WorldWideScience

Sample records for single electron spin

  1. Inelastic electron tunneling spectroscopy of a single nuclear spin.

    Science.gov (United States)

    Delgado, F; Fernández-Rossier, J

    2011-08-12

    Detection of a single nuclear spin constitutes an outstanding problem in different fields of physics such as quantum computing or magnetic imaging. Here we show that the energy levels of a single nuclear spin can be measured by means of inelastic electron tunneling spectroscopy (IETS). We consider two different systems, a magnetic adatom probed with scanning tunneling microscopy and a single Bi dopant in a silicon nanotransistor. We find that the hyperfine coupling opens new transport channels which can be resolved at experimentally accessible temperatures. Our simulations evince that IETS yields information about the occupations of the nuclear spin states, paving the way towards transport-detected single nuclear spin resonance.

  2. Spin-Dependent Quasiparticle Transport in Aluminum Single Electron Transistors

    OpenAIRE

    Ferguson, A. J.; Andresen, S. E.; Brenner, R.; Clark, R. G.

    2006-01-01

    We investigate the effect of Zeeman-splitting on quasiparticle transport in normal-superconducting-normal (NSN) aluminum single electron transistors (SETs). In the above-gap transport the interplay of Coulomb blockade and Zeeman-splitting leads to spin-dependence of the sequential tunneling. This creates regimes where either one or both spin species can tunnel onto or off the island. At lower biases, spin-dependence of the single quasiparticle state is studied and operation of the device as a...

  3. Probing quantum coherence in single-atom electron spin resonance

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.

    2018-01-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211

  4. Probing quantum coherence in single-atom electron spin resonance.

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J; Lutz, Christoper P

    2018-02-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T 2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T 2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins.

  5. Single electron-spin memory with a semiconductor quantum dot

    International Nuclear Information System (INIS)

    Young, Robert J; Dewhurst, Samuel J; Stevenson, R Mark; Atkinson, Paola; Bennett, Anthony J; Ward, Martin B; Cooper, Ken; Ritchie, David A; Shields, Andrew J

    2007-01-01

    We show storage of the circular polarization of an optical field, transferring it to the spin-state of an individual electron confined in a single semiconductor quantum dot. The state is subsequently read out through the electronically-triggered emission of a single photon. The emitted photon shares the same polarization as the initial pulse but has a different energy, making the transfer of quantum information between different physical systems possible. With an applied magnetic field of 2 T, spin memory is preserved for at least 1000 times more than the exciton's radiative lifetime

  6. Spin-gating of a conventional aluminum single electron transistor

    Science.gov (United States)

    Zarbo, Liviu P.; Ciccarelli, Chiara; Irvine, Andy; Wunderlich, Jörg; Champion, Richard; Gallagher, Brian; Jungwirth, Tomáš; Ferguson, Andrew

    2012-02-01

    We report the realization of a single electron transistor in which electron transport from an aluminum source electrode to an aluminum drain electrode via an aluminum island is controlled by spins in a capacitively coupled magnetic gate electrode. The origin of the effect is in the change of the chemical potential on the gate, formed by the ferromagnetic semiconductor GaMnAs, with changing the direction of the magnetization. In agreement with experimental observations, microscopically calculated anisotropies of the chemical potential with respect to the magnetization orientation are of the order of 10μV which is comparable to the electrical gate voltages required to control the on and off state of the single electron transistor. Our phenomenon belongs to the family of anisotropic magnetoresistance effects which can be observed in ohmic, tunneling or other device geometries. In our case, the entire phenomenon is coded in the dependence of the chemical potential on the spin orientation which allowed us to remove the spin functionality from all current contacts and channels and place it in the capacitively coupled gate electrode. Our spintronic device therefore operates without spin current.

  7. Probing Spin Accumulation induced Magnetocapacitance in a Single Electron Transistor.

    Science.gov (United States)

    Lee, Teik-Hui; Chen, Chii-Dong

    2015-09-08

    The interplay between spin and charge in solids is currently among the most discussed topics in condensed matter physics. Such interplay gives rise to magneto-electric coupling, which in the case of solids was named magneto-electric effect, as predicted by Curie on the basis of symmetry considerations. This effect enables the manipulation of magnetization using electrical field or, conversely, the manipulation of electrical polarization by magnetic field. The latter is known as the magnetocapacitance effect. Here, we show that non-equilibrium spin accumulation can induce tunnel magnetocapacitance through the formation of a tiny charge dipole. This dipole can effectively give rise to an additional serial capacitance, which represents an extra charging energy that the tunneling electrons would encounter. In the sequential tunneling regime, this extra energy can be understood as the energy required for a single spin to flip. A ferromagnetic single-electron-transistor with tunable magnetic configuration is utilized to demonstrate the proposed mechanism. It is found that the extra threshold energy is experienced only by electrons entering the islands, bringing about asymmetry in the measured Coulomb diamond. This asymmetry is an unambiguous evidence of spin accumulation induced tunnel magnetocapacitance, and the measured magnetocapacitance value is as high as 40%.

  8. Electronic spin transport and spin precession in single graphene layers at room temperature.

    Science.gov (United States)

    Tombros, Nikolaos; Jozsa, Csaba; Popinciuc, Mihaita; Jonkman, Harry T; van Wees, Bart J

    2007-08-02

    Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic transport phenomena such as anomalously quantized Hall effects, absence of weak localization and the existence of a minimum conductivity. In addition to dissipative transport, supercurrent transport has also been observed. Graphene might also be a promising material for spintronics and related applications, such as the realization of spin qubits, owing to the low intrinsic spin orbit interaction, as well as the low hyperfine interaction of the electron spins with the carbon nuclei. Here we report the observation of spin transport, as well as Larmor spin precession, over micrometre-scale distances in single graphene layers. The 'non-local' spin valve geometry was used in these experiments, employing four-terminal contact geometries with ferromagnetic cobalt electrodes making contact with the graphene sheet through a thin oxide layer. We observe clear bipolar (changing from positive to negative sign) spin signals that reflect the magnetization direction of all four electrodes, indicating that spin coherence extends underneath all of the contacts. No significant changes in the spin signals occur between 4.2 K, 77 K and room temperature. We extract a spin relaxation length between 1.5 and 2 mum at room temperature, only weakly dependent on charge density. The spin polarization of the ferromagnetic contacts is calculated from the measurements to be around ten per cent.

  9. Electronic readout of a single nuclear spin using a molecular spin transistor

    Science.gov (United States)

    Vincent, R.; Klyastskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F.

    2012-02-01

    Quantum control of individual spins in condensed matter devices is an emerging field with a wide range of applications ranging from nanospintronics to quantum computing [1,2]. The electron, with its spin and orbital degrees of freedom, is conventionally used as carrier of the quantum information in the devices proposed so far. However, electrons exhibit a strong coupling to the environment leading to reduced relaxation and coherence times. Indeed quantum coherence and stable entanglement of electron spins are extremely difficult to achieve. We propose a new approach using the nuclear spin of an individual metal atom embedded in a single-molecule magnet (SMM). In order to perform the readout of the nuclear spin, the quantum tunneling of the magnetization (QTM) of the magnetic moment of the SMM in a transitor-like set-up is electronically detected. Long spin lifetimes of an individual nuclear spin were observed and the relaxation characteristics were studied. The manipulation of the nuclear spin state of individual atoms embedded in magnetic molecules opens a completely new world, where quantum logic may be integrated.[4pt] [1] L. Bogani, W. Wernsdorfer, Nature Mat. 7, 179 (2008).[0pt] [2] M. Urdampilleta, S. Klyatskaya, J.P. Cleuziou, M. Ruben, W. Wernsdorfer, Nature Mat. 10, 502 (2011).

  10. Fast Electrical Control of Single Electron Spins in Quantum Dots with Vanishing Influence from Nuclear Spins

    Science.gov (United States)

    Yoneda, J.; Otsuka, T.; Nakajima, T.; Takakura, T.; Obata, T.; Pioro-Ladrière, M.; Lu, H.; Palmstrøm, C. J.; Gossard, A. C.; Tarucha, S.

    2014-12-01

    We demonstrate fast universal electrical spin manipulation with inhomogeneous magnetic fields. With fast Rabi frequency up to 127 MHz, we leave the conventional regime of strong nuclear-spin influence and observe a spin-flip fidelity >96 % , a distinct chevron Rabi pattern in the spectral-time domain, and a spin resonance linewidth limited by the Rabi frequency, not by the dephasing rate. In addition, we establish fast z rotations up to 54 MHz by directly controlling the spin phase. Our findings will significantly facilitate tomography and error correction with electron spins in quantum dots.

  11. Electrical Initialization of Electron and Nuclear Spins in a Single Quantum Dot at Zero Magnetic Field.

    Science.gov (United States)

    Cadiz, Fabian; Djeffal, Abdelhak; Lagarde, Delphine; Balocchi, Andrea; Tao, Bingshan; Xu, Bo; Liang, Shiheng; Stoffel, Mathieu; Devaux, Xavier; Jaffres, Henri; George, Jean-Marie; Hehn, Michel; Mangin, Stephane; Carrere, Helene; Marie, Xavier; Amand, Thierry; Han, Xiufeng; Wang, Zhanguo; Urbaszek, Bernhard; Lu, Yuan; Renucci, Pierre

    2018-04-11

    The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X + ) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

  12. Spin Electronics

    Science.gov (United States)

    2003-08-01

    applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a...physical phenomena in II-VI and III-V semiconductors. In II-VI systems, the Mn2+ ions act to boost the electron spin precession up to terahertz ...conductors, proximity effect between ferromagnets and superconductors , and the effects of spin injection on the physical properties of the

  13. Spin-wave propagation and spin-polarized electron transport in single-crystal iron films

    Science.gov (United States)

    Gladii, O.; Halley, D.; Henry, Y.; Bailleul, M.

    2017-11-01

    The techniques of propagating spin-wave spectroscopy and current-induced spin-wave Doppler shift are applied to a 20-nm-thick Fe/MgO(001) film. The magnetic parameters extracted from the position of the spin-wave resonance peaks are very close to those tabulated for bulk iron. From the zero-current propagating wave forms, a group velocity of 4 km/s and an attenuation length of about 6 μ m are extracted for 1.6-μ m -wavelength spin wave at 18 GHz. From the measured current-induced spin-wave Doppler shift, we extract a surprisingly high degree of spin polarization of the current of 83 % , which constitutes the main finding of this work. This set of results makes single-crystalline iron a promising candidate for building devices utilizing high-frequency spin waves and spin-polarized currents.

  14. Spin-controlled nanomechanics induced by single-electron tunneling.

    Science.gov (United States)

    Radić, D; Nordenfelt, A; Kadigrobov, A M; Shekhter, R I; Jonson, M; Gorelik, L Y

    2011-12-02

    We consider dc-electronic transport through a nanowire suspended between normal- and spin-polarized metal leads in the presence of an external magnetic field. We show that magnetomotive coupling between the electrical current through the nanowire and vibrations of the wire may result in self-excitation of mechanical vibrations. The self-excitation mechanism is based on correlations between the occupancy of the quantized electronic energy levels inside the nanowire and the velocity of the nanowire. We derive conditions for the occurrence of the instability and find stable regimes of mechanical oscillations. © 2011 American Physical Society

  15. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  16. Spin-dependent quasiparticle transport in aluminum single-electron transistors.

    Science.gov (United States)

    Ferguson, A J; Andresen, S E; Brenner, R; Clark, R G

    2006-08-25

    We investigate the effect of Zeeman splitting on quasiparticle transport in normal-superconducting-normal (NSN) aluminum single-electron transistors (SETs). In the above-gap transport, the interplay of Coulomb blockade and Zeeman splitting leads to spin-dependence of the sequential tunneling. This creates regimes where either one or both spin species can tunnel onto or off the island. At lower biases, spin-dependence of the single quasiparticle state is studied, and operation of the device as a bipolar spin filter is suggested.

  17. Electron Spin Resonance Experiments on a Single Electron in Silicon Implanted with Phosphorous

    Science.gov (United States)

    Luhman, Dwight R.; Nguyen, K.; Tracy, L. A.; Carr, S.; Borchardt, J.; Bishop, N.; Ten Eyck, G.; Pluym, T.; Wendt, J.; Lilly, M. P.; Carroll, M. S.

    2015-03-01

    In this talk we will discuss the results of our ongoing experiments involving electron spin resonance (ESR) on a single electron in a natural silicon sample. The sample consists of an SET, defined by lithographic polysilicon gates, coupled to nearby phosphorous donors. The SET is used to detect charge transitions and readout the spin of the electron being investigated with ESR. The measurements were done with the sample at dilution refrigerator temperatures in the presence of a 1.3 T magnetic field. We will present data demonstrating Rabi oscillations of a single electron in this system as well as measurements of the coherence time, T2. We will also discuss our results using these and various other pulsing schemes in the context of a donor-SET system. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  18. Electron-assisted magnetization tunneling in single spin systems

    Science.gov (United States)

    Balashov, Timofey; Karlewski, Christian; Märkl, Tobias; Schön, Gerd; Wulfhekel, Wulf

    2018-01-01

    Magnetic excitations of single atoms on surfaces have been widely studied experimentally in the past decade. Lately, systems with unprecedented magnetic stability started to emerge. Here, we present a general theoretical investigation of the stability of rare-earth magnetic atoms exposed to crystal or ligand fields of various symmetry and to exchange scattering with an electron bath. By analyzing the properties of the atomic wave function, we show that certain combinations of symmetry and total angular momentum are inherently stable against first or even higher-order interactions with electrons. Further, we investigate the effect of an external magnetic field on the magnetic stability.

  19. Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond.

    Science.gov (United States)

    Golter, D Andrew; Wang, Hailin

    2014-03-21

    Rabi oscillations and adiabatic passage of single electron spins in a diamond nitrogen vacancy center are demonstrated with two Raman-resonant optical pulses that are detuned from the respective dipole optical transitions. We show that the optical spin control is nuclear-spin selective and can be robust against rapid decoherence, including radiative decay and spectral diffusion, of the underlying optical transitions. A direct comparison between the Rabi oscillation and the adiabatic passage, along with a detailed theoretical analysis, provides significant physical insights into the connections and differences between these coherent spin processes and also elucidates the role of spectral diffusion in these processes. The optically driven coherent spin processes enable the use of nitrogen vacancy excited states to mediate coherent spin-phonon coupling, opening the door to combining optical control of both spin and mechanical degrees of freedom.

  20. Electronic spin transport and spin precession in single graphene layers at room temperature

    NARCIS (Netherlands)

    Tombros, Nikolaos; Jozsa, Csaba; Popinciuc, Mihaita; Jonkman, Harry T.; van Wees, Bart J.

    2007-01-01

    Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic

  1. Readout of a single electron spin in a double quantum dot using a quantum point contact

    International Nuclear Information System (INIS)

    Zhang Jianping; Ouyang Shihua; You, J Q; Lam, C.-H.

    2008-01-01

    We study the dynamics of a single electron spin in a double quantum dot (DQD) and its readout via a quantum point contact (QPC). We model the system microscopically and derive rate equations for the reduced electron density matrix of the DQD. Two cases with one and two electrons in the DQD are studied. In the one-electron case, with different Zeeman splittings in the two dots, the electron spin states are distinctly characterized by a constant and an oscillatory current through the QPC. In the two-electron case, the readout of the spin state of the electron in one of the dots called the qubit dot is essentially similar after considering hyperfine interactions between the electrons and the nuclear spins of the host materials and a uniform magnetic field applied to the DQD. Moreover, to ensure that an electron is properly injected into the qubit dot, we propose to determine the success of the electron injection from the variations of the QPC current after applying an oscillating magnetic field to the qubit dot

  2. Spin Measurements of an Electron Bound to a Single Phosphorous Donor in Silicon

    Science.gov (United States)

    Luhman, D. R.; Nguyen, K.; Tracy, L. A.; Carr, S. M.; Borchardt, J.; Bishop, N. C.; Ten Eyck, G. A.; Pluym, T.; Wendt, J.; Carroll, M. S.; Lilly, M. P.

    2014-03-01

    The spin of an electron bound to a single donor implanted in silicon is potentially useful for quantum information processing. We report on our efforts to measure and manipulate the spin of an electron bound to a single P donor in silicon. A low number of P donors are implanted using a self-aligned process into a silicon substrate in close proximity to a single-electron-transistor (SET) defined by lithographically patterned polysilicon gates. The SET is used to sense the occupancy of the electron on the donor and for spin read-out. An adjacent transmission line allows the application of microwave pulses to rotate the spin of the electron. We will present data from various experiments designed to exploit these capabilities. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  3. Electrical Control, Read-out and Initialization of Single Electron Spins

    NARCIS (Netherlands)

    Shafiei, M.

    2013-01-01

    An electron, in addition to its electric charge, possesses a small magnetic moment, called spin. The spin of an electron can point parallel (spin-up) or antiparallel (spin-down) to the magnetic field. These two states are analogous to zero and one of the logical bit in current digital electronic

  4. Spin-dependent electron-phonon coupling in the valence band of single-layer WS2

    DEFF Research Database (Denmark)

    Hinsche, Nicki Frank; Ngankeu, Arlette S.; Guilloy, Kevin

    2017-01-01

    The absence of inversion symmetry leads to a strong spin-orbit splitting of the upper valence band of semiconducting single-layer transition-metal dichalchogenides such as MoS2 or WS2. This permits a direct comparison of the electron-phonon coupling strength in states that only differ by their spin....... Here, the electron-phonon coupling in the valence band maximum of single-layer WS2 is studied by first-principles calculations and angle-resolved photoemission. The coupling strength is found to be drastically different for the two spin-split branches, with calculated values of λK=0.0021 and 0.......40 for the upper and lower spin-split valence band of the freestanding layer, respectively. This difference is somewhat reduced when including scattering processes involving the Au(111) substrate present in the experiment but it remains significant, in good agreement with the experimental results....

  5. Direct Nanoscale Sensing of the Internal Electric Field in Operating Semiconductor Devices Using Single Electron Spins.

    Science.gov (United States)

    Iwasaki, Takayuki; Naruki, Wataru; Tahara, Kosuke; Makino, Toshiharu; Kato, Hiromitsu; Ogura, Masahiko; Takeuchi, Daisuke; Yamasaki, Satoshi; Hatano, Mutsuko

    2017-02-28

    The electric field inside semiconductor devices is a key physical parameter that determines the properties of the devices. However, techniques based on scanning probe microscopy are limited to sensing at the surface only. Here, we demonstrate the direct sensing of the internal electric field in diamond power devices using single nitrogen-vacancy (NV) centers. The NV center embedded inside the device acts as a nanoscale electric field sensor. We fabricated vertical diamond p-i-n diodes containing the single NV centers. By performing optically detected magnetic resonance measurements under reverse-biased conditions with an applied voltage of up to 150 V, we found a large splitting in the magnetic resonance frequencies. This indicated that the NV center senses the transverse electric field in the space-charge region formed in the i-layer. The experimentally obtained electric field values are in good agreement with those calculated by a device simulator. Furthermore, we demonstrate the sensing of the electric field in different directions by utilizing NV centers with different N-V axes. This direct and quantitative sensing method using an electron spin in a wide-band-gap material provides a way to monitor the electric field in operating semiconductor devices.

  6. Zeeman splitting spin filter in a single quantum dot electron transport with Coulomb blockade effect

    OpenAIRE

    Lai, Wenxi

    2014-01-01

    Electron spin filter induced by Zeeman splitting in a few-electron quantum dot coupled to two normal electrodes is studied considering Coulomb blockade effect. Based on the Anderson model and Liouville-von Neumann equation, equation of motion of the system is derived and analytical solutions are achieved. Transport windows for perfectly polarized current, partially polarized current and non-polarized current induced by the Zeeman splitting energy and Coulomb blockade potential are exploited. ...

  7. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  8. Electron spin resonance of X-irradiated single crystal of calcium tartrate tetrahydrate

    International Nuclear Information System (INIS)

    Korkmaz, M.

    1977-01-01

    The electron spin resonance spectra of an irradiated single crystal of calcium tartrate tetrahydrate grown from silica gel have been investigated. Only one species of free radical was observed at room and liquid nitrogen temperatures. The free radical was found to be the result of the splitting of a C-H bond adjacent to both the hydroxyl and carboxyl groups. For some orientations of the crystal in the external magnetic field two unresolved doublets, due to two noequivalent protons, was observed. The g factor was found to be almost isotropic, with a value of 2.0032 +- 0.0005. Couplings with two H nuclei are believed to be the result of the proton of the hydroxyl group attached directly to the unsaturated asymmetric carbon atom and of the proton attached directly to the other asymmetric carbon atom of the molecule. The principal elements of the nuclear coupling of these protons are 5.8, 7.9, 3.7 and 6.8, 7.0, 17.3 G respectively. The radical was found to be very stable, the ESR pattern being undiminished for more than half a year after the irradiation. (author)

  9. Nuclear spin pumping and electron spin susceptibilities

    NARCIS (Netherlands)

    Danon, J.; Nazarov, Y.V.

    2011-01-01

    In this work we present a new formalism to evaluate the nuclear spin dynamics driven by hyperfine interaction with nonequilibrium electron spins. To describe the dynamics up to second order in the hyperfine coupling it suffices to evaluate the susceptibility and fluctuations of the electron spin.

  10. Electron spin resonance of Gd in the nuclear cooling agent: PrNi5 single crystals

    International Nuclear Information System (INIS)

    Levin, R.; Davidov, D.; Grayevsky, A.; Shaltiel, D.; Zevin, V.

    1980-01-01

    The ESR of Gd in single crystals of PrNi 5 is observed to exhibit significant angular dependence of the resonance position and linewidth at low temperatures. This is interpreted in terms of the axial spin Hamiltonian which takes the anisotropic susceptibility and the Gd-Pr exchange into consideration. From lineshape analysis the axial crystal field parameter and isotropic Gd-Pr exchange are derived. The Gd ESR linewidth increases with temperature; the thermal broadening is angularly dependent. This is similar to that observed for the Pr NMR in PrNi 5 single crystals. Both the NMR and ESR thermal broadenings are attributed to low-frequency fluctuations of the Pr ions induced by the Pr-Pr exchange coupling. A model for hexagonal Van-Vleck compounds is given and with the linewidth enables the Pr-Pr exchange coupling, under the assumption of a Gaussian or a Lorenzian distribution of the low-frequency fluctuation spectra, to be extracted. It is suggested that the angular dependence of the ESR thermal broadening is due to the Gd-Pr exchange coupling. (UK)

  11. Electron Spins in Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Hanson, R.

    2005-01-01

    This thesis describes a series of experiments aimed at understanding and controlling the behavior of the spin degree of freedom of single electrons, confined in semiconductor quantum dots. This research work is motivated by the prospects of using the electron spin as a quantum bit (qubit), the basic

  12. Electron spin resonance of x-irradiated single crystals of dicyclohexyldiazene 1,2-dioxide

    International Nuclear Information System (INIS)

    Fujii, Yoshihisa; Kurita, Yukio; Kashiwagi, Michio; Nakada, Hideki.

    1982-01-01

    ESR studies of X-irradiated single crystals of dicyclohexyldiazene 1,2-dioxide, (C 6 H 11 NO) 2 , revealed the generation of the stably trapped radicals C 6 H 11 N(O)N'H''(O')C 6 H 11 . The principal elements of the g value were found to be 2.0030, 2.0060, and 2.0086. The principal elements of the hyperfine couplingconstants were found to be 3.88, 1.53, and 1.38 mT for N, and 1.53, 1.41, and 1.14 mT for H''. The direction cosines of these principal elements, when compared with those of the bonds in the parent molecule, indicate that the radical is formed by addition of a hydrogen atom to the N=N' double bond without causing a large change in the molecular framework. The spin dendities for this radical were calculated to be 0.041 and 0.47 in the 2s and 2p orbitals of the atom N, respectively. (author)

  13. Decoherence dynamics of a single spin versus spin ensemble

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.

    2008-01-01

    We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian

  14. Role of hyperfine interaction on electron spin optical orientation in charge-controlled InAs-GaAs single quantum dots

    International Nuclear Information System (INIS)

    Krebs, O.; Eble, B.; Lemaitre, A.; Kudelski, A.; Voisin, P.; Urbaszek, B.; Marie, X.; Amand, T.; Kowalik, K.

    2007-01-01

    We report on electron spin physics in a single charge-tunable self-assembled InAs/GaAs quantum dot. The hyperfine interaction between the optically oriented electron and nuclear spins leads to the polarization of the quantum dot nuclei. The sign of the resulting Overhauser-shift depends on the trion state X + or X - , and remarkably its strength does not vanish in zero magnetic field. This explains the quenching of X + spin relaxation under steady-state excitation polarization. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. A 3% Measurement of the Beam Normal Single Spin Asymmetry in Forward Angle Elastic Electron-Proton Scattering using the Qweak Setup

    Energy Technology Data Exchange (ETDEWEB)

    Waidyawansa, Dinayadura Buddhini [Ohio Univ., Athens, OH (United States)

    2013-08-01

    The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least three orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.

  16. Electron spin resonance

    International Nuclear Information System (INIS)

    Wasson, J.R.; Salinas, J.E.

    1980-01-01

    Published literature concerning electron spin resonance (ESR) from July 1977 to July 1979 is reviewed. The 108 literature sources cited were chosen from literally thousands and are intended to serve as a guide to the current literature and to provide an eclectic selection of publications cited for their contributions to the advance and/or applications of ESR spectroscopy. 40 of the sources are reviews, and a table is included to indicate the topic(s) mainly covered in each review. Other divisions of the material reviewed are apparatus and spectral analysis, analytical applications, and selected paramagnetic materials

  17. Landau-Zener tunneling of a single Tb3+ magnetic moment allowing the electronic read-out of a nuclear spin

    Science.gov (United States)

    Urdampilleta, M.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.

    2013-05-01

    A multiterminal device based on a carbon nanotube quantum dot was used at very low temperature to probe a single electronic and nuclear spin embedded in a bis-(phthalocyaninato) terbium (III) complex (TbPc2). A spin-valve signature with large conductance jumps was found when two molecules were strongly coupled to the nanotube. The application of a transverse field separated the magnetic signal of both molecules and enabled single-shot read-out of the terbium nuclear spin. The Landau-Zener (LZ) quantum tunneling probability was studied as a function of field sweep rate, establishing a good agreement with the LZ equation and yielding the tunnel splitting Δ. It was found that Δ increased linearly as a function of the transverse field. These studies are an essential prerequisite for the coherent manipulation of a single nuclear spin in TbPc2.

  18. Implementation of Dynamically Corrected Gates on a Single Electron Spin in Diamond

    Science.gov (United States)

    Rong, Xing; Geng, Jianpei; Wang, Zixiang; Zhang, Qi; Ju, Chenyong; Shi, Fazhan; Duan, Chang-Kui; Du, Jiangfeng

    2014-02-01

    Precise control of an open quantum system is critical to quantum information processing but is challenging due to inevitable interactions between the quantum system and the environment. We demonstrated experimentally a type of dynamically corrected gates using only bounded-strength pulses on the nitrogen-vacancy centers in diamond. The infidelity of quantum gates caused by a nuclear-spin bath is reduced from being the second order to the sixth order of the noise-to-control-field ratio, which offers greater efficiency in reducing infidelity. The quantum gates have been protected to the limit essentially set by the spin-lattice relaxation time T1. Our work marks an important step towards fault-tolerant quantum computation in realistic systems.

  19. Quantum electronics. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit.

    Science.gov (United States)

    Kolkowitz, S; Safira, A; High, A A; Devlin, R C; Choi, S; Unterreithmeier, Q P; Patterson, D; Zibrov, A S; Manucharyan, V E; Park, H; Lukin, M D

    2015-03-06

    Thermally induced electrical currents, known as Johnson noise, cause fluctuating electric and magnetic fields in proximity to a conductor. These fluctuations are intrinsically related to the conductivity of the metal. We use single-spin qubits associated with nitrogen-vacancy centers in diamond to probe Johnson noise in the vicinity of conductive silver films. Measurements of polycrystalline silver films over a range of distances (20 to 200 nanometers) and temperatures (10 to 300 kelvin) are consistent with the classically expected behavior of the magnetic fluctuations. However, we find that Johnson noise is markedly suppressed next to single-crystal films, indicative of a substantial deviation from Ohm's law at length scales below the electron mean free path. Our results are consistent with a generalized model that accounts for the ballistic motion of electrons in the metal, indicating that under the appropriate conditions, nearby electrodes may be used for controlling nanoscale optoelectronic, atomic, and solid-state quantum systems. Copyright © 2015, American Association for the Advancement of Science.

  20. Scaling of dynamical decoupling for a single electron spin in nanodiamonds at room temperature

    International Nuclear Information System (INIS)

    Liu, Dong-Qi; Liu, Gang-Qin; Chang, Yan-Chun; Pan, Xin-Yu

    2014-01-01

    Overcoming the spin qubit decoherence is a challenge for quantum science and technology. We investigate the decoherence process in nanodiamonds by Carr–Purcell–Meiboom–Gill (CPMG) technique at room temperature. We find that the coherence time T 2 scales as n γ . The elongation effect of coherence time can be represented by a constant power of the number of pulses n. Considering the filter function of CPMG decoupling sequence as a δ function, the spectrum density of noise has been reconstructed directly from the coherence time measurements and a Lorentzian noise power spectrum model agrees well with the experiment. These results are helpful for the application of nanodiamonds to nanoscale magnetic imaging

  1. Scaling of dynamical decoupling for a single electron spin in nanodiamonds at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong-Qi; Liu, Gang-Qin; Chang, Yan-Chun; Pan, Xin-Yu, E-mail: xypan@aphy.iphy.ac.cn

    2014-01-01

    Overcoming the spin qubit decoherence is a challenge for quantum science and technology. We investigate the decoherence process in nanodiamonds by Carr–Purcell–Meiboom–Gill (CPMG) technique at room temperature. We find that the coherence time T{sub 2} scales as n{sup γ}. The elongation effect of coherence time can be represented by a constant power of the number of pulses n. Considering the filter function of CPMG decoupling sequence as a δ function, the spectrum density of noise has been reconstructed directly from the coherence time measurements and a Lorentzian noise power spectrum model agrees well with the experiment. These results are helpful for the application of nanodiamonds to nanoscale magnetic imaging.

  2. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    ., Nuruzzaman [Hampton Univ., Hampton, VA (United States)

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system

  3. Large Mn25 single-molecule magnet with spin S = 51/2: magnetic and high-frequency electron paramagnetic resonance spectroscopic characterization of a giant spin state.

    Science.gov (United States)

    Murugesu, Muralee; Takahashi, Susumu; Wilson, Anthony; Abboud, Khalil A; Wernsdorfer, Wolfgang; Hill, Stephen; Christou, George

    2008-10-20

    The synthesis and structural, spectroscopic, and magnetic characterization of a Mn25 coordination cluster with a large ground-state spin of S = 51/2 are reported. Reaction of MnCl2 with pyridine-2,6-dimethanol (pdmH2) and NaN3 in MeCN/MeOH gives the mixed valence cluster [Mn25O18(OH)2(N3)12(pdm)6(pdmH)6]Cl2 (1; 6Mn(II), 18Mn(III), Mn(IV)), which has a barrel-like cage structure. Variable temperature direct current (dc) magnetic susceptibility data were collected in the 1.8-300 K temperature range in a 0.1 T field. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-7 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 51/2, D = -0.020(2) cm(-1), and g = 1.87(3), where D is the axial zero-field splitting parameter. Alternating current (ac) susceptibility measurements in the 1.8-8.0 K range and a 3.5 G ac field oscillating at frequencies in the 50-1500 Hz range revealed a frequency-dependent out-of-phase (chi(M)'') signal below 3 K, suggesting 1 to be a single-molecule magnet (SMM). This was confirmed by magnetization vs dc field sweeps, which exhibited hysteresis loops but with no clear steps characteristic of resonant quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot, and the fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 12 K, where U(eff) is the effective relaxation barrier. The g value and the magnitude and sign of the D value were independently confirmed by detailed high-frequency electron paramagnetic resonance (HFEPR) spectroscopy on polycrystalline samples. The combined studies confirm both the high ground-state spin S = 51/2 of complex 1 and that it is a SMM that, in addition, exhibits QTM.

  4. Single-electron regime and Pauli spin blockade in a silicon metal-oxide-semiconductor double quantum dot

    Science.gov (United States)

    Rochette, Sophie; Ten Eyck, Gregory A.; Pluym, Tammy; Lilly, Michael P.; Carroll, Malcolm S.; Pioro-Ladrière, Michel

    2015-03-01

    Silicon quantum dots are promising candidates for quantum information processing as spin qubits with long coherence time. We present electrical transport measurements on a silicon metal-oxide-semiconductor (MOS) double quantum dot (DQD). First, Coulomb diamonds measurements demonstrate the one-electron regime at a relatively high temperature of 1.5 K. Then, the 8 mK stability diagram shows Pauli spin blockade with a large singlet-triplet separation of approximatively 0.40 meV, pointing towards a strong lifting of the valley degeneracy. Finally, numerical simulations indicate that by integrating a micro-magnet to those devices, we could achieve fast spin rotations of the order of 30 ns. Those results are part of the recent body of work demonstrating the potential of Si MOS DQD as reliable and long-lived spin qubits that could be ultimately integrated into modern electronic facilities. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  5. Microresonators for electron spin qubits

    International Nuclear Information System (INIS)

    Suter, D.; Stonies, R.; Voges, E.

    2005-01-01

    Full text: The traditional high-Q EPR resonators are optimized for large samples. For small samples and individual qubits, it is possible to design different resonators that have much better power handling properties, create less interference with other peripheral lines and, if they are used for detection, have better sensitivity. Other parameters being equal, the sensitivity of the resonator can be increased by minimizing its size and thus increasing the filling factor. In contrast to cavity type resonators, microcoils can be made much smaller than the operation wavelength. For this type of resonator, it has been established theoretically and experimentally that the sensitivity varies inversely with its linear dimensions. Moreover, the planar coil geometry is ideal to be manufactured in a small size by means of standard microtechnology. It also offers advantages for the excitation of electron spins in prototype quantum computer systems. High microwave power to the magnetic field conversion factor of the microresonator allows to achieve 24 ns L/2 - pulses with less than 20 mW of incident power. Within the QIPDDF-ROSES project, we are using such resonators to measure the EPR parameters of monolayer molecular films of N at C60 and for excitation of the single electron spin in a defect center in diamond. The microresonator prototypes consisting of a 200 μm planar microcoil tuned and matched at 14 GHz with distributed elements have been fabricated on Si substrate. The sensitivity tests with a DPPH samples resulted in the sensitivity value 10E9 spins/G/Hz1/2 at 300 K. The designed layouts of the microresonator can be scaled down up to a tens of micrometers, and with a different microwave coupling approach hundreds of nanometers could be achieved, allowing the operation frequency up to 100 THz (author)

  6. Electron Spin Resonance study of charge trapping in α-ZnMoO.sub.4./sub. single crystal scintillator

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Spassky, D.A.; Hybler, Jiří; Laguta, Valentyn; Nikl, Martin

    2015-01-01

    Roč. 47, Sep (2015), 244-250 ISSN 0925- 3467 R&D Projects: GA MŠk LO1409; GA MŠk(CZ) LM2011029; GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : Electron Spin Resonance * scintillator * charge traps * zinc molybdate Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2015

  7. Electron spin and nuclear spin manipulation in semiconductor nanosystems

    International Nuclear Information System (INIS)

    Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi

    2006-01-01

    Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Three-electron spin qubits

    Science.gov (United States)

    Russ, Maximilian; Burkard, Guido

    2017-10-01

    The goal of this article is to review the progress of three-electron spin qubits from their inception to the state of the art. We direct the main focus towards the exchange-only qubit (Bacon et al 2000 Phys. Rev. Lett. 85 1758-61, DiVincenzo et al 2000 Nature 408 339) and its derived versions, e.g. the resonant exchange (RX) qubit, but we also discuss other qubit implementations using three electron spins. For each three-spin qubit we describe the qubit model, the envisioned physical realization, the implementations of single-qubit operations, as well as the read-out and initialization schemes. Two-qubit gates and decoherence properties are discussed for the RX qubit and the exchange-only qubit, thereby completing the list of requirements for quantum computation for a viable candidate qubit implementation. We start by describing the full system of three electrons in a triple quantum dot, then discuss the charge-stability diagram, restricting ourselves to the relevant subsystem, introduce the qubit states, and discuss important transitions to other charge states (Russ et al 2016 Phys. Rev. B 94 165411). Introducing the various qubit implementations, we begin with the exchange-only qubit (DiVincenzo et al 2000 Nature 408 339, Laird et al 2010 Phys. Rev. B 82 075403), followed by the RX qubit (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502), the spin-charge qubit (Kyriakidis and Burkard 2007 Phys. Rev. B 75 115324), and the hybrid qubit (Shi et al 2012 Phys. Rev. Lett. 108 140503, Koh et al 2012 Phys. Rev. Lett. 109 250503, Cao et al 2016 Phys. Rev. Lett. 116 086801, Thorgrimsson et al 2016 arXiv:1611.04945). The main focus will be on the exchange-only qubit and its modification, the RX qubit, whose single-qubit operations are realized by driving the qubit at its resonant frequency in the microwave range similar to electron spin resonance. Two different types of two-qubit operations are presented for the exchange

  9. Theoretical study of one-electron bonds in a series of high-spin lithium-beryllium-hydrogen clusters: ?Valence shell single-electron repulsion? rule and electron localization function analysis

    Science.gov (United States)

    Chaquin, Patrick; Chevreau, Hilaire

    A series of high-spin clusters containing Li, H, and Be in which the valence shell molecular orbitals (MOs) are occupied by a single electron has been characterized using ab initio and density functional theory (DFT) calculations. A first type (5Li2, n+1LiHn+ (n = 2-5), 8Li2H6+) possesses only one electron pair in the lowest MO, with bond energies of ?3 kcal/mol. In a second type, all the MOs are singly occupied, which results in highly excited species that nevertheless constitute a marked minimum on their potential energy surface (PES). Thus, it is possible to design a larger panel of structures (8LiBe, 7Li2, 8Li2-, 4LiH+, 6BeH2+, n+3LiHn+ (n = 3, 4), n+2LiHn2+ (n = 4-6), 8Li2H2+, 9Li2H42+, 22Li3Be3 and 22Li6H63+), single-electron equivalent to doublet ?classical? molecules ranging from CO to C6H6. The geometrical structure is studied in relation to the valence shell single-electron repulsion (VSEPR) theory and the electron localization function (ELF) is analyzed, revealing a striking similarity with the corresponding structure having paired electrons.

  10. Resonance fluorescence and electron spin in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Zhao, Yong

    2009-01-01

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  11. Resonance fluorescence and electron spin in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong

    2009-11-18

    The work presented in this dissertation contains the first observation of spin-resolved resonance fluorescence from a single quantum dot and its application of direct measurement of electron spin dynamics. The Mollow triplet and the Mollow quintuplet, which are the hallmarks of resonance fluorescence, are presented as the non-spin-resolved and spin-resolved resonance fluorescence spectrum, respectively. The negligible laser background contribution, the near pure radiative broadened spectrum and the anti-bunching photon statistics imply the sideband photons are background-free and near transform-limited single photons. This demonstration is a promising step towards the heralded single photon generation and electron spin readout. Instead of resolving spectrum, an alternative spin-readout scheme by counting resonance fluorescence photons under moderate laser power is demonstrated. The measurements of n-shot time-resolved resonance fluorescence readout are carried out to reveal electron spin dynamics of the measurement induced back action and the spin relaxation. Hyperfine interaction and heavy-light hole mixing are identified as the relevant mechanisms for the back action and phonon-assistant spin-orbit interaction dominates the spin relaxation. After a detailed discussion on charge-spin configurations in coupled quantum dots system, the single-shot readout on electron spin are proposed. (orig.)

  12. Autonomous calibration of single spin qubit operations

    Science.gov (United States)

    Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor

    2017-12-01

    Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.

  13. Spin polarized electron tunneling and magnetoresistance in molecular junctions.

    Science.gov (United States)

    Szulczewski, Greg

    2012-01-01

    This chapter reviews tunneling of spin-polarized electrons through molecules positioned between ferromagnetic electrodes, which gives rise to tunneling magnetoresistance. Such measurements yield important insight into the factors governing spin-polarized electron injection into organic semiconductors, thereby offering the possibility to manipulate the quantum-mechanical spin degrees of freedom for charge carriers in optical/electrical devices. In the first section of the chapter a brief description of the Jullière model of spin-dependent electron tunneling is reviewed. Next, a brief description of device fabrication and characterization is presented. The bulk of the review highlights experimental studies on spin-polarized electron tunneling and magnetoresistance in molecular junctions. In addition, some experiments describing spin-polarized scanning tunneling microscopy/spectroscopy on single molecules are mentioned. Finally, some general conclusions and prospectus on the impact of spin-polarized tunneling in molecular junctions are offered.

  14. Experimental Implementation of High-Fidelity Single-Qubit Gates for Two-Electron Spin Qubits in GaAs

    Science.gov (United States)

    Cerfontaine, Pascal; Botzem, Tim; Bluhm, Hendrik

    2015-03-01

    High fidelity gate operations for manipulating individual and multiple qubits in the presence of decoherence are a prerequisite for fault-tolerant quantum information processing. However, the control methods used in earlier experiments on GaAs two-electron spin qubits are based on unrealistic approximations which preclude reaching the required fidelities. An attractive remedy is to use control pulses found in numerical simulations that minimize the infidelity from decoherence and take the experimentally important imperfections and constraints into account. We show that the experimental implementation of these numerically optimized control pulses is possible by using a self-consistent calibration routine we proposed earlier. In our experiment this calibration routine succeeds in removing systematic gate errors to a high degree without increasing the pulses' decoherence. We extract the Bloch sphere trajectories of the resulting gate sequences using self-consistent state tomography and find good agreement with the theoretically predicted trajectories. Furthermore, we prepare different states using these gates and determine their fidelities. Alfried Krupp von Bohlen und Halbach - Foundation, Deutsche Telekom Foundation.

  15. Spin storage in quantum dot ensembles and single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Dominik

    2009-10-15

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T{sub 1}=20 ms at B=4 T and T=1 K. A strong magnetic field dependence T{sub 1}{proportional_to}B{sup -5} has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T{sub 1}{proportional_to}T{sup -1}. The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T{sub 1}{sup h

  16. Spin storage in quantum dot ensembles and single quantum dots

    International Nuclear Information System (INIS)

    Heiss, Dominik

    2009-01-01

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T 1 =20 ms at B=4 T and T=1 K. A strong magnetic field dependence T 1 ∝B -5 has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T 1 ∝T -1 . The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T 1 h in the microsecond range, therefore, comparable with

  17. All-electric-controlled spin current switching in single-molecule magnet-tunnel junctions

    Science.gov (United States)

    Zhang, Zheng-Zhong; Shen, Rui; Sheng, Li; Wang, Rui-Qiang; Wang, Bai-Gen; Xing, Ding-Yu

    2011-04-01

    A single-molecule magnet (SMM) coupled to two normal metallic electrodes can both switch spin-up and spin-down electronic currents within two different windows of SMM gate voltage. Such spin current switching in the SMM tunnel junction arises from spin-selected single electron resonant tunneling via the lowest unoccupied molecular orbit of the SMM. Since it is not magnetically controlled but all-electrically controlled, the proposed spin current switching effect may have potential applications in future spintronics.

  18. Electron Spin Dynamics in Semiconductor Quantum Dots

    International Nuclear Information System (INIS)

    Marie, X.; Belhadj, T.; Urbaszek, B.; Amand, T.; Krebs, O.; Lemaitre, A.; Voisin, P.

    2011-01-01

    An electron spin confined to a semiconductor quantum dot is not subject to the classical spin relaxation mechanisms known for free carriers but it strongly interacts with the nuclear spin system via the hyperfine interaction. We show in time resolved photoluminescence spectroscopy experiments on ensembles of self assembled InAs quantum dots in GaAs that this interaction leads to strong electron spin dephasing.

  19. Controlling electron quantum dot qubits by spin-orbit interactions

    International Nuclear Information System (INIS)

    Stano, P.

    2007-01-01

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)

  20. Controlling electron quantum dot qubits by spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Stano, P.

    2007-01-15

    Single electron confined in a quantum dot is studied. A special emphasis is laid on the spin properties and the influence of spin-orbit interactions on the system. The study is motivated by a perspective exploitation of the spin of the confined electron as a qubit, a basic building block of in a foreseen quantum computer. The electron is described using the single band effective mass approximation, with parameters typical for a lateral electrostatically defined quantum dot in a GaAs/AlGaAs heterostructure. The stemming data for the analysis are obtained by numerical methods of exact diagonalization, however, all important conclusions are explained analytically. The work focuses on three main areas -- electron spectrum, phonon induced relaxation and electrically and magnetically induced Rabi oscillations. It is shown, how spin-orbit interactions influence the energy spectrum, cause finite spin relaxation and allow for all-electrical manipulation of the spin qubit. Among the main results is the discovery of easy passages, where the spin relaxation is unusually slow and the qubit is protected against parasitic electrical fields connected with manipulation by resonant electromagnetic fields. The results provide direct guide for manufacturing quantum dots with much improved properties, suitable for realizing single electron spin qubits. (orig.)

  1. Spin-dependent structural, electronic and transport properties of armchair graphyne nanoribbons doped with single transition-metal atom, using DFT calculations

    Science.gov (United States)

    Golafrooz Shahri, S.; Roknabadi, M. R.; Radfar, R.

    2017-12-01

    In this present paper, the non-equilibrium Green function (NEGF) method along with the density functional theory (DFT) were used to investigate the effect of doping a single transition-metal atom on transport and electronic properties of armchair graphyne (γ-graphyne) nanoribbons. It can be deduced from the results that among the doped TM atoms, Mn and Fe cause stronger polarized currents comparing to Co and Ni. Mn-AGyNR represents the features of a half-semiconductor and behaves like a semiconductor in both up and down spin channels. On the other hand, Fe-AGyNR shows a great potential in spintronic applications due to its half-metal properties. Also our results show the promising application of armchair graphyne nanoribbons in nano-electrical devices.

  2. Single spin asymmetry for charm mesons

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez Zacarias, G. [PIMAyC, Eje Central Lazaro Cardenas No. 152, Apdo. Postal 14-805, D.F. (Mexico); Herrera, G.; Mercado, J. [Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, D.F. (Mexico)

    2007-08-15

    We study single spin asymmetries of D{sup 0} and D{sup -} mesons in polarized proton-proton collisions. A two component model is used to describe charm meson production. The production of D mesons occurs by recombination of the constituents present in the initial state as well as by fragmentation of quarks in the final state. This model has proved to describe the production of charm. The recombination component involves a mechanism of spin alignment that ends up in a single spin asymmetry. Experimental measurements of single spin asymmetry for pions at RHIC are compared with the model. Predictions for the asymmetry in D mesons are presented. (orig.)

  3. Single spin asymmetry for charm mesons

    International Nuclear Information System (INIS)

    Dominguez Zacarias, G.; Herrera, G.; Mercado, J.

    2007-01-01

    We study single spin asymmetries of D 0 and D - mesons in polarized proton-proton collisions. A two component model is used to describe charm meson production. The production of D mesons occurs by recombination of the constituents present in the initial state as well as by fragmentation of quarks in the final state. This model has proved to describe the production of charm. The recombination component involves a mechanism of spin alignment that ends up in a single spin asymmetry. Experimental measurements of single spin asymmetry for pions at RHIC are compared with the model. Predictions for the asymmetry in D mesons are presented. (orig.)

  4. Spin sensitivity of a channel electron multiplier

    International Nuclear Information System (INIS)

    Scholten, R.E.; McClelland, J.J.; Kelley, M.H.; Celotta, R.J.

    1988-01-01

    We report direct measurements of the sensitivity of a channel electron multiplier to electrons with different spin orientations. Four regions of the multiplier cone were examined using polarized electrons at 100-eV incident energy. Pulse counting and analog modes of operation were both investigated and in each case the observed spin effects were less than 0.5%

  5. Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Noiri, A. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yoneda, J.; Nakajima, T.; Otsuka, T.; Delbecq, M. R.; Takeda, K.; Tarucha, S. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama 351-0198 (Japan); Amaha, S.; Allison, G. [RIKEN, Center for Emergent Matter Science (CEMS), Wako-shi, Saitama 351-0198 (Japan); Ludwig, A.; Wieck, A. D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2016-04-11

    Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantum dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.

  6. Coherent manipulation of single spins in semiconductors.

    Science.gov (United States)

    Hanson, Ronald; Awschalom, David D

    2008-06-19

    During the past few years, researchers have gained unprecedented control over spins in the solid state. What was considered almost impossible a decade ago, in both conceptual and practical terms, is now a reality: single spins can be isolated, initialized, coherently manipulated and read out using both electrical and optical techniques. Progress has been made towards full control of the quantum states of single and coupled spins in a variety of semiconductors and nanostructures, and towards understanding the mechanisms through which spins lose coherence in these systems. These abilities will allow pioneering investigations of fundamental quantum-mechanical processes and provide pathways towards applications in quantum information processing.

