WorldWideScience

Sample records for single heart muscle

  1. Action potential-evoked calcium release is impaired in single skeletal muscle fibers from heart failure patients.

    Directory of Open Access Journals (Sweden)

    Marino DiFranco

    Full Text Available Exercise intolerance in chronic heart failure (HF has been attributed to abnormalities of the skeletal muscles. Muscle function depends on intact excitation-contraction coupling (ECC, but ECC studies in HF models have been inconclusive, due to deficiencies in the animal models and tools used to measure calcium (Ca2+ release, mandating investigations in skeletal muscle from HF patients. The purpose of this study was to test the hypothesis that Ca2+ release is significantly impaired in the skeletal muscle of HF patients in whom exercise capacity is severely diminished compared to age-matched healthy volunteers.Using state-of-the-art electrophysiological and optical techniques in single muscle fibers from biopsies of the locomotive vastus lateralis muscle, we measured the action potential (AP-evoked Ca2+ release in 4 HF patients and 4 age-matched healthy controls. The mean peak Ca2+ release flux in fibers obtained from HF patients (10±1.2 µM/ms was markedly (2.6-fold and significantly (p<0.05 smaller than in fibers from healthy volunteers (28±3.3 µM/ms. This impairment in AP-evoked Ca2+ release was ubiquitous and was not explained by differences in the excitability mechanisms since single APs were indistinguishable between HF patients and healthy volunteers.These findings prove the feasibility of performing electrophysiological experiments in single fibers from human skeletal muscle, and offer a new approach for investigations of myopathies due to HF and other diseases. Importantly, we have demonstrated that one step in the ECC process, AP-evoked Ca2+ release, is impaired in single muscle fibers in HF patients.

  2. Inspiratory muscle load and capacity in chronic heart failure

    OpenAIRE

    Hart, N; Kearney, M T; Pride, N B; Green, M; Lofaso, F; Shah, A M; Moxham, J; Polkey, M I

    2004-01-01

    Background: Although breathlessness is common in chronic heart failure (CHF), the role of inspiratory muscle dysfunction remains unclear. We hypothesised that inspiratory muscle endurance, expressed as a function of endurance time (Tlim) adjusted for inspiratory muscle load and inspiratory muscle capacity, would be reduced in CHF.

  3. The accumulation of 134Cs in heart and skeletal muscle of healthy and dystrophic hamsters

    International Nuclear Information System (INIS)

    Szentkuti, L.; Breitrueck, H.; Giese, W.

    1976-01-01

    he accumulation of cesium-134 in heart and skeletal muscle of healthy and dystrophic hamsters was compared. It was lower in dystrophic hamsters than in normal ones after only a single dose of cesium-134. The 134 Cs-concentrations of heart and 'red' skeletal muscle were different between normal and dystrophic hamsters. When the isotope had equilibrated in the animals differences in 134 Cs-accumulation in muscle tissue between normal and dystrophic hamsters were even more obvious. The faster elimination of cesium-134 from the body as affected by muscular dystrophy was due to a reduction of 134 Cs-accumulation in muscle tissue. The reduced ability of damaged muscles to accumulate Cs-ions offers the possibility to use Cs-isotopes in diagnosis of skeletal muscle dystrophy. (author)

  4. Artificial muscle for end-stage heart failure.

    Science.gov (United States)

    Tozzi, Piergiorgio; Michalis, Alexandre; Hayoz, Daniel; Locca, Didier; von Segesser, Ludwig K

    2012-01-01

    We describe a device made of artificial muscle for the treatment of end-stage heart failure as an alternative to current heart assist devices. The key component is a matrix of nitinol wires and aramidic fibers called Biometal muscle (BM). When heated electrically, it produces a motorless, smooth, and lifelike motion. The BM is connected to a carbon fiber scaffold, tightening the heart and providing simultaneous assistance to the left and right ventricles. A pacemaker-like microprocessor drives the contraction of the BM. We tested the device in a dedicated bench model of diseased heart. It generated a systolic pressure of 75 mm Hg and ejected a maximum of 330 ml/min, with an ejection fraction of 12%. The device required a power supply of 6 V, 250 mA. This could be the beginning of an era in which BMs integrate or replace the mechanical function of natural muscles.

  5. Single muscle fiber adaptations with marathon training.

    Science.gov (United States)

    Trappe, Scott; Harber, Matthew; Creer, Andrew; Gallagher, Philip; Slivka, Dustin; Minchev, Kiril; Whitsett, David

    2006-09-01

    The purpose of this investigation was to characterize the effects of marathon training on single muscle fiber contractile function in a group of recreational runners. Muscle biopsies were obtained from the gastrocnemius muscle of seven individuals (22 +/- 1 yr, 177 +/- 3 cm, and 68 +/- 2 kg) before, after 13 wk of run training, and after 3 wk of taper. Slow-twitch myosin heavy chain [(MHC) I] and fast-twitch (MHC IIa) muscle fibers were analyzed for size, strength (P(o)), speed (V(o)), and power. The run training program led to the successful completion of a marathon (range 3 h 56 min to 5 h 35 min). Oxygen uptake during submaximal running and citrate synthase activity were improved (P training program. Muscle fiber size declined (P training. P(o) was maintained in both fiber types with training and increased (P 60% increase (P training and was unchanged in MHC IIa fibers. Peak power increased (P training with a further increase (P marathon training decreased slow-twitch and fast-twitch muscle fiber size but that it maintained or improved the functional profile of these fibers. A taper period before the marathon further improved the functional profile of the muscle, which was targeted to the fast-twitch muscle fibers.

  6. Muscle-Specific Mis-Splicing and Heart Disease Exemplified by RBM20.

    Science.gov (United States)

    Rexiati, Maimaiti; Sun, Mingming; Guo, Wei

    2018-01-05

    Alternative splicing is an essential post-transcriptional process to generate multiple functional RNAs or proteins from a single transcript. Progress in RNA biology has led to a better understanding of muscle-specific RNA splicing in heart disease. The recent discovery of the muscle-specific splicing factor RNA-binding motif 20 (RBM20) not only provided great insights into the general alternative splicing mechanism but also demonstrated molecular mechanism of how this splicing factor is associated with dilated cardiomyopathy. Here, we review our current knowledge of muscle-specific splicing factors and heart disease, with an emphasis on RBM20 and its targets, RBM20-dependent alternative splicing mechanism, RBM20 disease origin in induced Pluripotent Stem Cells (iPSCs), and RBM20 mutations in dilated cardiomyopathy. In the end, we will discuss the multifunctional role of RBM20 and manipulation of RBM20 as a potential therapeutic target for heart disease.

  7. Effects of (-)-desmethoxyverapamil on heart and vascular smooth muscle

    International Nuclear Information System (INIS)

    Nawrath, H.; Raschack, M.

    1987-01-01

    (-)-Desmethoxyverapamil [also known as (-)-devapamil or (-)-D888] has been developed as a verapamil type radioligand for the study of calcium channels. In the present investigation, the effects of (-)-desmethoxyverapamil on action potential (AP) and force of contraction in heart muscle preparations and on tension and 45 Ca influx in vascular smooth muscle are described. In part, the effects were compared with the (+)-isomer of desmethoxyverapamil and the isomers of both verapamil and methoxyverapamil. In atrial and/or ventricular heart muscle preparations from guinea pigs, cats and man, (-)-desmethoxyverapamil decreased the force of contraction and shortened the AP duration. Slow response APs were depressed, whereas dV/dtmax of phase 0 of the AP remained unchanged. The rank order of potency of the (-)-isomers was as follows: desmethoxyverapamil greater than methoxyverapamil greater than verapamil. Potassium-induced contractures and 45 Ca influx were depressed by the (-)-isomers of desmethoxyverapamil, methoxyverapamil and verapamil in the same potency rank order as observed in heart muscle. The (+)-isomers exerted qualitatively similar effects at about 10 to 200 times higher concentrations. Correspondingly, the increase in potency of the racemic mixtures of the drugs was accompanied by increases in stereoselectivity. It is concluded that (-)-desmethoxyverapamil is the most potent stereoselective calcium antagonist of the verapamil type with respect to its effects on heart and vascular smooth muscle

  8. Effects of (-)-desmethoxyverapamil on heart and vascular smooth muscle

    Energy Technology Data Exchange (ETDEWEB)

    Nawrath, H.; Raschack, M.

    1987-09-01

    (-)-Desmethoxyverapamil (also known as (-)-devapamil or (-)-D888) has been developed as a verapamil type radioligand for the study of calcium channels. In the present investigation, the effects of (-)-desmethoxyverapamil on action potential (AP) and force of contraction in heart muscle preparations and on tension and /sup 45/Ca influx in vascular smooth muscle are described. In part, the effects were compared with the (+)-isomer of desmethoxyverapamil and the isomers of both verapamil and methoxyverapamil. In atrial and/or ventricular heart muscle preparations from guinea pigs, cats and man, (-)-desmethoxyverapamil decreased the force of contraction and shortened the AP duration. Slow response APs were depressed, whereas dV/dtmax of phase 0 of the AP remained unchanged. The rank order of potency of the (-)-isomers was as follows: desmethoxyverapamil greater than methoxyverapamil greater than verapamil. Potassium-induced contractures and /sup 45/Ca influx were depressed by the (-)-isomers of desmethoxyverapamil, methoxyverapamil and verapamil in the same potency rank order as observed in heart muscle. The (+)-isomers exerted qualitatively similar effects at about 10 to 200 times higher concentrations. Correspondingly, the increase in potency of the racemic mixtures of the drugs was accompanied by increases in stereoselectivity. It is concluded that (-)-desmethoxyverapamil is the most potent stereoselective calcium antagonist of the verapamil type with respect to its effects on heart and vascular smooth muscle.

  9. Restoration of heart functions using human embryonic stem cells derived heart muscle cells.

    Science.gov (United States)

    Gepstein, Lior; Kehat, Izhak

    2005-02-01

    Extract: Recent advances in molecular and cellular biology and specifically in the areas of stem cell biology and tissue engineering have paved the way for the development of a new field in biomedicine, regenerative medicine. This exciting approach seeks to develop new biological solutions, using the mobilization of endogenous stem cells or delivery of exogenous cells to replace or modify the function of diseased, absent, or malfunctioning tissue. The adult heart represents an attractive candidate for these emerging technologies, since adult cardiomyocytes have limited regenerative capacity. Thus, any significant heart cell loss or dysfunction, such as occurs during heart attack, is mostly irreversible and may lead to the development of progressive heart failure, one of the leading causes of world-wide morbidity and mortality. Similarly, dysfunction of the specialized electrical conduction system within the heart may result in inefficient rhythm initiation or impulse conduction, leading to significant slowing of the heart rate, usually requiring the implantation of a permanent electronic pacemaker. Replacement of the dysfunctional myocardium (heart muscle) by implantation of external heart muscle cells is emerging as a novel paradigm for restoration of the myocardial electromechanical properties, but has been significantly hampered by the paucity of cell sources for human heart cells and by the relatively limited evidence for functional integration between grafted and host cells. The recently described human embryonic stem cell (hESC) lines may provide a possible solution for the aforementioned cell sourcing problem.

  10. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle

    DEFF Research Database (Denmark)

    Bak, Steffen; León, Ileana R; Jensen, Ole Nørregaard

    2013-01-01

    -specific phosphorylation sites were identified in tissue-specific enzymes such as those encoded by HMGCS2, BDH1, PCK2, CPS1, and OTC in liver mitochondria, and CKMT2 and CPT1B in heart and skeletal muscle. Kinase prediction showed an important role for PKA and PKC in all tissues but also for proline-directed kinases......Phosphorylation of mitochondrial proteins in a variety of biological processes is increasingly being recognized and may contribute to the differences in function and energy demands observed in mitochondria from different tissues such as liver, heart, and skeletal muscle. Here, we used a combination...... of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC-MS/MS on isolated mitochondria to investigate the tissue-specific mitochondrial phosphoproteomes of rat liver, heart, and skeletal muscle. In total, we identified 899 phosphorylation sites in 354 different mitochondrial proteins including...

  11. Muscle metaboreflex and autonomic regulation of heart rate in humans

    DEFF Research Database (Denmark)

    Fisher, James P; Adlan, Ahmed M; Shantsila, Alena

    2013-01-01

    ) conditions, but attenuated with β-adrenergic blockade (0.2 ± 1 beats min(-1); P > 0.05 vs. rest). Thus muscle metaboreflex activation-mediated increases in HR are principally attributable to increased cardiac sympathetic activity, and only following exercise with a large muscle mass (PEI following leg......We elucidated the autonomic mechanisms whereby heart rate (HR) is regulated by the muscle metaboreflex. Eight male participants (22 ± 3 years) performed three exercise protocols: (1) enhanced metaboreflex activation with partial flow restriction (bi-lateral thigh cuff inflation) during leg cycling...... exercise, (2) isolated muscle metaboreflex activation (post-exercise ischaemia; PEI) following leg cycling exercise, (3) isometric handgrip followed by PEI. Trials were undertaken under control (no drug), β1-adrenergic blockade (metoprolol) and parasympathetic blockade (glycopyrrolate) conditions. HR...

  12. Physiological roles of taurine in heart and muscle

    OpenAIRE

    Schaffer, Stephen W; Ju Jong, Chian; KC, Ramila; Azuma, Junichi

    2010-01-01

    Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeost...

  13. Association between muscle mass and a single measurement of ...

    African Journals Online (AJOL)

    cause mortality significantly. It is strongly associated with the risk of heart attack, coronary artery disease, cardiovascular disease, stroke and liver disease. The relationship between muscle mass and a diagnosis of hypertension in a sample of ...

  14. Direct measurement of skeletal muscle fatigue in patients with chronic heart failure.

    OpenAIRE

    Buller, N P; Jones, D; Poole-Wilson, P A

    1991-01-01

    Skeletal muscle function was measured as force production and fatigue in both the quadriceps (a large locomotive muscle) and adductor pollicis (a small intrinsic hand muscle) in five healthy volunteers, five patients with mild chronic heart failure, and five patients with severe chronic heart failure. The quadriceps of patients with chronic heart failure had a reduced muscle cross sectional area, a reduced maximum isometric force production, and an increased tendency to fatigue. Isometric for...

  15. Mechanical stimulation in the engineering of heart muscle.

    Science.gov (United States)

    Liaw, Norman Yu; Zimmermann, Wolfram-Hubertus

    2016-01-15

    Recreating the beating heart in the laboratory continues to be a formidable bioengineering challenge. The fundamental feature of the heart is its pumping action, requiring considerable mechanical forces to compress a blood filled chamber with a defined in- and outlet. Ventricular output crucially depends on venous loading of the ventricles (preload) and on the force generated by the preloaded ventricles to overcome arterial blood pressure (afterload). The rate of contraction is controlled by the spontaneously active sinus node and transmission of its electrical impulses into the ventricles. The underlying principles for these physiological processes are described by the Frank-Starling mechanism and Bowditch phenomenon. It is essential to consider these principles in the design and evaluation of tissue engineered myocardium. This review focuses on current strategies to evoke mechanical loading in hydrogel-based heart muscle engineering. Copyright © 2015. Published by Elsevier B.V.

  16. Skeletal muscle proton T 2 in chronic heart failure

    International Nuclear Information System (INIS)

    Morvan, D.; Richard, B.

    1995-01-01

    To evaluate the interest of proton T 2 measurement of skeletal muscle at rest and with exercise in patients with chronic heart failure, we performed associated measurements of proton T 2 using magnetic resonance imaging, of external work using ergometry, and of intra-cellular pH (pH) using magnetic resonance 31 P-spectroscopy, in skeletal muscle of the leg anterior compartment, in 37 patients with chronic heart failure. Sixteen patients were in New York Heart Association class II (NYHA II, moderate cardiac failure) and 21 in NYHA classes III-IV (severe cardiac failure). Rest T 2 was significantly increased in NYHA III-IV patients (30.9 ± 2.2 versus 32.8 ± 209 ms, p i variations were of -8 ± 4 versus -9 ± 5%, p =3D NS. The ratio of relative T 2 variations to W was significantly increased in NYPH III-IV patients (0.24 ± 0.12 versus 0.60 ± 0.41%/J, p i with exercise were coupled with external work, only in group NYHA II. T 2 variations negatively correlated with those of pH i in both groups (r=3D -0.78, p i variations with exercise which seems to depend on the exercise intensity level. (authors). 22 refs., 3 figs., 2 tabs

  17. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting

    Science.gov (United States)

    Breitbart, Astrid; Auger-Messier, Mannix; Molkentin, Jeffery D.

    2011-01-01

    A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future. PMID:21421824

  18. THE STUDY OF HEART MUSCLE IN CHRONIC ALCOHOLICS

    Directory of Open Access Journals (Sweden)

    Girish M

    2016-09-01

    Full Text Available BACKGROUND Alcohol affects many organs, especially the liver, pancreas and brain. Although, the beneficial effects of mild or moderate ethanol consumption have been implied with respect to coronary artery disease, excessive ethanol consumption can result in Alcoholic Heart Muscle Disease (AHMD. AIMS Alcohol consumption, mainly arrack, is common social problem in Mangalore. This study has been undertaken to assess the effects of alcohol on cardiovascular system. MATERIALS AND METHODS Thirty patient with history of consumption of about 6 units of alcohol per day for at least 5 days a week for at least 5 years who were admitted to Government Wenlock Hospital, Attavar K.M.C. and University Medical Centre, Mangalore, were selected as case and studied. RESULTS Alcohol intake is predominantly observed in males, majority of alcoholic had high blood pressure, serum levels of CPK-MB and LDH are elevated in chronic alcoholic patients, left ventricular hypertrophy, premature ventricular contraction and sinus tachycardia were common findings in the electrocardiograms of chronic alcoholic patients and development of alcoholic heart muscle disease is directly proportional to the quantity and duration of alcohol intake. CONCLUSION Overall, the present study has found high morbidity from chronic alcohol consumption highlighting the need for preventive measures to tackle this preventable hazard.

  19. Deriving muscle fiber diameter from recorded single fiber potential.

    Science.gov (United States)

    Zalewska, Ewa

    2017-12-01

    The aim of the study was to estimate muscle fiber diameters through analysis of single muscle fiber potentials (SFPs) recorded in the frontalis muscle of a healthy subject. Our previously developed analytical and graphic method to derive fiber diameter from the analysis of the negative peak duration and the amplitude of SFP, was applied to a sample of ten SFPs recorded in vivo. Muscle fiber diameters derived from the simulation method for the sample of frontalis muscle SFPs are consistent with anatomical data for this muscle. The results confirm the utility of proposed simulation method. Outlying data could be considered as the result of a contribution of other fibers to the potential recorded using an SFEMG electrode. Our graphic tool provides a rapid estimation of muscle fiber diameter. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Evaluation of skeletal muscle metabolism in patients with congestive heart failure using phosphorus nuclear magnetic

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1988-01-01

    Patients with congestive heart failure are frequently limited by muscular fatigue due skeletal muscle underperfusion and deconditioning. Muscle underperfusion and deconditioning both produce distinctive changes in metabolic parameters which are readily measured by phosphorus nuclear magnetic resonance (NMR). Therefore, phosphorus NMR should provide a useful noninvasive method of assessing muscle performance in heart failure. This chapter describes a protocol which allows detection of forearm muscle metabolic abnormalities in patients with heart failure, abnormalities that seem to be caused by muscle deconditioning. In the future, it is anticipated that this approach may prove to be an extremely useful method for objectively assessing muscle fatigue in patients with heart failure and for monitoring the effects on therapeutic interventions designed to treat this fatigue

  1. Congenital heart disease in adolescents with gluteal muscle contracture.

    Science.gov (United States)

    You, Tian; Zhang, Xin-tao; Zha, Zhen-gang; Zhang, Wen-tao

    2015-02-01

    Gluteal muscle contracture (GMC), presented with hip abduction and external rotation when crouching, is common in several ethnicities, particularly in Chinese. It remains unclear that the reasons why these children are weak and have no choice to accept repeated intramuscular injection. Here, we found some unique cases which may be useful to explain this question. We describe a series of special GMC patients, who are accompanied with congenital heart disease (CHD). These cases were first observed in preoperative examinations of a patient with atrial septal defect (ASD), which was proved by chest X-ray and cardiac ultrasound. From then on, we gradually identified additional 3 GMC patients with CHD. The original patient with ASD was sent to cardiosurgery department to repair atrial septal first and received arthroscopic surgery later. While the other 3 were cured postoperative of ventricular septal defect (VSD), tetralogy of fallot (TOF), patent ductus arteriosus (PDA), respectively, and had surgery directly. The study gives us 3 proposals: (1) as to CHD children, it is essential to decrease the use of intramuscular injection, (2) paying more attention to cardiac examination especially cardiac ultrasound in perioperative period, and (3) taking 3D-CT to reconstruct gluteal muscles for observing contracture bands clearly in preoperation. However, more larger series of patients are called for to confirm these findings.

  2. Fibrosis-Related Gene Expression in Single Ventricle Heart Disease.

    Science.gov (United States)

    Nakano, Stephanie J; Siomos, Austine K; Garcia, Anastacia M; Nguyen, Hieu; SooHoo, Megan; Galambos, Csaba; Nunley, Karin; Stauffer, Brian L; Sucharov, Carmen C; Miyamoto, Shelley D

    2017-12-01

    To evaluate fibrosis and fibrosis-related gene expression in the myocardium of pediatric subjects with single ventricle with right ventricular failure. Real-time quantitative polymerase chain reaction was performed on explanted right ventricular myocardium of pediatric subjects with single ventricle disease and controls with nonfailing heart disease. Subjects were divided into 3 groups: single ventricle failing (right ventricular failure before or after stage I palliation), single ventricle nonfailing (infants listed for primary transplantation with normal right ventricular function), and stage III (Fontan or right ventricular failure after stage III). To evaluate subjects of similar age and right ventricular volume loading, single ventricle disease with failure was compared with single ventricle without failure and stage III was compared with nonfailing right ventricular disease. Histologic fibrosis was assessed in all hearts. Mann-Whitney tests were performed to identify differences in gene expression. Collagen (Col1α, Col3) expression is decreased in single ventricle congenital heart disease with failure compared with nonfailing single ventricle congenital heart disease (P = .019 and P = .035, respectively), and is equivalent in stage III compared with nonfailing right ventricular heart disease. Tissue inhibitors of metalloproteinase (TIMP-1, TIMP-3, and TIMP-4) are downregulated in stage III compared with nonfailing right ventricular heart disease (P = .0047, P = .013 and P = .013, respectively). Matrix metalloproteinases (MMP-2, MMP-9) are similar between nonfailing single ventricular heart disease and failing single ventricular heart disease, and between stage III heart disease and nonfailing right ventricular heart disease. There is no difference in the prevalence of right ventricular fibrosis by histology in subjects with single ventricular failure heart disease with right ventricular failure (18%) compared with those with normal right

  3. Imaging diagnosis of congenital heart disease with single coronary artery

    International Nuclear Information System (INIS)

    Zhu Ming; Li Yuhua; Zhong Yumin; Sun Aimin

    2003-01-01

    Objective: To report 56 cases of congenital heart disease with congenital single coronary artery and to evaluate the imaging diagnostic techniques. Methods: All 56 patients with congenital single coronary artery underwent angiocardiography. Contrast enhancement magnetic resonance angiography (CE MRA) was performed in 4 cases. 48 cases were confirmed by operation. Results: In these 56 cases, single left coronary artery was found in 44 cases and single right coronary artery was found in 12. Conclusion: Congenital heart disease with congenital single coronary artery is not rare and correct diagnosis is very important for surgery

  4. Ventricular assist device use in single ventricle congenital heart disease.

    Science.gov (United States)

    Carlo, Waldemar F; Villa, Chet R; Lal, Ashwin K; Morales, David L

    2017-11-01

    As VAD have become an effective therapy for end-stage heart failure, their application in congenital heart disease has increased. Single ventricle congenital heart disease introduces unique physiologic challenges for VAD use. However, with regard to the mixed clinical results presented within this review, we suggest that patient selection, timing of implant, and center experience are all important contributors to outcome. This review focuses on the published experience of VAD use in single ventricle patients and details physiologic challenges and novel approaches in this growing pediatric and adult population. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Skeletal muscle beta-receptors and isoproterenol-stimulated vasodilation in canine heart failure

    International Nuclear Information System (INIS)

    Frey, M.J.; Lanoce, V.; Molinoff, P.B.; Wilson, J.R.

    1989-01-01

    To investigate whether heart failure alters beta-adrenergic receptors on skeletal muscle and its associated vasculature, the density of beta-adrenergic receptors, isoproterenol-stimulated adenylate cyclase activity, and coupling of the guanine nucleotide-binding regulatory protein were compared in 18 control dogs and 16 dogs with heart failure induced by 5-8 wk of ventricular pacing at 260 beats/min. Hindlimb vascular responses to isoproterenol were compared in eight controls and eight of the dogs with heart failure. In dogs with heart failure, the density of beta-receptors on skeletal muscle was reduced in both gastrocnemius (control: 50 +/- 5; heart failure: 33 +/- 8 fmol/mg of protein) and semitendinosus muscle (control: 43 +/- 9; heart failure: 27 +/- 9 fmol/mg of protein, both P less than 0.05). Receptor coupling to the ternary complex, as determined by isoproterenol competition curves with and without guanosine 5'-triphosphate (GTP), was unchanged. Isoproterenol-stimulated adenylate cyclase activity was significantly decreased in semitendinosus muscle (control: 52.4 +/- 4.6; heart failure: 36.5 +/- 9.5 pmol.mg-1.min-1; P less than 0.05) and tended to be decreased in gastrocnemius muscle (control: 40.1 +/- 8.5; heart failure: 33.5 +/- 4.5 pmol.mg-1.min-1; P = NS). Isoproterenol-induced hindlimb vasodilation was not significantly different in controls and in dogs with heart failure. These findings suggest that heart failure causes downregulation of skeletal muscle beta-adrenergic receptors, probably due to receptor exposure to elevated catecholamine levels, but does not reduce beta-receptor-mediated vasodilation in muscle

  6. INTEGRATED ASSESSMENT OF STATIN-ASSOCIATED MUSCLE DAMAGE PREDICTORS IN PATIENTS WITH ISCHEMIC HEART DISEASE

    OpenAIRE

    V. I. Petrov; O. N. Smuseva; Yu. V. Solovkina

    2013-01-01

    Aim. To assess the risk factors of statin-associated muscle damage in patient with ischemic heart disease.Material and methods. 258 patients with ischemic heart disease treated with statin were included into the study. Total plasma creatine kinase levels were measured and SLCO1B1*5 genotyping was performed. Relationship between statin therapy and adverse events was evaluated by Naranjo algorithm.Results. Patients with muscle symptoms received statins significantly longer (48.8 vs 11.9 months,...

  7. Cellular fatty acid transport in heart and skeletal muscle as facilitated by proteins

    NARCIS (Netherlands)

    Luiken, J. J.; Schaap, F. G.; van Nieuwenhoven, F. A.; van der Vusse, G. J.; Bonen, A.; Glatz, J. F.

    1999-01-01

    Despite the importance of long-chain fatty acids (FA) as fuels for heart and skeletal muscles, the mechanism of their cellular uptake has not yet been clarified. There is dispute as to whether FA are taken up by the muscle cells via passive diffusion and/or carrier-mediated transport. Kinetic

  8. Transient impairments in single muscle fibre contractile function after prolonged cycling in elite endurance athletes

    DEFF Research Database (Denmark)

    Hvid, L G; Gejl, Kasper Degn; Bech, R D

    2013-01-01

    Prolonged muscle activity impairs whole-muscle performance and function. However, little is known about the effects of prolonged muscle activity on the contractile function of human single muscle fibres. The purpose of this study was to investigate the effects of prolonged exercise and subsequent...... recovery on the contractile function of single muscle fibres obtained from elite athletes....

  9. Heart failure induces changes in acid-sensing ion channels in sensory neurons innervating skeletal muscle.

    Science.gov (United States)

    Gibbons, David D; Kutschke, William J; Weiss, Robert M; Benson, Christopher J

    2015-10-15

    Heart failure is associated with diminished exercise capacity, which is driven, in part, by alterations in exercise-induced autonomic reflexes triggered by skeletal muscle sensory neurons (afferents). These overactive reflexes may also contribute to the chronic state of sympathetic excitation, which is a major contributor to the morbidity and mortality of heart failure. Acid-sensing ion channels (ASICs) are highly expressed in muscle afferents where they sense metabolic changes associated with ischaemia and exercise, and contribute to the metabolic component of these reflexes. Therefore, we tested if ASICs within muscle afferents are altered in heart failure. We used whole-cell patch clamp to study the electrophysiological properties of acid-evoked currents in isolated, labelled muscle afferent neurons from control and heart failure (induced by myocardial infarction) mice. We found that the percentage of muscle afferents that displayed ASIC-like currents, the current amplitudes, and the pH dose-response relationships were not altered in mice with heart failure. On the other hand, the biophysical properties of ASIC-like currents were significantly different in a subpopulation of cells (40%) from heart failure mice. This population displayed diminished pH sensitivity, altered desensitization kinetics, and very fast recovery from desensitization. These unique properties define these channels within this subpopulation of muscle afferents as being heteromeric channels composed of ASIC2a and -3 subunits. Heart failure induced a shift in the subunit composition of ASICs within muscle afferents, which significantly altered their pH sensing characteristics. These results might, in part, contribute to the changes in exercise-mediated reflexes that are associated with heart failure. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  10. Cardioacceleratory Neurons of the Isopod Crustacean, Ligia exotica : Visualization of Peripheral Projection onto the Heart Muscle

    OpenAIRE

    Akira, Sakurai; Hiroshi, Yamagishi; Institute of Biological Sciences, University of Tsukuba; Institute of Biological Sciences, University of Tsukuba

    1998-01-01

    Innervation of the heart muscle by the cardioacceleratory neurons was morphologically and electrophysiologically examined in the isopod crustacean, Ligia exotica. Intracellular injection of neurobiotin into the first and second cardioacceleratory neurons(CA1 and CA2)revealed their peripheral axonal projections. Inside the heart, the CA1 and CA2 axons ran along the trunk of the cardiac ganglion. Finely arborized branches with many varicosities arose from the axon and projected over the heart m...

  11. FA composition of heart and skeletal muscle during embryonic development of the king penguin.

    Science.gov (United States)

    Decrock, Frederic; Groscolas, Rene; Speake, Brian K

    2002-04-01

    Since the yolk lipids of the king penguin (Aptenodytes patagonicus) naturally contain the highest concentrations of DHA and EPA yet reported for the eggs of any avian species, the effects of this (n-3)-rich yolk on the FA profiles of the embryonic heart and skeletal muscle were investigated. The concentrations (mg/g wet tissue) of phospholipid (PL) in the developing heart and leg muscle of the penguin doubled between days 27 and 55 from the beginning of egg incubation (i.e., from the halfway stage of embryonic development to 2 d posthatch), whereas no net increase occurred in pectoral muscle. During this period, the concentration of TAG in heart decreased by half but increased two- and sixfold in leg and pectoral muscle, respectively. The most notable change in cholesteryl ester concentration occurred in pectoral muscle, increasing ninefold between days 27 and 55. Arachidonic acid (ARA) was the major polyunsaturate in PL of the penguin's heart, where it formed about 20% (w/w) of FA at day 55. At the equivalent developmental stage, the heart PL of the chicken contained a 1.3-fold greater proportion of ARA, contained a fifth less DHA, and was almost devoid of EPA, whereas the latter FA was a significant component (7% of FA) of penguin heart PL. Similarly, in PL of leg and pectoral muscle, the chicken displayed about 1.4-fold more ARA, up to 50% less DHA, and far less EPA in comparison with the penguin. Thus, although ARA-rich PL profiles are achieved in the heart and muscle of the penguin embryo, these profiles are significantly affected by the high n-3 content of the yolk.

  12. Heart size and mean muscle fibre cross-sectional area related to birth weight in pigs

    Directory of Open Access Journals (Sweden)

    M. RUUSUNEN

    2008-12-01

    Full Text Available One of the aims in domestic pig breeding has been to increase the size of litters resulting in variation in birth weight of piglets. Pig breeding has also resulted in increased body muscle mass. Muscles with the same size can consist either of large number of thin muscle fibres or small number of thick muscle fibres. Larger body muscle content means that in living animal the heart must pump blood to larger muscle mass than earlier. Our interest in this study was to investigate the relationship between the pig’s birth weight and (i growth performance and carcass composition, (ii the size of organs, and (iii the mean muscle fibre cross-sectional area at slaughter. The study consisted of twenty pigs slaughtered at the age of 165±2 days. The day after the slaughter, the carcass composition was determined by dissecting the chilled carcass into lean, fat, bones, and skin and organs were weighed. The average cross sectional area of muscle fibres was determined from three fast-twitch muscles longissimus dorsi, semimembranosus, gluteus superficialis, and two slow-twitch muscles infraspinatus and masseter. The birth weight of pigs ranged from 0.9 to 2.2 kg. We found no clear relationships between the birth weight and the pig’s growth performance from birth to slaughter. When the birth weight increased the heart weight at slaughter increased as well (P < 0.01. The heart weight was higher in those pigs with high carcass weight (P < 0.05 and with the high weight of total muscle mass in the carcass (P < 0.001. The cross sectional area of muscle fibres in M. longissimus dorsi (P < 0.05, M. semimembranosus (P < 0.10, and M. gluteus superficialis (P < 0.05 was larger in those pigs with low birth weight compared to those found in pigs with high birth weight.;

  13. Establishing the framework to support bioartificial heart fabrication using fibrin-based three-dimensional artificial heart muscle.

    Science.gov (United States)

    Hogan, Matthew; Mohamed, Mohamed; Tao, Ze-Wei; Gutierrez, Laura; Birla, Ravi

    2015-02-01

    Only 3000 heart transplants are performed in the USA every year, leaving some 30 000-70 000 Americans without proper care. Current treatment modalities for heart failure have saved many lives yet still do not correct the underlying problems of congestive heart failure. Tissue engineering represents a potential field of study wherein a combination of cells, scaffolds, and/or bioreactors can be utilized to create constructs to mimic, replace, and/or repair defective tissue. The focus of this study was to generate a bioartificial heart (BAH) model using artificial heart muscle (AHM), composed of fibrin gel and neonatal rat cardiac myocytes, and a decellularized scaffold, formed by subjecting an adult rat heart to a series of decellularization solutions. By suturing the AHM around the outside of the decellularized heart and culturing while suspended in media, we were able to retain functional cardiac cells on the scaffold as evinced by visible contractility. Observed contractility rate was correlated with biopotential measurements to confirm essential functionality of cardiac constructs. Cross-sections of the BAH show successful decellularization of the scaffold and contiguous cell-rich AHM around the perimeter of the heart. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  14. INTEGRATED ASSESSMENT OF STATIN-ASSOCIATED MUSCLE DAMAGE PREDICTORS IN PATIENTS WITH ISCHEMIC HEART DISEASE

    Directory of Open Access Journals (Sweden)

    V. I. Petrov

    2015-09-01

    Full Text Available Aim. To assess the risk factors of statin-associated muscle damage in patient with ischemic heart disease.Material and methods. 258 patients with ischemic heart disease treated with statin were included into the study. Total plasma creatine kinase levels were measured and SLCO1B1*5 genotyping was performed. Relationship between statin therapy and adverse events was evaluated by Naranjo algorithm.Results. Patients with muscle symptoms received statins significantly longer (48.8 vs 11.9 months, р<0.0001 and in higher doses, than patients without muscle pain/weakness. There were not significant differences in creatine kinase levels between patients with and without muscle symptoms. Patients with SLCO1B1*5 genotype were revealed in both groups, but more often (58% among patients with muscle symptoms. Patients with abnormal C allele having muscle symptoms received statins significantly longer, than these without muscle signs (54.7 vs 13.9 months, р=0.0028.Conclusion. Association between occurrence of muscle symptoms and SLCO1B1*5 allele carriership, statin dose and therapy duration was revealed. Creatine kinase examination was not valuable for finding of statin-induced muscle damage.

  15. INTEGRATED ASSESSMENT OF STATIN-ASSOCIATED MUSCLE DAMAGE PREDICTORS IN PATIENTS WITH ISCHEMIC HEART DISEASE

    Directory of Open Access Journals (Sweden)

    V. I. Petrov

    2013-01-01

    Full Text Available Aim. To assess the risk factors of statin-associated muscle damage in patient with ischemic heart disease.Material and methods. 258 patients with ischemic heart disease treated with statin were included into the study. Total plasma creatine kinase levels were measured and SLCO1B1*5 genotyping was performed. Relationship between statin therapy and adverse events was evaluated by Naranjo algorithm.Results. Patients with muscle symptoms received statins significantly longer (48.8 vs 11.9 months, р<0.0001 and in higher doses, than patients without muscle pain/weakness. There were not significant differences in creatine kinase levels between patients with and without muscle symptoms. Patients with SLCO1B1*5 genotype were revealed in both groups, but more often (58% among patients with muscle symptoms. Patients with abnormal C allele having muscle symptoms received statins significantly longer, than these without muscle signs (54.7 vs 13.9 months, р=0.0028.Conclusion. Association between occurrence of muscle symptoms and SLCO1B1*5 allele carriership, statin dose and therapy duration was revealed. Creatine kinase examination was not valuable for finding of statin-induced muscle damage.

  16. Myocardial scintigraphy with 201thallium for the diagnosis of coronary heart disease and heart muscle disease

    International Nuclear Information System (INIS)

    Keller, E.

    1986-01-01

    This work gives an overview of the presently used methods of diagnostic and therapy of coronary heart disease. With the use of 105 patients the viability of scintigraphical and radiological studies were compared to each other. The thallium scintigraphy thereby achieves excellent results with a sensitivity of 95% of coronary heart disease (with a pre-determined exclusion of myocardial diseases). In three cases small vessel disease was detected which could not be detected by a coronary angiogram. The correct localization of coronary stenosis with thallium scintigraphy was attained in the area of LAD at 77% and in the avea of RCA at 74% fairly reliable, whereas the determination of circumflex artery (sensitivity 29%) was rather poor. Also, the excact determination of the extent of coronary sclerosis shows that with multiple vessel diseases the sensitivity clearly decreases (1-vessel 78%, 2-vessel 38%, 3-vessel 13%), whereby the various coronary stenoses probably appear differently in scintigraphs. A better study method for the exact determination of the extent of myocardial ischemia is offered by the single photon emission computer tomography (SPECT) with the use of a rotating gamma camera. In view of the differential diagnostic for coronary diseases myocardial scintigraphy still plays a major role in myocardial diseases. In my own research pathological storage patterns could be shown in 14 such cases. (orig./MG) [de

  17. Na+,K+-ATPase concentration in rodent and human heart and skeletal muscle

    DEFF Research Database (Denmark)

    Kjeldsen, K; Bjerregaard, P; Richter, Erik

    1988-01-01

    rats, cardiomyopathic hamsters, and human subjects. These methods have earlier been shown to quantify the Na+,K+-ATPase concentration in muscle tissue with high accuracy. When rats were swim trained for six weeks the heart ventricular muscle Na+,K+-ATPase concentration was increased by 20% (p less than...... was increased by up to 46% (p less than 0.001) and decreased by up to 30% (p less than 0.005) after training and immobilisation respectively. Cardiomyopathic hamsters showed a reduction of 33% (p less than 0.005) in the heart ventricular Na+,K+-ATPase concentration compared with normal hamsters. This decrease...

  18. Arterial wall mechanics as a function of heart rate: role of vascular smooth muscle

    International Nuclear Information System (INIS)

    Salvucci, Fernando Pablo; Schiavone, Jonathan; Craiem, Damian; Barra, Juan Gabriel

    2007-01-01

    Vascular wall viscoelasticity can be evaluated using a first-order lumped model. This model consists of a spring with elastic constant E and a dashpot with viscous constant η. More importantly, this viscoelastic model can be fitted in-vivo measuring arterial pressure and diameter. The aim of this work is to analyze the influence of heart rate over E and η. In two anesthetized sheep, diameter in thoracic aorta and intravascular pressure has been registered. The right atrium was connected to a programmable stimulator through a pair of pace-maker wires to produce changes in stimulation heart rate (HR) from 80 to 160 bpm. Additionally, local activation of vascular smooth muscle was induced with phenylephrine. After converting pressure and diameter signals into stress and strain respectively, E y η were calculated in control state and during muscle activation. The elastic modulus E did not present significant changes with heart rate. The viscous modulus η decreased 49% with a two-fold acceleration in heart rate from 80 to 160 bpm. However, the product η HR remained stable. The viscous modulus η increased 39% with smooth muscle activation. No significant pressure changes were registered during the experiment. The contractile action of vascular smooth muscle could contribute to increasing arterial wall viscosity. The decrease of η when HR increased might be related to smooth muscle relaxation mediated by endothelium activity, which was stimulated by flow increase. We conclude that HR can modulate arterial wall viscoelasticity through endothelium-dependent mechanisms

  19. Serum myostatin levels are independently associated with skeletal muscle wasting in patients with heart failure.

    Science.gov (United States)

    Furihata, Takaaki; Kinugawa, Shintaro; Fukushima, Arata; Takada, Shingo; Homma, Tsuneaki; Masaki, Yoshihiro; Abe, Takahiro; Yokota, Takashi; Oba, Koji; Okita, Koichi; Tsutsui, Hiroyuki

    2016-10-01

    It has been reported that skeletal muscle mass and strength are decreased in patients with heart failure (HF), and HF is associated with both reduced exercise capacity and adverse clinical outcomes. Myostatin has been known as a negative regulator of muscle growth, follistatin as the myostatin antagonist, maintaining tissue homeostasis. We thus determined serum myostatin levels in HF patients and whether they are associated with skeletal muscle wasting. Forty one consecutive HF patients (58±15years old, New York Heart Association class I-III) and 30 age-matched healthy subjects as controls (53±8years old) were studied. Serum myostatin levels were significantly lower in HF patients than controls (18.7±7.4 vs. 23.6±5.2ng/mL, Pmyostatin were significantly associated with the presence of muscle wasting. By multivariate analysis, serum myostatin levels were independently associated with muscle wasting (OR=0.77, 95% CI [0.58, 0.93], P=0.02). Serum myostatin levels were significantly decreased in HF patients and associated with lower extremity muscle wasting, suggesting that myostatin may be an important factor for maintaining skeletal muscle mass and strength in HF. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Single muscle fiber gene expression in human skeletal muscle: validation of internal control with exercise

    International Nuclear Information System (INIS)

    Jemiolo, Bozena; Trappe, Scott

    2004-01-01

    Reverse transcription and real-time PCR have become the method of choice for the detection of low-abundance mRNA transcripts obtained from small human muscle biopsy samples. GAPDH, β-actin, β-2M, and 18S rRNA are widely employed as endogenous control genes, with the assumption that their expression is unregulated and constant for given experimental conditions. The aim of this study was to determine if mRNA transcripts could be performed on isolated human single muscle fibers and to determine reliable housekeeping genes (HKGs) using quantitative gene expression protocols at rest and in response to an acute exercise bout. Muscle biopsies were obtained from the gastrocnemius of three adult males before, immediately after, and 4 h following 30 min of treadmill running at 70% of VO 2 max. A total of 40 single fibers (MHC I and IIa) were examined for GAPDH, β-actin, β-2M, and 18S rRNA using quantitative RT-PCR and SYBR Green detection. All analyzed single fiber segments showed ribosomal RNA (28S/18S). No degradation or additional bands below ribosomal were detected (rRNA ratio 1.5-1.8). Also, no high or low-molecular weight genomic DNA contamination was observed. For each housekeeping gene the duplicate average SD was ±0.13 with a CV of 0.58%. Stable expression of GAPDH was observed at all time points for each fiber type (MHC I and IIa). Inconsistent expression of β-actin, β-2M, and 18S rRNA was observed during the post-exercise time points for each fiber type. These data indicate that successful extraction of high quality RNA from human single muscle fibers along with quantification of mRNA of selected genes can be performed. Furthermore, exercise does influence the expression of certain HKGs with GAPDH being the most stable

  1. Skeletal muscle signaling and the heart rate and blood pressure response to exercise

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Svendsen, Jesper H; Ersbøll, Mads

    2013-01-01

    Endurance training lowers heart rate and blood pressure responses to exercise, but the mechanisms and consequences remain unclear. To determine the role of skeletal muscle for the cardioventilatory response to exercise, 8 healthy young men were studied before and after 5 weeks of 1-legged knee-ex...... was ≈ 15 bpm lower during exercise with the trained leg (P...

  2. Fatty acid composition of muscle and heart tissue of Nile perch ...

    African Journals Online (AJOL)

    The fatty acid composition in the heart tissue and muscle tissue of the Nile perch, Lates niloticus, and Nile tilapia, Oreochromis niloticus populations from Lakes Kioga and Victoria was determined by methanolysis and gas chromatography of the resulting fatty acid methyl esters. The analytical data were treated by ...

  3. Influence of N-acetylcysteine on oxidative stress in slow-twitch soleus muscle of heart failure rats

    OpenAIRE

    Martinez, Paula Felippe [UNESP; Bonomo, Camila [UNESP; Guizoni, Daniele Mendes [UNESP; Oliveira Junior, Silvio Assis [UNESP; Damatto, Ricardo Luiz [UNESP; Cezar, Marcelo Diarcadia Mariano [UNESP; Lima, Aline Regina Ruiz [UNESP; Pagan, Luana Urbano [UNESP; Seiva, Fabio Rodrigues; Fernandes, Denise Castro; Laurindo, Francisco Rafael Martins; Novelli, Ethel Lourenzi Barbosa [UNESP; Matsubara, Luiz Shiguero [UNESP; Zornoff, Leonardo Antonio Mamede [UNESP; Okoshi, Katashi [UNESP

    2015-01-01

    Background: Chronic heart failure is characterized by decreased exercise capacity with early exacerbation of fatigue and dyspnea. Intrinsic skeletal muscle abnormalities can play a role in exercise intolerance. Causal or contributing factors responsible for muscle alterations have not been completely defined. This study evaluated skeletal muscle oxidative stress and NADPH oxidase activity in rats with myocardial infarction (MI) induced heart failure. Methods and Results: Four months after MI,...

  4. Skeletal muscle mass and exercise performance in stable ambulatory patients with heart failure.

    Science.gov (United States)

    Lang, C C; Chomsky, D B; Rayos, G; Yeoh, T K; Wilson, J R

    1997-01-01

    The purpose of this study was to determine whether skeletal muscle atrophy limits the maximal exercise capacity of stable ambulatory patients with heart failure. Body composition and maximal exercise capacity were measured in 100 stable ambulatory patients with heart failure. Body composition was assessed by using dual-energy X-ray absorption. Peak exercise oxygen consumption (VO2peak) and the anaerobic threshold were measured by using a Naughton treadmill protocol and a Medical Graphics CardioO2 System. VO2peak averaged 13.4 +/- 3.3 ml.min-1.kg-1 or 43 +/- 12% of normal. Lean body mass averaged 52.9 +/- 10.5 kg and leg lean mass 16.5 +/- 3.6 kg. Leg lean mass correlated linearly with VO2peak (r = 0.68, P < 0.01), suggesting that exercise performance is influences by skeletal muscle mass. However, lean body mass was comparable to levels noted in 1,584 normal control subjects, suggesting no decrease in muscle mass. Leg muscle mass was comparable to levels noted in 34 normal control subjects, further supporting this conclusion. These findings suggest that exercise intolerance in stable ambulatory patients with heart failure is not due to skeletal muscle atrophy.

  5. Sarcopenia, cachexia, and muscle performance in heart failure: Review update 2016.

    Science.gov (United States)

    Saitoh, Masakazu; Ishida, Junichi; Doehner, Wolfram; von Haehling, Stephan; Anker, Markus S; Coats, Andrew J S; Anker, Stefan D; Springer, Jochen

    2017-07-01

    Cachexia in the context of heart failure (HF) has been termed cardiac cachexia, and represents a progressive involuntary weight loss. Cachexia is mainly the result of an imbalance in the homeostasis of muscle protein synthesis and degradation due to a lower activity of protein synthesis pathways and an over-activation of protein degradation. In addition, muscle wasting leads to of impaired functional capacity, even after adjusting for clinical relevant variables in patients with HF. However, there is no sufficient therapeutic strategy in muscle wasting in HF patients and very few studies in animal models. Exercise training represents a promising intervention that can prevent or even reverse the process of muscle wasting, and worsening the muscle function and performance in HF with muscle wasting and cachexia. The pathological mechanisms and effective therapeutic approach of cardiac cachexia remain uncertain, because of the difficulty to establish animal cardiac cachexia models, thus novel animal models are warranted. Furthermore, the use of improved animal models will lead to a better understanding of the pathways that modulate muscle wasting and therapeutics of muscle wasting of cardiac cachexia. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Single muscle fiber gene expression with run taper.

    Directory of Open Access Journals (Sweden)

    Kevin Murach

    Full Text Available This study evaluated gene expression changes in gastrocnemius slow-twitch myosin heavy chain I (MHC I and fast-twitch (MHC IIa muscle fibers of collegiate cross-country runners (n = 6, 20±1 y, VO₂max = 70±1 ml•kg-1•min-1 during two distinct training phases. In a controlled environment, runners performed identical 8 kilometer runs (30:18±0:30 min:s, 89±1% HRmax while in heavy training (∼72 km/wk and following a 3 wk taper. Training volume during the taper leading into peak competition was reduced ∼50% which resulted in improved race times and greater cross-section and improved function of MHC IIa fibers. Single muscle fibers were isolated from pre and 4 hour post run biopsies in heavily trained and tapered states to examine the dynamic acute exercise response of the growth-related genes Fibroblast growth factor-inducible 14 (FN14, Myostatin (MSTN, Heat shock protein 72 (HSP72, Muscle ring-finger protein-1 (MURF1, Myogenic factor 6 (MRF4, and Insulin-like growth factor 1 (IGF1 via qPCR. FN14 increased 4.3-fold in MHC IIa fibers with exercise in the tapered state (P<0.05. MSTN was suppressed with exercise in both fiber types and training states (P<0.05 while MURF1 and HSP72 responded to running in MHC IIa and I fibers, respectively, regardless of training state (P<0.05. Robust induction of FN14 (previously shown to strongly correlate with hypertrophy and greater overall transcriptional flexibility with exercise in the tapered state provides an initial molecular basis for fast-twitch muscle fiber performance gains previously observed after taper in competitive endurance athletes.

  7. Myocardial Response to Milrinone in Single Right Ventricle Heart Disease.

    Science.gov (United States)

    Nakano, Stephanie J; Nelson, Penny; Sucharov, Carmen C; Miyamoto, Shelley D

    2016-07-01

    Empiric treatment with milrinone, a phosphodiesterase (PDE) 3 inhibitor, has become increasingly common in patients with single ventricle heart disease of right ventricular (RV) morphology (SRV); our objective was to characterize the myocardial response to PDE3 inhibition (PDE3i) in the pediatric population with SRV. Cyclic adenosine monophosphate levels, PDE activity, and phosphorylated phospholamban (PLN) were determined in explanted human ventricular myocardium from nonfailing pediatric donors (n = 10) and pediatric patients transplanted secondary to SRV. Subjects with SRV were further classified by PDE3i treatment (n = 13 with PDE3i and n = 12 without PDE3i). In comparison with nonfailing RV myocardium (n = 8), cyclic adenosine monophosphate levels are lower in patients with SRV treated with PDE3i (n = 12, P = .021). Chronic PDE3i does not alter total PDE or PDE3 activity in SRV myocardium. Compared with nonfailing RV myocardium, SRV myocardium (both with and without PDE3i) demonstrates equivalent phosphorylated PLN at the protein kinase A phosphorylation site. As evidenced by preserved phosphorylated PLN, the molecular adaptation associated with SRV differs significantly from that demonstrated in pediatric heart failure because of dilated cardiomyopathy. These alterations support a pathophysiologically distinct mechanism of heart failure in pediatric patients with SRV, which has direct implications regarding the presumed response to PDE3i treatment in this population. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Oracle, a novel PDZ-LIM domain protein expressed in heart and skeletal muscle.

    Science.gov (United States)

    Passier, R; Richardson, J A; Olson, E N

    2000-04-01

    In order to identify novel genes enriched in adult heart, we performed a subtractive hybridization for genes expressed in mouse heart but not in skeletal muscle. We identified two alternative splicing variants of a novel PDZ-LIM domain protein, which we named Oracle. Both variants contain a PDZ domain at the amino-terminus and three LIM domains at the carboxy-terminus. Highest homology of Oracle was found with the human and rat enigma proteins in the PDZ domain (62 and 61%, respectively) and in the LIM domains (60 and 69%, respectively). By Northern hybridization analysis, we showed that expression is highest in adult mouse heart, low in skeletal muscle and undetectable in other adult mouse tissues. In situ hybridization in mouse embryos confirmed and extended these data by showing high expression of Oracle mRNA in atrial and ventricular myocardial cells from E8.5. From E9.5 low expression of Oracle mRNA was detectable in myotomes. These data suggest a role for Oracle in the early development and function of heart and skeletal muscle.

  9. Calcium versus strontium handling by the heart muscle.

    Science.gov (United States)

    Hendrych, Michal; Olejnickova, Veronika; Novakova, Marie

    2016-01-01

    Calcium plays a crucial role in numerous processes in living systems, from both intracellular and intercellular signalling to blood clotting. Calcium can be replaced by strontium in various intracellular processes due to high level of their similarity and strontium thus may serve as a valuable tool for different experimental studies. On the other hand, strontium is also used in clinical medicine and is commonly taken to the human body with food and water. The negative cardiac side effects of strontium therapy of osteoporosis and bone metastases are well known, but still not fully explained. This fact explains enhanced interest in this element and its impact on human body. This article reviews effects of calcium and strontium on several biochemical and physiological processes, with special emphasis on cardiac muscle.

  10. Reconstruction of electrocardiogram using ionic current models for heart muscles.

    Science.gov (United States)

    Yamanaka, A; Okazaki, K; Urushibara, S; Kawato, M; Suzuki, R

    1986-11-01

    A digital computer model is presented for the simulation of the electrocardiogram during ventricular activation and repolarization (QRS-T waves). The part of the ventricular septum and the left ventricular free wall of the heart are represented by a two dimensional array of 730 homogeneous functional units. Ionic currents models are used to determine the spatial distribution of the electrical activities of these units at each instant of time during simulated cardiac cycle. In order to reconstruct the electrocardiogram, the model is expanded three-dimensionally with equipotential assumption along the third axis and then the surface potentials are calculated using solid angle method. Our digital computer model can be used to improve the understanding of the relationship between body surface potentials and intracellular electrical events.

  11. Direct and indirect assessment of skeletal muscle blood flow in chronic congestive heart failure

    International Nuclear Information System (INIS)

    LeJemtel, T.H.; Scortichini, D.; Katz, S.

    1988-01-01

    In patients with chronic congestive heart failure (CHF), skeletal muscle blood flow can be measured directly by the continuous thermodilution technique and by the xenon-133 clearance method. The continuous thermodilution technique requires retrograde catheterization of the femoral vein and, thus, cannot be repeated conveniently in patients during evaluation of pharmacologic interventions. The xenon-133 clearance, which requires only an intramuscular injection, allows repeated determination of skeletal muscle blood flow. In patients with severe CHF, a fixed capacity of the skeletal muscle vasculature to dilate appears to limit maximal exercise performance. Moreover, the changes in peak skeletal muscle blood flow noted during long-term administration of captopril, an angiotensin-converting enzyme inhibitor, appears to correlate with the changes in aerobic capacity. In patients with CHF, resting supine deep femoral vein oxygen content can be used as an indirect measurement of resting skeletal muscle blood flow. The absence of a steady state complicates the determination of peak skeletal muscle blood flow reached during graded bicycle or treadmill exercise in patients with chronic CHF. Indirect assessments of skeletal muscle blood flow and metabolism during exercise performed at submaximal work loads are currently developed in patients with chronic CHF

  12. Metabolic adaptations of skeletal muscle to voluntary wheel running exercise in hypertensive heart failure rats

    DEFF Research Database (Denmark)

    Schultz, R L; Kullman, E L; Waters, Ryan

    2013-01-01

    SHHF and Wistar-Furth (WF) rats were randomized to sedentary (SHHFsed and WFsed) and exercise groups (SHHFex and WFex). The exercise groups had access to running wheels from 6-22 months of age. Hindlimb muscles were obtained for metabolic measures that included mitochondrial enzyme function...... robust amounts of aerobic activity, voluntary wheel running exercise was not sufficiently intense to improve the oxidative capacity of skeletal muscle in adult SHHF animals, indicating an inability to compensate for declining heart function by improving peripheral oxidative adaptations in the skeletal...

  13. Single-Parent and Working-Parent Heart Health

    Science.gov (United States)

    ... Check Recipe Certification Program Nutrition Requirements Heart-Check Professional Resources Contact the Heart-Check Certification Program Simple Cooking and Recipes Dining Out Choosing a Restaurant Deciphering ...

  14. Grafting of a Single Donor Myofibre Promotes Hypertrophy in Dystrophic Mouse Muscle

    Science.gov (United States)

    Boldrin, Luisa; Morgan, Jennifer E.

    2013-01-01

    Skeletal muscle has a remarkable capability of regeneration following injury. Satellite cells, the principal muscle stem cells, are responsible for this process. However, this regenerative capacity is reduced in muscular dystrophies or in old age: in both these situations, there is a net loss of muscle fibres. Promoting skeletal muscle muscle hypertrophy could therefore have potential applications for treating muscular dystrophies or sarcopenia. Here, we observed that muscles of dystrophic mdx nude host mice that had been acutely injured by myotoxin and grafted with a single myofibre derived from a normal donor mouse exhibited increased muscle area. Transplantation experiments revealed that the hypertrophic effect is mediated by the grafted fibre and does not require either an imposed injury to the host muscle, or the contribution of donor cells to the host muscle. These results suggest the presence of a crucial cross-talk between the donor fibre and the host muscle environment. PMID:23349935

  15. [Evaluation of heart impact in the 100 m extreme intensity sport using near-infrared non-invasive muscle oxygen detecting device and sports heart rate detection technology].

    Science.gov (United States)

    Wang, Pei-Yong; Long, Fei-Xiao; Fu, Lan-Ying; Li, Yue; Ding, Hai-Shu; Qu, An-Lian; Zhou, Xiao-Ping

    2010-02-01

    Using continuous two wavelength near-infrared technology to detect the variation in the consistency of oxygen hemoglobin in the muscle and the sports heart rate wireless real time collection technology, we devised the real time muscle tissue oxygenation and instantaneous heart rate experiment scheme and implemented it for the process of the 100 m run with two parameters given simultaneously. The experiment shows that the concentration of the oxygen hemoglobin in the muscle tissue continues decreasing after the end of the 100 m run, and the time interval between the moment when the concentration of the oxygen hemoglobin attains the minimum value and the moment when the athletes finish the 100 m run is (6.65 +/- 1.10) sec; while the heart rate continues increasing after the end of the 100 m run, and the time interval between the moment when the heart rate attains the maximum value and the moment when the athletes finish the 100 m run is (8.00 +/- 1.57) sec. The results show that the two wavelength near-infrared tissue oxygenation detection technology and the sports heart rate real time collection equipment can accurately measure the sports tissue oxygenation and the heart rate in the extreme intensity sport, and reveal the process of muscle oxygen transportation and consumption and its dynamic character with the heart rate in the extreme intensity sport.

  16. Metabolism of 15(p123I iodophenyl-)pentadecanoic acid in heart muscle and noncardiac tissues

    International Nuclear Information System (INIS)

    Reske, S.N.; Sauer, W.; Winkler, C.; Machulla, H.J.; Knust, J.

    1985-01-01

    The uptake and turnover of W(p 123 I iodophenyl-)pentadecanoic acid (I-PPA), a radioiodinated free-fatty-acid analog, was examined in the heart, lung, liver, kidneys, spleen, and skeletal muscle of rats. At 2 min post injection, a high cardiac uptake of 4.4% dose per gram had already been achieved; this was followed by a rapid, two-component, tracer clearance. The kinetics of tissue concentrations of labeled hydrophilic catabolites indicated a rapid oxidation of I-PPA and the subsequent washout of I-PPA catabolites from heart-muscle tissue. The fractional distribution of the labeled cardiac lipids compared favorably with previously reported values for 3 H-oleic- or 14 C-palmitic-acid-labeled myocardial lipids. Typical patterns of I-PPA metabolism were observed in tissues; dedpending on primary fatty-acid oxidation, lipid metabolism regulation, or I-PPA-catabolite excretion. The tissue concentrations and kinetics of I-PPA and its metabolites in the heart muscle indicated that general pathways of cardiac-lipid metabolism are traced by this new γ-emitting isotope-labeled radiopharmaceutical. (orig.)

  17. Electrophysiological changes of Papillary Muscles in Guinea Pigs with iron deficiency anemia and heart failure

    Directory of Open Access Journals (Sweden)

    Ling Fan1

    2017-04-01

    Full Text Available Objective: To investigate the changes of left ventricular papillary muscle action potentials in guinea pigs with iron deficiency anemia and heart failure. Methods: A total of 20 cases of iron deficiency anemia with heart failure were treated with experimental group and 10 normal guinea pigs as control group. Blood samples were collected to determine hemoglobin content, red blood cell number and whole blood iron index, and the changes of cardiac function and hemodynamics were detected by 6 240 biological signal collection system to determine whether the model was successful or not, Intracellular microelectrode technique was used to determine the action potentials of the papillary muscles in the model group and the control group. the potential amplitudes (APA, overshoot values (APA, maximum depolarization rate (Vmax, 20 % of repolarization, 50 % and 90 % of repolarization (APD20, APD50 and APD90 and the average velocity of repolarization were measured. Compare statistical difference between the model group and the control group. Results: 14 cases of model group survived completely, compared with control group, APD50 and APD90 prolonged, and the average velocity decreased. Conclusions: the action potential repolarization duration in the guinea pig papillary muscle of iron deficiency anemia with heart failure is prolonged, and the average repolarization velocity is slow.

  18. Chronic obstructive pulmonary disease and chronic heart failure: two muscle diseases?

    Science.gov (United States)

    Troosters, Thierry; Gosselink, Rik; Decramer, Marc

    2004-01-01

    Chronic obstructive pulmonary disease and congestive heart failure are two increasingly prevalent chronic diseases. Although care for these patients often is provided by different clinical teams, both disease conditions have much in common. In recent decades, more knowledge about the systemic impact of both diseases has become available, highlighting remarkable similarities in terms of prognostic factors and disease management. Rehabilitation programs deal with the systemic consequences of both diseases. Although clinical research also is conducted by various researchers investigating chronic obstructive pulmonary disease and chronic heart failure, it is worthwhile to compare the progress in relation to these two diseases over recent decades. Such comparison, the purpose of the current review, may help clinicians and scientists to learn about progress made in different, yet related, fields. The current review focuses on the similarities observed in the clinical impact of muscle weakness, the mechanisms of muscle dysfunction, the strategies to improve muscle function, and the effects of exercise training on chronic obstructive pulmonary disease and chronic heart failure.

  19. Assessment of skeletal muscle fatigue of road maintenance workers based on heart rate monitoring and myotonometry

    Directory of Open Access Journals (Sweden)

    Kalkis Henrijs

    2006-07-01

    Full Text Available Abstract Objective This research work is dedicated to occupational health problems caused by ergonomic risks. The research object was road building industry, where workers have to work very intensively, have long work hours, are working in forced/constrained work postures and overstrain during the work specific parts of their bodies. The aim of this study was to evaluate the work heaviness degree and to estimate the muscle fatigue of workers after one week work cycle. The study group consisted of 10 road construction and maintenance workers and 10 pavers aged between 20 and 60 years. Methods Physical load were analyzed by measuring heart rate (HR, work postures (OWAS and perceived exertion (RPE. Assessments of the muscles strain and functional state (tone were carried out using myotonometric (MYO measurements. The reliability of the statistical processing of heart rate monitoring and myotonometry data was determined using correlating analysis. Results This study showed that that road construction and repairing works should be considered as a hard work according to average metabolic energy consumption 8.1 ± 1.5 kcal/min; paving, in its turn, was a moderately hard work according to 7.2 ± 1.1 kcal/min. Several muscle tone levels were identified allowing subdivision of workers into three conditional categories basing on muscle tone and fatigue: I – absolute muscle relaxation and ability to relax; II – a state of equilibrium, when muscles are able to adapt to the work load and are partly able to relax; and III – muscle fatigue and increased tone. It was also found out that the increase of muscle tone and fatigue mainly depend on workers physical preparedness and length of service, and less – on their age. Conclusion We have concluded that a complex ergonomic analysis consisting of heart rate monitoring, assessment of compulsive working postures and myotonometry is appropriate to assess the work heaviness degree and can provide prognosis of

  20. Muscle strength in youth and cardiovascular risk in young adulthood (the European Youth Heart Study)

    DEFF Research Database (Denmark)

    Grøntved, Anders; Ried-Larsen, Mathias; Møller, Niels Christian

    2015-01-01

    BACKGROUND: Whether muscle strength in youth is related to cardiovascular risk later in life independent of cardiorespiratory fitness is unclear. METHODS: We examined the independent association of isometric muscle strength in youth with cardiovascular risk factors in young adulthood using data...... -1.03 to -0.20) in young adulthood in multivariable-adjusted analyses including fitness. Associations to triglyceride, diastolic BP and the cardiovascular risk factor score remained with additional adjustment for waist circumference or BMI. Each 1 SD difference in isometric muscle strength in youth...... from the Danish European Youth Heart Study; a population-based prospective cohort study among boys and girls (n=332) followed for up to 12 years. In youth maximal voluntary contractions during isometric back extension and abdominal flexion were determined using a strain-gauge dynamometer...

  1. Creatinine excretion rate, a marker of muscle mass, is related to clinical outcome in patients with chronic systolic heart failure

    NARCIS (Netherlands)

    ter Maaten, Jozine M.; Damman, Kevin; Hillege, Hans L.; Bakker, Stephan J.; Anker, Stefan D.; Navis, Gerjan; Voors, Adriaan A.

    2014-01-01

    Aims In chronic heart failure (CHF), low body mass as a reflection of low muscle mass has been associated with poor outcome. Urinary creatinine excretion rate (CER) is an established marker of muscle mass, but has not been investigated in CHF. This study aims to evaluate urinary CER as a marker of

  2. Changes in extracellular muscle volume affect heart rate and blood pressure responses to static exercise

    Science.gov (United States)

    Baum, K.; Essfeld, D.; Stegemann, J.

    To investigate the effect of μg-induced peripheral extracellular fluid reductions on heart rate and blood pressure during isometric exercise, six healthy male subjects performed three calf ergometer test with different extracellular volumes of working muscles. In all tests, body positions during exercise were identical (supine with the knee joint flexed to 900). After a pre-exercise period of 25 min, during which calf volumes were manipulated, subjects had to counteract an external force of 180 N for 5 min. During the pre-exercise period three different protocols were applied. Test A: Subjects rested in the exercise position; test B: Body position was the same as in A but calf volume was increased by venous congestion (cuffs inflated to 80 mm Hg); test C: Calf volumes were decreased by a negative hydrostatic pressure (calves about 40 cm above heart level with the subjects supine). To clamp the changed calf volumes in tests B and C, cuffs were inflated to 300 mm Hg 5 min before the onset of exercise. This occlusion was maintained until termination of exercise. Compared to tests A and B, the reduced volume of test C led to significant increases in heart rate and blood pressure during exercise. Oxygen uptake did not exceed resting levels in B and C until cuffs were deflated, indicating that exclusively calf muscles contributed to the neurogenic peripheral drive. It is concluded that changes in extracellular muscle volume have to be taken into account when comparing heart rate and blood pressure during lg- and μg- exercise.

  3. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.

    Science.gov (United States)

    Korzeniewski, Bernard

    2016-08-01

    A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and "basic" OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H(+) The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise. Copyright © 2016 the American Physiological Society.

  4. Extracellular adenosine initiates rapid arteriolar vasodilation induced by a single skeletal muscle contraction in hamster cremaster muscle.

    Science.gov (United States)

    Ross, G A; Mihok, M L; Murrant, C L

    2013-05-01

    Recent studies suggest that adenosine (ADO) can be produced extracellularly in response to skeletal muscle contraction. We tested the hypothesis that a single muscle contraction produces extracellular ADO rapidly enough and in physiologically relevant concentrations to be able to contribute to the rapid vasodilation that occurs at the onset of muscle contraction. We stimulated four to five skeletal muscle fibres in the anaesthetized hamster cremaster preparation in situ and measured the change in diameter of arterioles at a site of overlap with the stimulated muscle fibres before and after a single contraction (stimulus frequencies: 4, 20 and 60 Hz; 250 ms train duration). Muscle fibres were stimulated in the absence and presence of non-specific ADO membrane receptor antagonists 8-phenyltheophylline (8-PT, 10(-6) M) or xanthine amine congener (XAC, 10(-6) M) or an inhibitor of an extracellular source of ADO, ecto-5'-nucleotidase inhibitor α,β-methylene adenosine 5'-diphosphate (AMPCP, 10(-5) M). We observed that the dilatory event at 4 s following a single contraction was significantly inhibited at all stimulus frequencies by an average of 63.9 ± 2.6% by 8-PT. The 20-s dilatory event that occurred at 20 and 60 Hz was significantly inhibited by 53.6 ± 2.6 and 73.8 ± 2.3% by 8-PT and XAC respectively. Further, both the 4- and 20-s dilatory events were significantly inhibited by AMPCP by 78.6 ± 6.6 and 67.1 ± 1.5%, respectively, at each stimulus frequency tested. Our data show that ADO is produced extracellularly during a single muscle contraction and that it is produced rapidly enough and in physiologically relevant concentrations to contribute to the rapid vasodilation in response to muscle contraction. © 2013 The Authors Acta Physiologica © 2013 Scandinavian Physiological Society.

