WorldWideScience

Sample records for single dendritic spines

  1. Activity-dependent trafficking of lysosomes in dendrites and dendritic spines.

    Science.gov (United States)

    Goo, Marisa S; Sancho, Laura; Slepak, Natalia; Boassa, Daniela; Deerinck, Thomas J; Ellisman, Mark H; Bloodgood, Brenda L; Patrick, Gentry N

    2017-08-07

    In neurons, lysosomes, which degrade membrane and cytoplasmic components, are thought to primarily reside in somatic and axonal compartments, but there is little understanding of their distribution and function in dendrites. Here, we used conventional and two-photon imaging and electron microscopy to show that lysosomes traffic bidirectionally in dendrites and are present in dendritic spines. We find that lysosome inhibition alters their mobility and also decreases dendritic spine number. Furthermore, perturbing microtubule and actin cytoskeletal dynamics has an inverse relationship on the distribution and motility of lysosomes in dendrites. We also find trafficking of lysosomes is correlated with synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. Strikingly, lysosomes traffic to dendritic spines in an activity-dependent manner and can be recruited to individual spines in response to local activation. These data indicate the position of lysosomes is regulated by synaptic activity and thus plays an instructive role in the turnover of synaptic membrane proteins. © 2017 Goo et al.

  2. The spine problem: Finding a function for dendritic spines

    Directory of Open Access Journals (Sweden)

    Sarah eMalanowski

    2014-09-01

    Full Text Available Why do neurons have dendritic spines? This question— the heart of what Yuste calls the spine problem— presupposes that why-questions of this sort have scientific answers: that empirical findings can favor or count against claims about why neurons have spines. Here we show how such questions can receive empirical answers. We construe such why-questions as questions about how spines make a difference to the behavior of some mechanism that we take to be significant. Why-questions are driven fundamentally by the effort to understand how some item, such as the dendritic spine, is situated in the causal structure of the world (the causal nexus. They ask for a filter on that busy world that allows us to see a part’s individual contribution to a mechanism, independent of everything else going on. So understood, answers to why-questions can be assessed by testing the claims these answers make about the causal structure of a mechanism. We distinguish four ways of making a difference to a mechanism (necessary, modulatory, component, background condition, and we sketch their evidential requirements. One consequence of our analysis is that there are many spine problems and that any given spine problem might have many acceptable answers.

  3. Barriers in the brain : resolving dendritic spine morphology and compartmentalization

    NARCIS (Netherlands)

    Adrian, Max; Kusters, Remy; Wierenga, Corette J; Storm, Cornelis; Hoogenraad, Casper C; Kapitein, Lukas C

    2014-01-01

    Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and

  4. Cranial irradiation alters dendritic spine density and morphology in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Ayanabha Chakraborti

    Full Text Available Therapeutic irradiation of the brain is a common treatment modality for brain tumors, but can lead to impairment of cognitive function. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and number are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. To gain some insight into the temporal and sub region specific cellular changes in the hippocampus following brain irradiation, we investigated the effects of 10 Gy cranial irradiation on dendritic spines in young adult mice. One week or 1 month post irradiation, changes in spine density and morphology in dentate gyrus (DG granule and CA1 pyramidal neurons were quantified using Golgi staining. Our results showed that in the DG, there were significant reductions in spine density at both 1 week (11.9% and 1 month (26.9% after irradiation. In contrast, in the basal dendrites of CA1 pyramidal neurons, irradiation resulted in a significant reduction (18.7% in spine density only at 1 week post irradiation. Analysis of spine morphology showed that irradiation led to significant decreases in the proportion of mushroom spines at both time points in the DG as well as CA1 basal dendrites. The proportions of stubby spines were significantly increased in both the areas at 1 month post irradiation. Irradiation did not alter spine density in the CA1 apical dendrites, but there were significant changes in the proportion of thin and mushroom spines at both time points post irradiation. Although the mechanisms involved are not clear, these findings are the first to show that brain irradiation of young adult animals leads to alterations in dendritic spine density and morphology in the hippocampus in a time dependent and region specific manner.

  5. Age-Based Comparison of Human Dendritic Spine Structure Using Complete Three-Dimensional Reconstructions

    Science.gov (United States)

    Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; Robles, Victor; Yuste, Rafael; DeFelipe, Javier

    2013-01-01

    Dendritic spines of pyramidal neurons are targets of most excitatory synapses in the cerebral cortex. Recent evidence suggests that the morphology of the dendritic spine could determine its synaptic strength and learning rules. However, unfortunately, there are scant data available regarding the detailed morphology of these structures for the human cerebral cortex. In the present study, we analyzed over 8900 individual dendritic spines that were completely 3D reconstructed along the length of apical and basal dendrites of layer III pyramidal neurons in the cingulate cortex of 2 male humans (aged 40 and 85 years old), using intracellular injections of Lucifer Yellow in fixed tissue. We assembled a large, quantitative database, which revealed a major reduction in spine densities in the aged case. Specifically, small and short spines of basal dendrites and long spines of apical dendrites were lost, regardless of the distance from the soma. Given the age difference between the cases, our results suggest selective alterations in spines with aging in humans and indicate that the spine volume and length are regulated by different biological mechanisms. PMID:22710613

  6. Fine structure of synapses on dendritic spines

    Directory of Open Access Journals (Sweden)

    Michael eFrotscher

    2014-09-01

    Full Text Available Camillo Golgi’s Reazione Nera led to the discovery of dendritic spines, small appendages originating from dendritic shafts. With the advent of electron microscopy (EM they were identified as sites of synaptic contact. Later it was found that changes in synaptic strength were associated with changes in the shape of dendritic spines. While live-cell imaging was advantageous in monitoring the time course of such changes in spine structure, EM is still the best method for the simultaneous visualization of all cellular components, including actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise localization of molecules in relation to synaptic structures. Previous EM studies of spines and synapses were performed in tissue subjected to aldehyde fixation and dehydration in ethanol, which is associated with protein denaturation and tissue shrinkage. It has remained an issue to what extent fine structural details are preserved when subjecting the tissue to these procedures. In the present review, we report recent studies on the fine structure of spines and synapses using high-pressure freezing (HPF, which avoids protein denaturation by aldehydes and results in an excellent preservation of ultrastructural detail. In these studies, HPF was used to monitor subtle fine-structural changes in spine shape associated with chemically induced long-term potentiation (cLTP at identified hippocampal mossy fiber synapses. Changes in spine shape result from reorganization of the actin cytoskeleton. We report that cLTP was associated with decreased immunogold labeling for phosphorylated cofilin (p-cofilin, an actin-depolymerizing protein. Phosphorylation of cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton. Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying the changes in spine shape associated with cLTP. The findings reviewed here establish HPF as

  7. Dendritic Spines in Depression: What We Learned from Animal Models

    OpenAIRE

    Qiao, Hui; Li, Ming-Xing; Xu, Chang; Chen, Hui-Bin; An, Shu-Cheng; Ma, Xin-Ming

    2016-01-01

    Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have ...

  8. Isoflurane reversibly destabilizes hippocampal dendritic spines by an actin-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Jimcy Platholi

    Full Text Available General anesthetics produce a reversible coma-like state through modulation of excitatory and inhibitory synaptic transmission. Recent evidence suggests that anesthetic exposure can also lead to sustained cognitive dysfunction. However, the subcellular effects of anesthetics on the structure of established synapses are not known. We investigated effects of the widely used volatile anesthetic isoflurane on the structural stability of hippocampal dendritic spines, a postsynaptic structure critical to excitatory synaptic transmission in learning and memory. Exposure to clinical concentrations of isoflurane induced rapid and non-uniform shrinkage and loss of dendritic spines in mature cultured rat hippocampal neurons. Spine shrinkage was associated with a reduction in spine F-actin concentration. Spine loss was prevented by either jasplakinolide or cytochalasin D, drugs that prevent F-actin disassembly. Isoflurane-induced spine shrinkage and loss were reversible upon isoflurane elimination. Thus, isoflurane destabilizes spine F-actin, resulting in changes to dendritic spine morphology and number. These findings support an actin-based mechanism for isoflurane-induced alterations of synaptic structure in the hippocampus. These reversible alterations in dendritic spine structure have important implications for acute anesthetic effects on excitatory synaptic transmission and synaptic stability in the hippocampus, a locus for anesthetic-induced amnesia, and have important implications for anesthetic effects on synaptic plasticity.

  9. EphB/syndecan-2 signaling in dendritic spine morphogenesis

    DEFF Research Database (Denmark)

    Ethell, I M; Irie, F; Kalo, M S

    2001-01-01

    We previously reported that the cell surface proteoglycan syndecan-2 can induce dendritic spine formation in hippocampal neurons. We demonstrate here that the EphB2 receptor tyrosine kinase phosphorylates syndecan-2 and that this phosphorylation event is crucial for syndecan-2 clustering and spine...... formation. Syndecan-2 is tyrosine phosphorylated and forms a complex with EphB2 in mouse brain. Dominant-negative inhibition of endogenous EphB receptor activities blocks clustering of endogenous syndecan-2 and normal spine formation in cultured hippocampal neurons. This is the first evidence that Eph...... receptors play a physiological role in dendritic spine morphogenesis. Our observations suggest that spine morphogenesis is triggered by the activation of Eph receptors, which causes tyrosine phosphorylation of target molecules, such as syndecan-2, in presumptive spines....

  10. In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles.

    Directory of Open Access Journals (Sweden)

    Yu-Bin Huang

    Full Text Available Dendritic spines undergo continuous remodeling during development of the nervous system. Their stability is essential for maintaining a functional neuronal circuit. Spine dynamics and stability of cortical excitatory pyramidal neurons have been explored extensively in mammalian animal models. However, little is known about spiny interneurons in non-mammalian vertebrate models. In the present study, neuronal morphology was visualized by single-cell electroporation. Spiny neurons were surveyed in the Xenopus tadpole brain and observed to be widely distributed in the olfactory bulb and telencephalon. DsRed- or PSD95-GFP-expressing spiny interneurons in the olfactory bulb were selected for in vivo time-lapse imaging. Dendritic protrusions were classified as filopodia, thin, stubby, or mushroom spines based on morphology. Dendritic spines on the interneurons were highly dynamic, especially the filopodia and thin spines. The stubby and mushroom spines were relatively more stable, although their stability significantly decreased with longer observation intervals. The 4 spine types exhibited diverse preferences during morphological transitions from one spine type to others. Sensory deprivation induced by severing the olfactory nerve to block the input of mitral/tufted cells had no significant effects on interneuron spine stability. Hence, a new model was established in Xenopus laevis tadpoles to explore dendritic spine dynamics in vivo.

  11. Contextual Learning Induces Dendritic Spine Clustering in Retrosplenial Cortex

    Directory of Open Access Journals (Sweden)

    Adam C Frank

    2014-03-01

    Full Text Available Molecular and electrophysiological studies find convergent evidence suggesting that plasticity within a dendritic tree is not randomly dispersed, but rather clustered into functional groups. Further, results from in silico neuronal modeling show that clustered plasticity is able to increase storage capacity 45 times compared to dispersed plasticity. Recent in vivo work utilizing chronic 2-photon microscopy tested the clustering hypothesis and showed that repetitive motor learning is able to induce clustered addition of new dendritic spines on apical dendrites of L5 neurons in primary motor cortex; moreover, clustered spines were found to be more stable than non-clustered spines, suggesting a physiological role for spine clustering. To further test this hypothesis we used in vivo 2-photon imaging in Thy1-YFP-H mice to chronically examine dendritic spine dynamics in retrosplenial cortex (RSC during spatial learning. RSC is a key component of an extended spatial learning and memory circuit that includes hippocampus and entorhinal cortex. Importantly, RSC is known from both lesion and immediate early gene studies to be critically involved in spatial learning and more specifically in contextual fear conditioning. We utilized a modified contextual fear conditioning protocol wherein animals received a mild foot shock each day for five days; this protocol induces gradual increases in context freezing over several days before the animals reach a behavioral plateau. We coupled behavioral training with four separate in vivo imaging sessions, two before training begins, one early in training, and a final session after training is complete. This allowed us to image spine dynamics before training as well as early in learning and after animals had reached behavioral asymptote. We find that this contextual learning protocol induces a statistically significant increase in the formation of clusters of new dendritic spines in trained animals when compared to home

  12. Dendritic Spines in Depression: What We Learned from Animal Models

    Directory of Open Access Journals (Sweden)

    Hui Qiao

    2016-01-01

    Full Text Available Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS, chronic unpredictable mild stress (CUMS, and chronic social defeat stress (CSDS, have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms.

  13. A Septin-Dependent Diffusion Barrier at Dendritic Spine Necks.

    Directory of Open Access Journals (Sweden)

    Helge Ewers

    Full Text Available Excitatory glutamatergic synapses at dendritic spines exchange and modulate their receptor content via lateral membrane diffusion. Several studies have shown that the thin spine neck impedes the access of membrane and solute molecules to the spine head. However, it is unclear whether the spine neck geometry alone restricts access to dendritic spines or if a physical barrier to the diffusion of molecules exists. Here, we investigated whether a complex of septin cytoskeletal GTPases localized at the base of the spine neck regulates diffusion across the spine neck. We found that, during development, a marker of the septin complex, Septin7 (Sept7, becomes localized to the spine neck where it forms a stable structure underneath the plasma membrane. We show that diffusion of receptors and bulk membrane, but not cytoplasmic proteins, is slower in spines bearing Sept7 at their neck. Finally, when Sept7 expression was suppressed by RNA interference, membrane molecules explored larger membrane areas. Our findings indicate that Sept7 regulates membrane protein access to spines.

  14. Cdk5 Is Essential for Amphetamine to Increase Dendritic Spine Density in Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Soledad Ferreras

    2017-11-01

    Full Text Available Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant’s effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine–induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine’s effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction.

  15. Opposite effects of fear conditioning and extinction on dendritic spine remodelling.

    Science.gov (United States)

    Lai, Cora Sau Wan; Franke, Thomas F; Gan, Wen-Biao

    2012-02-19

    It is generally believed that fear extinction is a form of new learning that inhibits rather than erases previously acquired fear memories. Although this view has gained much support from behavioural and electrophysiological studies, the hypothesis that extinction causes the partial erasure of fear memories remains viable. Using transcranial two-photon microscopy, we investigated how neural circuits are modified by fear learning and extinction by examining the formation and elimination of postsynaptic dendritic spines of layer-V pyramidal neurons in the mouse frontal association cortex. Here we show that fear conditioning by pairing an auditory cue with a footshock increases the rate of spine elimination. By contrast, fear extinction by repeated presentation of the same auditory cue without a footshock increases the rate of spine formation. The degrees of spine remodelling induced by fear conditioning and extinction strongly correlate with the expression and extinction of conditioned fear responses, respectively. Notably, spine elimination and formation induced by fear conditioning and extinction occur on the same dendritic branches in a cue- and location-specific manner: cue-specific extinction causes formation of dendritic spines within a distance of two micrometres from spines that were eliminated after fear conditioning. Furthermore, reconditioning preferentially induces elimination of dendritic spines that were formed after extinction. Thus, within vastly complex neuronal networks, fear conditioning, extinction and reconditioning lead to opposing changes at the level of individual synapses. These findings also suggest that fear memory traces are partially erased after extinction.

  16. Paternal deprivation during infancy results in dendrite- and time-specific changes of dendritic development and spine formation in the orbitofrontal cortex of the biparental rodent Octodon degus.

    Science.gov (United States)

    Helmeke, C; Seidel, K; Poeggel, G; Bredy, T W; Abraham, A; Braun, K

    2009-10-20

    The aim of this study in the biparental rodent Octodon degus was to assess the impact of paternal deprivation on neuronal and synaptic development in the orbitofrontal cortex, a prefrontal region which is essential for emotional and cognitive function. On the behavioral level the quantitative comparison of parental behaviors in biparental and single-mother families revealed that (i) degu fathers significantly participate in parental care and (ii) single-mothers do not increase their maternal care to compensate the lack of paternal care. On the brain structural level we show in three-week-old father-deprived animals that layer II/III pyramidal neurons in the orbitofrontal cortex displayed significantly lower spine densities on apical and basal dendrites. Whereas biparentally raised animals have reached adult spine density values at postnatal day 21, fatherless animals seem "to catch up" by a delayed increase of spine density until reaching similar values as biparentally raised animals in adulthood. However, in adulthood reduced apical spine numbers together with shorter apical dendrites were observed in father-deprived animals, which indicates that dendritic growth and synapse formation (seen in biparental animals between postnatal day 21 and adulthood) were significantly suppressed. These results demonstrate that paternal deprivation delays and partly suppresses the development of orbitofrontal circuits. The retarded dendritic and synaptic development of the apical dendrites of layer II/III pyramidal neurons in the orbitofrontal cortex of adult fatherless animals may reflect a reduced excitatory connectivity of this cortical subregion.

  17. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons

    Science.gov (United States)

    Murphy, Diane D.; Cole, Nelson B.; Segal, Menahem

    1998-01-01

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons. PMID:9736750

  18. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines

    Science.gov (United States)

    Chazeau, Anaël; Garcia, Mikael; Czöndör, Katalin; Perrais, David; Tessier, Béatrice; Giannone, Grégory; Thoumine, Olivier

    2015-01-01

    The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain. PMID:25568337

  19. Impact of immersion oils and mounting media on the confocal imaging of dendritic spines.

    Science.gov (United States)

    Peterson, Brittni M; Mermelstein, Paul G; Meisel, Robert L

    2015-03-15

    Structural plasticity, such as changes in dendritic spine morphology and density, reflect changes in synaptic connectivity and circuitry. Procedural variables used in different methods for labeling dendritic spines have been quantitatively evaluated for their impact on the ability to resolve individual spines in confocal microscopic analyses. In contrast, there have been discussions, though no quantitative analyses, of the potential effects of choosing specific mounting media and immersion oils on dendritic spine resolution. Here we provide quantitative data measuring the impact of these variables on resolving dendritic spines in 3D confocal analyses. Medium spiny neurons from the rat striatum and nucleus accumbens are used as examples. Both choice of mounting media and immersion oil affected the visualization of dendritic spines, with choosing the appropriate immersion oil as being more imperative. These biologic data are supported by quantitative measures of the 3D diffraction pattern (i.e. point spread function) of a point source of light under the same mounting medium and immersion oil combinations. Although not a new method, this manuscript provides quantitative data demonstrating that different mounting media and immersion oils can impact the ability to resolve dendritic spines. These findings highlight the importance of reporting which mounting medium and immersion oil are used in preparations for confocal analyses, especially when comparing published results from different laboratories. Collectively, these data suggest that choosing the appropriate immersion oil and mounting media is critical for obtaining the best resolution, and consequently more accurate measures of dendritic spine densities. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Dendritic spine morphology and dynamics in health and disease

    Directory of Open Access Journals (Sweden)

    Lee S

    2015-06-01

    Full Text Available Stacey Lee,1 Huaye Zhang,2 Donna J Webb1,3,4 1Department of Biological Sciences, Vanderbilt University, Nashville, TN, 2Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 3Department of Cancer Biology, 4Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA Abstract: Dendritic spines are actin-rich structures that form the postsynaptic terminals of excitatory synapses in the brain. The development and plasticity of spines are essential for cognitive processes, such as learning and memory, and defects in their density, morphology, and size underlie a number of neurological disorders. In this review, we discuss the contribution and regulation of the actin cytoskeleton in spine formation and plasticity as well as learning and memory. We also highlight the role of key receptors and intracellular signaling pathways in modulating the development and morphology of spines and cognitive function. Moreover, we provide insight into spine/synapse defects associated with several neurological disorders and the molecular mechanisms that underlie these spine defects. Keywords: dendritic spines, synapses, synaptic plasticity, actin cytoskeleton, glutamate receptors, neurological disorders

  1. Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines.

    Directory of Open Access Journals (Sweden)

    Brenda L Bloodgood

    2009-09-01

    Full Text Available Excitatory synapses on mammalian principal neurons are typically formed onto dendritic spines, which consist of a bulbous head separated from the parent dendrite by a thin neck. Although activation of voltage-gated channels in the spine and stimulus-evoked constriction of the spine neck can influence synaptic signals, the contribution of electrical filtering by the spine neck to basal synaptic transmission is largely unknown. Here we use spine and dendrite calcium (Ca imaging combined with 2-photon laser photolysis of caged glutamate to assess the impact of electrical filtering imposed by the spine morphology on synaptic Ca transients. We find that in apical spines of CA1 hippocampal neurons, the spine neck creates a barrier to the propagation of current, which causes a voltage drop and results in spatially inhomogeneous activation of voltage-gated Ca channels (VGCCs on a micron length scale. Furthermore, AMPA and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively that are colocalized on individual spine heads interact to produce two kinetically and mechanistically distinct phases of synaptically evoked Ca influx. Rapid depolarization of the spine triggers a brief and large Ca current whose amplitude is regulated in a graded manner by the number of open AMPARs and whose duration is terminated by the opening of small conductance Ca-activated potassium (SK channels. A slower phase of Ca influx is independent of AMPAR opening and is determined by the number of open NMDARs and the post-stimulus potential in the spine. Biphasic synaptic Ca influx only occurs when AMPARs and NMDARs are coactive within an individual spine. These results demonstrate that the morphology of dendritic spines endows associated synapses with specialized modes of signaling and permits the graded and independent control of multiple phases of synaptic Ca influx.

  2. Traumatic brain injury causes an FK506-sensitive loss and an overgrowth of dendritic spines in rat forebrain.

    Science.gov (United States)

    Campbell, John N; Register, David; Churn, Severn B

    2012-01-20

    Traumatic brain injury (TBI) causes both an acute loss of tissue and a progressive injury through reactive processes such as excitotoxicity and inflammation. These processes may worsen neural dysfunction by altering neuronal circuitry beyond the focally-damaged tissue. One means of circuit alteration may involve dendritic spines, micron-sized protuberances of dendritic membrane that support most of the excitatory synapses in the brain. This study used a modified Golgi-Cox technique to track changes in spine density on the proximal dendrites of principal cells in rat forebrain regions. Spine density was assessed at 1 h, 24 h, and 1 week after a lateral fluid percussion TBI of moderate severity. At 1 h after TBI, no changes in spine density were observed in any of the brain regions examined. By 24 h after TBI, however, spine density had decreased in ipsilateral neocortex in layer II and III and dorsal dentate gyrus (dDG). This apparent loss of spines was prevented by a single, post-injury administration of the calcineurin inhibitor FK506. These results, together with those of a companion study, indicate an FK506-sensitive mechanism of dendritic spine loss in the TBI model. Furthermore, by 1 week after TBI, spine density had increased substantially above control levels, bilaterally in CA1 and CA3 and ipsilaterally in dDG. The apparent overgrowth of spines in CA1 is of particular interest, as it may explain previous reports of abnormal and potentially epileptogenic activity in this brain region.