  7. Observation of time-domain Rabi oscillations in the Landau-Zener regime with a single electronic spin.

    Science.gov (United States)

    Zhou, Jingwei; Huang, Pu; Zhang, Qi; Wang, Zixiang; Tan, Tian; Xu, Xiangkun; Shi, Fazhan; Rong, Xing; Ashhab, S; Du, Jiangfeng

    2014-01-10

    It is theoretically known that the quantum interference of a long sequence of Landau-Zener transitions can result in Rabi oscillations. Because of its stringent requirements, however, this phenomenon has never been experimentally observed in the time domain. Using a nitrogen-vacancy (NV) center spin in isotopically purified diamond, we observed the Rabi oscillations resulting from more than 100 Landau-Zener processes. Our results demonstrate favorable quantum controllability of NV centers, which could find applications in quantum metrology and quantum information processing.

  8. Electron spin-relaxation via vibronic level of nickel (I) and nickel (III) cyanide complexes in NaCl single crystals.

    Science.gov (United States)

    Vugman, N V; de Araújo, M B; Pinhal, N M; Magon, C J; da Costa Filho, A J

    2004-05-01

    Electron spin-lattice relaxation rates for the low spin [Ni(CN)(4)](1-) and [Ni(CN)(4)](3-) complexes in NaCl host lattice were measured by the inversion recovery technique in the temperature range 7-50K. The data for both paramagnetic species fit very well to a relaxation process involving localized anharmonic vibration modes, also responsible for the g-tensor temperature dependence.

  9. NV-NV electron-electron spin and NV-N S electron - electron and electron-nuclear spin interaction in diamond

    Science.gov (United States)

    Armstrong, Seiji; Rogers, Lachlan J.; McMurtrie, Roger L.; Manson, Neil B.

    2010-02-01

    Features associated with the cross relaxation between spin of the ground electric state of the nitrogen vacancy centre (NV) and other impurity spins, mainly substitutional nitrogen, NS, are observed as changes of the emission intensity as a function of external magnetic field. The features are attributed to NV-NV electron-electron spin interaction, NV- NS electron-nuclear spin interaction and NV electron spin interaction with simultaneous change of an NS electron and nuclear spin change.

  10. Engineering the spin polarization of one-dimensional electrons

    Science.gov (United States)

    Yan, C.; Kumar, S.; Thomas, K.; See, P.; Farrer, I.; Ritchie, D.; Griffiths, J.; Jones, G.; Pepper, M.

    2018-02-01

    We present results of magneto-focusing on the controlled monitoring of spin polarization within a one-dimensional (1D) channel, and its subsequent effect on modulating the spin–orbit interaction (SOI) in a 2D GaAs electron gas. We demonstrate that electrons within a 1D channel can be partially spin polarized as the effective length of the 1D channel is varied in agreement with the theoretical prediction. Such polarized 1D electrons when injected into a 2D region result in a split in the odd-focusing peaks, whereas the even peaks remain unaffected (single peak). On the other hand, the unpolarized electrons do not affect the focusing spectrum and the odd and even peaks remain as single peaks, respectively. The split in odd-focusing peaks is evidence of direct measurement of spin polarization within a 1D channel, where each sub-peak represents the population of a particular spin state. Confirmation of the spin splitting is determined by a selective modulation of the focusing peaks due to the Zeeman energy in the presence of an in-plane magnetic field. We suggest that the SOI in the 2D regime is enhanced by a stream of polarized 1D electrons. The spatial control of spin states of injected 1D electrons and the possibility of tuning the SOI may open up a new regime of spin-engineering with application in future quantum information schemes.

  11. Spin-resolved electron waiting times in a quantum-dot spin valve

    Science.gov (United States)

    Tang, Gaomin; Xu, Fuming; Mi, Shuo; Wang, Jian

    2018-04-01

    We study the electronic waiting-time distributions (WTDs) in a noninteracting quantum-dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using the scattering matrix approach. Since the quantum-dot spin valve involves two channels (spin up and down) in both the incoming and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved single-channel WTD, and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two spin channels and can be used to characterize the spin-transfer torque process. We study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel WTDs and first-passage time distributions to quantitatively characterize the spin-flip process. We observe that influence degree versus spin-transfer torque for different noncollinear angles as well as different polarizations collapse into a single curve showing universal behaviors. This demonstrates that cross-channel WTDs can be a pathway to characterize spin correlation in spintronics system.

  12. Tunneling spin injection into single layer graphene.

    Science.gov (United States)

    Han, Wei; Pi, K; McCreary, K M; Li, Yan; Wong, Jared J I; Swartz, A G; Kawakami, R K

    2010-10-15

    We achieve tunneling spin injection from Co into single layer graphene (SLG) using TiO₂ seeded MgO barriers. A nonlocal magnetoresistance (ΔR(NL)) of 130  Ω is observed at room temperature, which is the largest value observed in any material. Investigating ΔR(NL) vs SLG conductivity from the transparent to the tunneling contact regimes demonstrates the contrasting behaviors predicted by the drift-diffusion theory of spin transport. Furthermore, tunnel barriers reduce the contact-induced spin relaxation and are therefore important for future investigations of spin relaxation in graphene.

  13. Spin valve effect in single-atom contacts

    International Nuclear Information System (INIS)

    Ziegler, M; Neel, N; Berndt, R; Lazo, C; Ferriani, P; Heinze, S; Kroeger, J

    2011-01-01

    Magnetic single-atom contacts have been controllably fabricated with a scanning tunnelling microscope. A voltage-dependent spin valve effect with conductance variations of ∼40% is reproducibly observed from contacts comprising a Cr-covered tip and Co and Cr atoms on ferromagnetic nanoscale islands on W(110) with opposite magnetization. The spin-dependent conductances are interpreted from first-principles calculations in terms of the orbital character of the relevant electronic states of the junction.

  14. Electron Spin Resonance of Single Crystals of Cystine Dihydrochloride Irradiated with Monochromatic UV Radiation at Various Wavelenghts

    DEFF Research Database (Denmark)

    Lund-Thomsen, E.; Nielsen, S. O.

    1972-01-01

    Single crystals of cystine dihydrochloride were irradiated at room temperature with monochromatic uv radiation. The optical bandwidth was about 20 Å for each wavelength used. Essentially two ESR centers were observed, the relative yield being approximately 1. One center is identified as the RS...

  15. Structure of radical pairs in irradiated single crystal of n-eicosane as studied by electron spin resonance

    International Nuclear Information System (INIS)

    Fujimura, T.; Tamura, N.

    1976-01-01

    The ESR spectra of a single crystal of n-eicosane have been analyzed. The angular dependence of the fine splitting in ΔM/sub s/=1 spectra reveals that several different radical pairs are produced in the single crystal of n-eicosane irradiated at 77 0 K. Five different pairs are clearly identified; they are interchain type. Among these five radical pairs four species are produced in the adjacent chains aligned along the b axis; their interspin distances are 4.42, 4.54, 5.22, and 5.33 A. One other is produced in the chains along the a axis and has the interspin distance of 4.25 A. The presence of the intrachain radical pairs (biradical) is also suggested. The structure of radical pair found in n-eicosane was compared with that found in oriented polyethylene

  16. Persistent spin helices in 2D electron systems

    Science.gov (United States)

    Kozulin, A. S.; Malyshev, A. I.; Konakov, A. A.

    2017-03-01

    We present a theoretical investigation of persistent spin helices in two-dimensional electron systems with spin-orbit coupling. For this purpose, we consider a single-particle effective mass Hamiltonian with a generalized linear-in- k spin-orbit coupling term corresponding to a quantum well grown in an arbitrary crystallographic direction, and derive the general condition for the formation of the persistent spin helix. This condition applied for the Hamiltonians describing quantum wells with different growth directions indicates the possibility of existence of the persistent spin helix in a wide class of 2D systems apart from the [001] model with equal Rashba and Dresselhaus spin-orbit coupling strengths and the [110] Dresselhaus model.

  17. Quantum Computing with an Electron Spin Ensemble

    DEFF Research Database (Denmark)

    Wesenberg, Janus; Ardavan, A.; Briggs, G.A.D.

    2009-01-01

    We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized...

  18. Spin-Spin Cross Relaxation in Single-Molecule Magnets

    Science.gov (United States)

    Wernsdorfer, W.; Bhaduri, S.; Tiron, R.; Hendrickson, D. N.; Christou, G.

    2002-10-01

    The one-body tunnel picture of single-molecule magnets (SMMs) is not always sufficient to explain the measured tunnel transitions. An improvement to the picture is proposed by including also two-body tunnel transitions such as spin-spin cross relaxation (SSCR) which are mediated by dipolar and weak superexchange interactions between molecules. A Mn4 SMM is used as a model system. At certain external fields, SSCRs lead to additional quantum resonances which show up in hysteresis loop measurements as well-defined steps. A simple model is used to explain quantitatively all observed transitions.

  19. Spin precession and spin waves in a chiral electron gas: Beyond Larmor's theorem

    Science.gov (United States)

    Karimi, Shahrzad; Baboux, Florent; Perez, Florent; Ullrich, Carsten A.; Karczewski, Grzegorz; Wojtowicz, Tomasz

    2017-07-01

    Larmor's theorem holds for magnetic systems that are invariant under spin rotation. In the presence of spin-orbit coupling this invariance is lost and Larmor's theorem is broken: for systems of interacting electrons, this gives rise to a subtle interplay between the spin-orbit coupling acting on individual single-particle states and Coulomb many-body effects. We consider a quasi-two-dimensional, partially spin-polarized electron gas in a semiconductor quantum well in the presence of Rashba and Dresselhaus spin-orbit coupling. Using a linear-response approach based on time-dependent density-functional theory, we calculate the dispersions of spin-flip waves. We obtain analytic results for small wave vectors and up to second order in the Rashba and Dresselhaus coupling strengths α and β . Comparison with experimental data from inelastic light scattering allows us to extract α and β as well as the spin-wave stiffness very accurately. We find significant deviations from the local density approximation for spin-dependent electron systems.

  20. Theoretical foundations of electron spin resonance

    CERN Document Server

    Harriman, John E

    2013-01-01

    Theoretical Foundations of Electron Spin Resonance deals with the theoretical approach to electron paramagnetic resonance. The book discusses electron spin resonance in applications related to polyatomic, probably organic, free radicals in condensed phases. The book also focuses on essentially static phenomena, that is, the description and determination of stationary-state energy levels. The author reviews the Dirac theory of the electron in which a four-component wave function is responsible for the behavior of the electron. The author then connects this theory with the nonrelativistic wave f

  1. Single Electron Tunneling

    International Nuclear Information System (INIS)

    Ruggiero, Steven T.

    2005-01-01

    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors that add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have

  2. Single- and double-island ferromagnetic single-electron transistors

    International Nuclear Information System (INIS)

    Barnas, J.; Weymann, I.; Wisniewska, J.; Kowalik, M.; Kunert, H.W.

    2006-01-01

    Electronic transport in a ferromagnetic single-electron transistor has been considered theoretically in the sequential tunneling regime. The device consists of two external leads and one or two islands as the central part, connected to the leads by tunneling barriers. External gates are additionally attached to the islands. Generally, the two external electrodes and the islands can be ferromagnetic with arbitrary orientation of the corresponding magnetic moments. We have carried out detailed theoretical analysis of the current-voltage characteristics and spin-valve magnetoresistance in the limit of fast spin relaxation on the islands. Asymmetry in tunneling probabilities of spin-majority and spin-minority electrons leads to interesting features in the transport characteristics, like for instance magnetoresistance oscillations with the bias and gate voltages, negative differential resistance, and others

  3. Spin polarized Auger electron spectroscopy of Fe and Ni

    Science.gov (United States)

    Anilturk, O. S.; Koymen, A. R.

    2001-06-01

    Surface sensitive experiments, in which the spin-polarized electrons are involved, play an important role for magnetic characterization, since the spin-polarized electrons are fingerprints for the local magnetization. Scanning electron microscope with polarization analysis (SEMPA) is one of the most powerful tools to investigate the surface magnetic domain structure of magnetic materials. On the other hand, at energies high enough to generate a two-hole final state arising from Auger transitions, it is possible to observe the spin polarization of the Auger electrons. These electrons reveal element-specific local magnetic information, particularly valuable for surface magnetic studies with composite systems. By using the uniqueness of the UTA-SEMPA tool, one can obtain the magnetic domain picture and also perform spin-polarized Auger electron spectroscopy studies by probing a single domain at the surface. In this study, precisely knowing the probed domain, spin polarization of electrons from super Coster-Kronig MMM Auger emissions on Fe and Ni samples have been investigated. The polarization enhancement above the 3p(M23) threshold is observed on both samples.

  4. Spin polarized Auger electron spectroscopy of Fe and Ni

    International Nuclear Information System (INIS)

    Anilturk, O. S.; Koymen, A. R.

    2001-01-01

    Surface sensitive experiments, in which the spin-polarized electrons are involved, play an important role for magnetic characterization, since the spin-polarized electrons are fingerprints for the local magnetization. Scanning electron microscope with polarization analysis (SEMPA) is one of the most powerful tools to investigate the surface magnetic domain structure of magnetic materials. On the other hand, at energies high enough to generate a two-hole final state arising from Auger transitions, it is possible to observe the spin polarization of the Auger electrons. These electrons reveal element-specific local magnetic information, particularly valuable for surface magnetic studies with composite systems. By using the uniqueness of the UTA-SEMPA tool, one can obtain the magnetic domain picture and also perform spin-polarized Auger electron spectroscopy studies by probing a single domain at the surface. In this study, precisely knowing the probed domain, spin polarization of electrons from super Coster - Kronig MMM Auger emissions on Fe and Ni samples have been investigated. The polarization enhancement above the 3p(M 23 ) threshold is observed on both samples. [copyright] 2001 American Institute of Physics

  5. Quantum mechanical calculation of electron spin

    Science.gov (United States)

    Zhao, Hai-Long

    2017-11-01

    The classical and quantum mechanical methods are used respectively to calculate the electron spin. It is shown that the classical method cannot derive the correct magnetic moment value. Assuming that the rest energy of the electron originates from the kinetic energy of the virtual particles, the electron spin motion equation and spin wave function can be derived. In the case of the quantum numbers of spin angular momentum and magnetic moment being 1/2 and 1 respectively, their correct values can be obtained. In the meanwhile, the anomalous magnetic moment is evaluated based on the wave function of the spinning electron. Suppose the probability of virtual photons converting into electron-positron pairs to be 0.00141, the result agrees with that of quantum electrodynamics. Given that the energy of the virtual photon obeys the classical Maxwell-Boltzmann distribution, the self-energy of the electron will be finite. In addition, the hierarchy problem can be solved with the same hypothesis.

  6. Scheme for secure swapping two unknown states of a photonic qubit and an electron-spin qubit using simultaneous quantum transmission and teleportation via quantum dots inside single-sided optical cavities

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jino [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Kang, Min-Sung [Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul, 136-791 (Korea, Republic of); Hong, Chang-Ho [National Security Research Institute, P.O.Box 1, Yuseong, Daejeon, 34188 (Korea, Republic of); Choi, Seong-Gon [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Hong, Jong-Phil, E-mail: jongph@cbnu.ac.kr [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of)

    2017-06-15

    We propose a scheme for swapping two unknown states of a photon and electron spin confined to a charged quantum dot (QD) between two users by transferring a single photon. This scheme simultaneously transfers and teleports an unknown state (electron spin) between two users. For this bidirectional quantum communication, we utilize the interactions between a photonic and an electron-spin qubits of a QD located inside a single-sided optical cavity. Thus, our proposal using QD-cavity systems can obtain a certain success probability with high fidelity. Furthermore, compared to a previous scheme using cross-Kerr nonlinearities and homodyne detections, our scheme (using QD-cavity systems) can improve the feasibility under the decoherence effect in practice. - Highlights: • Design of Simultaneous quantum transmission and teleportation scheme via quantum dots and cavities. • We have developed the experimental feasibility of this scheme compared with the existing scheme. • Analysis of some benefits when our scheme is experimentally implemented using quantum dots and single-sided cavities.

  7. Opto-electronics on Single Nanowire Quantum Dots

    OpenAIRE

    Van Kouwen, M.P.

    2010-01-01

    An important goal for nanoscale opto-electronics is the transfer of single electron spin states into single photon polarization states (and vice versa), thereby interfacing quantum transport and quantum optics. Such an interface enables new experiments in the field of quantum information processing. Single and entangled photon-pair generation can be used for quantum cryptography. Furthermore, photons can be used in the readout of a quantum computer based on electron spins. Semiconducting nano...

  8. Single electron transistor in pure silicon

    Science.gov (United States)

    Hu, Binhui

    As promising candidates for spin qubits, semiconductor quantum dots (QDs) have attracted tremendous research efforts. Currently most advanced progress is from GaAs QDs. Compared to GaAs, lateral QDs in 28silicon are expected to have a spin coherence time orders of magnitude longer, because 28Si has zero nuclear spin, and there is no hyperfine interaction between electron spins and nuclear spins. We have developed enhancement mode metal-oxide-semiconductor (MOS) single electron transistors (SETs) using pure silicon wafers with a bi-layer gated configuration. In an MOS-SET, the top gate is used to induce a two-dimensional electron gas (2DEG), just as in an MOS field effect transistor. The side gates deplete the 2DEG into a QD and two point contact channels; one connects the QD to the source reservoir, and the other connects the QD to the drain reservoir. We have systematically investigated the MOS-SETs at 4.2 K, and separately in a dilution refrigerator with a base temperature of 10 mK. The data show that there is an intrinsic QD in each point contact channel due to the local potential fluctuations in these SETs. However, after scaling down the SETs, we have found that the intrinsic QDs can be removed and the electrostatically defined dots dominate the device behavior, but these devices currently only work in the many-electron regime. In order to realize single electron confinement, it is necessary to continue scaling down the device and improving the interface quality. To explore the spin dynamics in silicon, we have investigated a single intrinsic QD by applying a magnetic field perpendicular to the sample surface. The magnetic field dependence of the ground-state and excited-state energy levels of the QD mostly can be explained by the Zeeman effect, with no obvious orbital effect up to 9 T. The two-electron singlet-triplet (ST) transition is first time directly observed in a silicon QD by excitation spectroscopy. In this ST transition, electron-electron Coulomb

  9. Spin polarisation with electron Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Schattschneider, P., E-mail: schattschneider@ifp.tuwien.ac.at [Institut für Festkörperphysik, Technische Universität Wien, A-1040 Wien (Austria); USTEM, Technische Universität Wien, A-1040 Wien (Austria); Grillo, V. [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM, Parco delle Scienze 37a, I-43100 Parma (Italy); Aubry, D. [Centrale Supelec, MSSMast CNRS 8579, F-92295 Châtenay-Malabry (France)

    2017-05-15

    The theoretical possibility to use an electron microscope as a spin polarizer is studied. It turns out that a Bessel beam passing a standard magnetic objective lens is intrinsically spin polarized when post-selected on-axis. In the limit of infinitely small detectors, the spin polarisation tends to 100 %. Increasing the detector size, the polarisation decreases rapidly, dropping below 10{sup −4} for standard settings of medium voltage microscopes. For extremely low voltages, the Figure of Merit increases by two orders of magnitude, approaching that of existing Mott detectors. Our findings may lead to new desings of spin filters, an attractive option in view of its inherent combination with the electron microscope, especially at low voltage. - Highlights: • TEM round magnetic lenses can act as spin polarizers when a Bessel beam is sent through. • This is found on theoretical grounds and demonstrated numerically for a few cases. • The effect is small, but can reach a Figure of Merit similar to existing Mott detectors. • This opens the possibility to construct nanometer-sized spin filters or detectors.

  10. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  11. Efficient spin-current injection in single-molecule magnet junctions

    Directory of Open Access Journals (Sweden)

    Haiqing Xie

    2018-01-01

    Full Text Available We study theoretically spin transport through a single-molecule magnet (SMM in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normal-metallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.

  12. Quantum control of single spins and single photons in diamond

    NARCIS (Netherlands)

    Van der Sar, T.

    2012-01-01

    This thesis describes a series of experiments on the control of the optical properties of the nitrogen-vacancy (NV) center in diamond, and on control of the electron and nuclear spin states associated with the NV center. The NV center is a fluorescing atomic defect center in diamond, consisting of a

  13. ''Spin off'' of solvated electron research

    International Nuclear Information System (INIS)

    Schindewolf, U.

    1973-01-01

    Spin-off of solvated electron research in two applied fields is discussed: isotope separation and the destruction of a dangerous poison. The application of isotope separation can be used in heavy water production. The other application is in the destruction of cyanide wastes. (U.S.)

  14. Detection and Control of Individual Nuclear Spins Using a Weakly Coupled Electron Spin

    NARCIS (Netherlands)

    Taminiau, T.H.; Wagenaar, J.J.T.; Van der Sar, T.; Jelezko, F.; Dobrovitski, V.V.; Hanson, R.

    2012-01-01

    We experimentally isolate, characterize, and coherently control up to six individual nuclear spins that are weakly coupled to an electron spin in diamond. Our method employs multipulse sequences on the electron spin that resonantly amplify the interaction with a selected nuclear spin and at the same

  15. Characteristics of trapped electrons and electron traps in single crystals

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Potienko, G.; Box, H.C.

    1979-01-01

    Two additional carbohydrates are reported whose crystal structures trap electrons intermolecularly in single crystals x irradiated at low temperature, namely sucrose and rhamnose. Five carbohydrate and polyhydroxy compounds are now known which exhibit this phenomenon. The following characteristics of the phenomenon were investigated: (1) the hyperfine couplings of the electron with protons of the polarized hydroxy groups forming the trap; (2) the distances between these protons and the trapped electron; (3) the spin density of the electron at the protons and (4) the relative stabilities of the electron trapped in various crystal structures

  16. Electron spin-lattice relaxation in fractals

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1986-08-01

    We have developed the theory of the spin-fracton interaction for paramagnetic ions in fractal structures. The interaction is exponentially damped by the self-similarity length of the fractal and by the range dimensionality d Φ . The relaxation time of the spin due to the absorption and emission of the fracton has been calculated for a general dimensionality called the Raman dimensionality d R , which for the fractons differs from the Hausdorff (fractal) dimensionality, D, as well as from the Euclidean dimensionality, d. The exponent of the energy level separation in the relaxation rate varies with d R d Φ /D. We have calculated the spin relaxation rate due to a new type of Raman process in which one fracton is absorbed to affect a spin transition from one electronic level to another and later another fracton is emitted along with a spin transition such that the difference in the energies of the two fractons is equal to the electronic energy level separation. The temperature and the dimensionality dependence of such a process has been found in several approximations. In one of the approximations where the van Vleck relaxation rate for a spin in a crystal is known to vary with temperature as T 9 , our calculated variation for fractals turns out to be T 6.6 , whereas the experimental value for Fe 3+ in frozen solutions of myoglobin azide is T 6.3 . Since we used d R =4/3 and the fracton range dimensionality d Φ =D/1.8, we expect to measure the dimensionalities of the problem by measuring the temperature dependence of the relaxation times. We have also calculated the shift of the paramagnetic resonance transition for a spin in a fractal for general dimensionalities. (author)

  17. Electron spin resonance in some Turkish coals

    Energy Technology Data Exchange (ETDEWEB)

    Korkmaz, M.; Ozbey, T. (Hacettepe University, Ankara (Turkey). Dept. of Physics)

    1991-06-01

    An electron spin resonance study of 12 Turkish coals in their raw state is presented. In almost all samples three main paramagnetic centres in the g{approximately} 4.3 and g{approximately}2.0 regions were observed. The g-values, linewidths, lineshapes and spin concentrations of the carbon free radicals were measured. While g-values fell, linewidths increased with increasing carbon content of the coals. Oxygen and sulphur contents played an important role in the determination of g-values. Linewidths and radical concentrations were found to increase with increasing hydrogen and carbon contents, respectively. 18 refs., 7 figs., 2 tabs.

  18. History of the emergence of the electron spin hypothesis

    International Nuclear Information System (INIS)

    Fu Haihui

    2002-01-01

    Electron spin is an important concept in atomic physics and quantum mechanics. The emergence and acceptance of the hypothesis of electron spin has a special place in history, and is reviewed here from three aspects

  19. Theory of inelastic electron tunneling from a localized spin in the impulsive approximation.

    Science.gov (United States)

    Persson, Mats

    2009-07-31

    A simple expression for the conductance steps in inelastic electron tunneling from spin excitations in a single magnetic atom adsorbed on a nonmagnetic metal surface is derived. The inelastic coupling between the tunneling electron and the spin is via the exchange coupling and is treated in an impulsive approximation using the Tersoff-Hamann approximation for the tunneling between the tip and the sample.

  20. Electron-Spin Filters Would Offer Spin Polarization Greater than 1

    Science.gov (United States)

    Ting, David Z.

    2009-01-01

    A proposal has been made to develop devices that would generate spin-polarized electron currents characterized by polarization ratios having magnitudes in excess of 1. Heretofore, such devices (denoted, variously, as spin injectors, spin polarizers, and spin filters) have typically offered polarization ratios having magnitudes in the approximate range of 0.01 to 0.1. The proposed devices could be useful as efficient sources of spin-polarized electron currents for research on spintronics and development of practical spintronic devices.

  1. Selectivity of alkyl radical formation from branched alkanes studied by electron spin resonance and electron spin echo spectroscopy

    International Nuclear Information System (INIS)

    Tsuneki, Ichikawa; Hiroshi, Yoshida

    1992-01-01

    Alkyl radicals generated from branched alkanes by γ radiation are being measuring by electron spin resonance and electron spin echo spectroscopy. This research is being conducted to determine the mechanism of selective alkyl radical formation in low-temperature solids

  2. Single-shot readout of multiple nuclear spin qubits in diamond under ambient conditions

    Science.gov (United States)

    Jacques, Vincent

    2013-03-01

    Nuclear spins are attractive candidates for solid-state quantum information storage and processing owing to their extremely long coherence time. However, since this appealing property results from a high level of isolation from the environment, it remains a challenging task to polarize, manipulate and readout with high fidelity individual nuclear spins. A promising approach to overcome this limitation consists in utilizing an ancillary single electronic spin to detect and control remote nuclear spins coupled by hyperfine interaction. In this talk, I will show how the electronic spin of a single Nitrogen-Vacancy (NV) defect in diamond can be used as a robust platform to observe the real-time evolution of surrounding single nuclear spins under ambient conditions. Using a diamond sample with a natural abundance of 13C isotopes, we first demonstrate high fidelity initialization and single-shot readout of an individual 13C nuclear spin. By including the intrinsic 14N nuclear spin of the NV defect in the quantum register, we then report the simultaneous observation of quantum jumps linked to both nuclear spin species, providing an efficient initialization of the two qubits. These results open up new avenues for diamond-based quantum information processing (QIP) including active feedback in quantum error correction protocols and tests of quantum correlations with solid-state single spins at room temperature.

  3. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  4. Electron spin resonance identification of irradiated fruits

    International Nuclear Information System (INIS)

    Raffi, J.J.; Agnel, J.-P.L.

    1989-01-01

    The electron spin resonance spectrum of achenes, pips, stalks and stones from irradiated fruits (stawberry, raspberry, red currant, bilberry, apple, pear, fig, french prune, kiwi, water-melon and cherry) always displays, just after γ-treatment, a weak triplet (a H ∼30 G) due to a cellulose radical; its left line (lower field) can be used as an identification test of irradiation, at least for strawberries, raspberries, red currants or bilberries irradiated in order to improve their storage time. (author)

  5. Single transverse spin asymmetry of forward neutrons

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan; Soffer, J.

    2011-01-01

    We calculate the single transverse spin asymmetry A N (t), for inclusive neutron production in pp collisions at forward rapidities relative to the polarized proton in the energy range of RHIC. Absorptive corrections to the pion pole generate a relative phase between the spin-flip and nonflip amplitudes, leading to a transverse spin asymmetry which is found to be far too small to explain the magnitude of A N observed in the PHENIX experiment. A larger contribution, which does not vanish at high energies, comes from the interference of pion and a 1 -Reggeon exchanges. The unnatural parity of a 1 guarantees a substantial phase shift, although the magnitude is strongly suppressed by the smallness of diffractive πp→a 1 p cross section. We replace the Regge a 1 pole by the Regge cut corresponding to the πρ exchange in the 1 + S state. The production of such a state, which we treat as an effective pole a, forms a narrow peak in the 3π invariant mass distribution in diffractive πp interactions. The cross section is large, so one can assume that this state saturates the spectral function of the axial current and we can determine its coupling to nucleons via the partially conserved axial-vector-current constraint Goldberger-Treiman relation and the second Weinberg sum rule. The numerical results of the parameter-free calculation of A N are in excellent agreement with the PHENIX data.

  6. Electron spin resonance and E.N.D.O.R. double resonance study of free radicals produced by gamma irradiation of imidazole single crystals

    International Nuclear Information System (INIS)

    Lamotte, B.

    1970-01-01

    Gamma irradiation of imidazole single crystals at 300 deg. K gives two radicals. Identification and detailed studies of their electronic and geometric structure have been made by ESR and ENDOR techniques. A study of the hydrogen bonded protons hyperfine tensor is made and let us conclude to the inexistence of movement and tunneling of these protons. The principal low temperature radical, produced by gamma irradiation at 77 deg. K has been also studied by ESR and a model has been proposed. (author) [fr

  7. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator

    DEFF Research Database (Denmark)

    Pályi, András; Struck, P R; Rudner, Mark

    2012-01-01

    We theoretically investigate the deflection-induced coupling of an electron spin to vibrational motion due to spin-orbit coupling in suspended carbon nanotube quantum dots. Our estimates indicate that, with current capabilities, a quantum dot with an odd number of electrons can serve....... The strong intrinsic spin-mechanical coupling allows for detection, as well as manipulation of the spin qubit, and may yield enhanced performance of nanotubes in sensing applications....

  8. Resonantly driven CNOT gate for electron spins

    Science.gov (United States)

    Zajac, D. M.; Sigillito, A. J.; Russ, M.; Borjans, F.; Taylor, J. M.; Burkard, G.; Petta, J. R.

    2018-01-01

    To build a universal quantum computer—the kind that can handle any computational task you throw at it—an essential early step is to demonstrate the so-called CNOT gate, which acts on two qubits. Zajac et al. built an efficient CNOT gate by using electron spin qubits in silicon quantum dots, an implementation that is especially appealing because of its compatibility with existing semiconductor-based electronics (see the Perspective by Schreiber and Bluhm). To showcase the potential, the authors used the gate to create an entangled quantum state called the Bell state.

  9. Observation of Quantum Jumps of a Single Quantum Dot Spin Using Submicrosecond Single-Shot Optical Readout

    Science.gov (United States)

    Delteil, Aymeric; Gao, Wei-bo; Fallahi, Parisa; Miguel-Sanchez, Javier; Imamoǧlu, Atac

    2014-03-01

    Single-shot readout of individual qubits is typically the slowest process among the elementary single- and two-qubit operations required for quantum information processing. Here, we use resonance fluorescence from a single-electron charged quantum dot to read out the spin-qubit state in 800 nanoseconds with a fidelity exceeding 80%. Observation of the spin evolution on longer time scales reveals quantum jumps of the spin state: we use the experimentally determined waiting-time distribution to characterize the quantum jumps.

  10. Single electron-ics with carbon nanotubes

    NARCIS (Netherlands)

    Götz, G.T.J.

    2010-01-01

    We experimentally investigate Quantum Dots, formed in Carbon Nanotubes. The first part of this thesis deals with charge sensing on such quantum dots. The charge sensor is a metallic Single-electron-transistor, sensitive to the charge of a single electron on the quantum dot. We use this technique for

  11. Opto-electronics on Single Nanowire Quantum Dots

    NARCIS (Netherlands)

    Van Kouwen, M.P.

    2010-01-01

    An important goal for nanoscale opto-electronics is the transfer of single electron spin states into single photon polarization states (and vice versa), thereby interfacing quantum transport and quantum optics. Such an interface enables new experiments in the field of quantum information processing.

  12. Proposed Coupling of an Electron Spin in a Semiconductor Quantum Dot to a Nanosize Optical Cavity

    DEFF Research Database (Denmark)

    Majumdar, Arka; Nielsen, Per Kær; Bajcsy, Michal

    2013-01-01

    We propose a scheme to efficiently couple a single quantum dot electron spin to an optical nano-cavity, which enables us to simultaneously benefit from a cavity as an efficient photonic interface, as well as to perform high fidelity (nearly 100%) spin initialization and manipulation achievable in...

  13. Measuring exchange interactions between atomic spins using electron spin resonance STM

    Science.gov (United States)

    Yang, Kai; Paul, William; Natterer, Fabian; Choi, Taeyoung; Heinrich, Andreas; Lutz, Christopher

    Exchange interactions between neighboring atoms give rise to magnetic order in magnetic materials. As the size of the electronic device is miniaturized toward the limit of single atoms, magnetic nanostructures such as coupled atomic dimers and clusters are explored more as prototypes for possible data storage, spintronics as well as quantum computing applications. Characterizing inter-atom exchange interactions calls for increasing spatial resolution and higher energy sensitivity to better understand this fundamental interaction. Here, using spin-polarized scanning tunneling microscopy (STM), we studied a magnetically coupled atomic dimer consisting of two 3d transition metal atoms, with one adsorbed on an insulating layer (MgO) and the other attached to the STM tip. We demonstrate the ability to measure the short-range exchange interaction between the two atomic spins with orders-of-magnitude variation ranging from milli-eV all the way to micro-eV. This is realized by the successful combination of inelastic electron tunneling spectroscopy (IETS) and electron spin resonance (ESR) techniques in STM implemented at different energy scales. We unambiguously confirm the exponential decay behavior of the direct exchange interaction.

  14. Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance.

    Science.gov (United States)

    Müllegger, Stefan; Tebi, Stefano; Das, Amal K; Schöfberger, Wolfgang; Faschinger, Felix; Koch, Reinhold

    2014-09-26

    We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.

  15. Efficient spin transitions in inelastic electron tunneling spectroscopy.

    Science.gov (United States)

    Lorente, Nicolás; Gauyacq, Jean-Pierre

    2009-10-23

    The excitation of the spin degrees of freedom of an adsorbed atom by tunneling electrons is computed using strong coupling theory. Recent measurements [Heinrich, Science 306, 466 (2004)] reveal that electron currents in a magnetic system efficiently excite its magnetic moments. Our theory shows that the incoming electron spin strongly couples with that of the adsorbate so that memory of the initial spin state is lost, leading to large excitation efficiencies. First-principles transmissions are evaluated in quantitative agreement with the experiment.

  16. Few electron quantum dot coupling to donor implanted electron spins

    Science.gov (United States)

    Rudolph, Martin; Harvey-Collard, Patrick; Neilson, Erik; Gamble, John; Muller, Richard; Jacobson, Toby; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm

    2015-03-01

    Donor-based Si qubits are receiving increased interest because of recent demonstrations of high fidelity electron or nuclear spin qubits and their coupling. Quantum dot (QD) mediated interactions between donors are of interest for future coupling of two donors. We present experiment and modeling of a polysilicon/Si MOS QD, charge-sensed by a neighboring many electron QD, capable of coupling to one or two donor implanted electron spins (D) while tuned to the few electron regime. The unique design employs two neighboring gated wire FETs and self-aligned implants, which supports many configurations of implanted donors. We can access the (0,1) ⇔(1,0) transition between the D and QD, as well as the resonance condition between the few electron QD and two donors ((0,N,1) ⇔(0,N +1,0) ⇔(1,N,0)). We characterize capacitances and tunnel rate behavior combined with semi-classical and full configuration interaction simulations to study the energy landscape and kinetics of D-QD transitions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  17. Spin thermoelectric effects in organic single-molecule devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Wang, M.X.; Qian, C.; Hong, X.K.; Zhang, D.B.; Liu, Y.S.; Yang, X.F., E-mail: xfyang@cslg.edu.cn

    2017-05-25

    Highlights: • A stronger spin thermoelectric performance in a polyacetylene device is observed. • For the antiferromagnetic (AFM) ordering, a transport gap is opened. Thus the thermoelectric effects are largely enhanced. - Abstract: The spin thermoelectric performance of a polyacetylene chain bridging two zigzag graphene nanoribbons (ZGNRs) is investigated based on first principles method. Two different edge spin arrangements in ZGNRs are considered. For ferromagnetic (FM) ordering, transmission eigenstates with different spin indices distributed below and above Fermi level are observed, leading directly to a strong spin thermoelectric effect in a wide temperature range. With the edge spins arranged in the antiferromagnetic (AFM) ordering, an obvious transport gap appears in the system, which greatly enhances the thermoelectric effects. The presence of a small spin splitting also induces a spin thermoelectric effect greater than the charge thermoelectric effect in certain temperature range. In general, the single-molecule junction exhibits the potential to be used for the design of perfect thermospin devices.

  18. Shot noise as a probe of spin-correlated transport through single atoms

    Science.gov (United States)

    Pradhan, S.; Fransson, J.

    2018-03-01

    We address the shot noise in the tunneling current through a local spin, pertaining to recent experiments on magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering processes contribute vitally to the noise spectrum. The spin-correlated scattering processes provide an additional contribution to the Landauer-Büttiker shot noise expression, accounting for correlations between the tunneling electrons and the localized spin moment. By calculating the Fano factor, we show that both super- and sub-Poissonian shot noise can be described within our approach. Our theory provides transparent insights into noise spectroscopy, consistent with recent experiments using local probing techniques on magnetic atoms.

  19. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement

    DEFF Research Database (Denmark)

    Fernholz, Thomas; Krauter, Hanna; Jensen, Kasper

    2008-01-01

    quantum limit for quantum memory experiments and applications in quantum metrology and is thus a complementary alternative to spin squeezing obtained via inter-atom entanglement. Squeezing of the collective spin is verified by quantum state tomography.......We demonstrate spin squeezing in a room temperature ensemble of 1012 Cesium atoms using their internal structure, where the necessary entanglement is created between nuclear and electronic spins of each individual atom. This state provides improvement in measurement sensitivity beyond the standard...

  20. Electronic spin transport in graphene field-effect transistors

    NARCIS (Netherlands)

    Popinciuc, M.; Jozsa, C.; Zomer, P. J.; Tombros, N.; Veligura, A.; Jonkman, H. T.; van Wees, B. J.

    2009-01-01

    Spin transport experiments in graphene, a single layer of carbon atoms ordered in a honeycomb lattice, indicate spin-relaxation times that are significantly shorter than the theoretical predictions. We investigate experimentally whether these short spin-relaxation times are due to extrinsic factors,

  1. Kinetic description of the oblique propagating spin-electron acoustic waves in degenerate plasmas

    Science.gov (United States)

    Andreev, Pavel A.

    2018-03-01

    An oblique propagation of the spin-electron acoustic waves in degenerate magnetized plasmas is considered in terms of quantum kinetics with the separate spin evolution, where the spin-up electrons and the spin-down electrons are considered as two different species with different equilibrium distributions. It is considered in the electrostatic limit. The corresponding dispersion equation is derived. Analysis of the dispersion equation is performed in the long-wavelength limit to find an approximate dispersion equation describing the spin-electron acoustic wave. The approximate dispersion equation is solved numerically. Real and imaginary parts of the spin-electron acoustic wave frequency are calculated for different values of the parameters describing the system. It is found that the increase in the angle between the direction of wave propagation and the external magnetic field reduces the real and imaginary parts of spin-electron acoustic wave frequency. The increase in the spin polarization decreases the real and imaginary parts of frequency either. The imaginary part of frequency has a nonmonotonic dependence on the wave vector which shows a single maximum. The imaginary part of frequency is small in comparison with the real part for all parameters in the area of applicability of the obtained dispersion equation.

  2. Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jan Felix

    2017-07-14

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  3. Electron spin resonance and spin-valley physics in a silicon double quantum dot.

    Science.gov (United States)

    Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen

    2014-05-14

    Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.

  4. Spin injection into a two-dimensional electron gas using inter-digital-ferromagnetic contacts

    DEFF Research Database (Denmark)

    Hu, C.M.; Nitta, J.; Jensen, Ane

    2002-01-01

    We present a model that describes the spin injection across a single interface with two electrodes. The spin-injection rate across a typical hybrid junction made of ferromagnet (FM) and a two-dimensional electron gas (2DEG) is found at the percentage level. We perforin spin-injection-detection ex......-injection-detection experiment on devices with two ferromagnetic contacts on a 2DEG confined in an InAs quantum well. A spin-injection rate of 4.5% is estimated from the measured magnetoresistance....

  5. Stopping power of two-dimensional spin quantum electron gases

    Science.gov (United States)

    Zhang, Ya; Jiang, Wei; Yi, Lin

    2015-04-01

    Quantum effects can contribute significantly to the electronic stopping powers in the interactions between the fast moving beams and the degenerate electron gases. From the Pauli equation, the spin quantum hydrodynamic (SQHD) model is derived and used to calculate the stopping power and the induced electron density for protons moving above a two-dimensional (2D) electron gas with considering spin effect under an external in-plane magnetic field. In our calculation, the stopping power is not only modulated by the spin direction, but also varied with the strength of the spin effect. It is demonstrated that the spin effect can obviously enhance or reduce the stopping power of a 2D electron gas within a laboratory magnetic field condition (several tens of Tesla), thus a negative stopping power appears at some specific proton velocity, which implies the protons drain energy from the Pauli gas, showing another significant example of the low-dimensional physics.

  6. Spin resonance strength calculation through single particle tracking for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  7. Single-electron thermal noise.

    Science.gov (United States)

    Nishiguchi, Katsuhiko; Ono, Yukinori; Fujiwara, Akira

    2014-07-11

    We report the observation of thermal noise in the motion of single electrons in an ultimately small dynamic random access memory (DRAM). The nanometer-scale transistors that compose the DRAM resolve the thermal noise in single-electron motion. A complete set of fundamental tests conducted on this single-electron thermal noise shows that the noise perfectly follows all the aspects predicted by statistical mechanics, which include the occupation probability, the law of equipartition, a detailed balance, and the law of kT/C. In addition, the counting statistics on the directional motion (i.e., the current) of the single-electron thermal noise indicate that the individual electron motion follows the Poisson process, as it does in shot noise.

  8. Absence of a spin-signature from a single Ho adatom as probed by spin-sensitive tunneling.

    Science.gov (United States)

    Steinbrecher, M; Sonntag, A; dos Santos Dias, M; Bouhassoune, M; Lounis, S; Wiebe, J; Wiesendanger, R; Khajetoorians, A A

    2016-02-03

    Whether rare-earth materials can be used as single-atom magnetic memory is an ongoing debate in recent literature. Here we show, by inelastic and spin-resolved scanning tunnelling-based methods, that we observe a strong magnetic signal and excitation from Fe atoms adsorbed on Pt(111), but see no signatures of magnetic excitation or spin-based telegraph noise for Ho atoms. Moreover, we observe that the indirect exchange field produced by a single Ho atom is negligible, as sensed by nearby Fe atoms. We demonstrate, using ab initio methods, that this stems from a comparatively weak coupling of the Ho 4f electrons with both tunnelling electrons and substrate-derived itinerant electrons, making both magnetic coupling and detection very difficult when compared to 3d elements. We discuss these results in the context of ongoing disputes and clarify important controversies.

  9. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched 28Si

    Directory of Open Access Journals (Sweden)

    Guilherme Tosi

    2014-08-01

    Full Text Available Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.

  10. Electrical manipulation of spin states in a single electrostatically gated transition-metal complex

    DEFF Research Database (Denmark)

    Osorio, Edgar A; Moth-Poulsen, Kasper; van der Zant, Herre S J

    2010-01-01

    We demonstrate an electrically controlled high-spin (S = 5/2) to low-spin (S = 1/2) transition in a three-terminal device incorporating a single Mn(2+) ion coordinated by two terpyridine ligands. By adjusting the gate-voltage we reduce the terpyridine moiety and thereby strengthen the ligand......-field on the Mn-atom. Adding a single electron thus stabilizes the low-spin configuration and the corresponding sequential tunnelling current is suppressed by spin-blockade. From low-temperature inelastic cotunneling spectroscopy, we infer the magnetic excitation spectrum of the molecule and uncover also...... a strongly gate-dependent singlet-triplet splitting on the low-spin side. The measured bias-spectroscopy is shown to be consistent with an exact diagonalization of the Mn-complex, and an interpretation of the data is given in terms of a simplified effective model....

  11. Coexistence of spin-triplet superconductivity with magnetism within a single mechanism for orbitally degenerate correlated electrons: statistically consistent Gutzwiller approximation

    International Nuclear Information System (INIS)

    Zegrodnik, M; Spałek, J; Bünemann, J

    2013-01-01

    An orbitally degenerate two-band Hubbard model is analyzed with the inclusion of the Hund's rule-induced spin-triplet even-parity paired states and their coexistence with magnetic ordering. The so-called statistically consistent Gutzwiller approximation (SGA) has been applied to the case of a square lattice. The superconducting gaps, the magnetic moment and the free energy are analyzed as a function of the Hund's rule coupling strength and the band filling. Also, the influence of the intersite hybridization on the stability of paired phases is discussed. In order to examine the effect of correlations the results are compared with those calculated earlier within the Hartree–Fock (HF) approximation combined with the Bardeen–Cooper–Schrieffer (BCS) approach. Significant differences between the two methods used (HF + BCS versus SGA + real-space pairing) appear in the stability regions of the considered phases. Our results supplement the analysis of this canonical model used widely in the discussions of pure magnetic phases with the detailed elaboration of the stability of the spin-triplet superconducting states and the coexistent magnetic-superconducting states. At the end, we briefly discuss qualitatively the factors that need to be included for a detailed quantitative comparison with the corresponding experimental results. (paper)

  12. Model for a collimated spin wave beam generated by a single layer, spin torque nanocontact

    OpenAIRE

    Hoefer, M. A.; Silva, T. J.; Stiles, M. D.

    2007-01-01

    A model of spin torque induced magnetization dynamics based upon semi-classical spin diffusion theory for a single layer nanocontact is presented. The model incorporates effects due to the current induced Oersted field and predicts the generation of a variety of spatially dependent, coherent, precessional magnetic wave structures. Directionally controllable collimated spin wave beams, vortex spiral waves, and localized standing waves are found to be excited by the interplay of the Oersted fie...

  13. Single-spin addressing in an atomic Mott insulator

    DEFF Research Database (Denmark)

    Weitenberg, Christof; Endres, Manuel; Sherson, Jacob

    2011-01-01

    directly monitored the tunnelling quantum dynamics of single atoms in the lattice prepared along a single line, and observed that our addressing scheme leaves the atoms in the motional ground state. The results should enable studies of entropy transport and the quantum dynamics of spin impurities...... and quantum spin dynamics. Here we demonstrate how such control can be implemented at the most fundamental level of a single spin at a specific site of an optical lattice. Using a tightly focused laser beam together with a microwave field, we were able to flip the spin of individual atoms in a Mott insulator...... with sub-diffraction-limited resolution, well below the lattice spacing. The Mott insulator provided us with a large two-dimensional array of perfectly arranged atoms, in which we created arbitrary spin patterns by sequentially addressing selected lattice sites after freezing out the atom distribution. We...

  14. Spin and charge transport study in single crystal organic semiconductors

    Science.gov (United States)

    Raman, Karthik V.; Mulder, Carlijn L.; Baldo, Marc A.; Moodera, Jagadeesh S.

    2009-03-01

    Spin transport studies in amorphous rubrene films have shown exciting and promising results [1]. A large spin diffusion length in these amorphous films has increased the motivation to perform spin transport study in high purity single crystal rubrene. This will provide the fundamental understanding on the spin transport behavior in OS; not influenced by defects or traps. We will present work on small channel single crystal rubrene FET device with magnetic electrodes. For example, our preliminary studies have show mobility for FET with Co electrode to be 0.014cm^2/V-s. A study on the spin and charge transport properties in single crystals of OS with magnetic electrodes is being done and the results will be reported. The influence of gate voltage and applied magnetic field on the transport properties will be discussed. [1] J.H. Shim et al., PRL 100, 226603 (2008)

  15. Theory of single-spin inelastic tunneling spectroscopy.

    Science.gov (United States)

    Fernández-Rossier, J

    2009-06-26

    I show that recent experiments of inelastic scanning tunneling spectroscopy of single and a few magnetic atoms are modeled with a phenomenological spin-assisted tunneling Hamiltonian so that the inelastic dI/dV line shape is related to the spin spectral weight of the magnetic atom. This accounts for the spin selection rules and dI/dV spectra observed experimentally for single Fe and Mn atoms deposited on Cu2N. In the case of chains of Mn atoms it is found necessary to include both first and second-neighbor exchange interactions as well as single-ion anisotropy.