  5. The obesity paradox in men with coronary heart disease and heart failure: the role of muscle mass and leptin.

    Science.gov (United States)

    Wannamethee, S Goya; Shaper, A Gerald; Whincup, Peter H; Lennon, Lucy; Papacosta, Olia; Sattar, Naveed

    2014-01-15

    We have investigated the role of muscle mass, natriuretic peptides and adipokines in explaining the obesity paradox. The obesity paradox relates to the association between obesity and increased survival in patients with coronary heart disease (CHD) or heart failure (HF). Prospective study of 4046 men aged 60-79 years followed up for a mean period of 11 years, during which 1340 deaths occurred. The men were divided according to the presence of doctor diagnosed CHD and HF: (i) no CHD or HF ii), with CHD (no HF) and (iii) with HF. Overweight (BMI 25-9.9 kg/m(2)) and obesity (BMI ≥ 30 kg/m(2)) were associated with lower mortality risk compared to men with normal weight (BMI 18.5-24.9 kg/m(2)) in those with CHD [hazards ratio (HR) 0.71 (0.56,0.91) and 0.77 (0.57,1.04); p=0.04 for trend] and in those with HF [HR 0.57 (0.28,1.16) and 0.41 (0.16,1.09; p=0.04 for trend). Adjustment for muscle mass and NT-proBNP attenuated the inverse association in those with CHD (no HF) [HR 0.78 (0.61,1.01) and 0.96 (0.68,1.36) p=0.60 for trend) but made minor differences to those with HF [p=0.05]. Leptin related positively to mortality in men without HF but inversely to mortality in those with HF; adjustment for leptin abolished the BMI mortality association in men with HF [HR 0.82 (0.31,2.20) and 0.99 (0.27,3.71); p=0.98 for trend]. The lower mortality risk associated with excess weight in men with CHD without HF may be due to higher muscle mass. In men with HF, leptin (possibly reflecting cachexia) explain the inverse association. Copyright © 2013. Published by Elsevier Ireland Ltd.

  6. [Analogies between heart and respiratory muscle failure. Importance to clinical practice].

    Science.gov (United States)

    Köhler, D

    2009-01-01

    Heart failure is an established diagnosis. Respiratory muscle or ventilatory pump failure, however, is less well known. The latter becomes obvious through hypercapnia, caused by hypoventilation. The respiratory centre tunes into hypercapnea in order to prevent the danger of respiratory muscle overload (hypercapnic ventilatory failure). Hypoventilation will consecutively cause hypoxemia but this will not be responsible for performance limitation. One therefore has to distinguish primary hypoxemia evolving from diseases in the lung parenchyma. Here hypoxemia is the key feature and compensatory hyperventilation usually decreases PaCO2 levels. The cardiac as well as the respiratory pump adapt to an inevitable burden caused by chronic disease. In either case organ muscle mass will increase. If the burden exceeds the range of possible physiological adaptation, compensatory mechanisms will set in that are similar in both instances. During periods of overload either muscle system is mainly fueled by muscular glycogen. In the recovery phase (e. g. during sleep) stores are replenished, which can be recognized by down-regulation of the blood pressure in case of the cardiac pumb or by augmentation of hypercapnia through hypoventilation in case of the respiratory pump. The main function of cardiac and respiratory pump is maintenance of oxygen transport. The human body has developed certain compensatory mechanisms to adapt to insufficient oxygen supply especially during periods of overload. These mechanisms include shift of the oxygen binding curve, expression of respiratory chain isoenzymes capable of producing ATP at lower partial pressures of oxygen and the development of polyglobulia. Medically or pharmacologically the cardiac pump can be unloaded with beta blockers, the respiratory pump by application of inspired oxygen. Newer forms of therapy augment the process of recovery. The heart can be supported through bypass surgery or intravascular pump systems, while respiratory

  7. Electrical Stimulation of Artificial Heart Muscle: a look into the electrophysiological and genetic implications

    Science.gov (United States)

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    2016-01-01

    Development of tissue-engineered hearts for treatment of myocardial infarction or biological pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. In order to further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histological observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHM. Improvements in electrophysiology within the AHM was noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHM. Genes expressing key electrophysiological and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHM capable of replacing damaged heart tissue in either a contractile or electrophysiological capacity. Optimized AHM can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis. PMID:28459744

  8. Electrical Stimulation of Artificial Heart Muscle: A Look Into the Electrophysiologic and Genetic Implications.

    Science.gov (United States)

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    Development of tissue-engineered hearts for treatment of myocardial infarction or biologic pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. To further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histologic observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHMs. Improvements in electrophysiology within the AHM were noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHMs. Genes expressing key electrophysiologic and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHMs capable of replacing damaged heart tissue in either a contractile or electrophysiologic capacity. Optimized AHMs can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis.

  9. Distinct neural control of intrinsic and extrinsic muscles of the hand during single finger pressing.

    Science.gov (United States)

    Dupan, Sigrid S G; Stegeman, Dick F; Maas, Huub

    2018-06-01

    Single finger force tasks lead to unintended activation of the non-instructed fingers, commonly referred to as enslaving. Both neural and mechanical factors have been associated with this absence of finger individuality. This study investigates the amplitude modulation of both intrinsic and extrinsic finger muscles during single finger isometric force tasks. Twelve participants performed single finger flexion presses at 20% of maximum voluntary contraction, while simultaneously the electromyographic activity of several intrinsic and extrinsic muscles associated with all four fingers was recorded using 8 electrode pairs in the hand and two 30-electrode grids on the lower arm. The forces exerted by each of the fingers, in both flexion and extension direction, were recorded with individual force sensors. This study shows distinct activation patterns in intrinsic and extrinsic hand muscles. Intrinsic muscles exhibited individuation, where the agonistic and antagonistic muscles associated with the instructed fingers showed the highest activation. This activation in both agonistic and antagonistic muscles appears to facilitate finger stabilisation during the isometric force task. Extrinsic muscles show an activation independent from instructed finger in both agonistic and antagonistic muscles, which appears to be associated with stabilisation of the wrist, with an additional finger-dependent modulation only present in the agonistic extrinsic muscles. These results indicate distinct muscle patterns in intrinsic and extrinsic hand muscles during single finger isometric force pressing. We conclude that the finger specific activation of intrinsic muscles is not sufficient to fully counteract enslaving caused by the broad activation of the extrinsic muscles. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Attenuated fatigue in slow twitch skeletal muscle during isotonic exercise in rats with chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Morten Munkvik

    Full Text Available During isometric contractions, slow twitch soleus muscles (SOL from rats with chronic heart failure (chf are more fatigable than those of sham animals. However, a muscle normally shortens during activity and fatigue development is highly task dependent. Therefore, we examined the development of skeletal muscle fatigue during shortening (isotonic contractions in chf and sham-operated rats. Six weeks following coronary artery ligation, infarcted animals were classified as failing (chf if left ventricle end diastolic pressure was >15 mmHg. During isoflurane anaesthesia, SOL with intact blood supply was stimulated (1s on 1s off at 30 Hz for 15 min and allowed to shorten isotonically against a constant afterload. Muscle temperature was maintained at 37°C. In resting muscle, maximum isometric force (F(max and the concentrations of ATP and CrP were not different in the two groups. During stimulation, F(max and the concentrations declined in parallel sham and chf. Fatigue, which was evident as reduced shortening during stimulation, was also not different in the two groups. The isometric force decline was fitted to a bi-exponential decay equation. Both time constants increased transiently and returned to initial values after approximately 200 s of the fatigue protocol. This resulted in a transient rise in baseline tension between stimulations, although this effect which was less prominent in chf than sham. Myosin light chain 2s phosphorylation declined in both groups after 100 s of isotonic contractions, and remained at this level throughout 15 min of stimulation. In spite of higher energy demand during isotonic than isometric contractions, both shortening capacity and rate of isometric force decline were as well or better preserved in fatigued SOL from chf rats than in sham. This observation is in striking contrast to previous reports which have employed isometric contractions to induce fatigue.

  11. Deep Sternal Wound Infection after Open-Heart Surgery: A 13-Year Single Institution Analysis.

    Science.gov (United States)

    Juhl, Alexander Andersen; Hody, Sofie; Videbaek, Tina Senholt; Damsgaard, Tine Engberg; Nielsen, Per Hostrup

    2017-04-20

    The present study aimed to compare the clinical outcome for patients with or without muscle flap reconstruction after deep sternal wound infection due to open-heart surgery. The study was a retrospective cohort study, including patients who developed deep sternal wound infection after open-heart surgery in the Western Denmark Region from 1999 to 2011. Journals of included patients were reviewed for clinical data regarding the treatment of their sternal defect. Patients were divided into two groups depending on whether they received a muscle-flap-based sternal reconstruction or traditional rewiring of the sternum. A total of 130 patients developed deep sternal wound infection in the study period. In all, 12 patients died before being discharged, leaving a total of 118 patients for analysis. Of these, 50 (42%) patients received muscle flap reconstruction. Muscle flap recipients had significantly longer total hospital stays (p <0.001). However, after receiving muscle flap reconstruction, patients were discharged after a median of 14 days, with 74% not needing additional surgery. It is difficult to predict which patients eventually require muscle flap reconstruction after deep sternal wound infection. Although patients receiving muscle flap reconstructions have longer hospital stays, they are quickly discharged after the reconstruction.

  12. Noninvasive Measurement of EKG Properties of 3D Artificial Heart Muscle

    Directory of Open Access Journals (Sweden)

    Betsy H. Salazar

    2017-06-01

    Full Text Available Developing and testing a custom fabricated 16-electrode noninvasive direct contact system was necessary to assess the electrical properties of bioengineered heart muscle and to further evaluate the efficacy of cardiac constructs. By culturing neonatal rat primary cardiac cells on a fibrin gel, we constructed 3D artificial heart muscle (3D-AHM, as described in previous studies, which were used in validating this novel system. Electrical and mechanical functional assessment of the tissues was performed, which yielded contractile forces of the tissues, electrical field potential characteristics, and tissue conduction velocities (CV (20–170 cm/s. Immunohistological evaluation revealed the formation of cardiac tissue structures and cardiomyocyte proliferation. EKG data analysis also yielded time delays between signals in the range of 0–38 ms with electrical maps showing some evidence of synchronous contraction within the fabricated tissues. This study demonstrates the effectiveness and practicality of our novel EKG measuring system to acquire distinct electrical metrics of 3D-AHM, which will aid in increasing the viability and applicability of cardiac tissue constructs.

  13. Radiochromatographic method for determination of macroenergetic phosphorus compounds in the rat heart muscle

    International Nuclear Information System (INIS)

    Wajdowicz, A.

    1980-01-01

    The 32 P was injected intraperitoneally. After 20 min. a part of heart muscle was taken off under anaesthesia from which phosphorus compounds were extracted and separated by means of paper chromatography. Separation was performed on the Whatman 1 paper, in glass tank produced by Shandon by means of method replacing of two direction descending chromatography use together with three solvent system. Identification of nucleotides was conducted in the UV light, besides CP and inorganic phosphorus by means of chemical methods. For the qualitative analysis of separated phosphorus compounds autoradiography was applied. Quantitative analysis was conducted by means of radiogrametric method. Radioactivity for each of examined phosphorus compounds was computed from chromatograms. Radioactive curves were indicated for each stage of chromatography separation. It was found the peaks on the radioactive curves equal the black spots on the autoradiograms and the spots identified with optical test and by the chemical method. This method permits in constant condition absolute separation and quantitative determination of phosphorus compounds in the rat heart muscle. It is relatively simple and more specific than chemical methods. (author)

  14. High prevalence of respiratory muscle weakness in hospitalized acute heart failure elderly patients.

    Directory of Open Access Journals (Sweden)

    Pedro Verissimo

    Full Text Available Respiratory Muscle Weakness (RMW has been defined when the maximum inspiratory pressure (MIP is lower than 70% of the predictive value. The prevalence of RMW in chronic heart failure patients is 30 to 50%. So far there are no studies on the prevalence of RMW in acute heart failure (AHF patients.Evaluate the prevalence of RMW in patients admitted because of AHF and the condition of respiratory muscle strength on discharge from the hospital.Sixty-three patients had their MIP measured on two occasions: at the beginning of the hospital stay, after they had reached respiratory, hemodynamic and clinical stability and before discharge from the hospital. The apparatus and technique to measure MIP were adapted because of age-related limitations of the patients. Data on cardiac ejection fraction, ECG, brain natriuretic peptide (BNP levels and on the use of noninvasive ventilation (NIV were collected.The mean age of the 63 patients under study was 75 years. On admission the mean ejection fraction was 33% (95% CI: 31-35 and the BNP hormone median value was 726.5 pg/ml (range: 217 to 2283 pg/ml; 65% of the patients used NIV. The median value of MIP measured after clinical stabilization was -52.7 cmH2O (range: -20 to -120 cmH2O; 76% of the patients had MIP values below 70% of the predictive value. On discharge, after a median hospital stay of 11 days, the median MIP was -53.5 cmH2O (range:-20 to -150 cmH2O; 71% of the patients maintained their MIP values below 70% of the predictive value. The differences found were not statistically significant.Elderly patients admitted with AHF may present a high prevalence of RMW on admission; this condition may be maintained at similar levels on discharge in a large percentage of these patients, even after clinical stabilization of the heart condition.

  15. Single dose of fluoxetine increases muscle activation in chronic stroke patients.

    NARCIS (Netherlands)

    van Genderen, Hanneke Irene; Nijlant, Juliette M.M.; van Putten, Michel Johannes Antonius Maria; Movig, Kris L.L.; IJzerman, Maarten Joost

    2009-01-01

    Objectives: This pilot study explores the influence of a single dose of fluoxetine (20 mg) on the muscle activation patterns and functional ability of the muscles in the lower part of the arm in chronic stroke patients. Methods: A crossover, placebo-controlled clinical trial was conducted in 10

  16. Effects of adriamycin and irradiation on beating of rat heart muscle cells in culture

    International Nuclear Information System (INIS)

    Petrovic, D.; Brown, S.M.; Yatvin, M.B.

    1977-01-01

    In an attempt to elucidate the mechanisms involved in Adriamycin (ADM) induced cardiotoxicity as well as determining the possible potentiating effect that irradiation has when it is combined with the drug, heart cells from newborn rats were isolated, cultured and treated with Adriamycin. The actions of these two agents separately or in combination on the survival of beating activity and beating frequency are measured. Beating activity could be decreased temporarily either by exposing the cells to 50 krad of γ-irradiation or 0.1 μg of Adriamycin. Following 100 krad of γ-radiation or 1.0 μg Adriamycin, an irreversible cessation of beating occurred. In the case of Adriamycin, cessation was preceded by a temporary sharp increase in beating frequency. Doses of radiation up to 10 krad in combination with Adriamycin were not potentiating. The results indicate that Adriamycin produces its cardiotoxic effects, at least in part, by a direct action on heart muscle cells. It is less likely, however, that damage which occurs in the heart following therapeutic doses of irradiation is the result of such direct action

  17. Effects of electric paravertebral muscle relaxation processes in the athletes heart

    Directory of Open Access Journals (Sweden)

    D. V. Syshko

    2013-02-01

    Full Text Available Influence of paravertebrals miorelaxation on electric processes in a heart at sportsmen is studied. Paravertebrals miorelaxation was the complex of exercises in a water environment directed on the decline of tone of paravertebral muscles. Before and after it was used of paravertebrals miorelaxation registered the indexes of electrocardiography at the sportsmen engaged in the Greek-Roman fight (n=22 by football (n=24 and heavy athletics (n=25. It is got, that at the sportsmen of engaged in the Greek -Roman fight after paravertebrals miorelaxation QRS and QT were it was increased, and R-R and PQ went down. At the sportsmen of engaged in heavy athletics HR and PQ went down after paravertebrals miorelaxation, R-R, QRS and QT were it was increased. At the sportsmen of getting busy by football the PQ interval shortened, and QRS and QT has multiplied. Findings testify to the presence of different mechanisms of adaptation of the conducting system of heart in the conditions of influencing of paravertebrals miorelaxation. These distinctions are fated by two basic factors: by the functional being of the cardio-vessels system on the whole and functional being of sine knot and conducting system of heart in particular.

  18. Cardiac pathological changes of Atlantic salmon (Salmo salar L.) affected with heart and skeletal muscle inflammation (HSMI)

    DEFF Research Database (Denmark)

    Yousaf, Muhammad Naveed; Koppang, Erling Olaf; Skjødt, Karsten

    2012-01-01

    Heart and skeletal muscle inflammation (HSMI) is a disease of marine farmed Atlantic salmon where the pathological changes associated with the disease involve necrosis and an infiltration of inflammatory cells into different regions of the heart and skeletal muscle. The aim of this work...... with the cardiac pathology consisted of mainly CD3(+) T lymphocytes, moderate numbers of macrophages and eosinophilic granulocytes. Proliferative cell nuclear antigen (PCNA) immuno-reaction identified significantly increased nuclear and cytoplasmic staining as well as identifying hypertrophic nuclei. Strong...

  19. Still Heart Encodes a Structural HMT, SMYD1b, with Chaperone-Like Function during Fast Muscle Sarcomere Assembly.

    Directory of Open Access Journals (Sweden)

    Kendal Prill

    Full Text Available The vertebrate sarcomere is a complex and highly organized contractile structure whose assembly and function requires the coordination of hundreds of proteins. Proteins require proper folding and incorporation into the sarcomere by assembly factors, and they must also be maintained and replaced due to the constant physical stress of muscle contraction. Zebrafish mutants affecting muscle assembly and maintenance have proven to be an ideal tool for identification and analysis of factors necessary for these processes. The still heart mutant was identified due to motility defects and a nonfunctional heart. The cognate gene for the mutant was shown to be smyd1b and the still heart mutation results in an early nonsense codon. SMYD1 mutants show a lack of heart looping and chamber definition due to a lack of expression of heart morphogenesis factors gata4, gata5 and hand2. On a cellular level, fast muscle fibers in homozygous mutants do not form mature sarcomeres due to the lack of fast muscle myosin incorporation by SMYD1b when sarcomeres are first being assembled (19hpf, supporting SMYD1b as an assembly protein during sarcomere formation.

  20. ATP and phosphocreatine utilization in single human muscle fibres during the development of maximal power output at elevated muscle temperatures.

    Science.gov (United States)

    Gray, Stuart R; Söderlund, Karin; Ferguson, Richard A

    2008-05-01

    In this study, we examined the effect of muscle temperature (Tm) on adenosine triphosphate (ATP) and phosphocreatine utilization in single muscle fibres during the development of maximal power output in humans. Six male participants performed a 6-s maximal sprint on a friction-braked cycle ergometer under both normal (Tm = 34.3 degrees C, s = 0.6) and elevated (T(m) = 37.3 degrees C, s = 0.2) muscle temperature conditions. During the elevated condition, muscle temperature of the legs was raised, passively, by hot water immersion followed by wrapping in electrically heated blankets. Muscle biopsies were taken from the vastus lateralis before and immediately after exercise. Freeze-dried single fibres were dissected, characterized according to myosin heavy chain composition, and analysed for ATP and phosphocreatine content. Single fibres were classified as: type I, IIA, IIAX25 (1 - 25% IIX isoform), IIAX50 (26 - 50% IIX), IIAX75 (51 - 75% IIX), or IIAX100 (76 - 100% IIX). Maximal power output and pedal rate were both greater (P < 0.05) during the elevated condition by 258 W (s = 110) and 22 rev . min(-1) (s = 6), respectively. In both conditions, phosphocreatine content decreased significantly in all fibre types, with a greater decrease during the elevated condition in type IIA fibres (P < 0.01). Adenosine triphosphate content was also reduced to a greater (P < 0.01) extent in type IIA fibres during the elevated condition. The results of the present study indicate that after passive elevation of muscle temperature, there was a greater decrease in ATP and phosphocreatine content in type IIA fibres than in the normal trial, which contributed to the higher maximal power output.

  1. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    OpenAIRE

    Zuo, Li; Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared wi...

  2. Predicting muscle forces during the propulsion phase of single leg triple hop test.

    Science.gov (United States)

    Alvim, Felipe Costa; Lucareli, Paulo Roberto Garcia; Menegaldo, Luciano Luporini

    2018-01-01

    Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Analysis of cardiac myosin binding protein-C phosphorylation in human heart muscle.

    Science.gov (United States)

    Copeland, O'Neal; Sadayappan, Sakthivel; Messer, Andrew E; Steinen, Ger J M; van der Velden, Jolanda; Marston, Steven B

    2010-12-01

    A unique feature of MyBP-C in cardiac muscle is that it has multiple phosphorylation sites. MyBP-C phosphorylation, predominantly by PKA, plays an essential role in modulating contractility as part of the cellular response to β-adrenergic stimulation. In vitro studies indicate MyBP-C can be phosphorylated at Serine 273, 282, 302 and 307 (mouse sequence) but little is known about the level of MyBP-C phosphorylation or the sites phosphorylated in heart muscle. Since current methodologies are limited in specificity and are not quantitative we have investigated the use of phosphate affinity SDS-PAGE together with a total anti MyBP-C antibody and a range of phosphorylation site-specific antibodies for the main sites (Ser-273, -282 and -302). With these newly developed methods we have been able to make a detailed quantitative analysis of MyBP-C phosphorylation in heart tissue in situ. We have found that MyBP-C is highly phosphorylated in non-failing human (donor) heart or mouse heart; tris and tetra-phosphorylated species predominate and less than 10% of MyBP-C is unphosphorylated (0, 9.3 ± 1%: 1P, 13.4 ± 2.7%: 2P, 10.5 ± 3.3%: 3P, 28.7 ± 3.7%: 4P, 36.4 ± 2.7%, n=21). Total phosphorylation was 2.7 ± 0.07 mol Pi/mol MyBP-C. In contrast in failing heart and in myectomy samples from HCM patients the majority of MyBP-C was unphosphorylated. Total phosphorylation levels were 23% of normal in failing heart myofibrils (0, 60.1 ± 2.8%: 1P, 27.8 ± 2.8%: 2P, 4.8 ± 2.0%: 3P, 3.7 ± 1.2%: 4P, 2.8 ± 1.3%, n=19) and 39% of normal in myectomy samples. The site-specific antibodies showed a distinctive distribution pattern of phosphorylation sites in the multiple phosphorylation level species. We found that phosphorylated Ser-273, Ser-282 and Ser-302 were all present in the 4P band of MyBP-C but none of them were significant in the 1P band, indicating that there must be at least one other site of MyBP-C phosphorylation in human heart. The pattern of phosphorylation at the

  4. Activation delay-induced mechanical dyssynchrony in single-ventricle heart disease

    DEFF Research Database (Denmark)

    Forsha, Daniel; Risum, Niels; Barker, Piers

    2017-01-01

    We present the case of an infant with a single functional ventricle who developed ventricular dysfunction and heart failure due to an electrical activation delay and dyssynchrony. Earlier recognition of this potentially reversible aetiology may have changed her poor outcome.......We present the case of an infant with a single functional ventricle who developed ventricular dysfunction and heart failure due to an electrical activation delay and dyssynchrony. Earlier recognition of this potentially reversible aetiology may have changed her poor outcome....

  5. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells.

    Science.gov (United States)

    Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm

    2014-12-30

    Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility.

  6. Primary skeletal muscle myoblasts from chronic heart failure patients exhibit loss of anti-inflammatory and proliferative activity

    NARCIS (Netherlands)

    Sente, T.; Berendoncks, A.M. Van; Jonckheere, A.I.; Rodenburg, R.J.T.; Lauwers, P.; Hoof, V. Van; Wouters, A.; Lardon, F.; Hoymans, V.Y.; Vrints, C.J.

    2016-01-01

    BACKGROUND: Peripheral skeletal muscle wasting is a common finding with adverse effects in chronic heart failure (HF). Whereas its clinical relevance is beyond doubt, the underlying pathophysiological mechanisms are not yet fully elucidated. We aimed to introduce and characterize the primary culture

  7. Atrial Fibrillation Following Surgical Management of Ischemic Heart Disease; One Year, Single Center, Single Surgeon Results

    Directory of Open Access Journals (Sweden)

    Ahmet Barış Durukan

    2012-08-01

    Full Text Available Introduction: Postoperative atrial fibrillation is the most common arrhythmia following bypasssurgery with significant morbidity, mortality and increased healthcare costs. The aim of this studyis to determine the incidence and timing of atrial fibrillation, identify the risk factors coveringpreoperative and intraoperative periods, evaluate rate of return to sinus rhythm by disharge, andexplore the impact on postoperative outcomes in a large group of patients operated in a singlecenter by a single surgeon.Patients and Methods: Between January 2011 and January 2012, 418 patients on preoperativesinus rhythm were operated for ischemic heart disease and associated complications (left ventricleaneurysm repair and ischemic mitral insufficiency in a single center, by a single surgeon.The preoperative, intraoperative and postoperative variables were studied.Results: The mean age of the patients were 61.92 ± 10.05, and 77.5% were male. Atrial fibrillationdeveloped in 68 (16.3% patients. The incidence peaked at second day. Patients with atrialfibrillation were older (p< 0.001. Gender, preoperative comorbidities, ejection fraction, left atrialdiameter, preoperative beta-blocker use, leukocyte count, type of operation and intraoperativevariables did not affect its occurence. Intensive care unit and hospital length of stay were longer(p< 0.05. 95.5% (n= 65 of patients were in normal sinus rhythm at discharge.Conclusion: Postoperative atrial fibrillation is a popular subject with unknowns and controversialresults which may lead to wrong interpretations. We believe that every center has its own risk factors related with the population of that region. Discussion will last, but simple precautions and close monitoring will help to minimizeadverse outcomes.

  8. A mini-overview of single muscle fibre mechanics: the effects of age, inactivity and exercise in animals and humans.

    Science.gov (United States)

    Jee, Hyunseok; Kim, Jong-Hee

    2017-09-05

    Many basic movements of living organisms are dependent on muscle function. Muscle function allows for the coordination and harmonious integrity of movement that is necessary for various biological processes. Gross and fine motor skills are both regulated at the micro-level (single muscle fibre level), controlled by neuronal regulation, and it is therefore important to understand muscle function at both micro- and macro-levels to understand the overall movement of living organisms. Single muscle mechanics and the cellular environment of muscles fundamentally allow for the harmonious movement of our bodies. Indeed, a clear understanding of the functionality of muscle at the micro-level is indispensable for explaining muscular function at the macro-(whole gross muscle) level. By investigating single muscle fibre mechanics, we can also learn how other factors such Ca2+ kinetics, enzyme activity and contractile proteins can contribute to muscle mechanics at the micro- and macro-levels. Further, we can also describe how aging affects the capacity of skeletal muscle cells, as well as how exercise can prevent aging-based sarcopenia and frailty. The purpose of this review is to introduce and summarise the current knowledge of single muscle fibre mechanics in light of aging and inactivity. We then describe how exercise mitigates negative muscle adaptations that occur under those circumstances. In addition, single muscle fibre mechanics in both animal and human models are discussed.

  9. Recruitment of single human low-threshold motor units with increasing loads at different muscle lengths.

    Science.gov (United States)

    McNulty, P A; Cresswell, A G

    2004-06-01

    We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and 27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (Precruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle.

  10. Comparative cardiac pathological changes of Atlantic salmon (Salmo salar L.) affected with heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD)

    DEFF Research Database (Denmark)

    Yousaf, Muhammad Naveed; Koppang, Erling Olaf; Skjødt, Karsten

    2013-01-01

    The heart is considered the powerhouse of the cardiovascular system. Heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD) are cardiac diseases of marine farmed Atlantic salmon (Salmo salar) which commonly affect the heart in addition to the skeletal...

  11. Trapezius Muscle Load, Heart Rate and Time Pressure during Day and Night Shift in Swiss and Japanese Nurses

    Science.gov (United States)

    NICOLETTI, Corinne; MÜLLER, Christian; TOBITA, Itoko; NAKASEKO, Masaru; LÄUBLI, Thomas

    2014-01-01

    The aim of the present study was to analyze the activity of the trapezius muscle, the heart rate and the time pressure of Swiss and Japanese nurses during day and night shifts. The parameters were measured during a day and a night shift of 17 Swiss and 22 Japanese nurses. The observed rest time of the trapezius muscle was longer for Swiss than for Japanese nurses during both shifts. The 10th and the 50th percentile of the trapezius muscle activity showed a different effect for Swiss than for Japanese nurses. It was higher during the day shift of Swiss nurses and higher during the night shift of Japanese nurses. Heart rate was higher for both Swiss and Japanese nurses during the day. The time pressure was significantly higher for Japanese than for Swiss nurses. Over the duration of the shifts, time pressure increased for Japanese nurses and slightly decreased for those from Switzerland. Considering trapezius muscle activity and time pressure, the nursing profession was more burdening for the examined Japanese nurses than for Swiss nurses. In particular, the night shift for Japanese nurses was characterized by a high trapezius muscle activity and only few rest times for the trapezius muscle. PMID:24633074

  12. Quantitative analysis of single muscle fibre action potentials recorded at known distances

    NARCIS (Netherlands)

    Albers, B.A.; Put, J.H.M.; Wallinga, W.; Wirtz, P.

    1989-01-01

    In vivo records of single fibre action potentials (SFAPs) have always been obtained at unknown distance from the active muscle fibre. A new experimental method has been developed enabling the derivation of the recording distance in animal experiments. A single fibre is stimulated with an

  13. Radiation-induced heart disease due to intrathonacic tumor radiotherapy of a single dose to the rabbits' heart

    International Nuclear Information System (INIS)

    Zhou Weibing; Feng Yan; Chen Jiayi; Luo Quanyong

    2007-01-01

    Objective: To observe the changes of radiation-induced heart disease (RIHD) in the rabbits irradiated in clinical related dose, and to evaluate the apoptosis and hypoxia in the irradiated heart by the new scintigraphic agents of 99 Tc m -HL91 and 99 Tc m -Annexin V of heart SPECT. Methods: Tenty-four New Zealand white rabbits 4-month old and 2-3 kg by weight were divided into two groups. Group 1 (clinical related dose group): 16 irradiated by a single close from 0 to 18 Gy. Group 2 (high dose group): 8 irradiated dose from 22 to 80 Gy. The serum cTnI/CKMB, ECG, and heart SPECT(using 99 Tc m -MIBI, 99 Tc m -HL91 and 99 Tc m -Annexin V as agents) were detected before and after irradiation. The animals were followed for 5 months. Then biopsy of rabbit heart was performed and pathologic examination was made by H.E. stain. Results: In the 16 rabbits of clinical related dose group, none died of RIHD. Whereas 2 rabbits died of RIHD in the high dose group. One died of myocardial infarction and the other of congestive heart failure. According to the Stewart introduced heart lesion grading system, of the clinical close ann, there were moderate in 1 rabbit, minimal in 14; and of the high dose ann, it was severe in 2, marked in 1, moderate in 5. The parallel relation was observed between the ECG results and the pathological changes (χ 2 =0.08, P=0.771). Serum value of cTnI, was elevated at the 12th hour after irradiation reaching the peak and maintained for 4 months. However, it came down in the 5th month. The difference of serum cTnI value before and after radiation was statistically significant. Myocardial perfusion scintigraphy tested by heart SPECT ( 99 Tc m -MIBI) showed defects was present in all irradiated rabbits. The relationship between the defects and radiation dose or between the defects and the real RIHD was uncertain. The SPECT images displayed that 99 Tc m -HL91 and 99m Tc-Annexin V did not accumulate in the irradiated heart. Conclusions: No serious damage is

  14. 2-Deoxyglucose autoradiography of single motor units: labelling of individual acutely active muscle fibers

    International Nuclear Information System (INIS)

    Toop, J.; Burke, R.E.; Dum, R.P.; O'Donovan, M.J.; Smith, C.B.

    1982-01-01

    2-Deoxy-D-[1- 14 C]glucose (2DG) was given intravenously during repetitive stimulation of single motor units in adult cats and autoradiographs were made of frozen sections of the target muscles in order to evaluate methods designed to improve the spatial resolution of [ 14 C]2DG autoradiography. With the modifications used, acutely active muscle fibers, independently identified by depletion of intrafiber glycogen, were associated with highly localized accumulations of silver grains over the depleted fibers. The results indicate that [ 14 C]2DG autoradiography can successfully identify individual active muscle fibers and might in principle be used to obtain quantitative data about rates of glucose metabolism in single muscle fibers of defined histochemical type. The modifications may be applicable also to other tissues to give improved spatial resolution with [ 14 C]-labeled metabolic markers. (Auth.)

  15. Polymorphism of myofibrillar proteins of rabbit skeletal-muscle fibres. An electrophoretic study of single fibres.

    OpenAIRE

    Salviati, G; Betto, R; Danieli Betto, D

    1982-01-01

    Rabbit predominantly fast-twitch-fibre and predominantly slow-twitch-fibre skeletal muscles of the hind limbs, the psoas, the diaphragm and the masseter muscles were fibre-typed by one-dimensional polyacrylamide-gel electrophoresis of the myofibrillar proteins of chemically skinned single fibres. Investigation of the distribution of fast-twitch-fibre and slow-twitch-fibre isoforms of myosin light chains and the type of myosin heavy chains, based on peptide 'maps' published in Cleveland. Fisch...

  16. A Single Sided Edge Marking Method for Detecting Pectoral Muscle in Digital Mammograms

    Directory of Open Access Journals (Sweden)

    G. Toz

    2018-02-01

    Full Text Available In the computer-assisted diagnosis of breast cancer, the removal of pectoral muscle from mammograms is very important. In this study, a new method, called Single-Sided Edge Marking (SSEM technique, is proposed for the identification of the pectoral muscle border from mammograms. 60 mammograms from the INbreast database were used to test the proposed method. The results obtained were compared for False Positive Rate, False Negative Rate, and Sensitivity using the ground truth values pre-determined by radiologists for the same images. Accordingly, it has been shown that the proposed method can detect the pectoral muscle border with an average of 95.6% sensitivity.

  17. Does treadmill running performance, heart rate and breathing rate response during maximal graded exercise improve after volitional respiratory muscle training?

    Science.gov (United States)

    Radhakrishnan, K; Sharma, V K; Subramanian, S K

    2017-05-10

    Maximal physical exertion in sports usually causes fatigue in the exercising muscles, but not in the respiratory muscles due to triggering of the Respiratory muscle metabo-reflex, a sympathetic vasoconstrictor response leading to preferential increment in blood flow to respiratory muscles. 1 We planned to investigate whether a six week yogic pranayama based Volitional Respiratory Muscle Training (VRMT) can improve maximal Graded Exercise Treadmill Test (GXTT) performance in healthy adult recreational sportspersons. Consecutive, consenting healthy adult recreational sportspersons aged 20.56±2.49 years (n=30), volunteered to 'baseline recording' of resting heart rate (HR), blood pressure (BP), respiratory rate (RR), and Bruce ramp protocol maximal GXTT until volitional exhaustion providing total test time (TTT), derived VO2max, Metabolic Equivalent of Task (METs), HR and BP response during maximal GXTT and drop in recovery HR data. After six weeks of observation, they underwent 'pre-intervention recording' followed by supervised VRMT intervention for 6 weeks (30 minutes a day; 5 days a week) and then 'post-intervention recording'. Repeated measures ANOVA with pairwise t statistical comparison was used to analyse the data. After supervised VRMT, we observed significant decrease in their resting supine RR (prespiratory muscle aerobic capacity, attenuation of respiratory muscle metabo-reflex, increase in cardiac stroke volume and autonomic resetting towards parasympatho-dominance. Yogic Pranayama based VRMT can be used in sports conditioning programme of athletes to further improve their maximal exercise performance, and as part of rehabilitation training during return from injury.

  18. Is serial determination of inspiratory muscle strength a useful prognostic marker in chronic heart failure?

    Science.gov (United States)

    Frankenstein, Lutz; Meyer, Franz Joachim; Sigg, Caroline; Nelles, Manfred; Schellberg, Dieter; Remppis, Andrew; Katus, Hugo A; Zugck, Christian

    2008-04-01

    Little data exists on the prognostic role of inspiratory muscle strength (PImax) in chronic heart failure (CHF). Training studies, however, frequently use it as a therapeutic target and surrogate marker for prognosis. The prognostic value of changes of PImax that allow this extrapolation is unknown. Patients with stable CHF were prospectively included and 1-year and all-time event rates recorded for endpoint analysis. In 158 patients (85% men; New York Heart Association functional class: 2.4+/-0.6), PImax was measured along with clinical evaluations at two visits, the initial visit and the second visit, 6.4+/-1.4 months apart. The mean follow-up was 59+/-34 months. Overall, 59 patients (37%) reached the primary endpoint of death or hospitalization (endpoint positive), and overall mortality rate (secondary endpoint) was 26% (42 patients). PImax did not differ between endpoint-negative and endpoint-positive patients, both at the initial and at the second visit (8.3+/-5.6 vs. 7.3+/-3.4 kPa and 8.8+/-6.0 vs. 7.9+/-3.6 kPa, respectively; P=NS), and both groups showed increased PImax (0.6+/-2.6 vs. 0.6+/-2.8 kPa; P=NS). Cox analyses found neither the absolute nor the relative change of PImax to be significant predictors for the primary and secondary endpoints (P=NS for both), both for the 1-year and for the all-time event rates. Endpoint rates did not differ between patients showing increasing or decreasing PImax (P=NS; relative risk (RR): 0.77; 95% confidence interval: 0.47-1.27). Trials focusing on inspiratory muscle function should use the actual levels of PImax as a surrogate marker to represent prognostic information, rather than relative or absolute changes. This is the first study to investigate the prognostic information of the changes of PImax over time, regarding both short-term and long-term morbidity and mortality in patients with stable CHF.

  19. Respiratory muscle dysfunction in congestive heart failure: clinical correlation and prognostic significance.

    Science.gov (United States)

    Meyer, F J; Borst, M M; Zugck, C; Kirschke, A; Schellberg, D; Kübler, W; Haass, M

    2001-05-01

    In congestive heart failure (CHF), the prognostic significance of impaired respiratory muscle strength has not been established. Maximal inspiratory pressure (Pi(max)) was prospectively determined in 244 consecutive patients (207 men) with CHF (ischemic, n=75; idiopathic dilated cardiomyopathy, n=169; age, 54+/-11 years; left ventricular ejection fraction [LVEF], 22+/-10%). Pi(max) was lower in the 244 patients with CHF than in 25 control subjects (7.6+/-3.3 versus 10.5+/-3.7 kPa; P=0.001). The 57 patients (23%) who died during follow-up (23+/-16 months; range, 1 to 48 months) had an even more reduced Pi(max) (6.3+/-3.2 versus 8.1+/-3.2 kPa in survivors; P=0.001). Kaplan-Meier survival curves differentiated between patients subdivided according to quartiles for Pi(max) (P=0.014). Pi(max) was a strong risk predictor in both univariate (P=0.001) and multivariate Cox proportional hazard analyses (P=0.03); multivariate analyses also included NYHA functional class, LVEF, peak oxygen consumption (peak VO(2)), and norepinephrine plasma concentration. The areas under the receiver-operating characteristic curves for prediction of 1-year survival were comparable for Pi(max) and peak VO(2) (area under the curve [AUC], 0.68 versus 0.73; P=0.28), and they improved with the triple combination of Pi(max), peak VO(2), and LVEF (AUC, 0.82; P=0.004 compared with AUC of Pi(max)). In patients with CHF, inspiratory muscle strength is reduced and emerges as a novel, independent predictor of prognosis. Because testing for Pi(max) is simple in clinical practice, it might serve as an additional factor to improve risk stratification and patient selection for cardiac transplantation.

  20. Silver nanoparticles administered to chicken affect VEGFA and FGF2 gene expression in breast muscle and heart

    DEFF Research Database (Denmark)

    Hotowy, Anna Malgorzata; Sawosz, Ewa; Pineda, Lane Manalili

    2012-01-01

    Nanoparticles of colloidal silver (AgNano) can influence gene expression. Concerning trials of AgNano application in poultry as antimicrobial and metabolic agents, it is useful to reveal whether they affect the expression of genes crucial for bird development. AgNano were administered to broiler...... chickens as a water solution in two concentrations (10 and 20 ppm). After dissection of the birds, breast muscles and hearts were collected. Gene expression of FGF2 and VEGF on the mRNA and protein levels were evaluated using qPCR and ELISA methods. The results for gene expression in breast muscle revealed...

  1. Quantitative evaluation of muscle synergy models: a single-trial task decoding approach.

    Science.gov (United States)

    Delis, Ioannis; Berret, Bastien; Pozzo, Thierry; Panzeri, Stefano

    2013-01-01

    Muscle synergies, i.e., invariant coordinated activations of groups of muscles, have been proposed as building blocks that the central nervous system (CNS) uses to construct the patterns of muscle activity utilized for executing movements. Several efficient dimensionality reduction algorithms that extract putative synergies from electromyographic (EMG) signals have been developed. Typically, the quality of synergy decompositions is assessed by computing the Variance Accounted For (VAF). Yet, little is known about the extent to which the combination of those synergies encodes task-discriminating variations of muscle activity in individual trials. To address this question, here we conceive and develop a novel computational framework to evaluate muscle synergy decompositions in task space. Unlike previous methods considering the total variance of muscle patterns (VAF based metrics), our approach focuses on variance discriminating execution of different tasks. The procedure is based on single-trial task decoding from muscle synergy activation features. The task decoding based metric evaluates quantitatively the mapping between synergy recruitment and task identification and automatically determines the minimal number of synergies that captures all the task-discriminating variability in the synergy activations. In this paper, we first validate the method on plausibly simulated EMG datasets. We then show that it can be applied to different types of muscle synergy decomposition and illustrate its applicability to real data by using it for the analysis of EMG recordings during an arm pointing task. We find that time-varying and synchronous synergies with similar number of parameters are equally efficient in task decoding, suggesting that in this experimental paradigm they are equally valid representations of muscle synergies. Overall, these findings stress the effectiveness of the decoding metric in systematically assessing muscle synergy decompositions in task space.

  2. The effects of surface condition on abdominal muscle activity during single-legged hold exercise.

    Science.gov (United States)

    Ha, Sung-min; Oh, Jae-seop; Jeon, In-cheol; Kwon, Oh-yun

    2015-02-01

    To treat low-back pain, various spinal stability exercises are commonly used to improve trunk muscle function and strength. Because human movement for normal daily activity occurs in multi-dimensions, the importance of exercise in multi-dimensions or on unstable surfaces has been emphasized. Recently, a motorized rotating platform (MRP) for facilitating multi-dimensions dynamic movement was introduced for clinical use. However, the abdominal muscle activity with this device has not been reported. The purpose of this study was to compare the abdominal muscle activity (rectus abdominis, external and internal oblique muscles) during an active single-leg-hold (SLH) exercise on a floor (stable surface), foam roll, and motorized rotating platform (MRP). Thirteen healthy male subjects participated in this study. Using electromyography, the abdominal muscle activity was measured while the subjects performed SLH exercises on floor (stable surface), foam roll, and MRP. There were significant differences in the abdominal muscle activities among conditions (P.05) (Fig. 2). After the Bonferroni correction, however, no significant differences among conditions remained, except for differences in both side IO muscle activity between the floor and foam roll conditions (padjexercises on a foam roll and MRP is more effective increased activities of both side of RA and IO, and Rt. EO compared to floor condition. However, there were no significant differences in abdominal muscles activity in the multiple comparison between conditions (mean difference were smaller than the standard deviation in the abdominal muscle activities) (padj>0.017), except for differences in both side IO muscle activity between the floor (stable surface) and foam roll (padj<0.017) (effect size: 0.79/0.62 (non-supporting/supporting leg) for foam-roll versus floor). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Management of single-ventricle patients with Berlin Heart EXCOR Ventricular Assist Device: single-center experience.

    Science.gov (United States)

    Mackling, Tracey; Shah, Tejas; Dimas, Vivian; Guleserian, Kristine; Sharma, Mahesh; Forbess, Joseph; Ardura, Monica; Gross-Toalson, Jami; Lee, Ying; Journeycake, Janna; Barnes, Aliessa

    2012-06-01

    There are minimal data regarding chronic management of single-ventricle ventricular assist device (VAD) patients. This study aims to describe our center's multidisciplinary team management of single-ventricle patients supported long term with the Berlin Heart EXCOR Pediatric VAD. Patient #1 was a 4-year-old with double-outlet right ventricle with aortic atresia, L-looped ventricles, and heart block who developed heart failure 1 year after Fontan. She initially required extracorporeal membrane oxygenation support and was transitioned to Berlin Heart systemic VAD. She was supported for 363 days (cardiac intensive care unit [CICU] 335 days, floor 28 days). The postoperative course was complicated by intermittent infection including methicillin-resistant Staphylococcus aureus, intermittent hepatic and renal insufficiencies, and transient antithrombin, protein C, and protein S deficiencies resulting in multiple thrombi. She had a total of five pump changes over 10 months. Long-term medical management included anticoagulation with enoxaparin, platelet inhibition with aspirin and dipyridamole, and antibiotic prophylaxis using trimethoprim/sulfamethoxazole. She developed sepsis of unknown etiology and subsequently died from multiorgan failure. Patient #2 was a 4-year-old with hypoplastic left heart syndrome who developed heart failure 2 years after bidirectional Glenn shunt. At systemic VAD implantation, he was intubated with renal insufficiency. Post-VAD implantation, his renal insufficiency resolved, and he was successfully extubated to daytime nasal cannula and biphasic positive airway pressure at night. He was supported for 270 days (CICU 143 days, floor 127 days). The pump was upsized to a 50-mL pump in May 2011 for increased central venous pressures (29 mm Hg). Long-term medical management included anticoagulation with warfarin and single-agent platelet inhibition using dipyridamole due to aspirin resistance. He developed increased work of breathing requiring

  4. Long-Term Blocking of Calcium Channels in mdx Mice Results in Differential Effects on Heart and Skeletal Muscle

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Blain, Alison; Greally, Elizabeth

    2011-01-01

    in older mice. However, streptomycin treatment did not show positive effects in diaphragm or heart muscle, and heart pathology was worsened. Thus, blocking calcium channels even before disease onset does not prevent dystrophy, making this an unlikely treatment for DMD. These findings highlight......The disease mechanisms underlying dystrophin-deficient muscular dystrophy are complex, involving not only muscle membrane fragility, but also dysregulated calcium homeostasis. Specifically, it has been proposed that calcium channels directly initiate a cascade of pathological events by allowing...... calcium ions to enter the cell. The objective of this study was to investigate the effect of chronically blocking calcium channels with the aminoglycoside antibiotic streptomycin from onset of disease in the mdx mouse model of Duchenne muscular dystrophy (DMD). Treatment in utero onwards delayed onset...

  5. Recruitment pattern of sympathetic muscle neurons during premature ventricular contractions in heart failure patients and controls.

    Science.gov (United States)

    Maslov, Petra Zubin; Breskovic, Toni; Brewer, Danielle N; Shoemaker, J Kevin; Dujic, Zeljko

    2012-12-01

    Premature ventricular contractions (PVC) elicit larger bursts of multiunit muscle sympathetic nerve activity (MSNA), reflecting the ability to increase postganglionic axonal recruitment. We tested the hypothesis that chronic heart failure (CHF) limits the ability to recruit postganglionic sympathetic neurons as a response to PVC due to the excessive sympathetic activation in these patients. Sympathetic neurograms of sufficient signal-to-noise ratio were obtained from six CHF patients and from six similarly aged control individuals. Action potentials (APs) were extracted from the multiunit sympathetic neurograms during sinus rhythm bursts and during the post-PVC bursts. These APs were classified on the basis of the frequency per second, the content per burst, and the peak-to-peak amplitude, which formed the basis of binning the APs into active clusters. Compared with controls, CHF had higher APs per burst and higher number of active clusters per sinus rhythm burst (P < 0.05). Compared with sinus rhythm bursts, both groups increased AP frequency and the number of active clusters in the post-PVC burst (P < 0.05). However, compared with controls, the increase in burst integral, AP frequency, and APs per burst during the post-PVC burst was less in CHF patients. Nonetheless, the PVC-induced increase in active clusters per burst was similar between the groups. Thus, these CHF patients retained the ability to recruit larger APs but had a diminished ability to increase overall AP content.

  6. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue

    Science.gov (United States)

    Boengler, Kerstin; Kosiol, Maik; Mayr, Manuel; Schulz, Rainer

    2017-01-01

    Abstract Age is the most important risk factor for most diseases. Mitochondria play a central role in bioenergetics and metabolism. In addition, several lines of evidence indicate the impact of mitochondria in lifespan determination and ageing. The best‐known hypothesis to explain ageing is the free radical theory, which proposes that cells, organs, and organisms age because they accumulate reactive oxygen species (ROS) damage over time. Mitochondria play a central role as the principle source of intracellular ROS, which are mainly formed at the level of complex I and III of the respiratory chain. Dysfunctional mitochondria generating less ATP have been observed in various aged organs. Mitochondrial dysfunction comprises different features including reduced mitochondrial content, altered mitochondrial morphology, reduced activity of the complexes of the electron transport chain, opening of the mitochondrial permeability transition pore, and increased ROS formation. Furthermore, abnormalities in mitochondrial quality control or defects in mitochondrial dynamics have also been linked to senescence. Among the tissues affected by mitochondrial dysfunction are those with a high‐energy demand and thus high mitochondrial content. Therefore, the present review focuses on the impact of mitochondria in the ageing process of heart and skeletal muscle. In this article, we review different aspects of mitochondrial dysfunction and discuss potential therapeutic strategies to improve mitochondrial function. Finally, novel aspects of adipose tissue biology and their involvement in the ageing process are discussed. PMID:28432755

  7. Muscle Activity in Single- vs. Double-Leg Squats.

    Science.gov (United States)

    DeFOREST, Bradley A; Cantrell, Gregory S; Schilling, Brian K

    Muscular activity, vertical displacement and ground reaction forces of back squats (BS), rear-leg elevated split squats (RLESS) and split squats (SS) were examined. Nine resistance-trained men reported for two sessions. The first session consisted of the consent process, practice, and BS 1-repetition maximum testing. In the second session, participants performed the three exercises while EMG, displacment and ground reaction force data (one leg on plate) were collected. EMG data were collected from the gluteus maximus (GMX), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MGas) of the left leg (non-dominant, front leg for unilateral squats). Load for BS was 85% one repetition maximum, and RLESS and SS were performed at 50% of BS load. Repeated measures ANOVA was used to compare all variables for the three exercises, with Bonferroni adjustments for post hoc multiple comparisons, in addition to calculation of standardized mean differences (ES). Muscle activity was similar between exercises except for biceps femoris, which was significantly higher during RLESS than SS during both concentric and eccentric phases (ES = 2.11; p=0.012 and ES= 2.19; p=0.008), and significantly higher during BS than the SS during the concentric phase (ES = 1.78; p=0.029). Vertical displacement was similar between all exercises. Peak vertical force was similar between BS and RLESS and significantly greater during RLESS than SS (ES = 3.03; p=0.001). These findings may be helpful in designing resistance training programs by using RLESS if greater biceps femoris activity is desired.

  8. Isolation and individual electrical stimulation of single smooth-muscle cells from the urinary bladder of the pig

    NARCIS (Netherlands)

    J.J. Glerum (Jacobus); R. van Mastrigt (Ron); J.C. Romijn (Johannes); D.J. Griffiths (Derek)

    1987-01-01

    textabstractIn contrast to striated muscle, measurements on strips of smooth muscle cannot be uniquely interpreted in terms of an array of contractile units. Therefore scaling down to the single-cell level is necessary to gain detailed understanding of the contractile process in this type of muscle.

  9. Female PFP patients present alterations in eccentric muscle activity but not the temporal order of activation of the vastus lateralis muscle during the single leg triple hop test.

    Science.gov (United States)

    Kalytczak, Marcelo Martins; Lucareli, Paulo Roberto Garcia; Dos Reis, Amir Curcio; Bley, André Serra; Biasotto-Gonzalez, Daniela Aparecida; Correa, João Carlos Ferrari; Politti, Fabiano

    2018-04-07

    This study aimed to compare the concentric and eccentric activity and the temporal order of peak activity of the hip and knee muscles between women with patellofemoral pain (PFP) and healthy women during the single leg triple hop test (SLTHT). Electromyographic (EMG) and Kinematic data were collected from 14 healthy women (CG) and 14 women diagnosed with PFP (PFG) during a single session of the single leg triple hop test. Integral surface electromyography (iEMG) data of the hip and knee muscles in eccentric and concentric phases and the length of time that each muscle needed to reach the maximal peak of muscle activity were calculated. The iEMG in the eccentric phase was significantly higher (p < 0.05) than the concentric phase, for the gluteus maximus and gluteus medius muscles (CG and PFG) and for the vastus lateralis muscle (PFG). The vastus lateralis muscle was the first muscle to reach the highest peak of activity in the PFG, and the third to reach this peak in the CG. In the present study, the activity of the vastus lateralis muscle during the eccentric phase of the jump was greater than concentric phase, as a temporal anticipation of its peak in activity among women with PFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Mechanical properties of mammalian single smooth muscle cells. I. A low cost large range microforce transducer.

    NARCIS (Netherlands)

    J.J. Glerum (Jacobus); R. van Mastrigt (Ron)

    1990-01-01

    textabstractA transducer has been developed for measuring the minute forces generated during isometric contractions (1.0-10.0 microN) of single smooth muscle cells from the pig urinary bladder and the human uterus. In addition to its high sensitivity, resolution and stability (100 mV microN-1, and

  11. Single sodium channels from human skeletal muscle in planar lipid bilayers: characterization and response to pentobarbital

    NARCIS (Netherlands)

    Wartenberg, Hans C.; Urban, Bernd W.

    2004-01-01

    PURPOSE: To investigate the response to general anesthetics of different sodium-channel subtypes, we examined the effects of pentobarbital, a close thiopental analogue, on single sodium channels from human skeletal muscle and compared them to existing data from human brain and human ventricular

  12. Effects of ageing on single muscle fibre contractile function following short-term immobilisation

    DEFF Research Database (Denmark)

    Hvid, Lars G; Ørtenblad, Niels; Aagaard, Per

    2011-01-01

    Very little attention has been given to the combined effect of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile...

  13. Sensitivity of the amplitude of the single muscle fibre action potential to microscopic volume conduction parameters

    NARCIS (Netherlands)

    Alberts, B.A.; Rutten, Wim; Wallinga, W.; Boom, H.B.K.

    1988-01-01

    A microscopic model of volume conduction was applied to examine the sensitivity of the single muscle fibre action potential to variations in parameters of the source and of the volume conductor, such as conduction velocity, intracellular conductivity and intracellular volume fraction. The model

  14. A single dose of dark chocolate increases parasympathetic modulation and heart rate variability in healthy subjects

    Directory of Open Access Journals (Sweden)

    Ana Amélia Machado DUARTE

    Full Text Available ABSTRACT Objective: The aim of this study was to investigate the acute effect of a single dose of dark chocolate (70% cocoa on blood pressure and heart rate variability. Methods: Thirty-one healthy subjects (aged 18-25 years; both sexes were divided into two groups: 10 subjects in the white chocolate (7.4 g group and 21 in the dark chocolate (10 g group; measurements were performed at the university's physiology lab. An electrocardiogram measured the sympathovagal balance by spectral and symbolic analysis. Results: A single dose of dark chocolate significantly reduced systolic blood pressure and heart rate. After consuming 10 g of dark chocolate, significant increases were observed for heart rate variability, standard deviation of RR intervals standard deviation of all NN intervals, square root of the mean squared differences between adjacent normal RR intervals root mean square of successive differences, and an increase in the high frequency component in absolute values, representing the parasympathetic modulation. Conclusion: In conclusion the importance of our results lies in the magnitude of the response provoked by a single dose of cocoa. Just 10 g of cocoa triggered a significant increase in parasympathetic modulation and heart rate variability. These combined effects can potentially increase life expectancy because a reduction in heart rate variability is associated with several cardiovascular diseases and higher mortality.

  15. Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats.

    Science.gov (United States)

    Gomes-Santos, Igor Lucas; Fernandes, Tiago; Couto, Gisele Kruger; Ferreira-Filho, Julio César Ayres; Salemi, Vera Maria Cury; Fernandes, Fernanda Barrinha; Casarini, Dulce Elena; Brum, Patricia Chakur; Rossoni, Luciana Venturini; de Oliveira, Edilamar Menezes; Negrao, Carlos Eduardo

    2014-01-01

    Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1-7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1-7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF. Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1-7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1-7) in the plantaris muscle of CHF rats. The AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle. Exercise training causes a shift in RAS towards the Ang-(1-7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. The changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal

  16. The effect of a single dose of morphine on muscle fatigue indices in male rats

    Directory of Open Access Journals (Sweden)

    Sedigheh Amiresmaili

    2016-09-01

    Full Text Available Background and Aim: Endogenous opioids and addictive opiate drugs change many body functions. . Previous studies have referred to the effects of morphine on smooth and pulmonary muscles ., but the  effects of opioids on skeletal muscles is not known well. Thus, the current study aimed at assessing the effect of a single dose of morphine on muscle fatigue in male rats. Materials and Methods: In this experimental study, 40 male Wistar rats weighing 220-270 g were randomly divided into four equal groups: control (the mice were kept in their cages and received food and water, morphine receiving group, fatigue group (the mice in this group were kept running on  a treadmill . for120 minutes at a rate of 20 meters per minute, and morphine plus fatigue group. At the end of the experiments, blood samples were obtained from the corner of their eyes and were sent to the laboratory for measurement of muscle fatigue indexes including lactate dehydrogenase (LDH and creatine phosphokinase (CPK. Results: Administration of morphine to the fatigue group decreased running time compared with the control group (P=0.009. Furthermore, administration of morphine to the fatigue group significantly increased serum levels of LDH (P=0.009 and CPK (P=0.008. Conclusion: The present study showed that administration of a single dose of morphine in rats increases muscle fatigue biomarkers (LDH, CPK.

  17. Amphiphile-induced heart muscle-cell (myocyte) injury: effects of intracellular fatty acid overload.

    Science.gov (United States)

    Janero, D R; Burghardt, C; Feldman, D

    1988-10-01

    Lipid amphiphile toxicity may be an important contributor to myocardial injury, especially during ischemia/reperfusion. In order to investigate directly the potential biochemical and metabolic effects of amphiphile overload on the functioning heart muscle cell (myocyte), a novel model of nonesterified fatty acid (NEFA)-induced myocyte damage has been defined. The model uses intact, beating neonatal rat myocytes in primary monolayer culture as a study object and 5-(tetradecyloxy)-2-furoic acid (TOFA) as a nonmetabolizable fatty acid. Myocytes incubated with TOFA accumulated it as NEFA, and the consequent NEFA amphiphile overload elicited a variety of cellular defects (including decreased beating rate, depletion of high-energy stores and glycogen pools, and breakdown of myocyte membrane phospholipid) and culminated in cell death. The amphiphile-induced cellular pathology could be reversed by removing TOFA from the culture medium, which resulted in intracellular TOFA "wash-out." Although the development and severity of amphiphile-induced myocyte injury could be correlated with both the intracellular TOFA/NEFA content (i.e., the level of TOFA to which the cells were exposed) and the duration of this exposure, removal of amphiphile overload did not inevitably lead to myocyte recovery. TOFA had adverse effects on myocyte mitochondrial function in situ (decoupling of oxidative phosphorylation, impairing respiratory control) and on myocyte oxidative catabolism (transiently increasing fatty acid beta oxidation, citric acid cycle flux, and glucose oxidation). The amphiphile-induced bioenergetic abnormalities appeared to constitute a state of "metabolic anoxia" underlying the progression of myocyte injury to cell death. This anoxic state could be ameliorated to some extent, but not prevented, by carbohydrate catabolism.

  18. Focal and diffuse papillary muscle fibrosis and small vessel sclerosis of the heart. A clinical-pathologic study of 375 autopsies

    Energy Technology Data Exchange (ETDEWEB)

    Steer, A; Danzig, M D; Robertson, T L; Kawashima, T; Nakashima, T; Lee, K K

    1975-01-01

    A retrospective clinical-pathologic study was made of papillary muscle fibrosis and small vessel sclerosis of the heart in 375 autopsies from the ABCC-JNIH Adult Health Study sample in Hiroshima and Nagasaki. The histopathologic findings were correlated with clinical diagnoses which included hypertension, hypertensive heart disease, myocardial infarction, and diabetes mellitus. (7 tables, 5 figures) (auth)

  19. A practical approach to assess leg muscle oxygenation during ramp-incremental cycle ergometry in heart failure

    Directory of Open Access Journals (Sweden)

    A.C. Barroco

    2017-10-01

    Full Text Available Heart failure is characterized by the inability of the cardiovascular system to maintain oxygen (O2 delivery (i.e., muscle blood flow in non-hypoxemic patients to meet O2 demands. The resulting increase in fractional O2 extraction can be non-invasively tracked by deoxygenated hemoglobin concentration (deoxi-Hb as measured by near-infrared spectroscopy (NIRS. We aimed to establish a simplified approach to extract deoxi-Hb-based indices of impaired muscle O2 delivery during rapidly-incrementing exercise in heart failure. We continuously probed the right vastus lateralis muscle with continuous-wave NIRS during a ramp-incremental cardiopulmonary exercise test in 10 patients (left ventricular ejection fraction <35% and 10 age-matched healthy males. Deoxi-Hb is reported as % of total response (onset to peak exercise in relation to work rate. Patients showed lower maximum exercise capacity and O2 uptake-work rate than controls (P<0.05. The deoxi-Hb response profile as a function of work rate was S-shaped in all subjects, i.e., it presented three distinct phases. Increased muscle deoxygenation in patients compared to controls was demonstrated by: i a steeper mid-exercise deoxi-Hb-work rate slope (2.2±1.3 vs 1.0±0.3% peak/W, respectively; P<0.05, and ii late-exercise increase in deoxi-Hb, which contrasted with stable or decreasing deoxi-Hb in all controls. Steeper deoxi-Hb-work rate slope was associated with lower peak work rate in patients (r=–0.73; P=0.01. This simplified approach to deoxi-Hb interpretation might prove useful in clinical settings to quantify impairments in O2 delivery by NIRS during ramp-incremental exercise in individual heart failure patients.

  20. Single Nisoldipine-Sensitive Calcium Channels in Smooth Muscle Cells Isolated from Rabbit Mesenteric Artery

    Science.gov (United States)

    Worley, Jennings F.; Deitmer, Joachim W.; Nelson, Mark T.

    1986-08-01

    Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines.

  1. Heart and skeletal muscle inflammation (HSMI disease diagnosed on a British Columbia salmon farm through a longitudinal farm study.

    Directory of Open Access Journals (Sweden)

    Emiliano Di Cicco

    Full Text Available Heart and skeletal muscle inflammation (HSMI is an emerging disease of marine-farmed Atlantic Salmon (Salmo salar, first recognized in 1999 in Norway, and later also reported in Scotland and Chile. We undertook a longitudinal study involving health evaluation over an entire marine production cycle on one salmon farm in British Columbia (Canada. In previous production cycles at this farm site and others in the vicinity, cardiac lesions not linked to a specific infectious agent or disease were identified. Histologic assessments of both live and moribund fish samples collected at the farm during the longitudinal study documented at the population level the development, peak, and recovery phases of HSMI. The fish underwent histopathological evaluation of all tissues, Twort's Gram staining, immunohistochemistry, and molecular quantification in heart tissue of 44 agents known or suspected to cause disease in salmon. Our analysis showed evidence of HSMI histopathological lesions over an 11-month timespan, with the prevalence of lesions peaking at 80-100% in sampled fish, despite mild clinical signs with no associated elevation in mortalities reported at the farm level. Diffuse mononuclear inflammation and myodegeneration, consistent with HSMI, was the predominant histologic observation in affected heart and skeletal muscle. Infective agent monitoring identified three agents at high prevalence in salmon heart tissue, including Piscine orthoreovirus (PRV, and parasites Paranucleospora theridion and Kudoa thyrsites. However, PRV alone was statistically correlated with the occurrence and severity of histopathological lesions in the heart. Immunohistochemical staining further localized PRV throughout HSMI development, with the virus found mainly within red blood cells in early cases, moving into the cardiomyocytes within or, more often, on the periphery of the inflammatory reaction during the peak disease, and reducing to low or undetectable levels later in

  2. Cloning and tissue distribution of rat hear fatty acid binding protein mRNA: identical forms in heart and skeletal muscle

    International Nuclear Information System (INIS)

    Claffey, K.P.; Herrera, V.L.; Brecher, P.; Ruiz-Opazo, N.

    1987-01-01

    A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a λ gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundant mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source

  3. Cloning and tissue distribution of rat hear fatty acid binding protein mRNA: identical forms in heart and skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Claffey, K.P.; Herrera, V.L.; Brecher, P.; Ruiz-Opazo, N.

    1987-12-01

    A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a lambda gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundant mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source.

  4. Single living predicts a higher mortality in both women and men with chronic heart failure

    DEFF Research Database (Denmark)

    Mard, Shan; Nielsen, Finn Erland

    2016-01-01

    INTRODUCTION: We examined the impact of single living on all-cause mortality in patients with chronic heart failure and determined if this association was modified by gender. METHODS: This historical cohort study included 637 patients who were admitted to the Department of Cardiology, Herlev Hosp......, the risk of death did not differ among single-living women and men. CONCLUSION: Single living is a prognostic determinant of all-cause mortality in men and women with chronic heart failure. FUNDING: none. TRIAL REGISTRATION: not relevant.......INTRODUCTION: We examined the impact of single living on all-cause mortality in patients with chronic heart failure and determined if this association was modified by gender. METHODS: This historical cohort study included 637 patients who were admitted to the Department of Cardiology, Herlev...... for confounding factors. RESULTS: The median follow-up time was 2.8 years. A total of 323 (50.7%) patients died during the follow-up period. After adjustment for confounding factors, risk of death was associated with being single (HR = 1.53 (95% confidence interval: 1.19-1.96)). In a gender-stratified analysis...

  5. The Comparing the Leg Muscles Electromyography during Single Leg Drop Landing in Pesplanus and Normal Men

    Directory of Open Access Journals (Sweden)

    mostafa bazvand

    2016-03-01

    Full Text Available Objective: pesplanus is one of the changes that brings about changes in muscle activation patterns. Being aware of muscles activity changes in various standing positions among pesplanus patients provides insights into preventing lower extremity injuries in this population. The aim of this study was to compare leg muscles electromyography during various standing positions in pesplanus and normal subjects. Methods: 60 healthy male university students, 30 subjects with pesplanus deformity (with average age 23/54±3/57 year, average height 175/34±7/62 cm, average weight 74/87±10/72 kg and 30 normal subjects (with average age 22/97±2/38 year, average height 176/6±5/59 cm, average weight 73/58±8/36 kg participated in this comparative study. Deformity of pesplanus was assessed with navicular drop test. Each subject performed single-leg landing dropping from 30cm height onto a force platform where muscles activity was recorded with EMG device. For data analysis, Matlab and Spss softwares were used and independent sample t-test was used to compare the dependent variables at a significance level of P &le 0/05. Results: Significant differences were observed between the two groups for the activities of the longus peroneus and anterior tibialis muscles ( p&le0/05 while no significant differences were observed in other muscles. Conclusion: The changes in the normal structure of the foot might affect muscle activities during standing, which can cause changes in the injury patterns. Therefore, it is proposed that focusing on corrective exercises and therapy plan can reduce these risks.

  6. Effects of ageing on single muscle fibre contractile function following short-term immobilisation

    DEFF Research Database (Denmark)

    Hvid, Lars G; Ortenblad, Niels; Aagaard, Per

    2011-01-01

    Very little attention has been given to the combined effects of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile...... IIa: young 18% and old 25%; P selective decrease in Ca(2+) sensitivity in MHC IIa fibres of young (P ....05), respectively. In conclusion, 2 weeks of lower limb immobilisation caused greater impairments in single muscle fibre force and specific force in MHC IIa than MHC I fibres independently of age. In contrast, immobilisation-induced changes in Ca(2+) sensitivity that were dependent on age and MHC isoform....

  7. Bradykinin Contributes to Sympathetic and Pressor Responses Evoked by Activation of Skeletal Muscle Afferents P2X in Heart Failure

    Directory of Open Access Journals (Sweden)

    Jihong Xing

    2016-11-01

    Full Text Available Background/Aims: Published data suggest that purinergic P2X receptors of muscle afferent nerves contribute to the enhanced sympathetic nervous activity (SNA and blood pressure (BP responses during static exercise in heart failure (HF. In this study, we examined engagement of bradykinin (BK in regulating responses of SNA and BP evoked by P2X stimulation in rats with HF. We further examined cellular mechanisms responsible for BK. We hypothesized that BK potentiates P2X currents of muscle dorsal root ganglion (DRG neurons, and this effect is greater in HF due to upregulation of BK kinin B2 and P2X3 receptor. As a result, BK amplifies muscle afferents P2X-mediated SNA and BP responses. Methods: Renal SNA and BP responses were recorded in control rats and rats with HF. Western Blot analysis and patch-clamp methods were employed to examine the receptor expression and function of DRG neurons involved in the effects of BK. Results: BK injected into the arterial blood supply of the hindlimb muscles heightened the reflex SNA and BP responses induced by P2X activation with α,β-methylene ATP to a greater degree in HF rats. In addition, HF upregulated the protein expression of kinin B2 and P2X3 in DRG and the prior application of BK increased the magnitude of α,β-methylene ATP-induced currents in muscle DRG neurons from HF rats. Conclusion: BK plays a facilitating role in modulating muscle afferent P2X-engaged reflex sympathetic and pressor responses. In HF, P2X responsivness is augmented due to increases in expression of kinin B2 and P2X3 receptors and P2X current activity.