  3. Targeting of NF-κB to Dendritic Spines Is Required for Synaptic Signaling and Spine Development.

    Science.gov (United States)

    Dresselhaus, Erica C; Boersma, Matthew C H; Meffert, Mollie K

    2018-04-25

    Long-term forms of brain plasticity share a requirement for changes in gene expression induced by neuronal activity. Mechanisms that determine how the distinct and overlapping functions of multiple activity-responsive transcription factors, including nuclear factor κB (NF-κB), give rise to stimulus-appropriate neuronal responses remain unclear. We report that the p65/RelA subunit of NF-κB confers subcellular enrichment at neuronal dendritic spines and engineer a p65 mutant that lacks spine enrichment (p65ΔSE) but retains inherent transcriptional activity equivalent to wild-type p65. Wild-type p65 or p65ΔSE both rescue NF-κB-dependent gene expression in p65-deficient murine hippocampal neurons responding to diffuse (PMA/ionomycin) stimulation. In contrast, neurons lacking spine-enriched NF-κB are selectively impaired in NF-κB-dependent gene expression induced by elevated excitatory synaptic stimulation (bicuculline or glycine). We used the setting of excitatory synaptic activity during development that produces NF-κB-dependent growth of dendritic spines to test physiological function of spine-enriched NF-κB in an activity-dependent response. Expression of wild-type p65, but not p65ΔSE, is capable of rescuing spine density to normal levels in p65-deficient pyramidal neurons. Collectively, these data reveal that spatial localization in dendritic spines contributes unique capacities to the NF-κB transcription factor in synaptic activity-dependent responses. SIGNIFICANCE STATEMENT Extensive research has established a model in which the regulation of neuronal gene expression enables enduring forms of plasticity and learning. However, mechanisms imparting stimulus specificity to gene regulation, ensuring biologically appropriate responses, remain incompletely understood. NF-κB is a potent transcription factor with evolutionarily conserved functions in learning and the growth of excitatory synaptic contacts. Neuronal NF-κB is localized in both synapse and

  4. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica

    2017-04-01

    Dendrites and spines are the main neuronal structures receiving input from other neurons and glial cells. Dendritic and spine number, size, and morphology are some of the crucial factors determining how signals coming from individual synapses are integrated. Much remains to be understood about the characteristics of neuronal dendrites and dendritic spines in autism and related disorders. Although there have been many studies conducted using autism mouse models, few have been carried out using postmortem human tissue from patients. Available animal models of autism include those generated through genetic modifications and those non-genetic models of the disease. Here, we review how dendrite and spine morphology and number is affected in autism and related neurodevelopmental diseases, both in human, and genetic and non-genetic animal models of autism. Overall, data obtained from human and animal models point to a generalized reduction in the size and number, as well as an alteration of the morphology of dendrites; and an increase in spine densities with immature morphology, indicating a general spine immaturity state in autism. Additional human studies on dendrite and spine number and morphology in postmortem tissue are needed to understand the properties of these structures in the cerebral cortex of patients with autism. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017. © 2016 Wiley Periodicals, Inc.

  5. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons

    Science.gov (United States)

    Maroun, Mouna; Ioannides, Pericles J.; Bergman, Krista L.; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L.

    2013-01-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retraction in the medial prefrontal cortex. Here, we examined extinction learning and basolateral amygdala pyramidal neuron morphology in adult male rats following a single elevated platform stress. Acute stress impaired extinction acquisition and memory, and produced dendritic retraction and increased mushroom spine density in basolateral amygdala neurons in the right hemisphere. Unexpectedly, irrespective of stress, rats that underwent fear and extinction testing showed basolateral amygdala dendritic retraction and altered spine density relative to non-conditioned rats, particularly in the left hemisphere. Thus, extinction deficits produced by acute stress are associated with increased spine density and dendritic retraction in basolateral amygdala pyramidal neurons. Furthermore, the finding that conditioning and extinction as such was sufficient to alter basolateral amygdala morphology and spine density illustrates the sensitivity of basolateral amygdala morphology to behavioral manipulation. These findings may have implications for elucidating the role of the amygdala in the pathophysiology of stress-related disorders. PMID:23714419

  6. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling.

    Science.gov (United States)

    Chazeau, Anaël; Giannone, Grégory

    2016-08-01

    In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity.

  7. Oriented Markov random field based dendritic spine segmentation for fluorescence microscopy images.

    Science.gov (United States)

    Cheng, Jie; Zhou, Xiaobo; Miller, Eric L; Alvarez, Veronica A; Sabatini, Bernardo L; Wong, Stephen T C

    2010-10-01

    Dendritic spines have been shown to be closely related to various functional properties of the neuron. Usually dendritic spines are manually labeled to analyze their morphological changes, which is very time-consuming and susceptible to operator bias, even with the assistance of computers. To deal with these issues, several methods have been recently proposed to automatically detect and measure the dendritic spines with little human interaction. However, problems such as degraded detection performance for images with larger pixel size (e.g. 0.125 μm/pixel instead of 0.08 μm/pixel) still exist in these methods. Moreover, the shapes of detected spines are also distorted. For example, the "necks" of some spines are missed. Here we present an oriented Markov random field (OMRF) based algorithm which improves spine detection as well as their geometric characterization. We begin with the identification of a region of interest (ROI) containing all the dendrites and spines to be analyzed. For this purpose, we introduce an adaptive procedure for identifying the image background. Next, the OMRF model is discussed within a statistical framework and the segmentation is solved as a maximum a posteriori estimation (MAP) problem, whose optimal solution is found by a knowledge-guided iterative conditional mode (KICM) algorithm. Compared with the existing algorithms, the proposed algorithm not only provides a more accurate representation of the spine shape, but also improves the detection performance by more than 50% with regard to reducing both the misses and false detection.

  8. Phosphorylation of CRMP2 by Cdk5 Regulates Dendritic Spine Development of Cortical Neuron in the Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Xiaohua Jin

    2016-01-01

    Full Text Available Proper density and morphology of dendritic spines are important for higher brain functions such as learning and memory. However, our knowledge about molecular mechanisms that regulate the development and maintenance of dendritic spines is limited. We recently reported that cyclin-dependent kinase 5 (Cdk5 is required for the development and maintenance of dendritic spines of cortical neurons in the mouse brain. Previous in vitro studies have suggested the involvement of Cdk5 substrates in the formation of dendritic spines; however, their role in spine development has not been tested in vivo. Here, we demonstrate that Cdk5 phosphorylates collapsin response mediator protein 2 (CRMP2 in the dendritic spines of cultured hippocampal neurons and in vivo in the mouse brain. When we eliminated CRMP2 phosphorylation in CRMP2KI/KI mice, the densities of dendritic spines significantly decreased in hippocampal CA1 pyramidal neurons in the mouse brain. These results indicate that phosphorylation of CRMP2 by Cdk5 is important for dendritic spine development in cortical neurons in the mouse hippocampus.

  9. Motor learning induces plastic changes in Purkinje cell dendritic spines in the rat cerebellum.

    Science.gov (United States)

    González-Tapia, D; González-Ramírez, M M; Vázquez-Hernández, N; González-Burgos, I

    2017-12-14

    The paramedian lobule of the cerebellum is involved in learning to correctly perform motor skills through practice. Dendritic spines are dynamic structures that regulate excitatory synaptic stimulation. We studied plastic changes occurring in the dendritic spines of Purkinje cells from the paramedian lobule of rats during motor learning. Adult male rats were trained over a 6-day period using an acrobatic motor learning paradigm; the density and type of dendritic spines were determined every day during the study period using a modified version of the Golgi method. The learning curve reflected a considerable decrease in the number of errors made by rats as the training period progressed. We observed more dendritic spines on days 2 and 6, particularly more thin spines on days 1, 3, and 6, fewer mushroom spines on day 3, fewer stubby spines on day 1, and more thick spines on days 4 and 6. The initial stage of motor learning may be associated with fast processing of the underlying synaptic information combined with an apparent "silencing" of memory consolidation processes, based on the regulation of the neuronal excitability. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Highly sensitive and quantitative FRET-FLIM imaging in single dendritic spines using improved non-radiative YFP.

    Science.gov (United States)

    Murakoshi, Hideji; Lee, Seok-Jin; Yasuda, Ryohei

    2008-08-01

    Two-photon fluorescence lifetime imaging microscopy (TPFLIM) enables the quantitative measurements of fluorescence resonance energy transfer (FRET) in small subcellular compartments in light scattering tissue. We evaluated and optimized the FRET pair of mEGFP (monomeric EGFP with the A206K mutation) and REACh (non-radiative YFP variants) for TPFLIM. We characterized several mutants of REACh in terms of their "darkness," and their ability to act as a FRET acceptor for mEGFP in HeLa cells and hippocampal neurons. Since the commonly used monomeric mutation A206K increases the brightness of REACh, we introduced a different monomeric mutation (F223R) which does not affect the brightness. Also, we found that the folding efficiency of original REACh, as measured by the fluorescence lifetime of a mEGFP-REACh tandem dimer, was low and variable from cell to cell. Introducing two folding mutations (F46L, Q69M) into REACh increased the folding efficiency by approximately 50%, and reduced the variability of FRET signal. Pairing mEGFP with the new REACh (super-REACh, or sREACh) improved the signal-to-noise ratio compared to the mEGFP-mRFP or mEGFP-original REACh pair by approximately 50%. Using this new pair, we demonstrated that the fraction of actin monomers in filamentous and globular forms in single dendritic spines can be quantitatively measured with high sensitivity. Thus, the mEGFP-sREACh pair is suited for quantitative FRET measurement by TPFLIM, and enables us to measure protein-protein interactions in individual dendritic spines in brain slices with high sensitivity.

  11. Detection of Dendritic Spines Using Wavelet-Based Conditional Symmetric Analysis and Regularized Morphological Shared-Weight Neural Networks

    Directory of Open Access Journals (Sweden)

    Shuihua Wang

    2015-01-01

    Full Text Available Identification and detection of dendritic spines in neuron images are of high interest in diagnosis and treatment of neurological and psychiatric disorders (e.g., Alzheimer’s disease, Parkinson’s diseases, and autism. In this paper, we have proposed a novel automatic approach using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks (RMSNN for dendritic spine identification involving the following steps: backbone extraction, localization of dendritic spines, and classification. First, a new algorithm based on wavelet transform and conditional symmetric analysis has been developed to extract backbone and locate the dendrite boundary. Then, the RMSNN has been proposed to classify the spines into three predefined categories (mushroom, thin, and stubby. We have compared our proposed approach against the existing methods. The experimental result demonstrates that the proposed approach can accurately locate the dendrite and accurately classify the spines into three categories with the accuracy of 99.1% for “mushroom” spines, 97.6% for “stubby” spines, and 98.6% for “thin” spines.

  12. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons.

    Science.gov (United States)

    Maroun, Mouna; Ioannides, Pericles J; Bergman, Krista L; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L

    2013-08-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retraction in the medial prefrontal cortex. Here, we examined extinction learning and basolateral amygdala pyramidal neuron morphology in adult male rats following a single elevated platform stress. Acute stress impaired extinction acquisition and memory, and produced dendritic retraction and increased mushroom spine density in basolateral amygdala neurons in the right hemisphere. Unexpectedly, irrespective of stress, rats that underwent fear and extinction testing showed basolateral amygdala dendritic retraction and altered spine density relative to non-conditioned rats, particularly in the left hemisphere. Thus, extinction deficits produced by acute stress are associated with increased spine density and dendritic retraction in basolateral amygdala pyramidal neurons. Furthermore, the finding that conditioning and extinction as such was sufficient to alter basolateral amygdala morphology and spine density illustrates the sensitivity of basolateral amygdala morphology to behavioral manipulation. These findings may have implications for elucidating the role of the amygdala in the pathophysiology of stress-related disorders. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  13. Spatiotemporal Dynamics of Dendritic Spines in the Living Brain

    Directory of Open Access Journals (Sweden)

    Chia-Chien eChen

    2014-05-01

    Full Text Available Dendritic spines are ubiquitous postsynaptic sites of most excitatory synapses in the mammalian brain, and thus may serve as structural indicators of functional synapses. Recent works have suggested that neuronal coding of memories may be associated with rapid alterations in spine formation and elimination. Technological advances have enabled researchers to study spine dynamics in vivo during development as well as under various physiological and pathological conditions. We believe that better understanding of the spatiotemporal patterns of spine dynamics will help elucidate the principles of experience-dependent circuit modification and information processing in the living brain.

  14. Zinc and Copper Effects on Stability of Tubulin and Actin Networks in Dendrites and Spines of Hippocampal Neurons.

    Science.gov (United States)

    Perrin, Laura; Roudeau, Stéphane; Carmona, Asuncion; Domart, Florelle; Petersen, Jennifer D; Bohic, Sylvain; Yang, Yang; Cloetens, Peter; Ortega, Richard

    2017-07-19

    Zinc and copper ions can modulate the activity of glutamate receptors. However, labile zinc and copper ions likely represent only the tip of the iceberg and other neuronal functions are suspected for these metals in their bound state. We performed synchrotron X-ray fluorescence imaging with 30 nm resolution to image total biometals in dendrites and spines from hippocampal neurons. We found that zinc is distributed all along the dendrites while copper is mainly pinpointed within the spines. In spines, zinc content is higher within the spine head while copper is higher within the spine neck. Such specific distributions suggested metal interactions with cytoskeleton proteins. Zinc supplementation induced the increase of β-tubulin content in dendrites. Copper supplementation impaired the β-tubulin and F-actin networks. Copper chelation resulted in the decrease of F-actin content in dendrites, drastically reducing the number of F-actin protrusions. These results indicate that zinc is involved in microtubule stability whereas copper is essential for actin-dependent stability of dendritic spines, although copper excess can impair the dendritic cytoskeleton.

  15. Npas4 Regulates Mdm2 and thus Dcx in Experience-Dependent Dendritic Spine Development of Newborn Olfactory Bulb Interneurons

    Directory of Open Access Journals (Sweden)

    Sei-ichi Yoshihara

    2014-08-01

    Full Text Available Sensory experience regulates the development of various brain structures, including the cortex, hippocampus, and olfactory bulb (OB. Little is known about how sensory experience regulates the dendritic spine development of OB interneurons, such as granule cells (GCs, although it is well studied in mitral/tufted cells. Here, we identify a transcription factor, Npas4, which is expressed in OB GCs immediately after sensory input and is required for dendritic spine formation. Npas4 overexpression in OB GCs increases dendritic spine density, even under sensory deprivation, and rescues reduction of dendrite spine density in the Npas4 knockout OB. Furthermore, loss of Npas4 upregulates expression of the E3-ubiquitin ligase Mdm2, which ubiquitinates a microtubule-associated protein Dcx. This leads to reduction in the dendritic spine density of OB GCs. Together, these findings suggest that Npas4 regulates Mdm2 expression to ubiquitinate and degrade Dcx during dendritic spine development in newborn OB GCs after sensory experience.

  16. Large and Small Dendritic Spines Serve Different Interacting Functions in Hippocampal Synaptic Plasticity and Homeostasis

    Directory of Open Access Journals (Sweden)

    Joshua J. W. Paulin

    2016-01-01

    Full Text Available The laying down of memory requires strong stimulation resulting in specific changes in synaptic strength and corresponding changes in size of dendritic spines. Strong stimuli can also be pathological, causing a homeostatic response, depressing and shrinking the synapse to prevent damage from too much Ca2+ influx. But do all types of dendritic spines serve both of these apparently opposite functions? Using confocal microscopy in organotypic slices from mice expressing green fluorescent protein in hippocampal neurones, the size of individual spines along sections of dendrite has been tracked in response to application of tetraethylammonium. This strong stimulus would be expected to cause both a protective homeostatic response and long-term potentiation. We report separation of these functions, with spines of different sizes reacting differently to the same strong stimulus. The immediate shrinkage of large spines suggests a homeostatic protective response during the period of potential danger. In CA1, long-lasting growth of small spines subsequently occurs consolidating long-term potentiation but only after the large spines return to their original size. In contrast, small spines do not change in dentate gyrus where potentiation does not occur. The separation in time of these changes allows clear functional differentiation of spines of different sizes.

  17. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    Science.gov (United States)

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-03-17

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.

  18. Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Szepesi

    Full Text Available Dendritic spines are are small membranous protrusions that extend from neuronal dendrites and harbor the majority of excitatory synapses. Increasing evidence has shown that matrix metalloproteinases (MMPs, a family of extracellularly acting and Zn(2+-dependent endopeptidases, are able to rapidly modulate dendritic spine morphology. Spine head protrusions (SHPs are filopodia-like processes that extend from the dendritic spine head, representing a form of postsynaptic structural remodeling in response to altered neuronal activity. Herein, we show that chemically induced long-term potentiation (cLTP in dissociated hippocampal cultures upregulates MMP-9 activity that controls the formation of SHPs. Blocking of MMPs activity or microtubule dynamics abolishes the emergence of SHPs. In addition, autoactive recombinant MMP-9, promotes the formation of SHPs in organotypic hippocampal slices. Furthermore, spines with SHPs gained postsynaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA receptors upon cLTP and the synaptic delivery of AMPA receptors was controlled by MMPs. The present results strongly imply that MMP-9 is functionally involved in the formation of SHPs and the control of postsynaptic receptor distribution upon cLTP.

  19. The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Valerie T. Ramírez

    2016-01-01

    Full Text Available Mastoparan-7 (Mas-7, an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX- sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95 clustering in neurites and activates Gαo signaling, increasing the intracellular Ca2+ concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC, c-Jun N-terminal kinase (JNK, and calcium-calmodulin dependent protein kinase IIα (CaMKIIα after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gαo subunit signaling in the regulation of synapse formation.

  20. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization.

    Science.gov (United States)

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine.

  1. Dendritic spine pathology in autism: lessons learned from mouse models

    Institute of Scientific and Technical Information of China (English)

    Qiangge Zhang; Dingxi Zhou; Guoping Feng

    2016-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that affect up to 1.5% of population in the world. Recent large scale genomic studies show that genetic causes of ASD are very heterogeneous. Gene ontology, pathway analysis and animal model studies have revealed several potential converging mechanisms including postsynaptic dysfunction of excitatory synapses. In this review, we focus on the structural and functional specializations of dendritic spines, and describe their defects in ASD. We use Fragile X syndrome, Rett syndrome and Phe-lan-McDermid syndrome, three of the most studied neurodevelopmental disorders with autism features, as examples to demonstrate the significant contribution made by mouse models towards the understanding of monogenic ASD. We envision that the development and application of new technologies to study the function of dendritic spines in valid animal models will eventually lead to innovative treatments for ASD.

  2. The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease

    Science.gov (United States)

    Merino-Serrais, Paula; Benavides-Piccione, Ruth; Blazquez-Llorca, Lidia; Kastanauskaite, Asta; Rábano, Alberto; Avila, Jesús

    2013-01-01

    The dendritic spines on pyramidal cells represent the main postsynaptic elements of cortical excitatory synapses and they are fundamental structures in memory, learning and cognition. In the present study, we used intracellular injections of Lucifer yellow in fixed tissue to analyse over 19 500 dendritic spines that were completely reconstructed in three dimensions along the length of the basal dendrites of pyramidal neurons in the parahippocampal cortex and CA1 of patients with Alzheimer’s disease. Following intracellular injection, sections were immunostained for anti-Lucifer yellow and with tau monoclonal antibodies AT8 and PHF-1, which recognize tau phosphorylated at Ser202/Thr205 and at Ser396/404, respectively. We observed that the diffuse accumulation of phospho-tau in a putative pre-tangle state did not induce changes in the dendrites of pyramidal neurons, whereas the presence of tau aggregates forming intraneuronal neurofibrillary tangles was associated with progressive alteration of dendritic spines (loss of dendritic spines and changes in their morphology) and dendrite atrophy, depending on the degree of tangle development. Thus, the presence of phospho-tau in neurons does not necessarily mean that they suffer severe and irreversible effects as thought previously but rather, the characteristic cognitive impairment in Alzheimer’s disease is likely to depend on the relative number of neurons that have well developed tangles. PMID:23715095

  3. Diacylglycerol kinase β promotes dendritic outgrowth and spine maturation in developing hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Otani Koichi

    2009-08-01

    Full Text Available Abstract Background Diacylglycerol kinase (DGK is an enzyme that phosphorylates diacylglycerol to phosphatidic acid and comprises multiple isozymes of distinct properties. Of DGKs, mRNA signal for DGKβ is strongly detected in the striatum, and one of the transcripts derived from the human DGKβ locus is annotated in GenBank as being differentially expressed in bipolar disorder patients. Recently, we have reported that DGKβ is expressed in medium spiny neurons of the striatum and is highly concentrated at the perisynapse of dendritic spines. However, it remains elusive how DGKβ is implicated in pathophysiological role in neurons at the cellular level. Results In the present study, we investigated the expression and subcellular localization of DGKβ in the hippocampus, together with its functional implication using transfected hippocampal neurons. DGKβ is expressed not only in projection neurons but also in interneurons and is concentrated at perisynaptic sites of asymmetrical synapses. Overexpression of wild-type DGKβ promotes dendrite outgrowth at 7 d in vitro (DIV and spine maturation at 14 DIV in transfected hippocampal neurons, although its kinase-dead mutant has no effect. Conclusion In the hippocampus, DGKβ is expressed in both projection neurons and interneurons and is accumulated at the perisynapse of dendritic spines in asymmetrical synapses. Transfection experiments suggest that DGKβ may be involved in the molecular machineries of dendrite outgrowth and spinogenesis through its kinase activity.

  4. Alterations to dendritic spine morphology, but not dendrite patterning, of cortical projection neurons in Tc1 and Ts1Rhr mouse models of Down syndrome.

    Directory of Open Access Journals (Sweden)

    Matilda A Haas

    Full Text Available Down Syndrome (DS is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines--the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects.

  5. Cux1 and Cux2 regulate dendritic branching, spine morphology and synapses of the upper layer neurons of the cortex

    Science.gov (United States)

    Cubelos, Beatriz; Sebastián-Serrano, Alvaro; Beccari, Leonardo; Calcagnotto, Maria Elisa; Cisneros, Elsa; Kim, Seonhee; Dopazo, Ana; Alvarez-Dolado, Manuel; Redondo, Juan Miguel; Bovolenta, Paola; Walsh, Christopher A.; Nieto, Marta

    2010-01-01

    Summary Dendrite branching and spine formation determines the function of morphologically distinct and specialized neuronal subclasses. However, little is known about the programs instructing specific branching patterns in vertebrate neurons and whether such programs influence dendritic spines and synapses. Using knockout and knockdown studies combined with morphological, molecular and electrophysiological analysis we show that the homeobox Cux1 and Cux2 are intrinsic and complementary regulators of dendrite branching, spine development and synapse formation in layer II–III neurons of the cerebral cortex. Cux genes control the number and maturation of dendritic spines partly through direct regulation of the expression of Xlr3b and Xlr4b, chromatin remodeling genes previously implicated in cognitive defects. Accordingly, abnormal dendrites and synapses in Cux2−/− mice correlate with reduced synaptic function and defects in working memory. These demonstrate critical roles of Cux in dendritogenesis and highlight novel subclass-specific mechanisms of synapse regulation that contribute to the establishment of cognitive circuits. PMID:20510857

  6. βIII Spectrin Is Necessary for Formation of the Constricted Neck of Dendritic Spines and Regulation of Synaptic Activity in Neurons.