  16. Creating and Controlling Single Spins in Silicon Carbide

    Science.gov (United States)

    Christle, David

    Silicon carbide (SiC) is a well-established commercial semiconductor used in high-power electronics, optoelectronics, and nanomechanical devices, and has recently shown promise for semiconductor-based implementations of quantum information technologies. In particular, a set of divacancy-related point defects have improved coherence properties relative to the prominent nitrogen-vacancy center in diamond, are addressable at near-telecom wavelengths, and reside in a material for which there already exist advanced growth, doping, and microfabrication capabilities. These properties suggest divacancies in SiC have compelling advantages for photonics and micromechanical applications, yet their relatively recent discovery means crucial aspects of their fundamental physics for these applications are not well understood. I will review our progress on manipulating spin defects in SiC, and discuss efforts towards isolating and controlling them at the single defect limit. In particular, our most recent experimental results demonstrate isolation and control of long-lived (T2 = 0 . 9 ms) divacancies in a form of SiC that can be grown epitaxially on silicon. By studying the time-resolved photoluminescence of a single divacancy, we reveal its fundamental orbital structure and characterize in detail the dynamics of its special optical cycle. Finally, we probe individual divacancies using resonant laser techniques and reveal an efficient spin-photon interface with figures of merit comparable to those reported for NV centers in diamond. These results suggest a pathway towards photon-mediated entanglement of SiC defect spins over long distances. This work was supported by NSF, AFOSR, the Argonne CNM, the Knut & Alice Wallenberg Foundation, the Linköping Linnaeus Initiative, the Swedish Government Strategic Research Area, and the Ministry of Education, Science, Sports and Culture of Japan.

  17. Consequences of Spin-Orbit Coupling at the Single Hole Level: Spin-Flip Tunneling and the Anisotropic g Factor.

    Science.gov (United States)

    Bogan, A; Studenikin, S A; Korkusinski, M; Aers, G C; Gaudreau, L; Zawadzki, P; Sachrajda, A S; Tracy, L A; Reno, J L; Hargett, T W

    2017-04-21

    Hole transport experiments were performed on a gated double quantum dot device defined in a p-GaAs/AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and the direction of the external magnetic field. The heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.

  18. Magnetic Switching of a Single Molecular Magnet due to Spin-Polarized Current

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2006-01-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic electrodes is investigated theoretically. Magnetic moments of the electrodes are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through a barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system as well as the spin relaxation times of the SMM are calculated f...

  19. Spin interactions in Graphene-Single Molecule Magnets Hybrids

    Science.gov (United States)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Aña; Luis, Fernando; Rauschenbach, Stephan; Dressel, Martin; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2014-03-01

    Graphene is a potential component of novel spintronics devices owing to its long spin diffusion length. Besides its use as spin-transport channel, graphene can be employed for the detection and manipulation of molecular spins. This requires an appropriate coupling between the sheets and the single molecular magnets (SMM). Here, we present a comprehensive characterization of graphene-Fe4 SMM hybrids. The Fe4 clusters are anchored non-covalently to the graphene following a diffusion-limited assembly and can reorganize into random networks when subjected to slightly elevated temperature. Molecules anchored on graphene sheets show unaltered static magnetic properties, whilst the quantum dynamics is profoundly modulated. Interaction with Dirac fermions becomes the dominant spin-relaxation channel, with observable effects produced by graphene phonons and reduced dipolar interactions. Coupling to graphene drives the spins over Villain's threshold, allowing the first observation of strongly-perturbative tunneling processes. Preliminary spin-transport experiments at low-temperature are further presented.

  20. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    The spin of electrons in semiconductors strongly couple with electric and magnetic fields due to ... where ckμ and d−kμ are annihilation operators for electron with momentum k and spin μ and hole with momentum −k ... kμ and ekμ are annihilation and creation operators for impurity electrons. Qkμ and Qkμ are the coefficient ...

  1. Fingerprints of single nuclear spin energy levels using STM - ENDOR

    Science.gov (United States)

    Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch

    2018-04-01

    We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus (63Cu, 65Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus (14N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis.

  2. Fingerprints of single nuclear spin energy levels using STM - ENDOR.

    Science.gov (United States)

    Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch

    2018-04-01

    We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29 Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus ( 63 Cu, 65 Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus ( 14 N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Spin transport properties of single metallocene molecules attached to single-walled carbon nanotubes via nickel adatoms

    Science.gov (United States)

    Wei, Peng; Sun, Lili; Benassi, Enrico; Shen, Ziyong; Sanvito, Stefano; Hou, Shimin

    2011-06-01

    The spin-dependent transport properties of single ferrocene, cobaltocene, and nickelocene molecules attached to the sidewall of a (4,4) armchair single-walled carbon nanotube via a Ni adatom are investigated by using a self-consistent ab initio approach that combines the non-equilibrium Green's function formalism with the spin density functional theory. Our calculations show that the Ni adatom not only binds strongly to the sidewall of the nanotube, but also maintains the spin degeneracy and affects little the transmission around the Fermi level. When the Ni adatom further binds to a metallocene molecule, its density of states is modulated by that of the molecule and electron scattering takes place in the nanotube. In particular, we find that for both cobaltocene and nickelocene the transport across the nanotube becomes spin-polarized. This demonstrates that metallocene molecules and carbon nanotubes can become a promising materials platform for applications in molecular spintronics.

  4. Spin dependence in superelastic electron scattering from Na(3P)

    International Nuclear Information System (INIS)

    McClelland, J.J.; Kelley, M.H.; Celotta, R.J.

    1985-01-01

    Measurements are presented of spin asymmetries for superelastic scattering of 10-eV spin polarized electrons from the excited Na(3P/sub 3/2/) state created by linearly polarized laser optical pumping. Asymmetries as large as 16% are observed in scattering from a state which is not spin-polarized. Results are shown both as a function of scattering angle with fixed laser polarization direction, and as a function of the laser polarization direction at a fixed scattering angle

  5. Markov chain analysis of single spin flip Ising simulations

    International Nuclear Information System (INIS)

    Hennecke, M.

    1997-01-01

    The Markov processes defined by random and loop-based schemes for single spin flip attempts in Monte Carlo simulations of the 2D Ising model are investigated, by explicitly constructing their transition matrices. Their analysis reveals that loops over all lattice sites using a Metropolis-type single spin flip probability often do not define ergodic Markov chains, and have distorted dynamical properties even if they are ergodic. The transition matrices also enable a comparison of the dynamics of random versus loop spin selection and Glauber versus Metropolis probabilities

  6. Field dependence of the electron spin relaxation in quantum dots.

    Science.gov (United States)

    Calero, Carlos; Chudnovsky, E M; Garanin, D A

    2005-10-14

    The interaction of the electron spin with local elastic twists due to transverse phonons is studied. The universal dependence of the spin-relaxation rate on the strength and direction of the magnetic field is obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid. The theory contains no unknown parameters and it can be easily tested in experiment. At high magnetic field it provides a parameter-free lower bound on the electron spin relaxation in quantum dots.

  7. Spin effects in strong-field laser-electron interactions

    International Nuclear Information System (INIS)

    Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C

    2013-01-01

    The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.

  8. Interaction of spin and vibrations in transport through single-molecule magnets.

    Science.gov (United States)

    May, Falk; Wegewijs, Maarten R; Hofstetter, Walter

    2011-01-01

    We study electron transport through a single-molecule magnet (SMM) and the interplay of its anisotropic spin with quantized vibrational distortions of the molecule. Based on numerical renormalization group calculations we show that, despite the longitudinal anisotropy barrier and small transverse anisotropy, vibrational fluctuations can induce quantum spin-tunneling (QST) and a QST-Kondo effect. The interplay of spin scattering, QST and molecular vibrations can strongly enhance the Kondo effect and induce an anomalous magnetic field dependence of vibrational Kondo side-bands.

  9. Interaction of spin and vibrations in transport through single-molecule magnets

    Directory of Open Access Journals (Sweden)

    Falk May

    2011-10-01

    Full Text Available We study electron transport through a single-molecule magnet (SMM and the interplay of its anisotropic spin with quantized vibrational distortions of the molecule. Based on numerical renormalization group calculations we show that, despite the longitudinal anisotropy barrier and small transverse anisotropy, vibrational fluctuations can induce quantum spin-tunneling (QST and a QST-Kondo effect. The interplay of spin scattering, QST and molecular vibrations can strongly enhance the Kondo effect and induce an anomalous magnetic field dependence of vibrational Kondo side-bands.

  10. Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin-orbit coupling

    International Nuclear Information System (INIS)

    Wang, C.M.; Pang, M.Q.; Liu, S.Y.; Lei, X.L.

    2010-01-01

    The current-induced spin polarization (CISP) is investigated in a combined Rashba-Dresselhaus spin-orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin-orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba-Dresselhaus models.

  11. Spin- and energy-dependent tunneling through a single molecule with intramolecular spatial resolution.

    Science.gov (United States)

    Brede, Jens; Atodiresei, Nicolae; Kuck, Stefan; Lazić, Predrag; Caciuc, Vasile; Morikawa, Yoshitada; Hoffmann, Germar; Blügel, Stefan; Wiesendanger, Roland

    2010-07-23

    We investigate the spin- and energy-dependent tunneling through a single organic molecule (CoPc) adsorbed on a ferromagnetic Fe thin film, spatially resolved by low-temperature spin-polarized scanning tunneling microscopy. Interestingly, the metal ion as well as the organic ligand show a significant spin dependence of tunneling current flow. State-of-the-art ab initio calculations including also van der Waals interactions reveal a strong hybridization of molecular orbitals and substrate 3d states. The molecule is anionic due to a transfer of one electron, resulting in a nonmagnetic (S=0) state. Nevertheless, tunneling through the molecule exhibits a pronounced spin dependence due to spin-split molecule-surface hybrid states.

  12. Spin Seebeck effect in a metal-single-molecule-magnet-metal junction

    Directory of Open Access Journals (Sweden)

    Pengbin Niu

    2018-01-01

    Full Text Available We investigate the nonlinear regime of temperature-driven spin-related currents through a single molecular magnet (SMM, which is connected with two metal electrodes. Under a large spin approximation, the SMM is simplified to a natural two-channel model possessing spin-opposite configuration and Coulomb interaction. We find that in temperature-driven case the system can generate spin-polarized currents. More interestingly, at electron-hole symmetry point, the competition of the two channels induces a temperature-driven pure spin current. This device demonstrates that temperature-driven SMM junction shows some results different from the usual quantum dot model, which may be useful in the future design of thermal-based molecular spintronic devices.

  13. Spin inelastic electron tunneling spectroscopy on local spin adsorbed on surface.

    Science.gov (United States)

    Fransson, J

    2009-06-01

    The recent experimental conductance measurements taken on magnetic impurities on metallic surfaces, using scanning tunneling microscopy technique and suggesting occurrence of inelastic scattering processes, are theoretically addressed. We argue that the observed conductance signatures are caused by transitions between the spin states that have opened due to, for example, exchange coupling between the local spins and the tunneling electrons, and are directly interpretable in terms of inelastic transitions energies. Feasible measurements using spin-polarized scanning tunneling microscopy that would enable new information about the excitation spectrum of the local spins are discussed.

  14. Electron spin manipulation and readout through an optical fiber

    Science.gov (United States)

    Fedotov, I. V.; Doronina-Amitonova, L. V.; Voronin, A. A.; Levchenko, A. O.; Zibrov, S. A.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Velichansky, V. L.; Zheltikov, A. M.

    2014-07-01

    The electron spin of nitrogen--vacancy (NV) centers in diamond offers a solid-state quantum bit and enables high-precision magnetic-field sensing on the nanoscale. Implementation of these approaches in a fiber format would offer unique opportunities for a broad range of technologies ranging from quantum information to neuroscience and bioimaging. Here, we demonstrate an ultracompact fiber-optic probe where a diamond microcrystal with a well-defined orientation of spin quantization NV axes is attached to the fiber tip, allowing the electron spins of NV centers to be manipulated, polarized, and read out through a fiber-optic waveguide integrated with a two-wire microwave transmission line. The microwave field transmitted through this line is used to manipulate the orientation of electron spins in NV centers through the electron-spin resonance tuned by an external magnetic field. The electron spin is then optically initialized and read out, with the initializing laser radiation and the photoluminescence spin-readout return from NV centers delivered by the same optical fiber.

  15. Electron refrigeration in hybrid structures with spin-split superconductors

    Science.gov (United States)

    Rouco, M.; Heikkilä, T. T.; Bergeret, F. S.

    2018-01-01

    Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.

  16. Generalized theory of spin fluctuations in itinerant electron magnets: Crucial role of spin anharmonicity

    International Nuclear Information System (INIS)

    Solontsov, A.

    2015-01-01

    The paper critically overviews the recent developments of the theory of spatially dispersive spin fluctuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin fluctuations is usually used aside of the range of its applicability actually defined by the constraint of weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to qualitatively new results caused by zero-point effects. - Highlights: • We review the spin-fluctuation theory of itinerant electron magnets with account of zero-point effects. • We generalize the existing theory to account for different regimes of spin fluctuations. • We show that zero-point spin fluctuations play a crucial role in both low- and high-temperature properties of metallic magnets. • We argue that a new scheme of calculation of ground state properties of magnets is needed including zero-point effects

  17. Spin coherence in a Mn{sub 3} single-molecule magnet

    Energy Technology Data Exchange (ETDEWEB)

    Abeywardana, Chathuranga [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Mowson, Andrew M.; Christou, George [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Takahashi, Susumu, E-mail: susumu.takahashi@usc.edu [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Department of Physics, University of Southern California, Los Angeles, California 90089 (United States)

    2016-01-25

    Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn{sub 3}O(O{sub 2}CEt){sub 3}(mpko){sub 3}]{sup +} (abbreviated Mn{sub 3}) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn{sub 3} was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn{sub 3} SMMs. The temperature dependence of spin decoherence time (T{sub 2}) revealed that the dipolar decoherence is the dominant source of decoherence in Mn{sub 3} and T{sub 2} can be extended up to 267 ns by quenching the dipolar decoherence.

  18. Foucault's pendulum, a classical analog for the electron spin state

    Science.gov (United States)

    Linck, Rebecca A.

    Spin has long been regarded as a fundamentally quantum phenomena that is incapable of being described classically. To bridge the gap and show that aspects of spin's quantum nature can be described classically, this work uses a classical Lagrangian based on the coupled oscillations of Foucault's pendulum as an analog for the electron spin state in an external magnetic field. With this analog it is possible to demonstrate that Foucault's pendulum not only serves as a basis for explaining geometric phase, but is also a basis for reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured electron spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  19. Dephasing of optically generated electron spins in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M.

    2010-01-01

    Dephasing of optically generated electron spins in the presence of the external magnetic field and electric bias in semiconductor nano-structures has been studied by time- and polarization-resolved spectrometry. The obtained experimental data are presented in dependence of the strength of the magnetic field. The optically generated electron-spin precession frequency and dephasing time and rate are estimated. It is found that both the spin precession frequency and dephasing rate increase linearly with the external magnetic field up to about 9 T. However, the spin dephasing time is within sub-μs and is found to decrease exponentially with the strength of the external magnetic field. The results are discussed by exploring possible mechanisms of spin dephasing in low-dimensional semiconductor structures, where the quantum-confinement persists within the nano-range.

  20. Dephasing of optically generated electron spins in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Department of Physics, University of Chittagong, Chittagong, Chittagong - 4331 (Bangladesh)

    2010-09-13

    Dephasing of optically generated electron spins in the presence of the external magnetic field and electric bias in semiconductor nano-structures has been studied by time- and polarization-resolved spectrometry. The obtained experimental data are presented in dependence of the strength of the magnetic field. The optically generated electron-spin precession frequency and dephasing time and rate are estimated. It is found that both the spin precession frequency and dephasing rate increase linearly with the external magnetic field up to about 9 T. However, the spin dephasing time is within sub-{mu}s and is found to decrease exponentially with the strength of the external magnetic field. The results are discussed by exploring possible mechanisms of spin dephasing in low-dimensional semiconductor structures, where the quantum-confinement persists within the nano-range.

  1. Single Molecule Electronics and Devices

    Science.gov (United States)

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  2. Enhancement mode single electron transistor in pure silicon

    Science.gov (United States)

    Hu, Binhui; Yang, C. H.; Jones, G. M.; Yang, M. J.

    2007-03-01

    Solid state implementations of lateral qubits offer the advantage of being scalable and can be easily integrated by existing main stream IC technologies. In addition, the two Zeeman states of an electron spin in a quantum dot (QD) provide a promising candidate for a qubit. Spins in lateral QDs in the GaAs/AlGaAs single electron transistors (SETs) have been intensively investigated. In contrast, Si provides a number of advantages, including long spin coherence time, large g-factor, and small spin-orbit coupling effect. We have demonstrated Si SET in the few electron regime.* In this talk, we will report the isolation of a single electron in a Si QD using a fabrication technique that incorporates the standard Al/SiO2/Si system with an enhancement mode SET structure. Our SET is built in highly resistive Si substrates with bilayer gates. The high purity Si minimizes the potential disorder from impurities. The top gate induces 2D electrons, and several side gates help define the tunneling barriers, fine tune the shape of the QD, and control the number of electrons in it. We will discuss the operating principle, computer simulation, and low temperature transport data. *APPLIED PHYSICS LETTERS 89, 073106 (2006)

  3. Spin excitations in systems with hopping electron transport and strong position disorder in a large magnetic field

    Science.gov (United States)

    Shumilin, A. V.

    2016-10-01

    We discuss the spin excitations in systems with hopping electron conduction and strong position disorder. We focus on the problem in a strong magnetic field when the spin Hamiltonian can be reduced to the effective single-particle Hamiltonian and treated with conventional numerical technics. It is shown that in a 3D system with Heisenberg exchange interaction the spin excitations have a delocalized part of the spectrum even in the limit of strong disorder, thus leading to the possibility of the coherent spin transport. The spin transport provided by the delocalized excitations can be described by a diffusion coefficient. Non-homogenous magnetic fields lead to the Anderson localization of spin excitations while anisotropy of the exchange interaction results in the Lifshitz localization of excitations. We discuss the possible effect of the additional exchange-driven spin diffusion on the organic spin-valve devices.

  4. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dhas, M. Kumara; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India); Jawahar, A. [Department of Chemistry, NMSSVN College, Nagamalai, Madurai-625019, Tamilnadu (India)

    2014-04-24

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM {sup 14}N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging.

  5. Electron spin resonance studies on reduction process of nitroxyl spin radicals used in molecular imaging

    Science.gov (United States)

    Dhas, M. Kumara; Jawahar, A.; Benial, A. Milton Franklin

    2014-04-01

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM 14N labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters such as signal intensity ratio, line width, g-value, hyperfine coupling constant and rotational correlation time were determined. The half life time was estimated for 1mM 14N labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. The ESR study reveals that the TEMPONE has narrowest line width and fast tumbling motion compared with TEMPO and TEMPOL. From the results, TEMPONE has long half life time and high stability compared with TEMPO and TEMPOL radical. Therefore, this study reveals that the TEMPONE radical can act as a good redox sensitive spin probe for molecular imaging.

  6. Electron spin control and spin-libration coupling of a levitated nanodiamond

    Science.gov (United States)

    Hoang, Thai; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, Francis; Gong, Ming; Yin, Zhang-Qi; Li, Tongcang

    2017-04-01

    Hybrid spin-mechanical systems have great potentials in sensing, macroscopic quantum mechanics, and quantum information science. Recently, we optically levitated a nanodiamond and demonstrated electron spin control of its built-in nitrogen-vacancy (NV) centers in vacuum. We also observed the libration (torsional vibration) of a nanodiamond trapped by a linearly polarized laser beam in vacuum. We propose to achieve strong coupling between the electron spin of a NV center and the libration of a levitated nanodiamond with a uniform magnetic field. With a uniform magnetic field, multiple spins can couple to the torsional vibration at the same time. We propose to use this strong coupling to realize the Lipkin-Meshkov-Glick (LMG) model and generate rotational superposition states. This work is supported by the National Science Foundation under Grant No. 1555035-PHY.

  7. An Efficient Algorithm for Simulating the Real-Time Quantum Dynamics of a Single Spin-1/2 Coupled to Specific Spin-1/2 Baths

    NARCIS (Netherlands)

    Novotny, M.A.; Guerra, M.; Raedt, H. De; Michielsen, K.; Jin, F.

    2012-01-01

    An efficient algorithm for the computation of the real-time dependence of a single quantum spin-1/2 coupled to a specific set of quantum spin-1/2 baths is presented. The specific spin baths have couplings only with the spin operators Sx between bath spins and the central spin. We calculate spin

  8. High field electron-spin transport and observation of the Dyakonov-Perel spin relaxation of drifting electrons in low temperature-grown gallium arsenide

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2008-01-01

    High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained

  9. High field electron-spin transport and observation of the Dyakonov-Perel spin relaxation of drifting electrons in low temperature-grown gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong-4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-11-17

    High field electron-spin transport in low temperature-grown gallium arsenide is studied. We generate electron spins in the samples by optical pumping. During transport, we observe the Dyakonov-Perel (DP) [M.I. Dyakonov, V.I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971) 1954] spin relaxation of the drifting electrons. The results are discussed and are compared with those obtained in calculations of the DP spin relaxation frequency of the hot electrons. A good agreement is obtained.

  10. Spin resolved electronic transport through N@C20 fullerene molecule between Au electrodes: A first principles study

    Science.gov (United States)

    Caliskan, Serkan

    2018-05-01

    Using first principles study, through Density Functional Theory combined with Non Equilibrium Green's Function Formalism, electronic properties of endohedral N@C20 fullerene molecule joining Au electrodes (Au-N@C20) was addressed in the presence of spin property. The electronic transport behavior across the Au-N@C20 molecular junction was investigated by spin resolved transmission, density of states, molecular orbitals, differential conductance and current-voltage (I-V) characteristics. Spin asymmetric variation was clearly observed in the results due to single N atom encapsulated in the C20 fullerene cage, where the N atom played an essential role in the electronic behavior of Au-N@C20. This N@C20 based molecular bridge, exhibiting a spin dependent I-V variation, revealed a metallic behavior within the bias range from -1 V to 1 V. The induced magnetic moment, spin polarization and other relevant quantities associated with the spin resolved transport were elucidated.

  11. Strong-coupling behaviour of two t - J chains with interchain single-electron hopping

    International Nuclear Information System (INIS)

    Zhang Guangming; Feng Shiping; Yu Lu.

    1994-01-01

    Using the fermion-spin transformation to implement spin-charge separation of constrained electrons, a model of two t - J chains with interchain single-electron hopping is studied by abelian bosonization. After spin-charge decoupling the charge dynamics can be trivially solved, while the spin dynamics is determined by a strong-coupling fixed point where the correlation functions can be calculated explicitly. This is a generalization of the Luther-Emery line for two-coupled t - J chains. The interchain single-electron hopping changes the asymptotic behaviour of the interchain spin-spin correlation functions and the electron Green function, but their exponents are independent of the coupling strength. (author). 25 refs

  12. Foucault's Pendulum, Analog for an Electron Spin State

    Science.gov (United States)

    Linck, Rebecca

    2012-11-01

    The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  13. Spin effects on the cyclotron frequency for a Dirac electron

    OpenAIRE

    Salesi, Giovanni; Recami, Erasmo

    1998-01-01

    The Barut--Zanghi (BZ) theory can be regarded as the most satisfactory picture of a classical spinning electron and constitutes a natural "classical limit" of the Dirac equation. The BZ model has been analytically studied in some previous papers of ours in the case of free particles. By contrast, in this letter we consider the case of external fields, and a previously found equation of the motion is generalized for a non-free spin-1/2 particle. In the important case of a spinning charge in a ...

  14. An efficient digital phase sensitive detector for use in electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Vistnes, A.I; Wormald, D.I.; Isachsen, S.

    1983-10-01

    A digital sensitive detector for a modified Bruker electron spin resonance spectrometer, equipped with an Aspect 2000 minicomputer, is described. Magnetic field modulation is derived from a clock in the computer, which makes it possible to perform the data acquisition fully synchronously with the modulation. The resulting high phase accuracy makes it possible to compress the data to a single modulation period before the Fourier transformation. Both the in-phase and the phase-quadrature signals (of the first or second harmonic) are recorded simultaneously. The system makes the data processing, including the Fourier transformation, approximately 1000 times faster than previously reported digital phase sensitive detector systems for electron spin resonance spectrometers

  15. Spin models for the single molecular magnet Mn12-AC

    Science.gov (United States)

    Al-Saqer, Mohamad A.

    2005-11-01

    The single molecular magnet (SMM) Mn12-AC attracted the attention of scientists since the discovery of its magnetic hystereses which are accompanied by sudden jumps in magnetic moments at low temperature. Unlike conventional bulk magnets, hysteresis in SMMs is of molecular origin. This qualifies them as candidates for next generation of high density storage media where a molecule which is at most few nanometers in size can be used to store a bit of information. However, the jumps in these hystereses, due to spin tunneling, can lead to undesired loss of information. Mn12-AC molecule contains twelve magnetic ions antiferromagnetically coupled by exchanges leading to S = 10 ground state manifold. The magnetic ions are surrounded by ligands which isolate them magnetically from neighboring molecules. The lowest state of S = 9 manifold is believed to lie at about 40 K above the ground state. Therefore, at low temperatures, the molecule is considered as a single uncoupled moment of spin S = 10. Such model has been used widely to understand phenomena exhibited by the molecule at low temperatures including the tunneling of its spin, while a little attention has been paid for the multi-spin nature of the molecule. Using the 8-spin model, we demonstrate that in order to understand the phenomena of tunneling, a full spin description of the molecule is required. We utilized a calculation scheme where a fraction of energy levels are used in the calculations and the influence of levels having higher energy is neglected. From the dependence of tunnel splittings on the number of states include, we conclude that models based on restricting the number of energy levels (single-spin and 8-spin models) lead to unreliable results of tunnel splitting calculations. To attack the full 12-spin model, we employed the Davidson algorithm to calculated lowest energy levels produced by exchange interactions and single ion anisotropies. The model reproduces the anisotropy properties at low

  16. Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity.

    Science.gov (United States)

    Hu, C Y

    2017-03-28

    The future Internet is very likely the mixture of all-optical Internet with low power consumption and quantum Internet with absolute security guaranteed by the laws of quantum mechanics. Photons would be used for processing, routing and com-munication of data, and photonic transistor using a weak light to control a strong light is the core component as an optical analogue to the electronic transistor that forms the basis of modern electronics. In sharp contrast to previous all-optical tran-sistors which are all based on optical nonlinearities, here I introduce a novel design for a high-gain and high-speed (up to terahertz) photonic transistor and its counterpart in the quantum limit, i.e., single-photon transistor based on a linear optical effect: giant Faraday rotation induced by a single electronic spin in a single-sided optical microcavity. A single-photon or classical optical pulse as the gate sets the spin state via projective measurement and controls the polarization of a strong light to open/block the photonic channel. Due to the duality as quantum gate for quantum information processing and transistor for optical information processing, this versatile spin-cavity quantum transistor provides a solid-state platform ideal for all-optical networks and quantum networks.

  17. Simulating electron spin entanglement in a double quantum dot

    Science.gov (United States)

    Rodriguez-Moreno, M. A.; Hernandez de La Luz, A. D.; Meza-Montes, Lilia

    2011-03-01

    One of the biggest advantages of having a working quantum-computing device when compared with a classical one, is the exponential speedup of calculations. This exponential increase is based on the ability of a quantum system to create and operate on entangled states. In order to study theoretically the entanglement between two electron spins, we simulate the dynamics of two electron spins in an electrostatically-defined double quantum dot with a finite barrier height between the dots. Electrons are initially confined to separated quantum dots. Barrier height is varied and the spin entanglement as a function of this variation is investigated. The evolution of the system is simulated by using a numerical approach for solving the time-dependent Schrödinger equation for two particles. Partially supported by VIEP-BUAP.

  18. Single Qubit Spin Readout and Initialization in a Quantum Dot Quantum Computer: Design and Simulation

    Science.gov (United States)

    Tahan, Charles; Friesen, Mark; Joynt, Robert; Eriksson, M. A.

    2003-03-01

    Although electron spin qubits in semiconductors are attractive from the viewpoint of low environmental coupling and long coherence times, spin readout remains a challenge for quantum dot quantum computing. Unfortunately, promising schemes based on spin-charge transduction introduce external couplings in the form of reference qubits or Coulomb blockade leads. Here, we propose a twist on the spin-charge transduction scheme, converting spin information to orbital information within a single quantum dot (QD). The same QD can be used for initialization, gating, and readout, without unnecessary external couplings. We present detailed investigations into such a scheme in both SiGe and GaAs systems: simulations, including capacitive coupling to a RF-SET, calculations of coherent oscillation times which determine the read-out speed, and calculations of electron spin relaxation times which determine the initialization speed. We find that both initialization and readout can be performed within the same architecture. Work supported by NSF-QuBIC and MRSEC programs, ARDA, and NSA.

  19. Charge-odd and single-spin effects in two pion production in ep bar collisions

    International Nuclear Information System (INIS)

    Galynskij, M.V.; Kuraev, E.A.; Shajkhatdenov, B.G.; Ratcliffe, P.G.

    2000-01-01

    We consider two-photon and Bremsstrahlung mechanisms for the production of two charged pions in high-energy electron (proton) scattering off a transversely polarised proton. Interference between the relevant amplitudes generates a charge-odd contribution to the cross section for the process. In a kinematics with a jet moving along electron spin-independent part may be used for determination of phase differences for pion-pion scattering in the states with orbital momentum 0 or 2 and 1 whereas in a kinematics with a jet moving along proton spin-dependent part may be used to explain the experimental data for single-spin correlations in the production of negatively charged pions. We also discuss the backgrounds and estimate the accuracy of the results at less than 10% level. In addition simplified formulae derived for specific kinematics, with small total transverse pion momentum, are given

  20. Ground state properties of a spin chain within Heisenberg model with a single lacking spin site

    International Nuclear Information System (INIS)

    Mebrouki, M.

    2011-01-01

    The ground state and first excited state energies of an antiferromagnetic spin-1/2 chain with and without a single lacking spin site are computed using exact diagonalization method, within the Heisenberg model. In order to keep both parts of a spin chain with a lacking site connected, next nearest neighbors interactions are then introduced. Also, the Density Matrix Renormalization Group (DMRG) method is used, to investigate ground state energies of large system sizes; which permits us to inquire about the effect of large system sizes on energies. Other quantum quantities such as fidelity and correlation functions are also studied and compared in both cases. - Research highlights: → In this paper we compute ground state and first excited state energies of a spin chain with and without a lacking spin site. The next nearest neighbors are introduced with the antiferromagnetic Heisenberg spin-half. → Exact diagonalization is used for small systems, where DMRG method is used to compute energies for large systems. Other quantities like quantum fidelity and correlation are also computed. → Results are presented in figures with comments. → E 0 /N is computed in a function of N for several values of J 2 and for both systems. First excited energies are also investigated.

  1. Nonlinear single-spin spectrum analyzer.

    Science.gov (United States)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2013-03-15

    Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.

  2. Model of the electron spin in stochastic physics

    Science.gov (United States)

    Spavieri, Gianfranco

    1990-01-01

    The electron is conceived here as a complex structure composed of a subparticle that is bound to a nearly circular motion. Although in quantum mechanics the spin is not representable, in classical stochastic physics this corresponds to the angular momentum of the subparticle. In fact, assuming Schrödinger-type hydrodynamic equations of motion for the subparticle, the spin-1/2 representation in configuration space and the corresponding Pauli matrices for the electron are obtained. The Hamiltonian of Pauli's theory as the nonrelativistic limit of Dirac's equation is also derived.

  3. Oblique propagation of longitudinal waves in magnetized spin-1/2 plasmas: Independent evolution of spin-up and spin-down electrons

    International Nuclear Information System (INIS)

    Andreev, Pavel A.; Kuz’menkov, L.S.

    2015-01-01

    We consider quantum plasmas of electrons and motionless ions. We describe separate evolution of spin-up and spin-down electrons. We present corresponding set of quantum hydrodynamic equations. We assume that plasmas are placed in an uniform external magnetic field. We account different occupation of spin-up and spin-down quantum states in equilibrium degenerate plasmas. This effect is included via equations of state for pressure of each species of electrons. We study oblique propagation of longitudinal waves. We show that instead of two well-known waves (the Langmuir wave and the Trivelpiece–Gould wave), plasmas reveal four wave solutions. New solutions exist due to both the separate consideration of spin-up and spin-down electrons and different occupation of spin-up and spin-down quantum states in equilibrium state of degenerate plasmas

  4. Spin-valley splitting of electron beam in graphene

    Directory of Open Access Journals (Sweden)

    Yu Song

    2016-11-01

    Full Text Available We study spatial separation of the four degenerate spin-valley components of an electron beam in a EuO-induced and top-gated ferromagnetic/pristine/strained graphene structure. We show that, in a full resonant tunneling regime for all beam components, the formation of standing waves can lead sudden phase jumps ∼−π and giant lateral Goos-Hänchen shifts as large as the transverse beam width, while the interplay of the spin and valley imaginary wave vectors in the modulated regions can lead differences of resonant angles for the four spin-valley flavors, manifesting a spin-valley beam splitting effect. The splitting effect is found to be controllable by the gating and strain.

  5. Field theory of the spinning electron: I - Internal motions

    International Nuclear Information System (INIS)

    Salesi, Giovanni; Recami, Erasmo; Universidade Estadual de Campinas, SP

    1994-05-01

    One of the most satisfactory picture of spinning particles is the Barut-Zanghi (BZ) classical theory for the relativistic electron, that relates the electron spin with the so-called Zitterbewegung (zbw). The BZ theory has been recently studied in the Lagrangian and Hamiltonian symplectic formulations, both in flat and in curved space-time. The BZ motion equations constituted the starting point for two recent works about spin and electron structure, co-authored by us, which adopted the Clifford algebra formalism. In this letter, by employing on the contrary the ordinary tensorial language, we first write down a meaningful (real) equation of motion, describing particle classical paths, quite different from the corresponding (complex) equation of the standard Dirac theory. As a consequence, we succeed in regarding the electron as an extended-type object with a classically intelligible structure (thus overcoming some long-standing, well-known problems). Second, we make explicit the kinematical properties of the 4-velocity field v μ , which also result to be quite different from the ordinary ones, valid for scalar particles. At last, we analyze the inner zbw motions, both time-like and light-like, as functions of the initial conditions (in particular, for the case of classical uniform motions, the z component of spin s is shown to be quantized). In so doing, we make explicit the strict correlation existing between electron polarization and zbw kinematics. (author). 9 refs

  6. Field theory of the spinning electron: I - Internal motions

    Energy Technology Data Exchange (ETDEWEB)

    Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica; Recami, Erasmo [Universita Statale di Bergamo, Dalmine, BG (Italy). Facolta di Ingegneria]|[Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada

    1994-05-01

    One of the most satisfactory picture of spinning particles is the Barut-Zanghi (BZ) classical theory for the relativistic electron, that relates the electron spin with the so-called Zitterbewegung (zbw). The BZ theory has been recently studied in the Lagrangian and Hamiltonian symplectic formulations, both in flat and in curved space-time. The BZ motion equations constituted the starting point for two recent works about spin and electron structure, co-authored by us, which adopted the Clifford algebra formalism. In this letter, by employing on the contrary the ordinary tensorial language, we first write down a meaningful (real) equation of motion, describing particle classical paths, quite different from the corresponding (complex) equation of the standard Dirac theory. As a consequence, we succeed in regarding the electron as an extended-type object with a classically intelligible structure (thus overcoming some long-standing, well-known problems). Second, we make explicit the kinematical properties of the 4-velocity field v{sup {mu}}, which also result to be quite different from the ordinary ones, valid for scalar particles. At last, we analyze the inner zbw motions, both time-like and light-like, as functions of the initial conditions (in particular, for the case of classical uniform motions, the z component of spin s is shown to be quantized). In so doing, we make explicit the strict correlation existing between electron polarization and zbw kinematics. (author). 9 refs.

  7. Spin polarization effects in low-energy elastic electron scattering

    International Nuclear Information System (INIS)

    Beerlage, M.J.M.

    1982-01-01

    This work describes experiments on the role of spin polarization in elastic electron scattering. Chapter I introduces the topic and in chapter II elastic scattering of 10-50 eV electrons from Ar and Kr in the angular range between 40 0 and 110 0 is studied. Noble gases have been chosen as targets in view of their relative theoretical simplicity. Below 25 eV scattered intensities measured by various authors exhibit severe disagreements. However, in the entire energy range, the spin polarization results can reasonably well be used to point out the shortcomings of the available theoretical data. The main topic of chapter III is the first attempt to determine the magnitude of a polarization phenomenon - in elastic electron scattering from the optically active camphor molecule - of which the existence has recently been predicted qualitatively from the absence of parity symmetry in such molecules. Besides these studies on gaseous targets the author has initiated a scattering experiment on crystal surfaces, using spin polarized electrons. Within the framework of this project a large new experimental arrangement has been built up. It consists of a spin polarized electron source and a LEED scattering chamber. Design, construction and test results, showing the usefulness of the set-up, are described in the last chapter. (Auth.)

  8. Spin dependent transport of hot electrons through ultrathin epitaxial metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Heindl, Emanuel

    2010-06-23

    In this work relaxation and transport of hot electrons in thin single crystalline metallic films is investigated by Ballistic Electron Emission Microscopy. The electron mean free paths are determined in an energy interval of 1 to 2 eV above the Fermi level. While fcc Au-films appear to be quite transmissive for hot electrons, the scattering lengths are much shorter for the ferromagnetic alloy FeCo revealing, furthermore, a strong spin asymmetry in hot electron transport. Additional information is gained from temperature dependent studies in combination with golden rule approaches in order to disentangle the impact of several relaxation and transport properties. It is found that bcc Fe-films are much less effective in spin filtering than films made of the FeCo-alloy. (orig.)

  9. Model for electron spin resonance in STM noise

    Science.gov (United States)

    Caso, Alvaro; Horovitz, Baruch; Arrachea, Liliana

    2014-02-01

    We propose a model to account for the observed ESR-like signal at the Larmor frequency in the current noise scanning tunnel microscope (STM) experiments identifying spin centers on various substrates. The theoretical understanding of this phenomenon, which allows for single spin detection on surfaces at room temperature, is not settled for the experimentally relevant case that the tip and substrate are not spin polarized. Our model is based on a direct tip-substrate tunneling in parallel with a current flowing via the spin states. We find a sharp signal at the Larmor frequency even at high temperatures, in good agreement with experimental data. We also evaluate the noise in presence of an ac field near resonance and predict splitting of the signal into a Mollow triplet.

  10. Quantum information processing with electronic and nuclear spins in semiconductors

    Science.gov (United States)

    Klimov, Paul Victor

    Traditional electronic and communication devices operate by processing binary information encoded as bits. Such digital devices have led to the most advanced technologies that we encounter in our everyday lives and they influence virtually every aspect of our society. Nonetheless, there exists a much richer way to encode and process information. By encoding information in quantum mechanical states as qubits, phenomena such as coherence and entanglement can be harnessed to execute tasks that are intractable to digital devices. Under this paradigm, it should be possible to realize quantum computers, quantum communication networks and quantum sensors that outperform their classical counterparts. The electronic spin states of color-center defects in the semiconductor silicon carbide have recently emerged as promising qubit candidates. They have long-lived quantum coherence up to room temperature, they can be controlled with mature magnetic resonance techniques, and they have a built-in optical interface operating near the telecommunication bands. In this thesis I will present two of our contributions to this field. The first is the electric-field control of electron spin qubits. This development lays foundation for quantum electronics that operate via electrical gating, much like traditional electronics. The second is the universal control and entanglement of electron and nuclear spin qubits in an ensemble under ambient conditions. This development lays foundation for quantum devices that have a built-in redundancy and can operate in real-world conditions. Both developments represent important steps towards practical quantum devices in an electronic grade material.

  11. Influence of soliton distributions on the spin-dependent electronic ...

    Indian Academy of Sciences (India)

    pp. 669–680. Influence of soliton distributions on the spin-dependent electronic transport through polyacetylene molecule. S A KETABI. ∗ and M NAKHAEE. School of Physics, Damghan University, Damghan, Iran. ∗. Corresponding author. E-mail: saketabi@du.ac.ir. MS received 10 April 2014; revised 25 January 2015; ...

  12. Influence of soliton distributions on the spin-dependent electronic ...

    Indian Academy of Sciences (India)

    Based on Su–Schrieffer–Heeger (SSH) Hamiltonian and using a generalized Green's function formalism, wecalculate the spin-dependent currents, the electronic transmission and tunnelling magnetoresistance (TMR). We found that the presence of a uniform distribution of the soliton centres along the molecular chain ...

  13. Spin delocalization phase transition in a correlated electrons model

    International Nuclear Information System (INIS)

    Huerta, L.

    1990-11-01

    In a simplified one-site model for correlated electrons systems we show the existence of a phase transition corresponding to spin delocalization. The system becomes a solvable model and zero-dimensional functional techniques are used. (author). 7 refs, 3 figs

  14. Electron spin resonance dating of fault gouge from Desamangalam

    Indian Academy of Sciences (India)

    The preliminary results from the electron spin resonance (ESR) dating on the quartz grains from the fault gouge indicate that the last major faulting in this site occurred 430 ± 43 ka ago. The experiments on different grain sizes of quartz from the gouge showed consistent decrease in age to a plateau of low values, indicating ...

  15. Spin-dependent electronic transport properties of transition metal atoms doped α-armchair graphyne nanoribbons

    Science.gov (United States)

    Fotoohi, Somayeh; Haji-Nasiri, Saeed

    2018-04-01

    Spin-dependent electronic transport properties of single 3d transition metal (TM) atoms doped α-armchair graphyne nanoribbons (α-AGyNR) are investigated by non-equilibrium Green's function (NEGF) method combined with density functional theory (DFT). It is found that all of the impurity atoms considered in this study (Fe, Co, Ni) prefer to occupy the sp-hybridized C atom site in α-AGyNR, and the obtained structures remain planar. The results show that highly localized impurity states are appeared around the Fermi level which correspond to the 3d orbitals of TM atoms, as can be derived from the projected density of states (PDOS). Moreover, Fe, Co, and Ni doped α-AGyNRs exhibit magnetic properties due to the strong spin splitting property of the energy levels. Also for each case, the calculated current-voltage characteristic per super-cell shows that the spin degeneracy in the system is obviously broken and the current becomes strongly spin dependent. Furthermore, a high spin-filtering effect around 90% is found under the certain bias voltages in Ni doped α-AGyNR. Additionally, the structure with Ni impurity reveals transfer characteristic that is suitable for designing a spin current switch. Our findings provide a high possibility to design the next generation spin nanodevices with novel functionalities.

  16. 2-mm Band and X-band electron spin resonance and electron spin-echo investigations of some carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, Y.D.; Dzuba, S.A.; Gulin, V.I. [Institute of Chemical Kinetics and Combustion, Novosibirsk (Russian Federation)

    1993-12-31

    Argonne Premium coal samples were studied by using 2-mm band and X-band continuous-wave electron spin resonance (CW ESR) and X-band electron spin-echo (ESE) spectroscopy. The line widths and g factors (Lande g factor, spectroscopic splitting factor) were determined. The correlation between {Delta}g = g{sub {parallel}} - g{sub {perpendicular}} and the carbon content in coal samples was established. Paramagnetic centers in coals could be attributed to radicals with partial redistribution of spin density from polycyclic {pi}-system to peroxide-type structures. The degree of this redistribution depends on the degree of carbonization. Phase relaxation times, T{sub 2}, for these coals were determined by using ESE spectroscopy. 5 refs., 2 figs., 3 tabs.

  17. Electron spin resonance study of radicals in irradiated polyethylene

    International Nuclear Information System (INIS)

    Fujimura, Takashi

    1979-02-01

    In order to elucidate radiation effect in polyethylene, the nature and behavior of radicals produced in polyethylene and the model compound of polyethylene irradiated at 77 0 K were studied by using electron spin resonance. The structure of radical pairs, which are composed of two radicals produced very closely each other, was investigated in drawn polyethylene and the single crystal of n-eicosane. The radical pairs of intrachain type and interchain type were found in polyethylene and n-eicosane respectively. It was suggested that these two types of radical pairs are the precursors of double bonds and crosslinks respectively. The thermal decay reactions of radicals themselves produced in irradiated polyethylene were investigated. It was made clear that the short range distances between two radicals play an important role in the decay reaction of alkyl radicals at low temperatures. The trapping regions of radicals were studied and it was clarified that allyl radicals, which are produced by the reaction of alkyl radicals with double bonds, are trapped both in the crystalline and non-crystalline regions. (author)

  18. Single-copy entanglement in critical quantum spin chains

    International Nuclear Information System (INIS)

    Eisert, J.; Cramer, M.

    2005-01-01

    We consider the single-copy entanglement as a quantity to assess quantum correlations in the ground state in quantum many-body systems. We show for a large class of models that already on the level of single specimens of spin chains, criticality is accompanied with the possibility of distilling a maximally entangled state of arbitrary dimension from a sufficiently large block deterministically, with local operations and classical communication. These analytical results--which refine previous results on the divergence of block entropy as the rate at which maximally entangled pairs can be distilled from many identically prepared chains--are made quantitative for general isotropic translationally invariant spin chains that can be mapped onto a quasifree fermionic system, and for the anisotropic XY model. For the XX model, we provide the asymptotic scaling of ∼(1/6)log 2 (L), and contrast it with the block entropy

  19. Magnetic switching of a single molecular magnet due to spin-polarized current

    Science.gov (United States)

    Misiorny, Maciej; Barnaś, Józef

    2007-04-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic leads (electrodes) is investigated theoretically. Magnetic moments of the leads are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through the barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system, as well as the spin relaxation times of the SMM, are calculated from the Fermi golden rule. It is shown that spin of the SMM can be reversed by applying a certain voltage between the two magnetic electrodes. Moreover, the switching may be visible in the corresponding current-voltage characteristics.

  20. Electron spin relaxation in cryptochrome-based magnetoreception

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Solov'yov, Ilia A; Hore, P J

    2016-01-01

    The magnetic compass sense of migratory birds is thought to rely on magnetically sensitive radical pairs formed photochemically in cryptochrome proteins in the retina. An important requirement of this hypothesis is that electron spin relaxation is slow enough for the Earth's magnetic field to have...... this question for a structurally characterized model cryptochrome expected to share many properties with the putative avian receptor protein. To this end we combine all-atom molecular dynamics simulations, Bloch-Redfield relaxation theory and spin dynamics calculations to assess the effects of spin relaxation...... on the performance of the protein as a compass sensor. Both flavin-tryptophan and flavin-Z˙ radical pairs are studied (Z˙ is a radical with no hyperfine interactions). Relaxation is considered to arise from modulation of hyperfine interactions by librational motions of the radicals and fluctuations in certain...

  1. Muon spin relaxation studies in strongly correlated electron systems

    Science.gov (United States)

    Uemura, Y. J.; Luke, G. M.

    1993-05-01

    We describe recent progress of muon spin relaxation (μSR) studies in heavy-fermion (HF) and other strongly correlated electron systems. Measurements of the magnetic field penetration depth λ in HF superconductors UPt 3, URu 2Si 2, UPd 2Al 3 and U 2PtC 2 have revealed that these systems are characterized by large ratios Tc/ TF = 0.1-0.01 of Tc vs Fermi temperature TF derived from λ. This feature is common to high- Tc cuprate and other exotic superconductors. Zero-field μSR studies of magnetic order have elucidated a cross-over from spin glass ordering to nonmagnetic ground states in the ‘quadrupolar Kondo regime’ of (Y 1- xU x)Pd 3, and also suggested a possibility of incommensurate spin-density-wave (SDW) ordering in UNi 2Al 3.

  2. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Krishtopenko, S. S.

    2015-01-01

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system

  3. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Krishtopenko, S. S., E-mail: sergey.krishtopenko@mail.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  4. Model for a collimated spin-wave beam generated by a single-layer spin torque nanocontact

    Science.gov (United States)

    Hoefer, M. A.; Silva, T. J.; Stiles, M. D.

    2008-04-01

    A model of spin-torque-induced magnetization dynamics based on semiclassical spin diffusion theory for a single-layer nanocontact is presented. The model incorporates effects due to the current-induced Oersted field and predicts the generation of a variety of spatially dependent, coherent, precessional magnetic wave structures. Directionally controllable collimated spin-wave beams, vortex spiral waves, and localized standing waves are found to be excited by the interplay of the Oersted field and the orientation of an applied field. These fields act as a spin-wave “corral” around the nanocontact that controls the propagation of spin waves in certain directions.

  5. A Low Spin Manganese(IV) Nitride Single Molecule Magnet.

    Science.gov (United States)

    Ding, Mei; Cutsail, George E; Aravena, Daniel; Amoza, Martín; Rouzières, Mathieu; Dechambenoit, Pierre; Losovyj, Yaroslav; Pink, Maren; Ruiz, Eliseo; Clérac, Rodolphe; Smith, Jeremy M

    2016-09-01

    Structural, spectroscopic and magnetic methods have been used to characterize the tris(carbene)borate compound PhB(MesIm) 3 Mn≡N as a four-coordinate manganese(IV) complex with a low spin ( S = 1/2) configuration. The slow relaxation of the magnetization in this complex, i.e. its single-molecule magnet (SMM) properties, is revealed under an applied dc field. Multireference quantum mechanical calculations indicate that this SMM behavior originates from an anisotropic ground doublet stabilized by spin-orbit coupling. Consistent theoretical and experiment data show that the resulting magnetization dynamics in this system is dominated by ground state quantum tunneling, while its temperature dependence is influenced by Raman relaxation.