  8. Aerobic exercise training prevents heart failure-induced skeletal muscle atrophy by anti-catabolic, but not anabolic actions.

    Directory of Open Access Journals (Sweden)

    Rodrigo W A Souza

    Full Text Available Heart failure (HF is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting.We employed ascending aortic stenosis (AS inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET or to an untrained group (AS-UN. At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65, MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels.Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state.

  9. Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling.

    Science.gov (United States)

    Abilez, Oscar J; Tzatzalos, Evangeline; Yang, Huaxiao; Zhao, Ming-Tao; Jung, Gwanghyun; Zöllner, Alexander M; Tiburcy, Malte; Riegler, Johannes; Matsa, Elena; Shukla, Praveen; Zhuge, Yan; Chour, Tony; Chen, Vincent C; Burridge, Paul W; Karakikes, Ioannis; Kuhl, Ellen; Bernstein, Daniel; Couture, Larry A; Gold, Joseph D; Zimmermann, Wolfram H; Wu, Joseph C

    2018-02-01

    The ability to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes (CMs) makes them an attractive source for repairing injured myocardium, disease modeling, and drug testing. Although current differentiation protocols yield hPSC-CMs to >90% efficiency, hPSC-CMs exhibit immature characteristics. With the goal of overcoming this limitation, we tested the effects of varying passive stretch on engineered heart muscle (EHM) structural and functional maturation, guided by computational modeling. Human embryonic stem cells (hESCs, H7 line) or human induced pluripotent stem cells (IMR-90 line) were differentiated to hPSC-derived cardiomyocytes (hPSC-CMs) in vitro using a small molecule based protocol. hPSC-CMs were characterized by troponin + flow cytometry as well as electrophysiological measurements. Afterwards, 1.2 × 10 6 hPSC-CMs were mixed with 0.4 × 10 6 human fibroblasts (IMR-90 line) (3:1 ratio) and type-I collagen. The blend was cast into custom-made 12-mm long polydimethylsiloxane reservoirs to vary nominal passive stretch of EHMs to 5, 7, or 9 mm. EHM characteristics were monitored for up to 50 days, with EHMs having a passive stretch of 7 mm giving the most consistent formation. Based on our initial macroscopic observations of EHM formation, we created a computational model that predicts the stress distribution throughout EHMs, which is a function of cellular composition, cellular ratio, and geometry. Based on this predictive modeling, we show cell alignment by immunohistochemistry and coordinated calcium waves by calcium imaging. Furthermore, coordinated calcium waves and mechanical contractions were apparent throughout entire EHMs. The stiffness and active forces of hPSC-derived EHMs are comparable with rat neonatal cardiomyocyte-derived EHMs. Three-dimensional EHMs display increased expression of mature cardiomyocyte genes including sarcomeric protein troponin-T, calcium and potassium ion channels, β-adrenergic receptors, and t

  10. The effects of dietary fish oil on exercising skeletal muscle vascular and metabolic control in chronic heart failure rats.

    Science.gov (United States)

    Holdsworth, Clark T; Copp, Steven W; Hirai, Daniel M; Ferguson, Scott K; Sims, Gabrielle E; Hageman, Karen S; Stebbins, Charles L; Poole, David C; Musch, Timothy I

    2014-03-01

    Impaired vasomotor control in chronic heart failure (CHF) is due partly to decrements in nitric oxide synthase (NOS) mediated vasodilation. Exercising muscle blood flow (BF) is augmented with polyunsaturated fatty acid (PUFA) supplementation via fish oil (FO) in healthy rats. We hypothesized that FO would augment exercising muscle BF in CHF rats via increased NO-bioavailability. Myocardial infarction (coronary artery ligation) induced CHF in Sprague-Dawley rats which were subsequently randomized to dietary FO (20% docosahexaenoic acid, 30% eicosapentaenoic acid, n = 15) or safflower oil (SO, 5%, n = 10) for 6-8 weeks. Mean arterial pressure (MAP), blood [lactate], and hindlimb muscles BF (radiolabeled microspheres) were determined at rest, during treadmill exercise (20 m·min(-1), 5% incline) and exercise + N(G)-nitro-l-arginine-methyl-ester (l-NAME) (a nonspecific NOS inhibitor). FO did not change left ventricular end-diastolic pressure (SO: 14 ± 2; FO: 11 ± 1 mm Hg, p > 0.05). During exercise, MAP (SO: 128 ± 3; FO: 132 ± 3 mm Hg) and blood [lactate] (SO: 3.8 ± 0.4; FO: 4.6 ± 0.5 mmol·L(-1)) were not different (p > 0.05). Exercising hindlimb muscle BF was lower in FO than SO (SO: 120 ± 11; FO: 93 ± 4 mL·min(-1)·100 g(-1), p exercise but may lower metabolic cost.

  11. Neuromuscular electrical stimulation and inspiratory muscle training as potential adjunctive rehabilitation options for patients with heart failure.

    Science.gov (United States)

    Arena, Ross; Pinkstaff, Sherry; Wheeler, Emma; Peberdy, Mary Ann; Guazzi, Marco; Myers, Jonathan

    2010-01-01

    Aerobic and resistance exercise training programs produce an abundance of physiologic and clinical benefits in patients with heart failure (HF). Improved maximal aerobic capacity, submaximal aerobic endurance, muscle force production, perceived quality of life, and skeletal muscle characteristics are among the more established outcomes resulting from these rehabilitation techniques. Moreover, both aerobic and resistance exercise training appear to portend a low risk to patients with HF when appropriate exercise prescription methods are followed. While the aforementioned training techniques will undoubtedly continue to be at the center of a well-formulated rehabilitation program, other adjunctive interventions, which are presently underutilized in clinical practice, may prove beneficial in patients with HF. Specifically, both neuromuscular electrical stimulation (NMES) and inspiratory muscle training (IMT) appear to significantly improve several physiologic, exercise, symptomatologic, and quality-of-life parameters. NMES targets skeletal muscle abnormalities, whereas IMT primarily targets the weakened respiratory musculature, both often encountered in patients with HF. A PubMed search using relevant key words identified 19 original investigations examining the impact of NMES (13 studies) and IMT (6 studies) training programs in patients with HF. The resultant review (1) provides a summary of the original research outcomes of both NMES and IMT in patients with HF; (2) addresses current research gaps, providing a direction for future investigations; and (3) provides clinical scenarios where NMES and IMT may prove to be beneficial during the rehabilitation of patients with HF.

  12. Muscle free amino acid profiles are related to differences in skeletal muscle growth between single and twin ovine fetuses near term.

    Science.gov (United States)

    Sales, Francisco; Pacheco, David; Blair, Hugh; Kenyon, Paul; McCoard, Sue

    2013-01-01

    Twin sheep fetuses have reduced skeletal muscle weight near birth relative to singles as a result of restricted muscle hypertrophy. Intracellular free amino acids (FAA) are reported to regulate metabolic pathways which control muscle protein accretion, whereby reduced intracellular content of specific FAA may reduce their activation and therefore, muscle hypertrophy. The aim of this study was to determine whether differences in muscle weight between singleton and twin fetuses, under different maternal conditions is associated with reduced concentration of specific FAA. The FAA content in the semitendinosus muscle (ST) in singleton and twin fetuses (rank) at 140 days of gestation from heavy (H) or light (L) ewes fed ad libitum (A) or maintenance (M) level of nutrition was measured. Muscle weight was reduced in twin fetuses compared to singletons in all groups. Reduced concentrations of leucine, threonine and valine, but higher concentrations of methionine, ornithine, lysine and serine were found in twin fetuses compared to singletons. Maternal size and nutrition interaction with rank resulted in reduced glutamine in twins from HM-ewes (H-ewes under M nutrition) compared to their singleton counterparts. Maternal weight interaction with pregnancy rank reduced the concentration of arginine in twins, with a larger effect on H-ewes compared with L-ewes. Maternal size interaction with pregnancy rank resulted in twins from M-ewes to have lower alanine, while twins from A-ewes had lower aspartic acid concentration compared to singletons. The ST muscle weight was positively correlated only with arginine concentration after taking into account rank, size and nutrition. The present results indicate that reduced concentrations of specific intracellular FAA, such as arginine, leucine, valine, glutamine, which are known to play a role in muscle growth, could be acting as limiting factors for muscle hypertrophy in twin fetuses during late gestation. Ewe size and nutrition can

  13. [Role of sialic acid loss in the myocardium in depressing the contractile function of the heart muscle during stress].

    Science.gov (United States)

    Meerson, F Z; Saulia, A I; Gudumak, V S

    1985-01-01

    Under conditions of stress a time-dependent decrease in content of sialic acids was found in adult rats; within 9 hrs of the animal immobilization the sialic acid content was decreased by 40% as compared with controls. At the same time, activities of trypsin and LDHI were increased in blood serum. The data obtained suggest that activation of proteases occurring during the stress led to increased hydrolysis of base components of glycocalyx and to impairment of the cardiomyocyte sarcolemma. These phenomena appear to be responsible for the post-stress deterioration of heart muscle contractile functions.

  14. Preliminary study of single contrast enhanced dual energy heart imaging using dual-source CT

    International Nuclear Information System (INIS)

    Peng Jin; Zhang Longjiang; Zhou Changsheng; Lu Guangming; Ma Yan; Gu Haifeng

    2009-01-01

    Objective: To evaluate the feasibility and preliminary applications of single contrast enhanced dual energy heart imaging using dual-source CT (DSCT). Methods: Thirty patients underwent dual energy heart imaging with DSCT, of which 6 cases underwent SPECT or DSA within one week. Two experienced radiologists assessed image quality of coronary arteries and iodine map of myocardium. and correlated the coronary artery stenosis with the perfusion distribution of iodine map. Results: l00% (300/300) segments reached diagnostic standards. The mean score of image for all patients was 4.68±0.57. Mural coronary artery was present in 10 segments in S cases, atherosclerotic plaques in 32 segments in 12 cases, of which 20 segments having ≥50% stenosis, 12 segments ≤50% stenosis; dual energy CT coronary angiography was consistent with the DSA in 3 patients. 37 segmental perfusion abnormalities on iodine map were found in 15 cases, including 28 coronary blood supply segment narrow segment and 9 no coronary stenosis (including three negative segments in SPECD. Conclusion: Single contrast enhanced dual energy heart imaging can provide good coronary artery and myocardium perfusion images in the patients with appropriate heart rate, which has a potential to be used in the clinic and further studies are needed. (authors)

  15. Ankle muscle activity modulation during single-leg stance differs between children, young adults and seniors.

    Science.gov (United States)

    Kurz, Eduard; Faude, Oliver; Roth, Ralf; Zahner, Lukas; Donath, Lars

    2018-02-01

    Incomplete maturation and aging-induced declines of the neuromuscular system affect postural control both in children and older adults and lead to high fall rates. Age-specific comparisons of the modulation of ankle muscle activation and behavioral center of pressure (COP) indices during upright stance have been rarely conducted. The objective of the present study was to quantify aging effects on a neuromuscular level. Thus, surface electromyography (SEMG) modulation and co-activity of ankle muscles during single-leg standing was compared in healthy children, young adults and seniors. Postural steadiness (velocity and mean sway frequency of COP), relative muscle activation (SEMG modulation) and co-activation of two ankle muscles (tibialis anterior, TA; soleus, SO) were examined during single-leg stance in 19 children [age, 9.7 (SD 0.5) years], 30 adults [23.3 (1.5) years] and 29 seniors [62.7 (6.1) years]. Velocity of COP in medio-lateral and anterior-posterior directions, mean sway frequency in anterior-posterior direction, relative muscle activation (TA and SO) and co-activation revealed large age effects (P  0.14). Post-hoc comparisons indicated higher COP velocities, anterior-posterior frequencies, relative SO activation and co-activation in children and seniors when compared with adults. Relative TA activation was higher in children and adults compared with seniors (P seniors seems to be counteracted with higher TA/SO co-activity and SO modulation. However, TA modulation is higher in children and adults, whereas seniors' TA modulation capacity is diminished. An aging-induced decline of TA motor units might account for deteriorations of TA modulation in seniors.

  16. The Effect of Single Portion Glutamine Supplement Consumption on Injury Indices of Muscle After Eccentric Resistance Exercise

    OpenAIRE

    Azadeh Najarzadeh; Hadi Atarod; Hasan Mozaffari-Khosravi; Ali Dehghani; Foad Asjodi

    2015-01-01

    Abstract Background: Delayed muscular soreness after resistance exercises or eccentric trainings is probably because of muscle damage and injury. Nutrition by playing a crucial role in both protein synthesize and catabolism can influence the extent of muscle injury. The objective of this study was to assess the effect of single portion of Glutamine supplement consumption on injury indices of muscle after a session eccentric resistance exercise. Materials and Methods: this study used a ...

  17. Fiber type effects on contraction-stimulated glucose uptake and GLUT4 abundance in single fibers from rat skeletal muscle.

    Science.gov (United States)

    Castorena, Carlos M; Arias, Edward B; Sharma, Naveen; Bogan, Jonathan S; Cartee, Gregory D

    2015-02-01

    To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[(3)H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater (P contraction-stimulated glucose uptake. Copyright © 2015 the American Physiological Society.

  18. Determining the impact of oxidation on the motility of single muscle-fibres expressing different myosin isoforms

    DEFF Research Database (Denmark)

    Spanos, Dimitrios; Li, M.; Baron, Caroline P.

    2013-01-01

    heavy chain (MyHC) isoforms has not been previously investigated. Oxidation of myosin isolated from muscle fibres originating from various porcine muscles with a different metabolic profile was studied using a single muscle fibre in-vitro motility assay, allowing measurements of catalytic properties...... (motility speed) and force-generation capacity of specific MyHC isoforms. In the experimental procedure, single muscle fibres were split in different segments and each segment was exposed to a different concentration of hydrogen peroxide. Speed and force measurements were recorded and compared, to assess...... the effect of myosin oxidation on motility and force. The MyHC isoform expression in the single muscle fibre was subsequently determined on silver-stained gel SDS-PAGE. Preliminary results indicate a decrease of directionality and speed of the in-vitro motility as a result of an oxidative environment...

  19. Quantification of leg muscle perfusion using thallium-201 single photon emission computed tomography

    International Nuclear Information System (INIS)

    Oshima, M.; Akanabe, H.; Sakuma, S.; Yano, T.; Nishikimi, N.; Shionoya, S.

    1989-01-01

    The purpose of this study is to quantify leg muscle perfusion with 201 Tl single photon emission computed tomography (SPECT). Six normal controls and 21 patients with peripheral arterial disease underwent this examination. Thallium-201 leg SPECT of both stress and redistribution was performed using a dual-headed digital gamma camera. Each slice of transverse images was normalized with pixels and whole-body counts. In normal controls, the activity of posterior tibial muscle components was significantly higher than that of anterior tibial muscle components (p less than 0.001). In 14 components, where patients had insignificant lesions, profile curves were normal in 10 (71%). In 62 components, where patients had arteriographically significant lesions, stress profile curves were abnormal in 57 (92%) compared with normal controls. Approximately, in half (28/62) components which had significant lesions, profile curves showed redistribution after 3 hr compared with normal redistribution curves. In three patients who underwent successful bypass graftings, the activity of each muscle component returned to a normal range

  20. Biting Force and Muscle Activity in Implant-Supported Single Mandibular Overdentures Opposing Fixed Maxillary Dentition.

    Science.gov (United States)

    Al-Magaleh, Wafaʼa R; Abbas, Nadia A; Amer, Ashraf A; Abdelkader, Ann A; Bahgat, Basma

    2016-04-01

    This study aimed to investigate the relation between biting force and masticatory muscle activity in patients treated by 3 modalities of single mandibular dentures. Forty implants were placed in 10 patients with completely edentulous mandibles. The study was divided into 3 treatment stages. Initially, each patient received a conventional mandibular complete denture. At the second stage, 4 mandibular implants were placed and the denture was refitted to their abutments. Third stage comprised connecting the denture to the implants through ball attachments. During each treatment stage, maximum biting force and muscle activity were measured during maximum clenching and chewing of soft and hard food. Biting force demonstrated a statistically significant increase by time for the 3 treatment stages. The highest muscle activity was recorded for the conventional denture followed by the implant-supported overdenture without attachment, whereas the lowest values were recorded for the implant-supported overdenture with attachment. Biting force was related mainly to the quality of denture support. Muscle activity was higher in patients with conventional denture than with implant-supported prostheses (with or without attachments).

  1. Beneficial effects of GH/IGF-1 on skeletal muscle atrophy and function in experimental heart failure.

    Science.gov (United States)

    Dalla Libera, Luciano; Ravara, Barbara; Volterrani, Maurizio; Gobbo, Valerio; Della Barbera, Mila; Angelini, Annalisa; Danieli Betto, Daniela; Germinario, Elena; Vescovo, Giorgio

    2004-01-01

    Muscle atrophy is a determinant of exercise capacity in heart failure (CHF). Myocyte apoptosis, triggered by tumor necrosis factor-alpha (TNF-alpha) or its second messenger sphingosine (SPH), is one of the causes of atrophy. Growth hormone (GH) improves hemodynamic and cardiac trophism in several experimental models of CHF, but its effect on skeletal muscle in CHF is not yet clear. We tested the hypothesis that GH can prevent skeletal muscle apoptosis in rats with CHF. CHF was induced by injecting monocrotaline. After 2 wk, 2 groups of rats were treated with GH (0.2 mg.kg(-1).day(-1) and 1.0 mg.kg(-1).day(-1)) subcutaneously. A third group of controls had saline. After 2 additional weeks, rats were killed. Tibialis anterior cross-sectional area, myosin heavy chain (MHC) composition, and a study on myocyte apoptosis and serum levels of TNF-alpha and SPH were carried out. The number of apoptotic nuclei, muscle atrophy, and serum levels of TNF-alpha and SPH were decreased with GH at high but not at low doses compared with CHF rats. Bcl-2 was increased, whereas activated caspases and bax were decreased. The MHC pattern in GH-treated animals was similar to that of controls. Monocrotaline slowed down both contraction and relaxation but did not affect specific tetanic force, whereas absolute force was decreased. GH treatment restored contraction and relaxation to control values and brought muscle mass and absolute twitch and tetanic tension to normal levels. These findings may provide an insight into the therapeutic strategy of GH given to patients with CHF to improve exercise capacity.

  2. Pericarditis - after heart attack

    Science.gov (United States)

    ... include: A previous heart attack Open heart surgery Chest trauma A heart attack that has affected the thickness of your heart muscle Symptoms Symptoms include: Anxiety Chest pain from the swollen pericardium rubbing on the ...

  3. Heart attack first aid

    Science.gov (United States)

    First aid - heart attack; First aid - cardiopulmonary arrest; First aid - cardiac arrest ... A heart attack occurs when the blood flow that carries oxygen to the heart is blocked. The heart muscle ...

  4. Examination of mitral regurgitation with a goat heart model for the development of intelligent artificial papillary muscle.

    Science.gov (United States)

    Shiraishi, Y; Yambe, T; Yoshizawa, M; Hashimoto, H; Yamada, A; Miura, H; Hashem, M; Kitano, T; Shiga, T; Homma, D

    2012-01-01

    Annuloplasty for functional mitral or tricuspid regurgitation has been made for surgical restoration of valvular diseases. However, these major techniques may sometimes be ineffective because of chamber dilation and valve tethering. We have been developing a sophisticated intelligent artificial papillary muscle (PM) by using an anisotropic shape memory alloy fiber for an alternative surgical reconstruction of the continuity of the mitral structural apparatus and the left ventricular myocardium. This study exhibited the mitral regurgitation with regard to the reduction in the PM tension quantitatively with an originally developed ventricular simulator using isolated goat hearts for the sophisticated artificial PM. Aortic and mitral valves with left ventricular free wall portions of isolated goat hearts (n=9) were secured on the elastic plastic membrane and statically pressurized, which led to valvular leaflet-papillary muscle positional change and central mitral regurgitation. PMs were connected to the load cell, and the relationship between the tension of regurgitation and PM tension were measured. Then we connected the left ventricular specimen model to our hydraulic ventricular simulator and achieved hemodynamic simulation with the controlled tension of PMs.

  5. Exercise training dose differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome.

    Science.gov (United States)

    Machado, Marcus Vinicius; Vieira, Aline Bomfim; da Conceição, Fabiana Gomes; Nascimento, Alessandro Rodrigues; da Nóbrega, Antonio Claudio Lucas; Tibirica, Eduardo

    2017-12-01

    What is the central question of this study? Regular exercise is recommended as a non-pharmacological approach for the prevention and treatment of metabolic syndrome. However, the impact of different combinations of intensity, duration and frequency of exercise on metabolic syndrome and microvascular density has not been reported. What is the main finding and its importance? We provide evidence on the impact of aerobic exercise dose on metabolic and microvascular alterations in an experimental model of metabolic syndrome induced by high-fat diet. We found that the exercise frequency and duration were the main factors affecting anthropometric and metabolic parameters and microvascular density in the skeletal muscle. Exercise intensity was related only to microvascular density in the heart. We evaluated the effect of the frequency, duration and intensity of exercise training on metabolic parameters and structural capillary density in obese rats with metabolic syndrome. Wistar-Kyoto rats were fed either a standard commercial diet (CON) or a high-fat diet (HFD). Animals that received the HFD were randomly separated into either a sedentary (SED) group or eight different exercise groups that varied according to the frequency, duration and intensity of training. After 12 weeks of aerobic exercise training, the body composition, aerobic capacity, haemodynamic variables, metabolic parameters and capillary density in the heart and skeletal muscle were evaluated. All the exercise training groups showed reduced resting systolic blood pressure and heart rate and normalized fasting glucose. The minimal amount of exercise (90 min per week) produced little effect on metabolic syndrome parameters. A moderate amount of exercise (150 min per week) was required to reduce body weight and improve capillary density. However, only the high amount of exercise (300 min per week) significantly reduced the amount of body fat depots. The three-way ANOVA showed a main effect of exercise

  6. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    Science.gov (United States)

    Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared with a value approximating normal resting Po2. Dihydrofluorescein was loaded into single frog (Xenopus) fibers, and fluorescence was used to monitor ROS using confocal microscopy. Myofibers were exposed to two maximal tetanic contractile periods (1 contraction/3 s for 2 min, separated by a 60-min rest period), each consisting of one of the following treatments: high Po2 (30 Torr), low Po2 (3–5 Torr), high Po2 with ebselen (antioxidant), or low Po2 with ebselen. Ebselen (10 μM) was administered before the designated contractile period. ROS formation during low Po2 treatment was greater than during high Po2 treatment, and ebselen decreased ROS generation in both low- and high-Po2 conditions (P Po2. Force was reduced >30% for each condition except low Po2 with ebselen, which only decreased ∼15%. We concluded that single myofibers under low Po2 conditions develop accelerated and more oxidative stress than at Po2 = 30 Torr (normal human resting Po2). Ebselen decreases ROS formation in both low and high Po2, but only mitigates skeletal muscle fatigue during reduced Po2 conditions. PMID:23576612

  7. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Cheng, Arthur J; Ørtenblad, Niels

    2014-01-01

    In skeletal muscle fibres, glycogen has been shown to be stored at different subcellular locations: (i) between the myofibrils (intermyofibrillar); (ii) within the myofibrils (intramyofibrillar); and (iii) subsarcolemmal. Of these, intramyofibrillar glycogen has been implied as a critical regulator...... of sarcoplasmic reticulum Ca(2+) release. The aim of the present study was to test directly how the decrease in cytoplasmic free Ca(2+) ([Ca(2+)]i) during repeated tetanic contractions relates to the subcellular glycogen distribution. Single fibres of mouse flexor digitorum brevis muscles were fatigued with 70 Hz...... in tetanic [Ca(2+)]i, and hence force, is accompanied by major reductions in inter- and intramyofibrillar glycogen. The stronger correlation between decreased tetanic [Ca(2+)]i and reduced intramyofibrillar glycogen implies that sarcoplasmic reticulum Ca(2+) release critically depends on energy supply from...

  8. NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout.

    Science.gov (United States)

    Henríquez-Olguín, Carlos; Díaz-Vegas, Alexis; Utreras-Mendoza, Yildy; Campos, Cristian; Arias-Calderón, Manuel; Llanos, Paola; Contreras-Ferrat, Ariel; Espinosa, Alejandra; Altamirano, Francisco; Jaimovich, Enrique; Valladares, Denisse M

    2016-01-01

    Reactive oxygen species (ROS) participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2) in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg) or vehicle for 3 days, were swim-exercised for 60 min. Phospho-p47(phox) levels were significantly upregulated by exercise in flexor digitorum brevis (FDB). Moreover, exercise significantly increased NOX2 complex assembly (p47(phox)-gp91(phox) interaction) demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx), citrate synthase (CS), mitochondrial transcription factor A (tfam) and interleukin-6 (IL-I6) in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p < 0.001). These results were corroborated using gp91-dstat in an in vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.

  9. NOX2 inhibition impairs early muscle gene expression induced by a single exercise bout

    Directory of Open Access Journals (Sweden)

    Carlos Henríquez-Olguín

    2016-07-01

    Full Text Available Reactive oxygen species (ROS participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2 in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg or vehicle for 3 days, were swim-exercised for 60 min. Phospho-p47phox levels were significantly upregulated by exercise in flexor digitorum brevis (FDB. Moreover, exercise significantly increased NOX2 complex assembly (p47phox-gp91phox interaction demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD, glutathione peroxidase (GPx, citrate synthase (CS, mitochondrial transcription factor A (tfam and interleukin-6 (IL-6 in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p<0.001. These results were corroborated using gp91-dstat in an in-vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.

  10. Congenital heart defects: the 10-year experience at a single center.

    Science.gov (United States)

    Aydin, Emine; Aypar, Ebru; Oktem, Ahmet; Ozyuncu, Ozgur; Yurdakok, Murat; Guvener, Murat; Demircin, Metin; Beksac, M Sinan

    2018-06-18

    We aimed to evaluate congenital heart disease (CHD) cases according to EUROCAT subgroup classification that were diagnosed during the prenatal period in our center. CHDs that were prenatally diagnosed using ultrasonography and confirmed by fetal echocardiography were reviewed over a 10-year period. Subgroup classification was finalized at the post-partum period in terms of the EUROCAT guide 1.3. Congenital heart defect subtypes and obstetric outcomes (gestational week at delivery, birth weight, gender, extracardiac structural abnormalities, karyotype results if performed) were analyzed. The data of 180 cases with CHD was examined. Left ventricular outflow tract obstruction (LVOT) was the most common CHD subtype (57/180; 31.6%), which included 48, five, and four cases of hypoplastic left heart syndrome (HLHS), coarctation of the aorta, and aortic valve atresia/stenosis, respectively. Eighteen pregnancies were terminated; the most common CHD subtype among patients of terminated pregnancies was hypoplastic left heart syndrome (HLHS) (n = 7, 38.8%). The most common extracardiac malformations were a single umbilical artery, esophageal atresia, and situs inversus in our study group. Eighteen of the 96 (18.75%) neonates with CHD died during the neonatal period. The most common CHD subtype was HLHS (7/18; 38%) among the newborns who died after birth. Prenatal diagnosis of a CHD and subgroup classification is very important for clinical decision making, including prenatal management, recommendations for termination of the pregnancy, postnatal management of the patient, and for early referral to pediatric cardiology and cardiovascular surgery centers.

  11. DIFFERENTIAL RESPONSE OF HEAT SHOCK PROTEINS TO UPHILL AND DOWNHILL EXERCISE IN HEART, SKELETAL MUSCLE, LUNG AND KIDNEY TISSUES

    Directory of Open Access Journals (Sweden)

    Pablo C. B. Lollo

    2013-09-01

    Full Text Available Running on a horizontal plane is known to increase the concentration of the stress biomarker heat-shock protein (HSP, but no comparison of the expression of HSP70 has yet been established between the uphill (predominantly concentric and downhill (predominantly eccentric muscle contractions exercise. The objective of the study was to investigate the relationships between eccentric and concentric contractions on the HSP70 response of the lung, kidney, gastrocnemius, soleus and heart. Twenty-four male Wistar weanling rats were divided into four groups: non-exercised and three different grades of treadmill exercise groups: horizontal, uphill (+7% and downhill (-7% of inclination. At the optimal time-point of six hours after the exercise, serum uric acid, creatine kinase (CK and lactate dehydrogenase (LDH were determined by standard methods and HSP70 by the Western blot analysis. HSP70 responds differently to different types of running. For kidney, heart, soleus and gastrocnemius, the HSP70 expression increased, 230, 180, 150 and 120% respectively of the reference (horizontal. When the contraction was concentric (uphill and compared to downhill the increase in response of HSP70 was greater in 80% for kidney, 75% for gastrocnemius, 60% for soleus and 280% for the heart. Uric acid was about 50% higher (0.64 ± 0.03 mg·dL-1 in the uphill group as compared to the horizontal or downhill groups. Similarly, the activities of serum CK and LDH were both 100% greater for both the uphill and downhill groups as compared to the horizontal group (2383 ± 253 and 647.00 ± 73 U/L, respectively. The responsiveness of HSP70 appeared to be quite different depending on the type of tissue, suggesting that the impact of exercise was not restricted to the muscles, but extended to the kidney tissue. The uphill exercise increases HSP70 beyond the eccentric type and the horizontal running was a lower HSP70 responsive stimulus

  12. Heart rate detection from single-foot plantar bioimpedance measurements in a weighing scale.

    Science.gov (United States)

    Diaz, Delia H; Casas, Oscar; Pallas-Areny, Ramon

    2010-01-01

    Electronic bathroom scales are an easy-to-use, affordable mean to measure physiological parameters in addition to body weight. They have been proposed to obtain the ballistocardiogram (BCG) and derive from it the heart rate, cardiac output and systolic blood pressure. Therefore, weighing scales may suit intermittent monitoring in e-health and patient screening. Scales intended for bioelectrical impedance analysis (BIA) have also been proposed to estimate the heart rate by amplifying the pulsatile impedance component superimposed on the basal impedance. However, electronic weighing scales cannot easily obtain the BCG from people that have a single leg neither are bioimpedance measurements between both feet recommended for people wearing a pacemaker or other electronic implants, neither for pregnant women. We propose a method to detect the heart rate (HR) from bioimpedance measured in a single foot while standing on an bathroom weighting scale intended for BIA. The electrodes built in the weighing scale are used to apply a 50 kHz voltage between the outer electrode pair and to measure the drop in voltage across the inner electrode pair. The agreement with the HR simultaneously obtained from the ECG is excellent. We have also compared the drop in voltage across the waist and the thorax with that obtained when measuring bioimpedance between both feet to compare the possible risk of the proposed method to that of existing BIA scales.

  13. Single living predicts a higher mortality in both women and men with chronic heart failure.

    Science.gov (United States)

    Mard, Shan; Nielsen, Finn Erland

    2016-09-01

    We examined the impact of single living on all-cause mortality in patients with chronic heart failure and determined if this association was modified by gender. This historical cohort study included 637 patients who were admitted to the Department of Cardiology, Herlev Hospital, Denmark, between 1 July 2005 and 30 June 2007. Baseline clinical data were obtained from patient records. Data on survival rates were obtained from the Danish Civil Registration System. Cox proportional hazard analysis was used to compute the hazard ratio (HR) of all-cause mortality, controlling for confounding factors. The median follow-up time was 2.8 years. A total of 323 (50.7%) patients died during the follow-up period. After adjustment for confounding factors, risk of death was associated with being single (HR = 1.53 (95% confidence interval: 1.19-1.96)). In a gender-stratified analysis, the risk of death did not differ among single-living women and men. Single living is a prognostic determinant of all-cause mortality in men and women with chronic heart failure. none. not relevant.

  14. Bion 11 Spaceflight Project: Effect of Weightlessness on Single Muscle Fiber Function in Rhesus Monkeys

    Science.gov (United States)

    Fitts, Robert H.; Romatowski, Janell G.; Widrick, Jeffrey J.; DeLaCruz, Lourdes

    1999-01-01

    Although it is well known that microgravity induces considerable limb muscle atrophy, little is known about how weightlessness alters cell function. In this study, we investigated how weightlessness altered the functional properties of single fast and slow striated muscle fibers. Physiological studies were carried out to test the hypothesis that microgravity causes fiber atrophy, a decreased peak force (Newtons), tension (Newtons/cross-sectional area) and power, an elevated peak rate of tension development (dp/dt), and an increased maximal shortening velocity (V(sub o)) in the slow type I fiber, while changes in the fast-twitch fiber are restricted to atrophy and a reduced peak force. For each fiber, we determined the peak force (P(sub o)), V(sub o), dp/dt, the force-velocity relationship, peak power, the power-force relationship, the force-pCa relationship, and fiber stiffness. Biochemical studies were carried out to assess the effects of weightlessness on the enzyme and substrate profile of the fast- and slow-twitch fibers. We predicted that microgravity would increase resting muscle glycogen and glycolytic metabolism in the slow fiber type, while the fast-twitch fiber enzyme profile would be unaltered. The increased muscle glycogen would in part result from an elevated hexokinase and glycogen synthase. The enzymes selected for study represent markers for mitochondrial function (citrate synthase and 0-hydroxyacyl-CoA dehydrogenase), glycolysis (Phosphofructokinase and lactate dehydrogenase), and fatty acid transport (Carnitine acetyl transferase). The substrates analyzed will include glycogen, lactate, adenosine triphosphate, and phosphocreatine.

  15. Body, heart, thyroid gland and skeletal muscle weight changes in rats with altered thyroid status

    Czech Academy of Sciences Publication Activity Database

    Soukup, Tomáš; Zachařová, Gisela; Smerdu, V.; Jirmanová, Isa

    2001-01-01

    Roč. 50, č. 6 (2001), s. 619-626 ISSN 0862-8408 R&D Projects: GA ČR GA304/00/1653 Institutional research plan: CEZ:AV0Z5011922 Keywords : thyroid state * skeletal muscles * body and organ weight Subject RIV: FH - Neurology Impact factor: 1.027, year: 2001

  16. Endurance exercise differentially stimulates heart and axial muscle development in zebrafish (Danio rerio)

    NARCIS (Netherlands)

    Meulen, T. van der; Schipper, H.; Boogaart, J.G. van den; Huising, M.O.; Kranenbarg, S.; Leeuwen, J.L. van

    2006-01-01

    Mechanical load is an important factor in the differentiation of cells and tissues. To investigate the effects of increased mechanical load on development of muscle and bone, zebrafish were subjected to endurance swim training for 6 h/day for 10 wk starting at 14 days after fertilization. During the

  17. Position control of a single pneumatic artificial muscle with hysteresis compensation based on modified Prandtl-Ishlinskii model.

    Science.gov (United States)

    Zang, Xizhe; Liu, Yixiang; Heng, Shuai; Lin, Zhenkun; Zhao, Jie

    2017-01-01

    High-performance position control of pneumatic artificial muscles is limited by their inherent nonlinearity and hysteresis. This study aims to model the length/pressure hysteresis of a single pneumatic artificial muscle and to realize its accurate position tracking control with forward hysteresis compensation. The classical Prandtl-Ishlinskii model is widely used in hysteresis modelling and compensation. But it is only effective for symmetric hysteresis. Therefore, a modified Prandtl-Ishlinskii model is built to characterize the asymmetric length/pressure hysteresis of a single pneumatic artificial muscle, by replacing the classical play operators with two more flexible elementary operators to independently describe the ascending branch and descending branch of hysteresis loops. On the basis, a position tracking controller, which is composed of cascade forward hysteresis compensation and simple proportional pressure controller, is designed for the pneumatic artificial muscle. Experiment results show that the MPI model can reproduce the length/pressure hysteresis of the pneumatic artificial muscle, and the proposed controller for the pneumatic artificial muscle can track the reference position signals with high accuracy. By modelling the length/pressure hysteresis with the modified Prandtl-Ishlinskii model and using its inversion for compensation, precise position control of a single pneumatic artificial muscle is achieved.

  18. Cyclic AMP-dependent signaling system is a primary metabolic target for non-thermal effect of microwaves on heart muscle hydration.

    Science.gov (United States)

    Narinyan, Lilia; Ayrapetyan, Sinerik

    2017-01-01

    Previously, we have suggested that cell hydration is a universal and extra-sensitive sensor for the structural changes of cell aqua medium caused by the impact of weak chemical and physical factors. The aim of present work is to elucidate the nature of the metabolic messenger through which physiological solution (PS) treated by non-thermal (NT) microwaves (MW) could modulate heart muscle hydration of rats. For this purpose, the effects of NT MW-treated PS on heart muscle hydration, [ 3 H]-ouabain binding with cell membrane, 45 Ca 2+ uptake and intracellular cyclic nucleotides contents in vivo and in vitro experiments were studied. It is shown that intraperitoneal injections of both Sham-treated PS and NT MW-treated PS elevate heart muscle hydration. However, the effect of NT MW-treated PS on muscle hydration is more pronounced than the effect of Sham-treated PS. In vitro experiments NT MW-treated PS has dehydration effect on muscle, which is not changed by decreasing Na + gradients on membrane. Intraperitoneal injection of Sham- and NT MW-treated PS containing 45 Ca 2+ have similar dehydration effect on muscle, while NT MW-treated PS has activation effect on Na + /Ca 2+ exchange in reverse mode. The intraperitoneal injection of NT MW-treated PS depresses [ 3 H]-ouabain binding with its high-affinity membrane receptors, elevates intracellular cAMP and decreases cGMP contents. Based on the obtained data, it is suggested that cAMP-dependent signaling system serves as a primary metabolic target for NT MW effect on heart muscle hydration.

  19. Differential response of heat shock proteins to uphill and downhill exercise in heart, skeletal muscle, lung and kidney tissues.

    Science.gov (United States)

    Lollo, Pablo C B; Moura, Carolina S; Morato, Priscila N; Amaya-Farfan, Jaime

    2013-01-01

    Running on a horizontal plane is known to increase the concentration of the stress biomarker heat-shock protein (HSP), but no comparison of the expression of HSP70 has yet been established between the uphill (predominantly concentric) and downhill (predominantly eccentric) muscle contractions exercise. The objective of the study was to investigate the relationships between eccentric and concentric contractions on the HSP70 response of the lung, kidney, gastrocnemius, soleus and heart. Twenty-four male Wistar weanling rats were divided into four groups: non-exercised and three different grades of treadmill exercise groups: horizontal, uphill (+7%) and downhill (-7% of inclination). At the optimal time-point of six hours after the exercise, serum uric acid, creatine kinase (CK) and lactate dehydrogenase (LDH) were determined by standard methods and HSP70 by the Western blot analysis. HSP70 responds differently to different types of running. For kidney, heart, soleus and gastrocnemius, the HSP70 expression increased, 230, 180, 150 and 120% respectively of the reference (horizontal). When the contraction was concentric (uphill) and compared to downhill the increase in response of HSP70 was greater in 80% for kidney, 75% for gastrocnemius, 60% for soleus and 280% for the heart. Uric acid was about 50% higher (0.64 ± 0.03 mg·dL(-1)) in the uphill group as compared to the horizontal or downhill groups. Similarly, the activities of serum CK and LDH were both 100% greater for both the uphill and downhill groups as compared to the horizontal group (2383 ± 253 and 647.00 ± 73 U/L, respectively). The responsiveness of HSP70 appeared to be quite different depending on the type of tissue, suggesting that the impact of exercise was not restricted to the muscles, but extended to the kidney tissue. The uphill exercise increases HSP70 beyond the eccentric type and the horizontal running was a lower HSP70 responsive stimulus. Key PointsExercise can induce increases in HSP70 in

  20. Limitations of skeletal muscle oxygen delivery and utilization during moderate-intensity exercise in moderately impaired patients with chronic heart failure

    NARCIS (Netherlands)

    Niemeijer, V.M.; Spee, R.F.; Schoots, T.; Wijn, P.F.F.; Kemps, H.M.C.

    2016-01-01

    The extent and speed of transient skeletal muscle deoxygenation during exercise onset in patients with chronic heart failure (CHF) are related to impairments of local O2 delivery and utilization. This study examined the physiological background of submaximal exercise performance in 19 moderately

  1. Comparative in vitro metabolism of 1-14C-oleic acid and 1-14C-erucic acid in liver, heart and skeletal muscles of rats

    International Nuclear Information System (INIS)

    Bhatia, I.S.; Sharma, A.K.; Ahuja, S.P.

    1978-01-01

    In vitro oxidation of 14 C-oleic and 1- 14 C-erucic acid and their incorporation into lipids by liver, heart and skeletal muscles from female albino rats were studied. These tissues were obtained from rats maintained for 120 days on low fat diet or diets containing 15% mustard oil or 15% groundnut oil. In all these tissues from rats on different types of diets, the oxidation of 1- 14 C-erucic acid was lower than that 1- 14 C-oleic acid. There was little accumulation of lipids in heart after 120 days of feeding mustard oil. Oxidation of 1- 14 C-erucic acid was enhanced in liver, heart and skeletal muscles of rats conditioned to the mustard oil diet supplying erucic acid. Oxidation of erucic acid was maximum in liver and least in heart, whereas there were no differences in the oxidation of 1- 14 C-oleic acid in these tissues. Incorporation of 1- 14 C-oleic acid into triglycerides and phospholipids was not affected by the type of diet or tissues Incorporation of 1- 14 C-erucic acid was mainly into triglycerides of heart and skeletal muscles of rats not accustomed to mustard oil diet whereas these tissues from rats accustomed to mustard oil diets incorporated 1- 14 C-erucic acid both into the triglycerides and phospholipids. (author)

  2. Congenital heart defects in newborns with apparently isolated single gastrointestinal malformation: A retrospective study.

    Science.gov (United States)

    Schierz, Ingrid Anne Mandy; Pinello, Giuseppa; Giuffrè, Mario; La Placa, Simona; Piro, Ettore; Corsello, Giovanni

    2016-12-01

    Congenital gastrointestinal system malformations/abdominal wall defects (GISM) may appear as isolated defects (single or complex), or in association with multiple malformations. The high incidence of association of GISM and congenital heart defects (CHD) in patients with syndromes and malformative sequences is known, but less expected is the association of apparently isolated single GISM and CHD. The aim of this study was to investigate the frequency of CHD in newborns with isolated GISM, and the possibility to modify the diagnostic-therapeutic approach just before the onset of cardiac symptoms or complications. Anamnestic, clinical, and imaging data of newborns requiring abdominal surgery for GISM, between 2009 and 2014, were compared with a control group of healthy newborns. Distribution of GISM and cardiovascular abnormalities were analyzed, and risk factors for adverse outcomes were identified. Seventy-one newborns with isolated GISM were included in this study. More frequent GISM were intestinal rotation and fixation disorders. CHD were observed in 15.5% of patients, augmenting their risk for morbidity. Risk factors for morbidity related to sepsis were identified in central venous catheter, intestinal stoma, and H2-inhibitor-drugs. Moreover, 28.2% of newborns presented only functional cardiac disorders but an unexpectedly higher mortality. The high incidence of congenital heart disease in infants with apparently isolated GISM confirms the need to perform an echocardiographic study before surgery to improve perioperative management and prevent complications such as sepsis and endocarditis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Electromyographic analyses of muscle pre-activation induced by single joint exercise.

    Science.gov (United States)

    Júnior, Valdinar A R; Bottaro, Martim; Pereira, Maria C C; Andrade, Marcelino M; P Júnior, Paulo R W; Carmo, Jake C

    2010-01-01

    To investigate whether performing a low-intensity, single-joint exercises for knee extensors was an efficient strategy for increasing the number of motor units recruited in the vastus lateralis muscle during a subsequent multi-joint exercises. Nine healthy male participants (23.33+/-3.46 yrs) underwent bouts of exercise in which knee extension and 45 degrees , and leg press exercises were performed in sequence. In the low-intensity bout (R30), 15 unilateral knee extensions were performed, followed by 15 repetitions of the leg presses at 30% and 60% of one maximum repetition load (1-MR), respectively. In the high-intensity bout (R60), the same sequence was performed, but the applied load was 60% of 1-MR for both exercises. A single set of 15 repetitions of the leg press at 60% of 1-MR was performed as a control exercise (CR). The surface electromyographic signals of the vastus lateralis muscle were recorded by means of a linear electrode array. The root mean square (RMS) values were determined for each repetition of the leg press, and linear regressions were calculated from these results. The slopes of the straight lines obtained were then normalized using the linear coefficients of the regression equations and compared using one-way ANOVAs for repeated measures. The slopes observed in the CR were significantly lower than those in the R30 and R60 (precruitment of motor units was more effective when a single-joint exercise preceded the multi-joint exercise. Article registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) under the number ACTRN12609000413224.

  4. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by β‐alanine transamination

    Science.gov (United States)

    Blancquaert, Laura; Baba, Shahid P.; Kwiatkowski, Sebastian; Stautemas, Jan; Stegen, Sanne; Barbaresi, Silvia; Chung, Weiliang; Boakye, Adjoa A.; Hoetker, J. David; Bhatnagar, Aruni; Delanghe, Joris; Vanheel, Bert; Veiga‐da‐Cunha, Maria; Derave, Wim

    2016-01-01

    Key points Using recombinant DNA technology, the present study provides the first strong and direct evidence indicating that β‐alanine is an efficient substrate for the mammalian transaminating enzymes 4‐aminobutyrate‐2‐oxoglutarate transaminase and alanine‐glyoxylate transaminase.The concentration of carnosine and anserine in murine skeletal and heart muscle depends on circulating availability of β‐alanine, which is in turn controlled by degradation of β‐alanine in liver and kidney.Chronic oral β‐alanine supplementation is a popular ergogenic strategy in sports because it can increase the intracellular carnosine concentration and subsequently improve the performance of high‐intensity exercises. The present study can partly explain why the β‐alanine supplementation protocol is so inefficient, by demonstrating that exogenous β‐alanine can be effectively routed toward oxidation. Abstract The metabolic fate of orally ingested β‐alanine is largely unknown. Chronic β‐alanine supplementation is becoming increasingly popular for improving high‐intensity exercise performance because it is the rate‐limiting precursor of the dipeptide carnosine (β‐alanyl‐l‐histidine) in muscle. However, only a small fraction (3–6%) of the ingested β‐alanine is used for carnosine synthesis. Thus, the present study aimed to investigate the putative contribution of two β‐alanine transamination enzymes, namely 4‐aminobutyrate‐2‐oxoglutarate transaminase (GABA‐T) and alanine‐glyoxylate transaminase (AGXT2), to the homeostasis of carnosine and its methylated analogue anserine. We found that, when transfected into HEK293T cells, recombinant mouse and human GABA‐T and AGXT2 are able to transaminate β‐alanine efficiently. The reaction catalysed by GABA‐T is inhibited by vigabatrin, whereas both GABA‐T and AGXT2 activity is inhibited by aminooxyacetic acid (AOA). Both GABA‐T and AGXT2 are highly expressed in the mouse liver and

  5. Cardiac muscle organization revealed in 3-D by imaging whole-mount mouse hearts using two-photon fluorescence and confocal microscopy.

    Science.gov (United States)

    Sivaguru, Mayandi; Fried, Glenn; Sivaguru, Barghav S; Sivaguru, Vignesh A; Lu, Xiaochen; Choi, Kyung Hwa; Saif, M Taher A; Lin, Brian; Sadayappan, Sakthivel

    2015-11-01

    The ability to image the entire adult mouse heart at high resolution in 3-D would provide enormous advantages in the study of heart disease. However, a technique for imaging nuclear/cellular detail as well as the overall structure of the entire heart in 3-D with minimal effort is lacking. To solve this problem, we modified the benzyl alcohol:benzyl benzoate (BABB) clearing technique by labeling mouse hearts with periodic acid Schiff (PAS) stain. We then imaged the hearts with a combination of two-photon fluorescence microscopy and automated tile-scan imaging/stitching. Utilizing the differential spectral properties of PAS, we could identify muscle and nuclear compartments in the heart. We were also able to visualize the differences between a 3-month-old normal mouse heart and a mouse heart that had undergone heart failure due to the expression of cardiac myosin binding protein-C (cMyBP-C) gene mutation (t/t). Using 2-D and 3-D morphometric analysis, we found that the t/t heart had anomalous ventricular shape, volume, and wall thickness, as well as a disrupted sarcomere pattern. We further validated our approach using decellularized hearts that had been cultured with 3T3 fibroblasts, which were tracked using a nuclear label. We were able to detect the 3T3 cells inside the decellularized intact heart tissue, achieving nuclear/cellular resolution in 3-D. The combination of labeling, clearing, and two-photon microscopy together with tiling eliminates laborious and time-consuming physical sectioning, alignment, and 3-D reconstruction.

  6. Detection of the mutation may guide treatment of heart and muscle in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Finsterer J

    2016-03-01

    Full Text Available Josef Finsterer,1 Sinda Zarrouk-Mahjoub21Krankenanstalt Rudolfstiftung, Vienna, Austria; 2Genomics Platform, Pasteur Institute of Tunis, Tunis, Tunisia We read with great interest the article, by Kono et al, about a 32-year-old male with Duchenne muscular dystrophy (DMD, who was admitted for dilated cardiomyopathy manifesting as heart failure, left bundle branch block, Mobitz-II block, bradycardia, and arterial hypotension. He profited from implantation of a cardiac resynchronization therapy-D system with a defibrillator and beta-blocker treatment. View original article by Kono et al.  

  7. Atomic force microscope observation of branching in single transcript molecules derived from human cardiac muscle

    International Nuclear Information System (INIS)

    Reed, Jason; Hsueh, Carlin; Gimzewski, James K; Mishra, Bud

    2008-01-01

    We have used an atomic force microscope to examine a clinically derived sample of single-molecule gene transcripts, in the form of double-stranded cDNA, (c: complementary) obtained from human cardiac muscle without the use of polymerase chain reaction (PCR) amplification. We observed a log-normal distribution of transcript sizes, with most molecules being in the range of 0.4-7.0 kilobase pairs (kb) or 130-2300 nm in contour length, in accordance with the expected distribution of mRNA (m: messenger) sizes in mammalian cells. We observed novel branching structures not previously known to exist in cDNA, and which could have profound negative effects on traditional analysis of cDNA samples through cloning, PCR and DNA sequencing

  8. From single molecule fluctuations to muscle contraction: a Brownian model of A.F. Huxley's hypotheses.

    Directory of Open Access Journals (Sweden)

    Lorenzo Marcucci

    Full Text Available Muscular force generation in response to external stimuli is the result of thermally fluctuating, cyclical interactions between myosin and actin, which together form the actomyosin complex. Normally, these fluctuations are modelled using transition rate functions that are based on muscle fiber behaviour, in a phenomenological fashion. However, such a basis reduces the predictive power of these models. As an alternative, we propose a model which uses direct single molecule observations of actomyosin fluctuations reported in the literature. We precisely estimate the actomyosin potential bias and use diffusion theory to obtain a brownian ratchet model that reproduces the complete cross-bridge cycle. The model is validated by simulating several macroscopic experimental conditions, while its interpretation is compatible with two different force-generating scenarios.

  9. Stabilometric response during single-leg stance after lower limb muscle fatigue

    Directory of Open Access Journals (Sweden)

    Carlos A. V. Bruniera

    2013-10-01

    Full Text Available OBJECTIVE: This study sought to analyze the effect of muscle fatigue induced by active isotonic resistance training at a moderate intensity by measuring the knee extension motion during the stabilometric response in a single-leg stance among healthy university students who perform resistance training on a regular basis. METHOD: Eleven healthy university students were subjected to a one-repetition maximum (1RM test. In addition, stabilometric assessment was performed before and after the intervention and consisted of a muscle fatiguing protocol, in which knee extension was selected as the fatiguing task. The Shapiro-Wilk test was used to investigate the normality of the data, and the Wilcoxon test was used to compare the stabilometric parameters before and after induction of muscle fatigue, at a significance level of p≤0.05. Descriptive statistics were used in the analysis of the volunteers' age, height, body mass, and body mass index (BMI. RESULTS: The sample population was 23.1±2.7 years of age, averaged 1.79.2±0.07 m in height and 75.6±8.0 Kg in weight, and had a BMI of 23.27±3.71 Kg.m-2. The volunteers performed exercises 3.36±1.12 days/week and achieved a load of 124.54±22.07 Kg on 1RM and 74.72±13.24 Kg on 60% 1RM. The center of pressure (CoP oscillation on the mediolateral plane before and after fatigue induction was 2.89±0.89 mm and 4.09±0.59 mm, respectively, while the corresponding values on the anteroposterior plane were 2.5±2.2 mm and 4.09±2.26 mm, respectively. The CoP oscillation amplitude on the anteroposterior and mediolateral planes exhibited a significant difference before and after fatigue induction (p=0.04 and p=0.05, respectively. CONCLUSIONS: The present study showed that muscle fatigue affects postural control, particularly with the mediolateral and anteroposterior CoP excursion.

  10. Cyclic AMP-receptor proteins in heart muscle of rats flown on Cosmos 1887

    Science.gov (United States)

    Mednieks, Maija I.; Popova, Irina A.; Grindeland, Richard E.

    1991-01-01

    The cellular compartmentalization of the cyclic AMP-receptor proteins in heart ventricular tissue obtained from rats flown on the Cosmos 1887 is determined. Photoaffinity labeling of soluble and particular cell fractions with a (32P)-8-azido analog of cyclic AMP is followed by electrophoretic separation of the proteins and by autoradiographic identification of the labeled isoforms of cAPK R subunits. It is shown that RII in the particulate subcellular fraction was significantly decreased in heart cells from rats in the flight group when compared to controls. Protein banding patterns in both the cytoplasmic fraction and in a fraction enriched in chromatin-bound proteins exhibited some variability in tissues of individual animals, but showed no changes that could be directly attributed to flight conditions. No significant change was apparent in the distribution of RI or RII cyclic AMP binding in the soluble fractions. It is inferred that the cardiac cell integrity or its protein content is not compromised under flight conditions.

  11. Neuromuscular organization of avian flight muscle: architecture of single muscle fibres in muscle units of the pectoralis (pars thoracicus) of pigeon (Columba livia)

    Science.gov (United States)

    Sokoloff, A. J.

    1999-01-01

    The M. pectoralis (pars thoracicus) of pigeons (Columba livia) is comprised of short muscle fibres that do not extend from muscle origin to insertion but overlap 'in-series'. Individual pectoralis motor units are limited in territory to a portion of muscle length and are comprised of either fast twitch, oxidative and glycolytic fibres (FOG) or fast twitch and glycolytic fibres (FG). FOG fibres make up 88 to 90% of the total muscle population and have a mean diameter one-half of that of the relatively large FG fibres. Here we report on the organization of individual fibres identified in six muscle units depleted of glycogen, three comprised of FOG fibres and three comprised of FG fibres. For each motor unit, fibre counts revealed unequal numbers of depleted fibres in different unit cross-sections. We traced individual fibres in one unit comprised of FOG fibres and a second comprised of FG fibres. Six fibres from a FOG unit (total length 15.45 mm) ranged from 10.11 to 11.82 mm in length and averaged (± s.d.) 10.74 ± 0.79 mm. All originated bluntly (en mass) from a fascicle near the proximal end of the muscle unit and all terminated intramuscularly. Five of these ended in a taper and one ended bluntly. Fibres coursed on average for 70% of the muscle unit length. Six fibres from a FG unit (total length 34.76 mm) ranged from 8.97 to 18.38 mm in length and averaged 15.32 ± 3.75 mm. All originated bluntly and terminated intramuscularly; one of these ended in a taper and five ended bluntly. Fibres coursed on average for 44% of the muscle unit length. Because fibres of individual muscle units do not extend the whole muscle unit territory, the effective cross-sectional area changes along the motor unit length. These non-uniformities in the distribution of fibres within a muscle unit emphasize that the functional interactions within and between motor units are complex.

  12. Cone beam tomography of the heart using single-photon emission-computed tomography

    International Nuclear Information System (INIS)

    Gullberg, G.T.; Christian, P.E.; Zeng, G.L.; Datz, F.L.; Morgan, H.T.

    1991-01-01

    The authors evaluated cone beam single-photon emission-computed tomography (SPECT) of the heart. A new cone beam reconstruction algorithm was used to reconstruct data collected from short scan acquisitions (of slightly more than 180 degrees) of a detector anteriorally traversing a noncircular orbit. The less than 360 degrees acquisition was used to minimize the attenuation artifacts that result from reconstructing posterior projections of 201T1 emissions from the heart. The algorithm includes a new method for reconstructing truncated projections of background tissue activity that eliminates reconstruction ring artifacts. Phantom and patient results are presented which compare a high-resolution cone beam collimator (50-cm focal length; 6.0-mm full width at half maximum [FWHM] at 10 cm) to a low-energy general purpose (LEGP) parallel hole collimator (8.2-mm FWHM at 10 cm) which is 1.33 times more sensitive. The cone beam tomographic results are free of reconstruction artifacts and show improved spatial and contrast resolution over that obtained with the LEGP parallel hole collimator. The limited angular sampling restrictions and truncation problems associated with cone beam tomography do not deter from obtaining diagnostic information. However, even though these preliminary results are encouraging, a thorough clinical study is still needed to investigate the specificity and sensitivity of cone beam tomography

  13. Calcium-binding properties of troponin C in detergent-skinned heart muscle fibers

    International Nuclear Information System (INIS)

    Pan, B.S.; Solaro, R.J.

    1987-01-01

    In order to obtain information with regard to behavior of the Ca 2+ receptor, troponin C (TnC), in intact myofilament lattice of cardiac muscle, we investigated Ca 2+ -binding properties of canine ventricular muscle fibers skinned with Triton X-100. Analysis of equilibrium Ca 2+ -binding data of the skinned fibers in ATP-free solutions suggested that there were two distinct classes of binding sites which were saturated over the physiological range of negative logarithm of free calcium concentration (pCa): class I (KCa = 7.4 X 10(7) M-1, KMg = 0.9 X 10(3) M-1) and class II (KCa = 1.2 X 10(6) M-1, KMg = 1.1 X 10(2) M-1). The class I and II were considered equivalent, respectively, to the Ca 2+ -Mg 2+ and Ca 2+ -specific sites of TnC. The assignments were supported by TnC content of the skinned fibers determined by electrophoresis and 45 Ca autoradiograph of electroblotted fiber proteins. Dissociation of rigor complexes by ATP caused a downward shift of the binding curve between pCa 7 and 5, an effect which could be largely accounted for by lowering of KCa of the class II sites. When Ca 2+ binding and isometric force were measured simultaneously, it was found that the threshold pCa for activation corresponds to the range of pCa where class II sites started to bind Ca 2+ significantly. We concluded that the low affinity site of cardiac TnC plays a key role in Ca 2+ regulation of contraction under physiological conditions, just as it does in the regulation of actomyosin ATPase. Study of kinetics of 45 Ca washout from skinned fibers and myofibrils revealed that cardiac TnC in myofibrils contains Ca 2+ -binding sites whose off-rate constant for Ca 2+ is significantly lower than the Ca 2+ off-rate constant hitherto documented for the divalent ion-binding sites of either cardiac/slow muscle TnC or fast skeletal TnC

  14. Getting a New Heart

    Science.gov (United States)

    ... may be able to replace it with an artificial (man-made) valve. Cardiac size reduction . During this procedure, your doctor removes a piece of the heart muscle from an enlarged heart. This makes your heart ...

  15. Living with half a heart - experiences of young adults with single ventricle physiology

    DEFF Research Database (Denmark)

    Overgaard, Dorthe; King, Catriona; Christensen, Rie F

    2013-01-01

    Background and Research Objective: Approximately 3% of children with congenital heart disease born in Denmark have single ventricle physiology (SVP). In previous decades, these children did not survive into adulthood. However, because of new surgical techniques and improved medical care, they now...... have a 90% survival rate. Several studies have described the somatic status of SVP patients using clinical parameters; however, only a few studies have researched the life perspectives and coping skills in this patient group. The aim of this study was to investigate how young adults with an SVP...... diagnosis are coping with adulthood and the emotional experiences of daily life. Subjects and Methods: Semistructured, qualitative interviews were held with 11 SVP respondents, selected by physical and psychological parameters identified in an earlier quantitative study. Data from the interviews were...

  16. Editorial Commentary: Single-Image Slice Magnetic Resonance Imaging Assessments Do Not Predict 3-Dimensional Muscle Volume.

    Science.gov (United States)

    Brand, Jefferson C

    2016-01-01

    No single-image magnetic resonance imaging (MRI) assessment-Goutallier classification, Fuchs classification, or cross-sectional area-is predictive of whole-muscle volume or fatty atrophy of the supraspinatus or infraspinatus. Rather, 3-dimensional MRI measurement of whole-muscle volume and fat-free muscle volume is required and is associated with shoulder strength, which is clinically relevant. Three-dimensional MRI may represent a new gold standard for assessment of the rotator cuff musculature using imaging and may help to predict the feasibility of repair of a rotator cuff tear as well as the postoperative outcome. Unfortunately, 3-dimensional MRI assessment of muscle volume is labor intensive and is not widely available for clinical use. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Recovery of rat muscle size but not function more than 1 year after a single botulinum toxin injection.

    Science.gov (United States)

    Ward, Samuel R; Minamoto, Viviane B; Suzuki, Kentaro P; Hulst, Jonah B; Bremner, Shannon N; Lieber, Richard L

    2018-03-01

    Neurotoxin injection is used to treat a wide variety of neuromuscular disorders. The purpose of this study was to measure the functional and structural properties of botulinum toxin-injected adult rat skeletal muscle over nearly the entire lifespan. Ten groups of animals were subjected to either neurotoxin injection [Botox, Type A (BT-A); Allergan, Irvine, California] or saline solution injection. Neurotoxin-injected animals (n = 90) were analyzed at different time-points: 1 week; 1 month; 3 months; 6 months; 12 months; or 18 months. In spite of the recovery of structural features, such as muscle mass and fiber area, dorsiflexion torque production remained significantly depressed by 25%, even at 12 months after neurotoxin injection. The data demonstrate that, after a single BT-A injection, although gross muscle morphology recovered over a 12-month time period, loss of contractile function did not recover. Muscle Nerve 57: 435-441, 2018. © 2017 Wiley Periodicals, Inc.

  18. Pathology of experimental radiation pancarditis, 1. Observation on radiation-induced heart injuries following a single dose of x-ray irradiation to rabbit heart with special reference to its pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, S [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1980-01-01

    Radiation-induced heart injuries were morphologically studied by using the rabbits irradiated with a single dose of 3,000R (group I) or 300R X-ray (group II) from 1 hour until 6 months. There was no essential difference in the lesions of the hearts from group I and that of group II. Acute epicarditis was found as early as 1 hour after irradiation and it became maximum in severity at 1 - 2 days. In the myocardium, there were degeneration and resolution of the myocardial cell, various architectural changes of mitochondria, and disorganization of the intercalated disc. Polymorphonuclear cell infiltration and endothelial injuries of the capillaries occurred in the interstitial tissue. In addition, endocarditis with or without thrombus formation was often found. Acute inflammation was seen in the myocardium of group II rather later than that of group I, but it disappeared earlier. In the later stage, fibrosis finally occurred in the epicardium and endocardium. Glycoprotein degeneration of the muscle cells and fibrosis appeared in the myocardium. The pathogenesis of radiation pancarditis is thought to be dependent not only on the disturbance of microcirculation caused by endothelial cell damage of the capillaries, but also on alterations of the myocardial mitochondria as a result of direct injury.

  19. Fetal Tendinous Connection Between the Tensor Tympani and Tensor Veli Palatini Muscles: A Single Digastric Muscle Acting for Morphogenesis of the Cranial Base.

    Science.gov (United States)

    Rodríguez-Vázquez, José Francisco; Sakiyama, Koji; Abe, Hiroshi; Amano, Osamu; Murakami, Gen

    2016-04-01

    Some researchers contend that in adults the tensor tympani muscle (TT) connects with the tensor veli palatini muscle (TVP) by an intermediate tendon, in disagreement with the other researchers. To resolve this controversy, we examined serial sections of 50 human embryos and fetuses at 6-17 weeks of development. At 6 weeks, in the first pharyngeal arch, a mesenchymal connection was found first to divide a single anlage into the TT and TVP. At and after 7 weeks, the TT was connected continuously with the TVP by a definite tendinous tissue mediolaterally crossing the pharyngotympanic tube. At 11 weeks another fascia was visible covering the cranial and lateral sides of the tube. This "gonial fascia" had two thickened borders: the superior one corresponded to a part of the connecting tendon between the TT and TVP; the inferior one was a fibrous band ending at the os goniale near the lateral end of the TVP. In association with the gonial fascia, the fetal TT and TVP seemed to provide a functional complex. The TT-TVP complex might first help elevate the palatal shelves in association with the developing tongue. Next, the tubal passage, maintained by contraction of the muscle complex, seems to facilitate the removal of loose mesenchymal tissues from the tympanic cavity. Third, the muscle complex most likely determined the final morphology of the pterygoid process. Consequently, despite the controversial morphologies in adults, the TT and TVP seemed to make a single digastric muscle acting for the morphogenesis of the cranial base. © 2016 Wiley Periodicals, Inc.

  20. The total body mass of fatty acid ethyl esters in skeletal muscles following ethanol exposure greatly exceeds that found in the liver and the heart.

    Science.gov (United States)

    Salem, Raneem O; Laposata, Michael; Rajendram, Rajkumar; Cluette-Brown, Joanne E; Preedy, Victor R

    2006-01-01

    Skeletal muscle appears to be susceptible to chronic and acute excess alcohol intake, giving rise to alcoholic myopathy, a common disease among alcoholics. Fatty acid ethyl esters (FAEE), non-oxidative metabolites of ethanol, have been shown to be toxic to cells in vitro and in vivo. We hypothesized that accumulation of FAEE in skeletal muscle could contribute to the development of alcoholic myopathy. Male wistar rats were treated either with 75 mmol ethanol/kg body weight or saline, in the fed state or starved for 1 or 2 days before administration. Rats were thus divided into the following groups: fed-saline (n = 8); fed-ethanol (n = 8); starved 1 day, saline (n = 8); starved 1 day, ethanol (n = 9); starved 2 days, saline (n = 7); and starved 2 days, ethanol (n = 8). At the end of the incubation, skeletal muscles (abdominal and gastrocnemius), liver, and heart were isolated and processed for FAEE isolation and analysis by gas chromatography-mass spectrometry (GC-MS). Total mass of FAEE in the muscles was much greater than that found in the liver and the heart. In general, the animals that were fasted for 1 day and received ethanol had the highest FAEE levels among the three groups of animals. The major ethyl ester species in all cases were ethyl 16:0, ethyl 18:0, ethyl 18:1 n-9, and ethyl 18:2 n-6. Ethyl 20:4 n-6 and ethyl 22:6 n-3 were also present, except in the fasted 1-day group, where ethyl 22:6 disappeared, though it reappeared in the fasted 2-day group. These findings demonstrate that skeletal muscles contain high levels of FAEE that are synthesized in the body after ethanol exposure. The concentration of FAEE in skeletal muscle in this study was very similar to FAEE concentration in the liver. This differs from previous studies suggesting a low concentration of skeletal muscle FAEE with ethanol exposure.

  1. A single-item self-report medication adherence question predicts hospitalisation and death in patients with heart failure.

    Science.gov (United States)

    Wu, Jia-Rong; DeWalt, Darren A; Baker, David W; Schillinger, Dean; Ruo, Bernice; Bibbins-Domingo, Kristen; Macabasco-O'Connell, Aurelia; Holmes, George M; Broucksou, Kimberly A; Erman, Brian; Hawk, Victoria; Cene, Crystal W; Jones, Christine DeLong; Pignone, Michael

    2014-09-01

    To determine whether a single-item self-report medication adherence question predicts hospitalisation and death in patients with heart failure. Poor medication adherence is associated with increased morbidity and mortality. Having a simple means of identifying suboptimal medication adherence could help identify at-risk patients for interventions. We performed a prospective cohort study in 592 participants with heart failure within a four-site randomised trial. Self-report medication adherence was assessed at baseline using a single-item question: 'Over the past seven days, how many times did you miss a dose of any of your heart medication?' Participants who reported no missing doses were defined as fully adherent, and those missing more than one dose were considered less than fully adherent. The primary outcome was combined all-cause hospitalisation or death over one year and the secondary endpoint was heart failure hospitalisation. Outcomes were assessed with blinded chart reviews, and heart failure outcomes were determined by a blinded adjudication committee. We used negative binomial regression to examine the relationship between medication adherence and outcomes. Fifty-two percent of participants were 52% male, mean age was 61 years, and 31% were of New York Heart Association class III/IV at enrolment; 72% of participants reported full adherence to their heart medicine at baseline. Participants with full medication adherence had a lower rate of all-cause hospitalisation and death (0·71 events/year) compared with those with any nonadherence (0·86 events/year): adjusted-for-site incidence rate ratio was 0·83, fully adjusted incidence rate ratio 0·68. Incidence rate ratios were similar for heart failure hospitalisations. A single medication adherence question at baseline predicts hospitalisation and death over one year in heart failure patients. Medication adherence is associated with all-cause and heart failure-related hospitalisation and death in heart

  2. Seasonal variations of cellular stress response in the heart and gastrocnemius muscle of the water frog (Pelophylax ridibundus).