    Science.gov (United States)

    Efimova, Nadia; Korobova, Farida; Stankewich, Michael C; Moberly, Andrew H; Stolz, Donna B; Wang, Junling; Kashina, Anna; Ma, Minghong; Svitkina, Tatyana

    2017-07-05

    Dendritic spines are postsynaptic structures in neurons often having a mushroom-like shape. Physiological significance and cytoskeletal mechanisms that maintain this shape are poorly understood. The spectrin-based membrane skeleton maintains the biconcave shape of erythrocytes, but whether spectrins also determine the shape of nonerythroid cells is less clear. We show that βIII spectrin in hippocampal and cortical neurons from rodent embryos of both sexes is distributed throughout the somatodendritic compartment but is particularly enriched in the neck and base of dendritic spines and largely absent from spine heads. Electron microscopy revealed that βIII spectrin forms a detergent-resistant cytoskeletal network at these sites. Knockdown of βIII spectrin results in a significant decrease in the density of dendritic spines. Surprisingly, the density of presynaptic terminals is not affected by βIII spectrin knockdown. However, instead of making normal spiny synapses, the presynaptic structures in βIII spectrin-depleted neurons make shaft synapses that exhibit increased amplitudes of miniature EPSCs indicative of excessive postsynaptic excitation. Thus, βIII spectrin is necessary for formation of the constricted shape of the spine neck, which in turn controls communication between the synapse and the parent dendrite to prevent excessive excitation. Notably, mutations of SPTNB2 encoding βIII spectrin are associated with neurodegenerative syndromes, spinocerebellar ataxia Type 5, and spectrin-associated autosomal recessive cerebellar ataxia Type 1, but molecular mechanisms linking βIII spectrin functions to neuronal pathologies remain unresolved. Our data suggest that spinocerebellar ataxia Type 5 and spectrin-associated autosomal recessive cerebellar ataxia Type 1 pathology likely arises from poorly controlled synaptic activity that leads to excitotoxicity and neurodegeneration. SIGNIFICANCE STATEMENT Dendritic spines are small protrusions from neuronal

  7. Incorrect dosage of IQSEC2, a known intellectual disability and epilepsy gene, disrupts dendritic spine morphogenesis

    Science.gov (United States)

    Hinze, S J; Jackson, M R; Lie, S; Jolly, L; Field, M; Barry, S C; Harvey, R J; Shoubridge, C

    2017-01-01

    There is considerable genetic and phenotypic heterogeneity associated with intellectual disability (ID), specific learning disabilities, attention-deficit hyperactivity disorder, autism and epilepsy. The intelligence quotient (IQ) motif and SEC7 domain containing protein 2 gene (IQSEC2) is located on the X-chromosome and harbors mutations that contribute to non-syndromic ID with and without early-onset seizure phenotypes in both sexes. Although IQ and Sec7 domain mutations lead to partial loss of IQSEC2 enzymatic activity, the in vivo pathogenesis resulting from these mutations is not known. Here we reveal that IQSEC2 has a key role in dendritic spine morphology. Partial loss-of-function mutations were modeled using a lentiviral short hairpin RNA (shRNA) approach, which achieved a 57% knockdown of Iqsec2 expression in primary hippocampal cell cultures from mice. Investigating gross morphological parameters after 8 days of in vitro culture (8DIV) identified a 32% reduction in primary axon length, in contrast to a 27% and 31% increase in the number and complexity of dendrites protruding from the cell body, respectively. This increase in dendritic complexity and spread was carried through dendritic spine development, with a 34% increase in the number of protrusions per dendritic segment compared with controls at 15DIV. Although the number of dendritic spines had normalized by 21DIV, a reduction was noted in the number of immature spines. In contrast, when modeling increased dosage, overexpression of wild-type IQSEC2 led to neurons with shorter axons that were more compact and displayed simpler dendritic branching. Disturbances to dendritic morphology due to knockdown of Iqsec2 were recapitulated in neurons from Iqsec2 knockout mice generated in our laboratory using CRISPR/Cas9 technology. These observations provide evidence of dosage sensitivity for IQSEC2, which normally escapes X-inactivation in females, and links these disturbances in expression to alterations in

  8. Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines.

    Science.gov (United States)

    Padamsey, Zahid; McGuinness, Lindsay; Bardo, Scott J; Reinhart, Marcia; Tong, Rudi; Hedegaard, Anne; Hart, Michael L; Emptage, Nigel J

    2017-01-04

    Lysosomes have traditionally been viewed as degradative organelles, although a growing body of evidence suggests that they can function as Ca 2+ stores. Here we examined the function of these stores in hippocampal pyramidal neurons. We found that back-propagating action potentials (bpAPs) could elicit Ca 2+ release from lysosomes in the dendrites. This Ca 2+ release triggered the fusion of lysosomes with the plasma membrane, resulting in the release of Cathepsin B. Cathepsin B increased the activity of matrix metalloproteinase 9 (MMP-9), an enzyme involved in extracellular matrix (ECM) remodelling and synaptic plasticity. Inhibition of either lysosomal Ca 2+ signaling or Cathepsin B release prevented the maintenance of dendritic spine growth induced by Hebbian activity. This impairment could be rescued by exogenous application of active MMP-9. Our findings suggest that activity-dependent exocytosis of Cathepsin B from lysosomes regulates the long-term structural plasticity of dendritic spines by triggering MMP-9 activation and ECM remodelling. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  9. Autometallographic (AMG) technique used for enhancement of the Golgi-Cox staining gives good contrast andhigh resolution of dendrites and spines

    DEFF Research Database (Denmark)

    Orlowski, Dariusz

    Despite the existence of many newer staining methods, Golgi staining still remains the primary method forvisualization of the dendrites and spines. The black deposit in the Golgi-Cox impregnated cells is a Mercuricsulphide, therefore autometallographic (AMG) technique which is used for visualizat...... of dendrites and spines in the rat hippocampus. The describedmethod will be of value for future behavioural-anatomical studies, examining changes in dendrite branching andspine density caused by brain diseases and their subsequent treatment.......Despite the existence of many newer staining methods, Golgi staining still remains the primary method forvisualization of the dendrites and spines. The black deposit in the Golgi-Cox impregnated cells is a Mercuricsulphide, therefore autometallographic (AMG) technique which is used...... for visualization of the metals and metalsulphides/selenides in tissue may be used to enhance the Golgi-Cox staining. We demonstrated accordingly thatuse of AMG enhancement method on the Golgi-Cox staining gives good contrast and high resolution of dendritesand spines. Moreover, this method is cheaper and more...

  10. Cortical Regulation of Striatal Medium Spiny Neuron Dendritic Remodeling in Parkinsonism: Modulation of Glutamate Release Reverses Dopamine Depletion–Induced Dendritic Spine Loss

    OpenAIRE

    Garcia, Bonnie G.; Neely, M. Diana; Deutch, Ariel Y.

    2010-01-01

    Striatal medium spiny neurons (MSNs) receive glutamatergic afferents from the cerebral cortex and dopaminergic inputs from the substantia nigra (SN). Striatal dopamine loss decreases the number of MSN dendritic spines. This loss of spines has been suggested to reflect the removal of tonic dopamine inhibitory control over corticostriatal glutamatergic drive, with increased glutamate release culminating in MSN spine loss. We tested this hypothesis in two ways. We first determined in vivo if dec...

  11. Spatial distribution of Na+-K+-ATPase in dendritic spines dissected by nanoscale superresolution STED microscopy

    Directory of Open Access Journals (Sweden)

    Bondar Alexander

    2011-01-01

    Full Text Available Abstract Background The Na+,K+-ATPase plays an important role for ion homeostasis in virtually all mammalian cells, including neurons. Despite this, there is as yet little known about the isoform specific distribution in neurons. Results With help of superresolving stimulated emission depletion microscopy the spatial distribution of Na+,K+-ATPase in dendritic spines of cultured striatum neurons have been dissected. The found compartmentalized distribution provides a strong evidence for the confinement of neuronal Na+,K+-ATPase (α3 isoform in the postsynaptic region of the spine. Conclusions A compartmentalized distribution may have implications for the generation of local sodium gradients within the spine and for the structural and functional interaction between the sodium pump and other synaptic proteins. Superresolution microscopy has thus opened up a new perspective to elucidate the nature of the physiological function, regulation and signaling role of Na+,K+-ATPase from its topological distribution in dendritic spines.

  12. Early increase and late decrease of purkinje cell dendritic spine density in prion-infected organotypic mouse cerebellar cultures.

    Science.gov (United States)

    Campeau, Jody L; Wu, Gengshu; Bell, John R; Rasmussen, Jay; Sim, Valerie L

    2013-01-01

    Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4-5 weeks after the first detection of protease-resistant prion protein in the brain. While there are cell culture models of prion infection, most do not recapitulate the neuropathology seen in vivo. Only the recently developed prion organotypic slice culture assay has been reported to undergo neuronal loss and the development of some aspects of prion pathology, namely small vacuolar degeneration and tubulovesicular bodies. Given the rapid replication of prions in this system, with protease-resistant prion protein detectable by 21 days, we investigated whether the dendritic spine loss and altered dendritic morphology seen in prion disease might also develop within the lifetime of this culture system. Indeed, six weeks after first detection of protease-resistant prion protein in tga20 mouse cerebellar slice cultures infected with RML prion strain, we found a statistically significant loss of Purkinje cell dendritic spines and altered dendritic morphology in infected cultures, analogous to that seen in vivo. In addition, we found a transient but statistically significant increase in Purkinje cell dendritic spine density during infection, at the time when protease-resistant prion protein was first detectable in culture. Our findings support the use of this slice culture system as one which recapitulates prion disease pathology and one which may facilitate study of the earliest stages of prion disease pathogenesis.

  13. Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging.

    Directory of Open Access Journals (Sweden)

    Vedakumar Tatavarty

    Full Text Available Morphological changes in dendritic spines represent an important mechanism for synaptic plasticity which is postulated to underlie the vital cognitive phenomena of learning and memory. These morphological changes are driven by the dynamic actin cytoskeleton that is present in dendritic spines. The study of actin dynamics in these spines traditionally has been hindered by the small size of the spine. In this study, we utilize a photo-activation localization microscopy (PALM-based single-molecule tracking technique to analyze F-actin movements with approximately 30-nm resolution in cultured hippocampal neurons. We were able to observe the kinematic (physical motion of actin filaments, i.e., retrograde flow and kinetic (F-actin turn-over dynamics of F-actin at the single-filament level in dendritic spines. We found that F-actin in dendritic spines exhibits highly heterogeneous kinematic dynamics at the individual filament level, with simultaneous actin flows in both retrograde and anterograde directions. At the ensemble level, movements of filaments integrate into a net retrograde flow of approximately 138 nm/min. These results suggest a weakly polarized F-actin network that consists of mostly short filaments in dendritic spines.

  14. Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging.

    Science.gov (United States)

    Tatavarty, Vedakumar; Kim, Eun-Ji; Rodionov, Vladimir; Yu, Ji

    2009-11-09

    Morphological changes in dendritic spines represent an important mechanism for synaptic plasticity which is postulated to underlie the vital cognitive phenomena of learning and memory. These morphological changes are driven by the dynamic actin cytoskeleton that is present in dendritic spines. The study of actin dynamics in these spines traditionally has been hindered by the small size of the spine. In this study, we utilize a photo-activation localization microscopy (PALM)-based single-molecule tracking technique to analyze F-actin movements with approximately 30-nm resolution in cultured hippocampal neurons. We were able to observe the kinematic (physical motion of actin filaments, i.e., retrograde flow) and kinetic (F-actin turn-over) dynamics of F-actin at the single-filament level in dendritic spines. We found that F-actin in dendritic spines exhibits highly heterogeneous kinematic dynamics at the individual filament level, with simultaneous actin flows in both retrograde and anterograde directions. At the ensemble level, movements of filaments integrate into a net retrograde flow of approximately 138 nm/min. These results suggest a weakly polarized F-actin network that consists of mostly short filaments in dendritic spines.

  15. Constancy and variability in cortical structure. A study on synapses and dendritic spines in hedgehog and monkey.

    Science.gov (United States)

    Schüz, A; Demianenko, G P

    1995-01-01

    Synapses and dendritic spines were investigated in the parietal cortex of the hedgehog (Erinaceus europaeus) and the monkey (Macaca mulatta). There was no significant difference in the density of synapses between the two species (14 synapses/100 microns2 in the hedgehog, 15/100 microns2 in the monkey), neither in the size of the synaptic junctions, in the proportion of Type I and Type II synapses (8-10% were of Type II in the hedgehog, 10-14% in the monkey) nor in the proportion of perforated synapses (8% in the hedgehog, 5% in the monkey). The only striking difference at the electron microscopic level concerned the frequency of synapses in which the postsynaptic profile was deeply indented into the presynaptic terminal. Such synapses were 10 times more frequent in the monkey. Dendritic spines were investigated in Golgi-preparations. The density of spines along dendrites was similar in both species. The results are discussed with regard to connectivity in the cortex of small and large brains.

  16. Estradiol induces dendritic spines by enhancing glutamate release independent of transcription: A mechanism for organizational sex differences

    Science.gov (United States)

    Schwarz, Jaclyn M.; Liang, Shu-Ling; Thompson, Scott M.; McCarthy, Margaret M.

    2008-01-01

    SUMMARY The naturally occurring sex difference in dendritic spine number on hypothalamic neurons offers a unique opportunity to investigate mechanisms establishing synaptic patterning during perinatal sensitive periods. A major advantage of the model is the ability to treat neonatal females with estradiol to permanently induce the male phenotype. During the development of other systems, exuberant innervation is followed by activity-dependent pruning necessary for elimination of spurious synapses. In contrast, we demonstrate that estradiol-induced organization in the hypothalamus involves the induction of new synapses on dendritic spines. Activation of estrogen receptors by estradiol triggers a non-genomic activation of PI3 kinase that results in enhanced glutamate release from presynaptic neurons. Subsequent activation of ionotropic glutamate receptors activates MAP kinases inducing dendritic spine formation. These results reveal a trans-neuronal mechanism by which estradiol acts during a sensitive period to establish a profound and lasting sex difference in hypothalamic synaptic patterning. PMID:18498739

  17. Short-term mastication after weaning upregulates GABAergic signalling and reduces dendritic spine in thalamus.

    Science.gov (United States)

    Ogawa, Mana; Nagai, Toshitada; Saito, Yoshikazu; Miyaguchi, Hitonari; Kumakura, Kei; Abe, Keiko; Asakura, Tomiko

    2018-04-06

    Mastication enhances brain function and mental health, but little is known about the molecular mechanisms underlying the effects of mastication on neural development in early childhood. Therefore, we analysed the gene expression in juvenile neural circuits in rats fed with a soft or chow diet immediately after weaning. We observed that the gene expression patterns in the thalamus varied depending on the diet. Furthermore, gene ontology analysis revealed that two terms were significantly enhanced: chemical synaptic transmission and positive regulation of dendritic spine morphogenesis. With respect to chemical synaptic transmission, glutamate decarboxylase and GABA receptors were upregulated in the chow diet group. The related genes, including vesicular GABA transporter, were also upregulated, suggesting that mastication activates GABAergic signalling. With respect to dendritic spine morphogenesis, Ingenuity Pathway Analysis predicted fewer extension of neurites and neurons and fewer number of branches in the chow diet group. The numbers of spines in the ventral posterolateral and posteromedial regions were significantly decreased. These results suggest that mastication in the early developing period upregulates GABAergic signalling genes, with a decrease of spines in the thalamus. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Reproductive experience modified dendritic spines on cortical pyramidal neurons to enhance sensory perception and spatial learning in rats.

    Science.gov (United States)

    Chen, Jeng-Rung; Lim, Seh Hong; Chung, Sin-Cun; Lee, Yee-Fun; Wang, Yueh-Jan; Tseng, Guo-Fang; Wang, Tsyr-Jiuan

    2017-01-27

    Behavioral adaptations during motherhood are aimed at increasing reproductive success. Alterations of hormones during motherhood could trigger brain morphological changes to underlie behavioral alterations. Here we investigated whether motherhood changes a rat's sensory perception and spatial memory in conjunction with cortical neuronal structural changes. Female rats of different statuses, including virgin, pregnant, lactating, and primiparous rats were studied. Behavioral test showed that the lactating rats were most sensitive to heat, while rats with motherhood and reproduction experience outperformed virgin rats in a water maze task. By intracellular dye injection and computer-assisted 3-dimensional reconstruction, the dendritic arbors and spines of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons were revealed for closer analysis. The results showed that motherhood and reproductive experience increased dendritic spines but not arbors or the lengths of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons. In addition, lactating rats had a higher incidence of spines than pregnant or primiparous rats. The increase of dendritic spines was coupled with increased expression of the glutamatergic postsynaptic marker protein (PSD-95), especially in lactating rats. On the basis of the present results, it is concluded that motherhood enhanced rat sensory perception and spatial memory and was accompanied by increases in dendritic spines on output neurons of the somatosensory cortex and CA1 hippocampus. The effect was sustained for at least 6 weeks after the weaning of the pups.

  19. Marginal Iodine Deficiency Affects Dendritic Spine Development by Disturbing the Function of Rac1 Signaling Pathway on Cytoskeleton.

    Science.gov (United States)

    Min, Hui; Dong, Jing; Wang, Yi; Wang, Yuan; Yu, Ye; Shan, Zhongyan; Xi, Qi; Teng, Weiping; Chen, Jie

    2017-01-01

    Iodine deficiency (ID)-induced thyroid hormone (TH) insufficient during development leads to impairments of brain function, such as learning and memory. Marginal ID has been defined as subtle insufficiency of TH, characterized as low thyroxine (T 4 ) levels, whether marginal ID potentially had adverse effects on the development of hippocampus and the underlying mechanisms remain unclear. Thus, in the present study, we established Wistar rat models with ID diet during pregnancy and lactation. The effects of marginal ID on long-term potentiation (LTP) were investigated in the hippocampal CA1 region. To study the development of dendritic spines in pyramidal cells, Golgi-Cox staining was conducted on postnatal day (PN) 7, PN14, PN21, and PN28. The activation of Rac1 signaling pathway, which is essential for dendritic spine development by regulating actin cytoskeleton, was also investigated. Our results showed that marginal ID slightly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Besides, the density of dendritic spines during the critical period of rat postnatal development was mildly decreased, and we found no significant change of spine morphology in marginal ID group. We also observed decreased activation of the Rac1 signaling pathway in pups subjected to maternal marginal ID. Our study may support the hypothesis that decreased T 4 induced by marginal ID results in slight impairments of LTP and leads to mild damage of dendritic spine development, which may be due to abnormal regulation of Rac1 signaling pathway on cytoskeleton.

  20. The therapeutic effect of memantine through the stimulation of synapse formation and dendritic spine maturation in autism and fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Hongen Wei

    Full Text Available Although the pathogenic mechanisms that underlie autism are not well understood, there is evidence showing that metabotropic and ionotropic glutamate receptors are hyper-stimulated and the GABAergic system is hypo-stimulated in autism. Memantine is an uncompetitive antagonist of NMDA receptors and is widely prescribed for treatment of Alzheimer's disease treatment. Recently, it has been shown to improve language function, social behavior, and self-stimulatory behaviors of some autistic subjects. However the mechanism by which memantine exerts its effect remains to be elucidated. In this study, we used cultured cerebellar granule cells (CGCs from Fmr1 knockout (KO mice, a mouse model for fragile X syndrome (FXS and syndromic autism, to examine the effects of memantine on dendritic spine development and synapse formation. Our results show that the maturation of dendritic spines is delayed in Fmr1-KO CGCs. We also detected reduced excitatory synapse formation in Fmr1-KO CGCs. Memantine treatment of Fmr1-KO CGCs promoted cell adhesion properties. Memantine also stimulated the development of mushroom-shaped mature dendritic spines and restored dendritic spine to normal levels in Fmr1-KO CGCs. Furthermore, we demonstrated that memantine treatment promoted synapse formation and restored the excitatory synapses to a normal range in Fmr1-KO CGCs. These findings suggest that memantine may exert its therapeutic capacity through a stimulatory effect on dendritic spine maturation and excitatory synapse formation, as well as promoting adhesion of CGCs.

  1. miR-132 Regulates Dendritic Spine Structure by Direct Targeting of Matrix Metalloproteinase 9 mRNA.

    Science.gov (United States)

    Jasińska, Magdalena; Miłek, Jacek; Cymerman, Iwona A; Łęski, Szymon; Kaczmarek, Leszek; Dziembowska, Magdalena

    2016-09-01

    Mir-132 is a neuronal activity-regulated microRNA that controls the morphology of dendritic spines and neuronal transmission. Similar activities have recently been attributed to matrix metalloproteinase-9 (MMP-9), an extrasynaptic protease. In the present study, we provide evidence that miR-132 directly regulates MMP-9 mRNA in neurons to modulate synaptic plasticity. With the use of luciferase reporter system, we show that miR-132 binds to the 3'UTR of MMP-9 mRNA to regulate its expression in neurons. The overexpression of miR-132 in neurons reduces the level of endogenous MMP-9 protein secretion. In synaptoneurosomes, metabotropic glutamate receptor (mGluR)-induced signaling stimulates the dissociation of miR-132 from polyribosomal fractions and shifts it towards the messenger ribonucleoprotein (mRNP)-containing fraction. Furthermore, we demonstrate that the overexpression of miR-132 in the cultured hippocampal neurons from Fmr1 KO mice that have increased synaptic MMP-9 level provokes enlargement of the dendritic spine heads, a process previously implicated in enhanced synaptic plasticity. We propose that activity-dependent miR-132 regulates structural plasticity of dendritic spines through matrix metalloproteinase 9.

  2. Dendritic Spine Instability in a Mouse Model of CDKL5 Disorder Is Rescued by Insulin-like Growth Factor 1.

    Science.gov (United States)

    Della Sala, Grazia; Putignano, Elena; Chelini, Gabriele; Melani, Riccardo; Calcagno, Eleonora; Michele Ratto, Gian; Amendola, Elena; Gross, Cornelius T; Giustetto, Maurizio; Pizzorusso, Tommaso

    2016-08-15

    CDKL5 (cyclin-dependent kinase-like 5) is mutated in many severe neurodevelopmental disorders, including atypical Rett syndrome. CDKL5 was shown to interact with synaptic proteins, but an in vivo analysis of the role of CDKL5 in dendritic spine dynamics and synaptic molecular organization is still lacking. In vivo two-photon microscopy of the somatosensory cortex of Cdkl5(-/y) mice was applied to monitor structural dynamics of dendritic spines. Synaptic function and plasticity were measured using electrophysiological recordings of excitatory postsynaptic currents and long-term potentiation in brain slices and assessing the expression of synaptic postsynaptic density protein 95 (PSD-95). Finally, we studied the impact of insulin-like growth factor 1 (IGF-1) treatment on CDKL5 null mice to restore the synaptic deficits. Adult mutant mice showed a significant reduction in spine density and PSD-95-positive synaptic puncta, a reduction of persistent spines, and impaired long-term potentiation. In juvenile mutants, short-term spine elimination, but not formation, was dramatically increased. Exogenous administration of IGF-1 rescued defective rpS6 phosphorylation, spine density, and PSD-95 expression. Endogenous cortical IGF-1 levels were unaffected by CDKL5 deletion. These data demonstrate that dendritic spine stabilization is strongly regulated by CDKL5. Moreover, our data suggest that IGF-1 treatment could be a promising candidate for clinical trials in CDKL5 patients. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation*

    Science.gov (United States)

    Ramírez, Valerie T.; Ramos-Fernández, Eva; Henríquez, Juan Pablo; Lorenzo, Alfredo; Inestrosa, Nibaldo C.