  6. Spin correlation tensor for measurement of quantum entanglement in electron-electron scattering

    Science.gov (United States)

    Tsurikov, D. E.; Samarin, S. N.; Williams, J. F.; Artamonov, O. M.

    2017-04-01

    We consider the problem of correct measurement of a quantum entanglement in the two-body electron-electron scattering. An expression is derived for a spin correlation tensor of a pure two-electron state. A geometric measure of a quantum entanglement as the distance between two forms of this tensor in entangled and separable cases is presented. Due to such definition, one does not need to look for the closest separable state to the analyzed state. We prove that introduced measure satisfies properties of a valid entanglement measure: nonnegativity, discriminance, normalization, non-growth under local operations and classical communication. This measure is calculated for a problem of electron-electron scattering. We prove that it does not depend on the azimuthal rotation angle of the second electron spin relative to the first electron spin before scattering. We specify how to find a spin correlation tensor and the related measure of a quantum entanglement in an experiment with electron-electron scattering. Finally, the introduced measure is extended to the mixed states.

  7. Characterization of functional LB films using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Kuroda, Shin-ichi

    1995-01-01

    The role of ESR spectroscopy in the characterization of functional LB films is discussed. Unpaired electrons in LB films are associated with isolated radical molecules produced by charge transfer, paramagnetic metallic ions such as Cu 2+ , strongly interacting spins in the mixed valence states in charge-transfer salts, and so on. These spins often manifest the functions of materials. They can also act as microscopic probes in the ESR analysis devoted for the elucidation of characteristic properties of LB films. In structural studies, ESR is of particular importance in the analysis of molecular orientation of LB films. ESR can unambiguously determine the orientation of molecules through g-value anisotropy: different g value, different resonance field. Two types of new control methods of molecular orientation in LB films originated from the ESR analysis: study of in-plane orientation in dye LB films which led to the discovery of flow-orientation effect, and observation of drastic change of orientation of Cu-porphyrin in LB films using the trigger molecule, n-hexatriacontane. In the studies of electronic properties, hyperfine interactions between electron and nuclear spins provide information about molecular orbitals and local structures. Stable isotopes have been successfully applied to the stable radicals in merocyanine LB films to identify hyperfine couplings. In conducting LB films composed of charge-transfer salts, quasi-one-dimensional antiferromagnetism in semiconducting films and spin resonance of conduction electrons in metallic films are observed. Results provide microscopic evidence for the development of columnar structures of constituent molecules. Development of new functional LB films may provide more cases where ESR spectroscopy will clarify the nature of such films. (author)

  8. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential

  9. Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies.

    Science.gov (United States)

    Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey; Freed, Jack H; Edwards, Peter P

    2012-06-06

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T(1)) and spin-spin (T(2)) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multiexponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1-10) × 10(-12) s over a temperature range 230-290 K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a time scale of ∼10(-13) s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great

  10. Spin-Dephasing Anisotropy for Electrons in a Diffusive Quasi-1D GaAs Wire

    NARCIS (Netherlands)

    Liu, J.; Last, T.; Koop, E. J.; Denega, S.; van Wees, B. J.; van der Wal, C. H.

    We present a numerical study of dephasing of electron spin ensembles in a diffusive quasi-one-dimensional GaAs wire due to the D'yakonov-Perel' spin-dephasing mechanism. For widths of the wire below the spin precession length and for equal strength of Rashba and linear Dresselhaus spin-orbit fields

  11. Laser resolution of unpolarized-electron scattering cross sections into spin-conserved and spin-flip components

    International Nuclear Information System (INIS)

    Ritchie, B.

    1981-01-01

    The theory is presented for one-photon free-free absorption by electrons scattering from high-Z atoms. The absorption cross section provides sufficient information to resolve the unpolarized-electron total cross section, Vertical Barf(theta)Vertical Bar 2 +Vertical Barg(theta)Vertical Bar 2 , into its individual components for spin-nonflip, Vertical Barf(theta)Vertical Bar 2 , and spin-flip, Vertical Barg(theta)Vertical Bar 2 , scattering. The observation of a spin-polarization effect for a spin-independent process (free-free absorption) is analogous to the Fano effect for bound-free absorption

  12. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems.

    Science.gov (United States)

    Tsuchimochi, Takashi

    2015-10-14

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  13. Depolarization of the electron spin in storage rings by nonlinear spin-orbit coupling

    International Nuclear Information System (INIS)

    Kewisch, J.

    1985-10-01

    Electrons and positrons which circulate in the storage ring are polarized at the emission of synchrotron radiation by the so called Sokolov-Ternov effect. This polarization is on the one hand of large interest for the study of the weak interaction, on the other hand it can be used for the accurate measurement of the beam energy and by this of the mass of elementary particles. The transverse and longitudinal particle vibrations simultaneously excited by the synchrotron radiation however can effect that this polarization is destroyed. This effect is called spin-orbit coupling. For the calculation of the spin-orbit coupling the computer program SITROS was written. This program is a tracking program: The motion of some sample particles and their spin vectors are calculated for some thousand circulations. From this the mean depolarization and by extrapolation the degree of polarization of the equilibrium state is determined. Contrarily to the known program SLIM which is based on perturbational calculations in SITROS the nonlinear forces in the storage ring can be regarded. By this the calculation of depolarizing higher order resonances is made possible. In this thesis the equations of motion for the orbital and spin motion of the electrons are derived which form the base for the program SITROS. The functions of the program and the approximations necessary for the saving of calculational time are explained. The comparison of the SITROS results with the measurement results obtained at the PETRA storage ring shows that the SITROS program is a useful means for the planning and calculation of storage rings with polarized electron beams. (orig.) [de

  14. RKKY interaction for the spin-polarized electron gas

    Science.gov (United States)

    Valizadeh, Mohammad M.; Satpathy, Sashi

    2015-11-01

    We extend the original work of Ruderman, Kittel, Kasuya and Yosida (RKKY) on the interaction between two magnetic moments embedded in an electron gas to the case where the electron gas is spin-polarized. The broken symmetry of a host material introduces the Dzyaloshinsky-Moriya (DM) vector and tensor interaction terms, in addition to the standard RKKY term, so that the net interaction energy has the form ℋ = JS1 ṡS2 + D ṡS1 ×S2 + S1 ṡΓ ↔ṡS2. We find that for the spin-polarized electron gas, a nonzero tensor interaction Γ ↔ is present in addition to the scalar RKKY interaction J, while D is zero due to the presence of inversion symmetry. Explicit expressions for these are derived for the electron gas both in 2D and 3D and we show that the net magnetic interaction can be expressed as a sum of Heisenberg and Ising like terms. The RKKY interaction exhibits a beating pattern, caused by the presence of the two Fermi momenta kF↑ and kF↓, while the R-3 distance dependence of the original RKKY result for the 3D electron gas is retained. This model serves as a simple example of the magnetic interaction in systems with broken symmetry, which goes beyond the RKKY interaction.

  15. The S-DALINAC polarized electron injector SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, Christian; Bahlo, Thore; Bangert, Phillip; Barday, Roman; Bonnes, Uwe; Brunken, Marco; Burandt, Christoph; Eichhorn, Ralf; Enders, Joachim; Espig, Martin; Platz, Markus; Poltoratska, Yuliya; Roth, Markus; Schneider, Fabian; Wagner, Markus; Weber, Antje; Zwicker, Benjamin [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet, Darmstadt (Germany); Aulenbacher, Kurt [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Mainz (Germany)

    2011-07-01

    A source of polarized electrons has been installed at the superconducting 130 MeV Darmstadt electron linac S-DALINAC. Polarized electrons are generated by irradiating a GaAs cathode with pulsed Ti:Sapphire and diode lasers and preaccelerated to 100 keV. A Wien filter and 100 keV Mott polarimeter are used for spin manipulation and polarization measurement and various beam diagnostic elements are installed. To measure the beam polarization downstream of the superconducting injector linac a 5-10 MeV Mott polarimeter and a Compton-transmission polarimeter have been developed. We report on the status of the polarized electron source and foreseen experiments.

  16. Electron ionization and spin polarization control of Fe atom adsorbed graphene irradiated by a femtosecond laser

    International Nuclear Information System (INIS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Li, Xin; Qu, Liangti; Lu, Yongfeng

    2015-01-01

    We investigate the structural properties and ionized spin electrons of an Fe–graphene system, in which the time-dependent density functional theory (TDDFT) within the generalized gradient approximation is used. The electron dynamics, including electron ionization and ionized electron spin polarization, is described for Fe atom adsorbed graphene under femtosecond laser irradiation. The theoretical results show that the electron ionization and ionized electron spin polarization are sensitive to the laser parameters, such as the incident angle and the peak intensity. The spin polarization presents the maximum value under certain laser parameters, which may be used as a source of spin-polarized electrons. - Highlights: • The structural properties of Fe–graphene system are investigated. • The electron dynamics of Fe–graphene system under laser irradiation are described. • The Fe–graphene system may be used as a source of spin-polarized electrons

  17. Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes.

    Science.gov (United States)

    Graham, Michael J; Krzyaniak, Matthew D; Wasielewski, Michael R; Freedman, Danna E

    2017-07-17

    Quantum information processing (QIP) has the potential to transform numerous fields from cryptography, to finance, to the simulation of quantum systems. A promising implementation of QIP employs unpaired electronic spins as qubits, the fundamental units of information. Though molecular electronic spins offer many advantages, including chemical tunability and facile addressability, the development of design principles for the synthesis of complexes that exhibit long qubit superposition lifetimes (also known as coherence times, or T 2 ) remains a challenge. As nuclear spins in the local qubit environment are a primary cause of shortened superposition lifetimes, we recently conducted a study which employed a modular spin-free ligand scaffold to place a spin-laden propyl moiety at a series of fixed distances from an S = 1 / 2 vanadium(IV) ion in a series of vanadyl complexes. We found that, within a radius of 4.0(4)-6.6(6) Å from the metal center, nuclei did not contribute to decoherence. To assess the generality of this important design principle and test its efficacy in a different coordination geometry, we synthesized and investigated three vanadium tris(dithiolene) complexes with the same ligand set employed in our previous study: K 2 [V(C 5 H 6 S 4 ) 3 ] (1), K 2 [V(C 7 H 6 S 6 ) 3 ] (2), and K 2 [V(C 9 H 6 S 8 ) 3 ] (3). We specifically interrogated solutions of these complexes in DMF-d 7 /toluene-d 8 with pulsed electron paramagnetic resonance spectroscopy and electron nuclear double resonance spectroscopy and found that the distance dependence present in the previously synthesized vanadyl complexes holds true in this series. We further examined the coherence properties of the series in a different solvent, MeCN-d 3 /toluene-d 8 , and found that an additional property, the charge density of the complex, also affects decoherence across the series. These results highlight a previously unknown design principle for augmenting T 2 and open new pathways for the

  18. Restricted active space spin-flip configuration interaction: theory and examples for multiple spin flips with odd numbers of electrons.

    Science.gov (United States)

    Zimmerman, Paul M; Bell, Franziska; Goldey, Matthew; Bell, Alexis T; Head-Gordon, Martin

    2012-10-28

    The restricted active space spin flip (RAS-SF) method is extended to allow ground and excited states of molecular radicals to be described at low cost (for small numbers of spin flips). RAS-SF allows for any number of spin flips and a flexible active space while maintaining pure spin eigenfunctions for all states by maintaining a spin complete set of determinants and using spin-restricted orbitals. The implementation supports both even and odd numbers of electrons, while use of resolution of the identity integrals and a shared memory parallel implementation allow for fast computation. Examples of multiple-bond dissociation, excited states in triradicals, spin conversions in organic multi-radicals, and mixed-valence metal coordination complexes demonstrate the broad usefulness of RAS-SF.

  19. Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices

    Science.gov (United States)

    Patel, Sahil Jaykumar

    Spintronic devices, where information is carried by the quantum spin state of the electron instead of purely its charge, have gained considerable interest for their use in future computing technologies. For optimal performance, a pure spin current, where all electrons have aligned spins, must be generated and transmitted across many interfaces and through many types of materials. While conventional spin sources have historically been elemental ferromagnets, like Fe or Co, these materials pro duce only partially spin polarized currents. To increase the spin polarization of the current, materials like half-metallic ferromagnets, where there is a gap in the minority spin density of states around the Fermi level, or topological insulators, where the current transport is dominated by spin-locked surface states, show promise. A class of materials called Heusler compounds, with electronic structures that range from normal metals, to half metallic ferromagnets, semiconductors, superconductors and even topological insulators, interfaces well with existing device technologies, and through the use of molecular beam epitaxy (MBE) high quality heterostructures and films can be grown. This dissertation examines the electronic structure of surfaces and interfaces of both topological insulator (PtLuSb-- and PtLuBi--) and half-metallic ferromagnet (Co2MnSi-- and Co2FeSi--) III-V semiconductor heterostructures. PtLuSb and PtLuBi growth by MBE was demonstrated on Alx In1--xSb (001) ternaries. PtLuSb (001) surfaces were observed to reconstruct with either (1x3) or c(2x2) unit cells depending on Sb overpressure and substrate temperature. viii The electronic structure of these films was studied by scanning tunneling microscopy/spectroscopy (STM/STS) and photoemission spectroscopy. STS measurements as well as angle resolved photoemission spectropscopy (ARPES) suggest that PtLuSb has a zero-gap or semimetallic band structure. Additionally, the observation of linearly dispersing surface

  20. Electron Spin Resonance Measurement with Microinductor on Chip

    Directory of Open Access Journals (Sweden)

    Akio Kitagawa

    2011-01-01

    Full Text Available The detection of radicals on a chip is demonstrated. The proposed method is based on electron spin resonance (ESR spectroscopy and the measurement of high-frequency impedance of the microinductor fabricated on the chip. The measurement was by using a frequency sweep of approximately 100 MHz. The ESR spectra of di(phenyl-(2,4,6-trinitrophenyliminoazanium (DPPH dropped on the microinductor which is fabricated with CMOS 350-nm technology were observed at room temperature. The volume of the DPPH ethanol solution was 2 μL, and the number of spins on the micro-inductor was estimated at about 1014. The sensitivity is not higher than that of the standard ESR spectrometers. However, the result indicates the feasibility of a near field radical sensor in which the microinductor as a probe head and ESR signal processing circuit are integrated.

  1. Rabi oscillation and electron-spin-echo envelope modulation of the photoexcited triplet spin system in silicon

    Science.gov (United States)

    Akhtar, Waseem; Sekiguchi, Takeharu; Itahashi, Tatsumasa; Filidou, Vasileia; Morton, John J. L.; Vlasenko, Leonid; Itoh, Kohei M.

    2012-09-01

    We report on a pulsed electron paramagnetic resonance (EPR) study of the photoexcited triplet state (S=1) of oxygen-vacancy centers in silicon. Rabi oscillations between the triplet sublevels are observed using coherent manipulation with a resonant microwave pulse. The Hahn echo and stimulated echo decay profiles are superimposed with strong modulations known as electron-spin-echo envelope modulation (ESEEM). The ESEEM spectra reveal a weak but anisotropic hyperfine coupling between the triplet electron spin and a 29Si nuclear spin (I=1/2) residing at a nearby lattice site, that cannot be resolved in conventional field-swept EPR spectra.

  2. Spin effects in medium-energy electron-3He scattering

    International Nuclear Information System (INIS)

    van den Brand, J.F.J.; Alarcon, R.; Bauer, T.

    1998-01-01

    New physics can be accessed by scattering polarized electrons from a polarized 3 He internal gas target. It is discussed how the asymmetries for the reactions 3 vector He(vector e,e'), 3 vector He(vector e,e'p), 3 vector He(vector e,e'n), 3 vector He(vector e,e'd), and 3 vector He(vector e,e'pn) may provide precise information on the S' and the D-wave parts of the 3 He ground-state wave function, the neutron form factors, and the role of spin-dependent reaction mechanism effects. The experiment uses up to 900 MeV (polarized) electrons from the AmPS storage ring in Amsterdam, Netherlands, in combination with large acceptance electron and hadron detectors. (orig.)

  3. Spin polarized auger electron spectroscopy (SPAES): An element specific local magnetization probe of magnetic materials

    Science.gov (United States)

    Anilturk, Onder S.

    Spin Polarized Auger Electron Spectroscopy (SPAES) is found to have application for investigating fundamental properties as well as element specific local magnetization information on magnetic materials. By using the uniqueness of the UTA-SEMPA tool, one can obtain the surface magnetic domain microstructure and also perform SPAES studies by probing a single domain at the surface. In the current study, knowing the probed domain, spin polarization of electrons from super Coster-Kronig MVV Auger emissions on 3%Si-Fe sheets have been investigated. It is observed that on both sides of 180° domains, separated by a domain wall with an out-of-plane component of magnetization, the spin polarized Auger spectra exhibit similar distributions with high polarization structures, which are consistent with the published data. The element specificity of the system is applied to Gd-Co composite system. Details of 4d core hole initiated Auger transitions showed that the 5d states have enhanced spin polarization, confirming the coupling of moments in the composite system via 5d states of Gd. It is also unambiguously observed that Co magnetic moments are indeed aligned antiparallel to the Gd ones via 4f-5d positive exchange and 3d-5d hybridization.

  4. Analysis of spin depolarizing effects in electron storage rings

    International Nuclear Information System (INIS)

    Boege, M.

    1994-05-01

    In this thesis spin depolarizing effects in electron storage rings are analyzed and the depolarizing effects in the HERA electron storage ring are studied in detail. At high beam energies the equilibrium polarization is limited by nonlinear effects. This will be particularly true in the case of HERA, when the socalled ''spin rotators'' are inserted which are designed to provide longitudinal electron polarization for the HERMES experiment in 1994 and later for the H1 and ZEUS experiment. It is very important to quantify the influence of these effects theoretically by a proper modelling of HERA, so that ways can be found to get a high degree of polarization in the real machine. In this thesis HERA is modelled by the Monte-Carlo tracking program SITROS which was originally written by J. Kewisch in 1982 to study the polarization in PETRA. The first part of the thesis is devoted to a detailed description of the fundamental theoretical concepts on which the program is based. Then the approximations which are needed to overcome computing time limitations are explained and their influence on the simulation result is discussed. The systematic and statistical errors are studied in detail. Extensions of the program which allow a comparison of SITROS with the results given by ''linear'' theory are explained. (orig.)

  5. Electron-vibron coupling effects on electron transport via a single-molecule magnet

    Science.gov (United States)

    McCaskey, Alexander; Yamamoto, Yoh; Warnock, Michael; Burzurí, Enrique; van der Zant, Herre S. J.; Park, Kyungwha

    2015-03-01

    We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters, vibrational energies, and electron-vibron coupling strengths of the Fe4 are computed using DFT. A giant spin model is applied to the Fe4 with only two charge states, specifically a neutral state with a total spin S =5 and a singly charged state with S =9 /2 , which is consistent with our DFT result and experiments on Fe4 single-molecule transistors. In sequential electron tunneling, we find that the magnetic anisotropy gives rise to new features in the conductance peaks arising from vibrational excitations. In particular, the peak height shows a strong, unusual dependence on the direction as well as magnitude of applied B field. The magnetic anisotropy also introduces vibrational satellite peaks whose position and height are modified with the direction and magnitude of applied B field. Furthermore, when multiple vibrational modes with considerable electron-vibron coupling have energies close to one another, a low-bias current is suppressed, independently of gate voltage and applied B field, although that is not the case for a single mode with a similar electron-vibron coupling. In the former case, the conductance peaks reveal a stronger B -field dependence than in the latter case. The new features appear because the magnetic anisotropy barrier is of the same order of magnitude as the energies of vibrational modes with significant electron-vibron coupling. Our findings clearly show the interesting interplay between magnetic anisotropy and electron-vibron coupling in electron transport via the Fe4. Similar behavior can be observed in transport via other anisotropic magnetic molecules.

  6. Trapped electrons in irradiated single crystals of polyhydroxy compounds

    International Nuclear Information System (INIS)

    Box, H.C.; Budzinski, E.E.; Freund, H.G.; Potter, W.R.

    1979-01-01

    The intermolecular trapping of electrons has been observed in single crystals of dulcitol and L(+) arabinose x-irradiated at 4.2 0 K. Attribution of a major component of the ESR absorption to trapped electrons is based upon the character of the hyperfine pattern, which arises from multiple anisotropic hyperfine interactions with exchangeable protons, and on the g value of the absorption, which is always less than the free spin value. The removal of the trapped electron absorption upon irradiation with visible light has also been demonstrated. In these experiments all of the electrons are trapped in identical sites. This circumstance provides some important advantages in the study of the factors affecting the stabilization of charge in an environment of polarizable molecules

  7. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout

    Science.gov (United States)

    Sukachev, D. D.; Sipahigil, A.; Nguyen, C. T.; Bhaskar, M. K.; Evans, R. E.; Jelezko, F.; Lukin, M. D.

    2017-12-01

    The negatively charged silicon-vacancy (SiV- ) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (˜250 ns ) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV- electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV- symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV- spin with 89% fidelity. Coherent control of the SiV- spin with microwave fields is used to demonstrate a spin coherence time T2 of 13 ms and a spin relaxation time T1 exceeding 1 s at 100 mK. These results establish the SiV- as a promising solid-state candidate for the realization of quantum networks.

  8. Chiral-like tunneling of electrons in two-dimensional semiconductors with Rashba spin-orbit coupling.

    Science.gov (United States)

    Ang, Yee Sin; Ma, Zhongshui; Zhang, C

    2014-01-21

    The unusual tunneling effects of massless chiral fermions (mCF) and massive chiral fermions (MCF) in a single layer graphene and bilayer graphene represent some of the most bizarre quantum transport phenomena in condensed matter system. Here we show that in a two-dimensional semiconductor with Rashba spin-orbit coupling (R2DEG), the real-spin chiral-like tunneling of electrons at normal incidence simultaneously exhibits features of mCF and MCF. The parabolic branch of opposite spin in R2DEG crosses at a Dirac-like point and has a band turning point. These features generate transport properties not found in usual two-dimensional electron gas. Albeit its π Berry phase, electron backscattering is present in R2DEG. An electron mimics mCF if its energy is in the vicinity of the subband crossing point or it mimics MCF if its energy is near the subband minima.

  9. Electron spin injection from a regrown Fe layer in a spin-polarized vertical-cavity surface-emitting laser

    Science.gov (United States)

    Holub, M.; Bhattacharya, P.; Shin, J.; Saha, D.

    2007-04-01

    An electroluminescence circular polarization of 23% and threshold current reduction of 11% are obtained in an electrically pumped spin-polarized vertical-cavity surface-emitting laser. Electron spin injection is accomplished utilizing a regrown Fe/ n-AlGaAs Schottky tunnel barrier deposited around the base of the laser mesas. Negligible circular polarizations and threshold current reductions are measured for nonmagnetic and Fe-based control VCSELs, which provides convincing evidence of spin injection, transport, and detection in our spin-polarized laser.

  10. Transverse target single-spin asymmetry in inclusive electroproduction of charged pions and kaons

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). 2. Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Akopov, N. [Yerevan Physics Institute (Argentina); Akopov, Z. [DESY Hamburg (Germany)] [and others; Collaboration: HERMES Collaboration

    2013-10-15

    Single-spin asymmetries were investigated in inclusive electroproduction of charged pions and kaons from transversely polarized protons at the HERMES experiment. The asymmetries were studied as a function of the azimuthal angle {psi} about the beam direction between the target-spin direction and the hadron production plane, the transverse hadron momentum P{sub T} relative to the direction of the incident beam, and the Feynman variable x{sub F}. The sin {psi} amplitudes are positive for {pi}{sup +} and K{sup +}, slightly negative for {pi}{sup -} consistent with zero for K{sup -}, with particular P{sub T} but weak x{sub F} dependences. Especially large asymmetries are observed for two small subsamples of events, where also the scattered electron was recorded by the spectrometer.

  11. Transverse target single-spin asymmetry in inclusive electroproduction of charged pions and kaons

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Akopov, N. [Yerevan Physics Institute, 375036 Yerevan (Armenia); Akopov, Z. [DESY, 22603 Hamburg (Germany); Aschenauer, E.C. [DESY, 15738 Zeuthen (Germany); Augustyniak, W. [National Centre for Nuclear Research, 00-689 Warsaw (Poland); Avakian, R.; Avetissian, A. [Yerevan Physics Institute, 375036 Yerevan (Armenia); Avetisyan, E. [DESY, 22603 Hamburg (Germany); Belostotski, S. [K.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, 188300 Leningrad Region (Russian Federation); Bianchi, N. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Blok, H.P. [National Institute for Subatomic Physics (Nikhef), 1009 DB Amsterdam (Netherlands); Department of Physics and Astronomy, VU University, 1081 HV Amsterdam (Netherlands); Borissov, A. [DESY, 22603 Hamburg (Germany); Bowles, J. [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Bryzgalov, V. [Institute for High Energy Physics, Protvino, 142281 Moscow Region (Russian Federation); Burns, J. [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Capiluppi, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara and Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, 44122 Ferrara (Italy); Capitani, G.P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Cisbani, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Gruppo Collegato Sanità and Istituto Superiore di Sanità, 00161 Roma (Italy); and others

    2014-01-20

    Single-spin asymmetries were investigated in inclusive electroproduction of charged pions and kaons from transversely polarized protons at the HERMES experiment. The asymmetries were studied as a function of the azimuthal angle ψ about the beam direction between the target-spin direction and the hadron production plane, the transverse hadron momentum P{sub T} relative to the direction of the incident beam, and the Feynman variable x{sub F}. The sin ψ amplitudes are positive for π{sup +} and K{sup +}, slightly negative for π{sup −} and consistent with zero for K{sup −}, with particular P{sub T} but weak x{sub F} dependences. Especially large asymmetries are observed for two small subsamples of events, where also the scattered electron was recorded by the spectrometer.

  12. Single-spin precessing gravitational waveform in closed form

    Science.gov (United States)

    Lundgren, Andrew; O'Shaughnessy, R.

    2014-02-01

    In coming years, gravitational-wave detectors should find black hole-neutron star (BH-NS) binaries, potentially coincident with astronomical phenomena like short gamma ray bursts. These binaries are expected to precess. Gravitational-wave science requires a tractable model for precessing binaries, to disentangle precession physics from other phenomena like modified strong field gravity, tidal deformability, or Hubble flow; and to measure compact object masses, spins, and alignments. Moreover, current searches for gravitational waves from compact binaries use templates where the binary does not precess and are ill-suited for detection of generic precessing sources. In this paper we provide a closed-form representation of the single-spin precessing waveform in the frequency domain by reorganizing the signal as a sum over harmonics, each of which resembles a nonprecessing waveform. This form enables simple analytic calculations of the Fisher matrix for use in template bank generation and coincidence metrics, and jump proposals to improve the efficiency of Markov chain Monte Carlo sampling. We have verified that for generic BH-NS binaries, our model agrees with the time-domain waveform to 2%. Straightforward extensions of the derivations outlined here (and provided in full online) allow higher accuracy and error estimates.

  13. Dynamical sensitivity control of a single-spin quantum sensor.

    Science.gov (United States)

    Lazariev, Andrii; Arroyo-Camejo, Silvia; Rahane, Ganesh; Kavatamane, Vinaya Kumar; Balasubramanian, Gopalakrishnan

    2017-07-26

    The Nitrogen-Vacancy (NV) defect in diamond is a unique quantum system that offers precision sensing of nanoscale physical quantities at room temperature beyond the current state-of-the-art. The benchmark parameters for nanoscale magnetometry applications are sensitivity, spectral resolution, and dynamic range. Under realistic conditions the NV sensors controlled by conventional sensing schemes suffer from limitations of these parameters. Here we experimentally show a new method called dynamical sensitivity control (DYSCO) that boost the benchmark parameters and thus extends the practical applicability of the NV spin for nanoscale sensing. In contrast to conventional dynamical decoupling schemes, where π pulse trains toggle the spin precession abruptly, the DYSCO method allows for a smooth, analog modulation of the quantum probe's sensitivity. Our method decouples frequency selectivity and spectral resolution unconstrained over the bandwidth (1.85 MHz-392 Hz in our experiments). Using DYSCO we demonstrate high-accuracy NV magnetometry without |2π| ambiguities, an enhancement of the dynamic range by a factor of 4 · 10 3 , and interrogation times exceeding 2 ms in off-the-shelf diamond. In a broader perspective the DYSCO method provides a handle on the inherent dynamics of quantum systems offering decisive advantages for NV centre based applications notably in quantum information and single molecule NMR/MRI.

  14. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    International Nuclear Information System (INIS)

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  15. Electron-spin filter and polarizer in a standing light wave

    Science.gov (United States)

    Ahrens, Sven

    2017-11-01

    We demonstrate the theoretical feasibility of spin-dependent diffraction and spin polarization of an electron in two counterpropagating, circularly polarized laser beams. The spin dynamics appears in a two-photon process of the Kapitza-Dirac effect in the Bragg regime. We show the spin dependence of the diffraction process by comparison of the time evolution of spin-up and spin-down electrons in a relativistic quantum simulation. We further discuss the spin properties of the scattering by studying an analytically approximated solution of the time-evolution matrix. A classification scheme in terms of unitary or nonunitary propagation matrices is used for establishing a generalized and spin-independent description of the spin properties in the diffraction process.

  16. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation.

    Science.gov (United States)

    Ceeh, Hubert; Weber, Josef Andreas; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-02-16

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV.

  17. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Rondin, L.; Tetienne, J.-P.; Spinicelli, P.; Roch, J.-F.; Jacques, V. [Laboratoire de Photonique Quantique et Moleculaire, Ecole Normale Superieure de Cachan and CNRS UMR 8537, 94235 Cachan Cedex (France); Dal Savio, C.; Karrai, K. [Attocube systems AG, Koeniginstrasse 11A RGB, Munich 80539 (Germany); Dantelle, G. [Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique and CNRS UMR 7643, 91128 Palaiseau (France); Thiaville, A.; Rohart, S. [Laboratoire de Physique des Solides, Universite Paris-Sud and CNRS UMR 8502, 91405 Orsay (France)

    2012-04-09

    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.

  18. Photoinduced nuclear spin conversion of methyl groups of single molecules

    International Nuclear Information System (INIS)

    Sigl, A.

    2007-01-01

    A methyl group is an outstanding quantum system due to its special symmetry properties. The threefold rotation around one of its bond is isomorphic to the group of even permutations of the remaining protons, a property which imposes severe quantum restrictions on the system, for instance a strict correlation of rotational states with nuclear spin states. The resulting long lifetimes of the rotational tunneling states of the methyl group can be exploited for applying certain high resolution optical techniques, like hole burning or single molecule spectroscopy to optically switch the methyl group from one tunneling state to another therebye changing the nuclear spin of the protons. One goal of the thesis was to perform this switching in single methyl groups. To this end the methyl group was attached to a chromophoric system, in the present case terrylene, which is well suited for single molecule spectroscopy as well as for hole burning. Experiments were performed with the bare terrylene molecule in a hexadecane lattice which served as a reference system, with alphamethyl terrylene and betamethyl terrylene, both embedded in hexadecane, too. A single molecular probe is a highly sensitive detector for dynamic lattice instabilities. Already the bare terrylene probe showed a wealth of interesting local dynamic effects of the hexadecane lattice which could be well acounted for by the assumption of two nearly degenerate sites with rather different optical and thermal properties, all of which could be determined in a quantitative fashion. As to the methylated terrylene systems, the experiments verified that for betamethyl terrylene it is indeed possible to measure rotational tunneling events in single methyl groups. However, the spectral patterns obtained was much more complicated than expected pointing to the presence of three spectroscopically different methyl groups. In order to achieve a definite assignement, molecular mechanics simulations of the terrylene probes in the

  19. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Luyi [Univ. of California, Berkeley, CA (United States)

    2013-05-17

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly

  20. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  1. High-dose dosimetry using electron spin resonance (ESR) spectroscopy

    International Nuclear Information System (INIS)

    Kojima, Takuji; Tanaka, Ryuichi

    1992-01-01

    An electron spin resonance (ESR) dosimeter capable of measuring large doses of radiation in radiotherapy and radiation processing is outlined. In particular, an alanine/ESR dosimeter is discussed, focusing on the development of elements, the development of the ESR dosimetric system, the application of alanine/ESR dosimeter, and basic researches. Rod elements for gamma radiation and x radiation and film elements for electron beams are described in detail. The following recent applications of the alanine/ESR dosimeter are introduced: using as a transfer dosimeter, applying to various types of radiation, diagnosing the deterioration of radiological materials and equipments, and applying to ESR imaging. The future subjects to be solved in the alanine/ESR dosimetric system are referred to as follows: (1) improvement of highly accurate elements suitable for the measurement of various types of radiation, (2) establishment of sensitive calibration method of the ESR equipment itself, and (3) calibration and standardization of radiation doses. (K.N.) 65 refs

  2. Electron spin-lattice relaxation of low-symmetry Ni.sup.2+./sup. centers in LiF

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Badalyan, A. G.; Dejneka, Alexandr; Jastrabík, Lubomír; Lančok, Ján

    2014-01-01

    Roč. 104, č. 25 (2014), "252902-1"-"252902-4" ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LM2011029; GA TA ČR TA01010517; GA ČR GAP108/12/1941 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : Ni 2+ centers * LiF single crystals * electron spin-lattice relaxation * electron spin echo technique Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.302, year: 2014

  3. Single-dopant resonance in a single-electron transistor

    OpenAIRE

    Golovach, V. N.; Jehl, X.; Houzet, M.; Pierre, M.; Roche, B.; Sanquer, M.; Glazman, L. I.

    2011-01-01

    Single dopants in semiconductor nanostructures have been studied in great details recently as they are good candidates for quantum bits, provided they are coupled to a detector. Here we report coupling of a single As donor atom to a single-electron transistor (SET) in a silicon nanowire field-effect transistor. Both capacitive and tunnel coupling are achieved, the latter resulting in a dramatic increase of the conductance through the SET, by up to one order of magnitude. The experimental resu...

  4. Electron spin resonance characterization of a multi-nitrogen complex in diamond

    CERN Document Server

    Iakoubovskii, K

    2002-01-01

    The W27 centre has been characterized by means of electron spin resonance in natural diamond. The centre exhibits spin S=1, a large spin-spin coupling constant D=99 mT, and a complex hyperfine interaction structure interpreted as originating from interaction of an S=1 electronic system with five nitrogen atoms: two of these sites are equivalent and are located near the S = 1 electrons; three others are nearly equivalent and more remote. The centre is suggested to include a divacancy, where one vacancy, bound to two nitrogen atoms and one carbon atom, has trapped an extra electron, while the second vacancy is bound to three substitutional nitrogen atoms.

  5. Magnetization of a two-dimensional electron gas with a spin-orbit interaction

    International Nuclear Information System (INIS)

    Hatano, Naomichi; Shirasaki, Ryoen; Nakamura, Hiroaki

    2006-04-01

    We argue that a two-dimensional electron gas with a spin-orbit interaction is magnetized when a voltage is applied with the Fermi level tuned to be in the energy gap. The magnetization is an indication of spin-carrying currents due to the spin-orbit interaction. (author)

  6. Model for ballistic spin-transport in ferromagnet/two-dimensional electron gas/ferromagnet structures

    NARCIS (Netherlands)

    Schapers, T; Nitta, J; Heersche, HB; Takayanagi, H

    The spin dependent conductance of a ferromagnet/two-dimensional electron gas ferromagnet structure is theoretically examined in the ballistic transport regime. It is shown that the spin signal can be improved considerably by making use of the spin filtering effect of a barrier at the ferromagnet

  7. Electron spin transition causing structure transformations of earth's interiors under high pressure

    Science.gov (United States)

    Yamanaka, T.; Kyono, A.; Kharlamova, S.; Alp, E.; Bi, W.; Mao, H.

    2012-12-01

    To elucidate the correlation between structure transitions and spin state is one of the crucial problems for understanding the geophysical properties of earth interiors under high pressure. High-pressure studies of iron bearing spinels attract extensive attention in order to understand strong electronic correlation such as the charge transfer, electron hopping, electron high-low spin transition, Jahn-Teller distortion and charge disproponation in the lower mantle or subduction zone [1]. Experiment Structure transitions of Fe3-xSixO4, Fe3-xTixO4 Fe3-xCrxO4 spinel solid solution have been investigated at high pressure up to 60 GPa by single crystal and powder diffraction studies using synchrotron radiation with diamond anvil cell. X-ray emission experiment (XES) at high pressure proved the spin transition of Fe-Kβ from high spin (HS) to intermediate spin state (IS) or low spin state (LS). Mössbauer experiment and Raman spectra study have been also conducted for deformation analysis of Fe site and confirmation of the configuration change of Fe atoms. Jahn-Teller effect A cubic-to-tetragonal transition under pressure was induced by Jahn-Teller effect of IVFe2+ (3d6) in the tetrahedral site of Fe2TiO4 and FeCr2O4, providing the transformation from 43m (Td) to 42m (D2d). Tetragonal phase is formed by the degeneracy of e orbital of Fe2+ ion. Their c/a ratios are c/adisordered in the M2 site. At pressures above 53 GPa, Fe2TiO4 structure further transforms to Pmma. This structure change results in the order-disorder transition [2]. New structure of Fe2SiO4 The spin transition exerts an influence to Fe2SiO4 spinel structure and triggers two distinct curves of the lattice constant in the spinel phase. The reversible structure transition from cubic to pseudo-rhombohedral phase was observed at about 45 GPa. This transition is induced by the 20% shrinkage of ionic radius of VIFe2+at the low sin state. Laser heating experiment at 1500 K has confirmed the decomposition from the

  8. Single Molecule Spectroscopy of Electron Transfer

    International Nuclear Information System (INIS)

    Holman, Michael; Zang, Ling; Liu, Ruchuan; Adams, David M.

    2009-01-01

    The objectives of this research are threefold: (1) to develop methods for the study electron transfer processes at the single molecule level, (2) to develop a series of modifiable and structurally well defined molecular and nanoparticle systems suitable for detailed single molecule/particle and bulk spectroscopic investigation, (3) to relate experiment to theory in order to elucidate the dependence of electron transfer processes on molecular and electronic structure, coupling and reorganization energies. We have begun the systematic development of single molecule spectroscopy (SMS) of electron transfer and summaries of recent studies are shown. There is a tremendous need for experiments designed to probe the discrete electronic and molecular dynamic fluctuations of single molecules near electrodes and at nanoparticle surfaces. Single molecule spectroscopy (SMS) has emerged as a powerful method to measure properties of individual molecules which would normally be obscured in ensemble-averaged measurement. Fluctuations in the fluorescence time trajectories contain detailed molecular level statistical and dynamical information of the system. The full distribution of a molecular property is revealed in the stochastic fluctuations, giving information about the range of possible behaviors that lead to the ensemble average. In the case of electron transfer, this level of understanding is particularly important to the field of molecular and nanoscale electronics: from a device-design standpoint, understanding and controlling this picture of the overall range of possible behaviors will likely prove to be as important as designing ia the ideal behavior of any given molecule.

  9. Electron-electron interaction, weak localization and spin valve effect in vertical-transport graphene devices

    Energy Technology Data Exchange (ETDEWEB)

    Long, Mingsheng; Gong, Youpin; Wei, Xiangfei; Zhu, Chao; Xu, Jianbao; Liu, Ping; Guo, Yufen; Li, Weiwei; Liu, Liwei, E-mail: lwliu2007@sinano.ac.cn [Key Laboratory of Nanodevices and Applications-CAS and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Liu, Guangtong [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-04-14

    We fabricated a vertical structure device, in which graphene is sandwiched between two asymmetric ferromagnetic electrodes. The measurements of electron and spin transport were performed across the combined channels containing the vertical and horizontal components. The presence of electron-electron interaction (EEI) was found not only at low temperatures but also at moderate temperatures up to ∼120 K, and EEI dominates over weak localization (WL) with and without applying magnetic fields perpendicular to the sample plane. Moreover, spin valve effect was observed when magnetic filed is swept at the direction parallel to the sample surface. We attribute the EEI and WL surviving at a relatively high temperature to the effective suppress of phonon scattering in the vertical device structure. The findings open a way for studying quantum correlation at relatively high temperature.

  10. Proximity effect of electron beam lithography on single-electron ...

    Indian Academy of Sciences (India)

    The electrical characteristics of the single-electron transistor were observed to be consistent with the expected behavior of electron transport through gated quantum dots, up to 150 K. The dependence of the electrical characteristics on the dot size reveals that the d oscillation follows from the Coulomb blockade by poly-Si ...

  11. Electron impact single ionization of copper

    Indian Academy of Sciences (India)

    Electron impact single ionization cross sections of copper have been calculated in the binary encounter approximation using accurate expression for as given by Vriens and Hartree–Fock momentum distribution for the target electron. The BEA calculation based on the usual procedure does not show satisfactory ...

  12. The single electron chemistry of coals

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Flowers, R.A. II.

    1991-04-22

    The simplest explanation for these shifts in the infrared spectra is there exists in coal single electron donors which are capable of transferring an electron to TCNQ in the ground state. All of the TCNQ placed in the coal appears to be converted to the radical anion as displayed in the IR spectrum for all of the coals except for the 100% loading.

  13. Correlation functions of electronic and nuclear spins in a Heisenberg antiferromagnet semi-infinite media

    International Nuclear Information System (INIS)

    Sarmento, E.F.

    1980-01-01

    Results are found for the correlation dynamic functions (or the correspondent green functions) between any combination including pairs of electronic anel nuclear spin operators in an antiferromagnet semi-infinite media., at low temperature T N . These correlation functions, are used to investigate, at the same time, the properties of surface spin waves in volume and surface. The dispersion relatons of nuclear and electronic spin waves coupled modes, in surface are found, resolving a system of linearized equatons of spin operators a system of linearized equations of spin operators. (author) [pt

  14. Possible Roles of Neural Electron Spin Networks in Memory and Consciousness

    CERN Document Server

    Hu, H P

    2004-01-01

    Spin is the origin of quantum effects in both Bohm and Hestenes quantum formulism and a fundamental quantum process associated with the structure of space-time. Thus, we have recently theorized that spin is the mind-pixel and developed a qualitative model of consciousness based on nuclear spins inside neural membranes and proteins. In this paper, we explore the possibility of unpaired electron spins being the mind-pixels. Besides free O2 and NO, the main sources of unpaired electron spins in neural membranes and proteins are transition metal ions and O2 and NO bound/absorbed to large molecules, free radicals produced through biochemical reactions and excited molecular triplet states induced by fluctuating internal magnetic fields. We show that unpaired electron spin networks inside neural membranes and proteins are modulated by action potentials through exchange and dipolar coupling tensors and spin-orbital coupling and g-factor tensors and perturbed by microscopically strong and fluctuating internal magnetic...

  15. Electron spin resonance intercomparison studies on irradiated foodstuffs

    International Nuclear Information System (INIS)

    Raffi, J.

    1992-01-01

    The results of intercomparison studies organized by the Community Bureau of Reference on the use of electron spin resonance spectroscopy for the identification of irradiated food are presented. A qualitative intercomparison was carried out using beef and trout bones, sardine scales, pistachio nut shells, dried grapes and papaya. A quantitative intercomparison involving the use of poultry bones was also organized. There was no difficulty in identifying meat bones, dried grapes and papaya. In the case of fish bones there is a need for further kinetic studies using different fish species. The identification of pistachio nut shells is more complicated and further research is needed prior to the organization of a further intercomparison. Laboratories were able to distinguish between chicken bones irradiated in the range 1 to 3 KGy or 7 to 10 KGy although there was a partial overlap between the results from different laboratories

  16. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences

    2017-11-28

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static and dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO2 nanoparticle surfaces by using ultrafast single

  17. Large Logarithms in the Beam Normal Spin Asymmetry of Elastic Electron--Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Andrei Afanasev; Mykola Merenkov

    2004-06-01

    We study a parity-conserving single-spin beam asymmetry of elastic electron-proton scattering induced by an absorptive part of the two-photon exchange amplitude. It is demonstrated that excitation of inelastic hadronic intermediate states by the consecutive exchange of two photons leads to logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. The asymmetry at small electron scattering angles is expressed in terms of the total photoproduction cross section on the proton, and is predicted to reach the magnitude of 20-30 parts per million. At these conditions and fixed 4-momentum transfers, the asymmetry is rising logarithmically with increasing electron beam energy, following the high-energy diffractive behavior of total photoproduction cross section on the proton.

  18. Spin excitations and the electronic specific heat of URu2Si2

    DEFF Research Database (Denmark)

    Mason, T.E.; Buyers, W.J.L.

    1991-01-01

    and conduction electrons yields m*/m(b) almost-equal-to 7.7 for T T(N) which is sufficient to account for the difference between band-structure calculations and the measured electronic specific heat. In addition, inclusion of the temperature dependence of the spin......We have calculated the mass enhancement due to the interaction of conduction electrons with spin fluctuations, using the generalized spin susceptibility determined from neutron-scattering measurements, for the heavy-fermion superconductor URu2Si2. Reasonable coupling between the spin excitations...

  19. Electron-Spin Precession in Dependence of the Orientation of the External Magnetic Field.

    Science.gov (United States)

    Miah, M Idrish

    2009-03-13

    Electron-spin dynamics in semiconductor-based heterostructures has been investigated in oblique magnetic fields. Spins are generated optically by a circularly polarized light, and the dynamics of spins in dependence of the orientation (theta) of the magnetic field are studied. The electron-spin precession frequency, polarization amplitude, and decay rate as a function of theta are obtained and the reasons for their dependences are discussed. From the measured data, the values of the longitudinal and transverse components of the electron g-factor are estimated and are found to be in good agreement with those obtained in earlier investigations. The possible mechanisms responsible for the observed effects are also discussed.

  20. Effect of quenched disorder on charge-orbital-spin ordering in single-layer manganites

    International Nuclear Information System (INIS)

    Uchida, Masaya; Mathieu, Roland; He, Jinping; Kaneko, Yoshio; Tokura, Yoshinori; Asamitsu, Atsushi; Kumai, Reiji; Tomioka, Yasuhide; Matsui, Yoshio

    2006-01-01

    Structural and magnetic properties have been investigated for half-doped single-layer manganites RE 0.5 Sr 1.5 MnO 4 [RE=La, (La, Pr), Pr, Nd, Sm, and Eu]. Analyses of electron diffraction and ac susceptibility measurements have revealed that the long-range charge-orbital ordering (CO-OO) state as observed in La 0.5 Sr 1.5 MnO 4 is suppressed for the other materials: the CO-OO transition temperature, as well as the correlation length decreases with a decrease in the cation size of RE. Such a short-range CO-OO state shows a spin-glass behavior at low temperatures. A new electronic phase diagram is established with quenched disorder as the control parameter. (author)

  1. Spin-wave excitations and electron-magnon scattering from many-body perturbation theory

    Science.gov (United States)

    Friedrich, Christoph; Müller, Mathias C. T. D.; Blügel, Stefan

    We study the spin excitations and the electron-magnon scattering in bulk Fe, Co, and Ni within the framework of many-body perturbation theory as implemented in the full-potential linearized augmented-plane-wave method. Starting from the GW approximation we obtain a Bethe-Salpeter equation for the magnetic susceptibility treating single-particle Stoner excitations and magnons on the same footing. Due to approximations used in the numerical scheme, the acoustic magnon dispersion exhibits a small but finite gap at Γ. We analyze this violation of the Goldstone theorem and present an approach that implements the magnetic susceptibility using a renormalized Green function instead of the non-interacting one, leading to a substantial improvement of the Goldstone-mode condition. Finally, we employ the solution of the Bethe-Salpeter equation to construct a self-energy that describes the scattering of electrons and magnons. The resulting renormalized band structures exhibit strong lifetime effects close to the Fermi energy. We also see kinks in the electronic bands, which we attribute to electron scattering with spatially extended spin waves.

  2. Electron spin relaxation in organic semiconductors probed through {mu}SR

    Energy Technology Data Exchange (ETDEWEB)

    Nuccio, L; Willis, M; Drew, A J [Queen Mary University of London, Department of Physics, Mile End Road, London, E1 4NS (United Kingdom); Schulz, L; Bernhard, C [Department of Physics and FriMat, University of Fribourg, Ch. du Musee 3, 1700 Fribourg, CH (Germany); Pratt, F L [ISIS Muon Facility, Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom); Heeney, M; Stingelin, N, E-mail: l.nuccio@qmul.ac.uk [Centre for Plastic Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, London (United Kingdom)

    2011-04-01

    Muon spin spectroscopy and in particular the avoided level crossing technique is introduced, with the aim of showing it as a very sensitive local probe for electron spin relaxation in organic semiconductors. Avoided level crossing data on TMS-pentacene at different temperatures are presented, and they are analysed to extract the electron spin relaxation rate, that is shown to increase on increasing the temperature from 0.02 MHz to 0.33 MHz at 3 K and 300 K respectively.