    Science.gov (United States)

    Feidantsis, Konstantinos; Anestis, Andreas; Vasara, Eleni; Kyriakopoulou-Sklavounou, Pasqualina; Michaelidis, Basile

    2012-08-01

    The present study aimed to investigate the seasonal cellular stress response in the heart and the gastrocnemius muscle of the amphibian Pelophylax ridibundus (former name Rana ridibunda) during an 8 month acclimatization period in the field. Processes studied included heat shock protein expression and protein kinase activation. The cellular stress response was addressed through the expression of Hsp70 and Hsp90 and the phosphorylation of stress-activated protein kinases and particularly p38 mitogen-activated protein kinase (p38 MAPK), the extracellular signal-regulated kinases (ERK-1/2) and c-Jun N-terminal kinases (JNK1/2/3). Due to a general metabolic depression during winter hibernation, the induction of Hsp70 and Hsp90 and the phosphorylation of p38 MAPK, JNKs and ERKs are retained at low levels of expression in the examined tissues of P. ridibundus. Recovery from hibernation induces increased levels of the specific proteins, probably providing stamina to the animals during their arousal. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans.

    Directory of Open Access Journals (Sweden)

    Peter Steinbacher

    Full Text Available PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2. Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak. Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation.

  4. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans.

    Science.gov (United States)

    Steinbacher, Peter; Feichtinger, René G; Kedenko, Lyudmyla; Kedenko, Igor; Reinhardt, Sandra; Schönauer, Anna-Lena; Leitner, Isabella; Sänger, Alexandra M; Stoiber, Walter; Kofler, Barbara; Förster, Holger; Paulweber, Bernhard; Ring-Dimitriou, Susanne

    2015-01-01

    PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2). Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak). Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation.

  5. Highlights from the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength or FAMuSS Study

    Directory of Open Access Journals (Sweden)

    Linda S. Pescatello

    2013-01-01

    Full Text Available The purpose of the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength study or FAMuSS was to identify genetic factors that dictated the response of health-related fitness phenotypes to resistance exercise training (RT. The phenotypes examined were baseline muscle strength and muscle, fat, and bone volume and their response to RT. FAMuSS participants were 1300 young (24 years, healthy men (42% and women (58% that were primarily of European-American descent. They were genotyped for ~500 polymorphisms and completed the Paffenbarger Physical Activity Questionnaire to assess energy expenditure and time spent in light, moderate, and vigorous intensity habitual physical activity and sitting. Subjects then performed a 12-week progressive, unilateral RT program of the nondominant arm with the dominant arm used as a comparison. Before and after RT, muscle strength was measured with the maximum voluntary contraction and one repetition maximum, while MRI measured muscle, fat, and bone volume. We will discuss the history of how FAMuSS originated, provide a brief overview of the FAMuSS methods, and summarize our major findings regarding genotype associations with muscle strength and size, body composition, cardiometabolic biomarkers, and physical activity.

  6. Rate equation for creatine kinase predicts the in vivo reaction velocity: 31P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat

    International Nuclear Information System (INIS)

    Bittl, J.A.; DeLayre, J.; Ingwall, J.S.

    1987-01-01

    Brain, heart, and skeletal muscle contain four different creatine kinase isozymes and various concentrations of substrates for the creatine kinase reaction. To identify if the velocity of the creatine kinase reaction under cellular conditions is regulated by enzyme activity and substrate concentrations as predicted by the rate equation, the authors used 31 P NMR and spectrophotometric techniques to measure reaction velocity, enzyme content, isozyme distribution, and concentrations of substrates in brain, heart, and skeletal muscle of living rat under basal or resting conditions. The total tissue activity of creatine kinase in the direction of MgATP synthesis provided an estimate for V/sub max/ and exceeded the NMR-determined in vivo reaction velocities by an order of magnitude. The isozyme composition varied among the three tissues: >99% BB for brain; 14% MB, 61% MM, and 25% mitochondrial for heart; and 98% MM and 2% mitochondrial for skeletal muscle. The NMR-determined reaction velocities agreed with predicted values from the creatine kinase rate equation. The concentrations of free creatine and cytosolic MgADP, being less than or equal to the dissociation constants for each isozyme, were dominant terms in the creatine kinase rate equation for predicting the in vivo reaction velocity. Thus, they observed that the velocity of the creatine kinase reaction is regulated by total tissue enzyme activity and by the concentrations of creatine and MgADP in a manner that is independent of isozyme distribution

  7. Incidental finding of single coronary artery in a patient with alcoholic cardiomyopathy presenting as acute heart failure.

    Science.gov (United States)

    McNair, Patrick; Jones, Erica; Truong, Quynh; Singh, Harsimran

    Single coronary artery is a rare clinical finding. Diagnosis is typically made incidentally after the patient presents with symptoms and undergoes coronary angiography, coronary computed tomography angiography (CTA), or post-mortem during autopsy. Several high-risk features of anomalous coronary arteries have been described in the literature. Our paper describes a case of dilated alcoholic cardiomyopathy presenting as heart failure with diagnostic workup incidentally revealing single coronary artery. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer

    DEFF Research Database (Denmark)

    Li, Yingrui; Xu, Xun; Song, Luting

    2012-01-01

    sequencing of 66 individual tumor cells from a muscle-invasive bladder transitional cell carcinoma (TCC). Analyses of the somatic mutant allele frequency spectrum and clonal structure revealed that the tumor cells were derived from a single ancestral cell, but that subsequent evolution occurred, leading...... to two distinct tumor cell subpopulations. By analyzing recurrently mutant genes in an additional cohort of 99 TCC tumors, we identified genes that might play roles in the maintenance of the ancestral clone and in the muscle-invasive capability of subclones of this bladder cancer, respectively...

  9. [Parameters of cardiac muscle repolarization on the electrocardiogram when changing anatomical and electric position of the heart].

    Science.gov (United States)

    Chaĭkovskiĭ, I A; Baum, O V; Popov, L A; Voloshin, V I; Budnik, N N; Frolov, Iu A; Kovalenko, A S

    2014-01-01

    While discussing the diagnostic value of the single channel electrocardiogram a set of theoretical considerations emerges inevitably, one of the most important among them is the question about dependence of the electrocardiogram parameters from the direction of electrical axis of heart. In other words, changes in what of electrocardiogram parameters are in fact liable to reflect pathological processes in myocardium, and what ones are determined by extracardiac factors, primarily by anatomic characteristics of patients. It is arguable that while analyzing electrocardiogram it is necessary to orient to such physiologically based informative indexes as ST segment displacement. Also, symmetry of the T wave shape is an important parameter which is independent of patients anatomic features. The results obtained are of interest for theoretical and applied aspects of the biophysics of the cardiac electric field.

  10. Fatigue in isometric contraction in a single muscle fibre: a compartmental calcium ion flow model.

    Science.gov (United States)

    Kothiyal, K P; Ibramsha, M

    1986-01-01

    Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.

  11. Single leg separation prevalence among explanted Björk-Shiley prosthetic heart valves.

    Science.gov (United States)

    Blot, William J; Signorello, Lisa B; Cohen, Sarah S; Ibrahim, Michel A

    2007-11-01

    Björk-Shiley convexo-concave (BSCC) prosthetic heart valves are believed to have been implanted in over 86,000 patients worldwide. Limited data are available on the prevalence of single leg separations (SLS) of the valves' outlet struts, a potential precursor to complete valve fracture. Data maintained by the manufacturer, including results of examinations for SLS in explanted valves, were merged with available information on the characteristics of the valve. The prevalence of SLS in the examined valves was calculated according to valve angle, size, position, and study. Among 343 examined valves, the overall prevalence of SLS was 8.2%, but this varied significantly by valve size, being three-fold higher among 29+ mm valves than among smaller valves, with statistically non-significantly higher prevalences among mitral than aortic, and among 70 degrees than 60 degrees valves. By applying the size, position and angle-specific SLS prevalences to the worldwide valve distribution, it is estimated that SLS may be present in 6.8% (95% confidence limits 4.1-9.4%) of all BSCC valves. These findings suggest that SLS may affect between 820 and 1,880 of the almost 20,000 BSCC valves among surviving patients worldwide. Such estimates help frame the context for potential patient screenings, should imaging and acoustic techniques to detect SLS become available.

  12. The Optimal Timing of Stage 2 Palliation for Hypoplastic Left Heart Syndrome: An Analysis of the Pediatric Heart Network Single Ventricle Reconstruction Trial Public Data Set.

    Science.gov (United States)

    Meza, James M; Hickey, Edward J; Blackstone, Eugene H; Jaquiss, Robert D B; Anderson, Brett R; Williams, William G; Cai, Sally; Van Arsdell, Glen S; Karamlou, Tara; McCrindle, Brian W

    2017-10-31

    In infants requiring 3-stage single-ventricle palliation for hypoplastic left heart syndrome, attrition after the Norwood procedure remains significant. The effect of the timing of stage 2 palliation (S2P), a physician-modifiable factor, on long-term survival is not well understood. We hypothesized that an optimal interval between the Norwood and S2P that both minimizes pre-S2P attrition and maximizes post-S2P survival exists and is associated with individual patient characteristics. The National Institutes of Health/National Heart, Lung, and Blood Institute Pediatric Heart Network Single Ventricle Reconstruction Trial public data set was used. Transplant-free survival (TFS) was modeled from (1) Norwood to S2P and (2) S2P to 3 years by using parametric hazard analysis. Factors associated with death or heart transplantation were determined for each interval. To account for staged procedures, risk-adjusted, 3-year, post-Norwood TFS (the probability of TFS at 3 years given survival to S2P) was calculated using parametric conditional survival analysis. TFS from the Norwood to S2P was first predicted. TFS after S2P to 3 years was then predicted and adjusted for attrition before S2P by multiplying by the estimate of TFS to S2P. The optimal timing of S2P was determined by generating nomograms of risk-adjusted, 3-year, post-Norwood, TFS versus the interval from the Norwood to S2P. Of 547 included patients, 399 survived to S2P (73%). Of the survivors to S2P, 349 (87%) survived to 3-year follow-up. The median interval from the Norwood to S2P was 5.1 (interquartile range, 4.1-6.0) months. The risk-adjusted, 3-year, TFS was 68±7%. A Norwood-S2P interval of 3 to 6 months was associated with greatest 3-year TFS overall and in patients with few risk factors. In patients with multiple risk factors, TFS was severely compromised, regardless of the timing of S2P and most severely when S2P was performed early. No difference in the optimal timing of S2P existed when stratified by

  13. Sleep Apnoea Detection in Single Channel ECGs by Analyzing Heart Rate Dynamics

    National Research Council Canada - National Science Library

    Zywietz, C

    2001-01-01

    .... Our analysis is based on spectral components of heart rate variability. Frequency analysis was performed using Fourier and wavelet transformation with appropriate application of the Hilbert transform...

  14. Hydrogen peroxide modulates Ca2+-activation of single permeabilized fibres from fast- and slow-twitch skeletal muscles of rats.

    Science.gov (United States)

    Plant, D R; Lynch, G S; Williams, D A

    2000-01-01

    We examined the effects of redox modulation on single membrane-permeabilized fibre segments from the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of adult rats to determine whether the contractile apparatus was the redox target responsible for the increased contractility of muscles exposed to low concentrations of H2O2. The effects of H2O2 on maximum Ca2+-activated force were dose-dependent with 30 min exposure to 5 mM H2O2 causing a progressive decrease by 22+/-3 and 13+/-2% in soleus and EDL permeabilized muscle fibres, respectively. Lower concentrations of exogenous H2O2 (100 microM and 1 mM) had no effect on maximum Ca2+-activated force. Subsequent exposure to the reductant dithiothreitol (DTT, 10 mM, 10 min) fully reversed the H2O2-induced depression of force in EDL, but not in soleus muscle fibres. Incubation with DTT alone for 10 min did not alter Ca2+-activated force in either soleus or EDL muscle fibres. The sensitivity of the contractile filaments to Ca2+ (pCa50) was not altered by exposure to any concentration of exogenous H2O2. However, all concentrations of H2O2 diminished the Hill coefficient in permeabilized fibres from the EDL muscle, indicating that the cooperativity of Ca2+ binding to troponin is altered. H2O2 (5 mM) did not affect rigor force, which indicates that the number of crossbridges participating in contraction was not reduced. In conclusion, H2O2 may reduce the maximum Ca2+ activated force production in skinned muscle fibres by decreasing the force per crossbridge.

  15. An improved method to determine neuromuscular properties using force laws - From single muscle to applications in human movements.

    Science.gov (United States)

    Siebert, T; Sust, M; Thaller, S; Tilp, M; Wagner, H

    2007-04-01

    We evaluate an improved method for individually determining neuromuscular properties in vivo. The method is based on Hill's equation used as a force law combined with Newton's equation of motion. To ensure the range of validity of Hill's equation, we first perform detailed investigations on in vitro single muscles. The force-velocity relation determined with the model coincides well with results obtained by standard methods (r=.99) above 20% of the isometric force. In addition, the model-predicted force curves during work loop contractions very well agree with measurements (mean difference: 2-3%). Subsequently, we deduce theoretically under which conditions it is possible to combine several muscles of the human body to model muscles. This leads to a model equation for human leg extension movements containing parameters for the muscle properties and for the activation. To numerically determine these invariant neuromuscular properties we devise an experimental method based on concentric and isometric leg extensions. With this method we determine individual muscle parameters from experiments such that the simulated curves agree well with experiments (r=.99). A reliability test with 12 participants revealed correlations r=.72-.91 for the neuromuscular parameters (p<.01). Predictions of similar movements under different conditions show mean errors of about 5%. In addition, we present applications in sports practise and theory.

  16. Hormone replacement therapy improves contractile function and myonuclear organization of single muscle fibres from postmenopausal monozygotic female twin pairs.

    Science.gov (United States)

    Qaisar, Rizwan; Renaud, Guillaume; Hedstrom, Yvette; Pöllänen, Eija; Ronkainen, Paula; Kaprio, Jaakko; Alen, Markku; Sipilä, Sarianna; Artemenko, Konstantin; Bergquist, Jonas; Kovanen, Vuokko; Larsson, Lars

    2013-05-01

    Ageing is associated with a decline in muscle mass and strength leading to increased physical dependency in old age. Postmenopausal women experience a greater decline than men of similar age in parallel with the decrease in female sex steroid hormone production. We recruited six monozygous female twin pairs (55-59 years old) where only one twin pair was on hormone replacement therapy (HRT use = 7.8 ± 4.3 years) to investigate the association of HRT with the cytoplasmic volume supported by individual myonuclei (myonuclear domain (MND) size,) together with specific force at the single fibre level. HRT use was associated with a significantly smaller (∼27%; P muscle fibres expressing the type I but not the IIa myosin heavy chain (MyHC) isoform. In comparison to non-users, higher specific force was recorded in HRT users both in muscle fibres expressing type I (∼27%; P fibre-type dependent, i.e. the higher specific force in fast-twitch muscle fibres was primarily caused by higher force per cross-bridge while slow-twitch fibres relied on both a higher number and force per cross-bridge. HRT use had no effect on fibre cross-sectional area (CSA), velocity of unloaded shortening (V0) and relative proportion of MyHC isoforms. In conclusion, HRT appears to have significant positive effects on both regulation of muscle contraction and myonuclei organization in postmenopausal women.

  17. Application of neuromuscular electrical stimulation of the lower limb skeletal muscles in the rehabilitation of patients with chronic heart failure and chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Ewa Barbara Kucio

    2017-03-01

    Full Text Available Increasing physical activity is a widely-known method of rehabilitation of patients with chronic heart failure (CHF and chronic obstructive pulmonary disease (COPD. However, what kind of procedure is to be applied if a patient suffers from advanced heart or respiratory failure, cannot undertake physical exercise due to locomotor system disorders or is currently undergoing respiratorotherapy? Recent research shows that neuromuscular electrical stimulation of the lower limb skeletal muscles (NMES may comprise an alternative to physical training in patients with CHF and COPD. The aim of this study is to summarize the current state of knowledge on the use of NMES in cardiac rehabilitation of patients with CHF and pulmonary rehabilitation of patients with COPD. As demonstrated in recent research on the topic, NMES – due to forcing the muscles to activate – increases exercise tolerance, muscle mass and endurance in patients with CHF and COPD. The beneficial effect of NMES on blood circulation in the muscles, aerobic enzymes activity, functioning of the vascular endothelium, reduction of pro-inflammatory cytokines concentration and increased quality of life has also been presented. It is to be accentuated that NMES treatment, due to lesser physical exertion and, in turn, a decreased feeling of dyspnea are more comfortable for the patient than traditional physical training. Moreover, NMES treatment, after foregoing training, can be applied at home. Potential side effects include transient muscle pain and minor skin damage due to improper positioning of the electrodes. To summarize, NMES treatment is well received by CHF and COPD patients and brings about increased exercise tolerance, as well as better quality of life. Devices used for NMES therapy, due to progressive miniaturization, are easily accessible and relatively inexpensive.

  18. Single-institution effectiveness assessment of open-heart surgery in octogenarians

    NARCIS (Netherlands)

    de Mol, B. A.; Kallewaard, M.; Lewin, F.; van Gaalen, G. L.; van den Brink, R. B.

    1997-01-01

    To determine short- and long-term outcome of open-heart surgery in octogenarians. We reviewed the medical charts of 130 consecutive octogenarians undergoing open-heart surgery. Patients with significant comorbidity were excluded from the study. The effect of cardiac and operative risk factors on

  19. BUILDING A BETTER GLUTEAL BRIDGE: ELECTROMYOGRAPHIC ANALYSIS OF HIP MUSCLE ACTIVITY DURING MODIFIED SINGLE-LEG BRIDGES.

    Science.gov (United States)

    Lehecka, B J; Edwards, Michael; Haverkamp, Ryan; Martin, Lani; Porter, Kambry; Thach, Kailey; Sack, Richard J; Hakansson, Nils A

    2017-08-01

    Gluteal strength plays a role in injury prevention, normal gait patterns, eliminating pain, and enhancing athletic performance. Research shows high gluteal muscle activity during a single-leg bridge compared to other gluteal strengthening exercises; however, prior studies have primarily measured muscle activity with the active lower extremity starting in 90 ° of knee flexion with an extended contralateral knee. This standard position has caused reports of hamstring cramping, which may impede optimal gluteal strengthening. The purpose of this study was to determine which modified position for the single-leg bridge is best for preferentially activating the gluteus maximus and medius. Cross-Sectional. Twenty-eight healthy males and females aged 18-30 years were tested in five different, randomized single-leg bridge positions. Electromyography (EMG) electrodes were placed on subjects' gluteus maximus, gluteus medius, rectus femoris, and biceps femoris of their bridge leg (i.e., dominant or kicking leg), as well as the rectus femoris of their contralateral leg. Subjects performed a maximal voluntary isometric contraction (MVIC) for each tested muscle prior to performing five different bridge positions in randomized order. All bridge EMG data were normalized to the corresponding muscle MVIC data. A modified bridge position with the knee of the bridge leg flexed to 135 ° versus the traditional 90 ° of knee flexion demonstrated preferential activation of the gluteus maximus and gluteus medius compared to the traditional single-leg bridge. Hamstring activation significantly decreased (p bridge by flexing the active knee to 135 ° instead of 90 ° minimizes hamstring activity while maintaining high levels of gluteal activation, effectively building a bridge better suited for preferential gluteal activation. 3.

  20. Non-Targeted Metabolomics Analysis of the Effects of Tyrosine Kinase Inhibitors Sunitinib and Erlotinib on Heart, Muscle, Liver and Serum Metabolism In Vivo

    Directory of Open Access Journals (Sweden)

    Brian C. Jensen

    2017-06-01

    Full Text Available Background: More than 90 tyrosine kinases have been implicated in the pathogenesis of malignant transformation and tumor angiogenesis. Tyrosine kinase inhibitors (TKIs have emerged as effective therapies in treating cancer by exploiting this kinase dependency. The TKI erlotinib targets the epidermal growth factor receptor (EGFR, whereas sunitinib targets primarily vascular endothelial growth factor receptor (VEGFR and platelet-derived growth factor receptor (PDGFR.TKIs that impact the function of non-malignant cells and have on- and off-target toxicities, including cardiotoxicities. Cardiotoxicity is very rare in patients treated with erlotinib, but considerably more common after sunitinib treatment. We hypothesized that the deleterious effects of TKIs on the heart were related to their impact on cardiac metabolism. Methods: Female FVB/N mice (10/group were treated with therapeutic doses of sunitinib (40 mg/kg, erlotinib (50 mg/kg, or vehicle daily for two weeks. Echocardiographic assessment of the heart in vivo was performed at baseline and on Day 14. Heart, skeletal muscle, liver and serum were flash frozen and prepped for non-targeted GC-MS metabolomics analysis. Results: Compared to vehicle-treated controls, sunitinib-treated mice had significant decreases in systolic function, whereas erlotinib-treated mice did not. Non-targeted metabolomics analysis of heart identified significant decreases in docosahexaenoic acid (DHA, arachidonic acid (AA/ eicosapentaenoic acid (EPA, O-phosphocolamine, and 6-hydroxynicotinic acid after sunitinib treatment. DHA was significantly decreased in skeletal muscle (quadriceps femoris, while elevated cholesterol was identified in liver and elevated ethanolamine identified in serum. In contrast, erlotinib affected only one metabolite (spermidine significantly increased. Conclusions: Mice treated with sunitinib exhibited systolic dysfunction within two weeks, with significantly lower heart and skeletal muscle

  1. The Effect of Single Portion Glutamine Supplement Consumption on Injury Indices of Muscle After Eccentric Resistance Exercise

    Directory of Open Access Journals (Sweden)

    Azadeh Najarzadeh

    2015-07-01

    Full Text Available Abstract Background: Delayed muscular soreness after resistance exercises or eccentric trainings is probably because of muscle damage and injury. Nutrition by playing a crucial role in both protein synthesize and catabolism can influence the extent of muscle injury. The objective of this study was to assess the effect of single portion of Glutamine supplement consumption on injury indices of muscle after a session eccentric resistance exercise. Materials and Methods: this study used a randomized, double blind design that consisted of 80 volvnteer non-athletic males (aged 22.2±2.2years, height 175±5 cm, weight 71/64±9 kg, body mass index 23/2±2/2 kg/m2, and body fat 17/5±2/4%. A total of 40 participants were divided randomly into 2 groups, supplement group (receiving 0/1 g/kg Body weight/ day Glutamine and placebo group (receiving 0/1 g/kg Body weight/ day Maltodextrin. Serum keratine kinase (CK was determined by photometric method, muscle pain and knee joint range of motion were measured using, respectively, a standard scale of PAS and goniometer before, 24 and 48 hours after a resistance test involving knee flexion. Results: Glutamine supplement consumption caused no significant differences in CK levels reduction in none of the measured times, but it reduced the muscle pain at the times of 24 and 48 hours in comparison with the placebo group. In addition, the knee joint range of motion was significantly improved at 24 hours after the test. Conclusion: It seems that this dose of Glutamine supplementation can reduce the apparent signs apart from muscle injury indices reduction.

  2. Immediate effects of kinesiotaping on quadriceps muscle strength: a single-blind, placebo-controlled crossover trial.

    Science.gov (United States)

    Vercelli, Stefano; Sartorio, Francesco; Foti, Calogero; Colletto, Lorenzo; Virton, Domenico; Ronconi, Gianpaolo; Ferriero, Giorgio

    2012-07-01

    To investigate the immediate effects on maximal muscle strength of kinesiotaping (KT) applied to the dominant quadriceps of healthy subjects. Single-blind, placebo-controlled crossover trial. "Salvatore Maugeri" Foundation. With ethical approval and informed consent, a convenience sample of 36 healthy volunteers were recruited. Two subjects did not complete the sessions and were excluded from the analysis. Subjects were tested across 3 different sessions, randomly receiving 2 experimental KT conditions applied with the aim of enhancing and inhibiting muscle strength and a sham KT application. Quadriceps muscle strength was measured by means of an isokinetic maximal test performed at 60 and 180 degrees per second. Two secondary outcome measures were performed: the single-leg triple hop for distance to measure limb performance and the Global Rating of Change Scale (GRCS) to calculate agreement between KT application and subjective perception of strength. Compared with baseline, none of the 3 taping conditions showed a significant change in muscle strength and performance (all P > 0.05). Effect size was very low under all conditions (≤0.08). Very few subjects showed an individual change greater than the minimal detectable change. Global Rating of Change Scale scores demonstrated low to moderate agreement with the type of KT applied, but some placebo effects were reported independently of condition. Our findings indicated no significant effect in the maximal quadriceps strength immediately after the application of inhibition, facilitation, or sham KT. These results do not support the use of KT applied in this way to change maximal muscle strength in healthy people.

  3. Muscle Contraction.

    Science.gov (United States)

    Sweeney, H Lee; Hammers, David W

    2018-02-01

    SUMMARYMuscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Force deficits and breakage rates after single lengthening contractions of single fast fibers from unconditioned and conditioned muscles of young and old rats.

    Science.gov (United States)

    Lynch, Gordon S; Faulkner, John A; Brooks, Susan V

    2008-07-01

    The deficit in force generation is a measure of the magnitude of damage to sarcomeres caused by lengthening contractions of either single fibers or whole muscles. In addition, permeabilized single fibers may suffer breakages. Our goal was to understand the interaction between breakages and force deficits in "young" and "old" permeabilized single fibers from control muscles of young and old rats and "conditioned" fibers from muscles that completed a 6-wk program of in vivo lengthening contractions. Following single lengthening contractions of old-control fibers compared with young-control fibers, the twofold greater force deficits at a 10% strain support the concept of an age-related increase in the susceptibility of fibers to mechanical damage. In addition, the much higher breakage rates for old fibers at all strains tested indicate an increase with aging in the number of fibers at risk of being severely injured during any given stretch. Following the 6-wk program of lengthening contractions, young-conditioned fibers and old-conditioned fibers were not different with respect to force deficit or the frequency of breakages. A potential mechanism for the increased resistance to stretch-induced damage of old-conditioned fibers is that, through intracellular damage and subsequent degeneration and regeneration, weaker sarcomeres were replaced by stronger sarcomeres. These data indicate that, despite the association of high fiber breakage rates and large force deficits with aging, the detrimental characteristics of old fibers were improved by a conditioning program that altered both sarcomeric characteristics as well as the overall structural integrity of the fibers.

  5. Single Stem Cell Imaging and Analysis Reveals Telomere Length Differences in Diseased Human and Mouse Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Elisia D. Tichy

    2017-10-01

    Full Text Available Muscle stem cells (MuSCs contribute to muscle regeneration following injury. In many muscle disorders, the repeated cycles of damage and repair lead to stem cell dysfunction. While telomere attrition may contribute to aberrant stem cell functions, methods to accurately measure telomere length in stem cells from skeletal muscles have not been demonstrated. Here, we have optimized and validated such a method, named MuQ-FISH, for analyzing telomere length in MuSCs from either mice or humans. Our analysis showed no differences in telomere length between young and aged MuSCs from uninjured wild-type mice, but MuSCs isolated from young dystrophic mice exhibited significantly shortened telomeres. In corroboration, we demonstrated that telomere attrition is present in human dystrophic MuSCs, which underscores its importance in diseased regenerative failure. The robust technique described herein provides analysis at a single-cell resolution and may be utilized for other cell types, especially rare populations of cells.

  6. Investigating reduction of dimensionality during single-joint elbow movements: a case study on muscle synergies

    Directory of Open Access Journals (Sweden)

    Enrico eChiovetto

    2013-02-01

    Full Text Available A long standing hypothesis in the neuroscience community is that the CNS generates the muscle activities to accomplish movements by combining a relatively small number of stereotyped patterns of muscle activations, often referred to as muscle synergies. Different definitions of synergies have been given in the literature. The most well-known are those of synchronous, time-varying and temporal muscle synergies. Each one of them is based on a different mathematical model used to factor some EMG array recordings collected during the execution of variety of motor tasks into a well-determined spatial, temporal or spatio-temporal organization. This plurality of definitions and their separate application to complex tasks have so far complicated the comparison and interpretation of the results obtained across studies, and it has always remained unclear why and when one synergistic decomposition should be preferred to another one. By using well-understood motor tasks such as elbow flexions and extensions, we aimed in this study to clarify better what are the motor features characterized by each kind of decomposition and to assess whether, when and why one of them should be preferred to the others. We found that three temporal synergies, each one of them accounting for specific temporal phases of the movements could account for the majority of the data variation. Similar performances could be achieved by two synchronous synergies, encoding the agonist-antagonist nature of the two muscles considered, and by two time-varying muscle synergies, encoding each one a task-related feature of the elbow movements, specifically their direction. Our findings support the notion that each EMG decomposition provides a set of well-interpretable muscle synergies, identifying reduction of dimensionality in different aspects of the movements. Taken together, our findings suggest that all decompositions are not equivalent and may imply different neurophysiological substrates

  7. A comparison of the heart and muscle total lipid and fatty acid profiles of nine large shark species from the east coast of South Africa.

    Science.gov (United States)

    Davidson, Bruce; Sidell, Jonathan; Rhodes, Jeffrey; Cliff, Geremy

    2011-03-01

    We have assessed the fatty acid profiles of the hearts and different muscle tissues from nine large shark species (Carcharhinus limbatus (blacktip), Carcharhinus obscurus (dusky), Carcharhinus brevipinna (spinner), Carcharhinus leucas (Zambezi/bull), Galeocerdo cuvier (tiger), Sphyrna lewini (scalloped hammerhead), Sphyrna zygaena (smooth hammerhead), Carcharodon carcharias (great white) and Carcharias taurus (raggedtooth/grey nurse/sand tiger)) found off the east coast of South Africa. While there was generally little variation between the species, all species showed profiles rich in both n6 and n3 polyunsaturated fatty acids compared to terrestrial commercial meats that have low n3. Thus, utilizing skeletal muscle tissues from sharks caught as part of the bycatch when fishing for teleosts would avoid unnecessary wastage of a potentially valuable resource, with all the possible health benefits of high quality protein combined with balanced polyunsaturates, although contamination with high levels of metabolic wastes, such as urea, may be a negative consideration.

  8. Evaluation of regional pulmonary blood flow in mitral valvular heart disease using single-pass radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Chang-Soon Koh; Byung Tae Kim; Myung Chul Lee; Bo Yeon Cho

    1982-01-01

    Pulmonary hypertension in mitral valvular cardiac disease has been evaluated in 122 patients by a modified upper lung/lower count ratio using single-pass radionuclide angiocardiography. The mean upper lung/lower lung radio correlates well with pulmonary artery mean (r=0.483) and wedge pressure (r=0.804). After correction surgery of the cardiac valve, the ratio decreases and returns to normal range in patients judged clinically to have good surgical benifit. This modified method using single-pass technique provides additional simple, reproducible and nontraumatic results of regional pulmonary blood flow and appears to be correlated with the degree of pulmonary hypertension in mitral heart disease

  9. The skeletal muscle satellite cell response to a single bout of resistance-type exercise is delayed with aging in men

    NARCIS (Netherlands)

    Snijders, T.; Verdijk, L.B.; Smeets, J.S.J.; McKay, B.R.; Senden, J.M.G.; Hartgens, F.; Parise, G.; Greenhaff, P.; van Loon, L.J.C.

    2014-01-01

    Skeletal muscle satellite cells (SCs) have been shown to be instrumental in the muscle adaptive response to exercise. The present study determines age-related differences in SC content and activation status following a single bout of exercise. Ten young (22 +/- 1 years) and 10 elderly (73 +/- 1

  10. Sympathetic reflex control of skeletal muscle blood flow in patients with congestive heart failure: evidence for beta-adrenergic circulatory control

    International Nuclear Information System (INIS)

    Kassis, E.; Jacobsen, T.N.; Mogensen, F.; Amtorp, O.

    1986-01-01

    Mechanisms controlling forearm muscle vascular resistance (FMVR) during postural changes were investigated in seven patients with severe congestive heart failure (CHF) and in seven control subjects with unimpaired left ventricular function. Relative brachioradial muscle blood flow was determined by the local 133 Xe-washout technique. Unloading of baroreceptors with use of 45 degree upright tilt was comparably obtained in the patients with CHF and control subjects. Control subjects had substantially increased FMVR and heart rate to maintain arterial pressure whereas patients with CHF had decreased FMVR by 51 +/- 11% and had no increase in heart rate despite a fall in arterial pressure during upright tilt. The autoregulatory and local vasoconstrictor reflex responsiveness during postural changes in forearm vascular pressures were intact in both groups. In the patients with CHF, the left axillary nerve plexus was blocked by local anesthesia. No alterations in forearm vascular pressures were observed. This blockade preserved the local regulation of FMVR but reversed the vasodilator response to upright tilt as FMVR increased by 30 +/- 7% (p less than .02). Blockade of central neural impulses to this limb combined with brachial arterial infusions of phentolamine completely abolished the humoral vasoconstriction in the tilted position. Infusions of propranolol to the contralateral brachial artery that did not affect baseline values of heart rate, arterial pressure, or the local reflex regulation of FMVR reversed the abnormal vasodilator response to upright tilt as FMVR increased by 42 +/- 12% (p less than .02). Despite augmented baseline values, forearm venous but not arterial plasma levels of epinephrine increased in the tilted position, as did arteri rather than venous plasma concentrations of norepinephrine in these patients

  11. Developmental Alterations in Heart Biomechanics and Skeletal Muscle Function in Desmin Mutants Suggest an Early Pathological Root for Desminopathies

    NARCIS (Netherlands)

    Ramspacher, Caroline; Steed, Emily; Boselli, Francesco; Ferreira, Rita; Faggianelli, Nathalie; Roth, Stéphane; Spiegelhalter, Coralie; Messaddeq, Nadia; Trinh, Le; Liebling, Michael; Chacko, Nikhil; Tessadori, Federico; Bakkers, Jeroen; Laporte, Jocelyn; Hnia, Karim; Vermot, Julien

    2015-01-01

    Desminopathies belong to a family of muscle disorders called myofibrillar myopathies that are caused by Desmin mutations and lead to protein aggregates in muscle fibers. To date, the initial pathological steps of desminopathies and the impact of desmin aggregates in the genesis of the disease are

  12. Electrophysiologic evaluation of lumbosacral single nerve roots using compound muscle action potentials.

    Science.gov (United States)

    Ogura, Taku; Shikata, Hideto; Hase, Hitoshi; Mori, Masaki; Hayashida, Taturo; Osawa, Toru; Mikami, Yasuo; Kubo, Toshikazu

    2003-10-01

    Transcutaneous electrical stimulation applied to the vertebral column produces compound muscle action potentials (CMAPs) from the leg muscles. Using this method, we evaluated the efferent pathways of the lumbosacral nerve roots. The subjects were 26 healthy volunteers and 31 patients with lumbar disc herniation (LDH). CMAP recordings were obtained from the bilateral vastus medialis, tibialis anterior, extensor digitorum brevis, and abductor hallucis muscles using low-output-impedance stimulation. In normal subjects, the CMAP latency increased linearly with the distance between the stimulating electrode and the recording electrode, with little difference in latency between the left and the right sides in each subject. The CMAP amplitude was significantly lower in the patients with LDH, and the latency was also prolonged when the stimulating electrode was placed above the lesion. This technique may thus be a useful noninvasive method for assessing lumbosacral nerve root function in patients with LDH.

  13. Heart Lesion After the First Attack of the Rheumatic Fever 22 Years Experience in Single Centre

    Science.gov (United States)

    Bejiqi, Ramush A.; Retkoceri, Ragip; Zeka, Naim; Bejiqi, Hana; Retkoceri, Arber

    2015-01-01

    Background: Acute rheumatic fever and its sequels, rheumatic heart diseases, remain major unsolved preventable health problems in Kosovo population, particularly among the disadvantages indigenous Albanian and Egyptians people. In Kosovo, despite of performing secondary prophylaxis with benzathine penicillin, acute rheumatic fever hospitalization rates have remained essentially unchanged for the last 20 years. The role of echocardiography in the diagnosis of acute rheumatic carditis was established over the last 20 years. Aims: In this study we aimed to determine the prevalence of rheumatic heart disease in children from Kosovo population with first attack of acute rheumatic fever. Also, we presented that echocardiography examination detects a greater prevalence of rheumatic heart disease than other diagnostic procedures. We aimed to compare the sensitivity and specificity of cardiac auscultation, ECG record, lab analysis to echocardiography and to determine the feasibility of specific age in this setting. Methods: To optimize accurate diagnosis of rheumatic fever and rheumatic heart disease, we utilized two group models. In the first group of 388 children, hospitalized and treated before 1999, diagnosis of rheumatic fever was decided basing on the clinical and laboratory findings whereas in second group (221 children treated from1999 to 2010) clinical and lab diagnosis were amplified also on the detection by echocardiography. Conclusion: In second group, using echocardiography as a method of diagnosis and assessment children with rheumatic fever, we found high rates of undetected rheumatic heart disease in this high-risk group population. Echocardiographic examination of children with rheumatic fever for rheumatic heart disease may over diagnose rheumatic heart disease unless congenital mitral valve anomalies and physiological regurgitation are excluded. PMID:25870479

  14. Results of open heart surgery in Jehovah's Witness patients. Single centre experience.

    Science.gov (United States)

    Juraszek, Andrzej; Kołsut, Piotr; Szymański, Jarosław; Kuriata, Jarosław; Kuśmierski, Krzysztof; Sitkowska-Rysiak, Ewa; Jasińska, Małgorzata; Kuśmierczyk, Mariusz

    2017-09-01

    Evaluation the results in patients from the religious community of Jehovah's Witness (JW) undergoing open heart surgery at our institution. Between September 2011 and March 2015, 21 patients with a religious background of the JW church underwent open heart surgery at our institution performed by the same surgical team. Mean age was 68.43 ±8.93 years. There were 13 (61.9%) female patients. Recombinant human erythropoietin was administered to every patient with a hemoglobin value open heart surgery in JW were very good, including combined procedures. The decrease of hematocrit serum levels significantly characterizing the postoperative period was highly acceptable in this series. Nevertheless, the number of sternum wound infections was a limiting factor for prompt postoperative recovery.

  15. Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise

    DEFF Research Database (Denmark)

    Crameri, Regina M; Langberg, Henning; Magnusson, Peter

    2004-01-01

    increase in mononuclear cells staining for the neural cell adhesion molecule (N-CAM) and fetal antigen 1 (FA1) were observed within the exercised human vastus lateralis muscle on days 4 and 8 post exercise. In addition, a significant increase in the concentration of the FA1 protein was determined...

  16. Development of heart muscle-cell diversity: a help or a hindrance for phenotyping embryonic stem cell-derived cardiomyocytes

    NARCIS (Netherlands)

    Fijnvandraat, Arnoud C.; Lekanne Deprez, Ronald H.; Moorman, Antoon F. M.

    2003-01-01

    Despite the advances in cardiovascular treatment, cardiac disease remains a major cause of morbidity in all industrialized countries. The extraordinary potential of (embryonic) stem cells for therapeutic purposes has revolutionized ideas about cardiac repair of diseased cardiac muscle to exciting

  17. Calculation of lung-heart ratios for single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Soares, E.J.; King, M.A.; Glick, S.J.; Villegas, B.J.

    1996-01-01

    The authors investigate the effectiveness of simple iterative reconstruction techniques in calculating lung-heart activity ratios (LHRs). The LHR has been shown to be an effective indicator of the severity of coronary artery disease in cardiac SPECT. A study was conducted with a mathematical cardiac torso phantom that modelled uptake of 201 Tl in the heart and lung regions. The projection data included only the effects of nonuniform photon attenuation. The data were first reconstructed with zeroth-order Chang and a variant of the Bellini method, both of which utilize information from the nonuniform attenuation map. This nonuniform (NU) Bellini method compensates exactly for attenuation in the heart region, but is incorrect for other regions in the medium. These reconstructions were then used as the initial estimates in the iterative Chang, variable step-size (VSS) Chang, and Morozumi methods,m for one and five iterations. The average heart count (AHC) and average lung count (ALC) were calculated using region-of-interest (ROI) templates derived from the true activity map. The population mean LHR was tabulated as the ratio of the ALC to AHC. Using the same reconstruction procedure, the authors also calculated the sample mean LHR and standard deviation from 21 noisy 3D reconstructions

  18. Cytosolic calcium transients are a determinant of contraction-induced HSP72 transcription in single skeletal muscle fibers.

    Science.gov (United States)

    Stary, Creed M; Hogan, Michael C

    2016-05-15

    The intrinsic activating factors that induce transcription of heat shock protein 72 (HSP72) in skeletal muscle following exercise remain unclear. We hypothesized that the cytosolic Ca(2+) transient that occurs with depolarization is a determinant. We utilized intact, single skeletal muscle fibers from Xenopus laevis to test the role of the cytosolic Ca(2+) transient and several other exercise-related factors (fatigue, hypoxia, AMP kinase, and cross-bridge cycling) on the activation of HSP72 transcription. HSP72 and HSP60 mRNA levels were assessed with real-time quantitative PCR; cytosolic Ca(2+) concentration ([Ca(2+)]cyt) was assessed with fura-2. Both fatiguing and nonfatiguing contractions resulted in a significant increase in HSP72 mRNA. As expected, peak [Ca(2+)]cyt remained tightly coupled with peak developed tension in contracting fibers. Pretreatment with N-benzyl-p-toluene sulfonamide (BTS) resulted in depressed peak developed tension with stimulation, while peak [Ca(2+)]cyt remained largely unchanged from control values. Despite excitation-contraction uncoupling, BTS-treated fibers displayed a significant increase in HSP72 mRNA. Treatment of fibers with hypoxia (Po2: skeletal muscle depolarization provides a sufficient activating stimulus for HSP72 transcription. Metabolic or mechanical factors associated with fatigue development and cross-bridge cycling likely play a more limited role. Copyright © 2016 the American Physiological Society.

  19. Exercise training in Tgαq*44 mice during the progression of chronic heart failure: cardiac vs. peripheral (soleus muscle) impairments to oxidative metabolism.

    Science.gov (United States)

    Grassi, Bruno; Majerczak, Joanna; Bardi, Eleonora; Buso, Alessia; Comelli, Marina; Chlopicki, Stefan; Guzik, Magdalena; Mavelli, Irene; Nieckarz, Zenon; Salvadego, Desy; Tyrankiewicz, Urszula; Skórka, Tomasz; Bottinelli, Roberto; Zoladz, Jerzy A; Pellegrino, Maria Antonietta

    2017-08-01

    Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgα q *44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgα q *44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgα q *44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance. NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration

  20. Heart regeneration.

    Science.gov (United States)

    Breckwoldt, Kaja; Weinberger, Florian; Eschenhagen, Thomas

    2016-07-01

    Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Chamber identity programs drive early functional partitioning of the heart.

    Science.gov (United States)

    Mosimann, Christian; Panáková, Daniela; Werdich, Andreas A; Musso, Gabriel; Burger, Alexa; Lawson, Katy L; Carr, Logan A; Nevis, Kathleen R; Sabeh, M Khaled; Zhou, Yi; Davidson, Alan J; DiBiase, Anthony; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Zon, Leonard I

    2015-08-26

    The vertebrate heart muscle (myocardium) develops from the first heart field (FHF) and expands by adding second heart field (SHF) cells. While both lineages exist already in teleosts, the primordial contributions of FHF and SHF to heart structure and function remain incompletely understood. Here we delineate the functional contribution of the FHF and SHF to the zebrafish heart using the cis-regulatory elements of the draculin (drl) gene. The drl reporters initially delineate the lateral plate mesoderm, including heart progenitors. Subsequent myocardial drl reporter expression restricts to FHF descendants. We harnessed this unique feature to uncover that loss of tbx5a and pitx2 affect relative FHF versus SHF contributions to the heart. High-resolution physiology reveals distinctive electrical properties of each heart field territory that define a functional boundary within the single zebrafish ventricle. Our data establish that the transcriptional program driving cardiac septation regulates physiologic ventricle partitioning, which successively provides mechanical advantages of sequential contraction.

  2. The Effect of Progressive Muscle Relaxation Exercises After Endotracheal Extubation on Vital Signs and Anxiety Level in Open Heart Surgery Patients

    Directory of Open Access Journals (Sweden)

    Özlem İbrahimoğlu

    2017-12-01

    Full Text Available Objective: The purpose of this study was to examine the effects of the exercises of progressive muscle relaxation (PMR on vital signs and anxiety level after endotracheal extubation in open heart surgery. Materials and Methods: This study was carried out as quasi-experimental, pre-test, and post-test with a control group. The study recruited 30 experimental and 30 control group open heart surgery patients, who met the inclusion criteria, from a cardiac and vascular surgery clinic of a university hospital. PMR exercises, which were taught before the surgery, were implemented after the surgery in the intensive care unit simultaneously with endotracheal extubation. The vital signs of the patients were monitored for the first 30 min. The anxiety levels were measured after 30 min of extubation with state anxiety inventory. Results: The lower rates of heartbeat, breathing, arterial blood pressure, and anxiety were observed in the experimental group in all measurements (first 30 min after endotracheal extubation, and the differences were statistically significant in favor of the experimental group (p<0.05. Conclusion: The study showed that the relaxation exercises after endotracheal extubation in open heart surgery patients was effective in improving vital signs and reducing anxiety level.

  3. Impact of a single session of intermittent pneumatic leg compressions on skeletal muscle and isolated artery gene expression in rats.

    Science.gov (United States)

    Roseguini, Bruno T; Arce-Esquivel, Arturo A; Newcomer, Sean C; Laughlin, M H

    2011-12-01

    Intermittent pneumatic leg compressions (IPC) have proven to be an effective noninvasive approach for treatment of patients with claudication, but the mechanisms underlying the clinical benefits remain elusive. In the present study, a rodent model of claudication produced by bilateral ligation of the femoral artery was used to investigate the acute impact of a single session of IPC (150 min) on hemodynamics, skeletal muscle (tibialis anterior), and isolated collateral artery (perforating artery) expression of a subset of genes associated with inflammation and vascular remodeling. In addition, the effect of compression frequency (15 vs. 3 compressions/min) on the expression of these factors was studied. In ligated animals, IPC evoked an increase of monocyte chemoattractant protein-1 (MCP-1) and cytokine-induced neutrophil chemoattractant 1 (CXCL1) mRNA (P < 0.01) and immunostaining (P < 0.05), as well as a minor increase in VEGF immunostaining in the muscle endomysium 150 min postintervention. Further, collateral arteries from these animals showed an increased expression of MCP-1 (approximately twofold, P = 0.02). These effects were most evident in the group exposed to the high-frequency protocol (15 compressions/min). In contrast, IPC in sham-operated control animals evoked a modest initial upregulation of VEGF (P = 0.01), MCP-1 (P = 0.02), and CXCL1 (P = 0.03) mRNA in the muscle without concomitant changes in protein levels. No changes in gene expression were observed in arteries isolated from sham animals. In conclusion, IPC acutely up-regulates the expression of important factors involved in vascular remodeling in the compressed muscle and collateral arteries in a model of hindlimb ischemia. These effects appear to be dependent on the compression frequency, such that a high compression frequency (15 compressions/min) evokes more consistent and robust effects compared with the frequency commonly employed clinically to treat patients with claudication (3

  4. Single motor unit firing behaviour in the right trapezius muscle during rapid movement of right or left index finger.

    Directory of Open Access Journals (Sweden)

    Karen eSøgaard

    2014-11-01

    Full Text Available Computer work is associated with low level sustained activity in the trapezius muscle that may cause myalgia. The activity may be attention related or part of a general multijoint motor program providing stabilization of the shoulder girdle for precise finger manipulation. This study examines single motor unit (MU firing pattern in the right trapezius muscle during fast movements of ipsi or contralateral index finger. Modulated firing rate would support a general multi joint motor program, while a generally increased and continuous firing rate would support attention related activation. 12 healthy female subjects were seated at a computer work place with elbows and forearms supported. Ten double clicks (DC were performed with right and left index finger on a computer mouse instrumented with a trigger.Surface EMG was recorded from right and left trapezius muscle. Intramuscular EMG was recorded with a quadripolar wire electrode in the right trapezius.Surface EMG was analysed as %MVE. The intramuscular EMG was decomposed into individual MU action potential trains. Instantaneous firing rate (IFR was calculated from inter-spike interval with ISI shorter than 20 ms defined as doublets. IFR was averaged across 10 DC to show IFR modulation.Surface EMG in both right and left trapezius was 1.8-2.5%MVE. During right hand DC a total of 32 MUs were identified. Four subjects showed no activity. Four showed MU activity with weak or no variations related to the timing of DC. Four subjects showed large modulation in IFR with temporal relation to DC. During left hand DC 15 MUs were identified in 4 subjects, for two of the subjects with IFR modulations related to DC. Doublets was found as an integrated part of MU activation in the trapezius muscle and for one subject temporarily related to DC. In conclusion, DC with ipsi- and contralateral fast movements of the index finger was found to evoke biomechanically as well as attention related activity pattern in the

  5. Heart Lesion After the First Attack of the Rheumatic Fever 22 Years Experience in Single Centre

    OpenAIRE

    Bejiqi, Ramush A.; Retkoceri, Ragip; Zeka, Naim; Bejiqi, Hana; Retkoceri, Arber

    2015-01-01

    Background: Acute rheumatic fever and its sequels, rheumatic heart diseases, remain major unsolved preventable health problems in Kosovo population, particularly among the disadvantages indigenous Albanian and Egyptians people. In Kosovo, despite of performing secondary prophylaxis with benzathine penicillin, acute rheumatic fever hospitalization rates have remained essentially unchanged for the last 20 years. The role of echocardiography in the diagnosis of acute rheumatic carditis was estab...

  6. Obesity paradox in heart failure patients – Female gender characteristics-KAMC-single center experience

    Directory of Open Access Journals (Sweden)

    Sheeren Khaled

    2017-09-01

    Conclusion: Our findings showed that heart failure patients with low BMI had poor adverse clinical outcome measures (poor EF, recurrent readmission, mortality and composite rates of CVA, TIA and unexplained syncope which reflect the effect of obesity paradox in those patients with HFrEF. Female patient subgroup showed similar characteristic findings which also might reflect the value of gender-specific BMI related clinical outcomes.

  7. Correlation of single-breath count test and neck flexor muscle strength with spirometry in myasthenia gravis.

    Science.gov (United States)

    Elsheikh, Bakri; Arnold, W David; Gharibshahi, Shahram; Reynolds, Jerold; Freimer, Miriam; Kissel, John T

    2016-01-01

    Although formal spirometry is the gold standard for monitoring respiratory function in patients with myasthenia gravis (MG), such testing is often delayed or unavailable. There is a need for a simple bedside test that can accurately measure respiratory function. We conducted a prospective, cross-sectional, single-blind study in adults with acetylcholine receptor antibody positive MG. Participants performed the single breath count test (SBCT) and underwent manual muscle strength testing, and a respiratory therapist performed spirometry blinded to SBCT and strength results. Thirty-one patients, aged 57 ± 19 years participated. SBCT showed significant correlations with forced vital capacity (FVC), negative inspiratory force, and neck flexor strength (P strength (P = 0.02) but no correlation with shoulder abductor strength. These data suggest that the SBCT and neck flexor strength testing are valuable tools for bedside assessment of respiratory function in MG patients. © 2015 Wiley Periodicals, Inc.

  8. Design and efficacy of a single-use bioreactor for heart valve tissue engineering.

    Science.gov (United States)

    Converse, Gabriel L; Buse, Eric E; Neill, Kari R; McFall, Christopher R; Lewis, Holley N; VeDepo, Mitchell C; Quinn, Rachael W; Hopkins, Richard A

    2017-02-01

    Heart valve tissue engineering offers the promise of improved treatments for congenital heart disorders; however, widespread clinical availability of a tissue engineered heart valve (TEHV) has been hindered by scientific and regulatory concerns, including the lack of a disposable, bioreactor system for nondestructive valve seeding and mechanical conditioning. Here we report the design for manufacture and the production of full scale, functional prototypes of such a system. To evaluate the efficacy of this bioreactor as a tool for seeding, ovine aortic valves were decellularized and subjected to seeding with human mesenchymal stem cells (hMSC). The effects of pulsatile conditioning using cyclic waveforms tuned to various negative and positive chamber pressures were evaluated, with respect to the seeding of cells on the decellularized leaflet and the infiltration of seeded cells into the interstitium of the leaflet. Infiltration of hMSCs into the aortic valve leaflet was observed following 72 h of conditioning under negative chamber pressure. Additional conditioning under positive pressure improved cellular infiltration, while retaining gene expression within the MSC-valve interstitial cell phenotype lineage. This protocol resulted in a subsurface pilot population of cells, not full tissue recellularization. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 249-259, 2017. © 2015 Wiley Periodicals, Inc.

  9. Neurodevelopmental Outcome and Health-related Quality of Life in Children With Single-ventricle Heart Disease Before Fontan Procedure.

    Science.gov (United States)

    Reich, Bettina; Heye, Kristina; Tuura, Ruth; Beck, Ingrid; Wetterling, Kristina; Hahn, Andreas; Hofmann, Karoline; Schranz, Dietmar; Akintürk, Hakan; Latal, Beatrice; Knirsch, Walter

    2017-12-05

    Neurodevelopmental impairment and impaired quality of life constitute a major source of morbidity among children with complex congenital heart disease, in particular for single-ventricle (SV) morphologies. Risk factors and quality of life determining clinical and neurodevelopmental outcome at 2 years of age are examined. In a 2-center cohort study, 48 patients with SV morphology (26 hypoplastic left heart syndrome and 22 other types of univentricular heart defect) have been examined before Fontan procedure between 2010 and 2015. Patients were assessed with the Bayley Scales of Infant and Toddler Development, Third Version (Bayley-III), and the Preschool Children Quality of Life (TAPQOL) questionnaire. A total of 44 patients underwent hybrid procedure (n = 25), Norwood procedure (n = 7), or shunt or banding procedure (n = 12) as first surgery before subsequent bidirectional cavopulmonary anastomosis (n = 48). Median cognitive, language, and motor composite scores on the Bayley-III were 100 (range 65-120), 97 (68-124), and 97 (55-124), respectively. The language composite score was significantly below the norm (P = 0.025). Risk factors for poorer neurodevelopmental outcome were prolonged mechanical ventilation, longer days of hospital stay, and more reinterventions (all P neurodevelopmental outcome of this high-risk patient population. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Alfredo D Guerron

    2010-06-01

    Full Text Available The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin.In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy.These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.

  11. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Guerron, Alfredo D; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P; Nagaraju, Kanneboyina

    2010-06-21

    The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.

  12. Evaluation of single right atrial volume and function with magnetic resonance imaging in children with hypoplastic left heart

    Energy Technology Data Exchange (ETDEWEB)

    Vijarnsorn, Chodchanok [University of Alberta, Faculty of Medicine and Dentistry, Stollery Children' s Hospital, Edmonton, AB (Canada); Mahidol University, Siriraj Hospital, Bangkok (Thailand); Myers, Kimberley; Patton, David J. [Alberta Children' s Hospital, Section of Pediatric Cardiology, Department of Pediatrics, Department of Pediatrics, Calgary, AB (Canada); Noga, Michelle; Crawley, Cinzia; Tham, Edythe [University of Alberta, Faculty of Medicine and Dentistry, Stollery Children' s Hospital, Edmonton, AB (Canada)

    2016-06-15

    Standardized methods to evaluate atrial properties in single ventricles are lacking. To determine the feasibility of quantifying right atrial volumes and function in hypoplastic left heart using MRI. We studied 15 infants with hypoplastic left heart prior to Glenn surgery (mean age 4.2 months [standard deviation 0.3]) who underwent cardiac MRI with evaluation of atrial volumes and emptying fraction using monoplane two-chamber, monoplane four-chamber, and biplane methods, all of which were compared to the atrial short-axial oblique stack method. We compared atrial end-diastolic volume, end-systolic volume and emptying fraction among these methods. We analyzed reproducibility of the methods using Bland-Altman plots. Both four-chamber and biplane methods showed high correlations for atrial end-diastolic volume (r = 0.7 and r = 0.8, respectively; P < 0.01) and end-systolic volume (r = 0.8 and r = 0.9, respectively; P < 0.01) with small mean differences (-0.2 ± 2.9 standard deviation [SD] ml and -0.8 ± 1.6 ml, respectively, for atrial end-diastolic volume and -0.8 ± 1.5 ml and -0.9 ± 0.9 ml, respectively, for atrial end-systolic volume). The short-axial oblique method was the most reproducible, followed by the four-chamber method. MRI assessment of atrial volume and function is feasible in hypoplastic left heart and might provide further insight into single-ventricle mechanics. (orig.)

  13. Myosin heavy chain composition in the vastus lateralis muscle in relation to oxygen uptake and heart rate during cycling in humans.

    Science.gov (United States)

    Majerczak, J; Nieckarz, Z; Karasinski, J; Zoladz, J A

    2014-04-01

    In this study we examined the relationship between fast myosin heavy chain (MyHC2) content in the vastus lateralis and the rate of oxygen uptake (VO2) and heart rate (HR) increase during an incremental exercise in 38, young, healthy men. Prior to the exercise test, muscle biopsies were taken in order to evaluate the MyHC composition. It was found that during cycling performed below the lactate threshold (LT), a positive relationship between MyHC2 and the intercept of the oxygen uptake and power output (VO2-PO) relationship existed (r=0.49, P=0.002), despite no correlation between MyHC2 and the slope value of the VO2-PO relationship (r= -0.18, P=0.29). During cycling performed above the LT, MyHC2 correlated positively with the magnitude of the nonlinearity in the VO2-PO relationship; i.e. with the accumulated VO2'excess' (r=0.44, P=0.006) and peak VO2'excess' (r=0.44, P=0.006), as well as with the slope of the HR-PO relationship (r=0.49, P=0.002). We have concluded that a greater MyHC2 content in the vastus lateralis is accompanied by a higher oxygen cost of cycling during exercise performed below the LT. This seems to be related to the higher energy cost of the non-cross-bridge activities in the muscles possessing a greater proportion of MyHC2 content. In the case of heavy-intensity exercise, a higher MyHC2 content in the vastus lateralis is accompanied by greater non-linearity in the VO2-PO relationship, as well as a steeper increase in HR in the function of an increase of PO. This relationship can be explained by greater disturbances in metabolic stability in type II muscle fibres during exercise, resulting in a decrease of muscle mechanical efficiency and greater increase of heart rate at a given power output. Therefore, MyHC composition has an impact on the oxygen cost of cycling both below and above the LT.

  14. Pacing in congenital heart disease - A four-decade experience in a single tertiary centre.

    Science.gov (United States)

    Midha, Disha; Chen, Zhong; Jones, David G; Williams, Howell J; Lascelles, Karen; Jarman, Julian; Clague, Jonathan; Till, Janice; Dimopoulos, Konstatinos; Babu-Narayan, Sonya V; Markides, Vias; Gatzoulis, Michael A; Wong, Tom

    2017-08-15

    The increased risk of brady- and tachy-arrhythmias in the congenital heart disease (CHD) population means that cardiac rhythm management devices are often required at an early age and expose patients to device-related complications. The present study drew upon four decades of experience at a tertiary adult congenital heart disease ACHD center and aimed to investigate the indication for cardiac implantable electronic devices (CIEDs) and predictors of late device-related complication requiring re-intervention. A retrospective review of pacing records of ACHD patients over forty years was carried out. The primary outcome measure was device related complication requiring re-intervention. Between 1970 and 2009, 238 structural CHD patients who received CIEDs with follow-up data were identified (structural group). As a comparator group, 98 patients with congenital conduction disease or long QT syndrome with a structurally normal heart (electrical group) were included in the study. During a mean follow-up of 9.6±8.5years, 72 (21%) patients (44 structural group, 28 electrical group) required ≥1 re-intervention due to device related complications. Multivariate analysis showed that age at the time of device implant was an independent predictor of late device-related complications (HR 0.77, 95% CI 0.60-0.98, p=0.04). Sub-analysis of the structural group showed that ACHD complexity (Bethesda guideline) was the only predictor late device-related complication in the structural group (HR 2.96, 95% CI: 1.67-5.26, p<0.01). Increasing age at device implant was inversely associated with late device-related complications. ACHD patients with complex anatomy are at increased risk of device-related complications at mid and long-term follow-up. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Obesity paradox in heart failure patients - Female gender characteristics-KAMC-single center experience.

    Science.gov (United States)

    Khaled, Sheeren; Matahen, Rajaa

    2017-09-01

    The correlation between low body mass index (BMI) and congestive heart failure (obesity paradox) has been described in the literature; However, the association between BMI and clinical outcome measures is not well characterized. Little is known about CHF in the Middle Eastern female population; most of the gender-specific information on heart failure comes from higher income "Western" countries. We aimed to identify the correlation between heart failure patients especially those with low BMI and clinical/safety outcome measures with focusing on female patients subgroup characteristics. We performed group comparisons of statistically relevant variables using prospectively collected data of HFrEF patients hospitalized over a 12 month period. The 167 patients (Group I) enrolled by this study with mean age of 59.64 ± 12.9 years, an EF score of 23.96 ± 10.14, 62.9% had ischemic etiology, 12.5% were smoker, 18% had AF, 31.1% had received ICD/CRT-D and an estimated 8.85 ± 9.5 days length of stay (LOS). The low BMI group of patients (Group II) had means age of 58.7 ± 14.5 years, a significant lower EF score of 20.32 ± 8.58, significantly higher 30, 90 days readmission rates and in-house mortality (22%, 36.6% and 17.1% vs 10.2%, 20.4% and 6.6% respectively) and higher rates of CVA, TIA and unexplained syncope (19.5% vs 7.2%). Similarly, female patients with low BMI (Group IV) had lower EF score of 22.0 ± 53, higher 30,90 days readmission rates and in-house mortality (34.4%,43.8% and 25% vs 13.5%,21.6% and 5.4% respectively) and higher rates of CVA, TIA and unexplained syncope(10% vs 0%). Our findings showed that heart failure patients with low BMI had poor adverse clinical outcome measures (poor EF, recurrent readmission, mortality and composite rates of CVA, TIA and unexplained syncope) which reflect the effect of obesity paradox in those patients with HFrEF. Female patient subgroup showed similar characteristic findings which also might reflect the

  16. An anti-NH2-terminal antibody localizes NBCn1 to heart endothelia and skeletal and vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Damkier, Helle Hasager; Nielsen, Søren; Prætorius, Jeppe

    2006-01-01

    The electroneutral sodium bicarbonate cotransporter NBCn1 or NBC3 was originally cloned from rat aorta and from human skeletal muscle. NBCn1 (or NBC3) has been localized to the basolateral membrane of various epithelia, but thus far it has been impossible to detect the protein in these tissues...

  17. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    Directory of Open Access Journals (Sweden)

    Tibor Istvan Toth

    Full Text Available In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1 positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2 the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3 there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  18. EFFECTIVENESS OF MUSCLE STRETCHING IN OCCUPATION RELATED CHRONIC MECHANICAL LOW BACK PAIN IN COMMUNITY NURSES –A SINGLE BLIND STUDY

    OpenAIRE

    Khwairakpam Zhimina Devi; Sai Kumar. N; Vinod Babu. K; V.R. Ayyappan

    2014-01-01

    Background and Objective: Stretching of Lower Back Muscle, Hamstring and Tensor Fasciae Latae have an immediate effect on Chronic Lower Back Pain. Hence the purpose is to find the short term effect of stretching of Lower Back Muscle, Hamstring and Tensor Fasciae Latae on intensity of low back pain, flexibility and functional disability in occupation related Chronic Mechanical Low Back Pain in Community Nurses. Method: Single blind experimental study design, 40 subjects with Chronic mechani...

  19. Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity

    Directory of Open Access Journals (Sweden)

    Zulezwan A. Malik

    2013-12-01

    Full Text Available Two-dimensional gel electrophoresis provides robust comparative analysis of skeletal muscle, but this technique is laborious and limited by its inability to resolve all proteins. In contrast, orthogonal separation by SDS-PAGE and reverse-phase liquid chromatography (RPLC coupled to mass spectrometry (MS affords deep mining of the muscle proteome, but differential analysis between samples is challenging due to the greater level of fractionation and the complexities of quantifying proteins based on the abundances of their tryptic peptides. Here we report simple, semi-automated and time efficient (i.e., 3 h per sample proteome profiling of skeletal muscle by 1-dimensional RPLC electrospray ionisation tandem MS. Solei were analysed from rats (n = 5, in each group bred as either high- or low-capacity runners (HCR and LCR, respectively that exhibited a 6.4-fold difference (1,625 ± 112 m vs. 252 ± 43 m, p < 0.0001 in running capacity during a standardized treadmill test. Soluble muscle proteins were extracted, digested with trypsin and individual biological replicates (50 ng of tryptic peptides subjected to LC-MS profiling. Proteins were identified by triplicate LC-MS/MS analysis of a pooled sample of each biological replicate. Differential expression profiling was performed on relative abundances (RA of parent ions, which spanned three orders of magnitude. In total, 207 proteins were analysed, which encompassed almost all enzymes of the major metabolic pathways in skeletal muscle. The most abundant protein detected was type I myosin heavy chain (RA = 5,843 ± 897 and the least abundant protein detected was heat shock 70 kDa protein (RA = 2 ± 0.5. Sixteen proteins were significantly (p < 0.05 more abundant in HCR muscle and hierarchal clustering of the profiling data highlighted two protein subgroups, which encompassed proteins associated with either the respiratory chain or fatty acid oxidation. Heart-type fatty acid binding protein (FABPH was 1

  20. Challenges in the management of congenital heart disease in Vietnam: A single center experience

    International Nuclear Information System (INIS)

    Phuc, Vu Minh; Tin, Do Nguyen; Giang, Do Thi Cam

    2015-01-01

    Vietnam, in Asia, is a low middle-income country with a relatively large population to cater to. Not many know about Vietnam, or its healthcare sector especially the field of pediatric cardiology and congenital heart disease. In contrast to the developed world, congenital heart disease (CHD) is not diagnosed early. Since most of the patients visit the hospital only in later stages of the disease there are many complications during the operation and post-operatively. But during the past 5 years (from 2009), there has been major improvement in the treatment of CHD, both by intervention and surgery. At present, all kinds of CHD, both simple and complex are being successfully treated in our country. Today in Vietnam, all children under 6 years of age have health insurance coverage, under which almost all operations and catheter interventions are done free in government hospitals. It is helping many patients, especially those from the poor socioeconomic background. However, the present infrastructure is inadequate and a long waiting list has accumulated for treatment of CHD

  1. Radiation therapy outcomes in muscle invasive urinary bladder cancer: A single institution experience.

    Science.gov (United States)

    Tiwana, M S; Ni, L H; Saini, S; Verma, S K; Doddamani, D; Jain, N; Biswas, M; Gupta, Meenu; Gupta, Madhur; Saini, M; Chauhan, N

    2016-01-01

    To audit the survival outcomes and loco-regional control in muscle invasive urinary bladder cancer patients treated with external beam radiation therapy (RT). From November 2008 through December 2011, 50 consecutively diagnosed muscle invasive urinary bladder carcinoma (T2-4a N0-2, M0) patients were included in this retrospective study. All these patients received external beam RT to a median dose of 60 Gy (range 30-66 Gy), and were not suitable for radical surgery due to patients' preference or medical comorbidities. A stepwise procedure using proportional hazard regression was used to identify prognostic factors with respect to survival. Completion trans-urethral resection of bladder tumor was done in 38 (76%) patients of the cohort and 47 (94%) had transitional cell carcinoma on histopathology. Clinical stage T2 was diagnosed in 40 (80%) patients. The median follow-up for the entire cohort was 14 ± 8.9 months (range 1-36 months). In conclusion, 24 patients (48%) were free of disease, 5 patients (10%) had residual disease, and 13 patients (26%) had died of disease. Two-year and 3 year overall survival of intact bladder for the entire cohort was 58% and 43.6%, respectively. Cox regression modeling strongly suggested clinical stage (P = 0.01) and RT dose (P = 0.001) as being predictors for overall survival. RT shows reliable outcomes and excellent compliance in this advanced disease. Prescribing a higher RT dose could potentially correlate to better intact bladder control rates while maintaining good quality of life in selected patients.

  2. Spaceflight effects on single skeletal muscle fiber function in the rhesus monkey

    Science.gov (United States)

    Fitts, R. H.; Desplanches, D.; Romatowski, J. G.; Widrick, J. J.

    2000-01-01

    The purpose of this investigation was to understand how 14 days of weightlessness alters the cellular properties of individual slow- and fast-twitch muscle fibers in the rhesus monkey. The diameter of the soleus (Sol) type I, medial gastrocnemius (MG) type I, and MG type II fibers from the vivarium controls averaged 60 +/- 1, 46 +/- 2, and 59 +/- 2 microm, respectively. Both a control 1-G capsule sit (CS) and spaceflight (SF) significantly reduced the Sol type I fiber diameter (20 and 13%, respectively) and peak force, with the latter declining from 0.48 +/- 0.01 to 0.31 +/- 0.02 (CS group) and 0.32 +/- 0.01 mN (SF group). When the peak force was expressed as kiloNewtons per square meter (kN/m(2)), only the SF group showed a significant decline. This group also showed a significant 15% drop in peak fiber stiffness that suggests that fewer cross bridges were contracting in parallel. In the MG, SF but not CS depressed the type I fiber diameter and force. Additionally, SF significantly depressed absolute (mN) and relative (kN/m(2)) force in the fast-twitch MG fibers by 30% and 28%, respectively. The Ca(2+) sensitivity of the type I fiber (Sol and MG) was significantly reduced by growth but unaltered by SF. Flight had no significant effect on the mean maximal fiber shortening velocity in any fiber type or muscle. The post-SF Sol type I fibers showed a reduced peak power and, at peak power, an elevated velocity and decreased force. In conclusion, CS and SF caused atrophy and a reduced force and power in the Sol type I fiber. However, only SF elicited atrophy and reduced force (mN) in the MG type I fiber and a decline in relative force (kN/m(2)) in the Sol type I and MG type II fibers.

  3. Effect of methylglyoxal bis(guanylhydrazone) on hepatic, heart and skeletal muscle mitochrondrial carnitine palmitoyltransferase and. beta. -oxidation of fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Brady, L.J.; Brady, P.S.; Gandour, R.D.