    2016-01-01

    Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons. PMID:27402827

  4. The Role of Actin Cytoskeleton in Dendritic Spines in the Maintenance of Long-Term Memory.

    Science.gov (United States)

    Basu, Sreetama; Lamprecht, Raphael

    2018-01-01

    Evidence indicates that long-term memory formation involves alterations in synaptic efficacy produced by modifications in neural transmission and morphology. However, it is not clear how such alterations induced by learning, that encode memory, are maintained over long period of time to preserve long-term memory. This is especially intriguing as the half-life of most of the proteins that underlie such changes is usually in the range of hours to days and these proteins may change their location over time. In this review we describe studies that indicate the involvement of dendritic spines in memory formation and its maintenance. These studies show that learning leads to changes in the number and morphology of spines. Disruption in spines morphology or manipulations that lead to alteration in their number after consolidation are associated with impairment in memory maintenance. We further ask how changes in dendritic spines morphology, induced by learning and reputed to encode memory, are maintained to preserve long-term memory. We propose a mechanism, based on studies described in the review, whereby the actin cytoskeleton and its regulatory proteins involved in the initial alteration in spine morphology induced by learning are also essential for spine structural stabilization that maintains long-term memory. In this model glutamate receptors and other synaptic receptors activation during learning leads to the creation of new actin cytoskeletal scaffold leading to changes in spines morphology and memory formation. This new actin cytoskeletal scaffold is preserved beyond actin and its regulatory proteins turnover and dynamics by active stabilization of the level and activity of actin regulatory proteins within these memory spines.

  5. Dendritic spine changes in the development of alcohol addiction regulated by α-calcium/calmodulin-dependent protein kinase II

    Directory of Open Access Journals (Sweden)

    Zofia Mijakowska

    2014-03-01

    Full Text Available Introduction Alcohol has many adverse effects on the brain. Among them are dendritic spine morphology alterations, which are believed to be the basis of alcohol addiction. Autophosphorylation of α-calcium/calmodulin-dependent protein kinase II (αCaMKII has been shown to regulate spine morphology in vitro. Here we show that αCaMKII can also regulate addiction related behaviour and dendritic spine morphology changes caused by alcohol consumption in vivo. Method 12 αCaMKII-autophosphorylation deficient female mice (T286A and 12 wild type littermates were used in the study. T286A strain was created by Giese et al. (1998. Mice were housed and tested in two IntelliCages from NewBehavior (www.newbehavior.com. IntelliCage is an automated learning system. After 95 days of alcohol drinking interrupted by tests for motivation, persistence in alcohol seeking and probability of relapse, mice were ascribed to ‘high’ or ‘low’ drinkers group according to their performance in the tests. Additional criterion was the amount of alcohol consumed during the whole experiment. Result of each test was evaluated separately. 1/3 of the mice that scored highest in each criterion were considered ‘positive’ for this trait. ‘Positive’ animals were given 1 point, negative 0 points. Mice that were positive in at least 2 criteria were ascribed to ‘high’ drinkers (‘+’ group. Remaining mice – to ‘low’ drinkers (‘–‘. This method of behavioral phenotyping, developed by Radwanska and Kaczmarek (2012, is inspired by DSM-IV. Since the results of this evaluation are discrete (i.e. by definition all the animals score between 0 to +4, we developed also a continuous method of addiction rating, which we call ‘addiction index’. The result of the second method is a sum of the standardized (z-score results of the above mentioned tests. We use it to examine the correlations between addiction-like behavior and spine parameters. Control group (12 WT, 8

  6. Spatial and Working Memory Is Linked to Spine Density and Mushroom Spines.

    Directory of Open Access Journals (Sweden)

    Rasha Refaat Mahmmoud

    Full Text Available Changes in synaptic structure and efficacy including dendritic spine number and morphology have been shown to underlie neuronal activity and size. Moreover, the shapes of individual dendritic spines were proposed to correlate with their capacity for structural change. Spine numbers and morphology were reported to parallel memory formation in the rat using a water maze but, so far, there is no information on spine counts or shape in the radial arm maze (RAM, a frequently used paradigm for the evaluation of complex memory formation in the rodent.24 male Sprague-Dawley rats were divided into three groups, 8 were trained, 8 remained untrained in the RAM and 8 rats served as cage controls. Dendritic spine numbers and individual spine forms were counted in CA1, CA3 areas and dentate gyrus of hippocampus using a DIL dye method with subsequent quantification by the Neuronstudio software and the image J program.Working memory errors (WME and latency in the RAM were decreased along the training period indicating that animals performed the task. Total spine density was significantly increased following training in the RAM as compared to untrained rats and cage controls. The number of mushroom spines was significantly increased in the trained as compared to untrained and cage controls. Negative significant correlations between spine density and WME were observed in CA1 basal dendrites and in CA3 apical and basal dendrites. In addition, there was a significant negative correlation between spine density and latency in CA3 basal dendrites.The study shows that spine numbers are significantly increased in the trained group, an observation that may suggest the use of this method representing a morphological parameter for memory formation studies in the RAM. Herein, correlations between WME and latency in the RAM and spine density revealed a link between spine numbers and performance in the RAM.

  7. Spatial and Working Memory Is Linked to Spine Density and Mushroom Spines.

    Science.gov (United States)

    Mahmmoud, Rasha Refaat; Sase, Sunetra; Aher, Yogesh D; Sase, Ajinkya; Gröger, Marion; Mokhtar, Maher; Höger, Harald; Lubec, Gert

    2015-01-01

    Changes in synaptic structure and efficacy including dendritic spine number and morphology have been shown to underlie neuronal activity and size. Moreover, the shapes of individual dendritic spines were proposed to correlate with their capacity for structural change. Spine numbers and morphology were reported to parallel memory formation in the rat using a water maze but, so far, there is no information on spine counts or shape in the radial arm maze (RAM), a frequently used paradigm for the evaluation of complex memory formation in the rodent. 24 male Sprague-Dawley rats were divided into three groups, 8 were trained, 8 remained untrained in the RAM and 8 rats served as cage controls. Dendritic spine numbers and individual spine forms were counted in CA1, CA3 areas and dentate gyrus of hippocampus using a DIL dye method with subsequent quantification by the Neuronstudio software and the image J program. Working memory errors (WME) and latency in the RAM were decreased along the training period indicating that animals performed the task. Total spine density was significantly increased following training in the RAM as compared to untrained rats and cage controls. The number of mushroom spines was significantly increased in the trained as compared to untrained and cage controls. Negative significant correlations between spine density and WME were observed in CA1 basal dendrites and in CA3 apical and basal dendrites. In addition, there was a significant negative correlation between spine density and latency in CA3 basal dendrites. The study shows that spine numbers are significantly increased in the trained group, an observation that may suggest the use of this method representing a morphological parameter for memory formation studies in the RAM. Herein, correlations between WME and latency in the RAM and spine density revealed a link between spine numbers and performance in the RAM.

  8. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    Directory of Open Access Journals (Sweden)

    Miranda Arnold

    2016-09-01

    Full Text Available AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3 and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1. Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD and schizophrenia (SZ; yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines, and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse orthologue of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function.

  9. Stable Density and Dynamics of Dendritic Spines of Cortical Neurons Across the Estrous Cycle While Expressing Differential Levels of Sensory-Evoked Plasticity

    Directory of Open Access Journals (Sweden)

    Bailin H. Alexander

    2018-03-01

    Full Text Available Periodic oscillations of gonadal hormone levels during the estrous cycle exert effects on the female brain, impacting cognition and behavior. While previous research suggests that changes in hormone levels across the cycle affect dendritic spine dynamics in the hippocampus, little is known about the effects on cortical dendritic spines and previous studies showed contradictory results. In this in vivo imaging study, we investigated the impact of the estrous cycle on the density and dynamics of dendritic spines of pyramidal neurons in the primary somatosensory cortex of mice. We also examined if the induction of synaptic plasticity during proestrus, estrus, and metestrus/diestrus had differential effects on the degree of remodeling of synapses in this brain area. We used chronic two-photon excitation (2PE microscopy during steady-state conditions and after evoking synaptic plasticity by whisker stimulation at the different stages of the cycle. We imaged apical dendritic tufts of layer 5 pyramidal neurons of naturally cycling virgin young female mice. Spine density, turnover rate (TOR, survival fraction, morphology, and volume of mushroom spines remained unaltered across the estrous cycle, and the values of these parameters were comparable with those of young male mice. However, while whisker stimulation of female mice during proestrus and estrus resulted in increases in the TOR of spines (74.2 ± 14.9% and 75.1 ± 12.7% vs. baseline, respectively, sensory-evoked plasticity was significantly lower during metestrus/diestrus (32.3 ± 12.8%. In males, whisker stimulation produced 46.5 ± 20% increase in TOR compared with baseline—not significantly different from female mice at any stage of the cycle. These results indicate that, while steady-state density and dynamics of dendritic spines of layer 5 pyramidal neurons in the primary somatosensory cortex of female mice are constant during the estrous cycle, the susceptibility of these neurons to

  10. Chronic Stress Reduces Nectin-1 mRNA Levels and Disrupts Dendritic Spine Plasticity in the Adult Mouse Perirhinal Cortex

    Directory of Open Access Journals (Sweden)

    Qian Gong

    2018-03-01

    Full Text Available In adulthood, chronic exposure to stressful experiences disrupts synaptic plasticity and cognitive function. Previous studies have shown that perirhinal cortex-dependent object recognition memory is impaired by chronic stress. However, the stress effects on molecular expression and structural plasticity in the perirhinal cortex remain unclear. In this study, we applied the chronic social defeat stress (CSDS paradigm and measured the mRNA levels of nectin-1, nectin-3 and neurexin-1, three synaptic cell adhesion molecules (CAMs implicated in the adverse stress effects, in the perirhinal cortex of wild-type (WT and conditional forebrain corticotropin-releasing hormone receptor 1 conditional knockout (CRHR1-CKO mice. Chronic stress reduced perirhinal nectin-1 mRNA levels in WT but not CRHR1-CKO mice. In conditional forebrain corticotropin-releasing hormone conditional overexpression (CRH-COE mice, perirhinal nectin-1 mRNA levels were also reduced, indicating that chronic stress modulates nectin-1 expression through the CRH-CRHR1 system. Moreover, chronic stress altered dendritic spine morphology in the main apical dendrites and reduced spine density in the oblique apical dendrites of perirhinal layer V pyramidal neurons. Our data suggest that chronic stress disrupts cell adhesion and dendritic spine plasticity in perirhinal neurons, which may contribute to stress-induced impairments of perirhinal cortex-dependent memory.

  11. From neurodevelopment to neurodegeneration: the interaction of neurofibromin and valosin-containing protein/p97 in regulation of dendritic spine formation.

    Science.gov (United States)

    Hsueh, Yi-Ping

    2012-03-26

    Both Neurofibromatosis type I (NF1) and inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) are autosomal dominant genetic disorders. These two diseases are fully penetrant but with high heterogeneity in phenotypes, suggesting the involvement of genetic modifiers in modulating patients' phenotypes. Although NF1 is recognized as a developmental disorder and IBMPFD is associated with degeneration of multiple tissues, a recent study discovered the direct protein interaction between neurofibromin, the protein product of the NF1 gene, and VCP/p97, encoded by the causative gene of IBMPFD. Both NF1 and VCP/p97 are critical for dendritic spine formation, which provides the cellular mechanism explaining the cognitive deficits and dementia found in patients. Moreover, disruption of the interaction between neurofibromin and VCP impairs dendritic spinogenesis. Neurofibromin likely influences multiple downstream pathways to control dendritic spinogenesis. One is to activate the protein kinase A pathway to initiate dendritic spine formation; another is to regulate the synaptic distribution of VCP and control the activity of VCP in dendritic spinogenesis. Since neurofibromin and VCP/p97 also regulate cell growth and bone metabolism, the understanding of neurofibromin and VCP/p97 in neurons may be applied to study of cancer and bone. Statin treatment rescues the spine defects caused by VCP deficiency, suggesting the potential role of statin in clinical treatment for these two diseases.

  12. Endophilin A1 Promotes Actin Polymerization in Dendritic Spines Required for Synaptic Potentiation

    Directory of Open Access Journals (Sweden)

    Yanrui Yang

    2018-05-01

    Full Text Available Endophilin A1 is a member of the N-BAR domain-containing endophilin A protein family that is involved in membrane dynamics and trafficking. At the presynaptic terminal, endophilin As participate in synaptic vesicle recycling and autophagosome formation. By gene knockout studies, here we report that postsynaptic endophilin A1 functions in synaptic plasticity. Ablation of endophilin A1 in the hippocampal CA1 region of mature mouse brain impairs long-term spatial and contextual fear memory. Its loss in CA1 neurons postsynaptic of the Schaffer collateral pathway causes impairment in their AMPA-type glutamate receptor-mediated synaptic transmission and long-term potentiation. In KO neurons, defects in the structural and functional plasticity of dendritic spines can be rescued by overexpression of endophilin A1 but not A2 or A3. Further, endophilin A1 promotes actin polymerization in dendritic spines during synaptic potentiation. These findings reveal a physiological role of endophilin A1 distinct from that of other endophilin As at the postsynaptic site.

  13. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex123

    Science.gov (United States)

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha

    2016-01-01

    Abstract A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons. PMID:27066532

  14. Effect of tibolone on dendritic spine density in the rat hippocampus.

    Science.gov (United States)

    Beltrán-Campos, V; Díaz-Ruiz, A; Padilla-Gómez, E; Aguilar Zavala, H; Ríos, C; Díaz Cintra, S

    2015-09-01

    Oestrogen deficiency produces oxidative stress (OS) and changes in hippocampal neurons and also reduces the density of dendritic spines (DS). These alterations affect the plastic response of the hippocampus. Oestrogen replacement therapy reverses these effects, but it remains to be seen whether the same changes are produced by tibolone (TB). The aim of this study was to test the neuroprotective effects of long-term oral TB treatment and its ability to reverse DS pruning in pyramidal neurons (PN) of hippocampal area CA1. Young Sprague Dawley rats were distributed in 3 groups: a control group in proestrus (Pro) and two ovariectomised groups (Ovx), of which one was provided with a daily TB dose (1mg/kg), OvxTB and the other with vehicle (OvxV), for 40 days in both cases. We analysed lipid peroxidation and DS density in 3 segments of apical dendrites from PNs in hippocampal area CA1. TB did not reduce lipid peroxidation but it did reverse the spine pruning in CA1 pyramidal neurons of the hippocampus which had been caused by ovariectomy. Oestrogen replacement therapy for ovariectomy-induced oestrogen deficiency has a protective effect on synaptic plasticity in the hippocampus. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  15. Letrozole Potentiates Mitochondrial and Dendritic Spine Impairments Induced by β Amyloid

    Directory of Open Access Journals (Sweden)

    P. K.-Y. Chang

    2013-01-01

    Full Text Available Reduced estrogens, either through aging or postsurgery breast cancer treatment with the oral nonsteroidal aromatase inhibitor letrozole, are linked with declined cognitive abilities. However, a direct link between letrozole and neuronal deficits induced by pathogenic insults associated with aging such as beta amyloid (Aβ1–42 has not been established. The objective of this study was to determine if letrozole aggravates synaptic deficits concurrent with Aβ1–42 insult. We examined the effects of letrozole and oligomeric Aβ1–42 treatment in dissociated and organotypic hippocampal slice cultures. Changes in glial cell morphology, neuronal mitochondria, and synaptic structures upon letrozole treatment were monitored by confocal microscopy, as they were shown to be affected by Aβ1–42 oligomers. Oligomeric Aβ1–42 or letrozole alone caused decreases in mitochondrial volume, dendritic spine density, synaptophysin (synaptic marker, and the postsynaptic protein, synaptopodin. Here, we demonstrated that mitochondrial and synaptic structural deficits were exacerbated when letrozole therapy was combined with Aβ1–42 treatment. Our novel findings suggest that letrozole may increase neuronal susceptibility to pathological insults, such as oligomeric Aβ1–42 in Alzheimer’s disease (AD. These changes in dendritic spine number, synaptic protein expression, and mitochondrial morphology may, in part, explain the increased prevalence of cognitive decline associated with aromatase inhibitor use.

  16. Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus.

    Science.gov (United States)

    Tejada, Julian; Garcia-Cairasco, Norberto; Roque, Antonio C

    2014-05-01

    Temporal lobe epilepsy strongly affects hippocampal dentate gyrus granule cells morphology. These cells exhibit seizure-induced anatomical alterations including mossy fiber sprouting, changes in the apical and basal dendritic tree and suffer substantial dendritic spine loss. The effect of some of these changes on the hyperexcitability of the dentate gyrus has been widely studied. For example, mossy fiber sprouting increases the excitability of the circuit while dendritic spine loss may have the opposite effect. However, the effect of the interplay of these different morphological alterations on the hyperexcitability of the dentate gyrus is still unknown. Here we adapted an existing computational model of the dentate gyrus by replacing the reduced granule cell models with morphologically detailed models coming from three-dimensional reconstructions of mature cells. The model simulates a network with 10% of the mossy fiber sprouting observed in the pilocarpine (PILO) model of epilepsy. Different fractions of the mature granule cell models were replaced by morphologically reconstructed models of newborn dentate granule cells from animals with PILO-induced Status Epilepticus, which have apical dendritic alterations and spine loss, and control animals, which do not have these alterations. This complex arrangement of cells and processes allowed us to study the combined effect of mossy fiber sprouting, altered apical dendritic tree and dendritic spine loss in newborn granule cells on the excitability of the dentate gyrus model. Our simulations suggest that alterations in the apical dendritic tree and dendritic spine loss in newborn granule cells have opposing effects on the excitability of the dentate gyrus after Status Epilepticus. Apical dendritic alterations potentiate the increase of excitability provoked by mossy fiber sprouting while spine loss curtails this increase.

  17. From neurodevelopment to neurodegeneration: the interaction of neurofibromin and valosin-containing protein/p97 in regulation of dendritic spine formation

    Directory of Open Access Journals (Sweden)

    Hsueh Yi-Ping

    2012-03-01

    Full Text Available Abstract Both Neurofibromatosis type I (NF1 and inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD are autosomal dominant genetic disorders. These two diseases are fully penetrant but with high heterogeneity in phenotypes, suggesting the involvement of genetic modifiers in modulating patients' phenotypes. Although NF1 is recognized as a developmental disorder and IBMPFD is associated with degeneration of multiple tissues, a recent study discovered the direct protein interaction between neurofibromin, the protein product of the NF1 gene, and VCP/p97, encoded by the causative gene of IBMPFD. Both NF1 and VCP/p97 are critical for dendritic spine formation, which provides the cellular mechanism explaining the cognitive deficits and dementia found in patients. Moreover, disruption of the interaction between neurofibromin and VCP impairs dendritic spinogenesis. Neurofibromin likely influences multiple downstream pathways to control dendritic spinogenesis. One is to activate the protein kinase A pathway to initiate dendritic spine formation; another is to regulate the synaptic distribution of VCP and control the activity of VCP in dendritic spinogenesis. Since neurofibromin and VCP/p97 also regulate cell growth and bone metabolism, the understanding of neurofibromin and VCP/p97 in neurons may be applied to study of cancer and bone. Statin treatment rescues the spine defects caused by VCP deficiency, suggesting the potential role of statin in clinical treatment for these two diseases.

  18. Dynamics of dendritic spines in the mouse auditory cortex during memory formation and memory recall.

    Science.gov (United States)

    Moczulska, Kaja Ewa; Tinter-Thiede, Juliane; Peter, Manuel; Ushakova, Lyubov; Wernle, Tanja; Bathellier, Brice; Rumpel, Simon

    2013-11-05

    Long-lasting changes in synaptic connections induced by relevant experiences are believed to represent the physical correlate of memories. Here, we combined chronic in vivo two-photon imaging of dendritic spines with auditory-cued classical conditioning to test if the formation of a fear memory is associated with structural changes of synapses in the mouse auditory cortex. We find that paired conditioning and unpaired conditioning induce a transient increase in spine formation or spine elimination, respectively. A fraction of spines formed during paired conditioning persists and leaves a long-lasting trace in the network. Memory recall triggered by the reexposure of mice to the sound cue did not lead to changes in spine dynamics. Our findings provide a synaptic mechanism for plasticity in sound responses of auditory cortex neurons induced by auditory-cued fear conditioning; they also show that retrieval of an auditory fear memory does not lead to a recapitulation of structural plasticity in the auditory cortex as observed during initial memory consolidation.

  19. Chronic intermittent ethanol exposure and withdrawal leads to adaptations in nucleus accumbens core postsynaptic density proteome and dendritic spines.

    Science.gov (United States)

    Uys, Joachim D; McGuier, Natalie S; Gass, Justin T; Griffin, William C; Ball, Lauren E; Mulholland, Patrick J

    2016-05-01

    Alcohol use disorder is a chronic relapsing brain disease characterized by the loss of ability to control alcohol (ethanol) intake despite knowledge of detrimental health or personal consequences. Clinical and pre-clinical models provide strong evidence for chronic ethanol-associated alterations in glutamatergic signaling and impaired synaptic plasticity in the nucleus accumbens (NAc). However, the neural mechanisms that contribute to aberrant glutamatergic signaling in ethanol-dependent individuals in this critical brain structure remain unknown. Using an unbiased proteomic approach, we investigated the effects of chronic intermittent ethanol (CIE) exposure on neuroadaptations in postsynaptic density (PSD)-enriched proteins in the NAc of ethanol-dependent mice. Compared with controls, CIE exposure significantly changed expression levels of 50 proteins in the PSD-enriched fraction. Systems biology and functional annotation analyses demonstrated that the dysregulated proteins are expressed at tetrapartite synapses and critically regulate cellular morphology. To confirm this latter finding, the density and morphology of dendritic spines were examined in the NAc core of ethanol-dependent mice. We found that CIE exposure and withdrawal differentially altered dendrite diameter and dendritic spine density and morphology. Through the use of quantitative proteomics and functional annotation, these series of experiments demonstrate that ethanol dependence produces neuroadaptations in proteins that modify dendritic spine morphology. In addition, these studies identified novel PSD-related proteins that contribute to the neurobiological mechanisms of ethanol dependence that drive maladaptive structural plasticity of NAc neurons. © 2015 Society for the Study of Addiction.