  3. Nonuniform currents and spins of relativistic electron vortices in a magnetic field

    OpenAIRE

    van Kruining, Koen; Hayrapetyan, Armen G.; Götte, Jörg B.

    2017-01-01

    We present a relativistic description of electron vortex beams in a homogeneous magnetic field. Including spin from the beginning reveals that spin-polarized electron vortex beams have a complicated azimuthal current structure, containing small rings of counterrotating current between rings of stronger corotating current. Contrary to many other problems in relativistic quantum mechanics, there exists a set of vortex beams with exactly zero spin-orbit mixing in the highly relativistic and nonp...

  4. Magnetization tunneling in high-symmetry single-molecule magnets: Limitations of the giant spin approximation

    Science.gov (United States)

    Wilson, A.; Lawrence, J.; Yang, E.-C.; Nakano, M.; Hendrickson, D. N.; Hill, S.

    2006-10-01

    Electron paramagnetic resonance (EPR) studies of a Ni4 single-molecule magnet (SMM) yield the zero-field-splitting (ZFS) parameters D , B40 , and B44 , based on the giant spin approximation (GSA) with S=4 ; B44 is responsible for the magnetization tunneling in this SMM. Experiments on an isostructural Ni-doped Zn4 crystal establish the NiII ion ZFS parameters. The fourth-order ZFS parameters in the GSA arise from the interplay between the Heisenberg interaction Jŝ1•ŝ2 and the second-order single-ion anisotropy, giving rise to mixing of higher-lying S≠4 states into the S=4 state. Consequently, J directly influences the ZFS in the ground state, enabling its determination by EPR.

  5. Efficient organometallic spin filter between single-wall carbon nanotube or graphene electrodes

    DEFF Research Database (Denmark)

    Koleini, Mohammad; Paulsson, Magnus; Brandbyge, Mads

    2007-01-01

    We present a theoretical study of spin transport in a class of molecular systems consisting of an organometallic benzene-vanadium cluster placed in between graphene or single-wall carbon-nanotube-model contacts. Ab initio modeling is performed by combining spin density functional theory and noneq......We present a theoretical study of spin transport in a class of molecular systems consisting of an organometallic benzene-vanadium cluster placed in between graphene or single-wall carbon-nanotube-model contacts. Ab initio modeling is performed by combining spin density functional theory...

  6. Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nanostructure

    Science.gov (United States)

    Yang, Shi-Peng; Lu, Mao-Wang; Huang, Xin-Hong; Tang, Qiang; Zhou, Yong-Long

    2017-04-01

    A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic-electric barrier nanostructure with both Rashba and Dresselhaus spin-orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin-orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin-orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin-orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

  7. Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode

    International Nuclear Information System (INIS)

    Wójcik, P; Spisak, B J; Wołoszyn, M; Adamowski, J

    2012-01-01

    Nonlinear properties of the spin-dependent electronic transport through a semiconductor resonant tunnelling diode with a paramagnetic quantum well are considered. The spin-dependent Wigner–Poisson model of the electronic transport and the two-current Mott’s formula for the independent spin channels are applied to determine the current–voltage curves of the nanodevice. Two types of the electronic current hysteresis loops are found in the current–voltage characteristics for both the spin components of the electronic current. The physical interpretation of these two types of the electronic current hysteresis loops is given based on the analysis of the spin-dependent electron densities and the potential energy profiles. The differences between the current–voltage characteristics for both the spin components of the electronic current allow us to explore the changes of the spin polarization of the current for different electric fields and determine the influence of the electronic current hysteresis on the spin polarization of the current flowing through the paramagnetic resonant tunnelling diode. (paper)

  8. Investigations on resolution enhancement in EPR by means of electron spin echoes

    International Nuclear Information System (INIS)

    Merks, R.P.J.

    1979-01-01

    The electron spin echo technique has been applied in four types of experiments: the measurement of electric field induced shifts of the EPR line; the detection of electron spin echo ENDOR; a relaxation measurement and the measurement of hyperfine interactions via the nuclear modulation effect. (Auth.)

  9. Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts

    DEFF Research Database (Denmark)

    Hu, C.-M.; Nitta, Junsaku; Jensen, Ane

    2001-01-01

    Ferromagnetic contacts on a high-mobility, two-dimensional electron gas (2DEG) in a narrow gap semiconductor with strong spin-orbit interaction are used to investigate spin-polarized electron transport. We demonstrate the use of magnetized contacts to preferentially inject and detect specific spi...

  10. Relaxation of the electron spin in quantum dots via one- and two-phonon processes

    International Nuclear Information System (INIS)

    Calero, C.; Chudnovsky, E.M.; Garanin, D.A.

    2007-01-01

    We have studied direct and Raman processes of the decay of electron spin states in a quantum dot via radiation of phonons corresponding to elastic twists. Universal dependence of the spin relaxation rate on the strength and direction of the magnetic field has been obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid

  11. Relaxation of the electron spin in quantum dots via one- and two-phonon processes

    Energy Technology Data Exchange (ETDEWEB)

    Calero, C. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States)]. E-mail: carlos.calero-borrallo@lehman.cuny.edu; Chudnovsky, E.M. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States); Garanin, D.A. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States)

    2007-09-15

    We have studied direct and Raman processes of the decay of electron spin states in a quantum dot via radiation of phonons corresponding to elastic twists. Universal dependence of the spin relaxation rate on the strength and direction of the magnetic field has been obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid.

  12. Theoretical evaluation of the electron paramagnetic resonance spin ...

    Indian Academy of Sciences (India)

    The impurity displacements for Fe3+ and Ru3+ in corundum (Al2O3) are theoretically studied using the perturbation formulas of the spin Hamiltonian parameters (zero-field splitting and anisotropic factors) for a 3d5 (with high spin = 5/2) and a 4d5 (with low spin = 1/2) ion in trigonal symmetry, respectively. According ...

  13. Single-dopant resonance in a single-electron transistor

    Science.gov (United States)

    Golovach, V. N.; Jehl, X.; Houzet, M.; Pierre, M.; Roche, B.; Sanquer, M.; Glazman, L. I.

    2011-02-01

    Single dopants in semiconductor nanostructures have been studied in great detail recently as they are good candidates for quantum bits, provided they are coupled to a detector. Here we report the coupling of a single As donor atom to a single-electron transistor (SET) in a silicon nanowire field-effect transistor. Both capacitive and tunnel coupling are achieved, the latter resulting in a dramatic increase of the conductance through the SET, by up to one order of magnitude. The experimental results are well explained by the rate-equation theory developed in parallel with the experiment.

  14. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Directory of Open Access Journals (Sweden)

    Armen N. Kocharian

    2016-05-01

    Full Text Available Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  15. Spinning Carbon Nanotube Nanothread under a Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Mark Schulz

    2011-08-01

    Full Text Available Nanothread with a diameter as small as one hundred nanometers was manufactured under a scanning electron microscope. Made directly from carbon nanotubes, and inheriting their superior electrical and mechanical properties, nanothread may be the world’s smallest man-made fiber. The smallest thread that can be spun using a bench-top spinning machine is about 5 microns in diameter. Nanothread is a new material building block that can be used at the nanoscale or plied to form yarn for applications at the micro and macro scales. Preliminary electrical and mechanical properties of nanothread were measured. The resistivity of nanothread is less than 10−5 Ω∙m. The strength of nanothread is greater than 0.5 GPa. This strength was obtained from measurements using special glue that cures in an electron microscope. The glue weakened the thread, thus further work is needed to obtain more accurate measurements. Nanothread will have broad applications in enabling electrical components, circuits, sensors, and tiny machines. Yarn can be used for various macroscale applications including lightweight antennas, composites, and cables.

  16. Application of magnetic resonance force microscopy cyclic adiabatic inversion for a single-spin measurement

    CERN Document Server

    Berman, G P; Chapline, G; Gurvitz, S A; Hammel, P C; Pelekhov, D V; Suter, A; Tsifrinovich, V I

    2003-01-01

    We consider the process of a single-spin measurement using magnetic resonance force microscopy (MRFM) with a cyclic adiabatic inversion (CAI). This technique is also important for different applications, including a measurement of a qubit state in quantum computation. The measurement takes place through the interaction of a single spin with a cantilever modelled by a quantum oscillator in a coherent state in a quasi-classical range of parameters. The entire system is treated rigorously within the framework of the Schroedinger equation. For a many-spin system our equations accurately describe conventional MRFM experiments involving CAI of the spin system. Our computer simulations of the quantum spin-cantilever dynamics show that the probability distribution for the cantilever position develops two asymmetric peaks with the total relative probabilities mainly dependent on the initial angle between the directions of the average spin and the effective magnetic field, in the rotating frame. We show that each of th...

  17. Spin eigen-states of Dirac equation for quasi-two-dimensional electrons

    Energy Technology Data Exchange (ETDEWEB)

    Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)

    2015-10-15

    Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shown that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.

  18. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon

    Science.gov (United States)

    Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm

    In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.

  19. Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond

    Science.gov (United States)

    Zhu, Xiaobo; Saito, Shiro; Kemp, Alexander; Kakuyanagi, Kosuke; Karimoto, Shin-Ichi; Nakano, Hayato; Munro, William J.; Tokura, Yasuhiro; Everitt, Mark S.; Nemoto, Kae; Kasu, Makoto; Mizuochi, Norikazu; Semba, Kouichi

    2012-02-01

    We have experimentally demonstrated coherent strong coupling between a single macroscopic superconducting artificial atom (a gap tunable flux qubit [1]) and an ensemble of electron spins in the form of nitrogen--vacancy color centres in diamond. We have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3.0*10^7 NV- centers [2]. This is the first step towards the realization of a long-lived quantum memory and hybrid devices coupling microwave and optical systems. [1] Coherent operation of a gap-tunable flux qubit X. B. Zhu, A. Kemp, S. Saito, K. Semba, APPLIED PHYSICS LETTERS, Volume: 97, Issue: 10 pp. 102503 (2010) [2] Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond Xiaobo Zhu, Shiro Saito, Alexander Kemp, Kosuke Kakuyanagi, Shin-ichi Karimoto, Hayato Nakano, William J. Munro, Yasuhiro Tokura, Mark S. Everitt, Kae Nemoto, Makoto Kasu, Norikazu Mizuochi, and Kouichi Semba, Nature, Volume: 478, 221-224 (2011)

  20. Thermoelectric-induced spin currents in single-molecule magnet tunnel junctions

    Science.gov (United States)

    Zhang, Zhengzhong; Jiang, Liang; Wang, Ruiqiang; Wang, Baigeng; Xing, D. Y.

    2010-12-01

    A molecular spin-current generator is proposed, which consists of a single-molecule magnet (SMM) coupled to two normal metal electrodes with temperature gradient. It is shown that this tunneling junction can generate a highly spin-polarized current by thermoelectric effects, whose flowing direction and spin polarization can be changed by adjusting the gate voltage applied to the SMM. This device can be realized with current technologies and may have practical use in spintronics and quantum information.

  1. Dynamical Monte Carlo investigation of spin reversals and nonequilibrium magnetization of single-molecule magnets

    OpenAIRE

    Liu, Gui-Bin; Liu, Bang-Gui

    2010-01-01

    In this paper, we combine thermal effects with Landau-Zener (LZ) quantum tunneling effects in a dynamical Monte Carlo (DMC) framework to produce satisfactory magnetization curves of single-molecule magnet (SMM) systems. We use the giant spin approximation for SMM spins and consider regular lattices of SMMs with magnetic dipolar interactions (MDI). We calculate spin reversal probabilities from thermal-activated barrier hurdling, direct LZ tunneling, and thermal-assisted LZ tunnelings in the pr...

  2. Spin dynamics of the positive muon radicals in the presence of rapid electron spin exchange: frequency shift and relaxation

    International Nuclear Information System (INIS)

    Senba, Masayoshi; British Columbia Univ., Vancouver, BC

    1991-01-01

    The spin dynamics of the positive muon in a muonium-like radical has been investigated in the case where the unpaired electron of the radical undergoes rapid spin flip collisions. If the spin flip rate λ SF is much faster than the hyperfine frequency of the radical, the behaviour of the muon spin is very similar to that of a positive muon in diamagnetic environments. It has been shown that in a transverse field, the relaxation rate and precession frequency of the apparent diamagnetic muon are related to the time evolution function of the muon spin in muonium. The relaxation rate of such an apparent diamagnetic signal has a characteristic field dependence which is very sensitive to the hyperfine frequency of the radical. The fractional frequency shift with respect to the positive muon precession frequency (ω D -ω μ )/ω μ is shown to be field-dependent, in contrast to the case of Knight shifts in metals. The field dependence of the relaxation and frequency shift will provide a tool to distinguish experimentally the muon in a radical which behaves like a free positive muon from a genuine diamagnetic muon. This work can be applied to a variety of fields involving muonium and hydrogen, such as spin dynamic in the gas phase and the muonium-like (hydrogen-like) states in semiconductors. The case where the muon undergoes both spin flip and charge transfer collisions is also discussed. (author)

  3. Mechanism of initiation of oxidation in mayonnaise enriched with fish oil as studied by electron spin resonance spectroscopy

    DEFF Research Database (Denmark)

    Thomsen, M.K.; Jacobsen, Charlotte; Skibsted, L.H.

    2000-01-01

    Electron spin resonance spectroscopy (spin trapping technique) has been used to identify the most important single factor for initiation of lipid oxidation in mayonnaise enriched with fish oil. Low pH increases the formation of radicals during incubation under mildly accelerated conditions at 37...... degreesC as quantified using 12-doxylstearic acid. Sugar, NaCl and potassium sorbate have no effect on radical formation while EDTA (down to 50 mug/g) has an antioxidative effect. Iron bound to phosvitin in egg yolk, inactive at pH similar to6, is considered to be exposed to the solvent (the aqueous phase...

  4. Electron spin interactions in chemistry and biology fundamentals, methods, reactions mechanisms, magnetic phenomena, structure investigation

    CERN Document Server

    Likhtenshtein, Gertz

    2016-01-01

    This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph appeals to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.

  5. Multiphoton electronic-spin generation and transmission spectroscopy in n-type GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-01-17

    Multiphoton electronic-spin generation in semiconductors was investigated using differential transmission spectroscopy. The generation of the electronic spins in the semiconductor samples were achieved by multiphoton pumping with circularly polarized light beam and was probed by the spin-resolved transmission of the samples. The electronic spin-polarization of conduction band was estimated and was found to depend on the delay of the probe beam, temperature as well as on the multiphoton pumping energy. The temperature dependence showed a decrease of the spin-polarization with increasing temperature. The electronic spin-polarization was found to depolarize rapidly for multiphoton pumping energy larger than the energy gap of the split-off band to the conduction band. The results were compared with those obtained in one-photon pumping, which shows that an enhancement of the electronic spin-polarization was achieved in multiphoton pumping. The findings resulting from this investigation might have potential applications in opto-spintronics, where the generation of highly polarized electronic spins is required.

  6. Multiphoton electronic-spin generation and transmission spectroscopy in n-type GaAs

    International Nuclear Information System (INIS)

    Idrish Miah, M.

    2011-01-01

    Multiphoton electronic-spin generation in semiconductors was investigated using differential transmission spectroscopy. The generation of the electronic spins in the semiconductor samples were achieved by multiphoton pumping with circularly polarized light beam and was probed by the spin-resolved transmission of the samples. The electronic spin-polarization of conduction band was estimated and was found to depend on the delay of the probe beam, temperature as well as on the multiphoton pumping energy. The temperature dependence showed a decrease of the spin-polarization with increasing temperature. The electronic spin-polarization was found to depolarize rapidly for multiphoton pumping energy larger than the energy gap of the split-off band to the conduction band. The results were compared with those obtained in one-photon pumping, which shows that an enhancement of the electronic spin-polarization was achieved in multiphoton pumping. The findings resulting from this investigation might have potential applications in opto-spintronics, where the generation of highly polarized electronic spins is required.

  7. Single-ion and single-chain magnetism in triangular spin-chain oxides

    Science.gov (United States)

    Seikh, Md. Motin; Caignaert, Vincent; Perez, Olivier; Raveau, Bernard; Hardy, Vincent

    2017-05-01

    S r4 -xC axM n2Co O9 oxides (x =0 and x =2 ) are found to exhibit magnetic responses typical of single-chain magnets (SCMs) and single-ion magnets (SIMs), two features generally investigated in coordination polymers or complexes. The compound x =0 appears to be a genuine SCM, in that blocking effects associated with slow spin dynamics yield remanence and coercivity in the absence of long-range ordering (LRO). In addition, SIM signatures of nearly identical nature are detected in both compounds, coexisting with SCM in x =0 and with LRO in x =2 . It is also observed that a SCM response can be recovered in x =2 after application of magnetic field. These results suggest that purely inorganic systems could play a valuable role in the topical issue of the interplay among SIM, SCM, and LRO phenomena in low-dimensional magnetism.

  8. Coupled spin and charge collective excitations in a spin polarized electron gas

    International Nuclear Information System (INIS)

    Marinescu, D.C.; Quinn, J.J.; Yi, K.S.

    1997-01-01

    The charge and longitudinal spin responses induced in a spin polarized quantum well by a weak electromagnetic field are investigated within the framework of the linear response theory. The authors evaluate the excitation frequencies for the intra- and inter-subband transitions of the collective charge and longitudinal spin density oscillations including many-body corrections beyond the random phase approximation through the spin dependent local field factors, G σ ± (q,ω). An equation-of-motion method was used to obtain these corrections in the limit of long wavelengths, and the results are given in terms of the equilibrium pair correlation function. The finite degree of spin polarization is shown to introduce coupling between the charge and spin density modes, in contrast with the result for an unpolarized system

  9. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; Robert Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; Charles Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; Richard HASTY; Alice Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; Jianglai Liu; Berenice Loupias; Allison Lung; Dominique Marchand; Jeffery Martin; Kenneth McFarlane; David McKee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; Gregory Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vince Sulkosky; Vincent Sulkosky; Vince Sulkosky; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; Glen Warren; Steven Wells; Steven Williamson; Stephen Wood; Chen Yan; Junho Yun; Valdis Zeps

    2007-08-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99(stat) +- 0.63(syst) and A_n = -4.82 +- 1.87(stat) +- 0.98(syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  10. Strong electron correlation in photoionization of spin-orbit doublets

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Chernysheva, L.V.; Manson, S.T.; Msezane, A.M.; Radojevic, V.

    2002-01-01

    A new and explicitly many-body aspect of the 'leveraging' of the spin-orbit interaction is demonstrated, spin-orbit activated interchannel coupling, which can significantly alter the photoionization cross section of a spin-orbit doublet. As an example, it is demonstrated via a modified version of the spin-polarized random phase approximation with exchange, that a recently observed unexplained structure in the Xe 3d 5/2 photoionization cross section [A. Kivimaeki et al., Phys. Rev. A 63, 012716 (2000)] is entirely due to this effect. Similar features are predicted for Cs 3d 5/2 and Ba 3d 5/2

  11. Effect of Spin-Orbit Coupling on Kondo Phenomena in f7-Electron Systems

    Science.gov (United States)

    Hotta, Takashi

    2015-11-01

    In order to promote our basic understanding of the Kondo behavior recently observed in europium compounds, we analyze an impurity Anderson model with seven f electrons at an impurity site by employing a numerical renormalization group method. The local part of the model consists of Coulomb interactions among f electrons, spin-orbit coupling λ, and crystalline electric field (CEF) potentials, while we consider the hybridization V between local f electrons and single-band conduction electrons with au symmetry. For λ = 0, we observe underscreening Kondo behavior for appropriate values of V, characterized by an entropy change from ln 8 to ln 7, in which one of the seven f electrons is screened by conduction electrons. When λ is increased, we obtain two types of behavior depending on the value of V. For large V, we find an entropy release of ln 7 at low temperatures, determined by the level splitting energy due to the hybridization. For small V, we also observe an entropy change from ln 8 to ln 2 by the level splitting due to the hybridization, but at low temperatures, ln 2 entropy is found to be released, leading to the Kondo effect. We emphasize that the Kondo behavior for small V is observed for realistic values of λ on the order of 0.1 eV. We also discuss the effect of CEF potentials and the multipole properties in the Kondo behavior reported in this paper.

  12. Electron spin resonance studies of carbonates and phosphates

    International Nuclear Information System (INIS)

    Seletchi, Emilia Dana

    2005-01-01

    Electron Spin Resonance (ESR) is an absolute dating technique suitable for the Quaternary, which can be applied to a wide range of archaeological and geological materials. This method is mostly used to date such things as calcium carbonate in limestone, stalactites, stalagmites, mollusk shells, and corals. The results show that and are the most commonly present radiation-induced defects in bicarbonates. A new methodology for the provenance of ancient monuments and artifacts was developed by using a large number of marble spectrum parameters. The sextet, dominant in the spectra, other peaks due to lattice defects, and organic radicals have been used in the persistent effort to characterize marble quarries. In ESR dating and dosimetry we can measure the intensity of an ESR signal and its enhancement by artificial irradiation with the absorbed dose. ESR retrospective dosimetry has proven to be a very useful technique for dose assessment in past radiation accidents. Human exposure can be determined directly from the ESR signal of tooth enamel. The majority of radiation-induced radicals in tooth enamel are carbonate derived: CO 2 - ; CO 3 - ; CO - ; CO 3 3- , but radicals derived from phosphate and oxygen were also identified. (author)

  13. Application of magnetic resonance force microscopy cyclic adiabatic inversion for a single-spin measurement

    International Nuclear Information System (INIS)

    Berman, G P; Borgonovi, F; Chapline, G; Gurvitz, S A; Hammel, P C; Pelekhov, D V; Suter, A; Tsifrinovich, V I

    2003-01-01

    We consider the process of a single-spin measurement using magnetic resonance force microscopy (MRFM) with a cyclic adiabatic inversion (CAI). This technique is also important for different applications, including a measurement of a qubit state in quantum computation. The measurement takes place through the interaction of a single spin with a cantilever modelled by a quantum oscillator in a coherent state in a quasi-classical range of parameters. The entire system is treated rigorously within the framework of the Schroedinger equation. For a many-spin system our equations accurately describe conventional MRFM experiments involving CAI of the spin system. Our computer simulations of the quantum spin-cantilever dynamics show that the probability distribution for the cantilever position develops two asymmetric peaks with the total relative probabilities mainly dependent on the initial angle between the directions of the average spin and the effective magnetic field, in the rotating frame. We show that each of the peaks is correlated with the direction of the average spin (being along or opposite to the direction of the effective magnetic field). This generates two possible outcomes of a single-spin measurement, similar to the Stern-Gerlach effect. We demonstrate that the generation of the second peak can be significantly suppressed by turning on adiabatically the amplitude of the rf magnetic field. We also show that MRFM CAI can be used both for detecting a signal from a single spin, and for measuring the single-spin state by measuring the phase of the cantilever driving oscillations

  14. Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions

    International Nuclear Information System (INIS)

    Kawabata, Shiro; Vasenko, Andrey S.; Ozaeta, Asier; Bergeret, Sebastian F.; Hekking, Frank W.J.

    2015-01-01

    We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits

  15. Room-temperature electron spin amplifier based on Ga(In)NAs alloys.

    Science.gov (United States)

    Puttisong, Yuttapoom; Buyanova, Irina A; Ptak, Aaron J; Tu, Charles W; Geelhaar, Lutz; Riechert, Henning; Chen, Weimin M

    2013-02-06

    The first experimental demonstration of a spin amplifier at room temperature is presented. An efficient, defect-enabled spin amplifier based on a non-magnetic semiconductor, Ga(In)NAs, is proposed and demonstrated, with a large spin gain (up to 2700% at zero field) for conduction electrons and a high cut-off frequency of up to 1 GHz. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Neural Circuitry Based on Single Electron Transistors and Single Electron Memories

    Directory of Open Access Journals (Sweden)

    Aïmen BOUBAKER

    2014-05-01

    Full Text Available In this paper, we propose and explain a neural circuitry based on single electron transistors ‘SET’ which can be used in classification and recognition. We implement, after that, a Winner-Take-All ‘WTA’ neural network with lateral inhibition architecture. The original idea of this work is reflected, first, in the proposed new single electron memory ‘SEM’ design by hybridising two promising Single Electron Memory ‘SEM’ and the MTJ/Ring memory and second, in modeling and simulation results of neural memory based on SET. We prove the charge storage in quantum dot in two types of memories.

  17. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials.

    Science.gov (United States)

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-05-19

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials.

  18. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    Abstract. A theoretical model is presented in this paper for degree of spin polarization in a light emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different ...

  19. Spin polarization of electrons in a magnetic impurity doped ...

    Indian Academy of Sciences (India)

    A theoretical model is presented in this paper for degree of spin polarization in alight emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different temperatures and ...

  20. Picture change error in quasirelativistic electron/spin density, Laplacian and bond critical points

    KAUST Repository

    Bučinský, Lukáš

    2014-06-01

    The change of picture of the quasirelativistic Hartree-Fock wave functions is considered for electron/spin densities, the negative Laplacian of electron density and the appropriate bond critical point characteristics from the Quantum Theory of Atoms In Molecules (QTAIM). [OsCl5(Hpz)]- and [RuCl5(NO)]2- transition metal complexes are considered. Both, scalar relativistic and spin-orbit effects have been accounted for using the Infinite Order Two Component (IOTC) Hamiltonian. Picture change error (PCE) correction in the electron and spin densities and the Laplacian of electron density are treated analytically. Generally, PCE is found significant only in the core region of the atoms for the electron/spin density as well as Laplacian.©2014 Elsevier B.V. All rights reserved.

  1. Electron-irradiation of oxide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Caulfield, K.J.; Cooper, R.; Guy, L. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Full text: Point defects created in single crystals of CaO, MgO and {alpha}-Al{sub 2}O{sub 3} (sapphire) by electron-irradiation give rise to luminescence from colour centres. The luminescence may be used to monitor the formation of point defects by elastic collision processes. Such processes have great technological importance, in thermoluminescent dosimetry, the development of colour centre lasers, and particularly with the use of sapphire as a first-wall insulator in nuclear fusion reactors. Point defect formation is the initial process which can ultimately lead to dielectric breakdown. By controlling the energy of incident electrons irradiating single crystals, thresholds may be determined for atomic displacement. The time-dependent spectroscopy and decay kinetics of luminescence may also be studied. Displacement thresholds, luminescence spectroscopy and decay kinetics have been studied for CaO, MgO and {alpha}-Al{sub 2}O{sub 3}. Sapphire irradiated with 0.50 MeV electrons, exhibits a broad luminescence emission band around 300 nm at room temperature, which at temperatures below 60 K broadens into two distinct bands around 300 nm and 400 nm. Analysis of the logarithmic decay kinetics of the 300 nm band reveals distinctive features observed in similar oxides by other workers, namely a rapid decrease in intensity punctuated by discrete plateau regions. A model comprising bimolecular electron-hole recombination, in conjunction with unimolecular electron-detrapping, is able to account for these features. 4 refs.

  2. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K. [QuTech and Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots. This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.

  3. Electron spin control and torsional optomechanics of an optically levitated nanodiamond in vacuum

    Science.gov (United States)

    Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centers, indicating potential applications of NV centers in oxygen gas sensing. For spin-optomechanics, it is important to control the orientation of the nanodiamond and NV centers in a magnetic field. Recently, we have observed the angular trapping and torsional vibration of a levitated nanodiamond, which paves the way towards levitated torsional optomechanics in the quantum regime. NSF 1555035-PHY.

  4. Spin-to-charge conversion for hot photoexcited electrons in germanium

    Science.gov (United States)

    Zucchetti, C.; Bottegoni, F.; Isella, G.; Finazzi, M.; Rortais, F.; Vergnaud, C.; Widiez, J.; Jamet, M.; Ciccacci, F.

    2018-03-01

    We investigate the spin-to-charge conversion in highly doped germanium as a function of the kinetic energy of the carriers. Spin-polarized electrons are optically generated in the Ge conduction band, and their kinetic energy is varied by changing the photon energy in the 0.7-2.2 eV range. The spin detection scheme relies on spin-dependent scattering inside Ge, which yields an inverse spin-Hall electromotive force. The detected signal shows a sign inversion for h ν ≈1 eV which can be related to an interplay between the spin relaxation of high-energy electrons photoexcited from the heavy-hole and light-hole bands and that of low-energy electrons promoted from the split-off band. The inferred spin-Hall angle increases by about 3 orders of magnitude within the analyzed photon energy range. Since, for increasing photon energies, the phonon contribution to spin scattering exceeds that of impurities, our result indicates that the spin-to-charge conversion mediated by phonons is much more efficient than the one mediated by impurities.

  5. Electron spin resonance studies of γ-irradiated phosphorus compounds containing phosphorus--chlorine bonds

    International Nuclear Information System (INIS)

    Kerr, C.M.L.; Webster, K.; Williams, F.

    1975-01-01

    ESR experiments similar to those described in the preceding paper were used to identify the radicals produced in a series of γ-irradiated phosphorus compounds containing phosphorus--chlorine bonds. The principal species formed from diethyl chlorophosphite are the neutral radicals P(OEt) 2 and (EtO) 2 PCl 2 presumably by loss and addition of chlorine atoms, although there is evidence that the former species is produced at least in part by dissociative electron capture. On the other hand, the major radical derived from a series of chlorophosphate esters is invariably the chlorophosphoranyl radical anion formed by simple electron attachment to the parent molecule. In the dichlorophosphoranyl radicals, there is a large 35 Cl coupling from the two equivalent chlorines in the apical positions of a trigonal bipyramidal structure. Evidence for the anisotropy of this coupling suggests that a significant spin density resides in the 3p/sub sigma/ orbitals of these chlorine ligands, in agreement with recent single crystal studies on POCl 3 - . The much greater stability of radical anions derived from chlorophosphates relative to those from di- and trialkyl phosphate esters, which undergo efficient dissociation, is interpreted in terms of the effect of ligand electronegativity on the spin density distribution. This effect is consistent with recent MO descriptions which indicate that the half-occupied orbital in phosphoranyl radicals is largely localized along the axial three-center bond

  6. Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao Singamaneni

    2014-04-01

    Full Text Available Electronic spin transport properties of graphene nanoribbons (GNRs are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element spin-sensitive techniques such as electron spin resonance (ESR spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW, pulse and hyperfine sublevel correlation (HYSCORE ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs, which were subsequently chemically converted (CCGNRs with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH3 adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns and fast (39 ns components. HYSCORE ESR data demonstrate the explicit presence of protons and 13C atoms. With the provided identification of intrinsic point magnetic defects such as proton and 13C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic-based transport properties of CCGNRs.

  7. Quantum spin-glass transition in the two-dimensional electron gas

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 2 ... Spin glasses; quantum phase transition; ferromagnetism; electron gas. ... We argue that a quantum transition involving the destruction of the spin-glass order in an applied in-plane magnetic field offers a natural explanation of some features of recent ...

  8. Single reference Coupled Cluster treatment of nearly degenerate problems: Cohesive energy of antiferromagnetic lattices of spin 1 centers

    International Nuclear Information System (INIS)

    Malrieu, Jean-Paul

    2012-01-01

    Lattices of antiferromagnetically coupled spins, ruled by Heisenberg Hamiltonians, are intrinsically highly degenerate systems. The present work tries to estimate the ground state energy of regular bipartite spin lattices of S = 1 sites from a single reference Coupled Cluster expansion starting from a Néel function, taken as reference. The simultaneous changes of spin momentum on adjacent sites play the role of the double excitations in molecular electronic problems. Propagation of the spin changes plays the same role as the triple excitations. The treatment takes care of the deviation of multiple excitation energies from additivity. Specific difficulties appear for 1D chains, which are not due to a near degeneracy between the reference and the vectors which directly interact with it but to the complexity of the processes which lead to the low energy configurations where a consistent reversed-Néel domain is created inside the Néel starting spin wave. Despite these difficulties a reasonable value of the cohesive energy is obtained.

  9. Single reference Coupled Cluster treatment of nearly degenerate problems: Cohesive energy of antiferromagnetic lattices of spin 1 centers

    Science.gov (United States)

    Malrieu, Jean-Paul

    2012-06-01

    Lattices of antiferromagnetically coupled spins, ruled by Heisenberg Hamiltonians, are intrinsically highly degenerate systems. The present work tries to estimate the ground state energy of regular bipartite spin lattices of S = 1 sites from a single reference Coupled Cluster expansion starting from a Néel function, taken as reference. The simultaneous changes of spin momentum on adjacent sites play the role of the double excitations in molecular electronic problems. Propagation of the spin changes plays the same role as the triple excitations. The treatment takes care of the deviation of multiple excitation energies from additivity. Specific difficulties appear for 1D chains, which are not due to a near degeneracy between the reference and the vectors which directly interact with it but to the complexity of the processes which lead to the low energy configurations where a consistent reversed-Néel domain is created inside the Néel starting spin wave. Despite these difficulties a reasonable value of the cohesive energy is obtained.

  10. New-type spin polarized electron source and its applications; Atarashii spin henkyoku denshi sengen to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Saka, T.; Kato, T. [Daido Steel Co. Ltd., Nagoya (Japan); Nakanishi, T.; Okumi, S. [Nagoya University, Nagoya (Japan); Horinaka, H. [Osaka Prefectural University, Osaka (Japan). College of Engineering

    1998-08-20

    This paper reveals that using distorted thin GaAs film can realize high polarization in spin polarized electron ray, and introduces properties of the developed ray source. The paper also touches on the application thereof to property physics. Realization of the high spin polarization is based on use of the `optical polarization method`. With this method, electrons in specific spin state are excited into a conduction band by utilizing the selection law used when valency electrons of zincblende type crystal such as GaAs absorb circular polarization. These electrons are taken out into vacuum and used as polarized electron beams. In order to realize uniformly distorted GaAs film, a method was discussed, with which the thin GaAs films are grown on substrates with different lattice constants, and the films are distorted by means of lattice mismatch. GaAs(1-x)Px was used for the substrates. GaAs(1-x)Px has the lattice constant decrease as the P`s mixed crystal ratio `x` increases. If a thin GaAs film is grown on this substrate, it is possible to obtain GaAs which is subjected to compression stress in the direction parallel with the growing surface, and tensile stress in the vertical direction. 13 refs., 5 figs., 1 tab.

  11. Spatiotemporal dynamics of the spin transition in [Fe (HB(tz)3) 2] single crystals

    Science.gov (United States)

    Ridier, Karl; Rat, Sylvain; Shepherd, Helena J.; Salmon, Lionel; Nicolazzi, William; Molnár, Gábor; Bousseksou, Azzedine

    2017-10-01

    The spatiotemporal dynamics of the spin transition have been thoroughly investigated in single crystals of the mononuclear spin-crossover (SCO) complex [Fe (HB (tz )3)2] (tz = 1 ,2 ,4-triazol-1-yl) by optical microscopy. This compound exhibits an abrupt spin transition centered at 334 K with a narrow thermal hysteresis loop of ˜1 K (first-order transition). Most single crystals of this compound reveal exceptional resilience upon repeated switching (several hundred cycles), which allowed repeatable and quantitative measurements of the spatiotemporal dynamics of the nucleation and growth processes to be carried out. These experiments revealed remarkable properties of the thermally induced spin transition: high stability of the thermal hysteresis loop, unprecedented large velocities of the macroscopic low-spin/high-spin phase boundaries up to 500 µm/s, and no visible dependency on the temperature scan rate. We have also studied the dynamics of the low-spin → high-spin transition induced by a local photothermal excitation generated by a spatially localized (Ø = 2 μ m ) continuous laser beam. Interesting phenomena have been evidenced both in quasistatic and dynamic conditions (e.g., threshold effects and long incubation periods, thermal activation of the phase boundary propagation, stabilization of the crystal in a stationary biphasic state, and thermal cutoff frequency). These measurements demonstrated the importance of thermal effects in the transition dynamics, and they enabled an accurate determination of the thermal properties of the SCO compound in the framework of a simple theoretical model.

  12. Spin-Hall effect of collimated electrons in zinc-blende semiconductors

    International Nuclear Information System (INIS)

    Fujita, T.; Jalil, M.B.A.; Tan, S.G.

    2009-01-01

    We describe an intrinsic spin-Hall effect (SHE) in n-type bulk zinc-blende semiconductors with a topological origin. When a collimated flux of electrons is injected into a zinc-blende semiconductor with Dresselhaus spin-orbit interaction, a nontrivial gauge structure appears in the momentum (k → -) space of the electrons. The Berry curvature of this gauge field and the corresponding Lorentz force in k → -space results in a finite SHE. The value of the spin-Hall current is found to be highly dependent on the degree of electron collimation, which may be varied by means of gate electrodes. Therefore, the system may potentially be useful as an electronically controllable source of pure spin-current for spintronic applications.

  13. Correlation functions of electronic and nuclear spins in a Heisenberg antiferromagnet semi-infinite medium

    International Nuclear Information System (INIS)

    Sarmento, E.F.

    1981-01-01

    Results are found for the dynamical correlation functions (or its corresponding Green's functions) among any combination including operator pairs of electronic and nuclear spins in an antiferromagnet semi-infinite medium, at low temperatures T [pt

  14. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy (also known as electron spin resonance, ESR, or electron magnetic resonance, EMR, spectroscopy) is often described as the “gold standard” for the detection and characterisation of radicals in chemical, biological and medical systems. The article...

  15. Continuous wave protocol for simultaneous polarization and optical detection of P1-center electron spin resonance

    Science.gov (United States)

    Kamp, E. J.; Carvajal, B.; Samarth, N.

    2018-01-01

    The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.

  16. Driven spin transitions in fluorinated single- and bilayer-graphene quantum dots

    Science.gov (United States)

    Żebrowski, D. P.; Peeters, F. M.; Szafran, B.

    2017-06-01

    Spin transitions driven by a periodically varying electric potential in dilute fluorinated graphene quantum dots are investigated. Flakes of monolayer graphene as well as electrostatic electron traps induced in bilayer graphene are considered. The stationary states obtained within the tight-binding approach are used as the basis for description of the system dynamics. The dilute fluorination of the top layer lifts the valley degeneracy of the confined states and attenuates the orbital magnetic dipole moments due to current circulation within the flake. The spin-orbit coupling introduced by the surface deformation of the top layer induced by the adatoms allows the spin flips to be driven by the AC electric field. For the bilayer quantum dots the spin flip times is substantially shorter than the spin relaxation. Dynamical effects including many-photon and multilevel transitions are also discussed.

  17. Comparison of Electron Transmittance and Tunneling Current through a Trapezoidal Potential Barrier with Spin Polarization Consideration by using Analytical and Numerical Approaches

    Science.gov (United States)

    Nabila, Ezra; Noor, Fatimah A.; Khairurrijal

    2017-07-01

    In this study, we report an analytical calculation of electron transmittance and polarized tunneling current in a single barrier heterostructure of a metal-GaSb-metal by considering the Dresselhaus spin orbit effect. Exponential function, WKB method and Airy function were used in calculating the electron transmittance and tunneling current. A Transfer Matrix Method, as a numerical method, was utilized as the benchmark to evaluate the analytical calculation. It was found that the transmittances calculated under exponential function and Airy function is the same as that calculated under TMM method at low electron energy. However, at high electron energy only the transmittance calculated under Airy function approach is the same as that calculated under TMM method. It was also shown that the transmittances both of spin-up and spin-down conditions increase as the electron energy increases for low energies. Furthermore, the tunneling current decreases with increasing the barrier width.

  18. Tunneling conductance of a two-dimensional electron gas with Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Srisongmuang, B.; Ka-oey, A.

    2012-01-01

    We theoretically studied the spin-dependent charge transport in a two-dimensional electron gas with Dresselhaus spin-orbit coupling (DSOC) and metal junctions. It is shown that the DSOC energy can be directly measured from the tunneling conductance spectrum. We found that spin polarization of the conductance in the propagation direction can be obtained by injecting from the DSOC system. We also considered the effect of the interfacial scattering barrier (both spin-flip and non-spin-flip scattering) on the overall conductance and the spin polarization of the conductance. It is found that the increase of spin-flip scattering can enhance the conductance under certain conditions. Moreover, both types of scattering can increase the spin polarization below the branches crossing of the energy band. - Highlights: → DSOC energy can be directly measured from tunneling conductance spectrum. → Spin polarization of conductance in the propagation direction can be obtained by injecting from DSOC system. → Both types of scattering can increase spin polarization.

  19. Measurement of transverse single-spin asymmetries in inclusive electroproduction at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Ruiz, Alejandro

    2012-12-15

    This dissertation describes the measurement of two single-spin asymmetries (SSAs) in the production of particles from inelastic lepton-proton collisions. SSAs are a convenient observable for investigating the spin-dependent part of the electron-proton cross section. The analyzed data were taken by the HERMES experiment at DESY, using a 27.6 GeV electron/positron beam and a static hydrogen target in which the proton spin was polarized transversely to the direction of the beam. In the first case, SSAs were investigated in the inclusive electroproduction of charged pions and kaons. The asymmetries were studied as a function of the hadron momentum, p{sub T}, relative to the direction of the incident beam, and the Feynman variable x{sub F}. In the kinematic range 0.08 GeV

  20. Measurement of transverse single-spin asymmetries in inclusive electroproduction at HERMES

    International Nuclear Information System (INIS)

    Lopez Ruiz, Alejandro

    2012-12-01

    This dissertation describes the measurement of two single-spin asymmetries (SSAs) in the production of particles from inelastic lepton-proton collisions. SSAs are a convenient observable for investigating the spin-dependent part of the electron-proton cross section. The analyzed data were taken by the HERMES experiment at DESY, using a 27.6 GeV electron/positron beam and a static hydrogen target in which the proton spin was polarized transversely to the direction of the beam. In the first case, SSAs were investigated in the inclusive electroproduction of charged pions and kaons. The asymmetries were studied as a function of the hadron momentum, p T , relative to the direction of the incident beam, and the Feynman variable x F . In the kinematic range 0.08 GeV T F T up to about 6% (8%) for pions (kaons) and then decrease again with increasing p T . For negative hadrons the asymmetries were of much smaller magnitude, sometimes positive and sometimes negative. When binned simultaneously in p T and x F , the asymmetries were found to be essentially independent of x F in each slice of p T . The analyzed data were manifestly dominated by hadrons from quasi-real photoproduction. In these reactions, the asymmetry can be related to the hadronic component of the photon and thus to the asymmetry A N observed in hadronic collisions at different energies but not yet fully understood. However, the largest contribution to the measured SSAs are from hadrons produced in deep-inelastic scattering (DIS) reactions, related to the Sivers function, which describes the asymmetric distribution of unpolarized quarks in a transversely polarized proton. Transverse SSAs were also measured in inclusive DIS, where only the scattered beam lepton is detected. In this case, non-zero SSAs would arise from two-photon exchange contributions to the electron-proton cross section. This observable is thus a check of the validity of the one-photon exchange approximation, commonly used in theoretical

  1. Effect of Noise on the Decoherence of a Central Electron Spin Coupled to an Antiferromagnetic Spin Bath

    Directory of Open Access Journals (Sweden)

    G. C. Fouokeng

    2014-01-01

    Full Text Available We analyze the influence of a two-state autocorrelated noise on the decoherence and on the tunneling Landau-Zener (LZ transitions during a two-level crossing of a central electron spin (CES coupled to a one dimensional anisotropic-antiferomagnetic spin, driven by a time-dependent global external magnetic field. The energy splitting of the coupled spin system is found through an approach that computes the noise-averaged frequency. At low magnetic field intensity, the decoherence (or entangled state of a coupled spin system is dominated by the noise intensity. The effects of the magnetic field pulse and the spin gap antiferromagnetic material used suggest to us that they may be used as tools for the direct observation of the tunneling splitting through the LZ transitions in the sudden limit. We found that the dynamical frequencies display basin-like behavior decay with time, with the birth of entanglement, while the LZ transition probability shows Gaussian shape.

  2. The combined field emission-spin trapping method for studying reactions of electrons in organic solutions

    International Nuclear Information System (INIS)

    Noda, Shoji; Ohta, Yasunari; Yoshida, Hiroshi

    1979-01-01

    The reactions of electrons injected by field emission into solutions have been investigated. Free radicals generated by the dissociative electron attachment to chlorinated solutes in benzene solutions were detected by the spin trapping-ESR method, using pentamethylnitrosobenzene as a spin trapping agent. Nondissociative electron attachment to styrene caused by the field emission was also evidenced by detecting the α-methylbenzyl radical generated secondarily from the styrene radical anion. The electrons field-emitted into the solutions are captured almost quantitatively by the electron scavenging solutes. The field emission method has been found to be useful for generating authentically free radicals and for studying the anionic reaction induced by electrons without interference of countercations and of any reaction intermediates from solvent molecules. As an example of the chemical utilization of the field emission technique, the ESR parameters of the spin adducts of several hydrocarbon radicals have been collected by this technique. (author)

  3. Direct observation of spin-resolved full and empty electron states in ferromagnetic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berti, G., E-mail: giulia.berti@polimi.it; Calloni, A.; Brambilla, A.; Bussetti, G.; Duò, L.; Ciccacci, F. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milano (Italy)

    2014-07-15

    We present a versatile apparatus for the study of ferromagnetic surfaces, which combines spin-polarized photoemission and inverse photoemission spectroscopies. Samples can be grown by molecular beam epitaxy and analyzed in situ. Spin-resolved photoemission spectroscopy analysis is done with a hemispherical electron analyzer coupled to a 25 kV-Mott detector. Inverse photoemission spectroscopy experiments are performed with GaAs crystals as spin-polarized electron sources and a UV bandpass photon detector. As an example, measurements on the oxygen passivated Fe(100)-p(1×1)O surface are presented.

  4. Storage of Multiple Coherent Microwave Excitations in an Electron Spin Ensemble

    DEFF Research Database (Denmark)

    Wu, Hua; George, Richard E.; Wesenberg, Janus H.

    2010-01-01

    Strong coupling between a microwave photon and electron spins, which could enable a long-lived quantum memory element for superconducting qubits, is possible using a large ensemble of spins. This represents an inefficient use of resources unless multiple photons, or qubits, can be orthogonally...... stored and retrieved. Here we employ holographic techniques to realize a coherent memory using a pulsed magnetic field gradient and demonstrate the storage and retrieval of up to 100 weak 10 GHz coherent excitations in collective states of an electron spin ensemble. We further show that such collective...

  5. Electron-spin polarization in tunnel junctions with ferromagnetic EuS barriers

    International Nuclear Information System (INIS)

    Hao, X.; Moodera, J.S.; Meservey, R.

    1989-01-01

    The authors report here spin-polarized tunneling experiments using non-ferromagnetic electrodes and ferromagnetic EuS barriers. Because of the conduction band in EuS splits into spin-up and spin-down subbands when the temperature is below 16.7 K, the Curie temperature of EuS, the tunnel barrier for electrons with different spin directions is different, therefore giving rise to tunnel current polarization. The spin-filter effect, as it may be called, was observed earlier, directly or indirectly, by several groups: Esaki et al. made a tunneling study on junctions having EuS and EuSe barriers; Thompson et al. studied Schottky barrier tunneling between In and doped EuS; Muller et al. and Kisker et al. performed electron field emission experiments on EuS-coated tungsten tips. The field emission experiments gave a maximum polarization of (89 + 7)% for the emitted electrons. Although the previous tunneling studies did not directly show electron polarization, their results were explained by the same spin- filter effect. This work uses the spin-polarized tunneling technique to show directly that tunnel current is indeed polarized and polarization can be as high as 85%

  6. Electron Spin Resonance and Atomic Force Microscopy Study on Gadolinium Doped Ceria

    Directory of Open Access Journals (Sweden)

    Cesare Oliva

    2015-01-01

    Full Text Available A combined electron spin resonance (ESR and atomic force microscopy (AFM study on Ce1−xGdxO2−x/2 samples is here presented, aimed at investigating the evolution of the ESR spectral shape as a function of x in a wide composition range. At low x=0.02, the spectrum is composed of features at geff≈2; 2.8; 6. With increasing x, this pattern merges into a single geff≈2 broad ESR curve, which assumes a Dysonian-shaped profile at x≥0.5, whereas, at these x values, AFM measurements show an increasing surface roughness. It is suggested that the last could cause the formation of surface polaritons at the origin of the particular ESR spectral profile observed at these high Gd doping levels.

  7. Search for Spin Filtering By Electron Tunneling Through Ferromagnetic EuS Barriers in Pbs

    Science.gov (United States)

    Figielski, T.; Morawski, A.; Wosinski, T.; Wrotek, S.; Makosa, A.; Lusakowska, E.; Story, T.; Sipatov, A. Yu.; Szczerbakow, A.; Grasza, K.; hide

    2002-01-01

    Perpendicular transport through single- and double-barrier heterostructures consisting of ferromagnetic EuS layers embedded into PbS matrix was investigated. Manifestations of both resonant tunneling and spin filtering through EuS barrier have been observed.

