformal time in the simulated universe, we can encode the full effect of curvature in the modulation of the laser used to couple the ions' vibrational motion and electronic states. This model simplifies the experimental requirements for modeling the analogue of an expanding universe using trapped ions, and it enlarges the validity of the ion-trap analogy to a wide range of interesting cases.