  20. A POSTSYNAPTIC ROLE FOR SHORT-TERM NEURONAL FACILITATION IN DENDRITIC SPINES

    Directory of Open Access Journals (Sweden)

    Sunggu Yang

    2016-09-01

    Full Text Available Synaptic plasticity is a fundamental component of information processing in the brain. Presynaptic facilitation in response to repetitive stimuli, often referred to as paired-pulse facilitation (PPF, is a dominant form of short-term synaptic plasticity. Recently, an additional cellular mechanism for short-term facilitation (short-term postsynaptic plasticity has been proposed. While a dendritic mechanism was described in hippocampus, its expression has not yet been demonstrated at the levels of the spine. Furthermore, it is unknown whether the mechanism can be expressed in other brain regions, such as sensory cortex. Here, we demonstrated that a postsynaptic response can be facilitated by prior spine excitation in both hippocampal and cortical neurons, using 3D digital holography and two-photon calcium imaging. The coordinated action of pre- and post-synaptic plasticity may provide a more thorough account of information processing in the brain.

  1. Stabilization of dendritic spine clusters and hyperactive Ras-MAPK signaling predict enhanced motor learning in an autistic savant mouse model

    Directory of Open Access Journals (Sweden)

    Ryan Thomas Ash

    2014-03-01

    Full Text Available That both prominent behavioral inflexibility and exceptional learning abilities are seen occasionally in autistic patients is a mystery. We hypothesize that these altered patterns of learning and memory can arise from a pathological imbalance between the stability and plasticity of internal neural representations. We evaluated this hypothesis in the mouse model of MECP2 duplication syndrome, which demonstrates enhanced motor learning, stereotyped behaviors, and social avoidance. Learning-associated structural plasticity was measured in the motor cortex of MECP2 duplication mice by 2-photon imaging (Fig. 1A. An increased stabilization rate of learning-associated dendritic spines was observed in mutants, and this correlated with rotarod performance. Analysis of the spatial distribution of stabilized spines revealed that the mutant’s increased spine stabilization was due to a specific increase in the stability of spines jointly formed in ~9-micron clusters. Clustered spine stabilization but not isolated spine stabilization predicted enhanced motor performance in MECP2 duplication mice (Fig. 1B. Biochemical assays of Ras-MAPK and mTOR pathway activation demonstrated profound hyperphosphorylation of MAPK in the motor cortex of MECP2 duplication mice with motor training (Fig. 1C. Taken together these data suggest that a pathological bias towards hyperstability of learning-associated dendritic spine clusters driven by hyperactive Ras-MAPK signaling could contribute to neurobehavioral phenotypes in this form of syndromic autism.

  2. Plasma hormonal profiles and dendritic spine density and morphology in the hippocampal CA1 stratum radiatum, evidenced by light microscopy, of virgin and postpartum female rats.

    Science.gov (United States)

    Brusco, Janaína; Wittmann, Raul; de Azevedo, Márcia S; Lucion, Aldo B; Franci, Celso R; Giovenardi, Márcia; Rasia-Filho, Alberto A

    2008-06-27

    Successful reproduction requires that changes in plasma follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), oxytocin (OT), estrogen (E(2)) and progesterone (P(4)) occur together with the display of maternal behaviors. Ovarian steroids and environmental stimuli can affect the dendritic spines in the rat hippocampus. Here, studying Wistar rats, it is described: (a) the sequential and concomitant changes in the hormonal profile of females at postpartum days (PP) 4, 8, 12, 16, 20 and 24, comparing to estrous cycle referential values; (b) the dendritic spine density in the stratum radiatum of CA1 (CA1-SR) Golgi-impregnated neurons in virgin females across the estrous cycle and in multiparous age-matched ones; and (c) the proportion of different types of spines in the CA1-SR of virgin and postpartum females, both in diestrus. Plasma levels of gonadotrophins and ovarian hormones remained low along PP while LH increased and PRL decreased near the end of the lactating period. The lowest dendritic spine density was found in virgin females in estrus when compared to diestrus and proestrus phases or to postpartum females in diestrus (p0.4). There were no differences in the proportions of the different spine types in nulliparous and postpartum females (p>0.2). Results suggest that medium layer CA1-SR spines undergo rapid modifications in Wistar females across the estrous cycle (not quite comparable to Sprague-Dawley data or to hormonal substitutive therapy following ovariectomy), but persistent effects of motherhood on dendritic spine density and morphology were not found in this area.

  3. Protracted dendritic growth in the typically developing human amygdala and increased spine density in young ASD brains.

    Science.gov (United States)

    Weir, R K; Bauman, M D; Jacobs, B; Schumann, C M

    2018-02-01

    The amygdala is a medial temporal lobe structure implicated in social and emotional regulation. In typical development (TD), the amygdala continues to increase volumetrically throughout childhood and into adulthood, while other brain structures are stable or decreasing in volume. In autism spectrum disorder (ASD), the amygdala undergoes rapid early growth, making it volumetrically larger in children with ASD compared to TD children. Here we explore: (a) if dendritic arborization in the amygdala follows the pattern of protracted growth in TD and early overgrowth in ASD and (b), if spine density in the amygdala in ASD cases differs from TD from youth to adulthood. The amygdala from 32 postmortem human brains (7-46 years of age) were stained using a Golgi-Kopsch impregnation. Ten principal neurons per case were selected in the lateral nucleus and traced using Neurolucida software in their entirety. We found that both ASD and TD individuals show a similar pattern of increasing dendritic length with age well into adulthood. However, spine density is (a) greater in young ASD cases compared to age-matched TD controls (ASD age into adulthood, a phenomenon not found in TD. Therefore, by adulthood, there is no observable difference in spine density in the amygdala between ASD and TD age-matched adults (≥18 years old). Our findings highlight the unique growth trajectory of the amygdala and suggest that spine density may contribute to aberrant development and function of the amygdala in children with ASD. © 2017 Wiley Periodicals, Inc.

  4. Homer2 deletion alters dendritic spine morphology but not alcohol-associated adaptations in GluN2B-containing NMDA receptors in the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Natalie S McGuier

    2015-02-01

    Full Text Available Repeated exposure to ethanol followed by withdrawal leads to the alterations in glutamatergic signaling and impaired synaptic plasticity in the nucleus accumbens (NAc in both clinical and preclinical models of ethanol exposure. Homer2 is a member of a family of postsynaptic density (PSD scaffolding proteins that functions in part to cluster NMDA signaling complexes in the PSD, and has been shown to be critically important for plasticity in multiple models of drug and alcohol abuse. Here we used Homer2 KO mice and a chronic intermittent intraperitoneal (IP ethanol injection model to investigate a potential role for the protein in ethanol-induced adaptations in dendritic spine morphology and PSD protein expression. While deletion of Homer2 was associated with increased density of long spines on medium spiny neurons of the NAc core of saline treated mice, ethanol exposure had no effect on dendritic spine morphology in either wild-type (WT or Homer2 KO mice. Western blot analysis of tissue samples from the NAc enriched for PSD proteins revealed a main effect of ethanol treatment on the expression of GluN2B, but there was no effect of genotype or treatment on the expression other glutamate receptor subunits or PSD95. These data indicate that the global deletion of Homer2 leads to aberrant regulation of dendritic spine morphology in the NAc core that is associated with an increased density of long, thin spines. Unexpectedly, intermittent IP ethanol did not affect spine morphology in either WT or KO mice. Together these data implicate Homer2 in the formation of long, thin spines and further supports its role in neuronal structure.

  5. Polyribosomes at the base of dendritic spines of central nervous system neurons - their possible role in synapse construction and modification

    International Nuclear Information System (INIS)

    Steward, O.

    1983-01-01

    The selective localization of polyribosomes at the base of dendritic spines in granule cells of the dentate gyrus was studied. These polyribosomes seem optimally situated to produce proteins for the postsynaptic membrane specialization or the spine and to have their synthetic activity regulated by functional activity over the synapse. The present work will summarize observations on the polyribosome clusters that were found to be ubiquitous in spines throughout the vertebrate CNS. Evidence will be presented that suggests a role for the polyribosomes in synapse construction and modification. 42 refs., 8 figs., 2 tabs

  6. Oligodendrocyte- and Neuron-Specific Nogo-A Restrict Dendritic Branching and Spine Density in the Adult Mouse Motor Cortex.

    Science.gov (United States)

    Zemmar, Ajmal; Chen, Chia-Chien; Weinmann, Oliver; Kast, Brigitt; Vajda, Flora; Bozeman, James; Isaad, Noel; Zuo, Yi; Schwab, Martin E

    2018-06-01

    Nogo-A has been well described as a myelin-associated inhibitor of neurite outgrowth and functional neuroregeneration after central nervous system (CNS) injury. Recently, a new role of Nogo-A has been identified as a negative regulator of synaptic plasticity in the uninjured adult CNS. Nogo-A is present in neurons and oligodendrocytes. However, it is yet unclear which of these two pools regulate synaptic plasticity. To address this question we used newly generated mouse lines in which Nogo-A is specifically knocked out in (1) oligodendrocytes (oligoNogo-A KO) or (2) neurons (neuroNogo-A KO). We show that both oligodendrocyte- and neuron-specific Nogo-A KO mice have enhanced dendritic branching and spine densities in layer 2/3 cortical pyramidal neurons. These effects are compartmentalized: neuronal Nogo-A affects proximal dendrites whereas oligodendrocytic Nogo-A affects distal regions. Finally, we used two-photon laser scanning microscopy to measure the spine turnover rate of adult mouse motor cortex layer 5 cells and find that both Nogo-A KO mouse lines show enhanced spine remodeling after 4 days. Our results suggest relevant control functions of glial as well as neuronal Nogo-A for synaptic plasticity and open new possibilities for more selective and targeted plasticity enhancing strategies.

  7. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis

    NARCIS (Netherlands)

    Siegel, Gabriele; Obernosterer, Gregor; Fiore, Roberto; Oehmen, Martin; Bicker, Silvia; Christensen, Mette; Khudayberdiev, Sharof; Leuschner, Philipp F; Busch, Clara J L; Kane, Christina; Hübel, Katja; Dekker, Frank; Hedberg, Christian; Rengarajan, Balamurugan; Drepper, Carsten; Waldmann, Herbert; Kauppinen, Sakari; Greenberg, Michael E; Draguhn, Andreas; Rehmsmeier, Marc; Martinez, Javier; Schratt, Gerhard M; Dekker, Frank

    The microRNA pathway has been implicated in the regulation of synaptic protein synthesis and ultimately in dendritic spine morphogenesis, a phenomenon associated with long-lasting forms of memory. However, the particular microRNAs (miRNAs) involved are largely unknown. Here we identify specific

  8. Integration of multiscale dendritic spine structure and function data into systems biology models

    Directory of Open Access Journals (Sweden)

    James J Mancuso

    2014-11-01

    Full Text Available Comprising 1011 neurons with 1014 synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the massive big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement.

  9. Reduced hippocampal dendritic spine density and BDNF expression following acute postnatal exposure to di(2-ethylhexyl phthalate in male Long Evans rats.

    Directory of Open Access Journals (Sweden)

    Catherine A Smith

    Full Text Available Early developmental exposure to di(2-ethylhexyl phthalate (DEHP has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats.

  10. CaMKII-dependent dendrite ramification and spine generation promote spatial training-induced memory improvement in a rat model of sporadic Alzheimer's disease.

    Science.gov (United States)

    Jiang, Xia; Chai, Gao-Shang; Wang, Zhi-Hao; Hu, Yu; Li, Xiao-Guang; Ma, Zhi-Wei; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping

    2015-02-01

    Participation in cognitively stimulating activities can preserve memory capacities in patients with Alzheimer's disease (AD), but the mechanism is not fully understood. Here, we used a rat model with hyperhomocysteinemia, an independent risk factor of AD, to study whether spatial training could remodel the synaptic and/or dendritic plasticity and the key molecular target(s) involved. We found that spatial training in water maze remarkably improved the subsequent short-term and long-term memory performance in contextual fear conditioning and Barnes maze. The trained rats showed an enhanced dendrite ramification, spine generation and plasticity in dentate gyrus (DG) neurons, and stimulation of long-term potentiation between perforant path and DG circuit. Spatial training also increased the levels of postsynaptic GluA1, GluN2A, GluN2B, and PSD93 with selective activation of calcium/calmodulin-dependent protein kinase II (CaMKII), although inhibition of CaMKII by stereotaxic injection of KN93 into hippocampal DG, abolished the training-induced cognitive improvement, dendrite ramification, and spine generation. We conclude that spatial training can preserve the cognitive function by CaMKII-dependent remodeling of dendritic plasticity in hyperhomocysteinemia-induced sporadic AD-like rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. ERK1/2 Activation Is Necessary for BDNF to Increase Dendritic Spine Density in Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Alonso, Mariana; Medina, Jorge H.; Pozzo-Miller, Lucas

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of synaptic transmission and plasticity in the CNS, acting both pre- and postsynaptically. We demonstrated recently that BDNF/TrkB signaling increases dendritic spine density in hippocampal CA1 pyramidal neurons. Here, we tested whether activation of the prominent ERK (MAPK) signaling…

  12. Steady-state dynamics and experience-dependent plasticity of dendritic spines of layer 4/5a pyramidal neurons in somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Amaya Miquelajauregui

    2014-04-01

    Full Text Available The steady state dynamics and experience-dependent plasticity of dendritic spines of layer (L 2/3 and L5B cortical pyramidal neurons have recently been assessed using in vivo two-photon microscopy (Trachtenberg et al., 2002; Zuo et al., 2005; Holtmaat et al., 2006. In contrast, not much is known about spine dynamics in L4/5a neurons, regarded as direct recipients of thalamocortical input (Constantinople and Bruno, 2013. In the adult mouse somatosensory cortex (SCx, the transcription factor Ebf2 is enriched in excitatory neurons of L4/5a, including pyramidal neurons. We assessed the molecular and electrophysiological properties of these neurons as well as the morphology of their apical tufts (Scholl analysis and cortical outputs (optogenetics within the SCx. To test the hypothesis that L4/5a pyramidal neurons play an important role in sensory processing (given their key laminar position; soma depth ~450-480 µm, we successfully labeled them in Ebf2-Cre mice with EGFP by expressing recombinant rAAV vectors in utero. Using longitudinal in vivo two-photon microscopy through a craniotomy (Mostany and Portera-Cailliau, 2008, we repeatedly imaged spines in apical dendritic tufts of L4/5a neurons under basal conditions and after sensory deprivation. Under steady-state conditions in adults, the morphology of the apical tufts and the mean spine density were stable at 0.39 ± 0.05 spines/μm (comparable to L5B, Mostany et al., 2011. Interestingly, spine elimination increases 4-8 days after sensory deprivation, probably due to input loss. This suggests that Ebf2+ L4/5a neurons could be involved in early steps of processing of thalamocortical information.

  13. Essential Roles for ARID1B in Dendritic Arborization and Spine Morphology of Developing Pyramidal Neurons

    Science.gov (United States)

    Ka, Minhan; Chopra, Divyan A.; Dravid, Shashank M.

    2016-01-01

    De novo truncating mutations in ARID1B, a chromatin-remodeling gene, cause Coffin–Siris syndrome, a developmental disorder characterized by intellectual disability and speech impairment; however, how the genetic elimination leads to cognitive dysfunction remains unknown. Thus, we investigated the neural functions of ARID1B during brain development. Here, we show that ARID1B regulates dendritic differentiation in the developing mouse brain. We knocked down ARID1B expression in mouse pyramidal neurons using in utero gene delivery methodologies. ARID1B knockdown suppressed dendritic arborization of cortical and hippocampal pyramidal neurons in mice. The abnormal development of dendrites accompanied a decrease in dendritic outgrowth into layer I. Furthermore, knockdown of ARID1B resulted in aberrant dendritic spines and synaptic transmission. Finally, ARID1B deficiency led to altered expression of c-Fos and Arc, and overexpression of these factors rescued abnormal differentiation induced by ARID1B knockdown. Our results demonstrate a novel role for ARID1B in neuronal differentiation and provide new insights into the origin of cognitive dysfunction associated with developmental intellectual disability. SIGNIFICANCE STATEMENT Haploinsufficiency of ARID1B, a component of chromatin remodeling complex, causes intellectual disability. However, the role of ARID1B in brain development is unknown. Here, we demonstrate that ARID1B is required for neuronal differentiation in the developing brain, such as in dendritic arborization and synapse formation. Our findings suggest that ARID1B plays a critical role in the establishment of cognitive circuitry by regulating dendritic complexity. Thus, ARID1B deficiency may cause intellectual disability via abnormal brain wiring induced by the defective differentiation of cortical neurons. PMID:26937011

  14. CREB Regulates Experience-Dependent Spine Formation and Enlargement in Mouse Barrel Cortex

    Directory of Open Access Journals (Sweden)

    Annabella Pignataro

    2015-01-01

    Full Text Available Experience modifies synaptic connectivity through processes that involve dendritic spine rearrangements in neuronal circuits. Although cAMP response element binding protein (CREB has a key function in spines changes, its role in activity-dependent rearrangements in brain regions of rodents interacting with the surrounding environment has received little attention so far. Here we studied the effects of vibrissae trimming, a widely used model of sensory deprivation-induced cortical plasticity, on processes associated with dendritic spine rearrangements in the barrel cortex of a transgenic mouse model of CREB downregulation (mCREB mice. We found that sensory deprivation through prolonged whisker trimming leads to an increased number of thin spines in the layer V of related barrel cortex (Contra in wild type but not mCREB mice. In the barrel field controlling spared whiskers (Ipsi, the same trimming protocol results in a CREB-dependent enlargement of dendritic spines. Last, we demonstrated that CREB regulates structural rearrangements of synapses that associate with dynamic changes of dendritic spines. Our findings suggest that CREB plays a key role in dendritic spine dynamics and synaptic circuits rearrangements that account for new brain connectivity in response to changes in the environment.

  15. Dendritic Actin Cytoskeleton: Structure, Functions, and Regulations

    Directory of Open Access Journals (Sweden)

    Anja Konietzny

    2017-05-01

    Full Text Available Actin is a versatile and ubiquitous cytoskeletal protein that plays a major role in both the establishment and the maintenance of neuronal polarity. For a long time, the most prominent roles that were attributed to actin in neurons were the movement of growth cones, polarized cargo sorting at the axon initial segment, and the dynamic plasticity of dendritic spines, since those compartments contain large accumulations of actin filaments (F-actin that can be readily visualized using electron- and fluorescence microscopy. With the development of super-resolution microscopy in the past few years, previously unknown structures of the actin cytoskeleton have been uncovered: a periodic lattice consisting of actin and spectrin seems to pervade not only the whole axon, but also dendrites and even the necks of dendritic spines. Apart from that striking feature, patches of F-actin and deep actin filament bundles have been described along the lengths of neurites. So far, research has been focused on the specific roles of actin in the axon, while it is becoming more and more apparent that in the dendrite, actin is not only confined to dendritic spines, but serves many additional and important functions. In this review, we focus on recent developments regarding the role of actin in dendrite morphology, the regulation of actin dynamics by internal and external factors, and the role of F-actin in dendritic protein trafficking.

  16. Gelidium amansii promotes dendritic spine morphology and synaptogenesis, and modulates NMDA receptor-mediated postsynaptic current.

    Science.gov (United States)

    Hannan, Md Abdul; Mohibbullah, Md; Hong, Yong-Ki; Nam, Joo Hyun; Moon, Il Soo

    2014-01-01

    Neurotrophic factors are essential for the differentiation and maturation of developing neurons as well as providing survival support to the mature neurons. Moreover, therapeutically neurotrophic factors are promising to reconstruct partially damaged neuronal networks in neurodegenerative diseases. In the previous study, we reported that the ethanol extract of an edible marine alga, Gelidium amansii (GAE) had shown promising effects in the development and maturation of both axon and dendrites of hippocampal neurons. Here, we demonstrate that in primary culture of hippocampal neurons (1) GAE promotes a significant increase in the number of filopodia and dendritic spines; (2) promotes synaptogenesis; (3) enhances N-methyl-D-aspartic acid (NMDA) receptor recruitment; and (4) modulates NMDA-receptor-mediated postsynaptic current. Taken together these findings that GAE might be involved in both morphological and functional maturation of neurons suggest the possibility that GAE may constitute a promising candidate for novel compounds for the prevention and treatment of neurodegenerative diseases.

  17. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons

    Directory of Open Access Journals (Sweden)

    Carles eBosch

    2015-05-01

    Full Text Available The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs in mice. 3D reconstruction of spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of spine development and unexpected features of synapse formation, including vacant and branched spines and presynaptic terminals establishing synapses with up to 10 spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.

  18. A cell adhesion molecule mimetic, FGL peptide, induces alterations in synapse and dendritic spine structure in the dentate gyrus of aged rats: a three-dimensional ultrastructural study

    DEFF Research Database (Denmark)

    Popov, Victor I; Medvedev, Nikolay I; Kraev, Igor V

    2008-01-01

    pits. Three-dimensional analysis showed a significant decrease in both post-synaptic density and apposition zone curvature of mushroom spines following FGL treatment, whereas for thin spines the convexity of the apposition zone increased. These data indicate that FGL induces large changes in the fine...... 100 serial ultrathin sections. FGL affected neither hippocampal volume nor spine or synaptic density in the middle molecular layer of the dentate gyrus. However, it increased the ratio of mushroom to thin spines, number of multivesicular bodies and also increased the frequency of appearance of coated...... structure of synapses and dendritic spines in hippocampus of aged rats, complementing data showing its effect on cognitive processes....

  19. The role of dendritic non-linearities in single neuron computation

    Directory of Open Access Journals (Sweden)

    Boris Gutkin

    2014-05-01

    Full Text Available Experiment has demonstrated that summation of excitatory post-synaptic protientials (EPSPs in dendrites is non-linear. The sum of multiple EPSPs can be larger than their arithmetic sum, a superlinear summation due to the opening of voltage-gated channels and similar to somatic spiking. The so-called dendritic spike. The sum of multiple of EPSPs can also be smaller than their arithmetic sum, because the synaptic current necessarily saturates at some point. While these observations are well-explained by biophysical models the impact of dendritic spikes on computation remains a matter of debate. One reason is that dendritic spikes may fail to make the neuron spike; similarly, dendritic saturations are sometime presented as a glitch which should be corrected by dendritic spikes. We will provide solid arguments against this claim and show that dendritic saturations as well as dendritic spikes enhance single neuron computation, even when they cannot directly make the neuron fire. To explore the computational impact of dendritic spikes and saturations, we are using a binary neuron model in conjunction with Boolean algebra. We demonstrate using these tools that a single dendritic non-linearity, either spiking or saturating, combined with somatic non-linearity, enables a neuron to compute linearly non-separable Boolean functions (lnBfs. These functions are impossible to compute when summation is linear and the exclusive OR is a famous example of lnBfs. Importantly, the implementation of these functions does not require the dendritic non-linearity to make the neuron spike. Next, We show that reduced and realistic biophysical models of the neuron are capable of computing lnBfs. Within these models and contrary to the binary model, the dendritic and somatic non-linearity are tightly coupled. Yet we show that these neuron models are capable of linearly non-separable computations.