  8. Drift-Induced Enhancement of Cubic Dresselhaus Spin-Orbit Interaction in a Two-Dimensional Electron Gas

    Science.gov (United States)

    Kunihashi, Yoji; Sanada, Haruki; Tanaka, Yusuke; Gotoh, Hideki; Onomitsu, Koji; Nakagawara, Keita; Kohda, Makoto; Nitta, Junsaku; Sogawa, Tetsuomi

    2017-11-01

    We investigated the effect of an in-plane electric field on drifting spins in a GaAs quantum well. Kerr rotation images of the drifting spins revealed that the spin precession wavelength increases with increasing drift velocity regardless of the transport direction. A model developed for drifting spins with a heated electron distribution suggests that the in-plane electric field enhances the effective magnetic field component originating from the cubic Dresselhaus spin-orbit interaction.

  9. Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets.

    Science.gov (United States)

    Vitali, Lucia; Fabris, Stefano; Conte, Adriano Mosca; Brink, Susan; Ruben, Mario; Baroni, Stefano; Kern, Klaus

    2008-10-01

    The electronic structure of isolated bis(phthalocyaninato) terbium(III) molecules, a novel single-molecular-magnet (SMM), supported on the Cu(111) surface has been characterized by density functional theory and scanning tunneling spectroscopy. These studies reveal that the interaction with the metal surface preserves both the molecular structure and the large spin magnetic moment of the metal center. The 4f electron states are not perturbed by the adsorption while a strong molecular/metal interaction can induce the suppression of the minor spin contribution delocalized over the molecular ligands. The calculations show that the inherent spin magnetic moment of the molecule is only weakly affected by the interaction with the surface and suggest that the SMM character might be preserved.

  10. Oxide Ferromagnetic Semiconductors for Spin-Electronic Transprt

    International Nuclear Information System (INIS)

    Pandey, R.K.

    2008-01-01

    The objective of this research was to investigate the viability of oxide magnetic semiconductors as potential materials for spintronics. We identified some members of the solid solution series of ilmenite (FeTiO3) and hematite (Fe2O3), abbreviated as (IH) for simplicity, for our investigations based on their ferromagnetic and semiconducting properties. With this objective in focus we limited our investigations to the following members of the modified Fe-titanates: IH33 (ilmenitehematite with 33 atomic percent hematite), IH45 (ilmenite-hematite with 45 atomic percent hematite), Mn-substituted ilmenite (Mn-FeTiO3), and Mn-substituted pseudobrookite (Mn- Fe2TiO5). All of them are: (1) wide bandgap semiconductors with band gaps ranging in values between 2.5 to 3.5 eV; (2) n-type semiconductors; (3) they exhibit well defined magnetic hysteresis loops and (4) their magnetic Curie points are greater than 400K. Ceramic, film and single crystal samples were studied and based on their properties we produced varistors (also known as voltage dependent resistors) for microelectronic circuit protection from power surges, three-terminal microelectronic devices capable of generating bipolar currents, and an integrated structured device with controlled magnetic switching of spins. Eleven refereed journal papers, three refereed conference papers and three invention disclosures resulted from our investigations. We also presented invited papers in three international conferences and one national conference. Furthermore two students graduated with Ph.D. degrees, three with M.S. degrees and one with B.S. degree. Also two post-doctoral fellows were actively involved in this research. We established the radiation hardness of our devices in collaboration with a colleague in an HBCU institution, at the Cyclotron Center at Texas A and M University, and at DOE National Labs (Los Alamos and Brookhaven). It is to be appreciated that we met most of our goals and expanded vastly the scope of

  11. Pumping $ac$ Josephson current in the Single Molecular Magnets by spin nutation

    OpenAIRE

    Abdollahipour, B.; Abouie, J.; Rostami, A. A.

    2012-01-01

    We demonstrate that an {\\it ac} Josephson current is pumped through the Single Molecular Magnets (SMM) by the spin nutation. The spin nutation is generated by applying a time dependent magnetic field to the SMM. We obtain the flowing charge current through the junction by working in the tunneling limit and employing Green's function technique. At the resonance conditions some discontinuities and divergencies are appeared in the normal and Josephson currents, respectively. Such discontinuities...

  12. Analytical calculation of spin tunneling effect in single molecule magnet Fe8 with considering quadrupole excitation

    OpenAIRE

    Y Yousefi; H Fakhari; K Muminov; M R Benam

    2018-01-01

    Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3) generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons). For this SMM, it is established that the use of quadrupole excitation (g dependence) changes not only the location of the quenching points, but also the n...

  13. Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State

    Directory of Open Access Journals (Sweden)

    D. Andrew Golter

    2016-12-01

    Full Text Available The emerging field of quantum acoustics explores interactions between acoustic waves and artificial atoms and their applications in quantum information processing. In this experimental study, we demonstrate the coupling between a surface acoustic wave (SAW and an electron spin in diamond by taking advantage of the strong strain coupling of the excited states of a nitrogen vacancy center while avoiding the short lifetime of these states. The SAW-spin coupling takes place through a Λ-type three-level system where two ground spin states couple to a common excited state through a phonon-assisted as well as a direct dipole optical transition. Both coherent population trapping and optically driven spin transitions have been realized. The coherent population trapping demonstrates the coupling between a SAW and an electron spin coherence through a dark state. The optically driven spin transitions, which resemble the sideband transitions in a trapped-ion system, can enable the quantum control of both spin and mechanical degrees of freedom and potentially a trapped-ion-like solid-state system for applications in quantum computing. These results establish an experimental platform for spin-based quantum acoustics, bridging the gap between spintronics and quantum acoustics.

  14. Single transverse-spin asymmetry in high transverse momentum pion production in pp collisions

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos; Qiu, Jian-Wei; Vogelsang, Werner

    2006-01-01

    We study the single-spin (left-right) asymmetry in single-inclusive pion production in hadronic scattering. This asymmetry is power-suppressed in the transverse momentum of the produced pion and can be analyzed in terms of twist-three parton correlation functions in the proton. We present new...

  15. Creating intense polarized electron beam via laser stripping and spin-orbit interaction

    International Nuclear Information System (INIS)

    Danilov, V.; Ptitsyn, V.; Gorlov, T.

    2010-01-01

    The recent advance in laser field make it possible to excite and strip electrons with definite spin from hydrogen atoms. The sources of hydrogen atoms with orders of magnitude higher currents (than that of the conventional polarized electron cathods) can be obtained from H - sources with good monochromatization. With one electron of H - stripped by a laser, the remained electron is excited to upper state (2P 3/2 and 2P 1/2 ) by a circular polarization laser light from FEL. Then, it is excited to a high quantum number (n=7) with mostly one spin direction due to energy level split of the states with a definite direction of spin and angular momentum in an applied magnetic field and then it is stripped by a strong electric field of an RF cavity. This paper presents combination of lasers and fields to get high polarization and high current electron source.

  16. All-optical evaluation of spin-orbit interaction based on diffusive spin motion in a two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Kohda, M. [IBM Research–Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Department of Materials Science, Tohoku University, 980-8579 Sendai (Japan); Altmann, P.; Salis, G. [IBM Research–Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Schuh, D.; Ganichev, S. D. [Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg (Germany); Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich (Switzerland)

    2015-10-26

    A method is presented that enables the measurement of spin-orbit coefficients in a diffusive two-dimensional electron gas without the need for processing the sample structure, applying electrical currents or resolving the spatial pattern of the spin mode. It is based on the dependence of the average electron velocity on the spatial distance between local excitation and detection of spin polarization, resulting in a variation of spin precession frequency that in an external magnetic field is linear in the spatial separation. By scanning the relative positions of the exciting and probing spots in a time-resolved Kerr rotation microscope, frequency gradients along the [100] and [010] crystal axes of GaAs/AlGaAs QWs are measured to obtain the Rashba and Dresselhaus spin-orbit coefficients, α and β. This simple method can be applied in a variety of materials with electron diffusion for evaluating spin-orbit coefficients.

  17. Modeling of diffusion of injected electron spins in spin-orbit coupled microchannels

    Czech Academy of Sciences Publication Activity Database

    Zarbo, Liviu; Sinova, Jairo; Knezevic, I.; Wunderlich, Joerg; Jungwirth, Tomáš

    2010-01-01

    Roč. 82, č. 20 (2010), 205320/1-205320/7 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KAN400100652 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spintronics * spin dynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  18. Spin electronic magnetic sensor based on functional oxides for medical imaging

    Science.gov (United States)

    Solignac, A.; Kurij, G.; Guerrero, R.; Agnus, G.; Maroutian, T.; Fermon, C.; Pannetier-Lecoeur, M.; Lecoeur, Ph.

    2015-09-01

    To detect magnetic signals coming from the body, in particular those produced by the electrical activity of the heart or of the brain, the development of ultrasensitive sensors is required. In this regard, magnetoresistive sensors, stemming from spin electronics, are very promising devices. For example, tunnel magnetoresistance (TMR) junctions based on MgO tunnel barrier have a high sensitivity. Nevertheless, TMR also often have high level of noise. Full spin polarized materials like manganite La0.67Sr0.33MnO3 (LSMO) are attractive alternative candidates to develop such sensors because LSMO exhibits a very low 1/f noise when grown on single crystals, and a TMR response has been observed with values up to 2000%. This kind of tunnel junctions, when combined with a high Tc superconductor loop, opens up possibilities to develop full oxide structures working at liquid nitrogen temperature and suitable for medical imaging. In this work, we investigated on LSMO-based tunnel junctions the parameters controlling the overall system performances, including not only the TMR ratio, but also the pinning of the reference layer and the noise floor. We especially focused on studying the effects of the quality of the barrier, the interface and the electrode, by playing with materials and growth conditions.

  19. Analytical Determination of the Confinement Potential and Coupling Constant of Spin--Orbit Interactions of Electrons in Nanostructures

    CERN Document Server

    Dineykhan, M; Zhaugasheva, S A; Al Farabi Kazakh State National University. Almaty

    2005-01-01

    Multilayer nanocrystalline structure is represented by the electrostatic field inducted by total image charge, and the confinement potential for electrons is determined. Assuming that at a given distance the confinement potential is equal to the Coulomb repulsion and an interaction between electrons becomes spin-orbit, the constant of the spin-orbit interaction of electrons in nanostructures is determined. The dependence of the constant of the spin-orbit interaction on environment parameters and the distance between electrons is studied.

  20. Coherent Zeeman resonance from electron spin coherence in a mixed-type GaAs/AlAs quantum well.

    Science.gov (United States)

    O'Leary, Shannon; Wang, Hailin; Prineas, John P

    2007-03-01

    Coherent Zeeman resonance from electron spin coherence is demonstrated in a Lambda-type three-level system, coupling electron spin states via trions. The optical control of electron density that is characteristic of a mixed-type quantum-well facilitates the study of trion formation as well as the effects of many-body interactions on the manifestation of electron spin coherence in the nonlinear optical response.

  1. Spin-dependent hot electron transport and nano-scale magnetic imaging of metal/Si structures

    International Nuclear Information System (INIS)

    Kaidatzis, A.

    2008-10-01

    In this work, we experimentally study spin-dependent hot electron transport through metallic multilayers (ML), containing single magnetic layers or 'spin-valve' (SV) tri layers. For this purpose, we have set up a ballistic electron emission microscope (BEEM), a three terminal extension of scanning tunnelling microscopy on metal/semiconductor structures. The implementation of the BEEM requirements into the sample fabrication is described in detail. Using BEEM, the hot electron transmission through the ML's was systematically measured in the energy range 1-2 eV above the Fermi level. By varying the magnetic layer thickness, the spin-dependent hot electron attenuation lengths were deduced. For the materials studied (Co and NiFe), they were compared to calculations and other determinations in the literature. For sub-monolayer thickness, a non uniform morphology was observed, with large transmission variations over sub-nano-metric distances. This effect is not yet fully understood. In the imaging mode, the magnetic configurations of SV's were studied under field, focusing on 360 degrees domain walls in Co layers. The effects of the applied field intensity and direction on the DW structure were studied. The results were compared quantitatively to micro-magnetic calculations, with an excellent agreement. From this, it can be shown that the BEEM magnetic resolution is better than 50 nm. (author)

  2. Electrical detection of spin transport in Si two-dimensional electron gas systems

    Science.gov (United States)

    Chang, Li-Te; Fischer, Inga Anita; Tang, Jianshi; Wang, Chiu-Yen; Yu, Guoqiang; Fan, Yabin; Murata, Koichi; Nie, Tianxiao; Oehme, Michael; Schulze, Jörg; Wang, Kang L.

    2016-09-01

    Spin transport in a semiconductor-based two-dimensional electron gas (2DEG) system has been attractive in spintronics for more than ten years. The inherent advantages of high-mobility channel and enhanced spin-orbital interaction promise a long spin diffusion length and efficient spin manipulation, which are essential for the application of spintronics devices. However, the difficulty of making high-quality ferromagnetic (FM) contacts to the buried 2DEG channel in the heterostructure systems limits the potential developments in functional devices. In this paper, we experimentally demonstrate electrical detection of spin transport in a high-mobility 2DEG system using FM Mn-germanosilicide (Mn(Si0.7Ge0.3)x) end contacts, which is the first report of spin injection and detection in a 2DEG confined in a Si/SiGe modulation doped quantum well structure (MODQW). The extracted spin diffusion length and lifetime are l sf = 4.5 μm and {τ }{{s}}=16 {{ns}} at 1.9 K respectively. Our results provide a promising approach for spin injection into 2DEG system in the Si-based MODQW, which may lead to innovative spintronic applications such as spin-based transistor, logic, and memory devices.

  3. The effects of Dresselhaus and Rashba spin-orbit interactions on the electron tunneling in a non-magnetic heterostructure

    International Nuclear Information System (INIS)

    Lu Jianduo; Li Jianwen

    2010-01-01

    We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.

  4. Controlling geometric phase optically in a single spin in diamond

    Science.gov (United States)

    Yale, Christopher G.

    Geometric phase, or Berry phase, is an intriguing quantum mechanical phenomenon that arises from the cyclic evolution of a quantum state. Unlike dynamical phases, which rely on the time and energetics of the interaction, the geometric phase is determined solely by the geometry of the path travelled in parameter space. As such, it is robust to certain types of noise that preserve the area enclosed by the path, and shows promise for the development of fault-tolerant logic gates. Here, we demonstrate the optical control of geometric phase within a solid-state spin qubit, the nitrogen-vacancy center in diamond. Using stimulated Raman adiabatic passage (STIRAP), we evolve a coherent dark state along `tangerine slice' trajectories on the Bloch sphere and probe these paths through time-resolved state tomography. We then measure the accumulated geometric phase through phase reference to a third ground spin state. In addition, we examine the limits of this control due to adiabatic breakdown as well as the longer timescale effect of far-detuned optical fields. Finally, we intentionally introduce noise into the experimental control parameters, and measure the distributions of the resulting phases to probe the resilience of the phase to differing types of noise. We also examine this robustness as a function of traversal time as well as the noise amplitude. Through these studies, we demonstrate that geometric phase is a promising route toward fault-tolerant quantum information processing. This work is supported by the AFOSR, the NSF, and the German Research Foundation.

  5. Manipulation of spin states in single II-VI-semiconductor quantum dots; Manipulation von Spinzustaenden in einzelnen II-VI-Halbleiter-Quantenpunkten

    Energy Technology Data Exchange (ETDEWEB)

    Hundt, Andreas

    2007-10-09

    Semiconductor quantum dots (QD) are objects on the nanometer scale, where charge carriers are confined in all three dimensions. This leads to a reduced interaction with the semiconductor lattice and to a discrete density of states. The spin state of a particle defines the polarisation of the emitted light when relaxating to an energetically lower state. Spin exchange and optical transition selection rules (conservation law for spin) define the optical control of spin states. In the examined QD in II-VI seminconductor systems the large polar character of the bindings enables to observe particle interactions by spectroscopy of the photo-luminescence (PL), making QD attractive for basic research. This work subjects in its first part single negatively charged non-magnetic QD. The odd number of carriers allows to study the latter in an unpaired state. By using polarization-resolved micro-PL spectroscopy, the spin-states of single, isolated QD can be studied reproducibly. Of special interest are exchange interactions in this few-particle system named trion. By excitation spectroscopy energetically higher states can be identified and characterized. The exchange interactions appearing here lead to state mixing and fine structure patterns in the spectra. Couplings in excited hole states show the way to the optical orientation of the resident electron spin. The spin configuration of the trion triplet state can be used to optically control the resident electron spin. Semimagnetic QD are focused in the second part of this work. The interaction with a paramagnetic environment of manganese spins leads to new magneto-optical properties of the QD. They reveal on a single dot level by line broadening due to spin fluctuations and by the giant Zeeman effect of the dot ensemble. Of special interest in this context is the influence of the reduced system dimension and the relatively larger surface of the system on the exchange mechanisms. The strong temperature dependence of the spin

  6. Electron spin resonance of Fe4+ in amethyst quartz

    International Nuclear Information System (INIS)

    Cox, R.T.

    1975-01-01

    The ESR spectrum of Fe 4+ was looked for in amethyst quartz. Besides saturated Fe 3+ lines, ESR lines of a new paramagnetic center whose spin-lattice relaxation time is relatively short were observed. They could be attributed to Fe 4+ [fr

  7. Influence of soliton distributions on the spin-dependent electronic ...

    Indian Academy of Sciences (India)

    In this paper, a detailed numerical study of the role of selected soliton distributions on the spin-dependent ... Based on Su–. Schrieffer–Heeger (SSH) Hamiltonian and using a generalized Green's function formalism, we ... walls or solitons, which appear to be responsible for many of the remarkable properties of trans-PA ...

  8. Comparing SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    Science.gov (United States)

    England, Troy; Curry, Matthew; Carr, Stephen; Mounce, Andrew; Jock, Ryan; Sharma, Peter; Bureau-Oxton, Chloe; Rudolph, Martin; Hardin, Terry; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will compare two amplifiers based on single-transistor circuits implemented with silicon germanium heterojunction bipolar transistors. Both amplifiers provide gain at low power levels, but the dynamics of each circuit vary significantly. We will explore the gain mechanisms, linearity, and noise of each circuit and explain the situations in which each amplifier is best used. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  9. Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout.

    Science.gov (United States)

    Sukachev, D D; Sipahigil, A; Nguyen, C T; Bhaskar, M K; Evans, R E; Jelezko, F; Lukin, M D

    2017-12-01

    The negatively charged silicon-vacancy (SiV^{-}) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (∼250  ns) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV^{-} electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV^{-} symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV^{-} spin with 89% fidelity. Coherent control of the SiV^{-} spin with microwave fields is used to demonstrate a spin coherence time T_{2} of 13 ms and a spin relaxation time T_{1} exceeding 1 s at 100 mK. These results establish the SiV^{-} as a promising solid-state candidate for the realization of quantum networks.

  10. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wilson [Univ. of California, Irvine, CA (United States)

    2018-02-03

    Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules and TiO2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting

  11. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  12. Spin-charge conversion in disordered two-dimensional electron gases lacking inversion symmetry

    Science.gov (United States)

    Huang, Chunli; Milletarı, Mirco; Cazalilla, Miguel A.

    2017-11-01

    We study the spin-charge conversion mechanisms in a two-dimensional gas of electrons moving in a smooth disorder potential by accounting for both Rashba-type and Mott's skew scattering contributions. We find that the quantum interference effects between spin-flip and skew scattering give rise to anisotropic spin precession scattering (ASP), a direct spin-charge conversion mechanism that was discovered in an earlier study of graphene decorated with adatoms [Huang et al., Phys. Rev. B 94, 085414 (2016), 10.1103/PhysRevB.94.085414]. Our findings suggest that, together with other spin-charge conversion mechanisms such as the inverse galvanic effect, ASP is a fairly universal phenomenon that should be present in disordered two-dimensional systems lacking inversion symmetry.

  13. Coupling of spin and orbital motion of electrons in carbon nanotubes

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Ilani, S; Ralph, D C

    2008-01-01

    and antiparallel alignment for holes. Our measurements are consistent with recent theories that predict the existence of spin–orbit coupling in curved graphene and describe it as a spin dependent topological phase in nanotubes. Our findings have important implications for spin-based applications in carbon- based...... in their spectra. The electronic states in defect-free carbon nanotubes are widely believed to be four-fold degenerate, owing to independent spin and orbital symmetries, and also to possess electron–hole symmetry. Here we report measurements demonstrating that in clean nanotubes the spin and orbital motion...... systems, entailing new design principles for the realization of quantum bits (qubits) in nanotubes and providing a mechanism for all-electrical control of spins in nanotubes....

  14. Controlled Rephasing of Single Collective Spin Excitations in a Cold Atomic Quantum Memory.

    Science.gov (United States)

    Albrecht, Boris; Farrera, Pau; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues

    2015-10-16

    We demonstrate active control of inhomogeneous dephasing and rephasing for single collective atomic spin excitations (spin waves) created by spontaneous Raman scattering in a quantum memory based on cold 87Rb atoms. The control is provided by a reversible external magnetic field gradient inducing an inhomogeneous broadening of the atomic hyperfine levels. We demonstrate experimentally that active rephasing preserves the single photon nature of the retrieved photons. Finally, we show that the control of the inhomogeneous dephasing enables the creation of time-separated spin waves in a single ensemble followed by a selective read-out in time. This is an important step towards the implementation of a functional temporally multiplexed quantum repeater node.

  15. A Spin-Light Polarimeter for Multi-GeV Longitudinally Polarized Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mohanmurthy, Prajwal [Mississippi State University, Starkville, MS (United States); Dutta, Dipangkar [Mississippi State University, Starkville, MS (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    The physics program at the upgraded Jefferson Lab (JLab) and the physics program envisioned for the proposed electron-ion collider (EIC) include large efforts to search for interactions beyond the Standard Model (SM) using parity violation in electroweak interactions. These experiments require precision electron polarimetry with an uncertainty of < 0.5 %. The spin dependent Synchrotron radiation, called "spin-light," can be used to monitor the electron beam polarization. In this article we develop a conceptual design for a "spin-light" polarimeter that can be used at a high intensity, multi-GeV electron accelerator. We have also built a Geant4 based simulation for a prototype device and report some of the results from these simulations.

  16. Pauli-spin blockade in a vertical double quantum dot holding two to five electrons

    International Nuclear Information System (INIS)

    Kodera, T; Arakawa, Y; Tarucha, S; Ono, K; Amaha, S

    2009-01-01

    We use a vertical double quantum dot (QD) to study spin blockade (SB) for the two-to five-electron states. SB observed for the two- and four-electron states is both assigned to Pauli exclusion with formation of a spin triplet state, and lifted by singlet-triplet admixing due to fluctuating nuclear field. SB observed for the five-electron state is caused by combined Pauli effect and Hund's rule. We observe a hysteretic behavior of the SB leakage current for up and down sweep of magnetic field, and argue that SB and its lifting by hyperfine interaction are subtle with the spin configuration and modified depending on the inter-dot detuning and number of electrons.

  17. Strongly anisotropic spin-orbit splitting in a two-dimensional electron gas

    DEFF Research Database (Denmark)

    Michiardi, Matteo; Bianchi, Marco; Dendzik, Maciej

    2015-01-01

    Near-surface two-dimensional electron gases on the topological insulator Bi$_2$Te$_2$Se are induced by electron doping and studied by angle-resolved photoemission spectroscopy. A pronounced spin-orbit splitting is observed for these states. The $k$-dependent splitting is strongly anisotropic...

  18. 2D Spin-Dependent Diffraction of Electrons From Periodical Chains of Nanomagnets

    Directory of Open Access Journals (Sweden)

    Teshome Senbeta

    2012-03-01

    Full Text Available The scattering of the unpolarized beams of electrons by nanomagnets in the vicinity of some scattering angles leads to complete spin polarized electrons. This result is obtained with the help of the perturbation theory. The dipole-dipole interaction between the magnetic moment of the nanomagnet and the magnetic moment of electron is treated as perturbation. This interaction is not spherically symmetric. Rather it depends on the electron spin variables. It in turn results in spinor character of the scattering amplitudes. Due to the smallness of the magnetic interactions, the scattering length of this process is very small to be proved experimentally. To enhance the relevant scattering lengths, we considered the diffraction of unpolarized beams of electrons by linear chains of nanomagnets. By tuning the distance between the scatterers it is possible to obtain the diffraction maximum of the scattered electrons at scattering angles which corresponds to complete spin polarization of electrons. It is shown that the total differential scattering length is proportional to N2 (N is a number of scatterers. Even small number of nanomagnets in the chain helps to obtain experimentally visible enhancement of spin polarization of the scattered electrons.

  19. Towards quantum optics and entanglement with electron spin ensembles in semiconductors

    NARCIS (Netherlands)

    van der Wal, Caspar H.; Sladkov, Maksym

    We discuss a technique and a material system that enable the controlled realization of quantum entanglement between spin-wave modes of electron ensembles in two spatially separated pieces of semiconductor material. The approach uses electron ensembles in GaAs quantum wells that are located inside

  20. Intense source of spin-polarized electrons using laser-induced optical pumping

    International Nuclear Information System (INIS)

    Gray, L.G.; Giberson, K.W.; Cheng, C.; Keiffer, R.S.; Dunning, F.B.; Walters, G.K.

    1983-01-01

    A source of spin-polarized electrons based on a laser-pumped flowing helium afterglow is described. He(2 3 S) atoms contained in the afterglow are optically pumped using circularly polarized 1.08-μm (2 3 S→2 3 P) radiation provided by a NaF (F 2+ )( color-center laser. Spin angular momentum conservation in subsequent chemi-ionization reactions with CO 2 produces polarized electrons that are extracted from the afterglow. At low currents, < or approx. =1 μA, polarizations of approx.70%--80% are achieved. At higher currents the polarization decreases, falling to approx.40% at 50 μA. The spin polarization can be simply reversed (P→-P) and the source is suitable for use in the majority of low-energy spin-dependent scattering experiments proposed to date

  1. Electron-Spin Precession in Dependence of the Orientation of the External Magnetic Field

    Directory of Open Access Journals (Sweden)

    Miah M

    2009-01-01

    Full Text Available Abstract Electron-spin dynamics in semiconductor-based heterostructures has been investigated in oblique magnetic fields. Spins are generated optically by a circularly polarized light, and the dynamics of spins in dependence of the orientation (θ of the magnetic field are studied. The electron-spin precession frequency, polarization amplitude, and decay rate as a function ofθare obtained and the reasons for their dependences are discussed. From the measured data, the values of the longitudinal and transverse components of the electrong-factor are estimated and are found to be in good agreement with those obtained in earlier investigations. The possible mechanisms responsible for the observed effects are also discussed.

  2. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green\\'s function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  3. Electronic transport in the quantum spin Hall state due to the presence of adatoms in graphene

    Science.gov (United States)

    Lima, Leandro; Lewenkopf, Caio

    Heavy adatoms, even at low concentrations, are predicted to turn a graphene sheet into a topological insulator with substantial gap. The adatoms mediate the spin-orbit coupling that is fundamental to the quantum spin Hall effect. The adatoms act as local spin-orbit scatterer inducing hopping processes between distant carbon atoms giving origin to transverse spin currents. Although there are effective models that describe spectral properties of such systems with great detail, quantitative theoretical work for the transport counterpart is still lacking. We developed a multiprobe recursive Green's function technique with spin resolution to analyze the transport properties for large geometries. We use an effective tight-binding Hamiltonian to describe the problem of adatoms randomly placed at the center of the honeycomb hexagons, which is the case for most transition metals. Our choice of current and voltage probes is favorable to experiments since it filters the contribution of only one spin orientation, leading to a quantized spin Hall conductance of e2 / h . We also discuss the electronic propagation in the system by imaging the local density of states and the electronic current densities. The authors acknowledge the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  4. Spin-state blockade in Te6+-substituted electron-doped LaCoO3

    Science.gov (United States)

    Tomiyasu, Keisuke; Koyama, Shun-Ichi; Watahiki, Masanori; Sato, Mika; Nishihara, Kazuki; Onodera, Mitsugi; Iwasa, Kazuaki; Nojima, Tsutomu; Yamasaki, Yuuichi; Nakao, Hironori; Murakami, Youichi

    2015-03-01

    Perovskite-type LaCoO3 (Co3+: d6) is a rare inorganic material with sensitive and characteristic responses among low, intermediate, and high spin states. For example, in insulating nonmagnetic low-spin states below about 20 K, light hole doping (Ni substitution) induces much larger magnetization than expected; over net 10μB/hole (5μB/Ni) for 1μB/hole (1μB/Ni), in which the nearly isolated dopants locally change the surrounding Co low-spin states to magnetic ones and form spin molecules with larger total spin. Further, the former is isotropic, whereas the latter exhibits characteristic anisotropy probably because of Jahn-Teller distortion. In contrast, for electron doping, relatively insensitive spin-state responses were reported, as in LaCo(Ti4+) O3, but are not clarified, and are somewhat controversial. Here, we present macroscopic measurement data of another electron-doped system LaCo(Te6+) O3 and discuss the spin-state responses. This study was financially supported by Grants-in-Aid for Young Scientists (B) (No. 22740209 and 26800174) from the MEXT of Japan.

  5. Comparison of Magnetization Tunneling in the Giant-Spin and Multi-Spin Descriptions of Single-Molecule Magnets

    Science.gov (United States)

    Liu, Junjie; Del Barco, Enrique; Hill, Stephen

    2010-03-01

    We perform a mapping of the spectrum obtained for a triangular Mn3 single-molecule magnet (SMM) with idealized C3 symmetry via exact diagonalization of a multi-spin (MS) Hamiltonian onto that of a giant-spin (GS) model which assumes strong ferromagnetic coupling and a spin S = 6 ground state. Magnetic hysteresis measurements on this Mn3 SMM reveal clear evidence that the steps in magnetization due to magnetization tunneling obey the expected quantum mechanical selection rules [J. Henderson et al., Phys. Rev. Lett. 103, 017202 (2009)]. High-frequency EPR and magnetization data are first fit to the MS model. The tunnel splittings obtained via the two models are then compared in order to find a relationship between the sixth order transverse anisotropy term B6^6 in GS model and the exchange constant J coupling the Mn^III ions in the MS model. We also find that the fourth order transverse term B4^3 in the GS model is related to the orientation of JahnTeller axes of Mn^III ions, as well as J

  6. Dynamical control of the spin transition inside the thermal hysteresis loop of a spin-crossover single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Boukheddaden, Kamel, E-mail: kbo@physique.uvsq.fr [GEMaC, Université de Versailles St-Quentin, 45 Avenue des Etats Unis, 78035 Versailles (France); Sy, Mouhamadou; Paez-Espejo, Miguel [GEMaC, Université de Versailles St-Quentin, 45 Avenue des Etats Unis, 78035 Versailles (France); Slimani, Ahmed [Laboratoire des matériaux ferroélectriques, Département de Physique, Faculté des Sciences de Sfax, Route de la Soukra km 3.5 BP 1171, 3018 Sfax (Tunisia); Varret, François [GEMaC, Université de Versailles St-Quentin, 45 Avenue des Etats Unis, 78035 Versailles (France)

    2016-04-01

    We have succeeded to achieve experimentally, using an adapted optical microscopy setup, the reversible control of the front transformation between the low-spin (LS)–high-spin (HS) interface in the spin-crossover (SC) single crystal [{Fe(NCSe)(py)_2}{sub 2}(m-bpypz)] undergoing a first-order transition at 112 K with a 7 K hysteresis width. For that, we first generate a phase separation state (a HS/LS interface at equilibrium) inside the hysteresis loop by tuning the light intensity of the microscope. In the second step, this intensity is monitored in such a way to drive, through a photo-heating process, the interface motion. This photo-control is found to be reversible, accurate and requiring a very small amount of energy. In addition the integrity of the crystal is maintained even after a large number of cycling. The experimental observations, are well described as a reaction diffusion process accounting for the front propagation and the photo-heating effects.

  7. Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems

    Science.gov (United States)

    Khaetskii, A.

    Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.

  8. Transverse Single-Spin Asymmetries in Proton-Proton Collisions at the AFTER@LHC Experiment

    Directory of Open Access Journals (Sweden)

    K. Kanazawa

    2015-01-01

    Full Text Available We present results for transverse single-spin asymmetries in proton-proton collisions at kinematics relevant for AFTER, a proposed fixed-target experiment at the Large Hadron Collider. These include predictions for pion, jet, and direct photon production from analytical formulas already available in the literature. We also discuss specific measurements that will benefit from the higher luminosity of AFTER, which could help resolve an almost 40-year puzzle of what causes transverse single-spin asymmetries in proton-proton collisions.

  9. Spin structure function measurements with polarized protons and electrons at HERA

    International Nuclear Information System (INIS)

    Ball, R.D.; Deshpande, A.; Forte, S.; Hughes, V.W.; Lichtenstadt, J.; Ridolfi, G.

    1995-01-01

    Useful insights into the spin structure functions of the nucleon can be achieved by measurements of spin-dependent asymmetries in inclusive scattering of high energy polarized electrons by high energy polarized protons at HERA. Such an experiment would be a natural extension of the polarized lepton-nucleon scattering experiments presently carried out at CERN and SLAC. We present here estimates of possible data in the extended kinematic range of HERA and associated statistical errors. (orig.)

  10. Electron spin relaxation can enhance the performance of a cryptochrome-based magnetic compass sensor

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Sowa, Jakub K; Solov'yov, Ilia A

    2016-01-01

    The radical pair model of the avian magnetoreceptor relies on long-lived electron spin coherence. Dephasing, resulting from interactions of the spins with their fluctuating environment, is generally assumed to degrade the sensitivity of this compass to the direction of the Earth's magnetic field...... to an Earth-strength magnetic field. Supported by calculations using toy radical pair models, we argue that these enhancements could be consistent with the molecular dynamics and magnetic interactions in avian cryptochromes....

  11. Intrinsic spin-relaxation induced negative tunnel magnetoresistance in a single-molecule magnet

    Science.gov (United States)

    Xie, Haiqing; Wang, Qiang; Xue, Hai-Bin; Jiao, HuJun; Liang, J.-Q.

    2013-06-01

    We investigate theoretically the effects of intrinsic spin-relaxation on the spin-dependent transport through a single-molecule magnet (SMM), which is weakly coupled to ferromagnetic leads. The tunnel magnetoresistance (TMR) is obtained by means of the rate-equation approach including not only the sequential but also the cotunneling processes. It is shown that the TMR is strongly suppressed by the fast spin-relaxation in the sequential region and can vary from a large positive to slight negative value in the cotunneling region. Moreover, with an external magnetic field along the easy-axis of SMM, a large negative TMR is found when the relaxation strength increases. Finally, in the high bias voltage limit the TMR for the negative bias is slightly larger than its characteristic value of the sequential region; however, it can become negative for the positive bias caused by the fast spin-relaxation.

  12. Quantum measurements between a single spin and a torsional nanomechanical resonator

    Science.gov (United States)

    D'Urso, B.; Gurudev Dutt, M. V.; Dhingra, S.; Nusran, N. M.

    2011-04-01

    While the motions of macroscopic objects must ultimately be governed by quantum mechanics, the distinctive features of quantum mechanics can be hidden or washed out by thermal excitations and coupling to the environment. We propose a system consisting of a graphene nanomechanical oscillator (NMO) coupled with a single spin through a uniform external magnetic field, which could become the building block for a wide range of quantum nanomechanical devices. The choice of graphene as the NMO material is critical for minimizing the moment of inertia of the oscillator. The spin originates from a nitrogen-vacancy (NV) center in a diamond nanocrystal that is positioned on the NMO. This coupling results in quantum non-demolition (QND) measurements of the oscillator and spin states, enabling a bridge between the quantum and classical worlds for a simple readout of the NV center spin and observation of the discrete states of the NMO.

  13. Communication: Novel quantum states of electron spins in polycarbenes from ab initio density matrix renormalization group calculations.

    Science.gov (United States)

    Mizukami, Wataru; Kurashige, Yuki; Yanai, Takeshi

    2010-09-07

    An investigation into spin structures of poly(m-phenylenecarbene), a prototype of magnetic organic molecules, is presented using the ab initio density matrix renormalization group method. It is revealed by achieving large-scale multireference calculations that the energy differences between high-spin and low-spin states (spin-gaps) of polycarbenes decrease with increasing the number of carbene sites. This size-dependency of the spin-gaps strikingly contradicts the predictions with single-reference methods including density functional theory. The wave function analysis shows that the low-spin states are beyond the classical spin picture, namely, much of multireference character, and thus are manifested as strongly correlated quantum states. The size dependence of the spin-gaps involves an odd-even oscillation, which cannot be explained by the integer-spin Heisenberg model with a single magnetic-coupling constant.

  14. Spin Hamiltonian effective parameters from periodic electronic structure calculations

    International Nuclear Information System (INIS)

    Rivero, P; Moreira, I de Pr; Illas, F

    2008-01-01

    This paper presents and discusses a general procedure to extract spin Hamiltonian effective parameters from periodic calculations. The methodology is illustrated through representative examples of increasing complexity covering systems with three dimensional magnetic order or with a two dimensional magnetic structure. Some more complex systems are discussed where physical intuition based on the crystal structure of the system does not provide a reliable guide but where the present approach can be applied in a straightforward way

  15. Exchange interaction and rashba spin splitting effects in electron spin resonance in narrow-gap quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Krishtopenko, S. S. [Institute for Physics of Microstructures RAS, GSP-105, 603950, Nizhny Novgorod, Russia and Laboratoire National des Champs Magnétiques Intenses (LNCMI-T), CNRS UPR 3228 Université de Toulouse, 143 Avenue de Rangueil, F-31400 Toulouse (France); Malyzhenkov, A. V.; Kalinin, K. P.; Ikonnikov, A. V.; Maremyanin, K. V.; Gavrilenko, V. I. [Institute for Physics of Microstructures RAS, GSP-105, 603950, Nizhny Novgorod (Russian Federation); Goiran, M. [Laboratoire National des Champs Magnétiques Intenses (LNCMI-T), CNRS UPR 3228 Université de Toulouse, 143 Avenue de Rangueil, F-31400 Toulouse (France)

    2013-12-04

    We report a study of electron spin resonance (ESR) in a perpendicular magnetic field in n-type narrow-gap quantum well (QW) heterostructures. Using the Hartree-Fock approximation, based on the 8×8 k⋅p Hamiltonian, the many-body corrections to the ESR energy are found to be nonzero in symmetric and asymmetric narrow-gap QWs. We demonstrate a significant enhancement of the ESR energy in asymmetric QWs, induced by the Rashba spin splitting and exchange interaction, as well as the exchange-induced enhancement of the ESR energy in symmetric QWs. The ESR energies estimated for 2DEG in InAs/AlSb QWs are compared with experimental results in weak magnetic fields.

  16. Theory of current-induced spin polarization in an electron gas

    Science.gov (United States)

    Gorini, Cosimo; Maleki Sheikhabadi, Amin; Shen, Ka; Tokatly, Ilya V.; Vignale, Giovanni; Raimondi, Roberto

    2017-05-01

    We derive the Bloch equations for the spin dynamics of a two-dimensional electron gas in the presence of spin-orbit coupling. For the latter we consider both the intrinsic mechanisms of structure inversion asymmetry (Rashba) and bulk inversion asymmetry (Dresselhaus), and the extrinsic ones arising from the scattering from impurities. The derivation is based on the SU(2) gauge-field formulation of the Rashba-Dresselhaus spin-orbit coupling. Our main result is the identification of a spin-generation torque arising from Elliot-Yafet scattering, which opposes a similar term arising from Dyakonov-Perel relaxation. Such a torque, which to the best of our knowledge has gone unnoticed so far, is of basic nature, i.e., should be effective whenever Elliott-Yafet processes are present in a system with intrinsic spin-orbit coupling, irrespective of further specific details. The spin-generation torque contributes to the current-induced spin polarization (CISP), also known as inverse spin-galvanic or Edelstein effect. As a result, the behavior of the CISP turns out to be more complex than one would surmise from consideration of the internal Rashba-Dresselhaus fields alone. In particular, the symmetry of the current-induced spin polarization does not necessarily coincide with that of the internal Rashba-Dresselhaus field, and an out-of-plane component of the CISP is generally predicted, as observed in recent experiments. We also discuss the extension to the three-dimensional electron gas, which may be relevant for the interpretation of experiments in thin films.

  17. Electronic structure and spin coupling of the manganese dimer: The state of the art of ab initio approach.

    Science.gov (United States)

    Buchachenko, Alexei A; Chałasiński, Grzegorz; Szcześniak, Małgorzata M

    2010-01-14

    A thorough ab initio study of the Mn(2) dimer in its lowest electronic states that correlate to the ground Mn((6)S)+Mn((6)S) dissociation limit is reported. Performance of multireference methods is examined in calculations of the fully spin-polarized S=5((11) summation operator(+) (u)) state against the recent accurate single-reference coupled cluster CCSD(T) results [A. A. Buchachenko, Chem. Phys. Lett. 459, 73 (2008)]. The detailed comparison reveals a serious disagreement between the multireference configuration interaction (MRCI) and related nonperturbative results on the one hand and the complete active space perturbation theory (CASPT) calculations on the other. A striking difference found in the CASPT results of the second and third orders indicates poor perturbation expansion convergence. It is shown that a similar problem has affected most of the previous calculations performed using CASPT2 and similar perturbative approximations. The composition of the active space in the reference multiconfigurational self-consistent field calculations, the core correlation contribution, and basis set saturation effects are also analyzed. The lower spin states, S=0-4, are investigated using the MRCI method. The results indicate a similar dispersion binding for all the spin states within the manifold related to the closed 4s shells, which appears to screen and suppress the spin coupling between the half-filled 3d atomic shells. On this premise, the full set of model potentials is built by combining the accurate reference CCSD(T) interaction potential for S=5 and the MRCI spin-exchange energies for the SHeisenberg model. The effective spin-coupling parameter J is estimated as -3.9 cm(-1), a value roughly 2.5 times smaller in magnitude than those measured in the inert gas cryogenic matrices. Compressing of the Mn(2) dimer in the matrix cage is suggested as the prime cause of this disagreement.

  18. The single-ion anisotropy effects in the mixed-spin ternary-alloy

    Science.gov (United States)

    Albayrak, Erhan

    2018-04-01

    The effect of single-ion anisotropy on the thermal properties of the ternary-alloy in the form of ABpC1-p is investigated on the Bethe lattice (BL) in terms of exact recursion relations. The simulation on the BL consists of placing A atoms (spin-1/2) on the odd shells and randomly placing B (spin-3/2) or C (spin-5/2) atoms with concentrations p and 1 - p, respectively, on the even shells. The phase diagrams are calculated in possible planes spanned by the system parameters: temperature, single-ion anisotropy, concentration and ratio of the bilinear interaction parameters for z = 3 corresponding to the honeycomb lattice. It is found that the crystal field drives the system to the lowest possible state therefore reducing the temperatures of the critical lines in agreement with the literature.

  19. Effect of the anisotropy of the electron g-factor in spin polarization

    International Nuclear Information System (INIS)

    Miah, M. Idrish; Gray, E. MacA.

    2010-01-01

    Spin polarization in the presence of an external magnetic field and electric bias in quantum confined semiconductor structures has been studied by time- and polarization-resolved spectrometry. From measurements with angular variations of the magnetic field from the Voigt configuration (VC) it was found that both the frequency (Ω) and decay rate (β) of the oscillatory component of the polarization increase with variation of the angle from the VC. Their dependences are discussed based on the electron spin dephasing related to the spread of the electron g-factor (g e ) (i.e. unequal values of the longitudinal (g e|| ) and transverse (g e -perpendicular) components of g e ) and the exchange interaction between the electron and hole spins. It is demonstrated that the increase in Ω upon deviation of the magnetic field from the VC relates to the anisotropy of g e (g e|| and g e -perpendicular) resulting from the quantum confinement effect. However, the angular dependence on β is related to the residual exchange interaction between the electron spin and rapidly relaxing hole spin.

  20. Effect of the anisotropy of the electron g-factor in spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong 4331 (Bangladesh); Gray, E. MacA. [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2010-02-15

    Spin polarization in the presence of an external magnetic field and electric bias in quantum confined semiconductor structures has been studied by time- and polarization-resolved spectrometry. From measurements with angular variations of the magnetic field from the Voigt configuration (VC) it was found that both the frequency ({Omega}) and decay rate ({beta}) of the oscillatory component of the polarization increase with variation of the angle from the VC. Their dependences are discussed based on the electron spin dephasing related to the spread of the electron g-factor (g{sub e}) (i.e. unequal values of the longitudinal (g{sub e||}) and transverse (g{sub e}-perpendicular) components of g{sub e}) and the exchange interaction between the electron and hole spins. It is demonstrated that the increase in {Omega} upon deviation of the magnetic field from the VC relates to the anisotropy of g{sub e} (g{sub e||} and g{sub e}-perpendicular) resulting from the quantum confinement effect. However, the angular dependence on {beta} is related to the residual exchange interaction between the electron spin and rapidly relaxing hole spin.

  1. ν =2 /3 fractional quantum Hall state in an AlAs quantum well probed by electron spin resonance

    Science.gov (United States)

    Shchepetilnikov, A. V.; Frolov, D. D.; Nefyodov, Yu. A.; Kukushkin, I. V.; Tiemann, L.; Reichl, C.; Dietsche, W.; Wegscheider, W.

    2017-10-01

    The electron spin resonance (ESR) of two-dimensional electrons confined in a high-quality, 16-nm AlAs quantum well was investigated near the filling factor ν =2 /3 of the fractional quantum Hall effect (FQHE). The spin resonance was robust in the vicinity of the fractional filling ν =2 /3 , indicating that the ν =2 /3 state is at least partially spin polarized. The formation of the 2 /3 FQHE state did not result in any modifications of the ESR linewidth and, hence, of the electron spin relaxation rate. Yet the nuclear spin-lattice relaxation rate extracted from the time decay of the ESR Overhauser shift demonstrated a strong nonmonotonic dependence on the electron filling factor with a minimum near ν =2 /3 . This observation suggests the enhancement of the energy gap in the spin excitation spectrum of two-dimensional electrons at the ν =2 /3 state.

  2. Electron spin resonance spectroscopy of high purity crystals at millikelvin temperatures

    Science.gov (United States)

    Farr, Warrick G.; Creedon, Daniel L.; Goryachev, Maxim; Benmessai, Karim; Tobar, Michael E.

    2013-12-01

    Progress in the emerging field of engineered quantum systems requires the development of devices that can act as quantum memories. The realisation of such devices by doping solid state cavities with paramagnetic ions imposes a trade-off between ion concentration and cavity coherence time. Here, we investigate an alternative approach involving interactions between photons and naturally occurring impurity ions in ultra-pure crystalline microwave cavities exhibiting exceptionally high quality factors. We implement a hybrid Whispering Gallery/Electron Spin Resonance method to perform rigorous spectroscopy of an undoped single-crystal sapphire resonator over the frequency range 8{19 GHz, and at external applied DC magnetic fields up to 0.9 T. Measurements of a high purity sapphire cooled close to 100 mK reveal the presence of Fe3+, Cr3+, and V2+ impurities. A host of electron transitions are measured and identified, including the two-photon classically forbidden quadrupole transition (Δms = 2) for Fe3+, as well as hyperfine transitions of V2+.

  3. Radio frequency single electron transistors: readout for a solid state quantum computer

    International Nuclear Information System (INIS)

    Buehler, T.M.; Reilly, D.J.; Starrett, R.P.; Brenner, R.; Hamilton, A.R.; Clark, R.G.; Court, N.A.; Dzurak, A.S.

    2002-01-01

    Full text: Quantum computers promise unprecedented computational power if they can be scaled to a large number of qubits. Essential to the operation of such a machine is readout: the determination of the final quantum state of the system. In the case of the silicon based solid state architecture proposed by Kane, readout is achieved by determining the direction of a single electron spin via the detection of a spin dependent tunneling event. This requires a highly sensitive electrometer that can detect the motion of a single electron in a timescale less than the spin relaxation time. The Radio Frequency Single Electron Transistor (RF-SET) is a device that possesses both the charge sensitivity (oq ∼ 10 -6 / √Hz), approaching the quantum limit) and fast response required to perform readout in such a system. Here we describe the fabrication and operation of transmission mode RF-SETs and discuss the application of these novel electrometers in the readout of a solid state quantum computer

  4. Construction and characterization of a spin polarized helium ion beam for surface electronic structure studies

    International Nuclear Information System (INIS)

    Harrison, A.R.

    1982-01-01

    Ion neutralization and metastable de-excitation spectroscopy, INS and MDS, allow detailed analysis of the surface electronic configuration of metals. The orthodox application of these spectroscopies may be enhanced by electronic spin polarization of the probe beams. For this reason, a spin polarized helium ion beam has been constructed. The electronic spin of helium metastables created within an rf discharge may be spacially aligned by optically pumping the atoms. Subsequent collisions between metastables produce helium ions which retain the orientation of the electronic spin. Extracted ion polarization, although not directly measurable, may be estimated from extracted electron polarization, metastable polarization, pumping radiation absorption and current modulation measurements. Ions extracted from the optically pumped discharge exhibit an estimated polarization of about ten per cent at a beam current of a few tenths of a microampere. Extraction of helium ions from the discharge requires that the ions have a high kinetic energy. However, to avoid undesirable kinetic electron ejection from the target surface, the ions must be decelerated. Examination of various deceleration configurations, in paticular exponential and linear deceleration fields, and experimental observation indicate that a linear decelerating field produces the best low energy beam to the target surface

  5. Spin caloritronics in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Angsula; Frota, H. O. [Department of Physics, Federal University of Amazonas, Av. Rodrigo Octavio 3000-Japiim, 69077-000 Manaus, AM (Brazil)

    2015-06-14

    Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.