    1986-05-01

    Methylglyoxal bis(guanylhydrazone) (MGBG) is an antileukemic agent and polyamine analog which inhibits S-adenosyl methionine decarboxylase. However, MGBG also produces mitochondrial structural damage and inhibition of ..beta..-oxidation. The present experiments were designed to determine if MGBG acts via carnitine palmitoyltransferase-A (CPT-A) inhibition. Liver, heart and skeletal muscle mitochondria were isolated from rats following a 24 h fast. MGBG was competitive with 1-carnitine. The MGBG CPT-A Ki were (mM): liver, 5.0 +/- 0.6 (n = 15); heart, 3.2 +/- 1.2 (n = 3); skeletal muscle, 2.8 +/- 1.0 (n = 3). Lysis of hepatic mitochondria with Triton X-100 yielded a Ki of 4.0 +/- 2.0. Purified hepatic CPT was also sensitive to MGBG inhibition (Ki = 4.5 mM). Spermine and spermidine, which are structurally similar to MGBG, did not inhibit CPT or acid-soluble product formation from 1-(/sup 14/C)-palmitoyl-CoA. MGBG inhibited mitochondrial state 3 oxidation rates of palmitoyl-CoA and palmitoylcarnitine, as well as of glutamate. However, the fatty acid substrates were considerably more sensitive than glutamate to MGBG inhibition. MGBG also increased hepatic mitochondrial aggregation which was reversed by 1-carnitine. Fluorescence polarization, using diphenylhexatriene as a probe, indicated that MGBG increased membrane rigidity in a dose dependent manner. This effect was not reversed by 1-carnitine. The authors conclude that MGBG exhibits competitive competition with 1-carnitine for CPT. However, MGBG also exhibits a number of effects which may be mediated through membrane interaction and which are not necessarily reversed by carnitine.

  4. Validity, prognostic value and optimal cutoff of respiratory muscle strength in patients with chronic heart failure changes with beta-blocker treatment.

    Science.gov (United States)

    Frankenstein, Lutz; Nelles, Manfred; Meyer, F Joachim; Sigg, Caroline; Schellberg, Dieter; Remppis, B Andrew; Katus, Hugo A; Zugck, Christian

    2009-08-01

    Training studies frequently use maximum inspiratory mouth occlusion pressure (PImax) as a therapeutic target and surrogate marker. For patients on beta-blocker (BBL), prognostic data allowing this extrapolation do not exist. Furthermore, the effects of BBL, mainstay of modern chronic heart failure therapy, on respiratory muscle function remain controversial. Finally, no proper separate cutoff according to treatment exists. Prospective, observational inclusion of patients with stable systolic chronic heart failure and recording of 1 year and all-time mortality for endpoint analysis. In 686 patients, 81% men, 494 patients on BBL, PImax was measured along with clinical evaluation. The median follow-up was 50 months (interquartile range: 26-75 months). Patients with or without BBL did not differ significantly for PImax, percentage of predicted PImax or other marker of disease severity. PImax was a significant (hazard ratio: 0.925; 95% confidence interval: 0.879-0.975; chi(2): 8.62) marker of adverse outcome, independent of BBL-status or aetiology. Percentage of predicted PImax was not independent of PImax. The cutoff identified through receiver-operated characteristics for 1-year mortality was 4.14 kPa for patients on BBL and 7.29 kPa for patients not on BBL. When separated accordingly, 1-year mortality was 8.5 versus 21.4%, P=0.02, for patients not on BBL and 4.3 versus 16.2%, P<0.001, for patients on BBL. This study fills the gap between trials targeting respiratory muscle on a functional basis and the resultant prognostic information with regard to BBL. BBL lowered the optimal PImax cutoff values for risk stratification without changing the measured values of PImax. This should be considered at inclusion and evaluation of trials and interpretation of exercise parameters.

  5. Effect of methylglyoxal bis(guanylhydrazone) on hepatic, heart and skeletal muscle mitochrondrial carnitine palmitoyltransferase and β-oxidation of fatty acids

    International Nuclear Information System (INIS)

    Brady, L.J.; Brady, P.S.; Gandour, R.D.

    1986-01-01

    Methylglyoxal bis(guanylhydrazone) (MGBG) is an antileukemic agent and polyamine analog which inhibits S-adenosyl methionine decarboxylase. However, MGBG also produces mitochondrial structural damage and inhibition of β-oxidation. The present experiments were designed to determine if MGBG acts via carnitine palmitoyltransferase-A (CPT-A) inhibition. Liver, heart and skeletal muscle mitochondria were isolated from rats following a 24 h fast. MGBG was competitive with 1-carnitine. The MGBG CPT-A Ki were (mM): liver, 5.0 +/- 0.6 (n = 15); heart, 3.2 +/- 1.2 (n = 3); skeletal muscle, 2.8 +/- 1.0 (n = 3). Lysis of hepatic mitochondria with Triton X-100 yielded a Ki of 4.0 +/- 2.0. Purified hepatic CPT was also sensitive to MGBG inhibition (Ki = 4.5 mM). Spermine and spermidine, which are structurally similar to MGBG, did not inhibit CPT or acid-soluble product formation from 1-[ 14 C]-palmitoyl-CoA. MGBG inhibited mitochondrial state 3 oxidation rates of palmitoyl-CoA and palmitoylcarnitine, as well as of glutamate. However, the fatty acid substrates were considerably more sensitive than glutamate to MGBG inhibition. MGBG also increased hepatic mitochondrial aggregation which was reversed by 1-carnitine. Fluorescence polarization, using diphenylhexatriene as a probe, indicated that MGBG increased membrane rigidity in a dose dependent manner. This effect was not reversed by 1-carnitine. The authors conclude that MGBG exhibits competitive competition with 1-carnitine for CPT. However, MGBG also exhibits a number of effects which may be mediated through membrane interaction and which are not necessarily reversed by carnitine

  6. Sleep Apnoea Detection in Single Channel ECGs by Analyzing Heart Rate Dynamics

    National Research Council Canada - National Science Library

    Zywietz, C

    2001-01-01

    .... Sleep disorders are typically investigated by means of polysomnographic recordings. We have analyzed 70 eight-hour single-channel ECG recordings to find out to which extent sleep apneas may be detected from the ECG alone...

  7. Outcome of double vs. single valve replacement for rheumatic heart disease

    International Nuclear Information System (INIS)

    Akhtar, R.P.; Abid, A.R.

    2010-01-01

    To compare the follow-up results of double valve replacement (DVR) i.e. mitral valve replacement (MVR) and aortic valve replacement (AVR) vs. isolated MVR or AVR for rheumatic heart disease. Study Design: An interventional qausi-experimental study. Prospective follow-up of 493 patients with mechanical heart valves was carried out using clinical assessment, international normalized ratio and echocardiography. Patients were divided into three groups: group I having MVR, group II having AVR and group III having DVR. Survival, time and causes of mortality, and frequency of valve thrombosis, haemorrhage and cerebrovascular haemorrhage was noted in the three groups and described as proportions. Actuarial survival was analyzed by Kaplan-Meier method. There were 493 with 287 (58.3%) in group I, 87 (17.6%) in group II and 119 (24.1%) in group III. Total follow-up was 2429.2 patient (pt)-years. Of 77 (15.6%) deaths, 19 (3.8%) were in-hospital and 58 (11.8%) were late. In-hospital mortality was highest 4 (4.6%) in group II followed by 5 (4.2%) group III and 10 (3.5%) group I. Late deaths were 39 (13.4%) in group I, 9 (10.2%) in group II and 10 (8.3%) in group III. The total actuarial survival was 84.4% with survival of 83%, 85.1%, 87.4% in groups I, II and III respectively. On follow-up valve thrombosis occurred in 12 (0.49%/pt-years) patients; 9 (0.67%/pt-years) group I, 1 (0.22%/pt-years) in group II and 2 (0.31%/pt-years) in group III. Severe haemorrhage occurred in 19 (0.78%/pt-years); 14 in (1.04%/pt-years) in group I, 3 (0.66%/pt-years) group II and 2 (0.31%/pt-years) in group III. Cerebrovascular accidents occurred in 34 (1.3%/pt-years); 26 (1.95%/pt-years) in group I and 4 in groups II (0.89%/pt-years) and III (0.62%/pt-years) each. In patients with rheumatic heart disease having combined mitral and aortic valve disease DVR should be performed whenever indicated as it has similar in-hospital mortality and better late survival as compared to isolated aortic or mitral

  8. Face Validity of the Single Work Ability Item: Comparison with Objectively Measured Heart Rate Reserve over Several Days

    Science.gov (United States)

    Gupta, Nidhi; Jensen, Bjørn Søvsø; Søgaard, Karen; Carneiro, Isabella Gomes; Christiansen, Caroline Stordal; Hanisch, Christiana; Holtermann, Andreas

    2014-01-01

    Purpose: The purpose of this study was to investigate the face validity of the self-reported single item work ability with objectively measured heart rate reserve (%HRR) among blue-collar workers. Methods: We utilized data from 127 blue-collar workers (Female = 53; Male = 74) aged 18–65 years from the cross-sectional “New method for Objective Measurements of physical Activity in Daily living (NOMAD)” study. The workers reported their single item work ability and completed an aerobic capacity cycling test and objective measurements of heart rate reserve monitored with Actiheart for 3–4 days with a total of 5,810 h, including 2,640 working hours. Results: A significant moderate correlation between work ability and %HRR was observed among males (R = −0.33, P = 0.005), but not among females (R = 0.11, P = 0.431). In a gender-stratified multi-adjusted logistic regression analysis, males with high %HRR were more likely to report a reduced work ability compared to males with low %HRR [OR = 4.75, 95% confidence interval (95% CI) = 1.31 to 17.25]. However, this association was not found among females (OR = 0.26, 95% CI 0.03 to 2.16), and a significant interaction between work ability, %HRR and gender was observed (P = 0.03). Conclusions: The observed association between work ability and objectively measured %HRR over several days among male blue-collar workers supports the face validity of the single work ability item. It is a useful and valid measure of the relation between physical work demands and resources among male blue-collar workers. The contrasting association among females needs to be further investigated. PMID:24840350

  9. Face Validity of the Single Work Ability Item: Comparison with Objectively Measured Heart Rate Reserve over Several Days

    Directory of Open Access Journals (Sweden)

    Nidhi Gupta

    2014-05-01

    Full Text Available Purpose: The purpose of this study was to investigate the face validity of the self-reported single item work ability with objectively measured heart rate reserve (%HRR among blue-collar workers. Methods: We utilized data from 127 blue-collar workers (Female = 53; Male = 74 aged 18–65 years from the cross-sectional “New method for Objective Measurements of physical Activity in Daily living (NOMAD” study. The workers reported their single item work ability and completed an aerobic capacity cycling test and objective measurements of heart rate reserve monitored with Actiheart for 3–4 days with a total of 5,810 h, including 2,640 working hours. Results: A significant moderate correlation between work ability and %HRR was observed among males (R = −0.33, P = 0.005, but not among females (R = 0.11, P = 0.431. In a gender-stratified multi-adjusted logistic regression analysis, males with high %HRR were more likely to report a reduced work ability compared to males with low %HRR [OR = 4.75, 95% confidence interval (95% CI = 1.31 to 17.25]. However, this association was not found among females (OR = 0.26, 95% CI 0.03 to 2.16, and a significant interaction between work ability, %HRR and gender was observed (P = 0.03. Conclusions: The observed association between work ability and objectively measured %HRR over several days among male blue-collar workers supports the face validity of the single work ability item. It is a useful and valid measure of the relation between physical work demands and resources among male blue-collar workers. The contrasting association among females needs to be further investigated.

  10. Gene expression changes of single skeletal muscle fibers in response to modulation of the mitochondrial calcium uniporter (MCU

    Directory of Open Access Journals (Sweden)

    Francesco Chemello

    2015-09-01

    Full Text Available The mitochondrial calcium uniporter (MCU gene codifies for the inner mitochondrial membrane (IMM channel responsible for mitochondrial Ca2+ uptake. Cytosolic Ca2+ transients are involved in sarcomere contraction through cycles of release and storage in the sarcoplasmic reticulum. In addition cytosolic Ca2+ regulates various signaling cascades that eventually lead to gene expression reprogramming. Mitochondria are strategically placed in close contact with the ER/SR, thus cytosolic Ca2+ transients elicit large increases in the [Ca2+] of the mitochondrial matrix ([Ca2+]mt. Mitochondrial Ca2+ uptake regulates energy production and cell survival. In addition, we recently showed that MCU-dependent mitochondrial Ca2+ uptake controls skeletal muscle trophism. In the same report, we dissected the effects of MCU-dependent mitochondrial Ca2+ uptake on gene expression through microarray gene expression analysis upon modulation of MCU expression by in vivo AAV infection. Analyses were performed on single skeletal muscle fibers at two time points (7 and 14 days post-AAV injection. Raw and normalized data are available on the GEO database (http://www.ncbi.nlm.nih.gov/geo/ (GSE60931.

  11. Lion (Panthera leo) and caracal (Caracal caracal) type IIx single muscle fibre force and power exceed that of trained humans.

    Science.gov (United States)

    Kohn, Tertius A; Noakes, Timothy D

    2013-03-15

    This study investigated for the first time maximum force production, shortening velocity (Vmax) and power output in permeabilised single muscle fibres at 12°C from lion, Panthera leo (Linnaeus 1758), and caracal, Caracal caracal (Schreber 1776), and compared the values with those from human cyclists. Additionally, the use and validation of previously frozen tissue for contractile experiments is reported. Only type IIx muscle fibres were identified in the caracal sample, whereas type IIx and only two type I fibres were found in the lion sample. Only pure type I and IIa, and hybrid type IIax fibres were identified in the human samples - there were no pure type IIx fibres. Nevertheless, compared with all the human fibre types, the lion and caracal fibres were smaller (Plion: 3008±151 μm(2), caracal: 2583±221 μm(2)). On average, the felid type IIx fibres produced significantly greater force (191-211 kN m(-2)) and ~3 times more power (29.0-30.3 kN m(-2) fibre lengths s(-1)) than the human IIax fibres (100-150 kN m(-2), 4-11 kN m(-2) fibre lengths s(-1)). Vmax values of the lion type IIx fibres were also higher than those of human type IIax fibres. The findings suggest that the same fibre type may differ substantially between species and potential explanations are discussed.

  12. Muscle Fibre Types, Ubiquinone Content and Exercise Capacity in Hypertension and Effort Angina

    DEFF Research Database (Denmark)

    Karlsson, Jan; Diamant, Bertil; Folkers, Karl

    1991-01-01

    Farmakologi, hypertension, IHD, skeletal muscle fibre composition, muscle coenzyme Q10, ischaemic heart disease, effort angina, muscle fibre lesion, muscle ubiquinone......Farmakologi, hypertension, IHD, skeletal muscle fibre composition, muscle coenzyme Q10, ischaemic heart disease, effort angina, muscle fibre lesion, muscle ubiquinone...

  13. Direct renin inhibitor ameliorates insulin resistance by improving insulin signaling and oxidative stress in the skeletal muscle from post-infarct heart failure in mice.

    Science.gov (United States)

    Fukushima, Arata; Kinugawa, Shintaro; Takada, Shingo; Matsumoto, Junichi; Furihata, Takaaki; Mizushima, Wataru; Tsuda, Masaya; Yokota, Takashi; Matsushima, Shouji; Okita, Koichi; Tsutsui, Hiroyuki

    2016-05-15

    Insulin resistance can occur as a consequence of heart failure (HF). Activation of the renin-angiotensin system (RAS) may play a crucial role in this phenomenon. We thus investigated the effect of a direct renin inhibitor, aliskiren, on insulin resistance in HF after myocardial infarction (MI). MI and sham operation were performed in male C57BL/6J mice. The mice were divided into 4 groups and treated with sham-operation (Sham, n=10), sham-operation and aliskiren (Sham+Aliskiren; 10mg/kg/day, n=10), MI (n=11), or MI and aliskiren (MI+Aliskiren, n=11). After 4 weeks, MI mice showed left ventricular dilation and dysfunction, which were not affected by aliskiren. The percent decrease of blood glucose after insulin load was significantly smaller in MI than in Sham (14±5% vs. 36±2%), and was ameliorated in MI+Aliskiren (34±5%) mice. Insulin-stimulated serine-phosphorylation of Akt and glucose transporter 4 translocation were decreased in the skeletal muscle of MI compared to Sham by 57% and 69%, and both changes were ameliorated in the MI+Aliskiren group (91% and 94%). Aliskiren administration in MI mice significantly inhibited plasma renin activity and angiotensin II (Ang II) levels. Moreover, (pro)renin receptor expression and local Ang II production were upregulated in skeletal muscle from MI and were attenuated in MI+Aliskiren mice, in tandem with a decrease in superoxide production and NAD(P)H oxidase activities. In conclusion, aliskiren ameliorated insulin resistance in HF by improving insulin signaling in the skeletal muscle, at least partly by inhibiting systemic and (pro)renin receptor-mediated local RAS activation, and subsequent NAD(P)H oxidase-induced oxidative stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effect of a patella support brace on myoelectric activity of knee joint muscles during single leg landing

    Directory of Open Access Journals (Sweden)

    Fatemeh Salariesker

    2013-06-01

    Full Text Available Introduction: Patellfemoral pain syndrome is one of the most common knee joint problems that affect athletes and non-athletes. Knee brace is often used as a treatment method for patellar realignment. The aim of the present study was to determine the effects of a patella support brace on myoelectric activity of selected knee muscles during single leg landing in healthy females. Materials and Methods: 19 healthy female students (Mean age: 23.6±1.98 years, height: 163.5±5.88 cm, weight: 62.3±3.6 kg participated in this study. Myoelectric activity of biceps femoris, semitendinosus, vastus medialis and vastus lateralis were collected during single leg landing in with and without using the patella support brace conditions.Results: Use of the patella support brace had no significant effect on myoelectric activity for the semitendinosus (p=0.668, vastus medialis (VM (p=0.915 and vastus lateralis (VL (P=0.134, while myoelectric activity for biceps femoris (p=0.005 and ratio of VM/VL myoelectric activity significantly increased (p=0.045. Conclusion: Our results revealed that biceps femoris activity and vastus medialis/vastus lateralis ratio increased after using patella support brace during single leg landing. Further studies on kinematic and kinetic variables are needed to describe these changes in muscular activity when using the patella support brace.

  15. Effect of Feedback Corrective Exercise on Knee Valgus and Electromyographic Activity of Lower Limb Muscles in Single Leg Squat

    Directory of Open Access Journals (Sweden)

    Negar Koorosh-fard

    2015-07-01

    Full Text Available Objective: The aim of this study was assessing the effect of feedback correcting exercise in front of mirror during running on frontal plane knee and pelvic kinematic and electromyography activity of some lower extremity muscles in single leg squat (SLS. Materials & Methods: This study was quasi experimental. 23 active female subjects participated in two experimental and control groups with mean age (21.86± 2.43 years .experimental group contains subjects with knee valgus and pelvic drop angle more than a mean plus one standard deviation of the population in functional SLS. Muscular activity (RMS of gluteus maximus, Gluteus medius, rectus femoris, vastus medialis, vastus lateralis, biceps femoris and semitendinosus, angle of knee valgus and pelvic drop were register in end of SLS Pre and post of 8 training sessions. Comparing Variable has done with independent t statistical test between 2 groups and pair sample t test within each groups with significant level of 0.05. Results: Statistical analysis Before training showed no significant differences in pelvic drop between two groups (P&ge0.05, but knee valgus angle was significantly more than control group (P&le0.05. In spit that most muscle activities (% MVC except biceps femoris (P&le0.05, were greater in experimental group, no significant difference (P&ge0.05 has seen in two groups. Comparing pre and post test has showed no significant difference in knee valgus of experimental group, however it decreased around 2 degrees and although %MVC decreased in all muscles, just rectuse femoris has shown significant difference (P&le0.05. No significant difference has seen in control group in all variables (P&ge0.05. Conclusion: Findings showed poor neuromuscular control in experimental group which improved to some extent after training because lower muscle activity and energy consumption in specific movement with similar kinematic indicate improvement of motor control or cause learning. It seems that

  16. The equivalent circuit of single crab muscle fibers as determined by impedance measurements with intracellular electrodes.

    Science.gov (United States)

    Eisenberg, R S

    1967-07-01

    The input impedance of muscle fibers of the crab was determined with microelectrodes over the frequency range 1 cps to 10 kc/sec. Care was taken to analyze, reduce, and correct for capacitive artifact. One dimensional cable theory was used to determine the properties of the equivalent circuit of the membrane admittance, and the errors introduced by the neglect of the three dimensional spread of current are discussed. In seven fibers the equivalent circuit of an element of the membrane admittance must contain a DC path and two capacitances, each in series with a resistance. In two fibers, the element of membrane admittance could be described by one capacitance in parallel with a resistance. In several fibers there was evidence for a third very large capacitance. The values of the elements of the equivalent circuit depend on which of several equivalent circuits is chosen. The circuit (with a minimum number of elements) that was considered most reasonably consistent with the anatomy of the fiber has two branches in parallel: one branch having a resistance R(e) in series with a capacitance C(e); the other branch having a resistance R(b) in series with a parallel combination of a resistance R(m) and a capacitance C(m). The average circuit values (seven fibers) for this model, treating the fiber as a cylinder of sarcolemma without infoldings or tubular invaginations, are R(e) = 21 ohm cm(2); C(e) = 47 microf/cm(2); R(b) = 10.2 ohm cm(2); R(m) = 173 ohm cm(2); C(m) = 9.0 microf/cm(2). The relation of this equivalent circuit and another with a nonminimum number of circuit elements to the fine structure of crab muscle is discussed. In the above equivalent circuit R(m) and C(m) are attributed to the sarcolemma; R(e) and C(e), to the sarcotubular system; and R(b), to the amorphous material found around crab fibers. Estimates of actual surface area of the sarcolemma and sarcotubular system permit the average circuit values to be expressed in terms of unit membrane area. The

  17. Development of an Assay Based on the Effects of PGBx on the Isolated Perfused Rat Heart and Rat Skeletal Muscle.

    Science.gov (United States)

    1980-09-01

    had no effect on discphe- nol induced alterations in spontaneous heart rate, but did appear to prevent the increase in coronary flow caused by...Phosphorylase a i -24 activity was also the same in each of the groups examined (Table 2-4). DISCUSSION The ability of PGBx to prevent 2,4-dinitrophenol-induced...euthyroid and hyperthyroid rats. Eur. J. Pharmac. 19, 12-17. Aronson, C. E. and Serlick, E. R. (1977a) Effects of chlorpromazine on the isolated

  18. Implantable cardioverter defibrillator therapy in pediatric and congenital heart disease patients: a single tertiary center experience in Korea

    Directory of Open Access Journals (Sweden)

    Bo Kyung Jin

    2013-03-01

    Full Text Available Purpose: The use of implantable cardioverter defibrillators (ICDs to prevent sudden cardiac death is increasing in children and adolescents. This study investigated the use of ICDs in children with congenital heart disease. Methods: This retrospective study was conducted on the clinical characteristics and effectiveness of ICD implantation at the department of pediatrics of a single tertiary center between 2007 and 2011. Results: Fifteen patients underwent ICD implantation. Their mean age at the time of implantation was 14.5±5.4 years (range, 2 to 22 years. The follow-up duration was 28.9±20.4 months. The cause of ICD implantation was cardiac arrest in 7, sustained ventricular tachycardia in 6, and syncope in 2 patients. The underlying disorders were as follows: ionic channelopathy in 6 patients (long QT type 3 in 4, catecholaminergic polymorphic ventricular tachycardia [CPVT] in 1, and J wave syndrome in 1, cardiomyopathy in 5 patients, and postoperative congenital heart disease in 4 patients. ICD coils were implanted in the pericardial space in 2 children (ages 2 and 6 years. Five patients received appropriate ICD shock therapy, and 2 patients received inappropriate shocks due to supraventricular tachycardia.During follow-up, 2 patients required lead dysfunction-related revision. One patient with CPVT suffered from an ICD storm that was resolved using sympathetic denervation surgery. Conclusion: The overall ICD outcome was acceptable in most pediatric patients. Early diagnosis and timely ICD implantation are recommended for preventing sudden death in high-risk children and patients with congenital heart disease.

  19. Increased expression of the auxiliary beta(2-subunit of ventricular L-type Ca(2+ channels leads to single-channel activity characteristic of heart failure.

    Directory of Open Access Journals (Sweden)

    Roger Hullin

    2007-03-01

    Full Text Available Increased activity of single ventricular L-type Ca(2+-channels (L-VDCC is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary beta-subunits as a possible explanation.By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression pattern of auxiliary L-VDCC beta-subunit gene products. In HEK293-cells we show differential modulation of single L-VDCC activity by coexpression of several human cardiac beta-subunits: Unlike beta(1 or beta(3 isoforms, beta(2a and beta(2b induce a high-activity channel behavior typical of failing myocytes. In accordance, beta(2-subunit mRNA and protein are up-regulated in failing human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac Ca(V1.2 also reveal increased single-channel activity and sarcolemmal beta(2 expression when entering into the maladaptive stage of heart failure. Interestingly, these animals, when still young and non-failing ("Adaptive Phase", reveal the opposite phenotype, viz: reduced single-channel activity accompanied by lowered beta(2 expression. Additional evidence for the cause-effect relationship between beta(2-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both constitutive Ca(V1.2 and inducible beta(2 cardiac overexpression. Here in non-failing hearts induction of beta(2-subunit overexpression mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure.Our study presents evidence of the pathobiochemical relevance of beta(2-subunits for the electrophysiological phenotype of cardiac L-VDCC and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure.

  20. Distinct neural control of intrinsic and extrinsic muscles of the hand during single finger pressing

    NARCIS (Netherlands)

    Dupan, Sigrid S.G.; Stegeman, Dick F.; Maas, Huub

    2018-01-01

    Single finger force tasks lead to unintended activation of the non-instructed fingers, commonly referred to as enslaving. Both neural and mechanical factors have been associated with this absence of finger individuality. This study investigates the amplitude modulation of both intrinsic and

  1. Screening for coronary artery disease in respiratory patients: comparison of single- and dual-source CT in patients with a heart rate above 70 bpm

    International Nuclear Information System (INIS)

    Pansini, Vittorio; Remy-Jardin, Martine; Tacelli, Nunzia; Faivre, Jean-Baptiste; Remy, Jacques; Flohr, Thomas; Deken, Valerie; Duhamel, Alain

    2008-01-01

    To evaluate the assessibility of coronary arteries in respiratory patients with high heart rates. This study was based on the comparative analysis of two paired populations of 54 patients with a heart rate >70 bpm evaluated with dual-source (group 1) and single-source (group 2) CT. The mean heart rate was 89.1 bpm in group 1 and 86.7 bpm in group 2 (P=0.26). The mean number of assessable segments per patient was significantly higher in group 1 compared to group 2 (P≤0.0001). The proportions of patients in whom proximal and mid-coronary segments were assessable (i.e., the anatomical level enabling screening for asymptomatic coronary artery disease) were 35.3% for heart rates <110 bpm, 35.6% for heart rates <100 bpm, 40% for heart rates <90 bpm, and 60% for heart rates <80 bpm in group 1 and 11.3, 12.2, 8.8, and 10% for the corresponding thresholds in group 2 (P<0.05). In both groups of patients, coronary artery imaging was obtained from standard CT angiograms of the chest. The improvement in coronary imaging with dual-source CT suggests that high heart rates should no longer be considered as contraindications for ECG-gated CT angiograms of the chest whenever clinically relevant. (orig.)

  2. Gold nanoparticles administration induces disarray of heart muscle, hemorrhagic, chronic inflammatory cells infiltrated by small lymphocytes, cytoplasmic vacuolization and congested and dilated blood vessels

    Directory of Open Access Journals (Sweden)

    Abdelhalim Mohamed Anwar K

    2011-12-01

    Full Text Available Abstract Background Despite significant research efforts on cancer therapy, diagnostics and imaging, many challenges remain unsolved. There are many unknown details regarding the interaction of nanoparticles (NPs and biological systems. The structure and properties of gold nanoparticles (GNPs make them useful for a wide array of biological applications. However, for the application of GNPs in therapy and drug delivery, knowledge regarding their bioaccumulation and associated local or systemic toxicity is necessary. Information on the biological fate of NPs, including distribution, accumulation, metabolism, and organ specific toxicity is still minimal. Studies specifically dealing with the toxicity of NPs are rare. The aim of the present study was to investigate the effects of intraperitoneal administration of GNPs on histological alterations of the heart tissue of rats in an attempt to identify and understand the toxicity and the potential role of GNPs as a therapeutic and diagnostic tool. Methods A total of 40 healthy male Wistar-Kyoto rats received 50 μl infusions of 10, 20 and 50 nm GNPs for 3 or 7 days. Animals were randomly divided into groups: 6 GNP-treated rats groups and one control group (NG. Groups 1, 2 and 3 received infusions of 50 μl GNPs of size 10 nm (3 or 7 days, 20 nm (3 or 7 days and 50 nm (3 or 7 days, respectively. Results In comparison with the respective control rats, exposure to GNPs doses produced heart muscle disarray with a few scattered chronic inflammatory cells infiltrated by small lymphocytes, foci of hemorrhage with extravasation of red blood cells, some scattered cytoplasmic vacuolization and congested and dilated blood vessels. None of the above alterations were observed in the heart muscle of any member of the control group. Conclusions The alterations induced by intraperitoneal administration of GNPs were size-dependent, with smaller ones inducing greater affects, and were also related to the time exposure to

  3. Taking radionuclides to heart

    International Nuclear Information System (INIS)

    Kleynhans, P.H.T.; Lotter, M.G.; Van Aswegen, A.; Minnaar, P.C.; Iturralde, M.; Herbst, C.P.; Marx, D.

    1980-01-01

    Ischaemic heart disease is a main cause of death in South Africa. Non-invasive ECG gated radionuclide bloodpool imaging plays an increasingly useful role in the evalution of the function of the heart as a pump, and the extent of heart muscle perfusion defects is further pinpointed by invasive krypton-81m studies to improve patient management

  4. Single unit activity in the medial prefrontal cortex during Pavlovian heart rate conditioning: Effects of peripheral autonomic blockade.

    Science.gov (United States)

    Powell, D A; Ginsberg, Jay P

    2005-11-01

    Electrical activity was recorded from single neurons in the medial prefrontal cortex of rabbits during differential Pavlovian heart rate (HR) conditioning. A heterogeneous population of cells were found, some of which showed CS-evoked increases and others CS-evoked decreases in discharge, while some cells were biphasic. A subset of cells also showed trial-related changes in discharge that were related to acquisition of the HR discrimination between the reinforced CS+ and non-reinforced CS-. Administration of the peripheral cholinergic antagonist, methylscopolamine, and the andrenergic antagonist, atenolol, either increased or decreased maintained baseline activity of many cells, but had little or no effect on the CS-evoked activity of these cells. Waveform changes also did not result from administration of these drugs. This finding suggests that CS-evoked mPFC activity is not being driven by cardiac afferent input to CNS cardiac control centers. Previous studies have shown that ibotenic acid lesions of this area greatly decreases the magnitude of decelerative heart rate conditioned responses; the latter finding, plus the results of the present study, suggest that processing of CS/US contingencies by the prefrontal cortex contributes to the acquisition of autonomic changes during Pavlovian conditioning.

  5. Effects of low-level laser therapy (LLLT) and diclofenac (topical and intramuscular) as single and combined therapy in experimental model of controlled muscle strain in rats.

    Science.gov (United States)

    de Paiva Carvalho, Rodrigo Leal; Leal-Junior, Ernesto Cesar Pinto; Petrellis, Maria Carla; Marcos, Rodrigo Labat; de Carvalho, Maria Helena Catelli; De Nucci, Gilberto; Lopes-Martins, Rodrigo Alvaro Brandão

    2013-01-01

    Muscle injuries represent ca 30% of sports injuries and excessive stretching of muscle causes more than 90% of injuries. Currently the most used treatments are nonsteroidal anti-inflammatory drugs (NSAIDs), however, in last years, low-level laser therapy (LLLT) is becoming an interesting therapeutic modality. The aim of this study was to evaluate the effect of single and combined therapies (LLLT, topical application of diclofenac and intramuscular diclofenac) on functional and biochemical aspects in an experimental model of controlled muscle strain in rats. Muscle strain was induced by overloading tibialis anterior muscle of rats. Injured groups received either no treatment, or a single treatment with topical or intramuscular diclofenac (TD and ID), or LLLT (3 J, 810 nm, 100 mW) 1 h after injury. Walking track analysis was the functional outcome and biochemical analyses included mRNA expression of COX-1 and COX-2 and blood levels of prostaglandin E2 (PGE2 ). All treatments significantly decreased COX-1 and COX-2 gene expression compared with injury group (P levels and walking track analysis (P topical and intramuscular diclofenac in treatment of muscle strain injury in acute stage. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  6. Chemoradiotherapy for muscle invading bladder carcinoma. final report of a single institutional organ-sparing program

    International Nuclear Information System (INIS)

    Arias, Fernando; Dominguez, Miguel A.; Martinez, Enrique; Illarramendi, Jose J.; Miquelez, Santiago; Pascual, Ignacio; Marcos, Marta

    2000-01-01

    Purpose: Chemoradiotherapy is becoming an alternative to radical cystectomy among patients with muscle invading bladder cancer. We began a prospective study in 1988 to determine the possibilities of conservative treatment and aiming to improve the results obtained by cystectomy alone in invasive bladder cancer. A combination of methotrexate, vinblastine, adriamycin, and cisplatin (M-VAC), followed by radiotherapy and concomitant cisplatin was used. Methods: Fifty patients with good performance status and with stages T2 to T4 operable untreated invasive bladder cancer were entered in the study. Treatment protocol was as follows: (i) cytoreductive transurethral resection; (ii) two cycles of M-VAC chemotherapy; (iii) radiotherapy, 45 Gy on pelvic volume and, at the same time, 20 mg/m 2 cisplatin on days 1 to 5. Cystoscopic evaluation: if there was a complete response, radiotherapy was completed up to 65 Gy; if there was not a complete response, a cystectomy was performed. Median follow-up of the series was 73 months (18-180 m). Results: Tumor response was as follows: 34 complete responses (68%), 9 partial responses (18%), and 7 nonresponses (14%) were observed. The 5-year overall survival and local control were 48% and 47%, respectively. For the complete responder patient, 5-year survival and local control were 65% and 70%, respectively. Severe toxicity was uncommon. The most frequent were leucopenia and cystitis. No treatment-related deaths occurred with either treatment protocol. Conclusions: Conservative combination treatment may be an acceptable alternative to immediate cystectomy in selected patients with bladder cancer, although a randomized clinical trial would be required to produce definitive results

  7. Meta-analysis of the relationship between single nucleotide polymorphism of IL-10-1082G/A and rheumatic heart disease.

    Science.gov (United States)

    Dai, Weiran; Ye, Ziliang; Lu, Haili; Su, Qiang; Li, Hui; Li, Lang

    2018-02-23

    The results showed that there was a certain correlation between the single nucleotide polymorphism of IL-10-1082G/A and rheumatic heart disease, but there was no systematic study to verify this conclusion. Systematic review of the association between single nucleotide polymorphism of IL-10-1082G/A locus and rheumatic heart disease. Computer retrieval PubMed, EMbase, Cochrane Library, CBM, CNKI, VIP and Data WanFang, the retrieval time limit from inception to June 2017. A case control study of single nucleotide polymorphisms and rheumatic heart disease in patients with rheumatic heart disease in the IL-10-1082G/A was collected. Two researchers independently screened the literature, extracted data and evaluated the risk of bias in the study, and using RevMan5.3 software for data analysis. A total of 3 case control studies were included, including 318 patients with rheumatic heart disease and 502 controls. Meta-analysis showed that there was no correlation between IL-10-1082G/A gene polymorphism and rheumatic heart disease [AA+AG VS GG: OR = 0.62, 95% CI (0.28, 1.39), P = 0.25; AA VS AG+GG: OR = 0.73, 95% CI (0.54, 1.00), P = 0.05; AA VS GG: OR = 0.70, 95% CI(0.47, 1.05), P = 0.08; AG VS GG: OR = 0.65, 95% CI (0.22, 1.92), P = 0.43; A VS G: OR = 0.87, 95% CI (0.71, 1.06), P = 0.17]. When AA is a recessive gene, the single nucleotide polymorphism of IL-10-1082G/A is associated with the presence of rheumatic heart disease. Due to the limitations of the quantity and quality of the included literatures, the further research results were still needed.

  8. Use of a single bipolar electrode in the posterior arytenoid muscles for bilateral monitoring of the recurrent laryngeal nerves in thyroid surgery.

    Science.gov (United States)

    Haerle, Stephan; Sidler, D; Linder, Th; Mueller, W

    2008-12-01

    The aims were to assess the technical feasibility of using a single electrode in the posterior arytenoid muscles (PAM) for intraoperative monitoring of the recurrent laryngeal nerve (RLN) in thyroid surgery, to validate the new method against the insertion of electrodes placed in the vocal cord muscle, and to report the results of the clinical application of the new concept. A total of 52 patients were enrolled. The handling and safety of RLN monitoring was tested by simultaneous registration of the EMG response from vocal fold electrodes and PAM electrodes. Acoustically and electromyographically we found nearly the same values for the arytenoid muscles as for the vocal folds, although the signals taken from the vocal folds were slightly stronger. PAM recording using a single bipolar electrode is technically feasible and as reliable compared to the standard vocal cord monitoring.

  9. Clinical methods for single-shot instant MR imaging of the heart

    International Nuclear Information System (INIS)

    Cohen, M.S.; Weisskoff, R.; Rzedzian, R.

    1989-01-01

    The authors have compared cardiac protocols for instant MR methods that acquire complete images in 32 msec. Four protocols are compared: continuous scanning at a fixed TR with retrospective reordering; pseudogating by using a TR 50 msec greater than the R-R interval; progressive time delay (PTD), in which the delay from the R wave is electronically advanced; and real-time (RT) imaging at 16 images/sec, which enabled complete movies to be obtained in a single heartbeat. Spin-echo techniques have been used for the first three protocols; the RT method used gradient echoes

  10. On a method to detect long-latency excitations and inhibitions of single hand muscle motoneurons in man.

    Science.gov (United States)

    Awiszus, F; Feistner, H; Schäfer, S S

    1991-01-01

    The peri-stimulus-time histogram (PSTH) analysis of stimulus-related neuronal spike train data is usually regarded as a method to detect stimulus-induced excitations or inhibitions. However, for a fairly regularly discharging neuron such as the human alpha-motoneuron, long-latency modulations of a PSTH are difficult to interpret as PSTH modulations can also occur as a consequence of a modulated neuronal autocorrelation. The experiments reported here were made (i) to investigate the extent to which a PSTH of a human hand-muscle motoneuron may be contaminated by features of the autocorrelation and (ii) to develop methods that display the motoneuronal excitations and inhibitions without such contamination. Responses of 29 single motor units to electrical ulnar nerve stimulation below motor threshold were investigated in the first dorsal interosseous muscle of three healthy volunteers using an experimental protocol capable of demonstrating the presence of autocorrelative modulations in the neuronal response. It was found for all units that the PSTH as well as the cumulative sum (CUSUM) derived from these responses were severely affected by the presence of autocorrelative features. On the other hand, calculating the CUSUM in a slightly modified form yielded--for all units investigated--a neuronal output feature sensitive only to motoneuronal excitations and inhibitions induced by the afferent volley. The price that has to be paid to arrive at such a modified CUSUM (mCUSUM) was a high computational effort prohibiting the on-line availability of this output feature during the experiment. It was found, however, that an interspike interval superposition plot (IISP)--easily obtainable during the experiment--is also free of autocorrelative features.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Sirolimus as an alternative to anticalcineurin therapy in heart transplantation: experience of a single center.

    Science.gov (United States)

    Fernandez-Valls, M; Gonzalez-Vilchez, F; de Prada, J A Vazquez; Ruano, J; Ruisanchez, C; Martin-Duran, R

    2005-11-01

    We report a series of 26 heart transplant recipients with renal impairment in which sirolimus was used as the basic immunosuppresive drug (without associated calcineurin inhibitors) to avoid further nephrotoxicity. Sirolimus (trough levels 10 to 12 ng/mL, average daily dose 3 mg) was used in two settings: de novo in 7 patients with significant preexistent renal impairment and as a chronic conversion in 19 stable patients with established renal failure (creatinine level >2 mg/dL). In all de novo patients (n = 7), the renal function significantly improved. Creatinine fell from 2.95 +/- 0.9 mg/dL to 1.41 +/- 0.4 mg/dL at follow-up (P = .0017). One patient died suddenly of a massive pulmonary embolism. Only one patient experienced histologic but reversible rejection. In one patient, anemia and diarrhea prompted sirolimus withdrawal. Five patients had infectious episodes: three bacterial pneumonias, one mediastinitis, and two CMV infections. In the chronic conversion group (n = 19), the improvement was mostly limited to patients with moderate renal failure (creatinine < or =2.5 mg/dL) in which creatinine fell from 2.24 +/- 0.2 to 1.9 +/- 0.27 mg/dL, P = .009). When basal creatinine was over 2.5 mg/dL, only one third of the patients improved after conversion. Two patients died: terminal renal failure and cerebrovascular accident. There were no clinical episodes of rejection. Secondary effects prompted the discontinuation of sirolimus in five patients: two definite and one possible interstitial pneumonitis and two cases of anemia). The symptoms resolved after sirolimus withdrawal. Six patients had infection: four pneumonias, one sepsis, and one cutaneous abscess. Sirolimus is an interesting alternative to calcineurin inhibitors in selected patients with renal impairment. It prevents renal failure in de novo recipients at high risk of catastrophic renal damage and ameliorates renal dysfunction in chronic patients with moderate renal dysfunction. Given the high incidence of

  12. Spatial and frequency domain ring source models for the single muscle fiber action potential

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; R., Plonsey

    1994-01-01

    In the paper, single-fibre models for the extracellular action potential are developed that will allow the potential to the evaluated at an arbitrary field point in the extracellular space. Fourier-domain models are restricted in that they evaluate potentials at equidistant points along a line...... parallel to the fibre axis. Consequently, they cannot easily evaluate the potential at the boundary nodes of a boundary-element electrode model. The Fourier-domain models employ axial-symmetric ring source models, and thereby provide higher accuracy that the line source model, where the source is lumped...... including anisotropy show that the spatial models require extreme care in the integration procedure owing to the singularity in the weighting functions. With adequate sampling, the spatial models can evaluate extracellular potentials with high accuracy....

  13. Mechanical properties of mammalian single smooth muscle cells. II. Evaluation of a modified technique for attachment of cells to the measurement apparatus

    NARCIS (Netherlands)

    J.J. Glerum (Jacobus); R. van Mastrigt (Ron)

    1990-01-01

    textabstractA method is described for attaching isolated single smooth muscle cells to an apparatus designed for measuring the longitudinal forces developed passively and actively by the cell upon straining, electrical or pharmacological stimulation. Primary attachment of the cell is based on its

  14. Effects of the new imidazopyridine CL 86-02-01 on isolated papillary muscle of guinea-pig hearts.

    Science.gov (United States)

    Studenik, C; Lemmens-Gruber, R; Heistracher, P

    1998-06-01

    Inotropic activity and the effect of CL 86-02-01 (2-(3-methoxy-5-methylsulfinyl-2-thienyl)-1H-imidazo[4,5-c]pyridine hydrochloride, CAS 109 792-24-7) on membrane resting and action potentials were studied in isolated guinea-pig papillary muscles. Membrane resting potential and action potential parameters were not significantly changed, while CL 86-02-01 exerted a concentration-dependent inotropic effect by increasing the maximum rate of force development and maximum rate of force relaxation. Time to peak force, relaxation time and total contraction time were reduced. These effects are similar to those of beta-adrenergic drugs and phosphodiesterase inhibitors, but markedly differ from those described for other positive inotropic agents like cardiac glycosides, calcium agonists, alpha-adrenergic drugs or increased extracellular calcium concentration.

  15. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    Science.gov (United States)

    Singh, Swati; Kumar, Ashok; Khare, Shashi; Mulchandani, Ashok; Rajesh

    2014-11-01

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml-1 with a limit of detection of 0.16 ng ml-1.

  16. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    International Nuclear Information System (INIS)

    Singh, Swati; Kumar, Ashok; Khare, Shashi; Mulchandani, Ashok; Rajesh

    2014-01-01

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml −1 with a limit of detection of 0.16 ng ml −1

  17. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Swati; Kumar, Ashok, E-mail: rajesh-csir@yahoo.com, E-mail: ashokigib@rediffmail.com [CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007 (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India); Khare, Shashi [National Centre for Disease Control, Sham Nath Marg, Delhi 110054 (India); Mulchandani, Ashok [Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521 (United States); Rajesh, E-mail: rajesh-csir@yahoo.com, E-mail: ashokigib@rediffmail.com [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2014-11-24

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml{sup −1} with a limit of detection of 0.16 ng ml{sup −1}.

  18. Sarcocystis arieticanis (Apicomplexa: Sarcocystidae) infecting the heart muscles of the domestic sheep, Ovis aries (Artiodactyla: Bovidae), from K. S. A. on the basis of light and electron microscopic data.

    Science.gov (United States)

    Al Quraishy, Saleh; Morsy, Kareem; Bashtar, Abdel-Rahman; Ghaffar, Fathy Abdel; Mehlhorn, Heinz

    2014-10-01

    In the present study, the heteroxenous life cycle of Sarcocystis species from three strains of the slaughtered sheep at Al-Azizia and Al-Saada abattoirs in Riyadh city, K.S.A., was studied. Muscle samples of the oesophagus, diaphragm, tongue, skeletal and heart muscles were examined. Varied natural infection rates in the muscles of the examined sheep strains were recorded as 83% in Niemy, 81.5% in Najdy and 90% in Sawakny sheep. Muscles of the diaphragm showed the highest infection level above all organs except Najdy sheep in which oesophagus has the highest rate. Also, the heart was the lowest infected organ (40% Niemy, 44% Najdy and 53% Sawakny). Microscopic sarcocysts of Sarcocystis arieticanis are easily identified in sections through the heart muscles of the domestic sheep Ovis aries (Artiodactyla: Bovidae). Cysts measured 38.5-64.4 μm (averaged 42.66 μm) in width and 62.4-173.6 μm (averaged 82.14 μm) in length. The validity of this species was confirmed by means of ultrastructural characteristics of the primary cyst wall (0.1-0.27 μm thick) which revealed the presence of irregularly shaped crowded and hairy-like projections underlined by a thin layer of ground substance. This layer consisted mainly of fine, dense homogenous granules enclosing the developing metrocytes and merozoites that usually contain nearly all the structures of the apical complex and fill the interior cavity of the cyst. Several septa derived from the ground substance divided the cyst into compartments. The merozoites were banana-shaped and measured 12-16 μm in length with centrally or posteriorly located nuclei. Experimental infection of carnivores by feeding heavily infected sheep muscles revealed that the dog, Canis familiaris, is the only final host of the present Sarcocystis species. Gamogony, sporogonic stages and characteristics of sporulated oocysts were also investigated.

  19. Single Dose Toxicity of Chukyu (spine-healing Pharmacopuncture Injection in the Muscle of Rats

    Directory of Open Access Journals (Sweden)

    Jeong Hohyun

    2014-03-01

    Full Text Available Objectives: This study was performed to analyze the single dose toxicity of Chukyu (spine-healing pharmacopuncture. Methods: All experiments were conducted at the Biotoxtech, an institution authorized to perform non-clinical studies under the regulations of Good Laboratory Practice (GLP regulations. Sprague-Dawley rats were chosen for the pilot study. Doses of Chukyu (spine-healing pharmacopuncture, 0.1, 0.5 and 1.0 mL, were administered to the experimental groups, and a dose of normal saline solution, 1.0 mL, was administered to the control group. This study was conducted under the approval of the Institutional Animal Ethic Committee. Results: No deaths or abnormalities occurred in any of the four groups. No significant changes in weight, hematological parameters or clinical chemistry between the control group and the experimental groups were observed. To check for abnormalities in organs and tissues, we used microscopy to examine representative histological sections of each specified organ; the results showed no significant differences in any of the organs or tissues except in one case, where interstitial infiltrating macrophages were found in one female rat in the 0.5-mL/animal experimental group. Conclusion: The above findings suggest that treatment with Chukyu (spine-healing pharmacopuncture is relatively safe. Further studies on this subject are needed to yield more concrete evidence.

  20. Inspiratory Muscle Training and Functional Electrical Stimulation for Treatment of Heart Failure With Preserved Ejection Fraction: The TRAINING-HF Trial.

    Science.gov (United States)

    Palau, Patricia; Domínguez, Eloy; López, Laura; Ramón, José María; Heredia, Raquel; González, Jessika; Santas, Enrique; Bodí, Vicent; Miñana, Gema; Valero, Ernesto; Mollar, Anna; Bertomeu González, Vicente; Chorro, Francisco J; Sanchis, Juan; Lupón, Josep; Bayés-Genís, Antoni; Núñez, Julio

    2018-03-16

    Despite the prevalence of heart failure with preserved ejection fraction (HFpEF), there is currently no evidence-based effective therapy for this disease. This study sought to evaluate whether inspiratory muscle training (IMT), functional electrical stimulation (FES), or a combination of both (IMT + FES) improves 12- and 24-week exercise capacity as well as left ventricular diastolic function, biomarker profile, and quality of life in HFpEF. A total of 61 stable symptomatic patients (New York Heart Association II-III) with HFpEF were randomized (1:1:1:1) to receive a 12-week program of IMT, FES, or IMT + FES vs usual care. The primary endpoint of the study was to evaluate change in peak exercise oxygen uptake at 12 and 24 weeks. Secondary endpoints were changes in quality of life, echocardiogram parameters, and prognostic biomarkers. We used a mixed-effects model for repeated-measures to compare endpoints changes. Mean age and peak exercise oxygen uptake were 74 ± 9 years and 9.9 ± 2.5mL/min/kg, respectively. The proportion of women was 58%. At 12 weeks, the mean increase in peak exercise oxygen uptake (mL/kg/min) compared with usual care was 2.98, 2.93, and 2.47 for IMT, FES, and IMT + FES, respectively (P < .001) and this beneficial effect persisted after 6 months (1.95, 2.08, and 1.56; P < .001). Significant increases in quality of life scores were found at 12 weeks (P < .001). No other changes were found. In HFpEF patients with low aerobic capacity, IMT and FES were associated with a significant improvement in exercise capacity and quality of life. This trial was registered at ClinicalTrials.gov (Identifier: NCT02638961).. Copyright © 2018 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  1. Biological variation, reference change value (RCV) and minimal important difference (MID) of inspiratory muscle strength (PImax) in patients with stable chronic heart failure.

    Science.gov (United States)

    Täger, Tobias; Schell, Miriam; Cebola, Rita; Fröhlich, Hanna; Dösch, Andreas; Franke, Jennifer; Katus, Hugo A; Wians, Frank H; Frankenstein, Lutz

    2015-10-01

    Despite the widespread application of measurements of respiratory muscle force (PImax) in clinical trials there is no data on biological variation, reference change value (RCV), or the minimal important difference (MID) for PImax irrespective of the target cohort. We addressed this issue for patients with chronic stable heart failure. From the outpatients' clinic of the University of Heidelberg we retrospectively selected three groups of patients with stable systolic chronic heart failure (CHF). Each group had two measurements of PImax: 90 days apart in Group A (n = 25), 180 days apart in Group B (n = 93), and 365 days apart in Group C (n = 184). Stability was defined as (a) no change in NYHA class between visits and (b) absence of cardiac decompensation 3 months prior, during, and 3 months after measurements. For each group, we determined within-subject (CVI), between-subject (CVG), and total (CVT) coefficient of variation (CV), the index of individuality (II), RCV, reliability coefficient, and MID of PImax. CVT was 8.7, 7.5, and 6.9 % for groups A, B, and C, respectively. The II and RCV were 0.21, 0.20, 0.16 and 13.6, 11.6, 10.8 %, respectively. The reliability coefficient and MID were 0.83, 0.87, 0.88 and 1.44, 1.06, 1.12 kPa, respectively. Results were similar between age, gender, and aetiology subgroups. In patients with stable CHF, measurements of PImax are highly stable for intervals up to 1 year. The low values for II suggest that evaluation of change in PImax should be performed on an individual (per patient) basis. Individually significant change can be assumed beyond 14 % (RCV) or 1.12 kPa (MID).

  2. An examination of resveratrol's mechanisms of action in human tissue: impact of a single dose in vivo and dose responses in skeletal muscle ex vivo.

    Directory of Open Access Journals (Sweden)

    Cameron B Williams

    Full Text Available The current study tested the hypothesis that a single, moderate dose of RSV would activate the AMPK/SIRT1 axis in human skeletal muscle and adipose tissue. Additionally, the effects of RSV on mitochondrial respiration in PmFBs were examined. Eight sedentary men (23.8±2.4 yrs; BMI: 32.7±7.1 reported to the lab on two occasions where they were provided a meal supplemented with 300 mg of RSV or a placebo. Blood samples, and a muscle biopsy were obtained in the fasted state and again, with the addition of an adipose tissue biopsy, two hours post-prandial. The effect of RSV on mitochondrial respiration was examined in PmFBs taken from muscle biopsies from an additional eight men (23.4±5.4 yrs; BMI: 24.4±2.8. No effect of RSV was observed on nuclear SIRT1 activity, acetylation of p53, or phosphorylation of AMPK, ACC or PKA in either skeletal muscle or adipose tissue. A decrease in post absorptive insulin levels was accompanied by elevated skeletal muscle phosphorylation of p38 MAPK, but no change in either skeletal muscle or adipose tissue insulin signalling. Mitochondrial respiration in PmFBs was rapidly inhibited by RSV at 100-300 uM depending on the substrate examined. These results question the efficacy of a single dose of RSV at altering skeletal muscle and adipose tissue AMPK/SIRT1 activity in humans and suggest that RSV mechanisms of action in humans may be associated with altered cellular energetics resulting from impaired mitochondrial ATP production.

  3. On the relationship between lower extremity muscles activation and peak vertical and posterior ground reaction forces during single leg drop landing.

    Science.gov (United States)

    Mahaki, M; Mi'mar, R; Mahaki, B

    2015-10-01

    Anterior cruciate ligament (ACL) injury continues to be an important medical issue for athletes participating in sports. Vertical and posterior ground reaction forces have received considerable attention for their potential influence on ACL injuries. The purpose of this study was to examine the relationship between electromyographic activity of lower extremity muscles and the peak vertical and posterior ground reaction forces during single leg drop landing. Thirteen physical education male students participated in this correlation study. Electromyographic activities of gluteus medius, biceps femoris, medial gastrocnemius, soleus as well as anterior tibialis muscles along with ground reaction forces were measured. Participants performed single-leg landing from a 0.3 m height on to a force platform. Landing was divided into two phases: 100 ms preceding ground contact and 100 ms proceeding ground contact. Pearson correlation test was used to determine the relationships between these muscles activity and peak vertical and posterior ground reaction forces. The results of the study indicated that the activity of soleus and tibialis anterior in pre-landing phase were positively correlated with peak vertical ground reaction force ([P≤0.04], [P≤0.008], respectively). However, no significant correlation was found between the activities of other muscles in pre-landing phase and peak vertical as well as peak posterior ground reaction forces. Also, no significant correlation was found between the activities of muscles in post-landing phase and peak vertical as well as peak posterior ground reaction forces. Soleus loading shifts the proximal tibia posterior at the knee joint and tibialis anterior prevent hyperporonation of the ankle, a mechanisms of ACL injury. Hence, neuromuscular training promoting preparatory muscle activity in these muscles may reduce the incidence of ACL injuries.

  4. A Cellular Automata-based Model for Simulating Restitution Property in a Single Heart Cell.

    Science.gov (United States)

    Sabzpoushan, Seyed Hojjat; Pourhasanzade, Fateme

    2011-01-01

    Ventricular fibrillation is the cause of the most sudden mortalities. Restitution is one of the specific properties of ventricular cell. The recent findings have clearly proved the correlation between the slope of restitution curve with ventricular fibrillation. This; therefore, mandates the modeling of cellular restitution to gain high importance. A cellular automaton is a powerful tool for simulating complex phenomena in a simple language. A cellular automaton is a lattice of cells where the behavior of each cell is determined by the behavior of its neighboring cells as well as the automata rule. In this paper, a simple model is depicted for the simulation of the property of restitution in a single cardiac cell using cellular automata. At first, two state variables; action potential and recovery are introduced in the automata model. In second, automata rule is determined and then recovery variable is defined in such a way so that the restitution is developed. In order to evaluate the proposed model, the generated restitution curve in our study is compared with the restitution curves from the experimental findings of valid sources. Our findings indicate that the presented model is not only capable of simulating restitution in cardiac cell, but also possesses the capability of regulating the restitution curve.

  5. Screening Tests for Women Who Have Heart Disease

    Science.gov (United States)

    ... Based Toolkit Logo Campaign Materials The Healthy Heart Handbook for Women FOR WOMEN WHO HAVE HEART DISEASE ... taken up by the heart muscle. Echocardiography changes sound waves into pictures that show the heart's size, ...

  6. Effect of race on the timing of the Glenn and Fontan procedures for single-ventricle congenital heart disease.

    Science.gov (United States)

    Ingaramo, Oscar A; Khemani, Robinder G; Markovitz, Barry P; Epstein, David

    2012-03-01

    Disparities in health care have been documented between different racial groups in the United States. We hypothesize that there will be racial variance in the timing of the Glenn and Fontan procedures for children with single-ventricle physiology. We performed a retrospective review of a national pediatric intensive care unit database (Virtual PICU Performance System, LLC). Children with hypoplastic left heart syndrome, tricuspid atresia, and common ventricle, admitted from January 2006 to July 2008, were included. Data included race, weight, age, medical length of stay, Paediatric Index of Mortality 2 score, and survival. None. There were 423 patients from 29 hospitals. The study population was 7.6% black, 13.0% Hispanic, 59.8% white, 9.2% "other," and 11.6% had missing racial/ethnic information. Diagnoses included 255 patients with hypoplastic left heart syndrome, 91 with tricuspid atresia, and 77 with common ventricle. The median age for the Glenn procedure (n = 205) was 5.5 months (interquartile range, 4.6-7.0 months) and 39.7 months (interquartile range, 32.4-50.6 months) for the Fontan procedure (n = 218). There was no difference between the median age at the time of the Glenn or Fontan procedures between the different racial/ethnic groups (p = .65 and p = .16, respectively). The medical length of intensive care unit stay for patients receiving the Glenn and Fontan procedures was 3.7 days (interquartile range, 1.9-6.1 days) and 3.7 days (interquartile range, 1.9-6.8 days), respectively. There were no differences in medical length of intensive care unit stay for the Glenn procedure between the different racial/ethnic groups (p = .21). Hispanic patients had a longer medical length of intensive care unit stay (6.3 days; interquartile range, 3.1-9.9 days) than white patients (2.9 days; interquartile range, 1.8-5.3 days) for the Fontan procedure (p = .008). The timing of single-ventricle palliative procedures was not affected by race/ethnicity.

  7. Selective recruitment of single motor units in human flexor digitorum superficialis muscle during flexion of individual fingers.

    Science.gov (United States)

    Butler, T J; Kilbreath, S L; Gorman, R B; Gandevia, S C

    2005-08-15

    Flexor digitorum superficialis (FDS) is an extrinsic multi-tendoned muscle which flexes the proximal interphalangeal joints of the four fingers. It comprises four digital components, each with a tendon that inserts onto its corresponding finger. To determine the degree to which these digital components can be selectively recruited by volition, we recorded the activity of a single motor unit in one component via an intramuscular electrode while the subject isometrically flexed each of the remaining fingers, one at a time. The finger on which the unit principally acted was defined as the 'test finger' and that which flexed isometrically was the 'active' finger. Activity in 79 units was recorded. Isometric finger flexion forces of 50% maximum voluntary contraction (MVC) activated less than 50% of single units in components of FDS acting on fingers that were not voluntarily flexed. With two exceptions, the median recruitment threshold for all active-test finger combinations involving the index, middle, ring and little finger test units was between 49 and 60% MVC (60% MVC being the value assigned to those not recruited). The exceptions were flexion of the little finger while recording from ring finger units (median: 40% MVC), and vice versa (median: 2% MVC). For all active-test finger combinations, only 35/181 units were activated when the active finger flexed at less than 20% MVC, and the fingers were adjacent for 28 of these. Functionally, to recruit FDS units during grasping and lifting, relatively heavy objects were required, although systematic variation occurred with the width of the object. In conclusion, FDS components can be selectively activated by volition and this may be especially important for grasping at high forces with one or more fingers.

  8. Beneficial Effects of Physical Exercise on Functional Capacity and Skeletal Muscle Oxidative Stress in Rats with Aortic Stenosis-Induced Heart Failure

    Directory of Open Access Journals (Sweden)

    Mariana Janini Gomes

    2016-01-01

    Full Text Available Objective. We evaluated the influence of exercise on functional capacity, cardiac remodeling, and skeletal muscle oxidative stress, MAPK, and NF-κB pathway in rats with aortic stenosis- (AS- induced heart failure (HF. Methods and Results. Eighteen weeks after AS induction, rats were assigned into sedentary control (C-Sed, exercised control (C-Ex, sedentary AS (AS-Sed, and exercised AS (AS-Ex groups. Exercise was performed on treadmill for eight weeks. Statistical analyses were performed with Goodman and ANOVA or Mann-Whitney. HF features frequency and mortality did not differ between AS groups. Exercise improved functional capacity, assessed by maximal exercise test on treadmill, without changing echocardiographic parameters. Soleus cross-sectional areas did not differ between groups. Lipid hydroperoxide concentration was higher in AS-Sed than C-Sed and AS-Ex. Activity of antioxidant enzymes superoxide dismutase and glutathione peroxidase was changed in AS-Sed and restored in AS-Ex. NADPH oxidase activity and gene expression of its subunits did not differ between AS groups. Total ROS generation was lower in AS-Ex than C-Ex. Exercise modulated MAPK in AS-Ex and did not change NF-κB pathway proteins. Conclusion. Exercise improves functional capacity in rats with AS-induced HF regardless of echocardiographic parameter changes. In soleus, exercise reduces oxidative stress, preserves antioxidant enzyme activity, and modulates MAPK expression.

  9. Seasonal variations of anti-/apoptotic and antioxidant proteins in the heart and gastrocnemius muscle of the water frog Pelophylax ridibundus.

    Science.gov (United States)

    Feidantsis, Konstantinos; Anestis, Andreas; Michaelidis, Basile

    2013-10-01

    In the present work we investigated the seasonal variations of apoptotic and antioxidant proteins in the heart and gastrocnemius muscle of the amphibian Pelophylax ridibundus. Particularly processes studied included the evaluation of hypoxia through the levels of transcriptional factor Hif-1α, of apoptosis through the determination of Bcl-2 and Bax, ubiquitin conjugates levels and the antioxidant defense through the determination of the activity of enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Due to a general metabolic depression during overwintering, levels of the above mentioned proteins and enzymes are generally retained at low levels of expression and activity in the examined tissues of P. ridibundus. On the other hand recovery from overwintering induces oxidative stress, followed by increased levels of the specific proteins and enzymes. A milder up-regulation of antioxidant enzymes during overwintering probably prepares P. ridibundus for oxidative stress during arousal. The seasonal activation of these mechanisms seems to protect this species from these unfavourable conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Replacement of C305 in heart/muscle-type isozyme of human carnitine palmitoyltransferase I with aspartic acid and other amino acids.

    Science.gov (United States)

    Matsuo, Taisuke; Yamamoto, Atsushi; Yamamoto, Takenori; Otsuki, Kaoru; Yamazaki, Naoshi; Kataoka, Masatoshi; Terada, Hiroshi; Shinohara, Yasuo

    2010-04-01

    Liver- and heart/muscle-type isozymes of human carnitine palmitoyltransferase I (L- and M-CPTI, respectively) show a certain similarity in their amino acid sequences, and mutation studies on the conserved amino acids between these two isozymes often show essentially the same effects on their enzymatic properties. Earlier mutation studies on C305 in human M-CPTI and its counterpart residue, C304, in human L-CPTI showed distinct effects of the mutations, especially in the aspect of enzyme stability; however, simple comparison of these effects on the conserved Cys residue between L- and M-CPTI was difficult, because these studies were carried out using different expression systems and distinct amino acids as replacements. In the present study, we carried out mutation studies on the C305 in human M-CPTI using COS cells for the expression system. Our results showed that C305 was replaceable with aspartic acid but that substitution with other amino acids caused both loss of function and reduced expression.

  11. Up-regulation of alpha-smooth muscle actin in cardiomyocytes from non-hypertrophic and non-failing transgenic mouse hearts expressing N-terminal truncated cardiac troponin I

    Directory of Open Access Journals (Sweden)

    Stephanie Kern

    2014-01-01

    Full Text Available We previously reported that a restrictive N-terminal truncation of cardiac troponin I (cTnI-ND is up-regulated in the heart in adaptation to hemodynamic stresses. Over-expression of cTnI-ND in the hearts of transgenic mice revealed functional benefits such as increased relaxation and myocardial compliance. In the present study, we investigated the subsequent effect on myocardial remodeling. The alpha-smooth muscle actin (α-SMA isoform is normally expressed in differentiating cardiomyocytes and is a marker for myocardial hypertrophy in adult hearts. Our results show that in cTnI-ND transgenic mice of between 2 and 3 months of age (young adults, a significant level of α-SMA is expressed in the heart as compared with wild-type animals. Although blood vessel density was increased in the cTnI-ND heart, the mass of smooth muscle tissue did not correlate with the increased level of α-SMA. Instead, immunocytochemical staining and Western blotting of protein extracts from isolated cardiomyocytes identified cardiomyocytes as the source of increased α-SMA in cTnI-ND hearts. We further found that while a portion of the up-regulated α-SMA protein was incorporated into the sarcomeric thin filaments, the majority of SMA protein was found outside of myofibrils. This distribution pattern suggests dual functions for the up-regulated α-SMA as both a contractile component to affect contractility and as possible effector of early remodeling in non-hypertrophic, non-failing cTnI-ND hearts.

  12. Biosynthesis of the Essential Fatty Acid Oxidation Cofactor Carnitine Is Stimulated in Heart and Liver after a Single Bout of Exercise in Mice

    Directory of Open Access Journals (Sweden)

    Tom L. Broderick

    2018-01-01

    Full Text Available We determined whether one single bout of exercise stimulates carnitine biosynthesis and carnitine uptake in liver and heart. Free carnitine (FC in plasma was assayed using acetyltransferase and [14C]acetyl-CoA in Swiss Webster mice after 1 hour of moderate-intensity treadmill running or 4 hours and 8 hours into recovery. Liver and heart were removed under the same conditions for measurement of carnitine biosynthesis enzymes (liver butyrobetaine hydroxylase, γ-BBH; heart trimethyllysine dioxygenase, TMLD, organic cation transporter-2 (OCTN2, carnitine transporter, and liver peroxisome proliferator-activated receptor-alpha (PPARα, transcription factor for γ-BBH and OCTN2 synthesis. In exercised mice, FC levels in plasma decreased while heart and liver OCTN2 protein expressed increased, reflecting active uptake of FC. During recovery, the rise in FC to control levels was associated with increased liver γ-BBH expression. Protein expression of PPARα was stimulated in liver after exercise and during recovery. Interestingly, heart TMLD protein was also detected after exercise. Acute exercise stimulates carnitine uptake in liver and heart. The rapid return of FC levels in plasma after exercise indicates carnitine biosynthesis by liver is stimulated to establish carnitine homeostasis. Our results suggest that exercise may benefit patients with carnitine deficiency syndromes.

  13. Epicardial mapping of ventricular fibrillation over the posterior descending artery and left posterior papillary muscle of the swine heart.

    Science.gov (United States)

    Nielsen, Thomas D; Huang, Jian; Rogers, Jack M; Killingsworth, Cheryl R; Ideker, Raymond E

    2009-01-01

    Recent studies suggest that during ventricular fibrillation (VF) epicardial vessels may be a site of conduction block and the posterior papillary muscle (PPM) in the left ventricle (LV) may be the location of a "mother rotor." The goal of this study was to obtain evidence to support or refute these possibilities. Epicardial activation over the posterior LV and right ventricle (RV) was mapped during the first 20 s of electrically induced VF in six open-chest pigs with a 504 electrode plaque covering a 20 cm(2) area centered over the posterior descending artery (PDA). The locations of epicardial breakthrough as well as reentry clustered in time and space during VF. Spatially, reentry occurred significantly more frequently over the LV than the RV in all 48 episodes, and breakthrough clustered near the PPM (p < 0.001). Significant temporal clustering occurred in 79% of breakthrough episodes and 100% of reentry episodes. These temporal clusters occurred at different times so that there was significantly less breakthrough when reentry was present (p < 0.0001). Conduction block occurred significantly more frequently near the PDA than elsewhere. The PDA is a site of epicardial block which may contribute to VF maintenance. Epicardial breakthrough clusters near the PPM. Reentry also clusters in space but at a separate site. The fact that breakthrough and reentry cluster at different locations and at different times supports the possibility of a drifting filament at the PPM so that at times reentry is present on the surface but at other times the reentrant wavefront breaks through to the epicardium.