  20. Modification of dendritic development.

    Science.gov (United States)

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  1. K-Cl Cotransporter 2-mediated Cl- Extrusion Determines Developmental Stage-dependent Impact of Propofol Anesthesia on Dendritic Spines.

    Science.gov (United States)

    Puskarjov, Martin; Fiumelli, Hubert; Briner, Adrian; Bodogan, Timea; Demeter, Kornel; Lacoh, Claudia-Marvine; Mavrovic, Martina; Blaesse, Peter; Kaila, Kai; Vutskits, Laszlo

    2017-05-01

    General anesthetics potentiating γ-aminobutyric acid (GABA)-mediated signaling are known to induce a persistent decrement in excitatory synapse number in the cerebral cortex when applied during early postnatal development, while an opposite action is produced at later stages. Here, the authors test the hypothesis that the effect of general anesthetics on synaptogenesis depends upon the efficacy of GABA receptor type A (GABAA)-mediated inhibition controlled by the developmental up-regulation of the potassium-chloride (K-Cl) cotransporter 2 (KCC2). In utero electroporation of KCC2 was used to prematurely increase the efficacy of (GABAA)-mediated inhibition in layer 2/3 pyramidal neurons in the immature rat somatosensory cortex. Parallel experiments with expression of the inward-rectifier potassium channel Kir2.1 were done to reduce intrinsic neuronal excitability. The effects of these genetic manipulations (n = 3 to 4 animals per experimental group) were evaluated using iontophoretic injection of Lucifer Yellow (n = 8 to 12 cells per animal). The total number of spines analyzed per group ranged between 907 and 3,371. The authors found a robust effect of the developmental up-regulation of KCC2-mediated Cl transport on the age-dependent action of propofol on dendritic spines. Premature expression of KCC2, unlike expression of a transport-inactive KCC2 variant, prevented a propofol-induced decrease in spine density. In line with a reduction in neuronal excitability, the above result was qualitatively replicated by overexpression of Kir2.1. The KCC2-dependent developmental increase in the efficacy of GABAA-mediated inhibition is a major determinant of the age-dependent actions of propofol on dendritic spinogenesis.

  2. Antihypertensive drug Valsartan promotes dendritic spine density by altering AMPA receptor trafficking

    Science.gov (United States)

    Sohn, Young In; Lee, Nathanael J.; Chung, Andrew; Saavedra, Juan M.; Turner, R. Scott; Pak, Daniel T. S.; Hoe, Hyang-Sook

    2013-01-01

    Recent studies demonstrated that the antihypertensive drug Valsartan improved spatial and episodic memory in mouse models of Alzheimer’s Disease (AD) and human subjects with hypertension. However, the molecular mechanism by which Valsartan can regulate cognitive function is still unknown. Here, we investigated the effect of Valsartan on dendritic spine formation in primary hippocampal neurons, which is correlated with learning and memory. Interestingly, we found that Valsartan promotes spinogenesis in developing and mature neurons. In addition, we found that Valsartan increases the puncta number of PSD-95 and trends toward an increase in the puncta number of synaptophysin. Moreover, Valsartan increased the cell surface levels of AMPA receptors and selectively altered the levels of spinogenesis-related proteins, including CaMKIIα and phospho-CDK5. These data suggest that Valsartan may promote spinogenesis by enhancing AMPA receptor trafficking and synaptic plasticity signaling. PMID:24012668

  3. Soft-template synthesis of single-crystalline CdS dendrites.

    Science.gov (United States)

    Niu, Haixia; Yang, Qing; Tang, Kaibin; Xie, Yi; Zhu, Yongchun

    2006-01-01

    The single-crystalline CdS dendrites have been fabricated from the reaction of CdCl2 and thiourea at 180 degrees C, in which glycine was employed as a soft template. The obtained products were explored by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and selected area electronic diffraction. The optical properties of CdS dendrites have been investigated by ultraviolet and visible light (UV-vis) and photoluminescence techniques. The investigations indicated that the dendrites were grown due to the anisotropic properties enhanced by the use of Glycine in the route.

  4. Overexpression of cypin alters dendrite morphology, single neuron activity, and network properties via distinct mechanisms

    Science.gov (United States)

    Rodríguez, Ana R.; O'Neill, Kate M.; Swiatkowski, Przemyslaw; Patel, Mihir V.; Firestein, Bonnie L.

    2018-02-01

    Objective. This study investigates the effect that overexpression of cytosolic PSD-95 interactor (cypin), a regulator of synaptic PSD-95 protein localization and a core regulator of dendrite branching, exerts on the electrical activity of rat hippocampal neurons and networks. Approach. We cultured rat hippocampal neurons and used lipid-mediated transfection and lentiviral gene transfer to achieve high levels of cypin or cypin mutant (cypinΔPDZ PSD-95 non-binding) expression cellularly and network-wide, respectively. Main results. Our analysis revealed that although overexpression of cypin and cypinΔPDZ increase dendrite numbers and decrease spine density, cypin and cypinΔPDZ distinctly regulate neuronal activity. At the single cell level, cypin promotes decreases in bursting activity while cypinΔPDZ reduces sEPSC frequency and further decreases bursting compared to cypin. At the network level, by using the Fano factor as a measure of spike count variability, cypin overexpression results in an increase in variability of spike count, and this effect is abolished when cypin cannot bind PSD-95. This variability is also dependent on baseline activity levels and on mean spike rate over time. Finally, our spike sorting data show that overexpression of cypin results in a more complex distribution of spike waveforms and that binding to PSD-95 is essential for this complexity. Significance. Our data suggest that dendrite morphology does not play a major role in cypin action on electrical activity.

  5. Hippocampal dendritic spines remodeling and fear memory are modulated by GABAergic signaling within the basolateral amygdala complex.

    Science.gov (United States)

    Giachero, Marcelo; Calfa, Gaston D; Molina, Victor A

    2015-05-01

    GABAergic signaling in the basolateral amygdala complex (BLA) plays a crucial role on the modulation of the stress influence on fear memory. Moreover, accumulating evidence suggests that the dorsal hippocampus (DH) is a downstream target of BLA neurons in contextual fear. Given that hippocampal structural plasticity is proposed to provide a substrate for the storage of long-term memories, the main aim of this study is to evaluate the modulation of GABA neurotransmission in the BLA on spine density in the DH following stress on contextual fear learning. The present findings show that prior stressful experience promoted contextual fear memory and enhanced spine density in the DH. Intra-BLA infusion of midazolam, a positive modulator of GABAa sites, prevented the facilitating influence of stress on both fear retention and hippocampal dendritic spine remodeling. Similarly to the stress-induced effects, the blockade of GABAa sites within the BLA ameliorated fear memory emergence and induced structural remodeling in the DH. These findings suggest that GABAergic transmission in BLA modulates the structural changes in DH associated to the influence of stress on fear memory. © 2015 Wiley Periodicals, Inc.

  6. K-Cl Cotransporter 2–mediated Cl− Extrusion Determines Developmental Stage–dependent Impact of Propofol Anesthesia on Dendritic Spines

    KAUST Repository

    Puskarjov, Martin; Fiumelli, Hubert; Briner, Adrian; Bodogan, Timea; Demeter, Kornel; Lacoh, Claudia Marvine; Mavrovic, Martina; Blaesse, Peter; Kaila, Kai; Vutskits, Laszlo

    2017-01-01

    Background: General anesthetics potentiating γ-aminobutyric acid (GABA)-mediated signaling are known to induce a persistent decrement in excitatory synapse number in the cerebral cortex when applied during early postnatal development, while an opposite action is produced at later stages. Here, the authors test the hypothesis that the effect of general anesthetics on synaptogenesis depends upon the efficacy of GABA receptor type A (GABA A)-mediated inhibition controlled by the developmental up-regulation of the potassium-chloride (K-Cl) cotransporter 2 (KCC2). Methods: In utero electroporation of KCC2 was used to prematurely increase the efficacy of (GABA A)-mediated inhibition in layer 2/3 pyramidal neurons in the immature rat somatosensory cortex. Parallel experiments with expression of the inward-rectifier potassium channel Kir2.1 were done to reduce intrinsic neuronal excitability. The effects of these genetic manipulations (n = 3 to 4 animals per experimental group) were evaluated using iontophoretic injection of Lucifer Yellow (n = 8 to 12 cells per animal). The total number of spines analyzed per group ranged between 907 and 3,371. Results: The authors found a robust effect of the developmental up-regulation of KCC2-mediated Cl - transport on the age-dependent action of propofol on dendritic spines. Premature expression of KCC2, unlike expression of a transport-inactive KCC2 variant, prevented a propofol-induced decrease in spine density. In line with a reduction in neuronal excitability, the above result was qualitatively replicated by overexpression of Kir2.1. Conclusions: The KCC2-dependent developmental increase in the efficacy of GABA A -mediated inhibition is a major determinant of the age-dependent actions of propofol on dendritic spinogenesis.

  7. K-Cl Cotransporter 2–mediated Cl− Extrusion Determines Developmental Stage–dependent Impact of Propofol Anesthesia on Dendritic Spines

    KAUST Repository

    Puskarjov, Martin

    2017-03-16

    Background: General anesthetics potentiating γ-aminobutyric acid (GABA)-mediated signaling are known to induce a persistent decrement in excitatory synapse number in the cerebral cortex when applied during early postnatal development, while an opposite action is produced at later stages. Here, the authors test the hypothesis that the effect of general anesthetics on synaptogenesis depends upon the efficacy of GABA receptor type A (GABA A)-mediated inhibition controlled by the developmental up-regulation of the potassium-chloride (K-Cl) cotransporter 2 (KCC2). Methods: In utero electroporation of KCC2 was used to prematurely increase the efficacy of (GABA A)-mediated inhibition in layer 2/3 pyramidal neurons in the immature rat somatosensory cortex. Parallel experiments with expression of the inward-rectifier potassium channel Kir2.1 were done to reduce intrinsic neuronal excitability. The effects of these genetic manipulations (n = 3 to 4 animals per experimental group) were evaluated using iontophoretic injection of Lucifer Yellow (n = 8 to 12 cells per animal). The total number of spines analyzed per group ranged between 907 and 3,371. Results: The authors found a robust effect of the developmental up-regulation of KCC2-mediated Cl - transport on the age-dependent action of propofol on dendritic spines. Premature expression of KCC2, unlike expression of a transport-inactive KCC2 variant, prevented a propofol-induced decrease in spine density. In line with a reduction in neuronal excitability, the above result was qualitatively replicated by overexpression of Kir2.1. Conclusions: The KCC2-dependent developmental increase in the efficacy of GABA A -mediated inhibition is a major determinant of the age-dependent actions of propofol on dendritic spinogenesis.

  8. Estrogen levels regulate the subcellular distribution of phosphorylated Akt in hippocampal CA1 dendrites.

    Science.gov (United States)

    Znamensky, Vladimir; Akama, Keith T; McEwen, Bruce S; Milner, Teresa A

    2003-03-15

    In addition to genomic pathways, estrogens may regulate gene expression by activating specific signal transduction pathways, such as that involving phosphatidylinositol 3-kinase (PI3-K) and the subsequent phosphorylation of Akt (protein kinase B). The Akt pathway regulates various cellular events, including the initiation of protein synthesis. Our previous studies showed that synaptogenesis in hippocampal CA1 pyramidal cell dendritic spines is highest when brain estrogen levels are highest. To address the role of Akt in this process, the subcellular distribution of phosphorylated Akt immunoreactivity (pAkt-I) in the hippocampus of female rats across the estrous cycle and male rats was analyzed by light microscopy (LM) and electron microscopy (EM). By LM, the density of pAkt-I in stratum radiatum of CA1 was significantly higher in proestrus rats (or in estrogen-supplemented ovariectomized females) compared with diestrus, estrus, or male rats. By EM, pAkt-I was found throughout the shafts and in select spines of stratum radiatum dendrites. Quantitative ultrastructural analysis identifying pAkt-I with immunogold particles revealed that proestrus rats compared with diestrus, estrus, and male rats contained significantly higher pAkt-I associated with (1) dendritic spines (both cytoplasm and plasmalemma), (2) spine apparati located within 0.1 microm of dendritic spine bases, (3) endoplasmic reticula and polyribosomes in the cytoplasm of dendritic shafts, and (4) the plasmalemma of dendritic shafts. These findings suggest that estrogens may regulate spine formation in CA1 pyramidal neurons via Akt-mediated signaling events.

  9. Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development.

    Science.gov (United States)

    Zhu, Yong-Chuan; Li, Dan; Wang, Lu; Lu, Bin; Zheng, Jing; Zhao, Shi-Lin; Zeng, Rong; Xiong, Zhi-Qi

    2013-05-28

    The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) is mutated in severe neurodevelopmental disorders, including some forms of atypical Rett syndrome, but the function and regulation of CDKL5 protein in neurons remain to be elucidated. Here, we show that CDKL5 binds to the scaffolding protein postsynaptic density (PSD)-95, and that this binding promotes the targeting of CDKL5 to excitatory synapses. Interestingly, this binding is not constitutive, but governed by palmitate cycling on PSD-95. Furthermore, pathogenic mutations that truncate the C-terminal tail of CDKL5 diminish its binding to PSD-95 and synaptic accumulation. Importantly, down-regulation of CDKL5 by RNA interference (RNAi) or interference with the CDKL5-PSD-95 interaction inhibits dendritic spine formation and growth. These results demonstrate a critical role of the palmitoylation-dependent CDKL5-PSD-95 interaction in localizing CDKL5 to synapses for normal spine development and suggest that disruption of this interaction by pathogenic mutations may be implicated in the pathogenesis of CDKL5-related disorders.

  10. hamlet, a binary genetic switch between single- and multiple- dendrite neuron morphology.

    Science.gov (United States)

    Moore, Adrian W; Jan, Lily Yeh; Jan, Yuh Nung

    2002-08-23

    The dendritic morphology of neurons determines the number and type of inputs they receive. In the Drosophila peripheral nervous system (PNS), the external sensory (ES) neurons have a single nonbranched dendrite, whereas the lineally related multidendritic (MD) neurons have extensively branched dendritic arbors. We report that hamlet is a binary genetic switch between these contrasting morphological types. In hamlet mutants, ES neurons are converted to an MD fate, whereas ectopic hamlet expression in MD precursors results in transformation of MD neurons into ES neurons. Moreover, hamlet expression induced in MD neurons undergoing dendrite outgrowth drastically reduces arbor branching.

  11. CREB regulates spine density of lateral amygdala neurons: implications for memory allocation

    Directory of Open Access Journals (Sweden)

    Derya eSargin

    2013-12-01

    Full Text Available Neurons may compete against one another for integration into a memory trace. Specifically, neurons in the lateral nucleus of the amygdala with relatively higher levels of CREB seem to be preferentially allocated to a fear memory trace, while neurons with relatively decreased CREB function seem to be excluded from a fear memory trace. CREB is a ubiquitous transcription factor that modulates many diverse cellular processes, raising the question as to which of these CREB-mediated processes underlie memory allocation. CREB is implicated in modulating dendritic spine number and morphology. As dendritic spines are intimately involved in memory formation, we investigated whether manipulations of CREB function alter spine number or morphology of neurons at the time of fear conditioning. We used viral vectors to manipulate CREB function in the lateral amygdala principal neurons in mice maintained in their homecages. At the time that fear conditioning normally occurs, we observed that neurons with high levels of CREB had more dendritic spines, while neurons with low CREB function had relatively fewer spines compared to control neurons. These results suggest that the modulation of spine density provides a potential mechanism for preferential allocation of a subset of neurons to the memory trace.

  12. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septotemporal axis in adulthood and middle age.

    Science.gov (United States)

    McAvoy, Kathleen; Russo, Craig; Kim, Shannen; Rankin, Genelle; Sahay, Amar

    2015-11-01

    Fluoxetine, a selective serotonin-reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic, and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septotemporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septotemporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18 mg/kg/day) on input-specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity, and glutamic acid decarboxylase-67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle-aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle-aged hippocampus shows greater sensitivity to fluoxetine-induced input-specific synaptic remodeling than the hippocampus in adulthood with the stratum-oriens of CA1 exhibiting heightened structural plasticity. The input-specific changes and circuit

  13. Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters.

    Science.gov (United States)

    Bedrosian, Tracy A; Fonken, Laura K; Walton, James C; Haim, Abraham; Nelson, Randy J

    2011-08-01

    The prevalence of major depression has increased in recent decades; however, the underlying causes of this phenomenon remain unspecified. One environmental change that has coincided with elevated rates of depression is increased exposure to artificial light at night. Shift workers and others chronically exposed to light at night are at increased risk of mood disorders, suggesting that nighttime illumination may influence brain mechanisms mediating affect. We tested the hypothesis that exposure to dim light at night may impact affective responses and alter morphology of hippocampal neurons. Ovariectomized adult female Siberian hamsters (Phodopus sungorus) were housed for 8 weeks in either a light/dark cycle (LD) or a light/dim light cycle (DM), and then behavior was assayed. DM-hamsters displayed more depression-like responses in the forced swim and the sucrose anhedonia tests compared with LD-hamsters. Conversely, in the elevated plus maze DM-hamsters reduced anxiety-like behaviors. Brains from the same animals were processed using the Golgi-Cox method and hippocampal neurons within CA1, CA3, and the dentate gyrus were analyzed for morphological characteristics. In CA1, DM-hamsters significantly reduced dendritic spine density on both apical and basilar dendrites, an effect which was not mediated by baseline cortisol, as concentrations were equivalent between groups. These results demonstrate dim light at night is sufficient to reduce synaptic spine connections to CA1. Importantly, the present results suggest that night-time low level illumination, comparable to levels that are pervasive in North America and Europe, may contribute to the increasing prevalence of mood disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Michael Doron

    2017-11-01

    Full Text Available The NMDA spike is a long-lasting nonlinear phenomenon initiated locally in the dendritic branches of a variety of cortical neurons. It plays a key role in synaptic plasticity and in single-neuron computations. Combining dynamic system theory and computational approaches, we now explore how the timing of synaptic inhibition affects the NMDA spike and its associated membrane current. When impinging on its early phase, individual inhibitory synapses strongly, but transiently, dampen the NMDA spike; later inhibition prematurely terminates it. A single inhibitory synapse reduces the NMDA-mediated Ca2+ current, a key player in plasticity, by up to 45%. NMDA spikes in distal dendritic branches/spines are longer-lasting and more resilient to inhibition, enhancing synaptic plasticity at these branches. We conclude that NMDA spikes are highly sensitive to dendritic inhibition; sparse weak inhibition can finely tune synaptic plasticity both locally at the dendritic branch level and globally at the level of the neuron’s output.

  15. Palmitoylation-dependent CDKL5–PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development

    Science.gov (United States)

    Zhu, Yong-Chuan; Li, Dan; Wang, Lu; Lu, Bin; Zheng, Jing; Zhao, Shi-Lin; Zeng, Rong; Xiong, Zhi-Qi

    2013-01-01

    The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) is mutated in severe neurodevelopmental disorders, including some forms of atypical Rett syndrome, but the function and regulation of CDKL5 protein in neurons remain to be elucidated. Here, we show that CDKL5 binds to the scaffolding protein postsynaptic density (PSD)-95, and that this binding promotes the targeting of CDKL5 to excitatory synapses. Interestingly, this binding is not constitutive, but governed by palmitate cycling on PSD-95. Furthermore, pathogenic mutations that truncate the C-terminal tail of CDKL5 diminish its binding to PSD-95 and synaptic accumulation. Importantly, down-regulation of CDKL5 by RNA interference (RNAi) or interference with the CDKL5–PSD-95 interaction inhibits dendritic spine formation and growth. These results demonstrate a critical role of the palmitoylation-dependent CDKL5–PSD-95 interaction in localizing CDKL5 to synapses for normal spine development and suggest that disruption of this interaction by pathogenic mutations may be implicated in the pathogenesis of CDKL5-related disorders. PMID:23671101

  16. Long lasting protein synthesis- and activity-dependent spine shrinkage and elimination after synaptic depression.

    Directory of Open Access Journals (Sweden)

    Yazmín Ramiro-Cortés

    Full Text Available Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that spines can undergo bidirectional physical modifications. However, it is unclear whether protein synthesis dependent synaptic depression leads to long lasting structural changes. Here, we investigate the structural correlates of protein synthesis dependent long-term depression (LTD mediated by metabotropic glutamate receptors (mGluRs through two-photon imaging of dendritic spines on hippocampal pyramidal neurons. We find that induction of mGluR-LTD leads to robust and long lasting spine shrinkage and elimination that lasts for up to 24 hours. These effects depend on signaling through group I mGluRs, require protein synthesis, and activity. These data reveal a mechanism for long lasting remodeling of synaptic inputs, and offer potential insights into mental retardation.

  17. Adolescent cocaine exposure simplifies orbitofrontal cortical dendritic arbors

    Directory of Open Access Journals (Sweden)

    Lauren M DePoy

    2014-10-01

    Full Text Available Cocaine and amphetamine remodel dendritic spines within discrete cortico-limbic brain structures including the orbitofrontal cortex (oPFC. Whether dendrite structure is similarly affected, and whether pre-existing cellular characteristics influence behavioral vulnerabilities to drugs of abuse, remain unclear. Animal models provide an ideal venue to address these issues because neurobehavioral phenotypes can be defined both before, and following, drug exposure. We exposed mice to cocaine from postnatal days 31-35, corresponding to early adolescence, using a dosing protocol that causes impairments in an instrumental reversal task in adulthood. We then imaged and reconstructed excitatory neurons in deep-layer oPFC. Prior cocaine exposure shortened and simplified arbors, particularly in the basal region. Next, we imaged and reconstructed orbital neurons in a developmental-genetic model of cocaine vulnerability – the p190rhogap+/- mouse. p190RhoGAP is an actin cytoskeleton regulatory protein that stabilizes dendrites and dendritic spines, and p190rhogap+/- mice develop rapid and robust locomotor activation in response to cocaine. Despite this, oPFC dendritic arbors were intact in drug-naïve p190rhogap+/- mice. Together, these findings provide evidence that adolescent cocaine exposure has long-term effects on dendrite structure in the oPFC, and they suggest that cocaine-induced modifications in dendrite structure may contribute to the behavioral effects of cocaine more so than pre-existing structural abnormalities in this cell population.