  6. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer

    Science.gov (United States)

    Gross, I.; Akhtar, W.; Garcia, V.; Martínez, L. J.; Chouaieb, S.; Garcia, K.; Carrétéro, C.; Barthélémy, A.; Appel, P.; Maletinsky, P.; Kim, J.-V.; Chauleau, J. Y.; Jaouen, N.; Viret, M.; Bibes, M.; Fusil, S.; Jacques, V.

    2017-09-01

    Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.

  7. Applications of electron spin resonance to some problems of radiation chemistry

    International Nuclear Information System (INIS)

    Chachaty, C.

    1969-01-01

    The electron spin resonance (E.S.R.) spectra of gamma irradiated polar organic glasses, at 77 K, shows a single line centered at g ∼ 2, attributed to solvated electrons. The radicals produced on scavenging this species by electron acceptors, such as aromatic hydrocarbons, nitro-compounds and azines have been studied by E.S.R. In most cases, the radicals from these solutes, the spectra of which are observed after elimination by warming of the radicals from the matrices, are produced by protonation of the anions formed by scavenging of electrons at 77 K. Thus, in the case of glassy solutions of nitro-compounds, the radicals R NO 2 H are formed. They are characterized by a N = 15 G (nitrobenzene) or a N = 28 G (nitro-alkane). These radicals are also generated by U.V, photolysis at room temperature of solutions of nitro-compounds in alcohols and are shown to be the precursors of nitroxide radicals R - N - R (with N - O) observed simultaneously. Gamma irradiation of solutions of pyridine and of the three diazines, in alcohol glasses at 77 K, produces the radical formed by hydrogen addition to these compounds. The value of the coupling constant of the additional proton (7-10 G) indicates that it is bound to a nitrogen in the sp 2 hydridation state. One has shown, taking pyridine as an example, that the addition to a carbon gives a much greater value of the coupling constant, of the order of 50-60 G. (author) [fr

  8. Quantum computation in semiconductor quantum dots of electron-spin asymmetric anisotropic exchange

    International Nuclear Information System (INIS)

    Hao Xiang; Zhu Shiqun

    2007-01-01

    The universal quantum computation is obtained when there exists asymmetric anisotropic exchange between electron spins in coupled semiconductor quantum dots. The asymmetric Heisenberg model can be transformed into the isotropic model through the control of two local unitary rotations for the realization of essential quantum gates. The rotations on each qubit are symmetrical and depend on the strength and orientation of asymmetric exchange. The implementation of the axially symmetric local magnetic fields can assist the construction of quantum logic gates in anisotropic coupled quantum dots. This proposal can efficiently use each physical electron spin as a logical qubit in the universal quantum computation

  9. Von Neumann entropy in a Rashba-Dresselhaus nanodot; dynamical electronic spin-orbit entanglement

    Science.gov (United States)

    Safaiee, Rosa; Golshan, Mohammad Mehdi

    2017-06-01

    The main purpose of the present article is to report the characteristics of von Neumann entropy, thereby, the electronic hybrid entanglement, in the heterojunction of two semiconductors, with due attention to the Rashba and Dresselhaus spin-orbit interactions. To this end, we cast the von Neumann entropy in terms of spin polarization and compute its time evolution; with a vast span of applications. It is assumed that gate potentials are applied to the heterojunction, providing a two dimensional parabolic confining potential (forming an isotropic nanodot at the junction), as well as means of controlling the spin-orbit couplings. The spin degeneracy is also removed, even at electronic zero momentum, by the presence of an external magnetic field which, in turn, leads to the appearance of Landau states. We then proceed by computing the time evolution of the corresponding von Neumann entropy from a separable (spin-polarized) initial state. The von Neumann entropy, as we show, indicates that electronic hybrid entanglement does occur between spin and two-dimensional Landau levels. Our results also show that von Neumann entropy, as well as the degree of spin-orbit entanglement, periodically collapses and revives. The characteristics of such behavior; period, amplitude, etc., are shown to be determined from the controllable external agents. Moreover, it is demonstrated that the phenomenon of collapse-revivals' in the behavior of von Neumann entropy, equivalently, electronic hybrid entanglement, is accompanied by plateaus (of great importance in quantum computation schemes) whose durations are, again, controlled by the external elements. Along these lines, we also make a comparison between effects of the two spin-orbit couplings on the entanglement (von Neumann entropy) characteristics. The finer details of the electronic hybrid entanglement, which may be easily verified through spin polarization measurements, are also accreted and discussed. The novel results of the present

  10. Improved focal liver lesion detection: comparison of single-shot diffusion-weighted echoplanar and single-shot T-2 weighted turbo spin echo techniques

    NARCIS (Netherlands)

    Coenegrachts, K.; Delanote, J.; ter Beek, L.; Haspeslagh, M.; Bipat, S.; Stoker, J.; van Kerkhove, F.; Steyaert, L.; Rigauts, H.; Casselman, J. W.

    2007-01-01

    The purpose of this study was to compare diffusion-weighted respiratory-triggered single-shot spin echo echoplanar imaging (SS SE-EPI) sequence using four b-values (b=0, b=20, b=300, b=800 s mm(-2)) and single-shot T-2 weighted turbo spin echo (T2W SS TSE) in patients with focal liver lesions, with

  11. Theoretical evaluation of the electron paramagnetic resonance spin ...

    Indian Academy of Sciences (India)

    1Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China. 2International Centre for Materials Physics, Chinese Academy of Sciences,. Shenyang ..... [29] A B P Lever, Inorganic electronic spectroscopy (Elsevier Science Publishers, Amster-.

  12. Polarization dependence of the spin-density-wave excitations in single-domain chromium

    Energy Technology Data Exchange (ETDEWEB)

    Boeni, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Roessli, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France); Sternlieb, B.J. [Brookhaven (United States); Lorenzo, E. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France); Werner, S.A. [Missouri (United States)

    1997-09-01

    A polarized neutron scattering experiment has been performed with a single-Q, single domain sample of chromium in a magnetic field of 4 T. It is confirmed that the longitudinal fluctuations are enhanced for small energy transfers and that the spin wave modes with {delta}S parallel to Q and {delta}S perpendicular to Q are similar. (author) 2 figs., 1 tab., 2 refs.

  13. Excitation of bond-alternating spin-1/2 Heisenberg chains by tunnelling electrons

    International Nuclear Information System (INIS)

    Gauyacq, J-P; Lorente, N

    2014-01-01

    Inelastic electron tunneling spectra (IETS) are evaluated for spin-1/2 Heisenberg chains showing different phases of their spin ordering. The spin ordering is controlled by the value of the two different Heisenberg couplings on the two sides of each of the chain's atoms (bond-alternating chains). The perfect anti-ferromagnetic phase, i.e. a unique exchange coupling, marks a topological quantum phase transition (TQPT) of the bond-alternating chain. Our calculations show that the TQPT is recognizable in the excited states of the chain and hence that IETS is in principle capable of discriminating the phases. We show that perfectly symmetric chains, such as closed rings mimicking infinite chains, yield the same spectra on both sides of the TQPT and IETS cannot reveal the nature of the spin phase. However, for finite size open chains, both sides of the TQPT are associated with different IETS spectra, especially on the edge atoms, thus outlining the transition. (paper)

  14. Neuromorphic computing enabled by physics of electron spins: Prospects and perspectives

    Science.gov (United States)

    Sengupta, Abhronil; Roy, Kaushik

    2018-03-01

    “Spintronics” refers to the understanding of the physics of electron spin-related phenomena. While most of the significant advancements in this field has been driven primarily by memory, recent research has demonstrated that various facets of the underlying physics of spin transport and manipulation can directly mimic the functionalities of the computational primitives in neuromorphic computation, i.e., the neurons and synapses. Given the potential of these spintronic devices to implement bio-mimetic computations at very low terminal voltages, several spin-device structures have been proposed as the core building blocks of neuromorphic circuits and systems to implement brain-inspired computing. Such an approach is expected to play a key role in circumventing the problems of ever-increasing power dissipation and hardware requirements for implementing neuro-inspired algorithms in conventional digital CMOS technology. Perspectives on spin-enabled neuromorphic computing, its status, and challenges and future prospects are outlined in this review article.

  15. Correlation Effects and Hidden Spin-Orbit Entangled Electronic Order in Parent and Electron-Doped Iridates Sr_{2}IrO_{4}

    Directory of Open Access Journals (Sweden)

    Sen Zhou

    2017-10-01

    Full Text Available Analogs of the high-T_{c} cuprates have been long sought after in transition metal oxides. Because of the strong spin-orbit coupling, the 5d perovskite iridates Sr_{2}IrO_{4} exhibit a low-energy electronic structure remarkably similar to the cuprates. Whether a superconducting state exists as in the cuprates requires understanding the correlated spin-orbit entangled electronic states. Recent experiments discovered hidden order in the parent and electron-doped iridates, some with striking analogies to the cuprates, including Fermi surface pockets, Fermi arcs, and pseudogap. Here, we study the correlation and disorder effects in a five-orbital model derived from the band theory. We find that the experimental observations are consistent with a d-wave spin-orbit density wave order that breaks the symmetry of a joint twofold spin-orbital rotation followed by a lattice translation. There is a Berry phase and a plaquette spin flux due to spin procession as electrons hop between Ir atoms, akin to the intersite spin-orbit coupling in quantum spin Hall insulators. The associated staggered circulating J_{eff}=1/2 spin current can be probed by advanced techniques of spin-current detection in spintronics. This electronic order can emerge spontaneously from the intersite Coulomb interactions between the spatially extended iridium 5d orbitals, turning the metallic state into an electron-doped quasi-2D Dirac semimetal with important implications on the possible superconducting state suggested by recent experiments.

  16. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    Science.gov (United States)

    England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.

  17. Spin magnetic moments from single atoms to small Cr clusters

    Energy Technology Data Exchange (ETDEWEB)

    Boeglin, C.; Decker, R.; Bulou, H.; Scheurer, F.; Chado, I. [IPCMS-GSI - UMR 7504, 67037 Strasbourg Cedex (France); Ohresser, P. [LURE, 91405 Orsay (France); Dhesi, S.S. [ESRF, BP 220, 38043 Grenoble Cedex (France); Present permanent address: Diamond Light Source, Chilton, Didcot OX11 0QX (United Kingdom); Gaudry, E. [LMCP, 4, place Jussieu, 75252 Paris (France); Lazarovits, B. [CCMS, T.U. Vienna, Gumpendorfstr. 1a, 1060 Wien (Austria)

    2005-07-01

    Morphology studies at the first stages of the growth of Cr/Au(111) are reported and compared to the magnetic properties of the nanostructures. We analyze by Scanning Tunneling Microscopy and Low Energy Electron Diffraction the Cr clusters growth between 200 K and 300 K. In the early stages of the growth the morphology of the clusters shows monoatomic high islands located at the kinks of the herringbone reconstructed Au(111) surface. By X-ray Magnetic Circular Dichroism performed on the Cr L{sub 2,3} edges it is shown that the temperature dependent morphology strongly influences the magnetic properties of the Cr clusters. We show that in the sub-monolayer regime Cr clusters are antiferromagnetic and paramagnetic when the size reaches the atomic limit. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Electron spin resonance of radicals and metal complexes

    International Nuclear Information System (INIS)

    1993-01-01

    The materials are a collection of extended synopsis of papers presented at the conference sessions. The broad area of magnetic techniques applications has been described as well as their spectra interpretation methods. The ESR, NMR, ENDOR and spin echo were applied for studying the radiation and UV induced radicals in chemical and biological systems. Also in the study of complexes of metallic ions (having the paramagnetic properties) and their interaction with the matrix, the magnetic techniques has been commonly used. They are also very convenient tool for the study of reaction kinetics and mechanism as well as interaction of paramagnetic species with themselves and crystal lattice or with the surface as for thee catalytic processes

  19. Perfusion by Arterial Spin labelling following Single dose Tadalafil In Small vessel disease (PASTIS)

    DEFF Research Database (Denmark)

    Pauls, Mathilde M H; Clarke, Natasha; Trippier, Sarah

    2017-01-01

    vascular territories. The aim of this trial is to test the hypothesis that tadalafil increases cerebral blood flow in older people with small vessel disease. METHODS/DESIGN: Perfusion by Arterial Spin labelling following Single dose Tadalafil In Small vessel disease (PASTIS) is a phase II randomised double......-blind crossover trial. In two visits, 7-30 days apart, participants undergo arterial spin labelling to measure cerebral blood flow and a battery of cognitive tests, pre- and post-dosing with oral tadalafil (20 mg) or placebo. SAMPLE SIZE: 54 participants are required to detect a 15% increase in cerebral blood...

  20. Spin magneto-transport in a Rashba-Dresselhaus quantum channel with single and double finger gates

    Science.gov (United States)

    Tang, Chi-Shung; Keng, Jia-An; Abdullah, Nzar Rauf; Gudmundsson, Vidar

    2017-05-01

    We address spin-resolved electronic transport properties in a Rashba-Dresselhaus quantum channel in the presence of an in-plane magnetic field. The strong Rashba-Dresselhaus effect induces an asymmetric spin-splitting energy spectrum with a spin-orbit-Zeeman gap. This asymmetric fact in energy spectrum may result in various quantum dynamic features in conductance due to the presence of finger gates. This asymmetric spin-splitting energy spectrum results in a bound state in continuum for electrons within ultralow energy regime with binding energies in order of 10-1 meV.

  1. EPR and DNP Properties of Certain Novel Single Electron Contrast Agents Intended for Oximetric Imaging

    DEFF Research Database (Denmark)

    Ardenkjær-Larsen, J. H.; Laursen, I; Leunbach, I.

    1998-01-01

    Parameters of relevance to oximetry with Overhauser magnetic resonance imaging (OMRI) have been measured for three single electron contrast agents of the triphenylmethyl type. The single electron contrast agents are stable and water soluble. Magnetic resonance properties of the agents have been...... examined with electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and dynamic nuclear polarization (DNP) at 9.5 mT in water, isotonic saline, plasma, and blood at 23 and 37°C. The relaxivities of the agents are about 0.2–0.4 mM−1s−1and the DNP enhancements extrapolate close...... than 1 μT in water at room temperature. The longitudinal electron spin relaxation rate is calculated from the DNP enhancement curves. The oxygen broadening in water is about 50 μT/mM O2at 37°C. These agents have good properties for oximetry with OMRI....

  2. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); Vergara, Lucía [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); N' Diaye, Alpha T. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Quesada, Adrian [Instituto de Cerámica y Vidrio, CSIC, Calle Kelsen 5, 28049, Madrid (Spain); Schmid, Andreas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-07-15

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface <110> directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along <110> directions. ► Magnetic domain wall structures include wide Néel-caps.

  3. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  4. Cotunneling spectroscopy and the properties of excited-state spin manifolds of Mn12 single molecule magnets

    Science.gov (United States)

    Rostamzadeh Renani, Fatemeh; Kirczenow, George

    2014-10-01

    We study charge transport through single molecule magnet (SMM) junctions in the cotunneling regime as a tool for investigating the properties of the excited-state manifolds of neutral Mn12 SMs. This study is motivated by a recent transport experiment [S. Kahle et al., Nano Lett. 12, 518 (2012), 10.1021/nl204141z] that probed the details of the magnetic and electronic structure of Mn12 SMMs beyond the ground-state spin manifold. A giant spin Hamiltonian and master equation approach is used to explore theoretically the cotunneling transport through Mn12-Ac SMM junctions. We identify SMM transitions that can account for both the strong and weak features of the experimental differential conductance spectra. We find the experimental results to imply that the excited spin-state manifolds of the neutral SMM have either different anisotropy constants or different g factors in comparison with its ground-state manifold. However, the latter scenario accounts best for the experimental data.

  5. Monte Carlo studies of thermalization of electron-hole pairs in spin-polarized degenerate electron gas in monolayer graphene

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2018-02-01

    Monte Carlo method is applied to the study of relaxation of excited electron-hole (e-h) pairs in graphene. The presence of background of spin-polarized electrons, with high density imposing degeneracy conditions, is assumed. To such system, a number of e-h pairs with spin polarization parallel or antiparallel to the background is injected. Two stages of relaxation: thermalization and cooling are clearly distinguished when average particles energy and its standard deviation σ _E are examined. At the very beginning of thermalization phase, holes loose energy to electrons, and after this process is substantially completed, particle distributions reorganize to take a Fermi-Dirac shape. To describe the evolution of and σ _E during thermalization, we define characteristic times τ _ {th} and values at the end of thermalization E_ {th} and σ _ {th}. The dependence of these parameters on various conditions, such as temperature and background density, is presented. It is shown that among the considered parameters, only the standard deviation of electrons energy allows to distinguish between different cases of relative spin polarizations of background and excited electrons.

  6. Spin-polarized electron tunneling across a Si delta-doped GaMnAs/n-GaAs interface

    DEFF Research Database (Denmark)

    Andresen, S.E.; Sørensen, B.S.; Lindelof, P.E.

    2003-01-01

    Spin-polarized electron coupling across a Si delta-doped GaMnAs/n-GaAs interface was investigated. The injection of spin-polarized electrons was detected as circular polarized emission from a GaInAs/GaAs quantum well light emitting diode. The angular momentum selection rules were simplified...

  7. A point of view about identification of irradiated foods by electron spin resonance

    International Nuclear Information System (INIS)

    Saint-Lebe, L.; Raffi, J.

    1986-11-01

    Principles and conditions required for using electron spin resonance (ESR) in identifying irradiated foods are first put forth. After a literature review, examples of irradiated cereals and French prunes are described in order to derive general conclusions concerning the future of ESR in this field

  8. Electron Spin Resonance Spectroscopy for Studying the Generation and Scavenging of Reactive Oxygen Species by Nanomaterials

    Science.gov (United States)

    Yin, Jun-Jie; Zhao, Baozhong; Xia, Qingsu; Fu, Peter P.

    2013-09-01

    One fundamental mechanism widely described for nanotoxicity involves oxidative damage due to generation of free radicals and other reactive oxygen species. Indeed, the ability of nanoscale materials to facilitate the transfer of electrons, and thereby promote oxidative damage or in some instances provide antioxidant protection, may be a fundamental property of these materials. Any assessment of a nanoscale material's safety must therefore consider the potential for toxicity arising from oxidative damage. Therefore, rapid and predictive methods are needed to assess oxidative damage elicited by nanoscale materials. The use of electron spin resonance (ESR) to study free radical related bioactivity of nanomaterials has several advantages for free radical determination and identification. Specifically it can directly assess antioxidant quenching or prooxidant generation of relevant free radicals and reactive oxygen species. In this chapter, we have reported some nonclassical behaviors of the electron spin relaxation properties of unpaired electrons in different fullerenes and the investigation of anti/prooxidant activity by various types of nanomaterials using ESR. In addition, we have reviewed the mechanisms of free radical formation photosensitized by different nanomaterials. This chapter also included the use of spin labels, spin traps and ESR oximetry to systematically examine the enzymatic mimetic activities of nanomaterials.

  9. Temperature Regulating System for Use with an Electron Spin Resonance Spectrometer

    DEFF Research Database (Denmark)

    Fenger, J.

    1965-01-01

    A servosystem that controls the sample temperature in an electron spin resonance spectrometer is described. It is based upon the regulation of the combination of two nitrogen gas flows of different temperatures. The temperature can be preset with an accuracy to about 1 degC between -140 and 100°C...

  10. Loophole-free Bell test using electron spins in diamond : Second experiment and additional analysis

    NARCIS (Netherlands)

    Hensen, B.J.; Kalb, N.; Blok, M.S.; Dréau, A.E.; Reiserer, A.A.; Vermeulen, R.F.L.; Schouten, R.N.; Markham, M.; Twitchen, D.J.; Goodenough, K.D.; Elkouss Coronas, D.; Wehner, S.D.C.; Taminiau, T.H.; Hanson, R.

    2016-01-01

    The recently reported violation of a Bell inequality using entangled electronic spins in diamonds (Hensen et al., Nature 526, 682–686) provided the first loophole-free evidence against local-realist theories of nature. Here we report on data from a second Bell experiment using the same

  11. Spin-orbit interaction in a two-dimensional electron gas in a InAs/AlSb quantum well with gate-controlled electron density

    NARCIS (Netherlands)

    Heida, J.P.; Wees, B.J. van; Kuipers, J.J.; Klapwijk, T.M.; Borghs, G.

    1998-01-01

    We present experiments on the tuning of the spin-orbit interaction in a two-dimensional electron gas in an asymmetric InAs/AlSb quantum well using a gate. The observed dependence of the spin splitting energy on the electron density can be attributed solely to the change in the Fermi wave vector. The

  12. The thermodynamic spin magnetization of strongly correlated 2d electrons in a silicon inversion layer

    OpenAIRE

    Prus, O.; Yaish, Y.; Reznikov, M.; Sivan, U.; Pudalov, V.

    2002-01-01

    A novel method invented to measure the minute thermodynamic spin magnetization of dilute two dimensional fermions is applied to electrons in a silicon inversion layer. Interplay between the ferromagnetic interaction and disorder enhances the low temperature susceptibility up to 7.5 folds compared with the Pauli susceptibility of non-interacting electrons. The magnetization peaks in the vicinity of the density where transition to strong localization takes place. At the same density, the suscep...

  13. The electron spin resonance study of heavily nitrogen doped 6H SiC crystals

    Czech Academy of Sciences Publication Activity Database

    Savchenko, Dariia

    2015-01-01

    Roč. 117, č. 4 (2015), "045708-1"-"045708-6" ISSN 0021-8979 R&D Projects: GA ČR GP13-06697P; GA MŠk(CZ) LM2011029 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : electron spin resonance * conduction electrons * 6H SiC * insulator-metal transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.101, year: 2015

  14. Spin-orbit mediated control of spin qubits

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A.S; Flensberg, Karsten

    2006-01-01

    We propose to use the spin-orbit interaction as a means to control electron spins in quantum dots, enabling both single-qubit and two-qubit operations. Very fast single-qubit operations may be achieved by temporarily displacing the electrons. For two-qubit operations the coupling mechanism is based...... on a combination of the spin-orbit coupling and the mutual long-ranged Coulomb interaction. Compared to existing schemes using the exchange coupling, the spin-orbit induced coupling is less sensitive to random electrical fluctuations in the electrodes defining the quantum dots....

  15. Electron spin resonance identification di-carbon-related centers in irradiated silicon

    Science.gov (United States)

    Hayashi, S.; Saito, H.; Itoh, K. M.; Vlasenko, M. P.; Vlasenko, L. S.

    2018-04-01

    A previously unreported electron spin resonance (ESR) spectrum was found in γ-ray irradiated silicon by the detection of the change in microwave photoconductivity arising from spin-dependent recombination (SDR). In the specially prepared silicon crystals doped by 13C isotope, a well resolved hyperfine structure of SDR-ESR lines due to the interaction between electrons and two equivalent carbon atoms having nuclear spin I = 1/2 was observed. The Si-KU4 spectrum is described by spin Hamiltonian for spin S = 1 and of g and D tensors of orthorhombic symmetry with principal values g1 = 2.008, g2 = 2.002, and g3 =2.007; and D1 = ± 103 MHz, D2 = ∓170 MHz, and D3 = ± 67 MHz where axes 1, 2, and 3 are parallel to the [1 1 ¯ 0 ], [110], and [001] crystal axes, respectively. The hyperfine splitting arising from 13C nuclei is about 0.35 mT. A possible microstructure of the detect leading to the Si-KU4 spectrum is discussed.

  16. Spin Transport in Semiconductor heterostructures

    International Nuclear Information System (INIS)

    Marinescu, Domnita Catalina

    2011-01-01

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  17. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    Science.gov (United States)

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  18. Electrons and Spin Waves in Heavy Rare Earth Metals

    DEFF Research Database (Denmark)

    Mackintosh, A. R.

    1972-01-01

    Although the main principles governing the magnetic interactions and magnetic ordering in rare earth metals have been qualitatively understood for some time, it is only relatively recently that a sufficiently detailed study has been made of their electronic and magnetic excitations to place...

  19. Relativistic electron-atom scattering in an extremely powerful laser field: Relevance of spin effects

    International Nuclear Information System (INIS)

    Panek, P.; Kaminski, J.Z.; Ehlotzky, F.

    2002-01-01

    We reconsider the relativistic scattering of electrons by an atom, being approximated by a static potential, in an extremely powerful electromagnetic plane wave of frequency ω and linear polarization ε. Since to a first order of approximation spin effects can be neglected, we first describe the scattered electron by the Gordon solution of the Klein-Gordon equation. Then we investigate the same scattering process by including the spin effects, using for the electron the Volkov solution of the Dirac equation. For sufficiently energetic electrons, the first-order Born approximation can be employed to represent the corresponding scattering matrix element. We compare the results of the differential cross sections of induced and inverse bremsstrahlung, evaluated from both approximations, for various parameter values and angular configurations and we find that in most cases the spin effects are marginal, even at very high laser power. On the other hand, we recover the various asymmetries in the angular distributions of the scattered electrons and their respective energies due to the laser-induced drift motion of the electrons in the direction of propagation of the radiation field, thus confirming the findings of our previous work [Phys. Rev. A 59, 2105 (1999); Laser Physics 10, 163 (2000)

  20. Electron spin resonance characterization of radical components in irradiated black pepper skin and core

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoki, Rumi, E-mail: yamaoki@gly.oups.ac.jp [Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Kimura, Shojiro [Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Ohta, Masatoshi [Faculty of Engineering, Niigata University, 8050 Igarashi 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan)

    2011-11-15

    Characteristics of free radical components of irradiated black pepper fruit (skin) and the pepper seed (core) were analyzed using electron spin resonance. A weak signal near g=2.005 was observed in black pepper before irradiation. Complex spectra near g=2.005 with three lines (the skin) or seven lines (the core) were observed in irradiated black pepper (both end line width; ca. 6.8 mT). The spectral intensities decreased considerably at 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of the content and the stability of radical components derived from plant constituents, including fiber, starch, polyphenol, mono- and disaccharide, were in good agreement with the observed spectra. Analysis showed that the signal intensities derived from fiber in the skin for an absorbed dose were higher, and the rates of decrease were lower, than that in the core. In particular, the cellulose radical component in the skin was highly stable. - Highlights: > We identified the radical components in irradiated black pepper skin and core. > The ESR spectra near g=2.005 with 3-7 lines were emerged after irradiation. > Spectra simulated basing on the content and the stability of radical from the plant constituents. > Cellulose radical component in black pepper skin was highly stable. > Single signal near g=2.005 was the most stable in black pepper core.

  1. Simulation of electron spin resonance spectroscopy in diverse environments: An integrated approach

    Science.gov (United States)

    Zerbetto, Mirco; Polimeno, Antonino; Barone, Vincenzo

    2009-12-01

    We discuss in this work a new software tool, named E-SpiReS (Electron Spin Resonance Simulations), aimed at the interpretation of dynamical properties of molecules in fluids from electron spin resonance (ESR) measurements. The code implements an integrated computational approach (ICA) for the calculation of relevant molecular properties that are needed in order to obtain spectral lines. The protocol encompasses information from atomistic level (quantum mechanical) to coarse grained level (hydrodynamical), and evaluates ESR spectra for rigid or flexible single or multi-labeled paramagnetic molecules in isotropic and ordered phases, based on a numerical solution of a stochastic Liouville equation. E-SpiReS automatically interfaces all the computational methodologies scheduled in the ICA in a way completely transparent for the user, who controls the whole calculation flow via a graphical interface. Parallelized algorithms are employed in order to allow running on calculation clusters, and a web applet Java has been developed with which it is possible to work from any operating system, avoiding the problems of recompilation. E-SpiReS has been used in the study of a number of different systems and two relevant cases are reported to underline the promising applicability of the ICA to complex systems and the importance of similar software tools in handling a laborious protocol. Program summaryProgram title: E-SpiReS Catalogue identifier: AEEM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v2.0 No. of lines in distributed program, including test data, etc.: 311 761 No. of bytes in distributed program, including test data, etc.: 10 039 531 Distribution format: tar.gz Programming language: C (core programs) and Java (graphical interface) Computer: PC and Macintosh Operating system: Unix and Windows Has the code been vectorized or

  2. Spin dynamics in the single molecule magnet Ni4 under microwave irradiation

    Science.gov (United States)

    de Loubens, Gregoire

    2009-03-01

    Quantum mechanical effects such as quantum tunneling of magnetization (QTM) and quantum phase interference have been intensively studied in single molecule magnets (SMMs). These materials have also been suggested as candidates for qubits and are promising for molecular spintronics. Understanding decoherence and energy relaxation mechanisms in SMMs is then both of fundamental interest and important for the use of SMMs in applications. Interestingly, the single-spin relaxation rate due to direct process of a SMM embedded in an elastic medium can be derived without any unknown coupling constant [1]. Moreover, nontrivial relaxation mechanisms are expected from collective effects in SMM single crystals, such as phonon superradiance or phonon bottleneck. In order to investigate the spin relaxation between the two lowest lying spin-states of the S=4 single molecule magnet Ni4, we have developed an integrated sensor that combines a microstrip resonator and micro-Hall effect magnetometer on a chip [2]. This sensor enables both real time studies of magnetization dynamics under pulse irradiation as well as simultaneous measurements of the absorbed power and magnetization changes under continuous microwave irradiation. The latter technique permits the study of small deviations from equilibrium under steady state conditions, i.e. small amplitude cw microwave irradiation. This has been used to determine the energy relaxation rate of a Ni4 single crystal as a function of temperature at two frequencies, 10 and 27.8 GHz. A strong temperature dependence is observed below 1.5 K, which is not consistent with a direct spin-phonon relaxation process. The data instead suggest that the spin relaxation is dominated by a phonon bottleneck at low temperatures and occurs by an Orbach process involving excited spin-levels at higher temperatures [3]. Experimental results will be compared with detailed calculations of the relaxation rate using the density matrix equation with the relaxation

  3. Realization of a Cascaded Quantum System: Heralded Absorption of a Single Photon Qubit by a Single-Electron Charged Quantum Dot.

    Science.gov (United States)

    Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoğlu, Atac

    2017-04-28

    Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.

  4. Insights on the Structural Details of Endonuclease EcoRI-DNA Complexes by Electron Spin Resonance

    Science.gov (United States)

    Sarver, Jessica

    2009-03-01

    Pulsed electron spin resonance (ESR) was used to probe the binding specificity of EcoRI, a restriction endonuclease. Using site-directed spin labeling, a nitroxide side chain was incorporated into the protein, enabling the use of ESR to study structural details of EcoRI. Distance measurements were performed on EcoRI mutants when bound to varying sequences of DNA using the Double Electron-Electron Resonance experiment. These distances demonstrated that the average structure in the arm regions of EcoRI, thought to play a major role in binding specificity, is the same when the protein binds to different sequences of DNA. Also, it was determined that the arms exhibit higher flexibility when bound to sequences other than the specific sequence due to the larger distance distributions acquired from these spin labeled complexes. Molecular dynamics (MD) simulations were performed on the spin-label-modified specific EcoRI-DNA crystal structure to model the average nitroxide orientation. The distance distributions from MD were found to be narrower than experiment, indicating the need for a more rigorous sampling of the nitroxide conformers in silico.

  5. Proximity effect of electron beam lithography on single-electron ...

    Indian Academy of Sciences (India)

    were incident on a resist-coated photomask substrate (chrome on quartz plate). The scattering of these electrons causes undesirable resist development energy to accumulate around the patterned areas. This accumulated energy from the scat- tered electron only slightly affects isolated patterns, but significantly more ...

  6. Single-spin asymmetries of d({gamma},{pi})NN in the first resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Eed M. E-mail: eeddarwish@yahoo.com

    2004-04-19

    Incoherent photoproduction of pions on the deuteron in the first resonance region is investigated with special emphasis on single-spin asymmetries. For the elementary pion production operator an effective Lagrangian model which includes the standard pseudovector Born terms and a resonance contribution from the {delta}(1232)-excitation is used. Single-spin asymmetries, both for charged and neutral pion photoproduction on the deuteron, are analyzed and calculated in the first resonance region. The linear photon asymmetry {sigma}, vector target asymmetry T{sub 11} and tensor target asymmetries T{sub 20}, T{sub 21}, and T{sub 22} for the reaction d({gamma},{pi})NN with polarized photon beam and/or oriented deuteron target are predicted for forthcoming experiments.

  7. Field and frequency modulated sub-THz electron spin resonance spectrometer

    Directory of Open Access Journals (Sweden)

    Christian Caspers

    2016-05-01

    Full Text Available 260-GHz radiation is used for a quasi-optical electron spin resonance (ESR spectrometer which features both field and frequency modulation. Free space propagation is used to implement Martin-Puplett interferometry with quasi-optical isolation, mirror beam focusing, and electronic polarization control. Computer-aided design and polarization pathway simulation lead to the design of a compact interferometer, featuring lateral dimensions less than a foot and high mechanical stability, with all components rated for power levels of several Watts suitable for gyrotron radiation. Benchmark results were obtained with ESR standards (BDPA, DPPH using field modulation. Original high-field ESR of 4f electrons in Sm3+-doped Ceria was detected using frequency modulation. Distinct combinations of field and modulation frequency reach a signal-to-noise ratio of 35 dB in spectra of BDPA, corresponding to a detection limit of about 1014 spins.

  8. Unique electron polarimeter analyzing power comparison and precision spin-based energy measurement

    International Nuclear Information System (INIS)

    Joseph Grames; Charles Sinclair; Joseph Mitchell; Eugene Chudakov; Howard Fenker; Arne Freyberger; Douglas Higinbotham; Poelker, B.; Michael Steigerwald; Michael Tiefenback; Christian Cavata; Stephanie Escoffier; Frederic Marie; Thierry Pussieux; Pascal Vernin; Samuel Danagoulian; Kahanawita Dharmawardane; Renee Fatemi; Kyungseon Joo; Markus Zeier; Viktor Gorbenko; Rakhsha Nasseripour; Brian Raue; Riad Suleiman; Benedikt Zihlmann

    2004-01-01

    Precision measurements of the relative analyzing powers of five electron beam polarimeters, based on Compton, Moller, and Mott scattering, have been performed using the CEBAF accelerator at the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory). A Wien filter in the 100 keV beamline of the injector was used to vary the electron spin orientation exiting the injector. High statistical precision measurements of the scattering asymmetry as a function of the spin orientation were made with each polarimeter. Since each polarimeter receives beam with the same magnitude of polarization, these asymmetry measurements permit a high statistical precision comparison of the relative analyzing powers of the five polarimeters. This is the first time a precise comparison of the analyzing powers of Compton, Moller, and Mott scattering polarimeters has been made. Statistically significant disagreements among the values of the beam polarization calculated from the asymmetry measurements made with each polarimeter reveal either errors in the values of the analyzing power, or failure to correctly include all systematic effects. The measurements reported here represent a first step toward understanding the systematic effects of these electron polarimeters. Such studies are necessary to realize high absolute accuracy (ca. 1%) electron polarization measurements, as required for some parity violation measurements planned at Jefferson Laboratory. Finally, a comparison of the value of the spin orientation exiting the injector that provides maximum longitudinal polarization in each experimental hall leads to an independent and very precise (better than 10-4) absolute measurement of the final electron beam energy

  9. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.

    2007-01-01

    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control...... of the diode bias and local gating allow for the generation of single photons that are entangled with a robust quantum memory based on the electron spins. Practical performance of this approach to controlled spin-photon entanglement is analyzed....

  10. Antiferromagnetic ordering in spin-chain multiferroic Gd{sub 2}BaNiO{sub 5} studied by electronic spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. M.; Ruan, M. Y.; Cheng, J. J.; Sun, Y. C. [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Ouyang, Z. W., E-mail: zwouyang@mail.hust.edu.cn; Xia, Z. C. [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Rao, G. H. [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China)

    2015-06-14

    High-field electron spin resonance (ESR) has been employed to study the antiferromagnetic (AFM) ordering state (T < T{sub N} = 55 K) of spin-chain multiferroic Gd{sub 2}BaNiO{sub 5}. The spin reorientation at T{sub SR} = 24 K is well characterized by the temperature-dependent ESR spectra. The magnetization data evidence a field-induced spin-flop transition at 2 K. The frequency-field relationship of the ESR data can be explained by conventional AFM resonance theory with uniaxial anisotropy, in good agreement with magnetization data. Related discussion on zero-field spin gap is presented.

  11. Improved Superlattices for Spin-Polarized Electron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Mamaev, Yu.A.; Gerchikov, L.G.; Yashin, Yu.P.; Kuz-michev, V.; Vasiliev, D.; /St. Petersburg Polytechnic Inst.; Maruymama, T.; Clendenin, J.E.; /SLAC; Ustinov, V.M.; Zhukov, A.E.; /Ioffe Phys. Tech. Inst.

    2006-12-08

    Photoemission of polarized electrons from heterostructures based on InAlGaAs/GaAs superlattices with minimum conduction-band offsets is investigated. The comparison of the excitation energy dependence of the photoemission polarization degree with the calculated spectra makes it possible to determine the polarization losses at different stages of the photoemission. A maximum polarization of P = 91% and a quantum efficiency of QE = 0.5% are close to the best results obtained for photocathodes that are based on strained semiconductor superlattices.

  12. Manifestation of Spin Selection Rules on the Quantum Tunneling of Magnetization in a Single Molecule Magnet

    OpenAIRE

    Henderson, J. J.; Koo, C.; Feng, P. L.; del Barco, E.; Hill, S.; Tupitsyn, I. S.; Stamp, P. C. E.; Hendrickson, D. N.

    2009-01-01

    We present low temperature magnetometry measurements on a new Mn3 single-molecule magnet (SMM) in which the quantum tunneling of magnetization (QTM) displays clear evidence for quantum mechanical selection rules. A QTM resonance appearing only at elevated temperatures demonstrates tunneling between excited states with spin projections differing by a multiple of three: this is dictated by the C3 symmetry of the molecule, which forbids pure tunneling from the lowest metastable state. Resonances...

  13. Entanglement of a Single Spin-1 Object: An Example of Ubiquitous Entanglement

    OpenAIRE

    Binicioglu, Sinem; Can, M. Ali; Klyachko, Alexander A.; Shumovsky, Alexander S.

    2006-01-01

    Using a single spin-1 object as an example, we discuss a recent approach to quantum entanglement. The key idea of the approach consists in presetting of basic observables in the very definition of quantum system. Specification of basic observables defines the dynamic symmetry of the system. Entangled states of the system are then interpreted as states with maximal amount of uncertainty of all basic observables. The approach gives purely physical picture of entanglement. In particular, it sepa...

  14. Spin Coherence in Semiconductor Nanostructures

    National Research Council Canada - National Science Library

    Flatte, Michael E

    2006-01-01

    ... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...

  15. The Verwey transition observed by spin-resolved photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química Física “Rocasolano”, CSIC, Madrid E-28006 (Spain); Tusche, Christian [Max Planck Institute of Microstructure Physics, Halle D-06120 (Germany); Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), D-52425 Jülich (Germany)

    2017-01-01

    Highlights: • First observations of magnetic domains on magnetite (001) by spin-resolved PEEM. • Spin-polarization through the Verwey transitions does not change appreciably. • Shape and distribution of domains has been observed through the Verwey transition. - Abstract: We have imaged the magnetic domains on magnetite (001) through the Verwey transition by means of spin-resolved photoemission electron microscopy. A He laboratory source is used for illumination. The magnetic domains walls above the Verwey transition are aligned with 〈110〉 in-plane directions. Below the Verwey transition, the domain structure is interpreted as arising from a distribution of areas with different monoclinic c-axis, with linear 180° domain walls within each area and ragged edges when the magnetic domain boundaries coincide with structural domain walls. The domains evolve above the Verwey transition, while they are static below.

  16. ESPINTRÓNICA, LA ELECTRONICA DEL ESPÍN SPINTRONICS, SPIN ELECTRONICS

    KAUST Repository

    Monteblanco, Elmer

    2017-03-14

    Current technology seeks to develop nanoscale devices capable of storing and processing information. These devices would be difficult to make in the area of electronics, which is based on the manipulation of electric charge. However, thanks to advances in experimental and theoretical physics in the field of condensed matter, these devices are already a reality, belonging to the field of what we now call spintronics, which bases its functionality on the control of the electron’s spin, a property that can only be conceived at the quantum level. In this article we review this new perspective, describing giant- and tunneling- magnetoresistance, the spin transfer torque, and their applications such as MRAM memories, nano-oscillators and lateral spin valves.

  17. Detection of individual spin transitions of a single proton confined in a cryogenic Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Kracke, Holger

    2013-02-27

    The presented experiment for the determination of the magnetic moment of the proton is based on the measurement of the ratio of cyclotron frequency and Larmor frequency of a single proton confined in a cryogenic double-Penning trap. In the course of this thesis, the simultaneous non-destructive measurement of two of the three eigenfrequencies of the proton in thermal equilibrium with corresponding detection systems was demonstrated, which reduces the measurement time of the cyclotron frequency by a factor of two. Furthermore, this thesis presents the first detection of individual spin transitions of a single proton, which allows for the determination of the Larmor frequency. The continuous Stern-Gerlach effect is utilized to couple the magnetic moment to the axial mode of the trapped proton by means of a magnetic bottle. Thus, a spin flip causes a jump of the axial frequency, which can be measured non-destructively with highly-sensitive detection systems. However, not only the spin momentum is coupled to the axial motion but also the angular momentum. Thus, the main experimental challenge is the elimination of energy fluctuations in the radial modes in order to maintain spin flip resolution. Due to systematic studies on the stability of the axial frequency and a complete revision of the experimental setup, this goal was achieved. The spin state of the proton can be determined with very high fidelity for the very first time. Thus, this thesis represents an important step towards a high-precision determination of the magnetic moment of the proton.

  18. An electron spin resonance study of gamma-irradiated grapes

    Science.gov (United States)

    Tabner, Brian J.; Tabner, Vivienne A.

    The ESR spectra of the seeds, skins and stalks of unirradiated and γ-irradiated Cape black grapes have been obtained. In the spectra of all parts of the grape a single line (g ca. 2.004) is observed both before and after irradiation. New spectral features are observed after irradiation with doses of between 2 and 10 kGy. Some of these features decline in intensity over a period of several days. However, in the case of stalks, new spectral features are readily observed over the shelf-life of the fruit and in samples irradiated to a dose of only 2kGy.

  19. Phase-space dynamics of semiclassical spin- 1/2 Bloch electrons.

    Science.gov (United States)

    Kerr, W C; Rave, M J; Turski, L A

    2005-05-06

    Following recent interest in a kinetic description of the semiclassical Bloch electron dynamics, we propose a new formulation based on the previously developed Lie-Poisson formulation of dynamics. It includes modifications required to account for the Berry curvature contribution to the electron's equation of motion as well as essential ingredients of a quantum treatment of spin- 1/2 degrees of freedom. Our theory is also manifestly gauge invariant and thus permits inclusion of the electron interactions. The scope of our formulation extends beyond its solid state physics motivation and includes recently discussed noncommutative generalizations of classical mechanics as well as historically important models from quantum gravity physics.

  20. Spin-resolved correlations in the warm-dense homogeneous electron gas

    Science.gov (United States)

    Arora, Priya; Kumar, Krishan; Moudgil, R. K.

    2017-04-01

    We have studied spin-resolved correlations in the warm-dense homogeneous electron gas by determining the linear density and spin-density response functions, within the dynamical self-consistent mean-field theory of Singwi et al. The calculated spin-resolved pair-correlation function gσσ'(r) is compared with the recent restricted path-integral Monte Carlo (RPIMC) simulations due to Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)], while interaction energy Eint and exchange-correlation free energy Fxc with the RPIMC and very recent ab initio quantum Monte Carlo (QMC) simulations by Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. g↑↓(r) is found to be in good agreement with the RPIMC data, while a mismatch is seen in g↑↑(r) at small r where it becomes somewhat negative. As an interesting result, it is deduced that a non-monotonic T-dependence of g(0) is driven primarily by g↑↓(0). Our results of Eint and Fxc exhibit an excellent agreement with the QMC study due to Dornheim et al., which deals with the finite-size correction quite accurately. We observe, however, a visible deviation of Eint from the RPIMC data for high densities ( 8% at rs = 1). Further, we have extended our study to the fully spin-polarized phase. Again, with the exception of high density region, we find a good agreement of Eint with the RPIMC data. This points to the need of settling the problem of finite-size correction in the spin-polarized phase also. Interestingly, we also find that the thermal effects tend to oppose spatial localization as well as spin polarization of electrons. Supplementary material in the form of one zip file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-70532-y

  1. Analysis of state-of-the-art single-thruster attitude control techniques for spinning penetrator

    Science.gov (United States)

    Raus, Robin; Gao, Yang; Wu, Yunhua; Watt, Mark

    2012-07-01

    The attitude dynamics and manoeuvre survey in this paper is performed for a mission scenario involving a penetrator-type spacecraft: an axisymmetric prolate spacecraft spinning around its minor axis of inertia performing a 90° spin axis reorientation manoeuvre. In contrast to most existing spacecraft only one attitude control thruster is available, providing a control torque perpendicular to the spin axis. Having only one attitude thruster on a spinning spacecraft could be preferred for spacecraft simplicity (lower mass, lower power consumption etc.), or it could be imposed in the context of redundancy/contingency operations. This constraint does yield restrictions on the thruster timings, depending on the ratio of minor to major moments of inertia among other parameters. The Japanese Lunar-A penetrator spacecraft proposal is a good example of such a single-thruster spin-stabilised prolate spacecraft. The attitude dynamics of a spinning rigid body are first investigated analytically, then expanded for the specific case of a prolate and axisymmetric rigid body and finally a cursory exploration of non-rigid body dynamics is made. Next two well-known techniques for manoeuvring a spin-stabilised spacecraft, the Half-cone/Multiple Half-cone and the Rhumb line slew, are compared with two new techniques, the Sector-Arc Slew developed by Astrium Satellites and the Dual-cone developed at Surrey Space Centre. Each technique is introduced and characterised by means of simulation results and illustrations based on the penetrator mission scenario and a brief robustness analysis is performed against errors in moments of inertia and spin rate. Also, the relative benefits of each slew algorithm are discussed in terms of slew accuracy, energy (propellant) efficiency and time efficiency. For example, a sequence of half-cone manoeuvres (a Multi-half-cone manoeuvre) tends to be more energy-efficient than one half-cone for the same final slew angle, but more time-consuming. As another

  2. Parametric analysis of plastic strain and force distribution in single pass metal spinning

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Shashank, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Tejesh, Chiruvolu Mohan, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Regalla, Srinivasa Prakash, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in; Suresh, Kurra, E-mail: shashankbit08@gmail.com, E-mail: mohantejesh93@gmail.com, E-mail: regalla@hyderabad.bits-pilani.ac.in, E-mail: ksuresh@hyderabad.bits-pilani.ac.in [Department of Mechanical Engineering, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, Andhra Pradesh (India)

    2013-12-16

    Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.

  3. Single particle radiation between high spin states in /sup 147/Gd

    Energy Technology Data Exchange (ETDEWEB)

    Borggreen, J.; Sletten, G.; Bjoernholm, S.; Pedersen, J.; Del Zoppo, A.; Radford, D.C.; Janssens, R.V.F.; Chowdhury, P.; Emling, H.; Frekers, D.

    1987-05-04

    Transitions above the T/sub 1/2/=550 ns, 8.59 MeV isomer in /sup 147/Gd have been studied using the (/sup 30/Si, 5n) reaction. Results from ..gamma gamma.. coincidence, angular distribution and recoil distance measurements are combined to establish a level scheme up to 16.9 MeV and I approx. = 79/2. Single particle configurations are assigned on the basis of the deformed independent particle model. The single particle nature of the highest spin states and the apparent lack of collectivity is discussed.

  4. Optical Transient-Grating Measurements of Spin Diffusion and Relaxation in a Two-Dimensional Electron Gas

    International Nuclear Information System (INIS)

    Weber, Christopher P.

    2005-01-01

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field

  5. Optical Transient-Grating Measurements of Spin Diffusion andRelaxation in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christopher Phillip [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.

  6. Calculation of the electron spin relaxation time in a quantum limit using a state-independent projection reduction method

    Science.gov (United States)

    Kang, Nam Lyong

    2018-02-01

    A new formula for determining the electron spin relaxation time in a system of electrons interacting with acoustic deformation phonons through phonon-modulated spin–orbit coupling is derived using the state-independent projection reduction method. The spin flip and conserving processes are explained in an organized manner because the obtained results properly contain the distribution functions for electrons and phonons. The electron spin relaxation time is calculated directly from the lineshape function without calculating the magnetic susceptibility. The temperature (T) and magnetic field (B) dependences of the electron spin relaxation time (T 1) in Si are shown by T 1 ≈ T ‑1.55 and T 1 ≈ B ‑1.96 in the quantum limit, respectively.