  14. Skeletal muscle mechanics: questions, problems and possible solutions.

    Science.gov (United States)

    Herzog, Walter

    2017-09-16

    Skeletal muscle mechanics have been studied ever since people have shown an interest in human movement. However, our understanding of muscle contraction and muscle mechanical properties has changed fundamentally with the discovery of the sliding filament theory in 1954 and associated cross-bridge theory in 1957. Nevertheless, experimental evidence suggests that our knowledge of the mechanisms of contraction is far from complete, and muscle properties and muscle function in human movement remain largely unknown.In this manuscript, I am trying to identify some of the crucial challenges we are faced with in muscle mechanics, offer possible solutions to questions, and identify problems that might be worthwhile exploring in the future. Since it is impossible to tackle all (worthwhile) problems in a single manuscript, I identified three problems that are controversial, important, and close to my heart. They may be identified as follows: (i) mechanisms of muscle contraction, (ii) in vivo whole muscle mechanics and properties, and (iii) force-sharing among synergistic muscles. These topics are fundamental to our understanding of human movement and movement control, and they contain a series of unknowns and challenges to be explored in the future.It is my hope that this paper may serve as an inspiration for some, may challenge current beliefs in selected areas, tackle important problems in the area of muscle mechanics, physiology and movement control, and may guide and focus some of the thinking of future muscle mechanics research.

  15. Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles - Possible role in rescuing cellular energy homeostasis

    NARCIS (Netherlands)

    ter Veld, F; Jeneson, JAL; Nicolay, K

    Adaptations of the kinetic properties of mitochondria in striated muscle lacking cytosolic (M) and/or mitochondrial (Mi) creatine kinase (CK) isoforms in comparison to wild-type (WT) were investigated in vitro. Intact mitochondria were isolated from heart and gastrocnemius muscle of WT and single-

  16. Stress and your heart

    Science.gov (United States)

    Coronary heart disease - stress; Coronary artery disease - stress ... Your body responds to stress on many levels. First, it releases stress hormones that make you breathe faster. Your blood pressure goes up. Your muscles ...

  17. The influence of single and fractionated dose external beam irradiation on injury-induced arterial smooth muscle cell proliferation

    International Nuclear Information System (INIS)

    Schaefer, U.; Micke, O.; Dorszewski, A.; Breithardt, G.; Willich, N.

    1997-01-01

    Purpose/Objective: Restenosis after catheter-based revascularization has been demonstrated to be primarily caused by smooth muscle cell proliferation. This study examined the effects of external beam irradiation on neointimal proliferation after external injury to the central artery of the rabbit ear. Materials and Methods: 40 male New Zealand White rabbits were used in this study. Crush lesions were performed on each ear under general anesthesia and bilateral auricular nerve blockade. A single dose of 12 Gy (n=10), 16 Gy (n=10), or 20 Gy (n=10) and a fractionated dose of 4 x 5 Gy (n=10) gamma radiation was delivered to the left or right central artery of the ear 24 hours after injury; the contralateral central artery served as control. All rabbits were sacrificed after twenty-one days and the central arteries of the ear were fixed for morphometric measurements. Results: Mean (± SD) neointimal area was 0.062 ± 0.005 mm 2 (12 Gy), 0.022 ± 0,005 mm 2 (16 Gy), 0,028 ± 0,006 mm 2 and 0.038 mm 2 ± 0,02 mm 2 (4 x 5 Gy) in irradiated arteries compared with 0,081 ± 0,009 mm 2 in the control group. Mean (±SD) luminal area was 0.049 ± 0.004 mm 2 (12 Gy), 0.059 ± 0.002 mm 2 (16 Gy), 0.072 ± 0,006 mm 2 (20 Gy) and 0.048 mm 2 ± 0,018 mm 2 (4 x 5 Gy) in irradiated arteries compared with 0,043 ± 0,008 mm 2 in the control group. The difference in neointimal and luminal area between control and irradiated arteries was significant (p<0.05) only for the 16 and 20 Gy group compared to control. Conclusion: We conclude that in this model, external beam X-ray irradiation was successful in reducing neointimal proliferation after injury of the central artery of the rabbit ear. The optimal dose seems to be a single dose of 16 Gy - 20 Gy. Only a less prominent effect was noted for a fractionated dose of 4 x 5 Gy. Whether this approach can be used successfully to inhibit restenosis in the clinical setting requires further investigation

  18. Clinical value of iodine-123 beta-methyliodophenyl pentadecanoic acid (BMIPP) myocardial single photon emission computed tomography for predicting cardiac death among patients with chronic heart failure

    International Nuclear Information System (INIS)

    Sasaki, Ryu; Usui, Takashi; Mitani, Isao

    2003-01-01

    In the present study, the effectiveness of 123 I-β-methyliodophenyl pentadecanoic acid (BMIPP) single photon emission computed tomography (SPECT) for predicting cardiac death of patients with chronic heart failure was evaluated. Abnormalities of fatty acid metabolism are found in patients with chronic heart failure and BMIPP was developed as a tracer for scintigraphic assessment of myocardial fatty acid utilization. The study group comprised 74 patients with chronic heart failure with a left ventricular ejection fraction (LVEF) 201 Tl SPECT and BMIPP SPECT. The uptake of tracer was scored semiquantitatively from 0 (normal) to 4 (defect) in 20 segments and a total defect score (TDS) for all 20 segments was calculated. On planar images the mediastinum to heart count ratio (H/M) was calculated for the BMIPP and Tl studies, and the H/M BMIPP :H/M Tl (H/M BMIPP divided by H/M Tl ) was also calculated. The mean follow-up period was 660 days and there were 17 cases of cardiac death. Multivariate analysis identified H/M BMIPP :H/M Tl (p BMIPP :H/M Tl was situated to the left relative to LVEF. Analysis of the myocardial metabolism by BMIPP SPECT can predict the high-risk patients with chronic heart failure. (author)

  19. Quantitative assessment of the presence of a single leg separation in Björk-Shiley convexoconcave prosthetic heart valves.

    Science.gov (United States)

    Vrooman, H A; Maliepaard, C; van der Linden, L P; Jessurun, E R; Ludwig, J W; Plokker, H W; Schalij, M J; Weeda, H W; Laufer, J L; Huysmans, H A; Reiber, J H

    1997-09-01

    The authors developed an analytic software package for the objective and reproducible assessment of a single leg separation (SLS) in the outlet strut of Björk-Shiley convexoconcave (BSCC) prosthetic heart valves. The radiographic cinefilm recordings of 18 phantom valves (12 intact and 6 SLS) and of 43 patient valves were acquired. After digitization of regions of interest in a cineframe, several processing steps were carried out to obtain a one-dimensional corrected and averaged density profile along the central axis of each strut leg. To characterize the degree of possible separation, two quantitative measures were introduced: the normalized pit depth (NPD) and the depth-sigma ratio (DSR). The group of 43 patient studies was divided into a learning set (25 patients) and a test set (18 patients). All phantom valves with an SLS were detected (sensitivity, 100%) at a specificity of 100%. The threshold values for the NPD and the DSR to decide whether a fracture was present or not were 3.6 and 2.5, respectively. On the basis of the visual interpretations of the 25 patient studies (learning set) by an expert panel, it was concluded that none of the patients had an SLS. To achieve a 100% specificity by quantitative analysis, the threshold values for the NPD and the DSR were set at 5.8 and 2.5, respectively, for the patient data. Based on these threshold values, the analysis of patient data from the test set resulted in one false-negative detection and three false-positive detections. An analytic software package for the detection of an SLS was developed. Phantom data showed excellent sensitivity (100%) and specificity (100%). Further research and software development is needed to increase the sensitivity and specificity for patient data.

  20. Piscine Orthoreovirus from Western North America Is Transmissible to Atlantic Salmon and Sockeye Salmon but Fails to Cause Heart and Skeletal Muscle Inflammation.

    Science.gov (United States)

    Garver, Kyle A; Johnson, Stewart C; Polinski, Mark P; Bradshaw, Julia C; Marty, Gary D; Snyman, Heindrich N; Morrison, Diane B; Richard, Jon

    2016-01-01

    Heart and skeletal muscle inflammation (HSMI) is a significant and often fatal disease of cultured Atlantic salmon in Norway. The consistent presence of Piscine orthoreovirus (PRV) in HSMI diseased fish along with the correlation of viral load and antigen with development of lesions has supported the supposition that PRV is the etiologic agent of this condition; yet the absence of an in vitro culture system to demonstrate disease causation and the widespread prevalence of this virus in the absence of disease continues to obfuscate the etiological role of PRV with regard to HSMI. In this study, we explore the infectivity and disease causing potential of PRV from western North America-a region now considered endemic for PRV but without manifestation of HSMI-in challenge experiments modeled upon previous reports associating PRV with HSMI. We identified that western North American PRV is highly infective by intraperitoneal injection in Atlantic salmon as well as through cohabitation of both Atlantic and Sockeye salmon. High prevalence of viral RNA in peripheral blood of infected fish persisted for as long as 59 weeks post-challenge. Nevertheless, no microscopic lesions, disease, or mortality could be attributed to the presence of PRV, and only a minor transcriptional induction of the antiviral Mx gene occurred in blood and kidney samples during log-linear replication of viral RNA. Comparative analysis of the S1 segment of PRV identified high similarity between this North American sequence and previous sequences associated with HSMI, suggesting that factors such as viral co-infection, alternate PRV strains, host condition, or specific environmental circumstances may be required to cause this disease.

  1. Piscine Orthoreovirus from Western North America Is Transmissible to Atlantic Salmon and Sockeye Salmon but Fails to Cause Heart and Skeletal Muscle Inflammation.

    Directory of Open Access Journals (Sweden)

    Kyle A Garver

    Full Text Available Heart and skeletal muscle inflammation (HSMI is a significant and often fatal disease of cultured Atlantic salmon in Norway. The consistent presence of Piscine orthoreovirus (PRV in HSMI diseased fish along with the correlation of viral load and antigen with development of lesions has supported the supposition that PRV is the etiologic agent of this condition; yet the absence of an in vitro culture system to demonstrate disease causation and the widespread prevalence of this virus in the absence of disease continues to obfuscate the etiological role of PRV with regard to HSMI. In this study, we explore the infectivity and disease causing potential of PRV from western North America-a region now considered endemic for PRV but without manifestation of HSMI-in challenge experiments modeled upon previous reports associating PRV with HSMI. We identified that western North American PRV is highly infective by intraperitoneal injection in Atlantic salmon as well as through cohabitation of both Atlantic and Sockeye salmon. High prevalence of viral RNA in peripheral blood of infected fish persisted for as long as 59 weeks post-challenge. Nevertheless, no microscopic lesions, disease, or mortality could be attributed to the presence of PRV, and only a minor transcriptional induction of the antiviral Mx gene occurred in blood and kidney samples during log-linear replication of viral RNA. Comparative analysis of the S1 segment of PRV identified high similarity between this North American sequence and previous sequences associated with HSMI, suggesting that factors such as viral co-infection, alternate PRV strains, host condition, or specific environmental circumstances may be required to cause this disease.

  2. Effect of spaceflight on the isotonic contractile properties of single skeletal muscle fibers in the rhesus monkey

    Science.gov (United States)

    Fitts, R. H.; Romatowski, J. G.; Blaser, C.; De La Cruz, L.; Gettelman, G. J.; Widrick, J. J.

    2000-01-01

    Experiments from both Cosmos and Space Shuttle missions have shown weightlessness to result in a rapid decline in the mass and force of rat hindlimb extensor muscles. Additionally, despite an increased maximal shortening velocity, peak power was reduced in rat soleus muscle post-flight. In humans, declines in voluntary peak isometric ankle extensor torque ranging from 15-40% have been reported following long- and short-term spaceflight and prolonged bed rest. Complete understanding of the cellular events responsible for the fiber atrophy and the decline in force, as well as the development of effective countermeasures, will require detailed knowledge of how the physiological and biochemical processes of muscle function are altered by spaceflight. The specific purpose of this investigation was to determine the extent to which the isotonic contractile properties of the slow- and fast-twitch fiber types of the soleus and gastrocnemius muscles of rhesus monkeys (Macaca mulatta) were altered by a 14-day spaceflight.

  3. Engineered Heart Repair.

    Science.gov (United States)

    Fujita, B; Zimmermann, W-H

    2017-08-01

    There is a pressing need for the development of advanced heart failure therapeutics. Current state-of-the-art is protection from neurohumoral overstimulation, which fails to address the underlying cause of heart failure, namely loss of cardiomyocytes. Implantation of stem cell-derived cardiomyocytes via tissue-engineered myocardium is being advanced to realize the remuscularization of the failing heart. Here, we discuss pharmacological challenges pertaining to the clinical translation of tissue-engineered heart repair with a focus on engineered heart muscle (EHM). © 2017 American Society for Clinical Pharmacology and Therapeutics.

  4. Radiopharmaceuticals for diagnosis of ischemic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Komarek, P; Chalabala, M [Institut pro Dalsi Vzdelavani Lekaru a Farmaceutu, Prague (Czechoslovakia)

    1982-01-01

    Radiopharmaceuticals used for diagnosing ischemic heart disease in the experimental and clinical practice are reviewed. The mechanism of their retention by the heart muscle is briefly described. The respective radiopharmaceuticals are divided into preparations imaging disorders in the blood supply of the cardiac muscle, diagnosing the myocardial infarction, and evaluating the contractility of the heart.

  5. THE EFFECTS OF SINGLE LEG HOP PROGRESSION AND DOUBLE LEGS HOP PROGRESSION EXERCISE TO INCREASE SPEED AND EXPLOSIVE POWER OF LEG MUSCLE

    Directory of Open Access Journals (Sweden)

    Nining W. Kusnanik

    2015-05-01

    Full Text Available The main purpose of this study was to determine the effect of single leg hop progression and double legs hop progression exercise to increase speed and explosive power of leg muscles. Plyometric is one of the training methods that can increase explosive power. There are many models of plyometric training including single leg hop progression and double leg hop progression. This research was experimental using match subject design techniques. The subjects of this study were 39 students who joined basketball school club. There were 3 groups in this study: Group 1 were 13 students who given sin¬gle leg hop progression exercise, Group 2 were 13 students who given double legs hop progression exercise, Group 3 were 13 students who given conventional exercise. The data was collected during pre test and post test by testing 30m speed running and vertical jump. The data was analyzed using Analysis of Varians (Anova. It was found that there were significantly increased on speed and explosive power of leg muscles of Group 1 and Group 2. It can be stated that single leg hop progression exercise was more effective than double leg hop progression exercise. The recent findings supported the hypothesis that single leg hop progression and double legs hop progression exercise can increase speed and explosive power of leg muscles. These finding were supported by some previous studies (Singh, et al, 2011; Shallaby, H.K., 2010. The single leg hop progression is more effective than double legs hop progression. This finding was consistent with some previous evidences (McCurdy, et al, 2005; Makaruk et al, 2011.

  6. Gender differences in rotation of the shank during single-legged drop landing and its relation to rotational muscle strength of the knee.

    Science.gov (United States)

    Kiriyama, Shinya; Sato, Haruhiko; Takahira, Naonobu

    2009-01-01

    Increased shank rotation during landing has been considered to be one of the factors for noncontact anterior cruciate ligament injuries in female athletes. There have been no known gender differences in rotational knee muscle strength, which is expected to inhibit exaggerated shank rotation. Women have less knee external rotator strength than do men. Lower external rotator strength is associated with increased internal shank rotation at the time of landing. Controlled laboratory study. One hundred sixty-nine healthy young subjects (81 female and 88 male; age, 17.0 +/- 1.0 years) volunteered to participate in this study. The subjects performed single-legged drop landings from a 20-cm height. Femoral and shank kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the joint angles around the knee (flexion/extension, valgus/varus, and internal/external rotation) were calculated. The maximal isometric rotational muscle strength of the knee was measured at 30 degrees of knee flexion in a supine position using a dynamometer. The female subjects had significantly less external shank rotation strength than did the male subjects (P external rotation strength and the peak shank internal rotation angle during landing (r = -0.322, P external rotator strength. This may lead to large shank internal rotation movement during the single-legged drop landing. Improving strength training of the external rotator muscle may help decrease the rates of anterior cruciate ligament injury in female athletes.

  7. Randomized study on the effect of single-implant versus two-implant retained overdentures on implant loss and muscle activity: a 12-month follow-up report.

    Science.gov (United States)

    Alqutaibi, A Y; Kaddah, A F; Farouk, M

    2017-06-01

    The objective was to evaluate and compare single- and two-implant retained overdentures for the rehabilitation of the edentulous mandible. Fifty-six edentulous subjects were eligible for inclusion. Using a random sampling system, a single implant or two implants were placed in the mandible. After 3 months, locator attachments were connected to the implants and the denture delivered with the retentive components incorporated in the denture base. Implant failure and muscle activity were evaluated at the 3-, 6-, and 12-month follow-up examinations. The study sample comprised 56 patients (32 male, 24 female), with a mean age of 58.2 years. A total of 84 implants were placed (28 in the single-implant group and 56 in the two-implant group). All patients completed the 12 months of follow-up. No significant differences were found between subjects in the two groups with respect to implant failure. With regard to improvements in muscle activity, the two-implant group showed statistically significant but perhaps not clinically important differences. Single-implant mandibular overdentures may be suggested as an alternative treatment modality for the rehabilitation of edentulous patients who cannot afford the cost of a two-implant overdenture. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Heart Health - Brave Heart

    Science.gov (United States)

    ... Bar Home Current Issue Past Issues Cover Story Heart Health Brave Heart Past Issues / Winter 2009 Table of Contents For ... you can have a good life after a heart attack." Lifestyle Changes Surviving—and thriving—after such ...

  9. A method for 3D-reconstruction of a muscle thick filament using the tilt series images of a single filament electron tomogram.

    Science.gov (United States)

    Márquez, G; Pinto, A; Alamo, L; Baumann, B; Ye, F; Winkler, H; Taylor, K; Padrón, R

    2014-05-01

    Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament - calculated without any image averaging and/or imposition of helical symmetry - only reveals MIH motifs infrequently. This is - to our knowledge - the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Effect of speed endurance training and reduced training volume on running economy and single muscle fiber adaptations in trained runners

    DEFF Research Database (Denmark)

    Skovgaard, Casper; Christiansen, Danny; Christensen, Peter Møller

    2018-01-01

    The aim of the present study was to examine whether improved running economy with a period of speed endurance training and reduced training volume could be related to adaptations in specific muscle fibers. Twenty trained male (n = 14) and female (n = 6) runners (maximum oxygen consumption (VO2 -m.......3 ± 0.3 vs. 18.9 ± 0.3 km/h) after than before the intervention. Thus, improved running economy with intense training may be related to changes in expression of proteins linked to energy consuming processes in primarily ST muscle fibers....

  11. Dynamic 123I-BMIPP single-photon emission computed tomography in patients with congestive heart failure: effect of angiotensin II type-1 receptor blockade.

    Science.gov (United States)

    Takeishi, Yasuchika; Minamihaba, Osamu; Yamauchi, Sou; Arimoto, Takanori; Hirono, Osamu; Takahashi, Hiroki; Akiyama, Hideyuki; Miyamoto, Takuya; Nitobe, Joji; Nozaki, Naoki; Tachibana, Hidetada; Okuyama, Masaki; Fukui, Akio; Kubota, Isao; Okada, Akio; Takahashi, Kazuei

    2004-04-01

    Heart failure is a major and growing public health problem with a high mortality rate. Although recent studies have demonstrated that a variety of metabolic and/or neurohumoral factors are involved in the progression of this syndrome, the precise mechanisms responsible for this complex condition are poorly understood. To examine 123I-beta-methyl-iodophenylpentadecanoic acid (BMIPP) kinetics in the early phase soon after tracer injection in patients with congestive heart failure (CHF), we performed dynamic single-photon emission computed tomography (SPECT). Twenty-six patients with CHF and eight control subjects were examined. The consecutive 15 images of 2-min dynamic SPECT were acquired for 30 min after injection. In the early phase after injection (0-4 min), a significant amount of radioactivity existed in the blood pool. After 6 min, the myocardial 123I-BMIPP image was clear and thus the washout rate of 123I-BMIPP from 6 to 30 min was calculated. The washout rate of 123I-BMIPP from the myocardium was faster in patients with CHF than in the controls (8 +/- 4 vs. -5 +/- 3%, p acid metabolism may represent a new mechanism for beneficial effects of angiotensin II receptor blockade on cardiac function and survival in patients with heart failure. 123I-BMIPP washout in the early phase obtained from dynamic SPECT may be a new marker for evaluating the severity of heart failure and the effects of medical treatment.

  12. Quantification of early fatty infiltration of the rotator cuff muscles: comparison of multi-echo Dixon with single-voxel MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Agten, Christoph A.; Rosskopf, Andrea B.; Pfirrmann, Christian W.A. [Balgrist University Hospital, Radiology, Zurich (Switzerland); University of Zurich, Faculty of Medicine, Zurich (Switzerland); Gerber, Christian [Balgrist University Hospital, Orthopaedic Surgery, Zurich (Switzerland); University of Zurich, Faculty of Medicine, Zurich (Switzerland)

    2016-10-15

    To evaluate quantification of early fatty infiltration in supraspinatus muscles with magnetic resonance (MR) imaging using a T2*-corrected multi-echo 3D-gradient-echo Dixon-based sequence (multi-echo Dixon) and compare it to proton-MR-spectroscopy. Sixty subjects (mean age 46 years, 41 men) with good supraspinatus muscle quality on 1.5 T MR imaging were included. Fat percentage (FP) in the supraspinatus muscle was quantified using a multi-echo Dixon compared to single-voxel MR spectroscopy as reference standard. In 18 subjects the multi-echo Dixon was repeated to assess test-retest reliability. Measurements based on multi-echo Dixon were performed by two independent readers by placing regions-of-interest (ROIs) in the supraspinatus muscle corresponding to the MR-spectroscopy voxel. Intraclass and concordance correlation coefficients (ICC/CCC) were used for statistical analysis. Test-retest reliability was substantial for reader 1 (ICC = 0.757) and almost perfect for reader 2 (ICC = 0.873). Inter-reader reliability for multi-echo Dixon was almost perfect (ICC = 0.893, P <.0005). Mean FP in all 60 subjects with multi-echo Dixon was 3.5 ± 1.6 for reader 1, 3.7 ± 1.8 for reader 2, and 2.8 ± 1.4 with MR spectroscopy. Correlation between multi-echo Dixon and MR spectroscopy was moderate (CCC = 0.641). The multi-echo Dixon sequence is a reliable method and comparable to MR-spectroscopy for quantification of low levels of fatty infiltration in the supraspinatus muscle. (orig.)

  13. The Effect of Cleft Palate Repair on Contractile Properties of Single Permeabilized Muscle Fibers From Congenitally Cleft Goats Palates

    Science.gov (United States)

    A cleft palate goat model was used to study the contractile properties of the levator veli palatini (LVP) muscle which is responsible for the movement of the soft palate. In 15-25% of patients that undergo palatoplasty, residual velopharyngeal insufficiency (VPI) remains a problem and often require...

  14. Spatial distribution of surface EMG on trapezius and lumbar muscles of violin and cello players in single note playing.

    Science.gov (United States)

    Afsharipour, Babak; Petracca, Francesco; Gasparini, Mauro; Merletti, Roberto

    2016-12-01

    Musicians activate their muscles in different patterns, depending on their posture, the instrument being played, and their experience level. Bipolar surface electrodes have been used in the past to monitor such activity, but this method is highly sensitive to the location of the electrode pair. In this work, the spatial distribution of surface EMG (sEMG) of the right trapezius and right and left erector spinae muscles were studied in 16 violin players and 11 cello players. Musicians played their instrument one string at a time in sitting position with/without backrest support. A 64 sEMG electrode (16×4) grid, 10mm inter-electrode distance (IED), was placed over the middle and lower trapezius (MT and LT) of the bowing arm. Two 16×2 electrode grids (IED=10mm) were placed on the left and right erector spinae muscles. Subjects played each of the four strings of the instrument either in large (1bow/s) or detaché tip/tail (8bows/s) bowing in two sessions (two days). In each of two days, measurements were repeated after half an hour of exercise to see the effect of exercise on the muscle activity and signal stability. A "muscle activity index" (MAI) was defined as the spatial average of the segmented active region of the RMS map. Spatial maps were automatically segmented using the watershed algorithm and thresholding. Results showed that, for violin players, sliding the bow upward from the tip toward the tail results in a higher MAI for the trapezius muscle than a downward bow. On the contrary, in cello players, higher MAI is produced in the tail to tip movement. For both instruments, an increasing MAI in the trapezius was observed as the string position became increasingly lateral, from string 1 (most medial) toward string 4 (most lateral). Half an hour of performance did not cause significant differences between the signal quality and the MAI values measured before and after the exercise. The MAI of the left and right erector spinae was smaller in the case of

  15. Chronic ethanol increases calcium/calmodulin-dependent protein kinaseIIδ gene expression and decreases monoamine oxidase amount in rat heart muscles: Rescue effect of Zingiber officinale (ginger) extract.

    Science.gov (United States)

    Heshmati, Elaheh; Shirpoor, Alireza; Kheradmand, Fatemeh; Alizadeh, Mohammad; Gharalari, Farzaneh Hosseini

    2018-01-01

    Association between chronic alcohol intake and cardiac abnormality is well known; however, the precise underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. This study investigated the effect of chronic ethanol exposure on calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) gene expression and monoamine oxidase (MAO) levels and histological changes in rat heart. It was also planned to find out whether Zingiber officinale (ginger) extract mitigated the abnormalities induced by ethanol in rat heart. Male wistar rats were divided into three groups of eight animals each: control, ethanol, and ginger extract treated-ethanol (GETE) groups. After 6 weeks of treatment, the results revealed a significant increase in CaMKIIδtotal and isoforms δ2 and δ3 of CaMKIIδ gene expression as well as a significant decrease in the MAO levels in the ethanol group compared to that in the control group. Moreover, compared to the control group, the ethanol group showed histological changes, such as fibrosis, heart muscle cells proliferation, myocyte hypertrophy, vacuolization, and focal lymphocytic infiltration. Consumption of ginger extract along with ethanol ameliorated CaMKIIδtotal. In addition, compared to the ethanol group, isoforms gene expression changed and increased the reduced MAO levels and mitigated heart structural changes. These findings indicate that ethanol-induced heart abnormalities may, in part, be associated with Ca 2+ homeostasis changes mediated by overexpression of CaMKIIδ gene and the decrease of MAO levels and that these effects can be alleviated by using ginger extract as an antioxidant and anti-inflammatory agent.

  16. The effect of short-term isometric muscle contraction and the Valsalva maneuver on systemic and pulmonary hemodynamics in patients with severe heart failure

    Czech Academy of Sciences Publication Activity Database

    Souček, M.; Fráňa, P.; Kára, J.; Sitar, J.; Halámek, Josef; Jurák, Pavel; Řiháček, I.; Špinarová, L.; Oral, I.

    2009-01-01

    Roč. 32, č. 6 (2009), E32-E39 ISSN 0160-9289 R&D Projects: GA ČR(CZ) GA102/05/0402 Institutional research plan: CEZ:AV0Z20650511 Keywords : leg muscle * muscle isometric contraction Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 1.602, year: 2009

  17. Spatial distribution of "tissue-specific" antigens in the developing human heart and skeletal muscle. I. An immunohistochemical analysis of creatine kinase isoenzyme expression patterns

    NARCIS (Netherlands)

    Wessels, A.; Vermeulen, J. L.; Virágh, S.; Kálmán, F.; Morris, G. E.; Man, N. T.; Lamers, W. H.; Moorman, A. F.

    1990-01-01

    Using monoclonal antibodies against the M and B subunit isoforms of creatine kinase (CK) we have investigated their distribution in developing human skeletal and cardiac muscle immunohistochemically. It is demonstrated that in skeletal muscle, a switch from CK-B to CK-M takes place around the week 8

  18. Effect of a single oral dose of milrinone on left ventricular diastolic performance in the failing human heart

    NARCIS (Netherlands)

    F. Piscione; B.E. Jaski; G.J. Wenting (Gert); P.W.J.C. Serruys (Patrick)

    1987-01-01

    textabstractIn 14 patients with severe congestive heart failure, left ventricular pressure (measured by tip manometer) and derived variables were measured before and every 10 minutes after administration of oral milrinone (10 mg) for 50 minutes along with measurements of coronary sinus blood flow

  19. Chemotherapy Side Effects: A Cause of Heart Disease?

    Science.gov (United States)

    ... Can chemotherapy side effects increase the risk of heart disease? Answers from Timothy J. Moynihan, M.D. Chemotherapy side effects may increase the risk of heart disease, including weakening of the heart muscle (cardiomyopathy) and ...

  20. Heart MRI

    Science.gov (United States)

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  1. Functional outcome and quality of life after traumatic total brachial plexus injury treated by nerve transfer or single/double free muscle transfers: a comparative study.

    Science.gov (United States)

    Satbhai, N G; Doi, K; Hattori, Y; Sakamoto, S

    2016-02-01

    Between 2002 and 2011, 81 patients with a traumatic total brachial plexus injury underwent reconstruction by double free muscle transfer (DFMT, 47 cases), single muscle transfer (SMT, 16 cases) or nerve transfers (NT, 18 cases). They were evaluated for functional outcome and quality of life (QoL) using the Disability of Arm, Shoulder and Hand questionnaire, both pre- and post-operatively. The three groups were compared and followed-up for at least 24 months. The mean shoulder abduction and flexion were comparable in all groups, but external rotation was significantly better in the DFMT group as were range and quantitative power of elbow flexion. Patients who had undergone DFMT had reasonable total active finger movement and hook grip strength. All groups showed improvement in function at a level greater than a minimum clinically important difference. The DFMT group showed the greatest improvement. Patients in the DFMT group had a better functional outcome and QoL recovery than those in the NT and SMT groups. Double free muscle transfer procedure is capable of restoring maximum function in patients of total brachial plexus palsy. ©2016 The British Editorial Society of Bone & Joint Surgery.

  2. The effects of a single intercuspal interference on electromyographic characteristics of human masticatory muscles during maximal voluntary teeth clenching.

    Science.gov (United States)

    Ferrario, V F; Sforza, C; Serrao, G; Colombo, A; Schmitz, J H

    1999-07-01

    In 13 healthy subjects (eight men and five women, mean age, 22 years), an aluminum intercuspal interference (height, 0.25 mm) was placed on the maxillary right first premolar to study its effect on the contractile symmetry of the right and left masseter and anterior temporalis muscles when measured through a Percentage Overlapping Coefficient (POC), derived from surface electromyographic recordings of maximum voluntary teeth clenching. Additionally, and to estimate the potential of the experimental intercuspal interference to induce lateral displacement of the mandible, a Torque Coefficient (TC) was derived from surface electromyographic recordings. The conclusion was that the experimental occlusal interference gave rise to asymmetric contractile activity in the studied mandibular elevator muscles as well as a potential to displace the mandible in a lateral direction.

  3. Effect of speed endurance training and reduced training volume on running economy and single muscle fiber adaptations in trained runners.

    Science.gov (United States)

    Skovgaard, Casper; Christiansen, Danny; Christensen, Peter M; Almquist, Nicki W; Thomassen, Martin; Bangsbo, Jens

    2018-02-01

    The aim of the present study was to examine whether improved running economy with a period of speed endurance training and reduced training volume could be related to adaptations in specific muscle fibers. Twenty trained male (n = 14) and female (n = 6) runners (maximum oxygen consumption (VO 2 -max): 56.4 ± 4.6 mL/min/kg) completed a 40-day intervention with 10 sessions of speed endurance training (5-10 × 30-sec maximal running) and a reduced (36%) volume of training. Before and after the intervention, a muscle biopsy was obtained at rest, and an incremental running test to exhaustion was performed. In addition, running at 60% vVO 2 -max, and a 10-km run was performed in a normal and a muscle slow twitch (ST) glycogen-depleted condition. After compared to before the intervention, expression of mitochondrial uncoupling protein 3 (UCP3) was lower (P economy at 60% vVO 2 -max (11.6 ± 0.2 km/h) and at v10-km (13.7 ± 0.3 km/h) was ~2% better (P economy with intense training may be related to changes in expression of proteins linked to energy consuming processes in primarily ST muscle fibers. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  4. Robust and Accurate Closed-Loop Control of McKibben Artificial Muscle Contraction with a Linear Single Integral Action

    Directory of Open Access Journals (Sweden)

    Bertrand Tondu

    2014-06-01

    Full Text Available We analyze the possibility of taking advantage of artificial muscle’s own stiffness and damping, and substituting it for a classic proportional-integral-derivative controller (PID controller an I controller. The advantages are that there would only be one parameter to tune and no need for a dynamic model. A stability analysis is proposed from a simple phenomenological artificial muscle model. Step and sinus-wave tracking responses performed with pneumatic McKibben muscles are reported showing the practical efficiency of the method to combine accuracy and load robustness. In the particular case of the McKibben artificial muscle technology, we suggest that the dynamic performances in stability and load robustness would result from the textile nature of its braided sleeve and its internal friction which do not obey Coulomb’s third law, as verified by preliminary reported original friction experiments. Comparisons are reported between three kinds of braided sleeves made of rayon yarns, plastic, and thin metal wires, whose similar closed-loop dynamic performances are highlighted. It is also experimentally shown that a sleeve braided with thin metal wires can give high accuracy performance, in step as in tracking response. This would be due to a low static friction coefficient combined with a kinetic friction exponentially increasing with speed in accordance with hydrodynamic lubrication theory applied to textile physics.

  5. Incidence and patterns of valvular heart disease in a tertiary care high-volume cardiac center: a single center experience.

    Science.gov (United States)

    Manjunath, C N; Srinivas, P; Ravindranath, K S; Dhanalakshmi, C

    2014-01-01

    Diseases of the heart valves constitute a major cause of cardiovascular morbidity and mortality worldwide with rheumatic heart disease (RHD) being the dominant form of valvular heart disease (VHD) in developing nations. The current study was undertaken at a tertiary care cardiac center with the objective of establishing the incidence and patterns of VHD by Echocardiography (Echo). Among the 136,098 first-time Echocardiograms performed between January 2010 and December 2012, an exclusion criterion of trivial and functional regurgitant lesions yielded a total of 13,289 cases of organic valvular heart disease as the study cohort. In RHD, the order of involvement of valves was mitral (60.2%), followed by aortic, tricuspid and pulmonary valves. Mitral stenosis, predominantly seen in females, was almost exclusively of rheumatic etiology (97.4%). The predominant form of isolated MR was rheumatic (41.1%) followed closely by myxomatous or mitral valve prolapse (40.8%). Isolated AS, more common in males, was the third most common valve lesion seen in 7.3% of cases. Degenerative calcification was the commonest cause of isolated AS (65.0%) followed by bicuspid aortic valve (BAV) (33.9%) and RHD (1.1%). Multiple valves were involved in more than a third of all cases (36.8%). The order of involvement was MS + MR > MS + AR > MR + AR > AS + AR > MR + AS > MS + AS. Overall, 9.7% of cases had organic tricuspid valve disease. RHD contributed most to the burden of VHD in the present study with calcific degeneration, myxomatous disease and BAV being the other major forms of VHD. Multiple valves were affected in more than a third of all cases. Copyright © 2014 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  6. The effect of different skin-ankle brace application pressures on quiet single-limb balance and electromyographic activation onset of lower limb muscles

    Directory of Open Access Journals (Sweden)

    Papadakis Stamatios A

    2007-09-01

    Full Text Available Abstract Background Several studies have been carried out in order to investigate the effect of ankle bracing on ankle joint function and performance. However, no study so far has examined the role of skin-brace interface pressure in neuromuscular control. The aim of this study was to investigate the effect of different skin-ankle brace interface pressures on quiet single limb balance and the electromyographic (EMG activation sequence of four lower limb muscles. Methods Thirty three male physical education students who volunteered to take part in the study were measured under three ankle brace conditions: i without brace, ii with brace and 30 kPa application pressure and iii with brace and 60 kPa application pressure. Single limb balance (anteroposterior and mediolateral parameter was assessed on the dominant lower limb, with open and closed eyes, on a force platform, simultaneously with the EMG recording of four lower lower limb muscles' (gastrocnemius, peroneus longus, rectus femoris and biceps femoris activation onset. Results The results showed that overall balance (total stability parameter was not significantly affected in any of the three ankle brace conditions. However, the anteroposterior centre of pressure excursion and centre of pressure excursion velocity were significantly increased with the application of ankle brace, both with 30 and 60 kPa application pressures. Furthermore, it was found that single limb balance was significantly worse with closed eyes compared to open eyes. EMG measurements showed that the sequence of lower limb activation onset was not affected in any of the three ankle brace application conditions. The results of this study showed that the application of an ankle brace with two different skin-brace interface pressures had no effect on overall single limb balance and the sequence of lower limb muscle activation. Conclusion These findings suggest that peripheral joint receptors are either not adequately

  7. A contemporary, single-institutional experience of surgical versus expectant management of congenital heart disease in trisomy 13 and 18 patients.

    Science.gov (United States)

    Costello, John P; Weiderhold, Allison; Louis, Clauden; Shaughnessy, Conner; Peer, Syed M; Zurakowski, David; Jonas, Richard A; Nath, Dilip S

    2015-06-01

    The objective of this study was to examine a large institutional experience of patients with trisomy 13 and trisomy 18 in the setting of comorbid congenital heart disease and present the outcomes of surgical versus expectant management. It is a retrospective single-institution cohort study. Institutional review board approved this study. Thirteen consecutive trisomy 18 patients and three consecutive trisomy 13 patients (sixteen patients in total) with comorbid congenital heart disease who were evaluated by our institution's Division of Cardiovascular Surgery between January 2008 and December 2013 were included in the study. The primary outcome measures evaluated were operative mortality (for patients who received surgical management), overall mortality (for patients who received expectant management), and total length of survival during follow-up. Of the thirteen trisomy 18 patients, seven underwent surgical management and six received expectant management. With surgical management, operative mortality was 29 %, and 80 % of patients were alive after a median follow-up of 116 days. With expectant management, 50 % of patients died before hospital discharge. Of the three patients with trisomy 13, one patient underwent surgical management and two received expectant management. The patient who received surgical management with complete repair was alive at last follow-up over 2 years after surgery; both patients managed expectantly died before hospital discharge. Trisomy 13 and trisomy 18 patients with comorbid congenital heart disease can undergo successful cardiac surgical intervention. In this population, we advocate that nearly all patients with cardiovascular indications for operative congenital heart disease intervention should be offered complete surgical repair over palliative approaches for moderately complex congenital cardiac anomalies.

  8. Combination of intracostal sutures with muscle flap to decrease post thoracotomy pain: A single blinded randomized clinical trial.

    Science.gov (United States)

    Montazer, Majid; Hashemzade, Shahryar; Gargari, Reza Movassaghi; Ramouz, Ali; Sanaie, Sarvin; Rasihashemi, Seyed Ziaeddin

    2017-01-01

    To assess the efficacy of intercostal nerve protection by intercostal muscle (ICM) flap in post-thoracotomy pain improvement compared to intracostal suturing. In a randomized controlled trial, ninety-four patients undergoing posterolateral thoracotomy surgery were divided into two subgroups. Intracostal sutures in isolation and in combination with ICM flap techniques were used for thoracotomy closure in both groups. Numeric Pain Scale and Visual Pain Scale as pain scores were assessed on the first, second, third, fourth, fifth, sixth and seventh postoperative days and follow-up visits during the 2 nd week, 1 st , 2 nd , 4 th and 6 th months after thoracotomy. Out of 94 patients, 58 were male and 36 were females. While the mean age of patients in intracostal group was 45.3 ± 17.6 years, it was 47.4 ± 16.1 years in intracostal plus ICM flap group. The mean operation time for the first group was 191.0 ± 74.7 minutes, while it was 219.3 ± 68.8 minutes in the second (p>0.05). Numeric rating score and visual pain scale did not demonstrate any significant difference in pain severity on postoperative days and follow-up visits between both groups (p>0.05). Although the trend of pain reduction was significant in each group (p0.001). Intracostal sutures in combination with muscle flap did not reduce postoperative pain in thoracotomy compared with intracostal sutures alone in thoracotomy closure.

  9. Heart murmurs

    Science.gov (United States)

    Chest sounds - murmurs; Heart sounds - abnormal; Murmur - innocent; Innocent murmur; Systolic heart murmur; Diastolic heart murmur ... The heart has 4 chambers: Two upper chambers (atria) Two lower chambers (ventricles) The heart has valves that close ...

  10. Insulin receptor substrate proteins create a link between the tyrosine phosphorylation cascade and the Ca2+-ATPases in muscle and heart.

    Science.gov (United States)

    Algenstaedt, P; Antonetti, D A; Yaffe, M B; Kahn, C R

    1997-09-19

    Following phosphorylation by the insulin receptor kinase, the insulin receptor substrates (IRS)-1 and IRS-2 bind to and activate several Src homology 2 (SH2) domain proteins. To identify novel proteins that interact with IRS proteins in muscle, a human skeletal muscle cDNA expression library was created in the lambdaEXlox system and probed with baculovirus-produced and tyrosine-phosphorylated human IRS-1. One clone of the 10 clones which was positive through three rounds of screening represented the C terminus of the human homologue of the adult fast twitch skeletal muscle Ca2+-ATPase (SERCA1) including the cytoplasmic tail and part of transmembrane region 10. Western blot analysis of extracts of rat muscle demonstrated co-immunoprecipitation of both IRS-1 and IRS-2 with the skeletal muscle Ca2+-ATPase (SERCA1) and the cardiac muscle isoform (SERCA2). In both cases, injection of insulin stimulated a 2- to 6-fold increase in association of which was maximal within 5 min. In primary cultures of aortic smooth muscle cells and C2C12 cells, the insulin-stimulated interaction between IRS proteins and SERCA1 and -2 was dose-dependent with a maximum induction at 100 nM insulin. This interaction was confirmed in a "pull down" experiment using a glutathione S-transferase fusion protein containing the C terminus of the human SERCA isoform and phosphorylated IRS-1 in vitro and could be blocked by a FLVRES-like domain peptide present in the human SERCA sequence. Affinity chromatography of phosphopeptide libraries using the glutathione S-transferase fusion protein of the C terminus of SERCA1 indicated a consensus sequence for binding of XpYGSS; this is identical to potential tyrosine phosphorylation sites at position 431 of human IRS-1 and at position 500 of human IRS-2. In streptozotocin diabetic rats the interaction between IRS proteins and SERCA1 in skeletal muscle and SERCA2 in cardiac muscle was significantly reduced. Taken together, these results indicate that the IRS

  11. Single molecule fluorescence image patterns linked to dipole orientation and axial position: application to myosin cross-bridges in muscle fibers.

    Directory of Open Access Journals (Sweden)

    Thomas P Burghardt

    2011-02-01

    Full Text Available Photoactivatable fluorescent probes developed specifically for single molecule detection extend advantages of single molecule imaging to high probe density regions of cells and tissues. They perform in the native biomolecule environment and have been used to detect both probe position and orientation.Fluorescence emission from a single photoactivated probe captured in an oil immersion, high numerical aperture objective, produces a spatial pattern on the detector that is a linear combination of 6 independent and distinct spatial basis patterns with weighting coefficients specifying emission dipole orientation. Basis patterns are tabulated for single photoactivated probes labeling myosin cross-bridges in a permeabilized muscle fiber undergoing total internal reflection illumination. Emitter proximity to the glass/aqueous interface at the coverslip implies the dipole near-field and dipole power normalization are significant affecters of the basis patterns. Other characteristics of the basis patterns are contributed by field polarization rotation with transmission through the microscope optics and refraction by the filter set. Pattern recognition utilized the generalized linear model, maximum likelihood fitting, for Poisson distributed uncertainties. This fitting method is more appropriate for treating low signal level photon counting data than χ(2 minimization.Results indicate that emission dipole orientation is measurable from the intensity image except for the ambiguity under dipole inversion. The advantage over an alternative method comparing two measured polarized emission intensities using an analyzing polarizer is that information in the intensity spatial distribution provides more constraints on fitted parameters and a single image provides all the information needed. Axial distance dependence in the emission pattern is also exploited to measure relative probe position near focus. Single molecule images from axial scanning fitted

  12. Expression of the skeletal calsequestrin isoform in normal and regenerated skeletal muscles and in the hearts of rats with altered thyroid status

    Czech Academy of Sciences Publication Activity Database

    Soukup, Tomáš; Sulimenko, Vadym; Marková, Vladimíra; Kopecká, Kateřina; Zachařová, Gisela; Paleček, Jiří

    2012-01-01

    Roč. 61, č. 6 (2012), s. 575-586 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA304/08/0256; GA ČR(CZ) GA305/09/1228; GA ČR(CZ) GBP304/12/G069 Grant - others:EC(XE) Myores 511978 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50520701 Institutional support: RVO:67985823 ; RVO:68378050 Keywords : skeletal calsequestrin * calcium and muscle contraction * thyroid hormones * western blot and qRT-PCR analysis * muscle transplantation * fast and slow muscle fibers Subject RIV: EA - Cell Biology Impact factor: 1.531, year: 2012

  13. Bladder preservation in non-metastatic muscle-invasive bladder cancer (MIBC): a single-institution experience.

    Science.gov (United States)

    Gerardi, Marianna A; Jereczek-Fossa, Barbara A; Zerini, Dario; Surgo, Alessia; Dicuonzo, Samantha; Spoto, Ruggero; Fodor, Cristiana; Verri, Elena; Rocca, Maria Cossu; Nolè, Franco; Muto, Matteo; Ferro, Matteo; Musi, Gennaro; Bottero, Danilo; Matei, Deliu V; De Cobelli, Ottavio; Orecchia, Roberto

    2016-01-01

    The aim of this study is to access the feasibility, toxicity profile, and tumour outcome of an organ preservation curative approach in non-metastatic muscle-invasive bladder cancer. A retrospective analysis was conducted on patients affected by M0 bladder cancer, who refused cystectomy and were treated with a curative approach. The standard bladder preservation scheme included maximal transurethral resection of bladder tumour (TURBT) and combination of radiotherapy and platin-based chemotherapy, followed by endoscopic evaluation, urine cytology, and instrumental evaluation. Thirteen patients fulfilled the inclusion criteria. TNM stage was cT2cN0M0 and cT2cNxM0, in 12 and one patients, respectively. All patients had transitional cell cancer. Twelve patients completed the whole therapeutic programme (a bimodal treatment without chemotherapy for one patient). Median follow-up is 36 months. None of the patients developed severe urinary or intestinal acute toxicity. In 10 patients with a follow-up > 6 months, no cases of severe late toxicity were observed. Response evaluated in 12 patients included complete response and stable disease in 11 patients (92%), and one patient (8%), respectively. At the time of data analysis (March 2016), 10 patients (77%) are alive with no evidence of disease, two patients (15%) died for other reasons, and one patient has suspicious persistent local disease. The trimodality approach, including maximal TURBT, radiotherapy, and chemotherapy for muscle-invasive bladder cancer, is well-tolerated and might be considered a valid and feasible option in fit patients who refuse radical cystectomy.

  14. A single exposure to acrolein causes arrhythmogenesis, cardiac electrical dysfunction and decreased heart rate variability in hypertensive rats

    Science.gov (United States)

    Epidemiological studies demonstrate an association between cardiovascular morbidity, arrhythmias, and exposure to air toxicants such as acrolein. We hypothesized that a single exposure to acrolein would increase arrhythmias and cause changes in the electrocardiogram (ECG) of hype...

  15. The effects of adding single-joint exercises to a multi-joint exercise resistance training program on upper body muscle strength and size in trained men.

    Science.gov (United States)

    de França, Henrique Silvestre; Branco, Paulo Alexandre Nordeste; Guedes Junior, Dilmar Pinto; Gentil, Paulo; Steele, James; Teixeira, Cauê Vazquez La Scala

    2015-08-01

    The aim of this study was compare changes in upper body muscle strength and size in trained men performing resistance training (RT) programs involving multi-joint plus single-joint (MJ+SJ) or only multi-joint (MJ) exercises. Twenty young men with at least 2 years of experience in RT were randomized in 2 groups: MJ+SJ (n = 10; age, 27.7 ± 6.6 years) and MJ (n = 10; age, 29.4 ± 4.6 years). Both groups trained for 8 weeks following a linear periodization model. Measures of elbow flexors and extensors 1-repetition maximum (1RM), flexed arm circumference (FAC), and arm muscle circumference (AMC) were taken pre- and post-training period. Both groups significantly increased 1RM for elbow flexion (4.99% and 6.42% for MJ and MJ+SJ, respectively), extension (10.60% vs 9.79%, for MJ and MJ+SJ, respectively), FAC (1.72% vs 1.45%, for MJ and MJ+SJ, respectively), and AMC (1.33% vs 3.17% for MJ and MJ+SJ, respectively). Comparison between groups revealed no significant difference in any variable. In conclusion, 8 weeks of RT involving MJ or MJ+SJ resulted in similar alterations in muscle strength and size in trained participants. Therefore, the addition of SJ exercises to a RT program involving MJ exercises does not seem to promote additional benefits to trained men, suggesting MJ-only RT to be a time-efficient approach.

  16. New Trends in Heart Regeneration: A Review

    Directory of Open Access Journals (Sweden)

    Kochegarov A

    2016-11-01

    Full Text Available In this review, we focus on new approaches that could lead to the regeneration of heart muscle and the restoration of cardiac muscle function derived from newly-formed cardiomyocytes. Various strategies for the production of cardiomyocytes from embryonic stem cells, induced pluripotent stem cells, adult bone marrow stem cells and cardiac spheres from human heart biopsies are described. Pathological conditions which lead to atherosclerosis and coronary artery disease often are followed by myocardial infarction causing myocardial cell death. After cell death, there is very little self-regeneration of the cardiac muscle tissue, which is replaced by non-contractile connective tissue, thus weakening the ability of the heart muscle to contract fully and leading to heart failure. A number of experimental research approaches to stimulate heart muscle regeneration with the hope of regaining normal or near normal heart function in the damaged heart muscle have been attempted. Some of these very interesting studies have used a variety of stem cell types in combination with potential cardiogenic differentiation factors in an attempt to promote differentiation of new cardiac muscle for possible future use in the clinical treatment of patients who have suffered heart muscle damage from acute myocardial infarctions or related cardiovascular diseases. Although progress has been made in recent years relative to promoting the differentiation of cardiac muscle tissue from non-muscle cells, much work remains to be done for this technology to be used routinely in translational clinical medicine to treat patients with damaged heart muscle tissue and return such individuals to pre-heart-attack activity levels.

  17. Development of a new Xe-133 single dose multi-step method (SDMM) for muscle blood flow measurement using gamma camera

    International Nuclear Information System (INIS)

    Bunko, Hisashi; Seto, Mikito; Taki, Junichi

    1985-01-01

    In order to measure the muscle blood flow (MBF) during exercise (Ex), a new Xe-133 single dose multi-step method (SDMM) for leg MBF measurement before, during and after Ex using gamma camera was developped. Theoretically, if the activity of Xe-133 in the muscle immediately before and after Ex are known, then the mean MBF during Ex can be calculated. In SDMM, these activities are corrected through correction formula using time delays between end of data aquisition (DA) at rest (R1) and begining of the Ex (TAB), and between end of Ex and begining of the DA after Ex (R2) (TDA). Validity of the SDMM and MBF response on mild and heavy Ex were evaluated in 11 normal volunteers. Ex MBF calculated from 5 and 2.5 min DA (5 sec/frame) both at R1 and R2 were highly correlated (r=.996). Ex MBF by SDMM and direct(measurement by fixed leg exercise were also highly correlated (r=.999). Reproducibility of the R1 and Ex MBF were excellent (r=.999). The highest MBF was seen in GCM on miled walking Ex and in VLM on heavy squatting Ex. After miled Ex, MBF rapidly returned to normal. After heavy Ex, MBF remaind high in VLM In conclusion, SDMM is simple and accurate method for evaluation of dynamic MBF response according to exercise. SDMM is also applicable to the field of sports medicine. (author)

  18. Heart failure in patients with sick sinus syndrome treated with single lead atrial or dual-chamber pacing

    DEFF Research Database (Denmark)

    Riahi, Sam; Nielsen, Jens Cosedis; Hjortshøj, Søren

    2012-01-01

    AIMS: Previous studies indicate that ventricular pacing may precipitate heart failure (HF). We investigated occurrence of HF during long-term follow-up among patients with sick sinus syndrome (SSS) randomized to AAIR or DDDR pacing. Furthermore, we investigated effects of percentage of ventricular...... patients (17%) with the leads in a non-apical position, HR 0.67, CI 0.45-1.00, P = 0.05. After adjustments this difference was non-significant. The incidence of HF was not associated with %VP (P = 0.57).CONCLUSION: In patients with SSS, HF was not associated with pacing mode, %VP, or ventricular lead...... localization. This suggests that DDDR pacing is safe in patients with SSS without precipitating HF....

  19. Heart Truth for Women: If You Have Heart Disease

    Science.gov (United States)

    ... failure and a damaged heart muscle. My experience with heart disease started with typical symptoms. It took me some time to get my strength back, but now I exercise regularly and eat healthy foods. To ... counseling, and training. This part of rehab helps you understand your ...

  20. Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity.

    Science.gov (United States)

    Malik, Zulezwan Ab; Cobley, James N; Morton, James P; Close, Graeme L; Edwards, Ben J; Koch, Lauren G; Britton, Steven L; Burniston, Jatin G

    2013-12-01

    Two-dimensional gel electrophoresis provides robust comparative analysis of skeletal muscle, but this technique is laborious and limited by its inability to resolve all proteins. In contrast, orthogonal separation by SDS-PAGE and reverse-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) affords deep mining of the muscle proteome, but differential analysis between samples is challenging due to the greater level of fractionation and the complexities of quantifying proteins based on the abundances of their tryptic peptides. Here we report simple, semi-automated and time efficient ( i.e ., 3 h per sample) proteome profiling of skeletal muscle by 1-dimensional RPLC electrospray ionisation tandem MS. Solei were analysed from rats (n = 5, in each group) bred as either high- or low-capacity runners (HCR and LCR, respectively) that exhibited a 6.4-fold difference (1,625 ± 112 m vs . 252 ± 43 m, p ions, which spanned three orders of magnitude. In total, 207 proteins were analysed, which encompassed almost all enzymes of the major metabolic pathways in skeletal muscle. The most abundant protein detected was type I myosin heavy chain (RA = 5,843 ± 897) and the least abundant protein detected was heat shock 70 kDa protein (RA = 2 ± 0.5). Sixteen proteins were significantly ( p ion (551.21 m/z ) of the doubly-charged peptide SLGVGFATR (454.19 m/z ) of residues 23-31 of FABPH. SRM was conducted on technical replicates of each biological sample and exhibited a coefficient of variation of 20%. The abundance of FABPH measured by SRM was 2.84-fold greater ( p = 0.0095) in HCR muscle. In addition, SRM of FABPH was performed in vastus lateralis samples of young and elderly humans with different habitual activity levels (collected during a previous study) finding FABPH abundance was 2.23-fold greater ( p = 0.0396) in endurance-trained individuals regardless of differences in age. In summary, our findings in HCR/LCR rats provide protein-level confirmation for

  1. Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise.

    Science.gov (United States)

    McHugh, Malachy P

    2003-04-01

    The repeated bout effect refers to the adaptation whereby a single bout of eccentric exercise protects against muscle damage from subsequent eccentric bouts. While the mechanism for this adaptation is poorly understood there have been significant recent advances in the understanding of this phenomenon. The purpose of this review is to provide an update on previously proposed theories and address new theories that have been advanced. The potential adaptations have been categorized as neural, mechanical and cellular. There is some evidence to suggest that the repeated bout effect is associated with a shift toward greater recruitment of slow twitch motor units. However, the repeated bout effect has been demonstrated with electrically stimulated contractions, indicating that a peripheral, non-neural adaptation predominates. With respect to mechanical adaptations there is evidence that both dynamic and passive muscle stiffness increase with eccentric training but there are no studies on passive or dynamic stiffness adaptations to a single eccentric bout. The role of the cytoskeleton in regulating dynamic stiffness is a possible area for future research. With respect to cellular adaptations there is evidence of longitudinal addition of sarcomeres and adaptations in the inflammatory response following an initial bout of eccentric exercise. Addition of sarcomeres is thought to reduce sarcomere strain during eccentric contractions thereby avoiding sarcomere disruption. Inflammatory adaptations are thought to limit the proliferation of damage that typically occurs in the days following eccentric exercise. In conclusion, there have been significant advances in the understanding of the repeated bout effect, however, a unified theory explaining the mechanism or mechanisms for this protective adaptation remains elusive.

  2. Relationship between lung-to-heart uptake ratio of technetium-99m-tetrofosmin during exercise myocardial single photon emission computed tomographic imaging and the number of diseased coronary arteries in patients with effort angina pectoris without myocardial infarction

    International Nuclear Information System (INIS)

    Okajima, Toshiya; Ueshima, Kenji; Nishiyama, Osamu; Ogawa, Muneyoshi; Ohuchi, Mami; Saitoh, Masahiko; Hiramori, Katsuhiko

    2004-01-01

    Increased lung uptake of thallium-201 in exercise myocardial perfusion imaging is a reliable marker of multivessel disease in patients with ischemic heart disease. This study investigated whether the lung-to-heart uptake ratio with technetium-99m ( 99m Tc)-tetrofosmin also provides valuable information to detect patients with multivessel disease. Fifty-three consecutive patients (35 men, 18 women, mean age 66±11 years; single-vessel disease: 29, double-vessel disease: 16, triple-vessel disease: 8) with stable effort angina pectoris without prior myocardial infarction and 17 control subjects (12 men, 5 women, mean age 62±9 years) underwent exercise myocardial perfusion imaging with 99m Tc-tetrofosmin and coronary angiography in January 2000 to December 2002. The lung-to-heart uptake ratio was calculated on an anterior projection before reconstruction of the exercise single photon emission computed tomographic images. The mean lung-to-heart uptake ratio was 0.34±0.04, 0.38±0.07, 0.41±0.05, and 0.46±0.09, in patients with normal coronary, single-vessel disease, double-vessel disease, and triple-vessel disease, respectively. Significantly higher lung-to-heart uptake ratio was associated with more diseased vessels (p 99m Tc-tetrofosmin can provide clinically useful information to detect multivessel disease in patients with ischemic heart disease. (author)

  3. Myosin content of single muscle fibers following short-term disuse and active recovery in young and old healthy men

    DEFF Research Database (Denmark)

    Hvid, Lars G; Brocca, Lorenza; Ørtenblad, Niels

    2017-01-01

    healthy men. Following disuse, myosin content decreased (p... young and old in both fiber types, with MHC 2a fibers demonstrating an overshooting in young (+31%, pStrong correlations were observed between myosin content and single fiber SF in both young and old, with greater slope steepness in MHC 2a vs 1 fibers indicating an enhanced intrinsic...

  4. Enlarged Heart

    Science.gov (United States)

    ... rheumatic fever, a heart defect, infections (infectious endocarditis), connective tissue disorders, certain medications or radiation treatments for cancer, your heart may enlarge. Disease of the heart ...

  5. Inorganic nitrate as a treatment for acute heart failure: a protocol for a single center, randomized, double-blind, placebo-controlled pilot and feasibility study.

    Science.gov (United States)

    Falls, Roman; Seman, Michael; Braat, Sabine; Sortino, Joshua; Allen, Jason D; Neil, Christopher J

    2017-08-08

    Acute heart failure (AHF) is a frequent reason for hospitalization worldwide and effective treatment options are limited. It is known that AHF is a condition characterized by impaired vasorelaxation, together with reduced nitric oxide (NO) bioavailability, an endogenous vasodilatory compound. Supplementation of inorganic sodium nitrate (NaNO 3 ) is an indirect dietary source of NO, through bioconversion. It is proposed that oral sodium nitrate will favorably affect levels of circulating NO precursors (nitrate and nitrite) in AHF patients, resulting in reduced systemic vascular resistance, without significant hypotension. We propose a single center, randomized, double-blind, placebo-controlled pilot trial, evaluating the feasibility of sodium nitrate as a treatment for AHF. The primary hypothesis that sodium nitrate treatment will result in increased systemic levels of nitric oxide pre-cursors (nitrate and nitrite) in plasma, in parallel with improved vasorelaxation, as assessed by non-invasively derived systemic vascular resistance index. Additional surrogate measures relevant to the known pathophysiology of AHF will be obtained in order to assess clinical effect on dyspnea and renal function. The results of this study will provide evidence of the feasibility of this novel approach and will be of interest to the heart failure community. This trial may inform a larger study.

  6. Whiplash evokes descending muscle recruitment and sympathetic responses characteristic of startle

    Science.gov (United States)

    Mang, Daniel WH; Siegmund, Gunter P; Blouin, Jean-Sébastien

    2014-01-01

    Whiplash injuries are the most common injuries following rear-end collisions. During a rear-end collision, the human muscle response consists of both a postural and a startle response that may exacerbate injury. However, most previous studies only assessed the presence of startle using data collected from the neck muscles and head/neck kinematics. The startle response also evokes a descending pattern of muscle recruitment and changes in autonomic activity. Here we examined the recruitment of axial and appendicular muscles along with autonomic responses to confirm whether these other features of a startle response were present during the first exposure to a whiplash perturbation. Ten subjects experienced a single whiplash perturbation while recording electromyography, electrocardiogram, and electrodermal responses. All subjects exhibited a descending pattern of muscle recruitment, and increasing heart rate and electrodermal responses following the collision. Our results provide further support that the startle response is a component of the response to whiplash collisions. PMID:24932015

  7. Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis

    International Nuclear Information System (INIS)

    McGrew, S.G.; Inui, Makoto; Chadwick, C.C.; Boucek, R.J. Jr.; Jung, C.Y.; Fleischer, S.

    1989-01-01

    The calcium release channel of sarcoplasmic reticulum which triggers muscle contraction in excitation-contraction coupling has recently been isolated. The channel has been found to be morphologically identical with the feet structures of the junctional face membrane of terminal cisternae and consists of an oligomer of a unique high molecular weight polypeptide. In this study, the authors compare the target size of the calcium release channel from heart and skeletal muscle using target inactivation analysis. The target molecular weights of the calcium release channel estimated by measuring ryanodine binding after irradiation are similar for heart (139,000) and skeletal muscle (143,000) and are smaller than the monomeric unit (estimated to be about 360,000). The target size, estimated by measuring polypeptide remaining after irradiation, was essentially the same for heart and skeletal muscle, 1,061,000 and 1,070,000, respectively, indicating an oligomeric association of protomers. Thus, the calcium release channel of both cardiac and skeletal muscle reacts uniquely with regard to target inactivation analysis in that (1) the size by ryanodine binding is smaller than the monomeric unit and (2) a single hit leads to destruction of more than one polypeptide, by measuring polypeptide remaining. The target inactivation analysis studies indicate that heart and skeletal muscle receptors are structurally very similar

  8. Exercise Intolerance in Heart Failure

    DEFF Research Database (Denmark)

    Brassard, Patrice; Gustafsson, Finn

    2016-01-01

    Exercise tolerance is affected in patients with heart failure (HF). Although the inability of the heart to pump blood to the working muscle has been the conventional mechanism proposed to explain the lowered capacity of patients with HF to exercise, evidence suggests that the pathophysiological...

  9. Patient with a total artificial heart maintained on outpatient dialysis while listed for combined organ transplant, a single center experience.

    Science.gov (United States)

    Hanna, Ramy M; Hasnain, Huma; Kamgar, Mohammad; Hanna, Mina; Minasian, Raffi; Wilson, James

    2017-10-01

    Advanced mechanical circulatory support is increasingly being used with more sophisticated devices that can deliver pulsatile rather than continuous flow. These devices are more portable as well, allowing patients to await cardiac transplantation in an outpatient setting. It is known that patients with renal failure are at increased risk for developing worsening acute kidney injury during implantation of a ventricular assist device (VAD) or more advanced modalities like a total artificial heart (TAH). Dealing with patients who have an implanted TAH who develop renal failure has been a challenge with the majority of such patients having to await a combined cardiac and renal transplant prior to transition to outpatient care. Protocols do exist for VAD implanted patients to be transitioned to outpatient dialysis care, but there are no reported cases of TAH patients with end stage renal disease (ESRD) being successfully transitioned to outpatient dialysis care. In this report, we identify a patient with a TAH and ESRD transitioned successfully to outpatient hemodialysis and maintained for more than 2 years, though he did not survive to transplant. It is hoped that this report will raise awareness of this possibility, and assist in the development of protocols for similar patients to be successfully transitioned to outpatient dialysis care. © 2017 International Society for Hemodialysis.

  10. Heart failure - discharge

    Science.gov (United States)

    ... your body. Lots of foods that DO NOT taste salty, or that you DO NOT add salt to, still contain a lot of salt. You may need to take a diuretic, or water pill. DO NOT drink alcohol. Alcohol makes it harder for your heart muscles ...

  11. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle function

    Science.gov (United States)

    Gallagher, Thomas L.; Arribere, Joshua A.; Geurts, Paul A.; Exner, Cameron R. T.; McDonald, Kent L.; Dill, Kariena K.; Marr, Henry L.; Adkar, Shaunak S.; Garnett, Aaron T.; Amacher, Sharon L.; Conboy, John G.

    2012-01-01

    Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos was strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle function. PMID:21925157

  12. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions.

    Science.gov (United States)

    Gallagher, Thomas L; Arribere, Joshua A; Geurts, Paul A; Exner, Cameron R T; McDonald, Kent L; Dill, Kariena K; Marr, Henry L; Adkar, Shaunak S; Garnett, Aaron T; Amacher, Sharon L; Conboy, John G

    2011-11-15

    Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos were strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle functions. Published by Elsevier Inc.

  13. Nutrient-rich dairy proteins improve appendicular skeletal muscle mass and physical performance, and attenuate the loss of muscle strength in older men and women subjects: a single-blind randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Alemán-Mateo H

    2014-09-01

    Full Text Available Heliodoro Alemán-Mateo,1 Virginia Ramírez Carreón,1 Liliana Macías,1 Humberto Astiazaran-García,1 Ana Cristina Gallegos-Aguilar,1 José Rogelio Ramos Enríquez2 1Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, A.C., 2Laboratorio de Análisis Clínicos e Investigación, Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Mexico Background: At present, it is unknown whether the use of nutrient-rich dairy proteins improves the markers of sarcopenia syndrome. Therefore, our proposal was to investigate whether ­adding 210 g of ricotta cheese daily would improve skeletal muscle mass, handgrip strength, and ­physical performance in non-sarcopenic older subjects.Subjects and methods: This was a single-blind randomized clinical trial that included two homogeneous, randomized groups of men and women over 60 years of age. Participants in the intervention group were asked to consume their habitual diet but add 210 g of ricotta cheese (IG/HD + RCH, while the control group was instructed to consume only their habitual diet (CG/HD. Basal and 12-week follow-up measurements included appendicular skeletal muscle mass (ASMM by dual-energy X-ray absorptiometry, handgrip strength by a handheld dynamometer, and physical performance using the short physical performance battery (SPPB and the stair-climb power test (SCPT. The main outcomes were relative changes in ASMM, strength, SPPB, and SCPT.Results: ASMM increased in the IG/HD + RCH (0.6±3.5 kg, but decreased in the CG/HD (–1.0±2.6. The relative change between groups was statistically significant (P=0.009. The relative change in strength in both groups was negative, but the loss of muscle strength was more pronounced in CG/HD, though in this regard statistical analysis found only a tendency (P=0.07. The relative change in the balance-test scores was positive for the IG/HD + RCH, while in the CG/HD it was negative, as those individuals had

  14. Adaptation in properties of skeletal muscle to coronary artery occlusion/reperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Ogoh, Shigehiko [Univ. of North Texas, Fort Worth, TX (United States). Health Science Center; Hirai, Taku [Kyoto Univ. (Japan). Graduate School of Medicine; Nohara, Ryuuji [Kitano Hospital, Osaka (Japan); Taguchi, Sadayoshi [Kyoto Univ. (Japan). Graduate School of Human and Environmental Studies

    2002-10-01

    The present study was designed to determine if changes in function and metabolism of heart muscle induce alterations in characteristics of skeletal muscle. We investigated the histochemical and biochemical properties of soleus (SOL) and extensor digitorum longus (EDL) muscles in Wistar rats at the chronic phase after coronary artery occlusion/reperfusion. The size of myocardial infarct region was evaluated using a high resolution pinhole single photo emission computed tomography (SPECT) system. 4wk after left coronary artery occlusion/reperfusion, the SOL and EDL of hindlimb were dissected out and immersed in isopentane cooled with liquid nitrogen for subsequent histochemical and biochemical analysis. From SPECT imaging, the blood circulation was recovered, but the recovery of fatty acid metabolism was not observed in infarct region of heart. Citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activities in infarct region of heart were lower in the myocardial infarction (MI, n=6) group compared with that of age-matched sham-operated (Sham, n=6) group. In addition, heart muscle hypertrophy caused by the dysfunction in MI group was observed. In skeletal muscle, the atrophy and transition of fiber type distribution in MI group, reported in previous studies of heart failure, were not observed. However, the succinate dehydrogenase (SDH) activity in the slow twitch oxidative (SO) from SOL of MI group decreased by 9.8% and in the fast twitch oxidative glycolytic fibers (FOG), 8.0% as compared with sham group. Capillary density of the SO fibers from SOL of MI group also reduced by 18.5% and in the FOG fibers, 18.2% as compared with Sham group. Decreased capillary density in this study related significantly to decreased SDH activity of single muscle fibers in chronic phase of perfusion after surgical infarction. Our results make it clear that there is a difference in the reaction of skeletal muscle to coronary artery occlusion/reperfusion compared with chronic

  15. Adaptation in properties of skeletal muscle to coronary artery occlusion/reperfusion in rats

    International Nuclear Information System (INIS)

    Ogoh, Shigehiko; Taguchi, Sadayoshi

    2002-01-01

    The present study was designed to determine if changes in function and metabolism of heart muscle induce alterations in characteristics of skeletal muscle. We investigated the histochemical and biochemical properties of soleus (SOL) and extensor digitorum longus (EDL) muscles in Wistar rats at the chronic phase after coronary artery occlusion/reperfusion. The size of myocardial infarct region was evaluated using a high resolution pinhole single photo emission computed tomography (SPECT) system. 4wk after left coronary artery occlusion/reperfusion, the SOL and EDL of hindlimb were dissected out and immersed in isopentane cooled with liquid nitrogen for subsequent histochemical and biochemical analysis. From SPECT imaging, the blood circulation was recovered, but the recovery of fatty acid metabolism was not observed in infarct region of heart. Citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activities in infarct region of heart were lower in the myocardial infarction (MI, n=6) group compared with that of age-matched sham-operated (Sham, n=6) group. In addition, heart muscle hypertrophy caused by the dysfunction in MI group was observed. In skeletal muscle, the atrophy and transition of fiber type distribution in MI group, reported in previous studies of heart failure, were not observed. However, the succinate dehydrogenase (SDH) activity in the slow twitch oxidative (SO) from SOL of MI group decreased by 9.8% and in the fast twitch oxidative glycolytic fibers (FOG), 8.0% as compared with sham group. Capillary density of the SO fibers from SOL of MI group also reduced by 18.5% and in the FOG fibers, 18.2% as compared with Sham group. Decreased capillary density in this study related significantly to decreased SDH activity of single muscle fibers in chronic phase of perfusion after surgical infarction. Our results make it clear that there is a difference in the reaction of skeletal muscle to coronary artery occlusion/reperfusion compared with chronic

  16. Modeling single ventricle physiology: review of engineering tools to study first stage palliation of hypoplastic left heart syndrome.