  18. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septo-temporal axis in adulthood and middle age

    Science.gov (United States)

    McAvoy, Kathleen; Russo, Craig; Kim, Shannen; Rankin, Genelle; Sahay, Amar

    2015-01-01

    Fluoxetine, a selective serotonin-reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septo-temporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septo-temporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18mg/kg/day) on input-specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity and glutamic acid decarboxylase-67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle-aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle-aged hippocampus shows greater sensitivity to fluoxetine-induced input-specific synaptic remodeling than the hippocampus in adulthood with the stratum-oriens of CA1 exhibiting heightened structural plasticity. The input-specific changes and circuit

  19. MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2

    Directory of Open Access Journals (Sweden)

    Yunjia Zhang

    2016-06-01

    Full Text Available ABSTRACT MicroRNAs (miRNAs are critical for both development and function of the central nervous system. Significant evidence suggests that abnormal expression of miRNAs is associated with neurodevelopmental disorders. MeCP2 protein is an epigenetic regulator repressing or activating gene transcription by binding to methylated DNA. Both loss-of-function and gain-of-function mutations in the MECP2 gene lead to neurodevelopmental disorders such as Rett syndrome, autism and MECP2 duplication syndrome. In this study, we demonstrate that miR-130a inhibits neurite outgrowth and reduces dendritic spine density as well as dendritic complexity. Bioinformatics analyses, cell cultures and biochemical experiments indicate that miR-130a targets MECP2 and down-regulates MeCP2 protein expression. Furthermore, expression of the wild-type MeCP2, but not a loss-of-function mutant, rescues the miR-130a-induced phenotype. Our study uncovers the MECP2 gene as a previous unknown target for miR-130a, supporting that miR-130a may play a role in neurodevelopment by regulating MeCP2. Together with data from other groups, our work suggests that a feedback regulatory mechanism involving both miR-130a and MeCP2 may serve to ensure their appropriate expression and function in neural development.

  20. Plastic changes to dendritic spines on layer V pyramidal neurons are involved in the rectifying role of the prefrontal cortex during the fast period of motor learning.

    Science.gov (United States)

    González-Tapia, David; Martínez-Torres, Nestor I; Hernández-González, Marisela; Guevara, Miguel Angel; González-Burgos, Ignacio

    2016-02-01

    The prefrontal cortex participates in the rectification of information related to motor activity that favors motor learning. Dendritic spine plasticity is involved in the modifications of motor patterns that underlie both motor activity and motor learning. To study this association in more detail, adult male rats were trained over six days in an acrobatic motor learning paradigm and they were subjected to a behavioral evaluation on each day of training. Also, a Golgi-based morphological study was carried out to determine the spine density and the proportion of the different spine types. In the learning paradigm, the number of errors diminished as motor training progressed. Concomitantly, spine density increased on days 1 and 3 of training, particularly reflecting an increase in the proportion of thin (day 1), stubby (day 1) and branched (days 1, 2 and 5) spines. Conversely, mushroom spines were less prevalent than in the control rats on days 5 and 6, as were stubby spines on day 6, together suggesting that this plasticity might enhance motor learning. The increase in stubby spines on day 1 suggests a regulation of excitability related to the changes in synaptic input to the prefrontal cortex. The plasticity to thin spines observed during the first 3 days of training could be related to the active rectification induced by the information relayed to the prefrontal cortex -as the behavioral findings indeed showed-, which in turn could be linked to the lower proportion of mushroom and stubby spines seen in the last days of training. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Molecular identity of dendritic voltage-gated sodium channels.

    Science.gov (United States)

    Lorincz, Andrea; Nusser, Zoltan

    2010-05-14

    Active invasion of the dendritic tree by action potentials (APs) generated in the axon is essential for associative synaptic plasticity and neuronal ensemble formation. In cortical pyramidal cells (PCs), this AP back-propagation is supported by dendritic voltage-gated Na+ (Nav) channels, whose molecular identity is unknown. Using a highly sensitive electron microscopic immunogold technique, we revealed the presence of the Nav1.6 subunit in hippocampal CA1 PC proximal and distal dendrites. Here, the subunit density is lower by a factor of 35 to 80 than that found in axon initial segments. A gradual decrease in Nav1.6 density along the proximodistal axis of the dendritic tree was also detected without any labeling in dendritic spines. Our results reveal the characteristic subcellular distribution of the Nav1.6 subunit, identifying this molecule as a key substrate enabling dendritic excitability.

  2. Suppressing Lithium Dendrite Growth with a Single-Component Coating.

    Science.gov (United States)

    Liu, Haodong; Zhou, Hongyao; Lee, Byoung-Sun; Xing, Xing; Gonzalez, Matthew; Liu, Ping

    2017-09-13

    A single-component coating was formed on lithium (Li) metal in a lithium iodide/organic carbonate [dimethyl carbonate (DMC) and ethylene carbonate (EC)] electrolyte. LiI chemically reacts with DMC to form lithium methyl carbonate (LMC), which precipitates and forms the chemically homogeneous coating layer on the Li surface. This coating layer is shown to enable dendrite-free Li cycling in a symmetric Li∥Li cell even at a current density of 3 mA cm -2 . Adding EC to DMC modulates the formation of LMC, resulting in a stable coating layer that is essential for long-term Li cycling stability. Furthermore, the coating can enable dendrite-free cycling after being transferred to common LiPF 6 /carbonate electrolytes, which are compatible with metal oxide cathodes.

  3. Preferential control of basal dendritic protrusions by EphB2.

    Directory of Open Access Journals (Sweden)

    Matthew S Kayser

    2011-02-01

    Full Text Available The flow of information between neurons in many neural circuits is controlled by a highly specialized site of cell-cell contact known as a synapse. A number of molecules have been identified that are involved in central nervous system synapse development, but knowledge is limited regarding whether these cues direct organization of specific synapse types or on particular regions of individual neurons. Glutamate is the primary excitatory neurotransmitter in the brain, and the majority of glutamatergic synapses occur on mushroom-shaped protrusions called dendritic spines. Changes in the morphology of these structures are associated with long-lasting modulation of synaptic strength thought to underlie learning and memory, and can be abnormal in neuropsychiatric disease. Here, we use rat cortical slice cultures to examine how a previously-described synaptogenic molecule, the EphB2 receptor tyrosine kinase, regulates dendritic protrusion morphology in specific regions of the dendritic arbor in cortical pyramidal neurons. We find that alterations in EphB2 signaling can bidirectionally control protrusion length, and knockdown of EphB2 expression levels reduces the number of dendritic spines and filopodia. Expression of wild-type or dominant negative EphB2 reveals that EphB2 preferentially regulates dendritic protrusion structure in basal dendrites. Our findings suggest that EphB2 may act to specify synapse formation in a particular subcellular region of cortical pyramidal neurons.

  4. Two-Photon Functional Imaging of the Auditory Cortex in Behaving Mice: From Neural Networks to Single Spines

    Directory of Open Access Journals (Sweden)

    Ruijie Li

    2018-04-01

    Full Text Available In vivo two-photon Ca2+ imaging is a powerful tool for recording neuronal activities during perceptual tasks and has been increasingly applied to behaving animals for acute or chronic experiments. However, the auditory cortex is not easily accessible to imaging because of the abundant temporal muscles, arteries around the ears and their lateral locations. Here, we report a protocol for two-photon Ca2+ imaging in the auditory cortex of head-fixed behaving mice. By using a custom-made head fixation apparatus and a head-rotated fixation procedure, we achieved two-photon imaging and in combination with targeted cell-attached recordings of auditory cortical neurons in behaving mice. Using synthetic Ca2+ indicators, we recorded the Ca2+ transients at multiple scales, including neuronal populations, single neurons, dendrites and single spines, in auditory cortex during behavior. Furthermore, using genetically encoded Ca2+ indicators (GECIs, we monitored the neuronal dynamics over days throughout the process of associative learning. Therefore, we achieved two-photon functional imaging at multiple scales in auditory cortex of behaving mice, which extends the tool box for investigating the neural basis of audition-related behaviors.

  5. Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI. Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI.

  6. Exercise Maintains Dendritic Complexity in an Animal Model of Posttraumatic Stress Disorder.

    Science.gov (United States)

    Hoffman, Jay R; Cohen, Hadas; Ostfeld, Ishay; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit

    2016-12-01

    This study examined the effect of endurance exercise on dendritic arborization in the dentate gyrus subregion in rodents exposed to a predator scent stress (PSS). Sprague-Dawley rats were randomly assigned to one of four treatment groups. In two of the groups, rats were unexposed to PSS but either remained sedentary (SED + UNEXP) or were exercised (EX + UNEXP). In the other two groups, rats were exposed to the PSS but either remained sedentary (SED + PSS) or were exercised (EX + PSS). After 6 wk of either exercise or sedentary lifestyle, rats were exposed to either the PSS or a sham protocol. During exercise, the animals ran on a treadmill at 15 m·min, 5 min·d gradually increasing to 20 min·d, 5 d·wk for 6 wk. Eight days after exposure to either PSS or sham protocol, changes in the cytoarchitecture (dendritic number, dendritic length, and dendrite spine density) of the dentate gyrus subregion of the hippocampus were assessed. No differences (P = 0.493) were noted in dendritic number between the groups. However, dendritic length and dendrite spine density for SED + PSS was significantly smaller (P animals in SED + PSS had significantly fewer (P stress. This provides further evidence for supporting the inclusion of an exercise regimen for reducing the risk of posttraumatic stress disorder.

  7. Scanning Ultrasound (SUS Causes No Changes to Neuronal Excitability and Prevents Age-Related Reductions in Hippocampal CA1 Dendritic Structure in Wild-Type Mice.

    Directory of Open Access Journals (Sweden)

    Robert John Hatch

    Full Text Available Scanning ultrasound (SUS is a noninvasive approach that has recently been shown to ameliorate histopathological changes and restore memory functions in an Alzheimer's disease mouse model. Although no overt neuronal damage was reported, the short- and long-term effects of SUS on neuronal excitability and dendritic tree morphology had not been investigated. To address this, we performed patch-clamp recordings from hippocampal CA1 pyramidal neurons in wild-type mice 2 and 24 hours after a single SUS treatment, and one week and 3 months after six weekly SUS treatments, including sham treatments as controls. In both treatment regimes, no changes in CA1 neuronal excitability were observed in SUS-treated neurons when compared to sham-treated neurons at any time-point. For the multiple treatment groups, we also determined the dendritic morphology and spine densities of the neurons from which we had recorded. The apical trees of sham-treated neurons were reduced at the 3 month time-point when compared to one week; however, surprisingly, no longitudinal change was detected in the apical dendritic trees of SUS-treated neurons. In contrast, the length and complexity of the basal dendritic trees were not affected by SUS treatment at either time-point. The apical dendritic spine densities were reduced, independent of the treatment group, at 3 months compared to one week. Collectively, these data suggest that ultrasound can be employed to prevent an age-associated loss of dendritic structure without impairing neuronal excitability.

  8. Dendritic development of Drosophila high order visual system neurons is independent of sensory experience

    Directory of Open Access Journals (Sweden)

    Reuter John E

    2003-06-01

    Full Text Available Abstract Background The complex and characteristic structures of dendrites are a crucial part of the neuronal architecture that underlies brain function, and as such, their development has been a focal point of recent research. It is generally believed that dendritic development is controlled by a combination of endogenous genetic mechanisms and activity-dependent mechanisms. Therefore, it is of interest to test the relative contributions of these two types of mechanisms towards the construction of specific dendritic trees. In this study, we make use of the highly complex Vertical System (VS of motion sensing neurons in the lobula plate of the Drosophila visual system to gauge the importance of visual input and synaptic activity to dendritic development. Results We find that the dendrites of VS1 neurons are unchanged in dark-reared flies as compared to control flies raised on a 12 hour light, 12 hour dark cycle. The dendrites of these flies show no differences from control in dendrite complexity, spine number, spine density, or axon complexity. Flies with genetically ablated eyes show a slight but significant reduction in the complexity and overall length of VS1 dendrites, although this effect may be due to a reduction in the overall size of the dendritic field in these flies. Conclusions Overall, our results indicate no role for visual experience in the development of VS dendrites, while spontaneous activity from photoreceptors may play at most a subtle role in the formation of fully complex dendrites in these high-order visual processing neurons.

  9. DIXDC1 Phosphorylation and Control of Dendritic Morphology Are Impaired by Rare Genetic Variants

    Directory of Open Access Journals (Sweden)

    Vickie Kwan

    2016-11-01

    Full Text Available The development of neural connectivity is essential for brain function, and disruption of this process is associated with autism spectrum disorders (ASDs. DIX domain containing 1 (DIXDC1 has previously been implicated in neurodevelopmental disorders, but its role in postnatal brain function remains unknown. Using a knockout mouse model, we determined that DIXDC1 is a regulator of excitatory neuron dendrite development and synapse function in the cortex. We discovered that MARK1, previously linked to ASDs, phosphorylates DIXDC1 to regulate dendrite and spine development through modulation of the cytoskeletal network in an isoform-specific manner. Finally, rare missense variants in DIXDC1 were identified in ASD patient cohorts via genetic sequencing. Interestingly, the variants inhibit DIXDC1 isoform 1 phosphorylation, causing impairment to dendrite and spine growth. These data reveal that DIXDC1 is a regulator of cortical dendrite and synaptic development and provide mechanistic insight into morphological defects associated with neurodevelopmental disorders.

  10. Influence of submelting on formation of single crystals of nickel alloy with cellular-dendritic structure

    International Nuclear Information System (INIS)

    Pankin, G.N.; Esin, V.O.; Ponomarev, V.V.

    1996-01-01

    A study was made into specific features of cellular - dendritic structure formation in single crystals of nickel base alloy ZhS26 which had been crystallized following the pattern of solid solution. The single crystals in growing were subjected to periodic partial remelting to suppress the transition of cellular structure into a cellular - dendritic one during directional solidification. The results obtained showed the possibility to stabilize cellular growth of solid solution by way of inversion of interphase surface motion in the process of directional crystallization. 4 refs.; 5 figs

  11. Single cell electroporation for longitudinal imaging of synaptic structure and function in the adult mouse neocortex in vivo

    Directory of Open Access Journals (Sweden)

    Stephane ePages

    2015-04-01

    Full Text Available Longitudinal imaging studies of neuronal structures in vivo have revealed rich dynamics in dendritic spines and axonal boutons. Spines and boutons are considered to be proxies for synapses. This implies that synapses display similar dynamics. However, spines and boutons do not always bear synapses, some may contain more than one, and dendritic shaft synapses have no clear structural proxies. In addition, synaptic strength is not always accurately revealed by just the size of these structures. Structural and functional dynamics of synapses could be studied more reliably using fluorescent synaptic proteins as markers for size and function. These proteins are often large and possibly interfere with circuit development, which renders them less suitable for conventional transfection or transgenesis methods such as viral vectors, in utero electroporation and germline transgenesis. Single cell electroporation has been shown to be a potential alternative for transfection of recombinant fluorescent proteins in adult cortical neurons. Here we provide proof of principle for the use of single cell electroporation to express and subsequently image fluorescently tagged synaptic proteins over days to weeks in vivo.

  12. Photoaffinity Labeling Studies on a Promoter of Dendritic Spine Formation

    Science.gov (United States)

    Sibucao, Kevin Carlo Abril

    The small molecule BTA-EG4 has been shown to be a promoter of dendritic spine formation. The mechanism behind this phenomenon, however, is not well understood. The work in this dissertation is motivated by this gap in knowledge. The first part of this dissertation focuses on photoaffinity labeling studies to identify the cellular targets of BTA-EG4. Chapter 1 provides a summary of Alzheimer's disease, the rational design of BTA-EG 4, and methods to determine targets of small molecules. In Chapter 2, the synthesis of a BTA-EG4-based photoaffinity labeling probe and photodegradation studies are presented. Kinetic studies demonstrate that the probe photolyzes rapidly under UV light. In Chapter 3, photoaffinity labeling studies and subsequent protein identification experiments are reported. Competition experiments with the photoaffinity labeling probe and BTA-EG4 demonstrate that the probe labels a 55-kDa protein specifically. Tandem mass spectrometry revealed that the 55-kDa protein is the actin binding protein fascin 1. The second part of this dissertation focuses on the major protein identified from photoaffinity labeling studies, fascin 1. Chapter 4 provides a brief survey of the structure and function of fascin 1. In Chapter 5, characterizations of the interaction between BTA-EG4 and fascin 1 are reported. Isothermal titration calorimetry confirms the physical binding between fascin 1 and BTA-EG6, a BTA-EG4 analog. Slow speed sedimentation assays reveal that BTA-EG4 does not affect the actin-bundling activity of fascin 1. However, GST pull-down experiments show that BTA-EG4 inhibits the binding of fascin 1 with the GTPase Rab35. In addition, this work demonstrates that BTA-EG4 may be mechanistically distinct from the known fascin inhibitor G2.

  13. Early developmental bisphenol-A exposure sex-independently impairs spatial memory by remodeling hippocampal dendritic architecture and synaptic transmission in rats

    Science.gov (United States)

    Liu, Zhi-Hua; Ding, Jin-Jun; Yang, Qian-Qian; Song, Hua-Zeng; Chen, Xiang-Tao; Xu, Yi; Xiao, Gui-Ran; Wang, Hui-Li

    2016-08-01

    Bisphenol-A (BPA, 4, 4‧-isopropylidene-2-diphenol), a synthetic xenoestrogen that widely used in the production of polycarbonate plastics, has been reported to impair hippocampal development and function. Our previous study has shown that BPA exposure impairs Sprague-Dawley (SD) male hippocampal dendritic spine outgrowth. In this study, the sex-effect of chronic BPA exposure on spatial memory in SD male and female rats and the related synaptic mechanism were further investigated. We found that chronic BPA exposure impaired spatial memory in both SD male and female rats, suggesting a dysfunction of hippocampus without gender-specific effect. Further investigation indicated that BPA exposure causes significant impairment of dendrite and spine structure, manifested as decreased dendritic complexity, dendritic spine density and percentage of mushroom shaped spines in hippocampal CA1 and dentate gyrus (DG) neurons. Furthermore, a significant reduction in Arc expression was detected upon BPA exposure. Strikingly, BPA exposure significantly increased the mIPSC amplitude without altering the mEPSC amplitude or frequency, accompanied by increased GABAARβ2/3 on postsynaptic membrane in cultured CA1 neurons. In summary, our study indicated that Arc, together with the increased surface GABAARβ2/3, contributed to BPA induced spatial memory deficits, providing a novel molecular basis for BPA achieved brain impairment.

  14. MET receptor tyrosine kinase controls dendritic complexity, spine morphogenesis, and glutamatergic synapse maturation in the hippocampus.

    Science.gov (United States)

    Qiu, Shenfeng; Lu, Zhongming; Levitt, Pat

    2014-12-03

    The MET receptor tyrosine kinase (RTK), implicated in risk for autism spectrum disorder (ASD) and in functional and structural circuit integrity in humans, is a temporally and spatially regulated receptor enriched in dorsal pallial-derived structures during mouse forebrain development. Here we report that loss or gain of function of MET in vitro or in vivo leads to changes, opposite in nature, in dendritic complexity, spine morphogenesis, and the timing of glutamatergic synapse maturation onto hippocampus CA1 neurons. Consistent with the morphological and biochemical changes, deletion of Met in mutant mice results in precocious maturation of excitatory synapse, as indicated by a reduction of the proportion of silent synapses, a faster GluN2A subunit switch, and an enhanced acquisition of AMPA receptors at synaptic sites. Thus, MET-mediated signaling appears to serve as a mechanism for controlling the timing of neuronal growth and functional maturation. These studies suggest that mistimed maturation of glutamatergic synapses leads to the aberrant neural circuits that may be associated with ASD risk. Copyright © 2014 the authors 0270-6474/14/3416166-14$15.00/0.

  15. Somal and dendritic development of human CA3 pyramidal neurons from midgestation to middle childhood: a quantitative Golgi study.

    Science.gov (United States)

    Lu, Dahua; He, Lixin; Xiang, Wei; Ai, Wei-Min; Cao, Ye; Wang, Xiao-Sheng; Pan, Aihua; Luo, Xue-Gang; Li, Zhiyuan; Yan, Xiao-Xin

    2013-01-01

    The CA3 area serves a key relay on the tri-synaptic loop of the hippocampal formation which supports multiple forms of mnemonic processing, especially spatial learning and memory. To date, morphometric data about human CA3 pyramidal neurons are relatively rare, with little information available for their pre- and postnatal development. Herein, we report a set of developmental trajectory data, including somal growth, dendritic elongation and branching, and spine formation, of human CA3 pyramidal neurons from midgestation stage to middle childhood. Golgi-impregnated CA3 pyramidal neurons in fetuses at 19, 20, 26, 35, and 38 weeks of gestation (GW) and a child at 8 years of age (Y) were analyzed by Neurolucida morphometry. Somal size of the impregnated CA3 cells increased age-dependently among the cases. The length of the apical and basal dendrites of these neurons increased between 26 GW to 38 GW, and appeared to remain stable afterward until 8 Y. Dendritic branching points increased from 26 GW to 38 GW, with that on the apical dendrites slightly reduced at 8 Y. Spine density on the apical and basal dendrites increased progressively from 26 GW to 8 Y. These data suggest that somal growth and dendritic arborization of human CA3 pyramidal neurons occur largely during the second to third trimester. Spine development and likely synaptogenesis on CA3 pyramidal cells progress during the third prenatal trimester and may continue throughout childhood. Copyright © 2012 Wiley Periodicals, Inc.

  16. Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus.

    Science.gov (United States)

    Nyíri, G; Stephenson, F A; Freund, T F; Somogyi, P

    2003-01-01

    Pyramidal cells receive input from several types of GABA-releasing interneurons and innervate them reciprocally. Glutamatergic activation of interneurons involves both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) type glutamate receptors expressed in type I synapses, mostly on their dendritic shafts. On average, the synaptic AMPA receptor content is several times higher on interneurons than in the spines of pyramidal cells. To compare the NMDA receptor content of synapses, we used a quantitative postembedding immunogold technique on serial electron microscopic sections, and analysed the synapses on interneuron dendrites and pyramidal cell spines in the CA1 area. Because all NMDA receptors contain the obligatory NR1 subunit, receptor localisation was carried out using antibodies recognising all splice variants of the NR1 subunit. Four populations of synapse were examined: i). on spines of pyramidal cells in stratum (str.) radiatum and str. oriens; ii). on parvalbumin-positive interneuronal dendritic shafts in str. radiatum; iii). on randomly found dendritic shafts in str. oriens and iv). on somatostatin-positive interneuronal dendritic shafts and somata in str. oriens. On average, the size of the synapses on spines was about half of those on interneurons. The four populations of synapse significantly differed in labelling for the NR1 subunit. The median density of NR1 subunit labelling was highest on pyramidal cell spines. It was lowest in the synapses on parvalbumin-positive dendrites in str. radiatum, where more than half of these synapses were immunonegative. In str. oriens, synapses on interneurons had a high variability of receptor content; some dendrites were similar to those in str. radiatum, including the proximal synapses of somatostatin-positive cells, whereas others had immunoreactivity for the NR1 subunit similar to or higher than synapses on pyramidal cell spines. These results show that synaptic NMDA

  17. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-12-01

    Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.

  18. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke–Korsakoff syndrome

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-01-01

    Patients with severe Wernicke–Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation. PMID:27576603

  19. Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Hallermann, Stefan; Stuart, Greg J.

    2006-01-01

    The hyperpolarization-activated cation current (Ih) plays an important role in regulating neuronal excitability, yet its native single-channel properties in the brain are essentially unknown. Here we use variance-mean analysis to study the properties of single Ih channels in the apical dendrites of

  20. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression.