  7. Effect of ionising radiation on potassium pentacyanonitrosyl ruthenate(II): an electron spin resonance study

    Energy Technology Data Exchange (ETDEWEB)

    Vugman, Ney V.; Pinhal, Nelson M.; Amorim, Helio S. de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica. Dept. de Fisica dos Solidos. E-mail: ney@if.ufrj.br; Santos, Cristina M.P. dos; Faria, Roberto B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Dept. de Quimica Inorganica

    2000-06-01

    Amorphous potassium pentacyanonitrosyl ruthenate (II) was synthesized and characterized by UV, IR, X-ray diffraction and thermogravimetric analysis. Electron Spin Resonance spectroscopy reveals the presence of paramagnetic ruthenate (i) complexes and NO{sub 2} radicals in the X-irradiated diamagnetic salt. Spin-Hamiltonian parameters of the [Ru (CN){sub 5} N O]{sup 3-} complex (g=2.0064, A ({sup 14} N) = 60.7 MHz, g = 1.999, A ({sup 14} N) = 77.3 MHz) support an electron capture in a {pi}{sup *} molecular orbital of the nitrosyl group mixed with d{sub xz} and d{sub yz} ruthenium orbitals as recently predicted by theoretical calculations. Silver ions, present as impurities, are reduced to Ag(o) by X-irradiation and coordinate to four magnetically equivalent nitrogens in a distorted site, giving to a well resolved anisotropic ESR powder spectrum. (author)

  8. Quantum field theory treatment of magnetic effects on the spin and orbital angular momentum of a free electron

    International Nuclear Information System (INIS)

    Kurian, P.; Verzegnassi, C.

    2016-01-01

    We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values for a realistic electron state is also given. Our findings may be of interest to researchers in spintronics and the field of quantum biology, where electron spin has been implicated on macroscopic time and energy scales. - Highlights: • We present the first field theory treatment of magnetic changes in electron spin. • Changes in spin and orbital angular momentum (OAM) are correlated and calculated. • Expectation values of spin–OAM changes for a realistic electron state are computed. • Earth's magnetic field produces non-negligible changes in spin of a few percent. • Results apply to spin–OAM conversion in electron vortex beams and quantum biology.

  9. Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr

    International Nuclear Information System (INIS)

    Yonekura, Nobuaki; Nakajima, Takashi; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2004-01-01

    We report the detailed experimental study on the production of electron-spin-polarized Sr + ions through one-photon resonant two-photon ionization via laser-excited 5s5p 3 P 1 (M J =+1) of Sr atoms produced by laser-ablation. We have experimentally confirmed that the use of laser-ablation for the production of Sr atoms prior to photoionization does not affect the electron-spin polarization. We have found that the degree of electron-spin polarization is 64±9%, which is in good agreement with our recent theoretical prediction. As we discuss in detail, we infer, from a simple analysis, that photoelectrons, being the counterpart of electron-spin-polarized Sr + ions, have approximately the same degree of electron-spin polarization. Our experimental results demonstrate that the combined use of laser-ablation technique and pulsed lasers for photoionization would be a compact and effective way to realize a pulsed source for spin-polarized ions and electrons for the studies of various spin-dependent dynamics in chemical physics

  10. Coherent control of single electrons: a review of current progress.

    Science.gov (United States)

    Bäuerle, Christopher; Christian Glattli, D; Meunier, Tristan; Portier, Fabien; Roche, Patrice; Roulleau, Preden; Takada, Shintaro; Waintal, Xavier

    2018-01-22

    In this report we review the present state of the art of the control of propagating quantum states at the single-electron level and its potential application to quantum information processing. We give an overview of the different approaches that have been developed over the last few years in order to gain full control over a propagating single-electron in a solid-state system. After a brief introduction of the basic concepts, we present experiments on flying qubit circuits for ensemble of electrons measured in the low frequency (DC) limit. We then present the basic ingredients necessary to realise such experiments at the single-electron level. This includes a review of the various single-electron sources that have been developed over the last years and which are compatible with integrated single-electron circuits. This is followed by a review of recent key experiments on electron quantum optics with single electrons. Finally we will present recent developments in the new physics that has emerged using ultrashort voltage pulses. We conclude our review with an outlook and future challenges in the field.

  11. Coherent control of single electrons: a review of current progress

    Science.gov (United States)

    Bäuerle, Christopher; Glattli, D. Christian; Meunier, Tristan; Portier, Fabien; Roche, Patrice; Roulleau, Preden; Takada, Shintaro; Waintal, Xavier

    2018-05-01

    In this report we review the present state of the art of the control of propagating quantum states at the single-electron level and its potential application to quantum information processing. We give an overview of the different approaches that have been developed over the last few years in order to gain full control over a propagating single-electron in a solid-state system. After a brief introduction of the basic concepts, we present experiments on flying qubit circuits for ensemble of electrons measured in the low frequency (DC) limit. We then present the basic ingredients necessary to realise such experiments at the single-electron level. This includes a review of the various single-electron sources that have been developed over the last years and which are compatible with integrated single-electron circuits. This is followed by a review of recent key experiments on electron quantum optics with single electrons. Finally we will present recent developments in the new physics that has emerged using ultrashort voltage pulses. We conclude our review with an outlook and future challenges in the field.

  12. Electron spin resonance of paramagnetic defects and related charge carrier traps in complex oxide scintillators

    Czech Academy of Sciences Publication Activity Database

    Laguta, Valentyn; Nikl, Martin

    2013-01-01

    Roč. 250, č. 2 (2013), s. 254-260 ISSN 0370-1972 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GAP204/12/0805; GA AV ČR IAA100100810 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : scintillators * point defects * electron spin resonance * polarons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.605, year: 2013

  13. Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, A.V., E-mail: arozhkov@gmail.co [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412, Moscow (Russian Federation); Giavaras, G. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Yury P. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Freilikher, Valentin [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2011-06-15

    This brief review discusses electronic properties of mesoscopic graphene-based structures. These allow controlling the confinement and transport of charge and spin; thus, they are of interest not only for fundamental research, but also for applications. The graphene-related topics covered here are: edges, nanoribbons, quantum dots, pn-junctions, pnp-structures, and quantum barriers and waveguides. This review is partly intended as a short introduction to graphene mesoscopics.

  14. Electron spin resonance study of the demagnetization fields of the ferromagnetic and paramagnetic films

    Directory of Open Access Journals (Sweden)

    I.I. Gimazov, Yu.I. Talanov

    2015-12-01

    Full Text Available The results of the electron spin resonance study of the La1-xCaxMnO3 manganite and the diphenyl-picrylhydrazyl thin films for the magnetic field parallel and perpendicular to plane of the films are presented. The temperature dependence of the demagnetizing field is obtained. The parameters of the Curie-Weiss law are estimated for the paramagnetic thin film.

  15. Single-pulse electrons from a linear accelerator

    International Nuclear Information System (INIS)

    Antoku, Shigetoshi; Sunayashiki, Tadashi; Takeoka, Seiji; Kato, Kazushi

    1976-01-01

    The electronic circuits of a 35 MeV linear accelerator at Hiroshima University were modified to produce single-pulse electrons. Single-pulse electrons were obtained by synchronizing one of eight pulses from an electron gun modulator, 120 pps, to one of the micro-waves from a klystron, 15 pps. After single-pulse electrons were discharged, a signal was relayed to a stop-gate circuit from a binary scaler which was connected to the gun modulator. Although reproducibility of single-pulse electrons and stability of electron output per pulse were not completely satisfactory, it was possible to use for radiobiological studies. Biological effects of single-pulse electrons (energy: 25 MeV, dose rate: 10 10 rad/min) on cultured mammalian cells and on mice were nearly equal to those of multi-pulse electrons (25 MeV, 10 7 rad/min) and Co-60 γ-rays (dose rate: 100 rad/min). (auth.)

  16. Protein residue linking in a single spectrum for magic-angle spinning NMR assignment

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Loren B.; Stanek, Jan; Marchand, Tanguy Le; Bertarello, Andrea; Paepe, Diane Cala-De; Lalli, Daniela; Krejčíková, Magdaléna; Doyen, Camille; Öster, Carl [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France); Knott, Benno; Wegner, Sebastian; Engelke, Frank [Bruker Biospin (Germany); Felli, Isabella C.; Pierattelli, Roberta [University of Florence, Department of Chemistry “Ugo Schiff“and Magnetic Resonance Center (CERM) (Italy); Dixon, Nicholas E. [University of Wollongong, School of Chemistry (Australia); Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido, E-mail: guido.pintacuda@ens-lyon.fr [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France)

    2015-07-15

    Here we introduce a new pulse sequence for resonance assignment that halves the number of data sets required for sequential linking by directly correlating sequential amide resonances in a single diagonal-free spectrum. The method is demonstrated with both microcrystalline and sedimented deuterated proteins spinning at 60 and 111 kHz, and a fully protonated microcrystalline protein spinning at 111 kHz, with as little as 0.5 mg protein sample. We find that amide signals have a low chance of ambiguous linkage, which is further improved by linking in both forward and backward directions. The spectra obtained are amenable to automated resonance assignment using general-purpose software such as UNIO-MATCH.

  17. Analytical calculation of spin tunneling effect in single molecule magnet Fe8 with considering quadrupole excitation

    Directory of Open Access Journals (Sweden)

    Y Yousefi

    2018-02-01

    Full Text Available Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3 generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons. For this SMM, it is established that the use of quadrupole excitation (g dependence changes not only the location of the quenching points, but also the number of these points. Also, these quenching points are the steps in hysteresis loops of this SMM. If dipole and quadrupole excitations in classical energy considered, the number of these steps equals to the number that obtained from experimental data.

  18. Spin-liquid polymorphism in a correlated electron system on the threshold of superconductivity.

    Science.gov (United States)

    Zaliznyak, Igor; Savici, Andrei T; Lumsden, Mark; Tsvelik, Alexei; Hu, Rongwei; Petrovic, Cedomir

    2015-08-18

    We report neutron scattering measurements which reveal spin-liquid polymorphism in an "11" iron chalcogenide superconductor. It occurs when a poorly metallic magnetic state of FeTe is tuned toward superconductivity by substitution of a small amount of tellurium with isoelectronic sulfur. We observe a liquid-like magnetic response, which is described by the coexistence of two disordered magnetic phases with different local structures whose relative abundance depends on temperature. One is the ferromagnetic (FM) plaquette phase observed in undoped, nonsuperconducting FeTe, which preserves the C4 symmetry of the underlying square lattice and is favored at high temperatures, whereas the other is the antiferromagnetic plaquette phase with broken C4 symmetry, which emerges with doping and is predominant at low temperatures. These findings suggest the coexistence of and competition between two distinct liquid states, and a liquid-liquid phase transformation between these states, in the electronic spin system of FeTe(1-x)(S,Se)(x). We have thus discovered the remarkable physics of competing spin-liquid polymorphs in a correlated electron system approaching superconductivity. Our results facilitate an understanding of large swaths of recent experimental data in unconventional superconductors. In particular, the phase with lower C2 local symmetry, whose emergence precedes superconductivity, naturally accounts for a propensity for forming electronic nematic states which have been observed experimentally, in cuprate and iron-based superconductors alike.

  19. Characterization of the sp sup 2 bonds network in a-C:H layers with nuclear magnetic resonance, electron energy loss spectroscopy and electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kleber, R.; Jung, K.; Ehrhardt, H. (Fachbereich Physik, Univ. Kaiserslautern (Germany)); Muehling, I.; Breuer, K. (Technische Univ. Chemnitz, Sektion Physik/Elektronische Bauelemente (Germany)); Metz, H.; Engelke, F. (Karl-Marx-Univ., Sektion Physik, Leipzig (Germany))

    1991-12-01

    a-C:H layers prepared at different ion energies have been investigated by several methods including {sup 13}C nuclear magnetic resonance (NMR), electron energy loss spectroscopy (EELS) and electron spin resonance (ESR). The sp{sup 2} fraction of the samples rose from 27% to about 60 at.% with increasing ion energies from 30 eV to 170 eV. In the EELS spectra of these layers the intensity of the {pi}{yields}{pi}{sup *} transition between 4 and 7 eV showed no significant variation. But a shift of the peak is observed from 7 eV to lower energy losses with increasing ion energies indicating an enhanced formation of larger sp{sup 2} cluster sizes. This shift is accompanied by a broadening of the energy loss peak, suggesting a broadening of the cluster size distribution. The ESR spectra showed an increase of the spin density by more than one order of magnitude with increasing ion energies. Simultaneously the linewidth of the ESR signal gets narrower. This can also be interpreted as an increasing cluster size from single benzene rings to three and four fused six-fold rings. Hence, the EELS and ESR spectra lead to the same conclusions with respect to the microstructure of the a-C:H network. (orig.).

  20. Spin-orbit and electron correlation effects on the structure of EF3 (E = I, At, and element 117).

    Science.gov (United States)

    Kim, Hyoseok; Choi, Yoon Jeong; Lee, Yoon Sup

    2008-12-18

    Structures and vibrational frequencies of group 17 fluorides EF3 (E = I, At, and element 117) are calculated at the density functional theory (DFT) level of theory using relativistic effective core potentials (RECPs) with and without spin-orbit terms in order to investigate the effects of spin-orbit interactions and electron correlations on the structures and vibrational frequencies of EF3. Various tests imply that spin-orbit and electron correlation effects estimated presently from Hartree-Fock (HF) and DFT calculations with RECPs with and without spin-orbit terms are quite reasonable. Spin-orbit and electron correlation effects generally increase bond lengths and/or angles in both C2v and D3h structures. For IF3, the C2v structure is a global minimum, and the D3h structure is a second-order saddle point in both HF and DFT calculations with and without spin-orbit interactions. Spin-orbit effects for IF3 are negligible in comparison to electron correlation effects. The D3h global minimum is the only minimum structure for (117)F3 in all RECP calculations, and the C2v structure is neither a local minimum nor a saddle point. In the case of AtF3, the C2v structure is found to be a local minimum in all RECP calculations without spin-orbit terms, and the D3h structure becomes a local minimum at the DFT level of theory with and without spin-orbit interactions. In the HF calculation with spin-orbit terms, the D3h structure of AtF3 is a second-order saddle point. AtF3 is a borderline case between the valence-shell-electron-pair-repulsion (VSEPR) structure of IF3 and the non-VSEPR structure of (117)F3. Relativistic effects, including scalar relativistic and spin-orbit effects, and electron correlation effects together or separately stabilize the D3h structures more than the C2v structures. As a result, one may suggest that the VSEPR predictions agree very well with the structures optimized by the nonrelativistic HF level of theory even for heavy-atom molecules but not so

  1. 139La NMR investigation of the charge and spin order in a La1.885Sr0.115CuO4 single crystal

    Science.gov (United States)

    Arsenault, A.; Takahashi, S. K.; Imai, T.; He, W.; Lee, Y. S.; Fujita, M.

    2018-02-01

    139La NMR is suited for investigations into magnetic properties of La2CuO4 -based cuprates in the vicinity of their magnetic instabilities, owing to the modest hyperfine interactions between 139La nuclear spins and Cu electron spins. We report comprehensive 139La NMR measurements on a single-crystal sample of high-Tc superconductor La1.885Sr0.115CuO4 in a broad temperature range across the charge and spin order transitions (Tcharge≃80 K, Tspinneutron≃Tc=30 K). From the high-precision measurements of the linewidth for the nuclear spin Iz=+1 /2 to -1 /2 central transition, we show that paramagnetic line broadening sets in precisely at Tcharge due to enhanced spin correlations within the CuO2 planes. Additional paramagnetic line broadening ensues below ˜35 K, signaling that Cu spins in some segments of CuO2 planes are on the verge of three-dimensional magnetic order. A static hyperfine magnetic field arising from ordered Cu moments along the a b plane, however, begins to develop only below Tspinμ S R=15 -20 K, where earlier muon spin rotation measurements detected Larmor precession for a small volume fraction (˜20 % ) of the sample. Based on the measurement of 139La nuclear-spin-lattice relaxation rate 1 /T1 , we also show that charge order triggers enhancement of low-frequency Cu spin fluctuations inhomogeneously; a growing fraction of 139La sites is affected by enhanced low-frequency spin fluctuations toward the eventual magnetic order, whereas a diminishing fraction continues to exhibit a behavior analogous to the optimally superconducting phase even below Tcharge. These 139La NMR results corroborate our recent 63Cu NMR observation that a very broad, anomalous winglike signal gradually emerges below Tcharge, whereas the normally behaving, narrower main peak is gradually wiped out [T. Imai et al., Phys. Rev. B 96, 224508 (2017), 10.1103/PhysRevB.96.224508]. Furthermore, we show that the enhancement of low-energy spin excitations in the low-temperature regime

  2. Strong spin-photon coupling in silicon.

    Science.gov (United States)

    Samkharadze, N; Zheng, G; Kalhor, N; Brousse, D; Sammak, A; Mendes, U C; Blais, A; Scappucci, G; Vandersypen, L M K

    2018-03-09

    Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot-based spin qubit registers. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Electron spin resonance signal from a tetra-interstitial defect in silicon

    CERN Document Server

    Mchedlidze, T

    2003-01-01

    The Si-B3 electron spin resonance (ESR) signal from agglomerates of self-interstitials was detected for the first time in hydrogen-doped float-zone-grown silicon samples subjected to annealing after electron irradiation. Previously this signal had been detected only in neutron- or proton-irradiated silicon samples. The absence of obscuring ESR peaks for the investigated samples at applied measurement conditions allowed an investigation of the hyperfine structure of the Si-B3 spectra. The analysis supports assignment of a tetra-interstitial defect as the origin of the signal.

  4. Quantum teleportation and entanglement swapping of electron spins in superconducting hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Bubanja, Vladimir, E-mail: vladimir.bubanja@callaghaninnovation.govt.nz

    2015-06-15

    We present schemes for quantum teleportation and entanglement swapping of electronic spin states in hybrid superconductor–normal-metal systems. The proposed schemes employ subgap transport whereby the lowest order processes involve Cooper pair-electron and double Cooper-pair cotunneling in quantum teleportation and entanglement swapping protocols, respectively. The competition between elastic cotunneling and Cooper-pair splitting results in the success probability of 25% in both cases. Described implementations of these protocols are within reach of present-day experimental techniques.

  5. A graphene quantum dot with a single electron transistor as an integrated charge sensor

    Science.gov (United States)

    Wang, Lin-Jun; Cao, Gang; Tu, Tao; Li, Hai-Ou; Zhou, Cheng; Hao, Xiao-Jie; Su, Zhan; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2010-12-01

    A quantum dot (QD) with an integrated charge sensor is becoming a common architecture for a spin or charge based solid state qubit. To implement such a structure in graphene, we have fabricated a twin-dot structure in which the larger dot serves as a single electron transistor (SET) to read out the charge state of the nearby gate controlled small QD. A high SET sensitivity of 10-3e/√Hz allowed us to probe Coulomb charging as well as excited state spectra of the QD, even in the regime where the current through the QD is too small to be measured by conventional transport means.

  6. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments

    Directory of Open Access Journals (Sweden)

    Maxime Deutsch

    2014-05-01

    Full Text Available Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

  7. Spin caloritronics in graphene

    Science.gov (United States)

    Frota, H. O.; Ghosh, Angsula

    2014-08-01

    Spin caloritronics, the combination of spintronics with thermoelectrics, based on spin and heat transport has attracted a great attention mainly in the development of low-power-consumption technology. In this work we study the thermoelectric properties of a quantum dot attached to two single layer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature and also the Coulomb repulsion due to the double occupancy of an energy level have been observed.

  8. Measurement, modeling, and simulation of cryogenic SiGe HBT amplifier circuits for fast single spin readout

    Science.gov (United States)

    England, Troy; Curry, Matthew; Carr, Steve; Swartzentruber, Brian; Lilly, Michael; Bishop, Nathan; Carrol, Malcolm

    2015-03-01

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance typical of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will discuss calibration data, as well as modeling and simulation of cryogenic silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) circuits connected to a silicon SET and operating at 4 K. We find a continuum of solutions from simple, single-HBT amplifiers to more complex, multi-HBT circuits suitable for integration, with varying noise levels and power vs. bandwidth tradeoffs. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  9. Quantum non demolition measurement of a single nuclear spin in a room temperature solid

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Phillip; Beck, Johannes; Steiner, Matthias; Rathgen, Helmut; Rempp, Florian; Zarrabi, Navid; Dolde, Florian; Jelezko, Fedor; Wrachtrup, Joerg [Universitaet Stuttgart (Germany); Hemmer, Philip [A and M University, Texas (United States)

    2010-07-01

    The measurement process and its interpretation are in the focus of quantum mechanics since its early days. Today's ability to isolate single quantum objects allows experimental demonstration of former ''gedankenexperiments'' like measurement induced quantum state collaps. Rapidly growing quantum technologies explore fundamental aspects of measurements in quantum computing, however for solid state systems such experiments require operation at very low temperatures. Here we show that projective quantum measurement can be performed on a single nuclear spin in diamond under ambient conditions. Using quantum non demolition (QND) readout we are able to detect quantum jumps and the quantum Zeno effect emphasising the addressability of fundamental questions of quantum mechanics in solids. Single shot measurements with fidelities exceeding 0.9 enable efficient state initialization, quantum error correction and entanglement pumping that is crucial for quantum information processing including measurement based schemes and distributed quantum networks.

  10. Electron spin resonance studies of radiation effects. Final report, 1964-1979 (including annual progress reports for 1978 and 1979)

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, M.T.

    1979-07-01

    The discovery of new free radicals, largely in irradiated single crystals of nonmetallic solids, and the determination of the molecular and electronic structures of these paramagnetic species by electron spin resonance (ESR) spectroscopy, have been carried out using a wide variety of organic and inorganic materials. The mechanisms of production of radicals in solids, their motions, and their reactions have been investigated and some applicable general principles deduced. Emphasis has been on aliphatic free radicals from irradiated carboxylic acids and amides and their halogen-substituted derivatives, organometallic radicals and substituted cyclic hydrocarbon radicals; inorganic radicals studied include V centers, hypervalent radicals and electron adducts. Extensive investigations of paramagnetic transition metal complexes, particularly cyanides and fluorides, have been made. In all cases quantum mechanical calculations have been employed as far as possible in interpreting the data. An improved method for analyzing experimental ESR spectra of single crystals has been developed and a number of crystal structures have been determined to supplement the ESR studies. Applications of nuclear quadrupole resonance spectroscopy to the study of structure and bonding in inorganic solids have been made and a method for using nuclear magnetic relaxation data for estimating quadrupole coupling constants in liquids has been developed.

  11. Single-electrode monitors for relativistic intense electron beam parameters

    International Nuclear Information System (INIS)

    Stratienko, V.A.; Khorenko, V.K.

    1977-01-01

    A single-electrode monitor operating in atmosphere on delta-electrons for precision measurement of high-intensity electron beams is developed. As an emitter is used a 0.2 mm aluminium foil with a hole which is a replica of the sample subjected to radiation. The electric charge from the emitter is recorded by a current integrator. The single-electrode monitor enabled to form a 225 MeV electron beam with a flux density of 5x10 15 electrons/ (cm 2 and confine the latter for 140 hours with an accuracy of +- 0.2 mm. Controlling the beam shifting by means of the single-electrode monitor described, it is possible to measure the real dimensions and density distributions of high-intensity electron beams

  12. Simplifying the complex 1H NMR spectra of fluorine-substituted benzamides by spin system filtering and spin-state selection: multiple-quantum-single-quantum correlation.

    Science.gov (United States)

    Baishya, Bikash; Reddy, G N Manjunatha; Prabhu, Uday Ramesh; Row, T N Guru; Suryaprakash, N

    2008-10-23

    The proton NMR spectra of fluorine-substituted benzamides are very complex (Figure 1) due to severe overlap of (1)H resonances from the two aromatic rings, in addition to several short and long-range scalar couplings experienced by each proton. With no detectable scalar couplings between the inter-ring spins, the (1)H NMR spectra can be construed as an overlap of spectra from two independent phenyl rings. In the present study we demonstrate that it is possible to separate the individual spectrum for each aromatic ring by spin system filtering employing the multiple-quantum-single-quantum correlation methodology. Furthermore, the two spin states of fluorine are utilized to simplify the spectrum corresponding to each phenyl ring by the spin-state selection. The demonstrated technique reduces spectral complexity by a factor of 4, in addition to permitting the determination of long-range couplings of less than 0.2 Hz and the relative signs of heteronuclear couplings. The technique also aids the judicious choice of the spin-selective double-quantum-single-quantum J-resolved experiment to determine the long-range homonuclear couplings of smaller magnitudes.

  13. Single-pulse terahertz coherent control of spin resonance in the canted antiferromagnet YFeO3, mediated by dielectric anisotropy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Mics, Zoltán; Ma, Guohong

    2013-01-01

    We report on the coherent control of terahertz (THz) spin waves in a canted antiferromagnet yttrium orthoferrite, YFeO3, associated with a quasiferromagnetic (quasi-FM) spin resonance at a frequency of 0.3 THz, using a single-incident THz pulse. The spin resonance is excited impulsively by the ma...... polarization of the THz oscillation at the spin resonance frequency, suggests a key role of magnon–phonon coupling in spin-wave energy dissipation....

  14. Simulation for a New Polarized Electron Injector (SPIN) for the S-DALINAC

    CERN Document Server

    Steiner, Bastian; Gräf, Hans Dieter; Richter, Achim; Roth, Markus; Weiland, Thomas

    2005-01-01

    The Superconducting DArmstädter LINear ACcelerator (S-DALINAC) is a 130 MeV recirculating electron accelerator serving several nuclear and radiation physics experiments. For future tasks, the 250 keV thermal electron source should be completed by a 100 keV polarized electron source. Therefore a new low energy injection concept for the S-DALINAC has to be designed. The main components of the injector are a polarized electron source, an alpha magnet, a Wien filter spin-rotator and a Mott polarimeter. In this paper we report over the first simulation and design results. For our simulations we used the TS2 and TS3 modules of the CST MAFIA (TM) programme which are PIC codes for two and three dimensions and the CST PARTICLE STUDIO (TM).

  15. Electron magnetic resonance data on high-spin Mn(III; S=2) ions in porphyrinic and salen complexes modeled by microscopic spin Hamiltonian approach.

    Science.gov (United States)

    Tadyszak, Krzysztof; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro

    2017-10-01

    The spin Hamiltonian (SH) parameters experimentally determined by EMR (EPR) may be corroborated or otherwise using various theoretical modeling approaches. To this end semiempirical modeling is carried out for high-spin (S=2) manganese (III) 3d 4 ions in complex of tetraphenylporphyrinato manganese (III) chloride (MnTPPCl). This modeling utilizes the microscopic spin Hamiltonians (MSH) approach developed for the 3d 4 and 3d 6 ions with spin S=2 at orthorhombic and tetragonal symmetry sites in crystals, which exhibit an orbital singlet ground state. Calculations of the zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors (g || =g z , g ⊥ =g x =g y ) are carried out for wide ranges of values of the microscopic parameters using the MSH/VBA package. This enables to examine the dependence of the theoretically determined ZFS parameters b k q (in the Stevens notation) and the Zeeman factors g i on the spin-orbit (λ), spin-spin (ρ) coupling constant, and the ligand-field energy levels (Δ i ) within the 5 D multiplet. The results are presented in suitable tables and graphs. The values of λ, ρ, and Δ i best describing Mn(III) ions in MnTPPCl are determined by matching the theoretical second-rank ZFSP b 2 0 (D) parameter and the experimental one. The fourth-rank ZFS parameters (b 4 0 , b 4 4 ) and the ρ (spin-spin)-related contributions, which have been omitted in previous studies, are considered for the first time here and are found important. Semiempirical modeling results are compared with those obtained recently by the density functional theory (DFT) and/or ab initio methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Higher-order Zeeman and spin terms in the electron paramagnetic resonance spin Hamiltonian; their description in irreducible form using Cartesian, tesseral spherical tensor and Stevens' operator expressions

    International Nuclear Information System (INIS)

    McGavin, Dennis G; Tennant, W Craighead

    2009-01-01

    In setting up a spin Hamiltonian (SH) to study high-spin Zeeman and high-spin nuclear and/or electronic interactions in electron paramagnetic resonance (EPR) experiments, it is argued that a maximally reduced SH (MRSH) framed in tesseral combinations of spherical tensor operators is necessary. Then, the SH contains only those terms that are necessary and sufficient to describe the particular spin system. The paper proceeds then to obtain interrelationships between the parameters of the MRSH and those of alternative SHs expressed in Cartesian tensor and Stevens operator-equivalent forms. The examples taken, initially, are those of Cartesian and Stevens' expressions for high-spin Zeeman terms of dimension BS 3 and BS 5 . Starting from the well-known decomposition of the general Cartesian tensor of second rank to three irreducible tensors of ranks 0, 1 and 2, the decomposition of Cartesian tensors of ranks 4 and 6 are treated similarly. Next, following a generalization of the tesseral spherical tensor equations, the interrelationships amongst the parameters of the three kinds of expressions, as derived from equivalent SHs, are determined and detailed tables, including all redundancy equations, set out. In each of these cases the lowest symmetry, 1-bar Laue class, is assumed and then examples of relationships for specific higher symmetries derived therefrom. The validity of a spin Hamiltonian containing mixtures of terms from the three expressions is considered in some detail for several specific symmetries, including again the lowest symmetry. Finally, we address the application of some of the relationships derived here to seldom-observed low-symmetry effects in EPR spectra, when high-spin electronic and nuclear interactions are present.

  17. Asymmetric tunable tunneling magnetoresistance in single-electron transistors

    CERN Document Server

    Pirmann, M; Schön, G

    2000-01-01

    We show that the tunneling magnetoresistance (TMR) of a ferromagnetic single-electron transistor in the sequential tunneling regime shows asymmetric Coulomb blockade oscillations as a function of gate voltage if the individual junction-TMRs differ. The relative amplitude of these oscillations grows significantly if the bias voltage is increased, becoming as large as 30% when the bias voltage is comparable to the charging energy of the single-electron transistor. This might be useful for potential applications requiring a tunable TMR.

  18. Dynamical Monte Carlo investigation of spin reversal and nonequilibrium magnetization of single-molecule magnets

    Science.gov (United States)

    Liu, Gui-Bin; Liu, Bang-Gui

    2010-10-01

    In this paper, we combine thermal effects with Landau-Zener (LZ) quantum tunneling effects in a dynamical Monte Carlo (DMC) framework to produce satisfactory magnetization curves of single-molecule magnet (SMM) systems. We use the giant spin approximation for SMM spins and consider regular lattices of SMMs with magnetic dipolar interactions (MDIs). We calculate spin-reversal probabilities from thermal-activated barrier hurdling, direct LZ tunneling, and thermal-assisted LZ tunnelings in the presence of sweeping magnetic fields. We do systematical DMC simulations for Mn12 systems with various temperatures and sweeping rates. Our simulations produce clear step structures in low-temperature magnetization curves, and our results show that the thermally activated barrier hurdling becomes dominating at high temperature near 3 K and the thermal-assisted tunnelings play important roles at intermediate temperature. These are consistent with corresponding experimental results on good Mn12 samples (with less disorders) in the presence of little misalignments between the easy axis and applied magnetic fields, and therefore our magnetization curves are satisfactory. Furthermore, our DMC results show that the MDI, with the thermal effects, have important effects on the LZ tunneling processes, but both the MDI and the LZ tunneling give place to the thermal-activated barrier hurdling effect in determining the magnetization curves when the temperature is near 3 K. This DMC approach can be applicable to other SMM systems and could be used to study other properties of SMM systems.

  19. Azimuthal and single spin asymmetry in deep-inelasticlepton-nucleon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zuo-tang; Wang, Xin-Nian

    2006-09-21

    The collinear expansion technique is generalized to thefactorization of unintegrated parton distributions and other higher twistparton correlations from the corresponding collinear hard parts thatinvolve multiple parton final state interaction. Such a generalizedfactorization provides a consistent approach to the calculation ofinclusive and semi-inclusive cross sections of deep-inelasticlepton-nucleon scattering. As an example, the azimuthal asymmetry iscalculated to the order of 1/Q in semi-inclusive deeply inelasticlepton-nucleon scattering with transversely polarized target. Anon-vanishing single-spin asymmetry in the "triggered inclusive process"is predicted to be 1/Q suppressed with a part of the coefficient relatedto a moment of the Sivers function.

  20. Single-Spin Polarization Effects and the Determination of Timelike Proton Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S

    2003-10-24

    We show that measurements of the proton's polarization in e{sup +}e{sup -} {yields} p{bar p} strongly discriminate between analytic forms of models which fit the proton form factors in the spacelike region. In particular, the single-spin asymmetry normal to the scattering plane measures the relative phase difference between the timelike G{sub E} and G{sub M} form factors. The expected proton polarization in the timelike region is large, of order of several tens of percent.

  1. Electron spin resonance and nuclear magnetic resonance of sodium macrostructures in strongly irradiated NaCl-K crystals: Manifestation of quasi-one-dimensional behavior of electrons

    NARCIS (Netherlands)

    Cherkasov, FG; Mustafin, RG; L'vov, SG; Denisenko, GA; den Hartog, HW; Vainshtein, D. I.

    1998-01-01

    Data from an investigation of electron spin resonance and nuclear magnetic resonance of NaCl-K (similar to 1 mole%) crystals strongly irradiated with electrons imply the observation of a metal-insulator transition with decreasing temperature and the manifestation of quasi-one-dimensional electron

  2. Use of spin labels and electron spin resonance spectroscopy to characterize membranes of bovine sperm: effect of butylated hydroxytoluene and cold shock

    Energy Technology Data Exchange (ETDEWEB)

    Hammerstedt, R.H.; Amann, R.P.; Rucinsky, T.; Morse, P.D. II; Lepock, J.; Snipes, W.; Keith, A.D.

    1976-05-01

    Spin label probes were used in conjunction with measurements of metabolic rate and electron microscopy to characterize bovine sperm membranes. Aqueous compartments, membrane hydrocarbon zones and lipid : water interfaces were studied separately using appropriate spin labels. For sperm suspended in aqueous medium, the cold shock associated with rapid cooling from room temperature to 0/sup 0/ increased membrane permeability. This membrane damage was readily detected using spin labels but was not detected using thin section electron microscopy. This change was prevented by the addition of butylated hydroxy toluene (BHT). BHT provided partial protection against further damage caused by freezing sperm on solid CO/sub 2/. ESR techniques provide a rapid means to quantify the changes in sperm membranes occurring during the epididymal maturation of sperm and subsequent events within the female tract leading to fertilization. The technique also could be used to assess damage to sperm, ova or embryos during preparation for storage in cryoprotective diluents.

  3. High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities

    Science.gov (United States)

    Li, Tao; Gao, Jian-Cun; Deng, Fu-Guo; Long, Gui-Lu

    2018-04-01

    We propose some high-fidelity quantum circuits for quantum computing on electron spins of quantum dots (QD) embedded in low-Q optical microcavities, including the two-qubit controlled-NOT gate and the multiple-target-qubit controlled-NOT gate. The fidelities of both quantum gates can, in principle, be robust to imperfections involved in a practical input-output process of a single photon by converting the infidelity into a heralded error. Furthermore, the influence of two different decay channels is detailed. By decreasing the quality factor of the present microcavity, we can largely increase the efficiencies of these quantum gates while their high fidelities remain unaffected. This proposal also has another advantage regarding its experimental feasibility, in that both quantum gates can work faithfully even when the QD-cavity systems are non-identical, which is of particular importance in current semiconductor QD technology.

  4. Phase transitions and multicritical points in the mixed spin-32 and spin-2 Ising system with a single-ion anisotropy

    International Nuclear Information System (INIS)

    Bobak, A.; Dely, J.

    2007-01-01

    The effect of a single-ion anisotropy on the phase diagram of the mixed spin-32 and spin-2 Ising system is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the free energy. Topologically different kinds of phase diagrams are achieved by changing values of the parameter in the model Hamiltonian. Besides second-order transitions, lines of first-order transitions terminating either at a tricritical point or an isolated critical point, are found

  5. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes.

    Science.gov (United States)

    Dikalov, Sergey I; Polienko, Yuliya F; Kirilyuk, Igor

    2017-11-17

    Oxidative stress contributes to numerous pathophysiological conditions such as development of cancer, neurodegenerative, and cardiovascular diseases. A variety of measurements of oxidative stress markers in biological systems have been developed; however, many of these methods are not specific, can produce artifacts, and do not directly detect the free radicals and reactive oxygen species (ROS) that cause oxidative stress. Electron paramagnetic resonance (EPR) is a unique tool that allows direct measurements of free radical species. Cyclic hydroxylamines are useful and convenient molecular probes that readily react with ROS to produce stable nitroxide radicals, which can be quantitatively measured by EPR. In this work, we critically review recent applications of various cyclic hydroxylamine spin probes in biology to study oxidative stress, their advantages, and the shortcomings. Recent Advances: In the past decade, a number of new cyclic hydroxylamine spin probes have been developed and their successful application for ROS measurement using EPR has been published. These new state-of-the-art methods provide improved selectivity and sensitivity for in vitro and in vivo studies. Although cyclic hydroxylamine spin probes EPR application has been previously described, there has been lack of translation of these new methods into biomedical research, limiting their widespread use. This work summarizes "best practice" in applications of cyclic hydroxylamine spin probes to assist with EPR studies of oxidative stress. Additional studies to advance hydroxylamine spin probes from the "basic science" to biomedical applications are needed and could lead to better understanding of pathological conditions associated with oxidative stress. Antioxid. Redox Signal. 00, 000-000.

  6. Molecular electronics: the single molecule switch and transistor

    NARCIS (Netherlands)

    Sotthewes, Kai; Geskin, Victor; Heimbuch, Rene; Kumar, Avijit; Zandvliet, Henricus J.W.

    2014-01-01

    In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected

  7. Automated data collection in single particle electron microscopy

    Science.gov (United States)

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget

    2016-01-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944

  8. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds

    Science.gov (United States)

    Horowitz, Viva R.; Alemán, Benjamín J.; Christle, David J.; Cleland, Andrew N.; Awschalom, David D.

    2012-01-01

    Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy color centers. Despite the motion and random orientation of nitrogen-vacancy centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable dc magnetometry in solution. We estimate the dc magnetic field sensitivity based on variations in ESR line shapes to be approximately . This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques. PMID:22869706

  9. Geometrical contributions to the exchange constants: Free electrons with spin-orbit interaction

    Science.gov (United States)

    Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2017-05-01

    Using thermal quantum field theory, we derive an expression for the exchange constant that resembles Fukuyama's formula for orbital magnetic susceptibility (OMS). Guided by this formal analogy between the exchange constant and OMS, we identify a contribution to the exchange constant that arises from the geometrical properties of the band structure in mixed phase space. We compute the exchange constants for free electrons and show that the geometrical contribution is generally important. Our formalism allows us to study the exchange constants in the presence of spin-orbit interaction. Thereby, we find sizable differences between the exchange constants of helical and cycloidal spin spirals. Furthermore, we discuss how to calculate the exchange constants based on a gauge-field approach in the case of the Rashba model with an additional exchange splitting, and we show that the exchange constants obtained from this gauge-field approach are in perfect agreement with those obtained from the quantum field theoretical method.

  10. Electrical resistivity of 5 f -electron systems affected by static and dynamic spin disorder

    Science.gov (United States)

    Havela, L.; Paukov, M.; Buturlim, V.; Tkach, I.; Drozdenko, D.; Cieslar, M.; Mašková, S.; Dopita, M.; Matěj, Z.

    2017-06-01

    Metallic 5 f materials have very strong coupling of magnetic moments and electrons mediating electrical conduction. It is caused by strong spin-orbit interaction, coming with high atomic number Z , together with involvement of the 5 f states in metallic bonding. We have used the recently discovered class of uranium (ultra)nanocrystalline hydrides, which are ferromagnets with high ordering temperature, to disentangle the origin of negative temperature coefficient of electrical resistivity. In general, the phenomenon of electrical resistivity decreasing with increasing temperature in metals can have several reasons. The magnetoresistivity study of these hydrides reveals that quantum effects related to spin-disorder scattering can explain the resistivity behavior of a broad class of actinide compounds.

  11. Suppressed spin dephasing for two-dimensional and bulk electrons in GaAs wires due to engineered cancellation of spin-orbit interaction terms

    NARCIS (Netherlands)

    Denega, S.Z.; Last, Thorsten; Liu, J.; Slachter, A.; Rizo, P.J.; Loosdrecht, P.H.M. van; Wees, B.J. van; Reuter, D.; Wieck, A.D.; Wal, C.H. van der

    2010-01-01

    We report a study of suppressed spin dephasing for quasi-one-dimensional electron ensembles in wires etched into a GaAs/AlGaAs heterojunction system. Time-resolved Kerr-rotation measurements show a suppression that is most pronounced for wires along the [110] crystal direction. This is the

  12. Predictive DFT-based approaches to charge and spin transport in single-molecule junctions and two-dimensional materials: successes and challenges.

    Science.gov (United States)

    Quek, Su Ying; Khoo, Khoong Hong

    2014-11-18

    CONSPECTUS: The emerging field of flexible electronics based on organics and two-dimensional (2D) materials relies on a fundamental understanding of charge and spin transport at the molecular and nanoscale. It is desirable to make predictions and shine light on unexplained experimental phenomena independently of experimentally derived parameters. Indeed, density functional theory (DFT), the workhorse of first-principles approaches, has been used extensively to model charge/spin transport at the nanoscale. However, DFT is essentially a ground state theory that simply guarantees correct total energies given the correct charge density, while charge/spin transport is a nonequilibrium phenomenon involving the scattering of quasiparticles. In this Account, we critically assess the validity and applicability of DFT to predict charge/spin transport at the nanoscale. We also describe a DFT-based approach, DFT+Σ, which incorporates corrections to Kohn-Sham energy levels based on many-electron calculations. We focus on single-molecule junctions and then discuss how the important considerations for DFT descriptions of transport can differ in 2D materials. We conclude that when used appropriately, DFT and DFT-based approaches can play an important role in making predictions and gaining insight into transport in these materials. Specifically, we shall focus on the low-bias quasi-equilibrium regime, which is also experimentally most relevant for single-molecule junctions. The next question is how well can the scattering of DFT Kohn-Sham particles approximate the scattering of true quasiparticles in the junction? Quasiparticles are electrons (holes) that are surrounded by a constantly changing cloud of holes (electrons), but Kohn-Sham particles have no physical significance. However, Kohn-Sham particles can often be used as a qualitative approximation to quasiparticles. The errors in standard DFT descriptions of transport arise primarily from errors in the Kohn-Sham energy levels

  13. Exchange electron-hole interaction of two-dimensional magnetoexcitons under the influence of the Rashba spin-orbit coupling

    International Nuclear Information System (INIS)

    Moskalenko, S.A.; Podlesny, I.V.; Lelyakov, I.A.; Novikov, B.V.; Kiselyova, E.S.; Gherciu, L.

    2011-01-01

    The Rashba spin-orbit coupling (RSOC) in the case of two-dimensional (2D) electrons and holes in a strong perpendicular magnetic field was studied. The spinor-type wave functions are characterized by different numbers of Landau levels in different spin projections. For electrons they differ by 1 as was established earlier by Rashba, whereas for holes they differ by 3. Two lowest electron states and four lowest hole states of Landau quantization give rise to eight 2D magnetoexciton states. The exchange electron-hole interaction in the frame of these states is investigated.

  14. Magnetic properties and spin structure of MnO single crystal and powder

    Science.gov (United States)

    Sun, X.; Feng, E.; Su, Y.; Nemkovski, K.; Petracic, O.; Brückel, T.

    2017-06-01

    Zero field cooled (ZFC)/Field Cooled (FC) magnetization curves of a bulk MnO single crystal show a peculiar peak at low temperatures (~ 40 K) similar to the low temperature peak observed in MnO nanoparticles. In order to investigate the origin of this peak, the spin structure of a MnO single crystal has been studied and compared with a single phase powder sample using magnetometry and polarized neutron scattering. Both magnetometry and polarized neutron diffraction results confirm the antiferromagnetic (AF) phase transition at the Néel temperature TN of 118 K, in both powder and single crystal form. However, the low temperature peak in the ZFC/FC magnetization curves is not observed in single phase MnO powder. To better understand the observed behavior, ac susceptibility measurements have been employed. We conclude that the clear peak in the magnetic signal from the single crystal originates from a small amount of ferrimagnetic (FiM) Mn2O3 or Mn3O4 impurities, which is grown at the interfaces between MnO crystal twins.

  15. Effect of asymmetric interface on charge and spin transport across two dimensional electron gas with Dresselhaus spin-orbit coupling/ferromagnet junction

    Science.gov (United States)

    Srisongmuang, B.; Pasanai, K.

    2018-04-01

    We theoretically studied the effect of interfacial scattering on the transport of charge and spin across the junction of a two-dimensional electron gas with Dresselhaus spin-orbit coupling and ferromagnetic material junction, via the conductance (G) and the spin-polarization of the conductance spectra (P) using the scattering method. At the interface, not only were the effects of spin-conserving (Z0) and spin-flip scattering (Zf) considered, but also the interfacial Rashba spin-orbit coupling scattering (ZRSOC) , which was caused by the asymmetry of the interface, was taken into account, and all of them were modeled by the delta potential. It was found that G was suppressed with increasing Z0 , as expected. Interestingly, a particular value of Zf can cause G and P to reach a maximum value. In particular, ZRSOC plays a crucial role to reduce G and P in the metallic limit, but its influence on the tunneling limit was quite weak. On the other hand, the effect of ZRSOC was diminished in the tunneling limit of the magnetic junction.

  16. Electron spin resonance studies of Bi1-xScxFeO3 nanoparticulates: Observation of an enhanced spin canting over a large temperature range

    Science.gov (United States)

    Titus, S.; Balakumar, S.; Sakar, M.; Das, J.; Srinivasu, V. V.

    2017-12-01

    Bi1-xScxFeO3 (x = 0.0, 0.1, 0.15, 0.25) nano particles were synthesized by sol gel method. We then probed the spin system in these nano particles using electron spin resonance technique. Our ESR results strongly suggest the scenario of modified spin canted structures. Spin canting parameter Δg/g as a function of temperature for Scandium doped BFO is qualitatively different from undoped BFO. A broad peak is observed for all the Scandium doped BFO samples and an enhanced spin canting over a large temperature range (75-210 K) in the case of x = 0.15 doping. We also showed that the asymmetry parameter and thereby the magneto-crystalline anisotropy in these BSFO nanoparticles show peaks around 230 K for (x = 0.10 and 0.15) and beyond 300 K for x = 0.25 system. Thus, we established that the Sc doping significantly modifies the spin canting and magneto crystalline anisotropy in the BFO system.

  17. Reconfigurable Boolean logic using magnetic single-electron transistors.

    Directory of Open Access Journals (Sweden)

    M Fernando Gonzalez-Zalba

    Full Text Available We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET. The device consists of an aluminium single-electron transistor with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer, which induces a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network.

  18. Reconfigurable Boolean Logic Using Magnetic Single-Electron Transistors

    Science.gov (United States)

    Gonzalez-Zalba, M. Fernando; Ciccarelli, Chiara; Zarbo, Liviu P.; Irvine, Andrew C.; Campion, Richard C.; Gallagher, Bryan L.; Jungwirth, Tomas; Ferguson, Andrew J.; Wunderlich, Joerg

    2015-01-01

    We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistor with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer, which induces a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network. PMID:25923789

  19. Real-time single-shot electron bunch length measurements

    CERN Document Server

    Wilke, I; Gillespie, W A; Berden, G; Knippels, G M H; Meer, A F G

    2002-01-01

    Linear accelerators employed as drivers for X-ray free electron lasers (FELs) require relativistic electron bunch with sub-picosecond bunch length. Precise bunch length measurements are important for the tuning and operation of the FELs. Previously, we have demonstrated that electro-optic detection is a powerful technique for sub-picosecond electron bunch length measurements. In those experiments, the measured bunch length was the average of all electron bunches within a macropulse. Here, for the first time, we present the measurement of the length of individual electron bunches using a development of our previous technique. In this experiment, the longitudinal electron bunch shape is encoded electro-optically on to the frequency spectrum of a chirped laser pulse. Subsequently, the laser pulse is dispersed by a grating and the spectrum is imaged with a CCD camera. Single bunch measurements are achieved by using a nanosecond gated camera, and synchronizing the gate with both the electron bunch and the laser pu...

  20. Review of Electronics Based on Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Cao, Yu; Cong, Sen; Cao, Xuan; Wu, Fanqi; Liu, Qingzhou; Amer, Moh R; Zhou, Chongwu

    2017-08-14

    Single-walled carbon nanotubes (SWNTs) are extremely promising materials for building next-generation electronics due to their unique physical and electronic properties. In this article, we will review the research efforts and achievements of SWNTs in three electronic fields, namely analog radio-frequency electronics, digital electronics, and macroelectronics. In each SWNT-based electronic field, we will present the major challenges, the evolutions of the methods to overcome these challenges, and the state-of-the-art of the achievements. At last, we will discuss future directions which could lead to the broad applications of SWNTs. We hope this review could inspire more research on SWNT-based electronics, and accelerate the applications of SWNTs.