    Science.gov (United States)

    Biglino, Giovanni; Giardini, Alessandro; Hsia, Tain-Yen; Figliola, Richard; Taylor, Andrew M; Schievano, Silvia

    2013-10-30

    First stage palliation of hypoplastic left heart syndrome, i.e., the Norwood operation, results in a complex physiological arrangement, involving different shunting options (modified Blalock-Taussig, RV-PA conduit, central shunt from the ascending aorta) and enlargement of the hypoplastic ascending aorta. Engineering techniques, both computational and experimental, can aid in the understanding of the Norwood physiology and their correct implementation can potentially lead to refinement of the decision-making process, by means of patient-specific simulations. This paper presents some of the available tools that can corroborate clinical evidence by providing detailed insight into the fluid dynamics of the Norwood circulation as well as alternative surgical scenarios (i.e., virtual surgery). Patient-specific anatomies can be manufactured by means of rapid prototyping and such models can be inserted in experimental set-ups (mock circulatory loops) that can provide a valuable source of validation data as well as hydrodynamic information. Such models can be tuned to respond to differing the patient physiologies. Experimental set-ups can also be compatible with visualization techniques, like particle image velocimetry and cardiovascular magnetic resonance, further adding to the knowledge of the local fluid dynamics. Multi-scale computational models include detailed three-dimensional (3D) anatomical information coupled to a lumped parameter network representing the remainder of the circulation. These models output both overall hemodynamic parameters while also enabling to investigate the local fluid dynamics of the aortic arch or the shunt. As an alternative, pure lumped parameter models can also be employed to model Stage 1 palliation, taking advantage of a much lower computational cost, albeit missing the 3D anatomical component. Finally, analytical techniques, such as wave intensity analysis, can be employed to study the Norwood physiology, providing a mechanistic

  17. Comparison between the SAPIEN S3 and the SAPIEN XT transcatheter heart valves: A single-center experience.

    Science.gov (United States)

    Sawaya, Fadi J; Spaziano, Marco; Lefèvre, Thierry; Roy, Andrew; Garot, Phillippe; Hovasse, Thomas; Neylon, Antoinette; Benamer, Hakim; Romano, Mauro; Unterseeh, Thierry; Morice, Marie-Claude; Chevalier, Bernard

    2016-12-26

    To investigate the clinical outcomes of transcatheter aortic valve implantation (TAVI) with the SAPIEN 3 transcatheter heart valve (S3-THV) vs the SAPIEN XT valve (XT-THV). We retrospectively analyzed 507 patients that underwent TAVI with the XT-THV and 283 patients that received the S3-THV at our institution between March 2010 and December 2015. Thirty-day mortality (3.5% vs 8.7%; OR = 0.44, P = 0.21) and 1-year mortality (25.7% vs 20.1%, P = 0.55) were similar in the S3-THV and the XT-THV groups. The rates of both major vascular complication and paravalvular regurgitation (PVR) > 1 were almost 4 times lower in the S3-THV group than the XT-THV group (major vascular complication: 2.8% vs 9.9%, P 1: 2.4% vs 9.7%, P < 0.0001). However, the rate of new pacemaker implantation was almost twice as high in the S3-THV group (17.3% vs 9.8%, P = 0.03). In the S3 group, independent predictors of new permanent pacemaker were pre-procedural RBBB (OR = 4.9; P = 0.001), pre-procedural PR duration (OR = 1.14, P = 0.05) and device lack of coaxiality (OR = 1.13; P = 0.05) during deployment. The S3-THV is associated to lower rates of major vascular complications and PVR but higher rates of new pacemaker compared to the XT-THV. Sub-optimal visualization of the S3-THV in relation to the aortic valvular complex during deployment is a predictor of new permanent pacemaker.

  18. Cardiac catheterization and percutaneus catheter in grown-up congenital heart diseases: single center experience at developing country

    Directory of Open Access Journals (Sweden)

    Luh G.A.P. Dewi

    2018-05-01

    Full Text Available Background: Grown-up congenital heart disease (GUCH patients are unique and challenges especially at developing country. The numbers of diagnostic as well as interventional cardiac catheterization procedures in GUCH patients are growing. The aim of this study was to report the outcome of cardiac catheterization including intervention procedure in GUCH.Methods: The descriptive study was conducted at Sanglah Hospital, Denpasar, Bali, Indonesia. All patients (age of more than 12 years who underwent cardiac catheterization from 2011 until 2017 were included in this study. Patients, characteristic, types of catheter procedures, immediate complications, and outcomes were documented.Results: A total 54 subjects were included with median age of 23 years and 70% were female. The first symptom that brought patients to hospital is dyspnea 46% and palpitation 32%. Five subjects underwent a diagnostic catheter procedure and 49 (91% diagnostic and catheter based interventions. Transcatheter interventions procedures included atrial septal defect (ASD (success rate of 20 per 21, patent ductus arteriosus (PDA (success rate of 16 per16, ventricular septal defect (VSD (success rate of  9 per 9, pulmonal stenosis (PS (success rate of 1 per 2, and aortic stenosis (AS (success rate of 1 per 1. The complications encountered were transient dysrhythmias in 15 subjects, device embolization in 4 subjects, massive bleeding in 1 subject, and overall mortality in 2 subjects.Conclusion: The number of the catheterization interventions in GUCH was 91% and ASD device closure was the most common procedure. Transcatheter intervention has a high procedural success rates (96% and low procedural-related complications.

  19. Metastasizing leiomyoma to heart.

    Science.gov (United States)

    Consamus, Erin N; Reardon, Michael J; Ayala, Alberto G; Schwartz, Mary R; Ro, Jae Y

    2014-01-01

    Cardiac smooth muscle tumors are rare. Three different clinical settings for these tumors have been reported, including benign metastasizing leiomyoma from the uterus, primary cardiac leiomyoma and leiomyosarcoma, and intravenous cardiac extension of pelvic leiomyoma, which is the most common. We present a case of a 55-year-old woman with a benign metastasizing leiomyoma to the heart 17 years after hysterectomy and 16 years after metastasis to the lung. Immunohistochemical stains for smooth muscle actin, desmin, and estrogen and progesterone receptors were positive, indicating a smooth muscle tumor of uterine origin. To our knowledge, this is only the fourth reported case of benign metastasizing leiomyoma to the heart and the first case of long-delayed cardiac metastasis after successful treatment of pulmonary metastasis. It illustrates that benign metastasizing leiomyoma should be included in the differential diagnosis of cardiac tumors in patients with a history of uterine leiomyoma, especially when associated with pulmonary metastasis.

  20. Muscle cooling delays activation of the muscle metaboreflex in humans.

    Science.gov (United States)

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  1. Skeletal muscle abnormalities and exercise capacity in adults with a Fontan circulation.

    Science.gov (United States)

    Cordina, Rachael; O'Meagher, Shamus; Gould, Haslinda; Rae, Caroline; Kemp, Graham; Pasco, Julie A; Celermajer, David S; Singh, Nalin

    2013-10-01

    The peripheral muscle pump is key in promoting cardiac filling during exercise, especially in subjects who lack a subpulmonary ventricle (the Fontan circulation). A muscle-wasting syndrome exists in acquired heart failure but has not been assessed in Fontan subjects. We sought to investigate whether adults with the Fontan circulation exhibit reduced skeletal muscle mass and/or metabolic abnormalities. Sixteen New York Heart Association Class I/II Fontan adults (30±2 years) underwent cardiopulmonary exercise testing and lean mass quantification with dual x-ray absorptiometry (DXA); eight had calf muscle (31)P magnetic resonance spectroscopy as did eight healthy age-matched and sex-matched controls. DXA results were compared with Australian reference data. Single tertiary referral centre. Peak VO2 was 1.9±0.1 L/min (66±3% of predicted values). Skeletal muscle mass assessed by relative appendicular lean mass index was significantly reduced compared with age-matched and sex-matched reference values (Z-score -1.46±0.22, pskeletal muscle mass correlated with poorer VO2 max (r=0.67, p=0.004). Overall, skeletal muscle mass T-score (derived from comparison with young normal reference mean) was -1.47±0.21; 4/16 Fontan subjects had sarcopenic range muscle wasting (T-score Muscle aerobic capacity, measured by the rate constant (k) of postexercise phosphocreatine resynthesis, was significantly impaired in Fontan adults versus controls (1.48±0.13 vs 2.40±0.33 min(-1), p=0.02). Fontan adults have reduced skeletal muscle mass and intrinsic muscle metabolic abnormalities.

  2. Resistance Training with Single vs. Multi-joint Exercises at Equal Total Load Volume: Effects on Body Composition, Cardiorespiratory Fitness, and Muscle Strength.

    Science.gov (United States)

    Paoli, Antonio; Gentil, Paulo; Moro, Tatiana; Marcolin, Giuseppe; Bianco, Antonino

    2017-01-01

    The present study aimed to compare the effects of equal-volume resistance training performed with single-joint (SJ) or multi-joint exercises (MJ) on VO 2 max, muscle strength and body composition in physically active males. Thirty-six participants were divided in two groups: SJ group ( n = 18, 182.1 ± 5.2, 80.03 ± 2.78 kg, 23.5 ± 2.7 years) exercised with only SJ exercises (e.g., dumbbell fly, knee extension, etc.) and MJ group ( n = 18, 185.3 ± 3.6 cm, 80.69 ± 2.98 kg, 25.5 ± 3.8 years) with only MJ exercises (e.g., bench press, squat, etc.). The total work volume (repetitions × sets × load) was equated between groups. Training was performed three times a week for 8 weeks. Before and after the training period, participants were tested for VO 2 max, body composition, 1 RM on the bench press, knee extension and squat. Analysis of covariance (ANCOVA) was used to compare post training values between groups, using baseline values as covariates. According to the results, both groups decreased body fat and increased fat free mass with no difference between them. Whilst both groups significantly increased cardiorespiratory fitness and maximal strength, the improvements in MJ group were higher than for SJ in VO 2 max (5.1 and 12.5% for SJ and MJ), bench press 1 RM (8.1 and 10.9% for SJ and MJ), knee extension 1 RM (12.4 and 18.9% for SJ and MJ) and squat 1 RM (8.3 and 13.8% for SJ and MJ). In conclusion, when total work volume was equated, RT programs involving MJ exercises appear to be more efficient for improving muscle strength and maximal oxygen consumption than programs involving SJ exercises, but no differences were found for body composition.

  3. Comparison of degree of postoperative muscle damage between MIS-TLIF- and PLIF treatment for single-level degenerative lumbar disease

    Directory of Open Access Journals (Sweden)

    Liang ZHOU

    2014-01-01

    Full Text Available Objective To compare the postoperative muscle damage after either posterior lumbar interbody fusion (PLIF or minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF with the aid of X-Tube system in patients with singlelevel degenerative lumbar spinal disease. Methods The clinical data of 52 patients (males 28, females 24, aged 54.3±7.8 years with single-level degenerative lumbar spinal disease undergoing MIS-TLIF assisted by the X-Tube system from Oct 2010 to Sep 2011 was analyzed retrospectively. The operative time, intraoperative blood loss, postoperative drainage volume, postoperative bedtime, and serum creatine kinase (CK level 1 day before surgery and 1, 3 and 5 days after surgery were recorded and compared with those of 38 patients (males 20, females 18, aged 51.6±8.6 years with the same disease undergoing conventional open PLIF during the corresponding period. The back pain visual analogue score (VAS, Oswestry disability index (ODI score and imaging examination were performed before operation, after operation and during follow-up duration for each patient. Results There was no significant difference in the gender, age, clinical diagnosis, lesion location, preoperative CK level, VAS and ODI scores between the two groups (P>0.05. The operative time was longer in MIS-TLIF group than in PLIF group (P0.05. Radiological followup observation revealed good fusion 6 months after operation in all the patients. Conclusion The X-Tube-assisted MIS-TLIF has several advantages over conventional open PLIF, such as less intraoperative blood loss, milder muscle damage, and lighter back pain. DOI: 10.11855/j.issn.0577-7402.2013.12.04

  4. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification.

    Science.gov (United States)

    Moretti, Alessandra; Caron, Leslie; Nakano, Atsushi; Lam, Jason T; Bernshausen, Alexandra; Chen, Yinhong; Qyang, Yibing; Bu, Lei; Sasaki, Mika; Martin-Puig, Silvia; Sun, Yunfu; Evans, Sylvia M; Laugwitz, Karl-Ludwig; Chien, Kenneth R

    2006-12-15

    Cardiogenesis requires the generation of endothelial, cardiac, and smooth muscle cells, thought to arise from distinct embryonic precursors. We use genetic fate-mapping studies to document that isl1(+) precursors from the second heart field can generate each of these diverse cardiovascular cell types in vivo. Utilizing embryonic stem (ES) cells, we clonally amplified a cellular hierarchy of isl1(+) cardiovascular progenitors, which resemble the developmental precursors in the embryonic heart. The transcriptional signature of isl1(+)/Nkx2.5(+)/flk1(+) defines a multipotent cardiovascular progenitor, which can give rise to cells of all three lineages. These studies document a developmental paradigm for cardiogenesis, where muscle and endothelial lineage diversification arises from a single cell-level decision of a multipotent isl1(+) cardiovascular progenitor cell (MICP). The discovery of ES cell-derived MICPs suggests a strategy for cardiovascular tissue regeneration via their isolation, renewal, and directed differentiation into specific mature cardiac, pacemaker, smooth muscle, and endothelial cell types.

  5. 18F-fluorodeoxyglucose accumulation in the heart, brain and skeletal muscle of rats; the influence of time after injection, depressed lipid metabolism and glucose-insulin

    International Nuclear Information System (INIS)

    Kasalicky, J.; Konopkova, M.; Melichar, F.

    2001-01-01

    To study the effect of lipid depressing drugs on 18 FDG myocardial concentration. The changes of 18 FDG uptake in myocardium, brain and skeletal muscle of rats were compared as influenced by acipimox, tyloxapol and glucose with insulin. 5.55 MBq of 18 FDG were administered to Wistar rats. Control rats were killed 15, 30, 45 and 60 minutes following intravenous injection and the radioactivity concentration (cpm/g of tissue) in relation to injected cpm was determined in a well crystal adjusted to 511 KeV in order to check the time of maximal 18 FDG tissue uptake. The radioactivity in myocardium, skeletal muscle and brain in intact animals was compared with that of rats treated with tyloxapol (tritton WR 1339, 125 mg intravenously immediately before 18 FDG injection), acipimox (nicotinic acid derivative, 25 mg by stomach cannula 15 minutes before 18 FDG), or glucose with insulin (intravenous injection of 0.04 g and 0.04 UI immediately before 18 FDG). The animals were killed 45 minutes following 18 FDG injection. Tyloxapol and acipimox significantly elevated myocardial 18 FDG concentration (tyloxapol +37% and acipimox +48%), but the increase in 18 FDG concentration after glucose and insulin was slight and insignificant. The changes in skeletal muscle after lipid depressing agents were quite contrasting; the decrease in 18 FDG concentration was -74% after tyloxapol and -44% following acipimox administration. The accumulation of 18 FDG in brain was not influenced markedly by the drugs used or by glucose with insulin. The highest 18 FDG uptake in myocardium could be achieved by depressing the lipid metabolism and not by administration of glucose with insulin only. A marked increase in glucose accumulation in myocardium is not possible without previous shift from the utilisation of fatty acids. This finding is fully in agreement with present knowledge about energetic metabolism of myocardium. (author)

  6. Automatic exposure control at single- and dual-heartbeat CTCA on a 320-MDCT volume scanner: effect of heart rate, exposure phase window setting, and reconstruction algorithm.

    Science.gov (United States)

    Funama, Yoshinori; Utsunomiya, Daisuke; Taguchi, Katsuyuki; Oda, Seitaro; Shimonobo, Toshiaki; Yamashita, Yasuyuki

    2014-05-01

    To investigate whether electrocardiogram (ECG)-gated single- and dual-heartbeat computed tomography coronary angiography (CTCA) with automatic exposure control (AEC) yields images with uniform image noise at reduced radiation doses. Using an anthropomorphic chest CT phantom we performed prospectively ECG-gated single- and dual-heartbeat CTCA on a second-generation 320-multidetector CT volume scanner. The exposure phase window was set at 75%, 70-80%, 40-80%, and 0-100% and the heart rate at 60 or 80 or corr80 bpm; images were reconstructed with filtered back projection (FBP) or iterative reconstruction (IR, adaptive iterative dose reduction 3D). We applied AEC and set the image noise level to 20 or 25 HU. For each technique we determined the image noise and the radiation dose to the phantom center. With half-scan reconstruction at 60 bpm, a 70-80% phase window- and a 20-HU standard deviation (SD) setting, the imagenoise level and -variation along the z axis manifested similar curves with FBP and IR. With half-scan reconstruction, the radiation dose to the phantom center with 70-80% phase window was 18.89 and 12.34 mGy for FBP and 4.61 and 3.10 mGy for IR at an SD setting SD of 20 and 25 HU, respectively. At 80 bpm with two-segment reconstruction the dose was approximately twice that of 60 bpm at both SD settings. However, increasing radiation dose at corr80 bpm was suppressed to 1.39 times compared to 60 bpm. AEC at ECG-gated single- and dual-heartbeat CTCA controls the image noise at different radiation dose. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Ex vivo gene editing of the dystrophin gene in muscle stem cells mediated by peptide nucleic acid single stranded oligodeoxynucleotides induces stable expression of dystrophin in a mouse model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Nik-Ahd, Farnoosh; Bertoni, Carmen

    2014-07-01

    Duchenne muscular dystrophy (DMD) is a fatal disease caused by mutations in the dystrophin gene, which result in the complete absence of dystrophin protein throughout the body. Gene correction strategies hold promise to treating DMD. Our laboratory has previously demonstrated the ability of peptide nucleic acid single-stranded oligodeoxynucleotides (PNA-ssODNs) to permanently correct single-point mutations at the genomic level. In this study, we show that PNA-ssODNs can target and correct muscle satellite cells (SCs), a population of stem cells capable of self-renewing and differentiating into muscle fibers. When transplanted into skeletal muscles, SCs transfected with correcting PNA-ssODNs were able to engraft and to restore dystrophin expression. The number of dystrophin-positive fibers was shown to significantly increase over time. Expression was confirmed to be the result of the activation of a subpopulation of SCs that had undergone repair as demonstrated by immunofluorescence analyses of engrafted muscles using antibodies specific to full-length dystrophin transcripts and by genomic DNA analysis of dystrophin-positive fibers. Furthermore, the increase in dystrophin expression detected over time resulted in a significant improvement in muscle morphology. The ability of transplanted cells to return into quiescence and to activate upon demand was confirmed in all engrafted muscles following injury. These results demonstrate the feasibility of using gene editing strategies to target and correct SCs and further establish the therapeutic potential of this approach to permanently restore dystrophin expression into muscle of DMD patients. © 2014 AlphaMed Press.

  8. Single histidine button in cardiac troponin I sustains heart performance in response to severe hypercapnic respiratory acidosis in vivo.

    Science.gov (United States)

    Palpant, Nathan J; D'Alecy, Louis G; Metzger, Joseph M

    2009-05-01

    Intracellular acidosis is a profound negative regulator of myocardial performance. We hypothesized that titrating myofilament calcium sensitivity by a single histidine substituted cardiac troponin I (A164H) would protect the whole animal physiological response to acidosis in vivo. To experimentally induce severe hypercapnic acidosis, mice were exposed to a 40% CO(2) challenge. By echocardiography, it was found that systolic function and ventricular geometry were maintained in cTnI A164H transgenic (Tg) mice. By contrast, non-Tg (Ntg) littermates experienced rapid and marked cardiac decompensation during this same challenge. For detailed hemodymanic assessment, Millar pressure-conductance catheterization was performed while animals were treated with a beta-blocker, esmolol, during a severe hypercapnic acidosis challenge. Survival and load-independent measures of contractility were significantly greater in Tg vs. Ntg mice. This assay showed that Ntg mice had 100% mortality within 5 min of acidosis. By contrast, systolic and diastolic function were protected in Tg mice during acidosis, and they had 100% survival. This study shows that, independent of any beta-adrenergic compensation, myofilament-based molecular manipulation of inotropy by histidine-modified troponin I maintains cardiac inotropic and lusitropic performance and markedly improves survival during severe acidosis in vivo.

  9. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  10. Muscle Cramps

    Science.gov (United States)

    ... Talk to your provider about the risks and benefits of medicines. How can I prevent muscle cramps? To prevent muscle cramps, you can Stretch your muscles, especially before exercising. If you often get leg cramps at night, ...

  11. Quantitative assessment of muscle in dogs using a vertebral epaxial muscle score.

    Science.gov (United States)

    Freeman, Lisa M; Sutherland-Smith, James; Prantil, Lori R; Sato, Amy F; Rush, John E; Barton, Bruce A

    2017-10-01

    Muscle loss associated with disease (cachexia) or with aging (sarcopenia) is common in dogs, but clinically relevant methods for quantifying muscle loss are needed. We previously validated an ultrasound method of quantifying muscle size in dogs in a single breed. The goal of this study was to assess the variability and reproducibility of the Vertebral Epaxial Muscle Score (VEMS) in other dog breeds. Static ultrasound images were obtained from 38 healthy, neutered dogs of 5 different breeds between 1- and 5-years-old. The maximal transverse right epaxial muscle height and area at the level of the 13th thoracic vertebra (T13) were measured. Length of the 4th thoracic vertebra (T4) was measured from thoracic radiography. Ratios of the muscle height and area to vertebral length (height/T4 and area/T4, respectively) were calculated to account for differences in body size among breeds. Reproducibility testing was performed on 2 dogs of each breed (26% of the total) to determine intra- and inter-investigator reproducibility, as well as intra-class correlation. Mean height/T4 = 1.02 ± 0.18 and mean area/T4 = 3.32 ± 1.68. There was no significant difference for height/T4 ( P = 0.10) among breeds, but breeds were significantly different in area/T4 ( P dogs of different sizes and body conformations. Studies assessing this technique in dogs with congestive heart failure and other diseases associated with muscle loss are warranted.

  12. 201Tl heart studies

    International Nuclear Information System (INIS)

    Bell, R.L.

    1976-01-01

    At the annual meeting of the Society of Nuclear Medicine there was a preponderance of papers dealing with the heart. The most impressive papers detailed the use of monovalent cation 201 Tl in the evaluation of coronary artery disease. Thallium-201 behaves like potassium in that it enters heart muscle quickly and persists in that organ for several hours. It is unlike most radioactive potassium analogues used for heart studies in that: (1) its gamma energy peaks (69 keV and 80 keV) are more easily collimated with resultant image improvement, (2) its physical half life of 72 hours is sufficiently short to attain high counting rates without too much radiation and is sufficiently long so that storage is not prohibitive, (3) its short half life and lack of Beta radiation results in lower radiation to the patient, and (4) its uptake in heart is greater and uptake in liver and stomach less than other potassium analogues

  13. Angiogenesis in hepatocellular carcinoma: correlation of single-level dynamic spiral CT scans in arterial phase and expression of α-smooth muscle actin

    International Nuclear Information System (INIS)

    Liu Yan; Min Pengqiu; Chen Weixia; Zhang Lin

    2005-01-01

    Objective: To investigate the correlation between the single-level dynamic spiral CT scans (SDCT) of hepatocellular carcinoma (HCC) in arterial phase (AP) and the immunohistochemistry expression of α-smooth muscle actin (ASMA). Methods: 33 cases of suspected HCC undergoing spiral CT plain scan of the whole liver, the single-level dynamic scan of the target level of lesion in AP and finally the whole liver scan in portal-venous phase before operations and proved after were included into the study. After the SDCT, a time-density curve (T-DC) was drawn according to the density change of the region of interest (ROI) of the tumor parenchyma with some parameters calculated, and signs of enhancement evaluated. Slices of post-operation specimen underwent hemotoxylin-eosin (HE) and ASMA immunohistochemistry staining. Then the slices were evaluated with emphases on the ASMA-positive neovasculatures in the parenchyma and mesenchyma of carcinomas, and the average count in a low microscopic field (x 100) was recorded (5 low microscopic field were observed and then an average was calculated.). Finally the immunohistochemistry and histologic results were correlated with image findings. Results: According to the PV of the tumor parenchyma, T-DC was divided into type I, II and III in which the criteria were PV>80, 40 HU< PV< 80 HU and PV<40 HU respectively. In the 33 cases, type I, II and III of T-DC were 3, 17 and 13 cases with PV of 103.30, 57.65 and 33.55 HU respectively. In ASMA immunohistochemistry study, ASMA-positive neovasculatures were devided into type A with a thick wall and B with a thin wall. The mean count of neovasculatures of tumor parenchyma in type I, II and III of T-DC were 10, 4.59 and 1 respectively. Statistically, different types of T-DC were significantly correlated with the count of neovasculatures in the parenchyma of carcinomas (r=-0.567, P<0.01). Homogeneous and inhomogeneous enhancement of carcinomas during SDCT in AP were correlated with the

  14. Heart Failure

    Science.gov (United States)

    Heart failure is a condition in which the heart can't pump enough blood to meet the body's needs. Heart failure does not mean that your heart has stopped ... and shortness of breath Common causes of heart failure are coronary artery disease, high blood pressure and ...

  15. Pulse pressure as a haemodynamic variable in systolic heart failure

    NARCIS (Netherlands)

    Petrie, Colin James

    2016-01-01

    In patients with heart failure, the heart is unable to pump enough blood to satisfy the requirements of the body. Explanations for this include heart muscle damage after a heart attack. This could be very recently, or in the past, sometimes dating back many years. In other cases the explanation for

  16. Effect of single intraoperative dose of amiodarone in patients with rheumatic valvular heart disease and atrial fibrillation undergoing valve replacement surgery

    Directory of Open Access Journals (Sweden)

    Selvaraj Thiruvenkadam

    2009-01-01

    Full Text Available Maintenance of sinus rhythm (SR is superior to rate control in atrial fibrillation (AF. In order to achieve SR, we administered single-dose intravenous amiodarone intraoperatively and evaluated its effect on conversion of rheumatic AF to SR in patients undergoing valvular heart surgery. Patients were randomly assigned to amiodarone ( n = 42 or control ( n = 40 group in a double blind manner. The amiodarone group received amiodarone (3 mg/kg intravenously prior to the institution of cardiopulmonary bypass and the control group received the same volume of normal saline. In the amiodarone group, the initial rhythm after the release of aortic cross clamp was noted to be AF in 14.3% ( n = 6 and remained so in 9.5% ( n = 4 of patients till the end of surgery. In the control group, the rhythm soon after the release of aortic cross clamp was AF in 37.5% ( n = 15 ( p = 0.035 and remained so in 32.5% ( n = 13 of patients till the end of surgery ( p = 0.01. At the end of first post-operative day 21.4% ( n = 9 of patients in amiodarone group and 55% ( n = 22 of patients in control group were in AF ( p = 0.002. The requirement of cardioversion/defibrillation was 1.5 (±0.54 in amiodarone group and 2.26 (±0.73 in the control group ( p = 0.014, and the energy needed was 22.5 (±8.86 joules in the amiodarone group and 40.53 (±16.5 in the control group ( p = 0.008. A single intraoperative dose of intravenous amiodarone increased the conversion rate of AF to normal sinus rhythm, reduced the need and energy required for cardioversion/defibrillation and reduced the recurrence of AF within one day.

  17. Crackle pitch and rate do not vary significantly during a single automated-auscultation session in patients with pneumonia, congestive heart failure, or interstitial pulmonary fibrosis.

    Science.gov (United States)

    Vyshedskiy, Andrey; Ishikawa, Sadamu; Murphy, Raymond L H

    2011-06-01

    To determine the variability of crackle pitch and crackle rate during a single automated-auscultation session with a computerized 16-channel lung-sound analyzer. Forty-nine patients with pneumonia, 52 with congestive heart failure (CHF), and 18 with interstitial pulmonary fibrosis (IPF) performed breathing maneuvers in the following sequence: normal breathing, deep breathing, cough several times; deep breathing, vital-capacity maneuver, and deep breathing. From the auscultation recordings we measured the crackle pitch and crackle rate. Crackle pitch variability, expressed as a percentage of the average crackle pitch, was small in all patients and in all maneuvers: pneumonia 11%, CHF 11%, pulmonary fibrosis 7%. Crackle rate variability was also small: pneumonia 31%, CHF 32%, IPF 24%. Compared to the first deep-breathing maneuver (100%), the average crackle pitch did not significantly change following coughing (pneumonia 100%, CHF 103%, IPF 100%), the vital-capacity maneuver (pneumonia 100%, CHF 92%, IPF 104%), or during quiet breathing (pneumonia 97%, CHF 100%, IPF 104%). Similarly, the average crackle rate did not change significantly following coughing (pneumonia 105%, CHF 110%, IPF 90%) or the vital-capacity maneuver (pneumonia 102%, CHF 101%, IPF 99%). However, during normal breathing the crackle rate was significantly lower in the patients with pneumonia (74%, P auscultation session suggests that crackle rate can be used to follow the course of cardiopulmonary illnesses such as pneumonia, IPF, and CHF.

  18. Resistance Training with Single vs. Multi-joint Exercises at Equal Total Load Volume: Effects on Body Composition, Cardiorespiratory Fitness, and Muscle Strength

    Directory of Open Access Journals (Sweden)

    Antonio Paoli

    2017-12-01

    Full Text Available The present study aimed to compare the effects of equal-volume resistance training performed with single-joint (SJ or multi-joint exercises (MJ on VO2max, muscle strength and body composition in physically active males. Thirty-six participants were divided in two groups: SJ group (n = 18, 182.1 ± 5.2, 80.03 ± 2.78 kg, 23.5 ± 2.7 years exercised with only SJ exercises (e.g., dumbbell fly, knee extension, etc. and MJ group (n = 18, 185.3 ± 3.6 cm, 80.69 ± 2.98 kg, 25.5 ± 3.8 years with only MJ exercises (e.g., bench press, squat, etc.. The total work volume (repetitions × sets × load was equated between groups. Training was performed three times a week for 8 weeks. Before and after the training period, participants were tested for VO2max, body composition, 1 RM on the bench press, knee extension and squat. Analysis of covariance (ANCOVA was used to compare post training values between groups, using baseline values as covariates. According to the results, both groups decreased body fat and increased fat free mass with no difference between them. Whilst both groups significantly increased cardiorespiratory fitness and maximal strength, the improvements in MJ group were higher than for SJ in VO2max (5.1 and 12.5% for SJ and MJ, bench press 1 RM (8.1 and 10.9% for SJ and MJ, knee extension 1 RM (12.4 and 18.9% for SJ and MJ and squat 1 RM (8.3 and 13.8% for SJ and MJ. In conclusion, when total work volume was equated, RT programs involving MJ exercises appear to be more efficient for improving muscle strength and maximal oxygen consumption than programs involving SJ exercises, but no differences were found for body composition.

  19. Radiochemicals used to scan the heart

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Techniques for heart scanning using 201 Tl and /sup 99m/Tc pyrophosphate are discussed. Thallium-201, produced artificially in a cyclotron, concentrates in normal heart muscle but not in abnormal tissue. Technetium-99m is deposited in mitochondria of heart cells that are irreversibly damaged. The combined use of 201 Tl and /sup 99m/Tc makes it possible to identify regions of recent heart damage as well as older heart damage. Advantages of using 129 Cs for heart scanning are also discussed

  20. BAG3: a new player in the heart failure paradigm.

    Science.gov (United States)

    Knezevic, Tijana; Myers, Valerie D; Gordon, Jennifer; Tilley, Douglas G; Sharp, Thomas E; Wang, JuFang; Khalili, Kamel; Cheung, Joseph Y; Feldman, Arthur M

    2015-07-01

    BAG3 is a cellular protein that is expressed predominantly in skeletal and cardiac muscle but can also be found in the brain and in the peripheral nervous system. BAG3 functions in the cell include: serving as a co-chaperone with members of the heat-shock protein family of proteins to facilitate the removal of misfolded and degraded proteins, inhibiting apoptosis by interacting with Bcl2 and maintaining the structural integrity of the Z-disk in muscle by binding with CapZ. The importance of BAG3 in the homeostasis of myocytes and its role in the development of heart failure was evidenced by the finding that single allelic mutations in BAG3 were associated with familial dilated cardiomyopathy. Furthermore, significant decreases in the level of BAG3 have been found in end-stage failing human heart and in animal models of heart failure including mice with heart failure secondary to trans-aortic banding and in pigs after myocardial infarction. Thus, it becomes relevant to understand the cellular biology and molecular regulation of BAG3 expression in order to design new therapies for the treatment of patients with both hereditary and non-hereditary forms of dilated cardiomyopathy.

  1. Striated Muscle Function, Regeneration, and Repair

    Science.gov (United States)

    Shadrin, I.Y.; Khodabukus, A.; Bursac, N.

    2016-01-01

    As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751

  2. Effects of calcium, inorganic phosphate, and pH on isometric force in single skinned cardiomyocytes from donor and failing human hearts

    NARCIS (Netherlands)

    van der Velden, J.; Klein, L. J.; Zaremba, R.; Boontje, N. M.; Huybregts, M. A.; Stooker, W.; Eijsman, L.; de Jong, J. W.; Visser, C. A.; Visser, F. C.; Stienen, G. J.

    2001-01-01

    During ischemia, the intracellular calcium and inorganic phosphate (P(i)) concentrations rise and pH falls. We investigated the effects of these changes on force development in donor and failing human hearts to determine if altered contractile protein composition during heart failure changes the

  3. TIPSS Procedure in the Treatment of a Single Patient After Recent Heart Transplantation Because of Refractory Ascites Due to Cardiac Cirrhosis

    International Nuclear Information System (INIS)

    Fava, Mario; Meneses, Luis; Loyola, Soledad; Castro, Pablo; Barahona, Fernando

    2008-01-01

    We present the case of a female patient with arrhythmogenic dysplasia of the right ventricle who evolved to refractory heart failure, ascites, and peripheral edema. As a result, heart transplantation was performed. Subsequently, refractory ascites impaired the patient's respiratory function, resulting in prolonged mechanical ventilation. She was successfully treated with transjugular intrahepatic portosystemic shunt (TIPSS) placement, which allowed satisfactory weaning of ventilatory support.

  4. Are repeated single-limb heel raises and manual muscle testing associated with peak plantar-flexor force in people with inclusion body myositis?

    Science.gov (United States)

    Harris-Love, Michael O; Shrader, Joseph A; Davenport, Todd E; Joe, Galen; Rakocevic, Goran; McElroy, Beverly; Dalakas, Marinos

    2014-04-01

    Repeated heel raises have been proposed as a method of ankle plantar-flexor strength testing that circumvents the limitations of manual muscle testing (MMT). The study objective was to examine the relationships among ankle plantar-flexion isometric maximum voluntary contraction (MVC), repeated single-limb heel raises (SLHRs), and MMT in people with myositis. This was a cross-sectional study with a between-group design. The ability to complete 1 SLHR determined group assignment (SLHR group, n=24; no-SLHR group, n=19). Forty-three participants with myositis (13 women; median age=64.9 years) participated. Outcome measures included MVC, predicted MVC, Kendall MMT, and Daniels-Worthingham MMT. The Kendall MMT was unable to detect significant ankle plantar-flexor weakness established by quantitative methods and was unable to discriminate between participants who could and those who could not perform the SLHR task. Ankle plantar-flexion MVC was not associated with the number of heel-raise repetitions in the SLHR group (pseudo R(2)=.13). No significant relationship was observed between MVC values and MMT grades in the SLHR and no-SLHR groups. However, a moderate relationship between MVC values and MMT grades was evident in a combined-group analysis (ρ=.50-.67). The lower half of both MMT grading scales was not represented in the study despite the profound weakness of the participants. Both Kendall MMT and Daniels-Worthingham MMT had limited utility in the assessment of ankle plantar-flexor strength. Repeated SLHRs should not be used as a proxy measure of ankle plantar-flexion MVC in people with myositis.

  5. Technetium-99m methylene diphosphonate uptake in the brachialis muscle hematoma in a patient with prostate cancer and coagulation disorder mimicking bone metastasis evaluated by single-photon emission tomography-computed tomography/computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kamaleshwaran, Koramadai Karuppusamy; Mohanan, Vyshakh; Shinto, Ajit Sugunan, E-mail: dr.kamaleshwar@gmail.com [Department of Nuclear Medicine and PET/CT, Kovai Medical Centre and Hospital Limited, Coimbatore (India); Madhavan, Devdas [Department of Urology, Comprehensive Cancer Care Centre, Kovai Medical Centre and Hospital Limited, Coimbatore (India)

    2013-10-15

    We report a case of 79-year-old male with prostate cancer and coagulation disorder presented with left shoulder pain. He underwent bone scintigraphy to rule out metastasis, which showed intense foci of tracer activity in the left axilla. Hybrid single-photon emission tomography-computed tomography (SPECT/CT) of the shoulder region localized tracer uptake to the left brachialis muscle hematoma. (author)

  6. Technetium-99m methylene diphosphonate uptake in the brachialis muscle hematoma in a patient with prostate cancer and coagulation disorder mimicking bone metastasis evaluated by single-photon emission tomography-computed tomography/computed tomography

    International Nuclear Information System (INIS)

    Kamaleshwaran, Koramadai Karuppusamy; Mohanan, Vyshakh; Shinto, Ajit Sugunan; Madhavan, Devdas

    2013-01-01

    We report a case of 79-year-old male with prostate cancer and coagulation disorder presented with left shoulder pain. He underwent bone scintigraphy to rule out metastasis, which showed intense foci of tracer activity in the left axilla. Hybrid single-photon emission tomography-computed tomography (SPECT/CT) of the shoulder region localized tracer uptake to the left brachialis muscle hematoma. (author)

  7. Heart Diseases

    Science.gov (United States)

    ... you're like most people, you think that heart disease is a problem for others. But heart disease is the number one killer in the ... of disability. There are many different forms of heart disease. The most common cause of heart disease ...

  8. Heart Transplantation

    Science.gov (United States)

    A heart transplant removes a damaged or diseased heart and replaces it with a healthy one. The healthy heart comes from a donor who has died. It is the last resort for people with heart failure when all other treatments have failed. The ...

  9. ACTIVE CYCLE BREATHING TECHNIQUES IN HEART FAILURE ...

    African Journals Online (AJOL)

    RICHY

    Pulmonary Function Responses to Active Cycle. Breathing ... Key Words: Heart Failure, Active Cycle of Breathing ... cough, fatigue, reduced respiratory muscle mass, and. [5] ... an amount of exercise which is said to lower disease. [9].

  10. A single intracoronary injection of midkine reduces ischemia/reperfusion injury in swine hearts: a novel therapeutic approach for acute coronary syndrome

    Directory of Open Access Journals (Sweden)

    Hisaaki eIshiguro

    2011-06-01

    Full Text Available Several growth factors are effective for salvaging myocardium and limiting infarct size in experimental studies with small animals. Their benefit in large animals and feasibility in clinical practice remains to be elucidated. We investigate the cardioprotective effect of midkine (MK in swine subjected to ischemia/reperfusion (I/R. I/R was created in swine by left anterior descending coronary artery occlusion for 45 min using a percutaneous over-the-wire balloon catheter. MK protein was injected as a bolus through the catheter at the initiation of reperfusion (midkine injected group; MKT. Saline was injected in controls (CONT. Survival rate 24h after I/R was significantly higher in MKT than in CONT, whereas infarct size/area at risk was almost 5 times smaller. Echocardiography in MKT revealed a significantly higher percent wall thickening of the interventricular septum, a higher % fractional shortening and a lower E/e’ compared with CONT. LV catheterization in MKT showed a lower LVEDP, and a higher dP/dtmax compared with CONT. TUNEL-positive myocytes and CD45-positive cell infiltration in the peri-infarct area were significantly less in MKT than in CONT. Here, we showed that a single intracoronary injection of MK protein in swine hearts at the onset of reperfusion dramatically reduces infarct size and mortality and ameliorates systolic/diastolic LV function. This beneficial effect is associated with a reduction of apoptotic and inflammatory reactions. MK application during percutaneous coronary intervention may become a promising adjunctive therapy in acute coronary syndromes.

  11. A Single Nucleotide Polymorphism in the Stromal Cell-Derived Factor 1 Gene Is Associated with Coronary Heart Disease in Chinese Patients

    Directory of Open Access Journals (Sweden)

    Lei Feng

    2014-06-01

    Full Text Available Coronary heart disease (CHD is highly prevalent globally and a major cause of mortality. Genetic predisposition is a non-modifiable risk factor associated with CHD. Eighty-four Chinese patients with CHD and 253 healthy Chinese controls without CHD were recruited. Major clinical data were collected, and a single nucleotide polymorphism (SNP in the stromal cell-derived factor 1 (SDF-1 gene at position 801 (G to A, rs1801157 in the 3'-untranslated region was identified. The correlation between rs1801157 genotypes and CHD was evaluated by a multivariate logistic regression analysis. The allele frequency in the CHD and control groups was in Hardy-Weinberg equilibrium (HWE (p > 0.05. The frequency of the GG genotype in the CHD group (59.5% was significantly higher than that in the control group (49.8% (p = 0.036. A number of variables, including male sex, age, presence of hypertension, and the levels of low-density lipoprotein cholesterol (LDL-C, high-density lipoprotein cholesterol (HDL-C, triglycerides (TG, uric acid, and total bilirubin, were associated with CHD in a primary univariate analysis. In a multivariable logistic regression analysis, the GG genotype (GG:AA, odds ratio (OR = 2.31, 95% confidence interval (CI = 1.21–5.23, male sex, advanced age (≥60 years, presence of hypertension, LDL-C level ≥ 3.33 mg/dL, HDL-C level < 1.03 mg/dL, and TG level ≥ 1.7 mg/dL were independent risk factors for CHD.

  12. Comparison of echocardiographic and cardiac magnetic resonance imaging measurements of functional single ventricular volumes, mass, and ejection fraction (from the Pediatric Heart Network Fontan Cross-Sectional Study).

    Science.gov (United States)

    Margossian, Renee; Schwartz, Marcy L; Prakash, Ashwin; Wruck, Lisa; Colan, Steven D; Atz, Andrew M; Bradley, Timothy J; Fogel, Mark A; Hurwitz, Lynne M; Marcus, Edward; Powell, Andrew J; Printz, Beth F; Puchalski, Michael D; Rychik, Jack; Shirali, Girish; Williams, Richard; Yoo, Shi-Joon; Geva, Tal

    2009-08-01

    Assessment of the size and function of a functional single ventricle (FSV) is a key element in the management of patients after the Fontan procedure. Measurement variability of ventricular mass, volume, and ejection fraction (EF) among observers by echocardiography and cardiac magnetic resonance imaging (CMR) and their reproducibility among readers in these patients have not been described. From the 546 patients enrolled in the Pediatric Heart Network Fontan Cross-Sectional Study (mean age 11.9 +/- 3.4 years), 100 echocardiograms and 50 CMR studies were assessed for measurement reproducibility; 124 subjects with paired studies were selected for comparison between modalities. Interobserver agreement for qualitative grading of ventricular function by echocardiography was modest for left ventricular (LV) morphology (kappa = 0.42) and weak for right ventricular (RV) morphology (kappa = 0.12). For quantitative assessment, high intraclass correlation coefficients were found for echocardiographic interobserver agreement (LV 0.87 to 0.92, RV 0.82 to 0.85) of systolic and diastolic volumes, respectively. In contrast, intraclass correlation coefficients for LV and RV mass were moderate (LV 0.78, RV 0.72). The corresponding intraclass correlation coefficients by CMR were high (LV 0.96, RV 0.85). Volumes by echocardiography averaged 70% of CMR values. Interobserver reproducibility for the EF was similar for the 2 modalities. Although the absolute mean difference between modalities for the EF was small (<2%), 95% limits of agreement were wide. In conclusion, agreement between observers of qualitative FSV function by echocardiography is modest. Measurements of FSV volume by 2-dimensional echocardiography underestimate CMR measurements, but their reproducibility is high. Echocardiographic and CMR measurements of FSV EF demonstrate similar interobserver reproducibility, whereas measurements of FSV mass and LV diastolic volume are more reproducible by CMR.

  13. Single molecular image of cytosolic free Ca2+ of skeletal muscle cells in rats pre- and post-exercise-induced fatigue

    Science.gov (United States)

    Liu, Yi; Zhang, Heming; Zhao, Yanping; Liu, Zhiming

    2009-08-01

    A growing body of literature indicated the cytosolic free Ca2+ concentration of skeletal muscle cells changes significantly during exercise-induced fatigue. But it is confusing whether cytosolic free Ca2+ concentration increase or decrease. Furthermore, current researches mainly adopt muscle tissue homogenate as experiment material, but the studies based on cellular and subcellular level is seldom. This study is aimed to establish rat skeletal muscle cell model of exercise-induced fatigue, and confirm the change of cytosolic free Ca2+ concentration of skeletal muscle cells in rats preand post- exercise-induced fatigue. In this research, six male Wistar rats were randomly divided into two groups: control group (n=3) and exercise-induced fatigue group (n=3). The former group were allowed to freely move and the latter were forced to loaded swimming to exhaustive. Three days later, all the rats were sacrificed, the muscle tissue from the same site of skeletal muscle were taken out and digested to cells. After primary culture of the two kinds of skeletal muscle cells from tissue, a fluorescent dye-Fluo-3 AM was used to label the cytosolic free Ca2+. The fluorescent of Ca2+ was recorded by confocal laser scanning microscopy. The results indicated that, the Ca2+ fluorescence intensity of cells from the rat of exercise-induced fatigue group was significantly higher than those in control group. In conclusion, cytosolic free Ca2+ concentration of skeletal muscle cells has a close relation with exercise-induced fatigue, and the increase of cytosolic free Ca2+ concentration may be one of the important factors of exercise-induced fatigue.

  14. [Obesity and heart].

    Science.gov (United States)

    Svačina, Štěpán

    2014-12-01

    Cardiovascular complications of obesity are traditionally considered an important complication of obesity. Obesity itself is probably not direct cause of atherosclerosis or coronary heart disease. This may occur indirectly in metabolic complications of obesity, especially diabetes and metabolic syndrome. However, thrombogenicity potential of obesity contributes to embolism and atherosclerosis development. In cardiology is well-known a phenomenon of obesity paradox when obese patients have better prognosis than thin. This is the case of heart failure and some other cardiovascular diseases. Recently, a new concept has emerged of myokines - hormones from muscle tissue that have extensive protective effects on organism and probably on heart. Whether heart is a source of myokines is uncertain. However, undoubted importance has epicardial and pericardial fatty tissue. The epicardial fatty tissue has mainly protective effects on myocardium. This fatty tissue may produce factors of inflammation affecting the myocardium. Relationship between amount of epicardial fatty tissue and coronary heart disease is rather pathogenic. Currently, it is certain that obesity brings more metabolic and cancer complications than cardiovascular and accurate contribution to pathogenic or protective character of fatty tissue in cardiology requires further research. Nevertheless, the conclusion is that adipose tissue of organism and around the heart may be in some circumstances beneficial.

  15. Carcinoid heart disease.

    Science.gov (United States)

    Hassan, Saamir A; Banchs, Jose; Iliescu, Cezar; Dasari, Arvind; Lopez-Mattei, Juan; Yusuf, Syed Wamique

    2017-10-01

    Rare neuroendocrine tumours (NETs) that most commonly arise in the gastrointestinal tract can lead to carcinoid syndrome and carcinoid heart disease. Patients with carcinoid syndrome present with vasomotor changes, hypermotility of the gastrointestinal system, hypotension and bronchospasm. Medical therapy for carcinoid syndrome, typically with somatostatin analogues, can help control symptoms, inhibit tumour progression and prolong survival. Carcinoid heart disease occurs in more than 50% of these patients and is the initial presentation of carcinoid syndrome in up to 20% of patients. Carcinoid heart disease has characteristic findings of plaque-like deposits composed of smooth muscle cells, myofibroblasts, extracellular matrix and an overlying endothelial layer which can lead to valve dysfunction. Valvular dysfunction can lead to oedema, ascites and right-sided heart failure. Medical therapy of carcinoid heart disease is limited to symptom control and palliation. Valve surgery for carcinoid heart disease should be considered for symptomatic patients with controlled metastatic carcinoid syndrome. A multidisciplinary approach is needed to guide optimal management. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Combined heart-kidney transplantation after total artificial heart insertion.

    Science.gov (United States)

    Ruzza, A; Czer, L S C; Ihnken, K A; Sasevich, M; Trento, A; Ramzy, D; Esmailian, F; Moriguchi, J; Kobashigawa, J; Arabia, F

    2015-01-01

    We present the first single-center report of 2 consecutive cases of combined heart and kidney transplantation after insertion of a total artificial heart (TAH). Both patients had advanced heart failure and developed dialysis-dependent renal failure after implantation of the TAH. The 2 patients underwent successful heart and kidney transplantation, with restoration of normal heart and kidney function. On the basis of this limited experience, we consider TAH a safe and feasible option for bridging carefully selected patients with heart and kidney failure to combined heart and kidney transplantation. Recent FDA approval of the Freedom driver may allow outpatient management at substantial cost savings. The TAH, by virtue of its capability of providing pulsatile flow at 6 to 10 L/min, may be the mechanical circulatory support device most likely to recover patients with marginal renal function and advanced heart failure. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Adult Murine Skeletal Muscle Contains Cells That Can Differentiate into Beating Cardiomyocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Winitsky Steve O

    2005-01-01

    Full Text Available It has long been held as scientific fact that soon after birth, cardiomyocytes cease dividing, thus explaining the limited restoration of cardiac function after a heart attack. Recent demonstrations of cardiac myocyte differentiation observed in vitro or after in vivo transplantation of adult stem cells from blood, fat, skeletal muscle, or heart have challenged this view. Analysis of these studies has been complicated by the large disparity in the magnitude of effects seen by different groups and obscured by the recently appreciated process of in vivo stem-cell fusion. We now show a novel population of nonsatellite cells in adult murine skeletal muscle that progress under standard primary cell-culture conditions to autonomously beating cardiomyocytes. Their differentiation into beating cardiomyocytes is characterized here by video microscopy, confocal-detected calcium transients, electron microscopy, immunofluorescent cardiac-specific markers, and single-cell patch recordings of cardiac action potentials. Within 2 d after tail-vein injection of these marked cells into a mouse model of acute infarction, the marked cells are visible in the heart. By 6 d they begin to differentiate without fusing to recipient cardiac cells. Three months later, the tagged cells are visible as striated heart muscle restricted to the region of the cardiac infarct.

  18. Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Steve O Winitsky

    2005-04-01

    Full Text Available It has long been held as scientific fact that soon after birth, cardiomyocytes cease dividing, thus explaining the limited restoration of cardiac function after a heart attack. Recent demonstrations of cardiac myocyte differentiation observed in vitro or after in vivo transplantation of adult stem cells from blood, fat, skeletal muscle, or heart have challenged this view. Analysis of these studies has been complicated by the large disparity in the magnitude of effects seen by different groups and obscured by the recently appreciated process of in vivo stem-cell fusion. We now show a novel population of nonsatellite cells in adult murine skeletal muscle that progress under standard primary cell-culture conditions to autonomously beating cardiomyocytes. Their differentiation into beating cardiomyocytes is characterized here by video microscopy, confocal-detected calcium transients, electron microscopy, immunofluorescent cardiac-specific markers, and single-cell patch recordings of cardiac action potentials. Within 2 d after tail-vein injection of these marked cells into a mouse model of acute infarction, the marked cells are visible in the heart. By 6 d they begin to differentiate without fusing to recipient cardiac cells. Three months later, the tagged cells are visible as striated heart muscle restricted to the region of the cardiac infarct.

  19. Cardiac actions of phencyclidine in isolated guinea pig and rat heart: possible involvement of slow channels

    International Nuclear Information System (INIS)

    Temma, K.; Akera, T.; Ng, Y.C.

    1985-01-01

    The mechanisms responsible for the positive inotropic effect of phencyclidine were studied in isolated preparations of guinea pig and rat heart. In electrically paced left atrial muscle preparations, phencyclidine increased the force of contraction; rat heart muscle preparations were more sensitive than guinea pig heart muscle preparations. The positive inotropic effect of phencyclidine was not significantly reduced by a combination of phentolamine and nadolol; however, the effect was competitively blocked by verapamil in the presence of phentolamine and nadolol. Inhibition of the outward K+ current by tetraethylammonium chloride also produced a positive inotropic effect; however, the effect of tetraethylammonium was reduced by phentolamine and nadolol, and was almost insensitive to verapamil. The inotropic effect of phencyclidine was associated with a marked prolongation of the action potential duration and a decrease in maximal upstroke velocity of the action potential, with no change in the resting membrane potential. The specific [ 3 H]phencyclidine binding observed with membrane preparations from guinea pig ventricular muscle was saturable with a single class of high-affinity binding site. This binding was inhibited by verapamil, diltiazem, or nitrendipine, but not by ryanodine or tetrodotoxin. These results suggest that the positive inotropic effect of phencyclidine results from enhanced Ca 2+ influx via slow channels, either by stimulation of the channels or secondary to inhibition of outward K + currents

  20. Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions.

    Science.gov (United States)

    Izquierdo, M; González-Badillo, J J; Häkkinen, K; Ibáñez, J; Kraemer, W J; Altadill, A; Eslava, J; Gorostiaga, E M

    2006-09-01

    The purpose of this study was to examine the effect of different loads on repetition speed during single sets of repetitions to failure in bench press and parallel squat. Thirty-six physical active men performed 1-repetition maximum in a bench press (1 RM (BP)) and half squat position (1 RM (HS)), and performed maximal power-output continuous repetition sets randomly every 10 days until failure with a submaximal load (60 %, 65 %, 70 %, and 75 % of 1RM, respectively) during bench press and parallel squat. Average velocity of each repetition was recorded by linking a rotary encoder to the end part of the bar. The values of 1 RM (BP) and 1 RM (HS) were 91 +/- 17 and 200 +/- 20 kg, respectively. The number of repetitions performed for a given percentage of 1RM was significantly higher (p bench press performance. Average repetition velocity decreased at a greater rate in bench press than in parallel squat. The significant reductions observed in the average repetition velocity (expressed as a percentage of the average velocity achieved during the initial repetition) were observed at higher percentage of the total number of repetitions performed in parallel squat (48 - 69 %) than in bench press (34 - 40 %) actions. The major finding in this study was that, for a given muscle action (bench press or parallel squat), the pattern of reduction in the relative average velocity achieved during each repetition and the relative number of repetitions performed was the same for all percentages of 1RM tested. However, relative average velocity decreased at a greater rate in bench press than in parallel squat performance. This would indicate that in bench press the significant reductions observed in the average repetition velocity occurred when the number of repetitions was over one third (34 %) of the total number of repetitions performed, whereas in parallel squat it was nearly one half (48 %). Conceptually, this would indicate that for a given exercise (bench press or squat) and

  1. Volumetric Single-Beat Coronary Computed Tomography Angiography: Relationship of Image Quality, Heart Rate, and Body Mass Index. Initial Patient Experience With a New Computed Tomography Scanner.

    Science.gov (United States)

    Latif, Muhammad Aamir; Sanchez, Frank W; Sayegh, Karl; Veledar, Emir; Aziz, Muhammad; Malik, Rehan; Haider, Imran; Agatston, Arthur S; Batlle, Juan C; Janowitz, Warren; Peña, Constantino; Ziffer, Jack A; Nasir, Khurram; Cury, Ricardo C

    2016-01-01

    Cardiac computed tomography (CT) image quality (IQ) is very important for accurate diagnosis. We propose to evaluate IQ expressed as Likert scale, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) from coronary CT angiography images acquired with a new volumetric single-beat CT scanner on consecutive patients and assess the IQ dependence on heart rate (HR) and body mass index (BMI). We retrospectively analyzed the data of the first 439 consecutive patients (mean age, 55.13 [SD, 12.1] years; 51.47% male), who underwent noninvasive coronary CT angiography in a new single-beat volumetric CT scanner (Revolution CT) to evaluate chest pain at West Kendall Baptist Hospital. Based on patient BMI (mean, 29.43 [SD, 5.81] kg/m), the kVp (kilovolt potential) value and tube current were adjusted within a range of 80 to 140 kVp and 122 to 720 mA, respectively. Each scan was performed in a single-beat acquisition within 1 cardiac cycle, regardless of the HR. Motion correction software (SnapShot Freeze) was used for correcting motion artifacts in patients with higher HRs. Autogating was used to automatically acquire systolic and diastolic phases for higher HRs with electrocardiographic milliampere dose modulation. Image quality was assessed qualitatively by Likert scale and quantitatively by SNR and CNR for the 4 major vessels right coronary, left main, left anterior descending, and left circumflex arteries on axial and multiplanar reformatted images. Values for Likert scale were as follows: 1, nondiagnostic; 2, poor; 3, good; 4, very good; and 5, excellent. Signal-to-noise ratio and CNR were calculated from the average 2 CT attenuation values within regions of interest placed in the proximal left main and proximal right coronary artery. For contrast comparison, a region of interest was selected from left ventricular wall at midcavity level using a dedicated workstation. We divided patients in 2 groups related to the HR: less than or equal to 70 beats/min (bpm) and

  2. [Artificial muscle and its prospect in application for direct cardiac compression assist].

    Science.gov (United States)

    Dong, Jing; Yang, Ming; Zheng, Zhejun; Yan, Guozheng

    2008-12-01

    Artificial heart is an effective device in solving insufficient native heart supply for heart transplant, and the research and application of novel actuators play an important role in the development of artificial heart. In this paper, artificial muscle is introduced as the actuators of direct cardiac compression assist, and some of its parameters are compared with those of native heart muscle. The open problems are also discussed.

  3. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Budinger, T.F.; Yano, Y.; Moyer, B.R.; Mathis, C.A.; Ganz, E.; Huesman, R.H.; Derenzo, S.E.

    1982-01-01

    Positron emission tomography (PET) of the heart can measure blood perfusion, metabolism of fatty acids, metabolism of sugars, uptake of amino acids and can quantitate infarction volume. The principles which are basic to PET instrumentation and procedures for quantitative studies of the heart muscle with examples of measurements of myocardial flow and metabolism, are reviewed

  4. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Budinger, T.F.; Yano, Y.; Mathis, C.A.; Moyer, B.R.; Huesman, R.H.; Derenzo, S.E.

    1983-01-01

    Positron emission tomography (PET) offers the opportunity to noninvasively measure heart muscle blood perfusion, oxygen utilization, metabolism of fatty acids, sugars and amino acids. This paper reviews physiological principles which are basic to PET instrumentation for imaging the heart and gives examples of the application of positron emission tomography for measuring myocardial flow and metabolism. 33 references, 11 figures, 1 table

  5. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    Science.gov (United States)

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  6. Heart Truth

    Science.gov (United States)

    ... health! Get a free badge or banner to post to your website or blog. Are you at risk for heart disease? Here's how to find out . Planning to use The Heart Truth logo? Check out our logo guidelines and downloads. ...

  7. Heart Disease

    Science.gov (United States)

    ... it may be caused by diseases, such as connective tissue disorders, excessive iron buildup in your body (hemochromatosis), the buildup of abnormal proteins (amyloidosis) or by some cancer treatments. Causes of heart infection A heart infection, ...

  8. Heart Attack

    Science.gov (United States)

    ... family history of heart attack race – African Americans, Mexican Americans, Native Americans, and native Hawaiians are at ... Your doctor will prescribe the medicines that are right for you. If you have had a heart ...

  9. Eligibility of sacubitril-valsartan in a real-world heart failure population: a community-based single-centre study.

    Science.gov (United States)

    Norberg, Helena; Bergdahl, Ellinor; Lindmark, Krister

    2018-04-01

    This study aims to investigate the eligibility of the Prospective Comparison of Angiotensin Receptor-Neprilysin Inhibitor (ARNI) with ACE inhibitor to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) study to a real-world heart failure population. Medical records of all heart failure patients living within the catchment area of Umeå University Hospital were reviewed. This district consists of around 150 000 people. Out of 2029 patients with a diagnosis of heart failure, 1924 (95%) had at least one echocardiography performed, and 401 patients had an ejection fraction of ≤35% at their latest examination. The major PARADIGM-HF criteria were applied, and 95 patients fulfilled all enrolment criteria and thus were eligible for sacubitril-valsartan. This corresponds to 5% of the overall heart failure population and 24% of the population with ejection fraction ≤ 35%. The eligible patients were significantly older (73.2 ± 10.3 vs. 63.8 ± 11.5 years), had higher blood pressure (128 ± 17 vs. 122 ± 15 mmHg), had higher heart rate (77 ± 17 vs. 72 ± 12 b.p.m.), and had more atrial fibrillation (51.6% vs. 36.2%) than did the PARADIGM-HF population. Only 24% of our real-world heart failure and reduced ejection fraction population was eligible for sacubitril-valsartan, and the real-world heart failure and reduced ejection fraction patients were significantly older than the PARADIGM-HF population. The lack of data on a majority of the patients that we see in clinical practice is a real problem, and we are limited to extrapolation of results on a slightly different population. This is difficult to address, but perhaps registry-based randomized clinical trials will help to solve this issue. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  10. Heart pacemaker

    Science.gov (United States)

    Cardiac pacemaker implantation; Artificial pacemaker; Permanent pacemaker; Internal pacemaker; Cardiac resynchronization therapy; CRT; Biventricular pacemaker; Arrhythmia - pacemaker; Abnormal heart ...

  11. MUSCLE ACTIVITY RESPONSE TO EXTERNAL MOMENT DURING SINGLE-LEG DROP LANDING IN YOUNG BASKETBALL PLAYERS: THE IMPORTANCE OF BICEPS FEMORIS IN REDUCING INTERNAL ROTATION OF KNEE DURING LANDING

    Directory of Open Access Journals (Sweden)

    Meguru Fujii

    2012-06-01

    Full Text Available Internal tibial rotation with the knee close to full extension combined with valgus collapse during drop landing generally results in non-contact anterior cruciate ligament (ACL injury. The purpose of this study was to investigate the relationship between internal rotation of the knee and muscle activity from internal and external rotator muscles, and between the internal rotation of knee and externally applied loads on the knee during landing in collegiate basketball players. Our hypothesis was that the activity of biceps femoris muscle would be an important factor reducing internal knee rotation during landing. The subjects were 10 collegiate basketball students: 5 females and 5 males. The subjects performed a single-leg drop landing from a 25-cm height. Femoral and tibial kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the knee angular motions were determined. Ground reaction forces and muscle activation patterns (lateral hamstring and medial hamstring were simultaneously measured and computed. Results indicated that lower peak internal tibial rotation angle at the time of landing was associated with greater lateral hamstring activity (r = -0.623, p < 0.001. When gender was considered, the statistically significant correlation remained only in females. There was no association between the peak internal tibial rotation angle and the knee internal rotation moment. Control of muscle activity in the lateral to medial hamstring would be an important factor in generating sufficient force to inhibit excessive internal rotation during landing. Strengthening the biceps femoris might mitigate the higher incidence of non-contact ACL injury in female athletes

  12. Water and Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Enrico Grazi

    2008-08-01

    Full Text Available The interaction between water and the protein of the contractile machinery as well as the tendency of these proteins to form geometrically ordered structures provide a link between water and muscle contraction. Protein osmotic pressure is strictly related to the chemical potential of the contractile proteins, to the stiffness of muscle structures and to the viscosity of the sliding of the thin over the thick filaments. Muscle power output and the steady rate of contraction are linked by modulating a single parameter, a viscosity coefficient. Muscle operation is characterized by working strokes of much shorter length and much quicker than in the classical model. As a consequence the force delivered and the stiffness attained by attached cross-bridges is much larger than usually believed.

  13. Effect of cleft palate repair on the susceptibility to contraction-induced injury of single permeabilized muscle fibers from congenitally-clefted goat palates.

    Science.gov (United States)

    Despite cleft palate repair, velopharyngeal competence is not achieved in ~ 15% of patients, often necessitating secondary surgical correction. Velopharyngeal competence postrepair may require the conversion of levator veli palatini muscle fibers from injury-susceptible type 2 fibers to injury-resi...

  14. Short-term assessment of left ventricular function, coronary hemodynamics, and catecholamine balance in severe congestive heart failure after a single oral dose of milrinone

    NARCIS (Netherlands)

    F. Piscione; B.E. Jaski; P.W.J.C. Serruys (Patrick)

    1988-01-01

    textabstractSystemic and coronary hemodynamics were measured before and every 10 min after oral milrinone (10 mg) administration for 50 min, together with the drug plasma level in 14 patients with congestive heart failure. Left ventricular pressure (tip manometry), volume (angiography), and derived

  15. Dystrophic calcification in muscles of legs in calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia syndrome: Accurate evaluation of the extent with 99mTc-methylene diphosphonate single photon emission computed tomography/computed tomography

    International Nuclear Information System (INIS)

    Chakraborty, Partha Sarathi; Karunanithi, Sellam; Dhull, Varun Singh; Kumar, Kunal; Tripathi, Madhavi

    2015-01-01

    We present the case of a 35-year-old man with calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly and telangiectasia variant scleroderma who presented with dysphagia, Raynaud's phenomenon and calf pain. 99m Tc-methylene diphosphonate bone scintigraphy was performed to identify the extent of the calcification. It revealed extensive dystrophic calcification in the left thigh and bilateral legs which was involving the muscles and was well-delineated on single photon emission computed tomography/computed tomography. Calcinosis in scleroderma usually involves the skin but can be found in deeper periarticular tissues. Myopathy is associated with a poor prognosis

  16. Impact of the International Quality Improvement Collaborative on outcomes after congenital heart surgery: a single center experience in a developing economy.

    Science.gov (United States)

    Balachandran, Rakhi; Kappanayil, Mahesh; Sen, Amitabh Chanchal; Sudhakar, Abhish; Nair, Suresh G; Sunil, G S; Raj, R Benedict; Kumar, Raman Krishna

    2015-01-01

    The International Quality Improvement Collaborative (IQIC) for Congenital Heart Surgery in Developing Countries was initiated to decrease mortality and major complications after congenital heart surgery in the developing world. We sought to assess the impact of IQIC on postoperative outcomes after congenital heart surgery at our institution. The key components of the IQIC program included creation of a robust worldwide database on key outcome measures and nurse education on quality driven best practices using telemedicine platforms. We evaluated 1702 consecutive patients ≤18 years undergoing congenital heart surgery in our institute from January 2010-December 2012 using the IQIC database. Preoperative variables included age, gender, weight at surgery and surgical complexity as per the RACHS-1 model. The outcome variables included, in- hospital mortality, duration of ventilation, intensive care unit (ICU) stay, bacterial sepsis and surgical site infection. The 1702 patients included 771(45.3%) females. The median age was 8 months (0.03-216) and the median weight was 6.1Kg (1-100). The overall in-hospital mortality was 3.1%, Over the three years there was a significant decline in bacterial sepsis (from 15.1%, to 9.6%, P < 0.001), surgical site infection (11.1% to 2.4%, P < 0.001) and duration of ICU stay from 114(8-999) hours to 72 (18-999) hours (P < 0.001) The decline in mortality from (4.3% to 2.2%) did not reach statistical significance. The inclusion of our institution in the IQIC program was associated with improvement in key outcome measures following congenital heart surgery over a three year period.

  17. Impact of the International Quality Improvement Collaborative on outcomes after congenital heart surgery: A single center experience in a developing economy

    Directory of Open Access Journals (Sweden)

    Rakhi Balachandran

    2015-01-01

    Full Text Available Background: The International Quality Improvement Collaborative (IQIC for Congenital Heart Surgery in Developing Countries was initiated to decrease mortality and major complications after congenital heart surgery in the developing world. Objective: We sought to assess the impact of IQIC on postoperative outcomes after congenital heart surgery at our institution. Methods: The key components of the IQIC program included creation of a robust worldwide database on key outcome measures and nurse education on quality driven best practices using telemedicine platforms. We evaluated 1702 consecutive patients ≤18 years undergoing congenital heart surgery in our institute from January 2010-December 2012 using the IQIC database. Preoperative variables included age, gender, weight at surgery and surgical complexity as per the RACHS-1 model. The outcome variables included, in- hospital mortality, duration of ventilation, intensive care unit (ICU stay, bacterial sepsis and surgical site infection. Results: The 1702 patients included 771(45.3% females. The median age was 8 months (0.03-216 and the median weight was 6.1Kg (1-100. The overall in-hospital mortality was 3.1%, Over the three years there was a significant decline in bacterial sepsis (from 15.1%, to 9.6%, P < 0.001, surgical site infection (11.1% to 2.4%, P < 0.001 and duration of ICU stay from 114(8-999 hours to 72 (18-999 hours (P < 0.001 The decline in mortality from (4.3% to 2.2% did not reach statistical significance. Conclusions: The inclusion of our institution in the IQIC program was associated with improvement in key outcome measures following congenital heart surgery over a three year period.

  18. Improved Muscle Function in Duchenne Muscular Dystrophy through L-Arginine and Metformin: An Investigator-Initiated, Open-Label, Single-Center, Proof-Of-Concept-Study.

    Directory of Open Access Journals (Sweden)

    Patricia Hafner

    Full Text Available Altered neuronal nitric oxide synthase function in Duchenne muscular dystrophy leads to impaired mitochondrial function which is thought to be one cause of muscle damage in this disease. The study tested if increased intramuscular nitric oxide concentration can improve mitochondrial energy metabolism in Duchenne muscular dystrophy using a novel therapeutic approach through the combination of L-arginine with metformin. Five ambulatory, genetically confirmed Duchenne muscular dystrophy patients aged between 7–10 years were treated with L-arginine (3 x 2.5 g/d and metformin (2 x 250 mg/d for 16 weeks. Treatment effects were assessed using mitochondrial protein expression analysis in muscular biopsies, indirect calorimetry, Dual-Energy X-Ray Absorptiometry, quantitative thigh muscle MRI, and clinical scores of muscle performance. There were no serious side effects and no patient dropped out. Muscle biopsy results showed pre-treatment a significantly reduced mitochondrial protein expression and increased oxidative stress in Duchenne muscular dystrophy patients compared to controls. Post-treatment a significant elevation of proteins of the mitochondrial electron transport chain was observed as well as a reduction in oxidative stress. Treatment also decreased resting energy expenditure rates and energy substrate use shifted from carbohydrates to fatty acids. These changes were associated with improved clinical scores. In conclusion pharmacological stimulation of the nitric oxide pathway leads to improved mitochondria function and clinically a slowing of disease progression in Duchenne muscular dystrophy. This study shall lead to further development of this novel therapeutic approach into a real alternative for Duchenne muscular dystrophy patients.ClinicalTrials.gov NCT02516085.

  19. Improved Muscle Function in Duchenne Muscular Dystrophy through L-Arginine and Metformin: An Investigator-Initiated, Open-Label, Single-Center, Proof-Of-Concept-Study.

    Science.gov (United States)

    Hafner, Patricia; Bonati, Ulrike; Erne, Beat; Schmid, Maurice; Rubino, Daniela; Pohlman, Urs; Peters, Thomas; Rutz, Erich; Frank, Stephan; Neuhaus, Cornelia; Deuster, Stefanie; Gloor, Monika; Bieri, Oliver; Fischmann, Arne; Sinnreich, Michael; Gueven, Nuri; Fischer, Dirk

    2016-01-01

    Altered neuronal nitric oxide synthase function in Duchenne muscular dystrophy leads to impaired mitochondrial function which is thought to be one cause of muscle damage in this disease. The study tested if increased intramuscular nitric oxide concentration can improve mitochondrial energy metabolism in Duchenne muscular dystrophy using a novel therapeutic approach through the combination of L-arginine with metformin. Five ambulatory, genetically confirmed Duchenne muscular dystrophy patients aged between 7–10 years were treated with L-arginine (3 x 2.5 g/d) and metformin (2 x 250 mg/d) for 16 weeks. Treatment effects were assessed using mitochondrial protein expression analysis in muscular biopsies, indirect calorimetry, Dual-Energy X-Ray Absorptiometry, quantitative thigh muscle MRI, and clinical scores of muscle performance. There were no serious side effects and no patient dropped out. Muscle biopsy results showed pre-treatment a significantly reduced mitochondrial protein expression and increased oxidative stress in Duchenne muscular dystrophy patients compared to controls. Post-treatment a significant elevation of proteins of the mitochondrial electron transport chain was observed as well as a reduction in oxidative stress. Treatment also decreased resting energy expenditure rates and energy substrate use shifted from carbohydrates to fatty acids. These changes were associated with improved clinical scores. In conclusion pharmacological stimulation of the nitric oxide pathway leads to improved mitochondria function and clinically a slowing of disease progression in Duchenne muscular dystrophy. This study shall lead to further development of this novel therapeutic approach into a real alternative for Duchenne muscular dystrophy patients. ClinicalTrials.gov NCT02516085.

  20. Comparison of the effects of knee and hip and single knee muscles strengthening/ stretching exercises on pain intensity and function in athletes with patellofemoral pain syndrome

    Directory of Open Access Journals (Sweden)

    Vahid Mazloum

    2016-08-01

    Full Text Available Background: Patellofemoral pain syndrome (PFPS is a common musculoskeletal condition among athletes. The evidence emphasizes on the importance of hip musculature strengthening exercises for such patients. Objective: To investigate the effects of strengthening-stretching knee muscles exercises and hip posterolateral musculature exercises in athletes with PFPS. Methods: In this clinical trial, 28 athletes with age average of 22.7±2.4 years with PFPS were allocated into conventional knee muscles exercises (CKME (n=14 and posterolateral hip muscles exercises (PHME (n=14. The subjects of both groups performed the supervised exercise protocols in 12 sessions. The Visual Analogue Scale and 6-minute walking tests were administrated respectively to evaluate pain intensity and function. The data were analyzed using Shapiro-wilk test, Independent-sample t test, and Repeated Measure ANOVA test. Findings: Demographic, pain intensity, and physical function data were similar between groups at baseline. Both groups significantly improved in pain intensity and function following a 4-week exercise program. Additionally, the athletes in PHME group had higher level of decreased pain intensity and improved function in follow-up assessment than the subjects in CKME group. Conclusion: Using hip posterolateral musculature exercises in addition to the knee conventional exercises is more effective for athletes with PFPS.

  1. THE RENIN-ANGIOTENSIN SYSTEM AND THE BIOLOGY OF SKELETAL MUSCLE: MECHANISMS OF MUSCLE WASTING IN CHRONIC DISEASE STATES.

    Science.gov (United States)

    Delafontaine, Patrice; Yoshida, Tadashi

    2016-01-01

    Sarcopenia and cachexia are muscle-wasting syndromes associated with aging and with many chronic diseases such as congestive heart failure, diabetes, cancer, chronic obstructive pulmonary disease, and renal failure. While mechanisms are complex, these conditions are often accompanied by elevated angiotensin II (Ang II). We found that Ang II infusion in rodents leads to skeletal muscle wasting via alterations in insulin-like growth factor-1 signaling, increased apoptosis, enhanced muscle protein breakdown via the ubiquitin-proteasome system, and decreased appetite resulting from downregulation of hypothalamic orexigenic neuropeptides orexin and neuropeptide Y. Furthermore, Ang II inhibits skeletal muscle stem cell proliferation, leading to lowered muscle regenerative capacity. Distinct stem cell Ang II receptor subtypes are critical for regulation of muscle regeneration. In ischemic mouse congestive heart failure model skeletal muscle wasting and attenuated muscle regeneration are Ang II dependent. These data suggest that the renin-angiotensin system plays a critical role in mechanisms underlying cachexia in chronic disease states.

  2. Cardiac damage in athlete's heart: When the "supernormal" heart fails!

    Science.gov (United States)

    Carbone, Andreina; D'Andrea, Antonello; Riegler, Lucia; Scarafile, Raffaella; Pezzullo, Enrica; Martone, Francesca; America, Raffaella; Liccardo, Biagio; Galderisi, Maurizio; Bossone, Eduardo; Calabrò, Raffaele

    2017-06-26

    Intense exercise may cause heart remodeling to compensate increases in blood pressure or volume by increasing muscle mass. Cardiac changes do not involve only the left ventricle, but all heart chambers. Physiological cardiac modeling in athletes is associated with normal or enhanced cardiac function, but recent studies have documented decrements in left ventricular function during intense exercise and the release of cardiac markers of necrosis in athlete's blood of uncertain significance. Furthermore, cardiac remodeling may predispose athletes to heart disease and result in electrical remodeling, responsible for arrhythmias. Athlete's heart is a physiological condition and does not require a specific treatment. In some conditions, it is important to differentiate the physiological adaptations from pathological conditions, such as hypertrophic cardiomyopathy, arrhythmogenic dysplasia of the right ventricle, and non-compaction myocardium, for the greater risk of sudden cardiac death of these conditions. Moreover, some drugs and performance-enhancing drugs can cause structural alterations and arrhythmias, therefore, their use should be excluded.

  3. Heart Failure

    OpenAIRE

    McMurray, John; Ponikowski, Piotr

    2011-01-01

    Heart failure occurs in 3% to 4% of adults aged over 65 years, usually as a consequence of coronary artery disease or hypertension, and causes breathlessness, effort intolerance, fluid retention, and increased mortality. The 5-year mortality in people with systolic heart failure ranges from 25% to 75%, often owing to sudden death following ventricular arrhythmia. Risks of cardiovascular events are increased in people with left ventricular systolic dysfunction (LVSD) or heart failure.

  4. Artificial heart

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-18

    Super-pure plutonium-238 could use heat produced during fission to power an implanted artificial heart. Three model hearts have worked for some time. Concern that excess heat would make the procedure unsafe for humans has broadened the search for another energy source, such as electrohydraulic drive or an external power battery. A back pack approach may provide an interim solution until materials are developed which can withstand heart activity and be small enough for implantation.

  5. Your Muscles

    Science.gov (United States)

    ... and you need to throw up. The muscles push the food back out of the stomach so it comes up ... body the power it needs to lift and push things. Muscles in your neck and the top part of your back aren't as large, but they are capable ...

  6. Prenatal Detection of Congenital Heart Diseases: One-Year Survey Performing a Screening Protocol in a Single Reference Center in Brazil

    Directory of Open Access Journals (Sweden)

    Luciane Alves Rocha

    2014-01-01

    Full Text Available Objective. To describe the experience of a tertiary center in Brazil to which patients are referred whose fetuses are at increased risk for congenital heart diseases (CHDs. Methods. This was a cross-sectional observational study. The data was collected prospectively, during the year 2012, through a screening protocol of the fetal heart adapted from the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG guideline. We performed a fetal echocardiogram screening for all pregnant women who were referred to the fetal cardiology outpatient obstetrics clinic of a university hospital. The exams were classified as normal or abnormal. The cases considered abnormal were undergone to a postnatal echocardiogram. We categorized the abnormal fetal heart according to severity in “complex,” “significant,” “minor,” and “others.” Results. We performed 271 fetal heart screening. The incidence of abnormal screenings was 9.96% (27 fetuses. The structural CHD when categorized due to severity showed 48.1% (n=13 of “complex” cases, 18.5% (n=5 “significant” cases, and 7.4% (n=2 “minor” cases. The most common referral reason was by maternal causes (67% followed by fetal causes (33%. The main referral indication was maternal metabolic disease (30%, but there was just one fetus with CHD in such cases (1.2%. CHDs were found in 19/29 fetuses with suspicion of some cardiac abnormality by obstetrician (65.5%. Conclusion. We observed a high rate of CHD in our population. We also found that there was higher incidence of complex cases.

  7. Incidence and patterns of valvular heart disease in a tertiary care high-volume cardiac center: A single center experience

    Science.gov (United States)

    Manjunath, C.N.; Srinivas, P.; Ravindranath, K.S.; Dhanalakshmi, C.

    2014-01-01

    Background Diseases of the heart valves constitute a major cause of cardiovascular morbidity and mortality worldwide with rheumatic heart disease (RHD) being the dominant form of valvular heart disease (VHD) in developing nations. The current study was undertaken at a tertiary care cardiac center with the objective of establishing the incidence and patterns of VHD by Echocardiography (Echo). Methods Among the 136,098 first-time Echocardiograms performed between January 2010 and December 2012, an exclusion criterion of trivial and functional regurgitant lesions yielded a total of 13,289 cases of organic valvular heart disease as the study cohort. Results In RHD, the order of involvement of valves was mitral (60.2%), followed by aortic, tricuspid and pulmonary valves. Mitral stenosis, predominantly seen in females, was almost exclusively of rheumatic etiology (97.4%). The predominant form of isolated MR was rheumatic (41.1%) followed closely by myxomatous or mitral valve prolapse (40.8%). Isolated AS, more common in males, was the third most common valve lesion seen in 7.3% of cases. Degenerative calcification was the commonest cause of isolated AS (65.0%) followed by bicuspid aortic valve (BAV) (33.9%) and RHD (1.1%). Multiple valves were involved in more than a third of all cases (36.8%). The order of involvement was MS + MR > MS + AR > MR + AR > AS + AR > MR + AS > MS + AS. Overall, 9.7% of cases had organic tricuspid valve disease. Conclusion RHD contributed most to the burden of VHD in the present study with calcific degeneration, myxomatous disease and BAV being the other major forms of VHD. Multiple valves were affected in more than a third of all cases. PMID:24973838

  8. Types of Heart Failure

    Science.gov (United States)

    ... Introduction Types of Heart Failure Classes of Heart Failure Heart Failure in Children Advanced Heart Failure • Causes and ... and procedures related to heart disease and stroke. Heart Failure Questions to Ask Your Doctor Use these questions ...

  9. Isolation and characterization of the inositol trisphosphate receptor from smooth muscle

    International Nuclear Information System (INIS)

    Chadwick, C.C.; Saito, A.; Fleischer, S.

    1990-01-01

    The release of Ca 2+ from internal stores is requisite to muscle contraction. In skeletal muscle and heart, the Ca 2+ release channels (ryanodine receptor) of sarcoplasmic reticulum, involved in excitation-contraction coupling, have recently been isolated and characterized. In smooth muscle, inositol 1,4,5-trisphosphate (IP 3 ) is believed to mobilize Ca 2+ from internal stores and thereby modulate contraction. The authors describe the isolation of an IP 3 receptor from smooth muscle. Bovine aorta smooth muscle microsomes were solubilized with 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate, and the IP 3 receptor was purified by sucrose gradient centrifugation and column chromatography with heparin-agarose and wheat germ agglutinin-agarose. The receptor is an oligomer of a single polypeptide with a M r of 224,000 as determined by SDS/PAGE. Negative-staining electron microscopy reveals that the receptor is a large pinwheel-like structure having surface dimensions of ∼250 x 250 angstrom with fourfold symmetry. The IP 3 receptor from smooth muscle is similar to the ryanodine receptor with regard to its large size and fourfold symmetry, albeit distinct with regard to appearance, protomer size, and ligand binding

  10. Coronary artery visibility in free-breathing young children with congenital heart disease on cardiac 64-slice CT: dual-source ECG-triggered sequential scan vs. single-source non-ECG-synchronized spiral scan

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo; Yang, Dong Hyun [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of)

    2010-10-15

    The potential impact of dual-source ECG-triggered sequential CT scan on coronary artery visibility has not been evaluated in free-breathing young children. To compare coronary artery visibility in free-breathing young children with congenital heart disease on cardiac 64-slice CT between dual-source ECG-triggered sequential (DSET) scan and single-source non-ECG-synchronized spiral (SSNE) scan. In 93 young children, 108 cardiac 64-slice CT examinations were performed during free-breathing. Visibility of coronary arteries and side branches was compared between SSNE and DSET scans. Heart rates and trigger delays for DSET scan were recorded. Effective dose of each scan technique was calculated. Visual grades were significantly higher (P < 0.001 or =0.011) on DSET scan than on SSNE scan except for the distal left anterior descending artery. Coronary arteries were traceable in 79.3% on DSET scan and 54.3% on SSNE scan in the overlapped scan range (P < 0.0001), and 97.1% and 71.9% for the origins and proximal segments (P < 0.0001). Visibility of side branches was improved on DSET scan by a factor of 2.0. Heart rates and trigger delays for DSET scan were 131 {+-} 24 beats per min and 199 {+-} 44 ms, respectively. Effective doses of DSET and SSNE scans were 0.36 {+-} 0.12 mSv and 0.99 {+-} 0.23 mSv, respectively. DSET scan improves visibility of coronary arteries on cardiac 64-slice CT in free-breathing young children with congenital heart disease, compared with SSNE scan. (orig.)

  11. Dynamic cardiomyoplasty using artificial muscle.

    Science.gov (United States)

    Suzuki, Yasuyuki; Daitoku, Kazuyuki; Minakawa, Masahito; Fukui, Kozo; Fukuda, Ikuo

    2008-01-01

    Dynamic cardiomyoplasty using latissimus dorsi muscle was previously used to compensate for congestive heart failure. Now, however, this method is not acceptable because the long-term result was not as expected owing to fatigue of the skeletal muscle. BioMetal fiber developed by Toki Corporation is one of the artificial muscles activated by electric current. The behavior of this fiber is similar to that of organic muscle. We made an artificial muscle like the latissimus dorsi using BioMetal fiber and tested whether we could use this new muscle as a cardiac supporting device. Testing one Biometal fiber showed the following performance: practical use maximal generative force was 30 g, exercise variation was 50%, and the standard driving current was 220 mA. We created a 4 x 12-cm tabular artificial muscle using 8 BioMetal fibers as a cardiac support device. We also made a simulation circuit composed of a 6 x 8-cm soft bag with unidirectional valves, reservoir, and connecting tube. The simulation circuit was filled with water and the soft bag was wrapped with the artificial muscle device. After powering the device electrically at 9 V with a current of 220 mA for each fiber, we measured the inside pressure and observed the movement of the artificial device. The artificial muscle contracted in 0.5 s for peak time and squeezed the soft bag. The peak pressure inside the soft bag was measured as 10 mmHg. Although further work will be needed to enhance the speed of deformability and movement simulating contraction, we conclude that artificial muscle may be potentially useful as a cardiac assistance device that can be developed for dynamic cardiomyoplasty.

  12. The efficacy of preventive parasternal single injection of bupivacaine on intubation time, blood gas parameters, narcotic requirement, and pain relief after open heart surgery: A randomized clinical trial study

    Directory of Open Access Journals (Sweden)

    Mahmoud Saeidi

    2011-01-01

    Full Text Available Background: Postsurgical pain usually results in some complications in the patients. This study has tried to investigate the effects of parasternal single injection of bupivacaine on postoperative pulmonary and pain consequences in patients after open heart surgery. Methods: : In a prospective double blind clinical study, 100 consenting patients undergoing elective open heart surgery were randomized into two groups. In case group, bupivacaine was injected at both sides of sternum, immediately before sternal closure. In the control group, no intervention was performed. Then, the patients were investigated regarding intubation period, length of ICU stay, arterial blood gas (ABG parameters, morphine requirement, and their severity of postoperative pain using a visual analogue scale (VAS device. Results: No differences were found between the two groups regarding to age, sex, pump time, operation time, and body mass index and preoperative cardiac ejection fraction. Mean intubation length in case group was much shorter than that in control group. Mean PaO 2 in case group was lower in different checking times in postoperative period. The patients in the case group needed less morphine compared to those in the control group during the 24-hour observation period in the ICU. Finally, mean VAS scores of pain in case group were significantly lower than those in control group at 6, 12, and 24 hours postoperatively. Conclusions: Patients′ pain relief by parasternal single injection of bupivacaine in early postoperative period can facilitate earlier ventilator weaning and tracheal extubation after open heart surgery as well as achieving lower pain scores and narcotic requirements.

  13. in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Espen E. Spangenburg

    2011-01-01

    Full Text Available Triglyceride storage is altered across various chronic health conditions necessitating various techniques to visualize and quantify lipid droplets (LDs. Here, we describe the utilization of the BODIPY (493/503 dye in skeletal muscle as a means to analyze LDs. We found that the dye was a convenient and simple approach to visualize LDs in both sectioned skeletal muscle and cultured adult single fibers. Furthermore, the dye was effective in both fixed and nonfixed cells, and the staining seemed unaffected by permeabilization. We believe that the use of the BODIPY (493/503 dye is an acceptable alternative and, under certain conditions, a simpler method for visualizing LDs stored within skeletal muscle.

  14. Nuclear cardiology and heart failure

    International Nuclear Information System (INIS)

    Giubbini, Raffaele; Bertagna, Francesco; Milan, Elisa; Mut, Fernando; Dondi, Maurizio; Metra, Marco; Rodella, Carlo

    2009-01-01

    The prevalence of heart failure in the adult population is increasing. It varies between 1% and 2%, although it mainly affects elderly people (6-10% of people over the age of 65 years will develop heart failure). The syndrome of heart failure arises as a consequence of an abnormality in cardiac structure, function, rhythm, or conduction. Coronary artery disease is the leading cause of heart failure and it accounts for this disorder in 60-70% of all patients affected. Nuclear techniques provide unique information on left ventricular function and perfusion by gated-single photon emission tomography (SPECT). Myocardial viability can be assessed by both SPECT and PET imaging. Finally, autonomic dysfunction has been shown to increase the risk of death in patients with heart disease and this may be applicable to all patients with cardiac disease regardless of aetiology. MIBG scanning has a very promising prognostic value in patients with heart failure. (orig.)

  15. Nuclear cardiology and heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Giubbini, Raffaele; Bertagna, Francesco [University of Brescia, Department of Nuclear Medicine, Brescia (Italy); Milan, Elisa [Ospedale Di Castelfranco Veneto, Nuclear Medicine Unit, Castelfranco Veneto (Italy); Mut, Fernando; Dondi, Maurizio [International Atomic Energy Agency, Nuclear Medicine Section, Division of Human Health, Vienna (Austria); Metra, Marco [University of Brescia, Department of Cardiology, Brescia (Italy); Rodella, Carlo [Health Physics Department, Spedali Civili di Brescia, Brescia (Italy)

    2009-12-15

    The prevalence of heart failure in the adult population is increasing. It varies between 1% and 2%, although it mainly affects elderly people (6-10% of people over the age of 65 years will develop heart failure). The syndrome of heart failure arises as a consequence of an abnormality in cardiac structure, function, rhythm, or conduction. Coronary artery disease is the leading cause of heart failure and it accounts for this disorder in 60-70% of all patients affected. Nuclear techniques provide unique information on left ventricular function and perfusion by gated-single photon emission tomography (SPECT). Myocardial viability can be assessed by both SPECT and PET imaging. Finally, autonomic dysfunction has been shown to increase the risk of death in patients with heart disease and this may be applicable to all patients with cardiac disease regardless of aetiology. MIBG scanning has a very promising prognostic value in patients with heart failure. (orig.)

  16. Impact of a single bout of high-intensity interval exercise and short-term interval training on interleukin-6, FNDC5, and METRNL mRNA expression in human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Malcolm Eaton

    2018-04-01

    Full Text Available Background: Exercise promotes numerous phenotypic adaptations in skeletal muscle that contribute to improved function and metabolic capacity. An emerging body of evidence suggests that skeletal muscle also releases a myriad of factors during exercise, termed “myokines”. The purpose of this study was to examine the effects of high-intensity interval training (HIIT on the acute regulation of the mRNA expression of several myokines, including the prototypical myokine interleukin-6 (IL-6, and recently identified myokines fibronectin type III domain-containing protein 5 (FNDC5 (irisin and meteorin-like protein (METRNL. Methods: Both before and after a 20-day period of twice-daily high-volume HIIT, 9 healthy males (20.5 ± 1.5 years performed a standardized bout of high-intensity interval exercise (HIIE; 5 × 4 min at ~80% pretraining peak power output with skeletal muscle biopsy samples (vastus lateralis obtained at rest, immediately following exercise, and at 3 h recovery. Results: Before training, a single bout of HIIE increased IL-6 (p < 0.05 and METRNL (p < 0.05 mRNA expression measured at 3 h recovery when compared to rest. Following 20 days of HIIT, IL-6 and FNDC5 mRNA were increased at 3 h recovery from the standardized HIIE bout when compared to rest (both p < 0.05. Resting METRNL and FNDC5 mRNA expression were higher following training (p < 0.05, and there was an overall increase in FNDC5 mRNA post-training (main effect of training, p < 0.05. Conclusion: In human skeletal muscle (1 an acute bout of HIIE can induce upregulation of skeletal muscle IL-6 mRNA both before and after a period of intensified HIIT; (2 Resting and overall FNDC5 mRNA expression is increased by 20 days of HIIT; and (3 METRNL mRNA expression is responsive to both acute HIIE and short-term intense HIIT. Future studies are needed to confirm these findings at the protein and secretion level in humans. Keywords: Brown adipose tissue

  17. Renal Function and Outcomes With Use of Left Ventricular Assist Device Implantation and Inotropes in End-Stage Heart Failure: A Retrospective Single Center Study.

    Science.gov (United States)

    Verma, Sean; Bassily, Emmanuel; Leighton, Shane; Mhaskar, Rahul; Sunjic, Igor; Martin, Angel; Rihana, Nancy; Jarmi, Tambi; Bassil, Claude

    2017-07-01

    Left ventricular assist device (LVAD) and inotrope therapy serve as a bridge to transplant (BTT) or as destination therapy in patients who are not heart transplant candidates. End-stage heart failure patients often have impaired renal function, and renal outcomes after LVAD therapy versus inotrope therapy have not been evaluated. In this study, 169 patients with continuous flow LVAD therapy and 20 patients with continuous intravenous inotrope therapy were analyzed. The two groups were evaluated at baseline and at 3 and 6 months after LVAD or inotrope therapy was started. The incidence of acute kidney injury (AKI), need for renal replacement therapy (RRT), BTT rate, and mortality for 6 months following LVAD or inotrope therapy were studied. Results between the groups were compared using Mann-Whitney U test and Chi-square with continuity correction or Fischer's exact at the significance level of 0.05. Mean glomerular filtration rate (GFR) was not statistically different between the two groups, with P = 0.471, 0.429, and 0.847 at baseline, 3 and 6 months, respectively. The incidence of AKI, RRT, and BTT was not statistically different. Mortality was less in the inotrope group (P < 0.001). Intravenous inotrope therapy in end-stage heart failure patients is non-inferior for mortality, incidence of AKI, need for RRT, and renal function for 6-month follow-up when compared to LVAD therapy. Further studies are needed to compare the effectiveness of inotropes versus LVAD implantation on renal function and outcomes over a longer time period.

  18. Secondary Hyperparathyroidism in Heart Failure.

    Science.gov (United States)

    Morsy, Mohamed S; Dishmon, Dwight A; Garg, Nadish; Weber, Karl T

    2017-10-01

    Secondary hyperparathyroidism (SHPT) is a well-known pathophysiologic feature of chronic renal failure. In recent years, SHPT has become recognized as a complication of the aldosteronism associated with congestive heart failure and where excretory Ca 2+ and Mg 2+ wasting results in plasma-ionized hypocalcemia and hypomagnesemia. Elevations in plasma parathyroid hormone have adverse systemic consequences, including intracellular Ca 2+ overloading of myocytes and vascular smooth muscle with the induction of oxidative stress. Herein, we briefly review the presence and adverse outcomes of SHPT in persons with heart failure. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  19. Muscle cramps

    Science.gov (United States)

    ... the lower leg/calf Back of the thigh (hamstrings) Front of the thigh (quadriceps) Cramps in the ... Names Cramps - muscle Images Chest stretch Groin stretch Hamstring stretch Hip stretch Thigh stretch Triceps stretch References ...

  20. Muscle atrophy

    Science.gov (United States)

    ... People who cannot actively move one or more joints can do exercises using braces or splints . When ... A.M. Editorial team. Muscle Disorders Read more Neuromuscular Disorders Read more NIH MedlinePlus Magazine Read more ...

  1. Simple, heart-smart substitutions

    Science.gov (United States)

    Coronary artery disease - heart smart substitutions; Atherosclerosis - heart smart substitutions; Cholesterol - heart smart substitutions; Coronary heart disease - heart smart substitutions; Healthy diet - heart ...

  2. A single-center randomized, controlled trial investigating the efficacy of a mHealth ECG technology intervention to improve the detection of atrial fibrillation: the iHEART study protocol.

    Science.gov (United States)

    Hickey, Kathleen T; Hauser, Nicole R; Valente, Laura E; Riga, Teresa C; Frulla, Ashton P; Masterson Creber, Ruth; Whang, William; Garan, Hasan; Jia, Haomiao; Sciacca, Robert R; Wang, Daniel Y

    2016-07-16

    Atrial fibrillation is a major public health problem and is the most common cardiac arrhythmia, affecting an estimated 2.7 million Americans. The true prevalence of atrial fibrillation is likely underestimated because episodes are often sporadic; therefore, it is challenging to detect and record an occurrence in a "real world" setting. To date, mobile health tools that promote earlier detection and treatment of atrial fibrillation and improvement in self-management behaviors and knowledge have not been evaluated. This study will be the first to address the epidemic problem of atrial fibrillation with a novel approach utilizing advancements in mobile health electrocardiogram technology to empower patients to actively engage in their healthcare and to evaluate impact on quality of life and quality-adjusted life years. Furthermore, sending a daily electrocardiogram transmission, coupled with receiving educational and motivational text messages aimed at promoting self-management and a healthy lifestyle may improve the management of chronic cardiovascular conditions (e.g., hypertension, diabetes, heart failure, etc.). Therefore, we are currently conducting a randomized controlled trial to assess the efficacy of a mobile health intervention, iPhone® Helping Evaluate Atrial fibrillation Rhythm through Technology (iHEART) versus usual cardiac care. The iHEART study is a single center, prospective, randomized controlled trial. A total of 300 participants with a recent history of atrial fibrillation will be enrolled. Participants will be randomized 1:1 to receive the iHEART intervention, receiving an iPhone® equipped with an AliveCor® Mobile ECG and accompanying Kardia application and behavioral altering motivational text messages or usual cardiac care for 6 months. This will be the first study to investigate the utility of a mobile health intervention in a "real world" setting. We will evaluate the ability of the iHEART intervention to improve the detection and

  3. Transient receptor potential cation channel A1 (TRPA1) mediates changes in heart rate variability following a single exposure to acrolein in mice

    Science.gov (United States)

    The data show that a single exposure to acrolein causes autonomic imbalance in mice through the TRPA1 sensor and subsequent cardiac dysfunction. Human and animal studies have shown that short-term air pollution exposure causes...

  4. The relationship of muscle perfusion and metabolism with cardiovascular variables before and after detomidine injection during propofol-ketamine anaesthesia in horses.

    Science.gov (United States)

    Edner, Anna; Nyman, Görel; Essén-Gustavsson, Birgitta

    2002-10-01

    To study in horses (1) the relationship between cardiovascular variables and muscle perfusion during propofol-ketamine anaesthesia, (2) the physiological effects of a single intravenous (IV) detomidine injection, (3) the metabolic response of muscle to anaesthesia, and (4) the effects of propofol-ketamine infusion on respiratory function. Prospective experimental study. Seven standardbred trotters, 5-12 years old, 416-581 kg. Anaesthesia was induced with intravenous (IV) guaifenesin and propofol (2 mg kg -1 ) and maintained with a continuous IV infusion of propofol (0.15 mg kg -1 minute -1 ) and ketamine (0.05 mg kg -1 minute -1 ) with horses positioned in left lateral recumbency. After 1 hour, detomidine (0.01 mg kg -1 ) was administered IV and 40-50 minutes later anaesthesia was discontinued. Cardiovascular and respiratory variables (heart rate, cardiac output, systemic and pulmonary artery blood pressures, respiratory rate, tidal volume, and inspiratory and expiratory O 2 and CO 2 ) and muscle temperature were measured at pre-determined times. Peripheral perfusion was measured continuously in the gluteal muscles and skin using laser Doppler flowmetry (LDF). Muscle biopsy samples from the left and right gluteal muscles were analysed for glycogen, creatine phosphate, creatine, adenine nucleotides, inosine monophosphate and lactate. Arterial blood was analysed for PO 2 , PCO 2 , pH, oxygen saturation and HCO 3 . Mixed venous blood was analysed for PO 2 , PCO 2 , pH, oxygen saturation, HCO 3 , cortisol, lactate, uric acid, hypoxanthine, xanthine, creatine kinase, creatinine, aspartate aminotransferase, electrolytes, total protein, haemoglobin, haematocrit and white blood cell count. Circulatory function was preserved during propofol-ketamine anaesthesia. Detomidine caused profound hypertension and bradycardia and decreased cardiac output and muscle perfusion. Ten minutes after detomidine injection muscle perfusion had recovered to pre-injection levels, although

  5. Org-1, the Drosophila ortholog of Tbx1, is a direct activator of known identity genes during muscle specification.

    Science.gov (United States)

    Schaub, Christoph; Nagaso, Hideyuki; Jin, Hong; Frasch, Manfred

    2012-03-01

    Members of the T-Box gene family of transcription factors are important players in regulatory circuits that generate myogenic and cardiogenic lineage diversities in vertebrates. We show that during somatic myogenesis in Drosophila, the single ortholog of vertebrate Tbx1, optomotor-blind-related-gene-1 (org-1), is expressed in a small subset of muscle progenitors, founder cells and adult muscle precursors, where it overlaps with the products of the muscle identity genes ladybird (lb) and slouch (slou). In addition, org-1 is expressed in the lineage of the heart-associated alary muscles. org-1 null mutant embryos lack Lb and Slou expression within the muscle lineages that normally co-express org-1. As a consequence, the respective muscle fibers and adult muscle precursors are either severely malformed or missing, as are the alary muscles. To address the mechanisms that mediate these regulatory interactions between Org-1, Lb and Slou, we characterized distinct enhancers associated with somatic muscle expression of lb and slou. We demonstrate that these lineage- and stage-specific cis-regulatory modules (CRMs) bind Org-1 in vivo, respond to org-1 genetically and require T-box domain binding sites for their activation. In summary, we propose that org-1 is a common and direct upstream regulator of slou and lb in the developmental pathway of these two neighboring muscle lineages. Cross-repression between slou and lb and combinatorial activation of lineage-specific targets by Org-1-Slou and Org-1-Lb, respectively, then leads to the distinction between the two lineages. These findings provide new insights into the regulatory circuits that control the proper pattering of the larval somatic musculature in Drosophila.

  6. Lower limb muscle moments and power during recovery from forward loss of balance in male and female single and multiple steppers.

    Science.gov (United States)

    Carty, Christopher P; Cronin, Neil J; Lichtwark, Glen A; Mills, Peter M; Barrett, Rod S

    2012-12-01

    Studying recovery responses to loss of balance may help to explain why older adults are susceptible to falls. The purpose of the present study was to assess whether male and female older adults, that use a single or multiple step recovery strategy, differ in the proportion of lower limb strength used and power produced during the stepping phase of balance recovery. Eighty-four community-dwelling older adults (47 men, 37 women) participated in the study. Isometric strength of the ankle, knee and hip joint flexors and extensors was assessed using a dynamometer. Loss of balance was induced by releasing participants from a static forward lean (4 trials at each of 3 forward lean angles). Participants were instructed to recover with a single step and were subsequently classified as using a single or multiple step recovery strategy for each trial. (1) Females were weaker than males and the proportion of females that were able to recover with a single step were lower than for males at each lean magnitude. (2) Multiple compared to single steppers used a significantly higher proportion of their hip extension strength and produced less knee and ankle joint peak power during stepping, at the intermediate lean angle. Strength deficits in female compared to male participants may explain why a lower proportion of female participants were able to recover with a single step. The inability to generate sufficient power in the stepping limb appears to be a limiting factor in single step recovery from forward loss of balance. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  7. Leiomyoma of the sternothyroid muscle.

    Science.gov (United States)

    Rowe, Meghan E; Khorsandi, Azita S; Guerrero, Dominick R; Brett, Elise M; Sarlin, Jonathan; Urken, Mark L

    2016-01-01

    Leiomyomas are benign cutaneous tumors of smooth muscle origin. Only a small percentage of leiomyomas arise in the head and neck region. We present the first case of leiomyoma arising in the sternothyroid muscle of the neck. We analyze the clinical presentation, pathology, and histology for a single case study. The histologic findings of the tumor located in the sternothyroid muscle support the diagnosis of leiomyoma. This is the first case of leiomyoma arising in the sternothyroid muscle, and only the second reported case of leiomyoma in the strap muscles of the neck. Leiomyoma should be included in the differential diagnosis of soft tissue tumors in the head and neck region. A histological analysis is essential in determining both tumor type and subtype, which will inform the proper course of treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Single-centre cohort study of gender influence in coronary CT angiography in patients with a low to intermediate pretest probability of coronary heart disease

    DEFF Research Database (Denmark)

    Nørgaard, Kirsten Schou; Isaksen, Christin; Buhl, Jørgen Selmer

    2015-01-01

    : This is a cohort study that included patients examined between 2010 and 2013. Data were obtained from the Western Denmark Heart Registry. The follow-up ended 11 March 2014. RESULTS: A total of 3541 people (1621 men and 1920 women) were examined by CCTA. The rate of invasive coronary angiography during follow......-up was 28.5% in men versus 18.3% in women (pwomen (pwomen versus men was 0.98 (95% CI 0.85 to 1.13) for invasive coronary angiography and 0.73 (95% CI 0.57 to 0.93) for coronary...... revascularisation. Further adjustment for age and other risk factors did not change these estimates. CONCLUSIONS: Women had a lower CAC score than men and a corresponding lower rate of invasive coronary angiography. The risk of coronary revascularisation was modestly reduced in women, irrespective of CAC. This may...

  9. Heart Failure

    Science.gov (United States)

    ... Other diseases. Chronic diseases — such as diabetes, HIV, hyperthyroidism, hypothyroidism, or a buildup of iron (hemochromatosis) or ... transplantation or support with a ventricular assist device. Prevention The key to preventing heart failure is to ...

  10. Heart Attack

    Science.gov (United States)

    ... properly causes your body's blood sugar levels to rise, increasing your risk of heart attack. Metabolic syndrome. This occurs when you have obesity, high blood pressure and high blood sugar. Having metabolic ...

  11. Muscle activation in healthy subjects during single step up [Aktivace svalů u zdravých osob při nákroku na schod

    Directory of Open Access Journals (Sweden)

    Jaroslav Opavský

    2010-03-01

    Full Text Available BACKGROUND: The single step up is an integral movement performance for functional mobility and activities of daily living. During this activity the body has to be able to keep its balance and maintain a stable upright posture for performing voluntary movement. For this purpose the central nervous system creates different motor programs specific to the task. A motor programme is believed to contain the pre-programmed sequence of muscle activity prior to the initiation of the task, and includes both the muscle activity for the task, as well as postural muscle activity. OBJECTIVE: The aim of this paper was to examine the sequence of muscular activation, and to determine the timing of the involvement of selected trunk and leg muscles whilst stepping up. The further aim was to find out the most common muscle patterns in this model of motor activity in healthy subjects. METHODS: The bilateral electromyographic (EMG signal from the gluteus maximus, biceps femoris and erectores spinae muscles were recorded using surface electromyography. The visual record of the step up performance was registered simultaneously with surface electromyography. The tested group consisted of 16 healthy (5 men with an average age of 23.6, 11 women with an average age of 23.2. They were monitored during the motor task – the step up task, that is which was performed by the dominant leg. The subject stood facing the step (height of the step = 20 cm. Upon request he/she stepped up with the right leg at a spontaneous speed. The motor task was completed by bringing the left leg up onto the step. RESULTS: During this task, we registered the activation of the right erector spinae muscle, right biceps femoris muscle, left erector spinae muscle and left biceps femoris muscle before the beginning of the visually recognizable movement. The most frequently registered pattern of activation on the side that carried out the step was: right biceps femoris muscle → right erector spinae

  12. DNA methylation abnormalities in congenital heart disease.

    Science.gov (United States)

    Serra-Juhé, Clara; Cuscó, Ivon; Homs, Aïda; Flores, Raquel; Torán, Núria; Pérez-Jurado, Luis A

    2015-01-01

    Congenital heart defects represent the most common malformation at birth, occurring also in ∼50% of individuals with Down syndrome. Congenital heart defects are thought to have multifactorial etiology, but the main causes are largely unknown. We have explored the global methylation profile of fetal heart DNA in comparison to blood DNA from control subjects: an absolute correlation with the type of tissue was detected. Pathway analysis revealed a significant enrichment of differential methylation at genes related to muscle contraction and cardiomyopathies in the developing heart DNA. We have also searched for abnormal methylation profiles on developing heart-tissue DNA of syndromic and non-syndromic congenital heart defects. On average, 3 regions with aberrant methylation were detected per sample and 18 regions were found differentially methylated between groups. Several epimutations were detected in candidate genes involved in growth regulation, apoptosis and folate pathway. A likely pathogenic hypermethylation of several intragenic sites at the MSX1 gene, involved in outflow tract morphogenesis, was found in a fetus with isolated heart malformation. In addition, hypermethylation of the GATA4 gene was present in fetuses with Down syndrome with or without congenital heart defects, as well as in fetuses with isolated heart malformations. Expression deregulation of the abnormally methylated genes was detected. Our data indicate that epigenetic alterations of relevant genes are present in developing heart DNA in fetuses with both isolated and syndromic heart malformations. These epimutations likely contribute to the pathogenesis of the malformation by cis-acting effects on gene expression.

  13. Artificial muscle: facts and fiction.

    Science.gov (United States)

    Schaub, Marcus C

    2011-12-19

    Mechanical devices are sought to support insufficient or paralysed striated muscles including the failing heart. Nickel-titanium alloys (nitinol) present the following two properties: (i) super-elasticity, and (ii) the potential to assume different crystal structures depending on temperature and/or stress. Starting from the martensite state nitinol is able to resume the austenite form (state of low potential energy and high entropy) even against an external resistance. This one-way shape change is deployed in self-expanding vascular stents. Heating induces the force generating transformation from martensite to the austenite state while cooling induces relaxation back to the martensite state. This two-way shape change oscillating between the two states may be used in cyclically contracting support devices of silicon-coated nitinol wires. Such a contractile device sutured to the right atrium has been tested in vitro in a bench model and in vivo in sheep. The contraction properties of natural muscles, specifically of the myocardium, and the tight correlation with ATP production by oxidative phosphorylation in the mitochondria is briefly outlined. Force development by the nitinol device cannot be smoothly regulated as in natural muscle. Its mechanical impact is forced onto the natural muscle regardless of the actual condition with regard to metabolism and Ca2+-homeostasis. The development of artificial muscle on the basis of nitinol wires is still in its infancy. The nitinol artificial muscle will have to prove its viability in the various clinical settings.

  14. Classes of Heart Failure

    Science.gov (United States)

    ... Introduction Types of Heart Failure Classes of Heart Failure Heart Failure in Children Advanced Heart Failure • Causes and ... and Advanced HF • Tools and Resources • Personal Stories Heart Failure Questions to Ask Your Doctor Use these questions ...

  15. Men and Heart Disease

    Science.gov (United States)

    ... Pressure Salt Cholesterol Million Hearts® WISEWOMAN Men and Heart Disease Fact Sheet Recommend on Facebook Tweet Share Compartir Source: Interactive Atlas of Heart Disease and Stroke Heart Disease Facts in Men Heart disease is the leading ...

  16. Wine and heart health

    Science.gov (United States)

    Health and wine; Wine and heart disease; Preventing heart disease - wine; Preventing heart disease - alcohol ... more often just to lower your risk of heart disease. Heavier drinking can harm the heart and ...

  17. Effect of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle.

    Science.gov (United States)

    Carter, W J; Van Der Weijden Benjamin, W S; Faas, F H

    1980-10-01

    Since experimental hyperthyroidism reduces skeletal muscle mass while simultaneously increasing cardiac muscle mass, the effect of hyperthyroidism on muscle protein degradation was compared in skeletal and cardiac muscle. Pulse-labeling studies using (3H) leucine and (14C) carboxyl labeled aspartate and glutamate were carried out. Hyperthyroidism caused a 25%-29% increase in protein breakdown in both sarcoplasmic and myofibrillar fractions of skeletal muscle. Increased muscle protein degradation may be a major factor in the development of skeletal muscle wasting and weakness in hyperthyroidism. In contrast, protein breakdown appeared to be reduced 22% in the sarcoplasmic fraction of hyperthyroid heart muscle and was unchanged in the myofibrillar fraction. Possible reasons for the contrasting effects of hyperthyroidism on skeletal and cardiac muscle include increased sensitivity of the hyperthyroid heart to catecholamines, increased cardiac work caused by the hemodynamic effects of hyperthyroidism, and a different direct effect of thyroid hormone at the nuclear level in cardiac as opposed to skeletal muscle.

  18. Growth hormone and the heart.

    Science.gov (United States)

    Cittadini, A; Longobardi, S; Fazio, S; Saccà, L

    1999-01-01

    Until a few years ago, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) were considered essential only to the control of linear growth, glucose homeostasis, and for the maintenance of skeletal muscle mass. A large body of evidence recently coming from animal and human studies has unequivocally proven that the heart is a target organ for the GH/IGF-1 axis. Specifically GH exerts both direct and indirect cardiovascular actions. Among the direct effects, the ability of GH to trigger cardiac tissue growth plays a pivotal role. Another direct effect is to augment cardiac contractility, independent of myocardial growth. Direct effects of GH also include the improvement of myocardial energetics and mechanical efficiency. Indirect effects of GH on the heart include decreased peripheral vascular resistance (PVR), expansion of blood volume, increased glomerular filtration rate, enhanced respiratory activity, increased skeletal muscle performance, and psychological well-being. Among them, the most consistently found is the decrease of PVR. GH may also raise preload through its sodium-retaining action and its interference with the hormonal system that regulates water and electrolyte metabolism. Particularly important is the effect of GH on skeletal muscle mass and performance. Taking into account that heart failure is characterized by left ventricular dilation, reduced cardiac contractility, and increase of wall stress and peripheral vascular resistance, GH may be beneficial for treatment of heart failure. Animal studies and preliminary human trials have confirmed the validity of the GH approach to the treatment of heart failure. Larger placebo-controlled human studies represent the main focus of future investigations.

  19. Impaired mitochondrial function in chronically ischemic human heart

    DEFF Research Database (Denmark)

    Stride, Nis Ottesen; Larsen, Steen; Hey-Mogensen, Martin

    2013-01-01

    , and finally to assess myocardial antioxidant levels. Mitochondrial respiration in biopsies from ischemic and nonischemic regions from the left ventricle of the same heart was compared in nine human subjects. Maximal oxidative phosphorylation capacity in fresh muscle fibers was lower in ischemic compared.......05), and the levels of antioxidant protein expression was lower. Diminished mitochondrial respiration capacity and excessive ROS production demonstrate an impaired mitochondrial function in ischemic human heart muscle. No chronic ischemic preconditioning effect was found....

  20. Study of the Relation between E23K Single Nucleotide Polymorphism of KCNJ11 Gene and Probability of Coronary Heart Disease in Iran

    Directory of Open Access Journals (Sweden)

    M Fasihi Ramandi

    2010-10-01

    Full Text Available Introduction: The G to A mutation in KCNJ11 the ATP-sensitive potassium channel subunit, results in glutamate (E to lysine (K substitution at codon 23, and the A allele is shown to have a relationship with type II diabetes in our previous study. Their role in coronary heart disease (CHD is not exactly obvious. We hypothesized that the polymorphism would be associated with increased susceptibility to CHD. Methods: The E23K gene polymorphism of KCNJ11 gene was analyzed by PCR-restriction fragment length polymorphism (PCR-RFLP methods in 55 controls and 73CHD patients. Serum lipids and Fasting Blood Sugar concentrations were measured in all subjects. Results: Among the CHD patients, the frequency of the A allele was higher (34.9% vs. 26.4%, P0.05 than among controls. No significant differences were found in allele frequencies between CHD and controls (P>0.05. Also, there were no significant differences in GG and combined (GA+AA genotypes frequencies (42.5% vs. 56.4%, and 57.5% vs. 43.6%, P>0.05. Conclusion: The E23K gene polymorphism in KCNJ11 gene has no association with the high susceptibility to CHD.

  1. Molecular Characterization and Expression Analysis of Creatine Kinase Muscle (CK-M) Gene in Horse.

    Science.gov (United States)

    Do, Kyong-Tak; Cho, Hyun-Woo; Badrinath, Narayanasamy; Park, Jeong-Woong; Choi, Jae-Young; Chung, Young-Hwa; Lee, Hak-Kyo; Song, Ki-Duk; Cho, Byung-Wook

    2015-12-01

    Since ancient days, domestic horses have been closely associated with human civilization. Today, horse racing is an important industry. Various genes involved in energy production and muscle contraction are differentially regulated during a race. Among them, creatine kinase (CK) is well known for its regulation of energy preservation in animal cells. CK is an iso-enzyme, encoded by different genes and expressed in skeletal muscle, heart, brain and leucocytes. We confirmed that the expression of CK-M significantly increased in the blood after a 30 minute exercise period, while no considerable change was observed in skeletal muscle. Analysis of various tissues showed an ubiquitous expression of the CK-M gene in the horse; CK-M mRNA expression was predominant in the skeletal muscle and the cardiac muscle compared to other tissues. An evolutionary study by synonymous and non-synonymous single nucleotide polymorphism ratio of CK-M gene revealed a positive selection that was conserved in the horse. More studies are warranted in order to develop the expression of CK-M gene as a biomarker in blood of thoroughbred horses.

  2. Congenital Heart Disease: Causes, Diagnosis, Symptoms, and Treatments.

    Science.gov (United States)

    Sun, RongRong; Liu, Min; Lu, Lei; Zheng, Yi; Zhang, Peiying

    2015-07-01

    The congenital heart disease includes abnormalities in heart structure that occur before birth. Such defects occur in the fetus while it is developing in the uterus during pregnancy. About 500,000 adults have congenital heart disease in USA (WebMD, Congenital heart defects medications, www.WebMD.com/heart-disease/tc/congenital-heart-defects-medications , 2014). 1 in every 100 children has defects in their heart due to genetic or chromosomal abnormalities, such as Down syndrome. The excessive alcohol consumption during pregnancy and use of medications, maternal viral infection, such as Rubella virus, measles (German), in the first trimester of pregnancy, all these are risk factors for congenital heart disease in children, and the risk increases if parent or sibling has a congenital heart defect. These are heart valves defects, atrial and ventricular septa defects, stenosis, the heart muscle abnormalities, and a hole inside wall of the heart which causes defect in blood circulation, heart failure, and eventual death. There are no particular symptoms of congenital heart disease, but shortness of breath and limited ability to do exercise, fatigue, abnormal sound of heart as heart murmur, which is diagnosed by a physician while listening to the heart beats. The echocardiogram or transesophageal echocardiogram, electrocardiogram, chest X-ray, cardiac catheterization, and MRI methods are used to detect congenital heart disease. Several medications are given depending on the severity of this disease, and catheter method and surgery are required for serious cases to repair heart valves or heart transplantation as in endocarditis. For genetic study, first DNA is extracted from blood followed by DNA sequence analysis and any defect in nucleotide sequence of DNA is determined. For congenital heart disease, genes in chromosome 1 show some defects in nucleotide sequence. In this review the causes, diagnosis, symptoms, and treatments of congenital heart disease are described.

  3. Array Comparative Genomic Hybridization as the First-line Investigation for Neonates with Congenital Heart Disease: Experience in a Single Tertiary Center.

    Science.gov (United States)

    Choi, Bo Geum; Hwang, Su Kyung; Kwon, Jung Eun; Kim, Yeo Hyang

    2018-03-01

    The purpose of the present study was to investigate the advantages and disadvantages of verifying genetic abnormalities using array comparative genomic hybridization (a-CGH) immediately after diagnosis of congenital heart disease (CHD). Among neonates under the age of 28 days who underwent echocardiography from January 1, 2014 to April 30, 2016, neonates whose chromosomal and genomic abnormalities were tested using a-CGH in cases of an abnormal finding on echocardiography were enrolled. Of the 166 patients diagnosed with CHD, 81 underwent a-CGH and 11 patients (11/81, 13.5%) had abnormal findings on a-CGH. 22q11.2 deletion syndrome was the most common (4/11, 36.4%). On the first a-CGH, 4 patients were negative (4/81, 5%). Three of them were finally diagnosed with Williams syndrome using fluorescent in situ hybridization (FISH), 1 patient was diagnosed with Noonan syndrome through exome sequencing. All of them exhibited diffuse pulmonary artery branch hypoplasia, as well as increased velocity of blood flow, on repeated echocardiography. Five patients started rehabilitation therapy at mean 6 months old age in outpatient clinics and epilepsy was diagnosed in 2 patients. Parents of 2 patients (22q11.2 deletion syndrome and Patau syndrome) refused treatment due to the anticipated prognosis. Screening tests for genetic abnormalities using a-CGH in neonates with CHD has the advantage of early diagnosis of genetic abnormality during the neonatal period in which there is no obvious symptom of genetic abnormality. However, there are disadvantages that some genetic abnormalities cannot be identified on a-CGH. Copyright © 2018. The Korean Society of Cardiology.

  4. Deterioration in brain and heart functions following a single sub-lethal (0.8 LCt50) inhalation exposure of rats to sarin vapor:

    International Nuclear Information System (INIS)

    Allon, N.; Chapman, S.; Egoz, I.; Rabinovitz, I.; Kapon, J.; Weissman, B.A.; Yacov, G.; Bloch-Shilderman, E.; Grauer, E.

    2011-01-01

    The main injuries among victims of the terrorist act in the Tokyo subway resulted from sub-lethal inhalation and whole body exposure to sarin vapor. In order to study the long term effects of such exposure and to simulate these conditions, freely moving rats were exposed to sarin vapor (27.2 ± 1.7 μg/l) for 10 min. About 50% of the rats showed no overt symptoms and the rest had mild to moderate clinical symptoms that subsided within 4 h following exposure. A reduction of weight was noted during the first 3 days with full recovery on the 4th day. Rat's heart was challenged with epinephrine 1 and 6 months post exposure. A significant reduction in the threshold for epinephrine-induced arrhythmia (EPIA) was noted in rats exposed to sarin. A time dependent increase in the kD and Bmax values of muscarinic auto receptors (M2) was recorded in the rat's cortex and striatum. No changes were recorded in the rats' brain trans locator protein (TSPO) levels, concomitant with no observed changes in the animals' performance in A Morris water maze test. A significant increase in open field activity was noted 6 months following exposure to sarin vapor as well as a significant decrease in prostaglandin E 2 (PGE 2 ) production in the brain. It is speculated that down regulation of the M2 auto receptor function, caused hyper reactivity of the cholinergic system which leads to the changes described above. The continuous reduction in M2 auto-receptor system through an unknown mechanism may be the cause for long lasting decline in sarin-exposed casualties' health.

  5. Use of the Impella Device for Acute Coronary Syndrome Complicated by Cardiogenic Shock - Experience From a Single Heart Center With Analysis of Long-term Mortality.

    Science.gov (United States)

    Schroeter, Marco Robin; Köhler, Herdis; Wachter, Astrid; Bleckmann, Annalen; Hasenfuß, Gerd; Schillinger, Wolfgang

    2016-12-01

    Impella is a microaxial rotary pump that is placed across the aortic valve to expel aspirated blood from the left ventricle into the ascending aorta; it can be used in cardiogenic shock. While previous studies have evaluated the efficacy and safety of the Impella device, more clinically relevant data are necessary, especially with regard to outcomes. We screened our database of Impella patients in our heart center and found 68 consecutive patients who underwent Impella implantation due to acute coronary syndrome (ACS) complicated by cardiogenic shock. Data were evaluated with regard to baseline and procedural characteristics and also included an assessment of the short-term and long-term outcomes. The majority of patients (74%) suffered from an ST-elevation myocardial infarction, and 59% of patients received the Impella device during the initial coronary angiography. In the remaining cases, Impella implantation was performed at a later time, most commonly after IABP implantation. Patient characteristics were not significantly different between both groups. The predominantly implanted device was an Impella 2.5. Mortality in the severely ill patient population remained high, but univariate/multivariate analyses identified significant risk factors. Interestingly, delayed initiation of Impella support was an independent predictor of higher long-term mortality (hazard ratio, 2.157; P=.04) within the Impella patient cohort. This large series of patients with ACS complicated by cardiogenic shock who underwent Impella implantation provides information on the relevant risk factors for mortality. Early (compared with delayed) initiation of Impella support was a predictor of improved survival in this population of patients.

  6. Heart valve surgery

    Science.gov (United States)

    ... replacement; Valve repair; Heart valve prosthesis; Mechanical valves; Prosthetic valves ... surgery. Your heart valve has been damaged by infection ( endocarditis ). You have received a new heart valve ...

  7. Heart failure - tests

    Science.gov (United States)

    CHF - tests; Congestive heart failure - tests; Cardiomyopathy - tests; HF - tests ... the best test to: Identify which type of heart failure (systolic, diastolic, valvular) Monitor your heart failure and ...

  8. Clinical evaluation of 99mTc-CPI myocardial perfusion single photon emission computerized tomography in the diagnosis of coronary heart disease

    International Nuclear Information System (INIS)

    Peng Changping

    1991-01-01

    Two normal subjects, 5 patients with old myocardial infarction (OMI) and 4 patients with angina pectoris were examined by rest single photon emission computerized tomography revealed that the right ventricular was not imaged, the left ventricular was well exposed in the normal subjects. All the 9 patients had defects in the left ventricle. comparison of SPECT with 99m Tc-CPI with selective coronary arteriography (SCA), echocardiography (UCG), dynamic electrocardiography (DCG) and electrocardiographic (ECG)-exercise test in the diagnosis of myocardial ischemia or necrosis has demonstrated the former to be more significantly sensitive than the latter four. Good agreement between SPECT and SCA has been confirmed

  9. Cellular and molecular mechanisms of muscle atrophy

    Directory of Open Access Journals (Sweden)

    Paolo Bonaldo

    2013-01-01

    Full Text Available Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophies, as well as in systemic disorders such as cancer, diabetes, sepsis and heart failure. Muscle loss also occurs during aging. In this paper, we review the key mechanisms that regulate the turnover of contractile proteins and organelles in muscle tissue, and discuss how impairments in these mechanisms can contribute to muscle atrophy. We also discuss how protein synthesis and degradation are coordinately regulated by signaling pathways that are influenced by mechanical stress, physical activity, and the availability of nutrients and growth factors. Understanding how these pathways regulate muscle mass will provide new therapeutic targets for the prevention and treatment of muscle atrophy in metabolic and neuromuscular diseases.

  10. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  11. Feasibility and outcomes of combined transcatheter aortic valve replacement with other structural heart interventions in a single session: a matched cohort study

    Science.gov (United States)

    Khattab, Ahmed A; Gloekler, Steffen; Sprecher, Beate; Shakir, Samera; Guerios, Ênio; Stortecky, Stefan; O'Sullivan, Crochan J; Nietlispach, Fabian; Moschovitis, Aris; Pilgrim, Thomas; Buellesfeld, Lutz; Wenaweser, Peter; Windecker, Stephan; Meier, Bernhard

    2014-01-01

    Background Concurrent cardiac diseases are frequent among elderly patients and invite simultaneous treatment to ensure an overall favourable patient outcome. Aim To investigate the feasibility of combined single-session percutaneous cardiac interventions in the era of transcatheter aortic valve implantation (TAVI). Methods This prospective, case–control study included 10 consecutive patients treated with TAVI, left atrial appendage occlusion and percutaneous coronary interventions. Some in addition had patent foramen ovale or atrial septal defect closure in the same session. The patients were matched in a 1:10 manner with TAVI-only cases treated within the same time period at the same institution regarding their baseline factors. The outcome was validated according to the Valve Academic Research Consortium (VARC) criteria. Results Procedural time (126±42 vs 83±40 min, p=0.0016), radiation time (34±8 vs 22±12 min, p=0.0001) and contrast dye (397±89 vs 250±105 mL, p<0.0001) were higher in the combined intervention group than in the TAVI-only group. Despite these drawbacks, no difference in the VARC endpoints was evident during the in-hospital period and after 30 days (VARC combined safety endpoint 32% for TAVI only and 20% for combined intervention, p=1.0). Conclusions Transcatheter treatment of combined cardiac diseases is feasible even in a single session in a high-volume centre with experienced operators. PMID:25332781

  12. Traumatic avulsion of extraocular muscles: case reports

    Directory of Open Access Journals (Sweden)

    Nilza Minguini

    2013-04-01

    Full Text Available We described the clinical, surgical details and results (motor and sensory of the retrieving procedure of traumatically avulsed muscles in three patients with no previous history of strabismus or diplopia seen in the Department of Ophthalmology, State University of Campinas, Brazil. The slipped muscle portion was reinserted at the original insertion and under the remaining stump, which was sutured over the reinserted muscle. For all three cases there was recovery of single binocular vision and stereopsis.

  13. Women's Heart Disease: Heart Attack Symptoms

    Science.gov (United States)

    ... of this page please turn JavaScript on. Feature: Women's Heart Disease Heart Attack Symptoms Past Issues / Winter ... most common heart attack symptom in men and women is chest pain or discomfort. However, women also ...

  14. Heart Health: The Heart Truth Campaign 2009

    Science.gov (United States)

    ... Bar Home Current Issue Past Issues Cover Story Heart Health The Heart Truth Campaign 2009 Past Issues / Winter 2009 Table ... one of the celebrities supporting this year's The Heart Truth campaign. Both R&B singer Ashanti (center) ...

  15. Heart Health - Heart Disease: Symptoms, Diagnosis, Treatment

    Science.gov (United States)

    ... Bar Home Current Issue Past Issues Cover Story Heart Health Heart Disease: Symptoms, Diagnosis, Treatment Past Issues / Winter 2009 ... of this page please turn Javascript on. Most heart attacks happen when a clot in the coronary ...

  16. Women's Heart Disease: Heart Disease Risk Factors

    Science.gov (United States)

    ... this page please turn JavaScript on. Feature: Women's Heart Disease Heart Disease Risk Factors Past Issues / Winter 2014 Table ... or habits may raise your risk for coronary heart disease (CHD). These conditions are known as risk ...

  17. The effects of an intraperitoneal single low dose of ketamine in attenuating the postoperative skin/muscle incision and retraction-induced pain related to the inhibition of N-methyl-D-aspartate receptors in the spinal cord.

    Science.gov (United States)

    Shen, Yu; Xu, Li; Liu, Ming; Lei, Yishan; Gu, Xiaoping; Ma, Zhengliang

    2016-03-11

    Chronic postoperative pain (CPOP) is a common clinical problem which might be related to central sensitization. It has been widely accepted that NMDA (N-methyl-D-aspartate) receptors are among the triggers of central sensitization. Ketamine is a non-competitive NMDA receptor antagonist that is widely used in alleviating postoperative pain, but its effect on CPOP has been rarely reported. In the present study, the skin/muscle incision and retraction (SMIR) model was used to investigate the role of NMDARs in chronic postoperative pain and the effect of an intraperitoneal single low dose ketamine (10mg/kg) of attenuating SMIR-induced CPOP. We assessed pain behaviours after a SMIR operation by paw withdrawal threshold (PWMT) and paw withdrawal latency (PWMTL). Western blotting were performed to examine the role of NMDARs in SMIR-induced CPOP and the effect of ketamine on the expression and phosphorylation of NMDARs. The SMIR operation induced long-lasting mechanical hyperalgesia, and the up-regulation of phosphorylated NMDARs and total NMDARs at the spinal level. A single intraperitoneal administration of low dose ketamine (10mg/kg) during surgery alleviated pain behaviors and inhibited the up-regulation of phosphorylated NMDARs and total NMDARs. Our datas suggested that NMDARs play important roles in SMIR-induced CPOP. A single intraperitoneal low dose of ketamine could attenuate SMIR-induced CPOP, which might be associated with the inhibition of NMDARs. Our finding might provide a new, simple method of addressing CPOP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Use of prediction equations to determine the accuracy of whole-body fat and fat-free mass and appendicular skeletal muscle mass measurements from a single abdominal image using computed tomography in advanced cancer patients.

    Science.gov (United States)

    Kilgour, Robert D; Cardiff, Katrina; Rosenthall, Leonard; Lucar, Enriqueta; Trutschnigg, Barbara; Vigano, Antonio

    2016-01-01

    Measurements of body composition using dual-energy X-ray absorptiometry (DXA) and single abdominal images from computed tomography (CT) in advanced cancer patients (ACP) have important diagnostic and prognostic value. The question arises as to whether CT scans can serve as surrogates for DXA in terms of whole-body fat-free mass (FFM), whole-body fat mass (FM), and appendicular skeletal muscle (ASM) mass. Predictive equations to estimate body composition for ACP from CT images have been proposed (Mourtzakis et al. 2008; Appl. Physiol. Nutr. Metabol. 33(5): 997-1006); however, these equations have yet to be validated in an independent cohort of ACP. Thus, this study evaluated the accuracy of these equations in estimating FFM, FM, and ASM mass using CT images at the level of the third lumbar vertebrae and compared these values with DXA measurements. FFM, FM, and ASM mass were estimated from the prediction equations proposed by Mourtzakis and colleagues (2008) using single abdominal CT images from 43 ACP and were compared with whole-body DXA scans using Spearman correlations and Bland-Altman analyses. Despite a moderate to high correlation between the actual (DXA) and predicted (CT) values for FM (rho = 0.93; p ≤ 0.001), FFM (rho = 0.78; p ≤ 0.001), and ASM mass (rho = 0.70; p ≤ 0.001), Bland-Altman analyses revealed large range-of-agreement differences between the 2 methods (29.39 kg for FFM, 15.47 kg for FM, and 3.99 kg for ASM mass). Based on the magnitude of these differences, we concluded that prediction equations using single abdominal CT images have poor accuracy, cannot be considered as surrogates for DXA, and may have limited clinical utility.

  19. Matter over mind: a randomised-controlled trial of single-session biofeedback training on performance anxiety and heart rate variability in musicians.

    Science.gov (United States)

    Wells, Ruth; Outhred, Tim; Heathers, James A J; Quintana, Daniel S; Kemp, Andrew H

    2012-01-01

    Musical performance is a skilled activity performed under intense pressure, thus is often a profound source of anxiety. In other contexts, anxiety and its concomitant symptoms of sympathetic nervous system arousal have been successfully ameliorated with HRV biofeedback (HRV BF), a technique involving slow breathing which augments autonomic and emotional regulatory capacity. This randomised-controlled study explored the impact of a single 30-minute session of HRV BF on anxiety in response to a highly stressful music performance. A total of 46 trained musicians participated in this study and were randomly allocated to a slow breathing with or without biofeedback or no-treatment control group. A 3 Group×2 Time mixed experimental design was employed to compare the effect of group before and after intervention on performance anxiety (STAI-S) and frequency domain measures of HRV. Slow breathing groups (n=30) showed significantly greater improvements in high frequency (HF) and LF/HF ratio measures of HRV relative to control (n=15) during 5 minute recordings of performance anticipation following the intervention (effect size: η(2) =0.122 and η(2) =0.116, respectively). The addition of biofeedback to a slow breathing protocol did not produce differential results. While intervention groups did not exhibit an overall reduction in self-reported anxiety, participants with high baseline anxiety who received the intervention (n=15) displayed greater reductions in self-reported state anxiety relative to those in the control condition (n=7) (r=0.379). These findings indicate that a single session of slow breathing, regardless of biofeedback, is sufficient for controlling physiological arousal in anticipation of psychosocial stress associated with music performance and that slow breathing is particularly helpful for musicians with high levels of anxiety. Future research is needed to further examine the effects of HRV BF as a low-cost, non-pharmacological treatment for music

  20. Matter over mind: a randomised-controlled trial of single-session biofeedback training on performance anxiety and heart rate variability in musicians.

    Directory of Open Access Journals (Sweden)

    Ruth Wells

    Full Text Available Musical performance is a skilled activity performed under intense pressure, thus is often a profound source of anxiety. In other contexts, anxiety and its concomitant symptoms of sympathetic nervous system arousal have been successfully ameliorated with HRV biofeedback (HRV BF, a technique involving slow breathing which augments autonomic and emotional regulatory capacity.This randomised-controlled study explored the impact of a single 30-minute session of HRV BF on anxiety in response to a highly stressful music performance.A total of 46 trained musicians participated in this study and were randomly allocated to a slow breathing with or without biofeedback or no-treatment control group. A 3 Group×2 Time mixed experimental design was employed to compare the effect of group before and after intervention on performance anxiety (STAI-S and frequency domain measures of HRV.Slow breathing groups (n=30 showed significantly greater improvements in high frequency (HF and LF/HF ratio measures of HRV relative to control (n=15 during 5 minute recordings of performance anticipation following the intervention (effect size: η(2 =0.122 and η(2 =0.116, respectively. The addition of biofeedback to a slow breathing protocol did not produce differential results. While intervention groups did not exhibit an overall reduction in self-reported anxiety, participants with high baseline anxiety who received the intervention (n=15 displayed greater reductions in self-reported state anxiety relative to those in the control condition (n=7 (r=0.379.These findings indicate that a single session of slow breathing, regardless of biofeedback, is sufficient for controlling physiological arousal in anticipation of psychosocial stress associated with music performance and that slow breathing is particularly helpful for musicians with high levels of anxiety. Future research is needed to further examine the effects of HRV BF as a low-cost, non-pharmacological treatment for

  1. Hereditary muscular dystrophies and the heart

    NARCIS (Netherlands)

    Hermans, M. C. E.; Pinto, Y. M.; Merkies, I. S. J.; de Die-Smulders, C. E. M.; Crijns, H. J. G. M.; Faber, C. G.

    2010-01-01

    Cardiac disease is a common clinical manifestation of neuromuscular disorders, particularly of muscular dystrophies. Heart muscle cells as well as specialized conducting myocardial fibres may be affected by the dystrophic process. The incidence and nature of cardiac involvement vary with different