    Science.gov (United States)

    Qiao, Hui; An, Shu-Cheng; Xu, Chang; Ma, Xin-Ming

    2017-05-15

    Major depressive disorder (MDD) is one of the most common psychiatric disorder, but the underlying mechanisms are largely unknown. Increasing evidence shows that brain-derived neurotrophic factor (BDNF) plays an important role in the structural plasticity induced by depression. Considering the opposite effects of BDNF and its precursor proBDNF on neural plasticity, we hypothesized that the balance of BDNF and proBDNF plays a critical role in chronic unpredicted mild stress (CUMS)-induced depressive-like behaviors and structural plasticity in the rodent hippocampus. The aims of this study were to compare the functions of BDNF and proBDNF in the CUMS-induced depressive-like behaviors, and determine the effects of BDNF and proBDNF on expressions of kalirin-7, postsynaptic density protein 95 (PSD95) and NMDA receptor subunit NR2B in the hippocampus of stressed and naïve control rats, respectively. Our results showed that CUMS induced depressive-like behaviors, caused a decrease in the ratio of BDNF/proBDNF in the hippocampus and resulted in a reduction in spine density in hippocampal CA1 pyramidal neurons; these alterations were accompanied by a decrease in the levels of kalirin-7, PSD95 and NR2B in the hippocampus. Injection of exogenous BDNF into the CA1 area of stressed rats reversed CUMS-induced depressive-like behaviors and prevented CUMS-induced spine loss and decrease in kalirin-7, NR2B and PSD95 levels. In contrast, injection of exogenous proBDNF into the CA1 region of naïve rats caused depressive-like behavior and an accompanying decrease in both spine density and the levels of kalirin-7, NR2B and PSD95. Taken together, our results suggest that the ratio of BDNF to proBDNF in the hippocampus plays a key role in CUMS-induced depressive-like behaviors and alterations of dendritic spines in hippocampal CA1 pyramidal neurons. Kalirin-7 may play an important role during this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Overexpression of human GATA-1 and GATA-2 interferes with spine formation and produces depressive behavior in rats.

    Directory of Open Access Journals (Sweden)

    Miyeon Choi

    Full Text Available Functional consequences to which vertebrate GATA transcription factors contribute in the adult brain remain largely an open question. The present study examines how human GATA-1 and GATA-2 (hGATA-1 and hGATA-2 are linked to neuronal differentiation and depressive behaviors in rats. We investigated the effects of adeno-associated viral expression of hGATA-1 and hGATA-2 (AAV-hGATA1 and AAV-hGATA2 in the dentate gyrus (DG of the dorsal hippocampus on dendrite branching and spine number. We also examined the influence of AAV-hGATA1 and AAV-hGATA2 infusions into the dorsal hippocampus on rodent behavior in models of depression. Viral expression of hGATA-1 and hGATA-2 cDNA in rat hippocampal neurons impaired dendritic outgrowth and spine formation. Moreover, viral-mediated expression of hGATA-1 and hGATA-2 in the dorsal hippocampus caused depressive-like deficits in the forced swim test and learned helplessness models of depression, and decreased the expression of several synapse-related genes as well as spine number in hippocampal neurons. Conversely, shRNA knockdown of GATA-2 increased synapse-related gene expression, spine number, and dendrite branching. The results demonstrate that hGATA-1 and hGATA-2 expression in hippocampus is sufficient to cause depressive like behaviors that are associated with reduction in spine synapse density and expression of synapse-related genes.

  2. A brief period of sleep deprivation causes spine loss in the dentate gyrus of mice.

    Science.gov (United States)

    Raven, Frank; Meerlo, Peter; Van der Zee, Eddy A; Abel, Ted; Havekes, Robbert

    2018-03-24

    Sleep and sleep loss have a profound impact on hippocampal function, leading to memory impairments. Modifications in the strength of synaptic connections directly influences neuronal communication, which is vital for normal brain function, as well as the processing and storage of information. In a recently published study, we found that as little as five hours of sleep deprivation impaired hippocampus-dependent memory consolidation, which was accompanied by a reduction in dendritic spine numbers in hippocampal area CA1. Surprisingly, loss of sleep did not alter the spine density of CA3 neurons. Although sleep deprivation has been reported to affect the function of the dentate gyrus, it is unclear whether a brief period of sleep deprivation impacts spine density in this region. Here, we investigated the impact of a brief period of sleep deprivation on dendritic structure in the dentate gyrus of the dorsal hippocampus. We found that five hours of sleep loss reduces spine density in the dentate gyrus with a prominent effect on branched spines. Interestingly, the inferior blade of the dentate gyrus seems to be more vulnerable in terms of spine loss than the superior blade. This decrease in spine density predominantly in the inferior blade of the dentate gyrus may contribute to the memory deficits observed after sleep loss, as structural reorganization of synaptic networks in this subregion is fundamental for cognitive processes. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Differential activation behavior of dermal dendritic cells underlies the strain-specific Th1 responses to single epicutaneous immunization.

    Science.gov (United States)

    Lee, Chih-Hung; Chen, Jau-Shiuh; Chiu, Hsien-Ching; Hong, Chien-Hui; Liu, Ching-Yi; Ta, Yng-Cun; Wang, Li-Fang

    2016-12-01

    Epicutaneous immunization with allergens is an important sensitization route for atopic dermatitis. We recently showed in addition to the Th2 response following single epicutaneous immunization, a remarkable Th1 response is induced in B6 mice, but not in BALB/c mice, mimicking the immune response to allergens in human non-atopics and atopics. We investigated the underlying mechanisms driving this differential Th1 response between BALB/c and B6 mice. We characterized dermal dendritic cells by flow cytometric analysis. We measured the induced Th1/Th2 responses by measuring the IFN-γ/IL-13 contents of supernatants of antigen reactivation cultures of lymph node cells. We demonstrate that more dermal dendritic cells with higher activation status migrate into draining lymph nodes of B6 mice compared to BALB/c mice. Dermal dendritic cells of B6 mice have a greater ability to capture protein antigen than those of BALB/c mice. Moreover, increasing the activation status or amount of captured antigen in dermal dendritic cells induced a Th1 response in BALB/c mice. Further, differential activation behavior, but not antigen-capturing ability of dermal dendritic cells between BALB/c and B6 mice is dendritic cell-intrinsic. These results show that the differential activation behavior of dermal dendritic cells underlies the strain-specific Th1 responses following single epicutaneous immunization. Furthermore, our findings highlight the potential differences between human atopics and non-atopics and provide useful information for the prediction and prevention of atopic diseases. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Stochasticity in Ca2+ increase in spines enables robust and sensitive information coding.

    Directory of Open Access Journals (Sweden)

    Takuya Koumura

    Full Text Available A dendritic spine is a very small structure (∼0.1 µm3 of a neuron that processes input timing information. Why are spines so small? Here, we provide functional reasons; the size of spines is optimal for information coding. Spines code input timing information by the probability of Ca2+ increases, which makes robust and sensitive information coding possible. We created a stochastic simulation model of input timing-dependent Ca2+ increases in a cerebellar Purkinje cell's spine. Spines used probability coding of Ca2+ increases rather than amplitude coding for input timing detection via stochastic facilitation by utilizing the small number of molecules in a spine volume, where information per volume appeared optimal. Probability coding of Ca2+ increases in a spine volume was more robust against input fluctuation and more sensitive to input numbers than amplitude coding of Ca2+ increases in a cell volume. Thus, stochasticity is a strategy by which neurons robustly and sensitively code information.

  5. Sonic hedgehog signaling regulates actin cytoskeleton via Tiam1-Rac1 cascade during spine formation.

    Science.gov (United States)

    Sasaki, Nobunari; Kurisu, Junko; Kengaku, Mineko

    2010-12-01

    The sonic hedgehog (Shh) pathway has essential roles in several processes during development of the vertebrate central nervous system (CNS). Here, we report that Shh regulates dendritic spine formation in hippocampal pyramidal neurons via a novel pathway that directly regulates the actin cytoskeleton. Shh signaling molecules Patched (Ptc) and Smoothened (Smo) are expressed in several types of postmitotic neurons, including cerebellar Purkinje cells and hippocampal pyramidal neurons. Knockdown of Smo induces dendritic spine formation in cultured hippocampal neurons independently of Gli-mediated transcriptional activity. Smo interacts with Tiam1, a guanine nucleotide exchange factor for Rac1, via its cytoplasmic C-terminal region. Inhibition of Tiam1 or Rac1 activity suppresses spine induction by Smo knockdown. Shh induces remodeling of the actin cytoskeleton independently of transcriptional activation in mouse embryonic fibroblasts. These findings demonstrate a novel Shh pathway that regulates the actin cytoskeleton via Tiam1-Rac1 activation. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Suppressive effects of primed eosinophils on single epicutaneous sensitization through regulation of dermal dendritic cells.

    Science.gov (United States)

    Lin, Jing-Yi; Ta, Yng-Cun; Liu, I-Lin; Chen, Hsi-Wen; Wang, Li-Fang

    2016-07-01

    Eosinophils are multifunctional innate immune cells involved in many aspects of innate and adaptive immunity. Epicutaneous sensitization with protein allergen is an important sensitization route for atopic dermatitis. In this study, using a murine single protein-patch model, we show that eosinophils of a primed status accumulate in draining lymph nodes following single epicutaneous sensitization. Further, depletion of eosinophils results in enhancement of the induced Th1/Th2 immune responses, whereas IL-5-induced hypereosinophilia suppresses these responses. Mechanistically, primed eosinophils cause a reduction in the numbers and activation status of dermal dendritic cells in draining lymph nodes. Collectively, these results demonstrate that primed eosinophils exert suppressive effects on single epicutaneous sensitization through regulation of dermal dendritic cells. Thus, these findings highlight the critical roles of eosinophils in the pathogenesis of atopic dermatitis with important clinical implications for the prevention of allergen sensitization. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in CA1 hippocampal neurons.

    Science.gov (United States)

    Vila-Luna, S; Cabrera-Isidoro, S; Vila-Luna, L; Juárez-Díaz, I; Bata-García, J L; Alvarez-Cervera, F J; Zapata-Vázquez, R E; Arankowsky-Sandoval, G; Heredia-López, F; Flores, G; Góngora-Alfaro, J L

    2012-01-27

    Chronic caffeine consumption has been inversely associated with the risk of developing dementia and Alzheimer's disease. Here we assessed whether chronic caffeine treatment prevents the behavioral and cognitive decline that male Wistar rats experience from young (≈3 months) to middle age (≈10 months). When animals were young they were evaluated at weekly intervals in three tests: motor activity habituation in the open field (30-min sessions at the same time on consecutive days), continuous spontaneous alternation in the Y-maze (8 min), and elevated plus-maze (5 min). Afterward, rats from the same litter were randomly assigned either to a caffeine-treated group (n=13) or a control group (n=11), which received only tap water. Caffeine treatment (5 mg/kg/day) began when animals were ≈4 months old, and lasted for 6 months. Behavioral tests were repeated from day 14 to day 28 after caffeine withdrawal, a time period that is far in excess for the full excretion of a caffeine dose in this species. Thirty days after caffeine discontinuation brains were processed for Golgi-Cox staining. Compared with controls, we found that middle-aged rats that had chronically consumed low doses of caffeine (1) maintained their locomotor habituation during the second consecutive day exposure to the open field (an index of non-associative learning), (2) maintained their exploratory drive to complete the conventional minimum of nine arm visits required to calculate the alternation performance in the Y-maze in a greater proportion, (3) maintained their alternation percentage above chance level (an index of working memory), and (4) did not increase the anxiety indexes assessed by measuring the time spent in the open arms of the elevated plus maze. In addition, morphometric analysis of hippocampal neurons revealed that dendritic branching (90-140 μm from the soma), length of 4th and 5th order branches, total dendritic length, and spine density in distal dendritic branches were greater in

  8. Increased signaling by the autism-related Engrailed-2 protein enhances dendritic branching and spine density, alters synaptic structural matching, and exaggerates protein synthesis.

    Science.gov (United States)

    Soltani, Asma; Lebrun, Solène; Carpentier, Gilles; Zunino, Giulia; Chantepie, Sandrine; Maïza, Auriane; Bozzi, Yuri; Desnos, Claire; Darchen, François; Stettler, Olivier

    2017-01-01

    Engrailed 1 (En1) and 2 (En2) code for closely related homeoproteins acting as transcription factors and as signaling molecules that contribute to midbrain and hindbrain patterning, to development and maintenance of monoaminergic pathways, and to retinotectal wiring. En2 has been suggested to be an autism susceptibility gene and individuals with autism display an overexpression of this homeogene but the mechanisms remain unclear. We addressed in the present study the effect of exogenously added En2 on the morphology of hippocampal cells that normally express only low levels of Engrailed proteins. By means of RT-qPCR, we confirmed that En1 and En2 were expressed at low levels in hippocampus and hippocampal neurons, and observed a pronounced decrease in En2 expression at birth and during the first postnatal week, a period characterized by intense synaptogenesis. To address a putative effect of Engrailed in dendritogenesis or synaptogenesis, we added recombinant En1 or En2 proteins to hippocampal cell cultures. Both En1 and En2 treatment increased the complexity of the dendritic tree of glutamatergic neurons, but only En2 increased that of GABAergic cells. En1 increased the density of dendritic spines both in vitro and in vivo. En2 had similar but less pronounced effect on spine density. The number of mature synapses remained unchanged upon En1 treatment but was reduced by En2 treatment, as well as the area of post-synaptic densities. Finally, both En1 and En2 elevated mTORC1 activity and protein synthesis in hippocampal cells, suggesting that some effects of Engrailed proteins may require mRNA translation. Our results indicate that Engrailed proteins can play, even at low concentrations, an active role in the morphogenesis of hippocampal cells. Further, they emphasize the over-regulation of GABA cell morphology and the vulnerability of excitatory synapses in a pathological context of En2 overexpression.

  9. Increased signaling by the autism-related Engrailed-2 protein enhances dendritic branching and spine density, alters synaptic structural matching, and exaggerates protein synthesis.

    Directory of Open Access Journals (Sweden)

    Asma Soltani

    Full Text Available Engrailed 1 (En1 and 2 (En2 code for closely related homeoproteins acting as transcription factors and as signaling molecules that contribute to midbrain and hindbrain patterning, to development and maintenance of monoaminergic pathways, and to retinotectal wiring. En2 has been suggested to be an autism susceptibility gene and individuals with autism display an overexpression of this homeogene but the mechanisms remain unclear. We addressed in the present study the effect of exogenously added En2 on the morphology of hippocampal cells that normally express only low levels of Engrailed proteins. By means of RT-qPCR, we confirmed that En1 and En2 were expressed at low levels in hippocampus and hippocampal neurons, and observed a pronounced decrease in En2 expression at birth and during the first postnatal week, a period characterized by intense synaptogenesis. To address a putative effect of Engrailed in dendritogenesis or synaptogenesis, we added recombinant En1 or En2 proteins to hippocampal cell cultures. Both En1 and En2 treatment increased the complexity of the dendritic tree of glutamatergic neurons, but only En2 increased that of GABAergic cells. En1 increased the density of dendritic spines both in vitro and in vivo. En2 had similar but less pronounced effect on spine density. The number of mature synapses remained unchanged upon En1 treatment but was reduced by En2 treatment, as well as the area of post-synaptic densities. Finally, both En1 and En2 elevated mTORC1 activity and protein synthesis in hippocampal cells, suggesting that some effects of Engrailed proteins may require mRNA translation. Our results indicate that Engrailed proteins can play, even at low concentrations, an active role in the morphogenesis of hippocampal cells. Further, they emphasize the over-regulation of GABA cell morphology and the vulnerability of excitatory synapses in a pathological context of En2 overexpression.

  10. Cortical Composition Hierarchy Driven by Spine Proportion Economical Maximization or Wire Volume Minimization.

    Directory of Open Access Journals (Sweden)

    Jan Karbowski

    2015-10-01

    Full Text Available The structure and quantitative composition of the cerebral cortex are interrelated with its computational capacity. Empirical data analyzed here indicate a certain hierarchy in local cortical composition. Specifically, neural wire, i.e., axons and dendrites take each about 1/3 of cortical space, spines and glia/astrocytes occupy each about (1/3(2, and capillaries around (1/3(4. Moreover, data analysis across species reveals that these fractions are roughly brain size independent, which suggests that they could be in some sense optimal and thus important for brain function. Is there any principle that sets them in this invariant way? This study first builds a model of local circuit in which neural wire, spines, astrocytes, and capillaries are mutually coupled elements and are treated within a single mathematical framework. Next, various forms of wire minimization rule (wire length, surface area, volume, or conduction delays are analyzed, of which, only minimization of wire volume provides realistic results that are very close to the empirical cortical fractions. As an alternative, a new principle called "spine economy maximization" is proposed and investigated, which is associated with maximization of spine proportion in the cortex per spine size that yields equally good but more robust results. Additionally, a combination of wire cost and spine economy notions is considered as a meta-principle, and it is found that this proposition gives only marginally better results than either pure wire volume minimization or pure spine economy maximization, but only if spine economy component dominates. However, such a combined meta-principle yields much better results than the constraints related solely to minimization of wire length, wire surface area, and conduction delays. Interestingly, the type of spine size distribution also plays a role, and better agreement with the data is achieved for distributions with long tails. In sum, these results suggest

  11. [Quantitative analysis of the structure of neuronal dendritic spines in the striatum using the Leitz-ASM system].

    Science.gov (United States)

    Leontovich, T A; Zvegintseva, E G

    1985-10-01

    Two principal classes of striatum long axonal neurons (sparsely ramified reticular cells and densely ramified dendritic cells) were analyzed quantitatively in four animal species: hedgehog, rabbit, dog and monkey. The cross section area, total dendritic length and the area of dendritic field were measured using "LEITZ-ASM" system. Classes of neurons studied were significantly different in dogs and monkeys, while no differences were noted between hedgehog and rabbit. Reticular neurons of different species varied much more than dendritic ones. Quantitative analysis has revealed the progressive increase in the complexity of dendritic tree in mammals from rabbit to monkey.

  12. Soluble ICAM-5, a product of activity dependent proteolysis, increases mEPSC frequency and dendritic expression of GluA1.

    Directory of Open Access Journals (Sweden)

    Irina Lonskaya

    Full Text Available Matrix metalloproteinases (MMPs are zinc dependent endopeptidases that can be released from neurons in an activity dependent manner to play a role in varied forms of learning and memory. MMP inhibitors impair hippocampal long term potentiation (LTP, spatial memory, and behavioral correlates of drug addiction. Since MMPs are thought to influence LTP through a β1 integrin dependent mechanism, it has been suggested that these enzymes cleave specific substrates to generate integrin binding ligands. In previously published work, we have shown that neuronal activity stimulates rapid MMP dependent shedding of intercellular adhesion molecule-5 (ICAM-5, a synaptic adhesion molecule expressed on dendrites of the telencephalon. We have also shown that the ICAM-5 ectodomain can interact with β1 integrins to stimulate integrin dependent phosphorylation of cofilin, an event that occurs with dendritic spine maturation and LTP. In the current study, we investigate the potential for the ICAM-5 ectodomain to stimulate changes in α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR dependent glutamatergic transmission. Single cell recordings show that the ICAM-5 ectodomain stimulates an increase in the frequency, but not the amplitude, of AMPA mini excitatory post synaptic currents (mEPSCs. With biotinylation and precipitation assays, we also show that the ICAM-5 ectodomain stimulates an increase in membrane levels of GluA1, but not GluA2, AMPAR subunits. In addition, we observe an ICAM-5 associated increase in GluA1 phosphorylation at serine 845. Concomitantly, ICAM-5 affects an increase in GluA1 surface staining along dendrites without affecting an increase in dendritic spine number. Together these data are consistent with the possibility that soluble ICAM-5 increases glutamatergic transmission and that post-synaptic changes, including increased phosphorylation and dendritic insertion of GluA1, could contribute. We suggest that future studies

  13. Micromechanics of Sea Urchin spines.

    Directory of Open Access Journals (Sweden)

    Naomi Tsafnat

    Full Text Available The endoskeletal structure of the Sea Urchin, Centrostephanus rodgersii, has numerous long spines whose known functions include locomotion, sensing, and protection against predators. These spines have a remarkable internal microstructure and are made of single-crystal calcite. A finite-element model of the spine's unique porous structure, based on micro-computed tomography (microCT and incorporating anisotropic material properties, was developed to study its response to mechanical loading. Simulations show that high stress concentrations occur at certain points in the spine's architecture; brittle cracking would likely initiate in these regions. These analyses demonstrate that the organization of single-crystal calcite in the unique, intricate morphology of the sea urchin spine results in a strong, stiff and lightweight structure that enhances its strength despite the brittleness of its constituent material.

  14. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology.

    Directory of Open Access Journals (Sweden)

    Guy eElston

    2014-08-01

    Full Text Available Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1 prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE and granular prefrontal cortex (gPFC; Brodmann’s area 12 grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the use it or lose it notion of synaptic reinforcement may speak to only part of the story, use it but you still might lose it may be just as prevalent in the cerebral cortex.

  15. Sex-specific effects of early life stress on social interaction and prefrontal cortex dendritic morphology in young rats.

    Science.gov (United States)

    Farrell, M R; Holland, F H; Shansky, R M; Brenhouse, H C

    2016-09-01

    Early life stress has been linked to depression, anxiety, and behavior disorders in adolescence and adulthood. The medial prefrontal cortex (mPFC) is implicated in stress-related psychopathology, is a target for stress hormones, and mediates social behavior. The present study investigated sex differences in early-life stress effects on juvenile social interaction and adolescent mPFC dendritic morphology in rats using a maternal separation (MS) paradigm. Half of the rat pups of each sex were separated from their mother for 4h a day between postnatal days 2 and 21, while the other half remained with their mother in the animal facilities and were exposed to minimal handling. At postnatal day 25 (P25; juvenility), rats underwent a social interaction test with an age and sex matched conspecific. Distance from conspecific, approach and avoidance behaviors, nose-to-nose contacts, and general locomotion were measured. Rats were euthanized at postnatal day 40 (P40; adolescence), and randomly selected infralimbic pyramidal neurons were filled with Lucifer yellow using iontophoretic microinjections, imaged in 3D, and then analyzed for dendritic arborization, spine density, and spine morphology. Early-life stress increased the latency to make nose-to-nose contact at P25 in females but not males. At P40, early-life stress increased infralimbic apical dendritic branch number and length and decreased thin spine density in stressed female rats. These results indicate that MS during the postnatal period influenced juvenile social behavior and mPFC dendritic arborization in a sex-specific manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons

    Directory of Open Access Journals (Sweden)

    Marta Perez-Rando

    2017-06-01

    Full Text Available N-methyl-D-aspartate receptors (NMDARs are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play an important role in the adult structural plasticity of excitatory neurons, but their impact on the remodeling of interneurons is unknown. Among hippocampal interneurons, somatostatin-expressing cells located in the stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change density in response to different stimuli. In order to understand the role of NMDARs on the structural plasticity of these interneurons, we have injected acutely MK-801, an NMDAR antagonist, to adult mice which constitutively express enhanced green fluorescent protein (EGFP in these cells. We have behaviorally tested the animals, confirming effects of the drug on locomotion and anxiety-related behaviors. NMDARs were expressed in the somata and dendritic spines of somatostatin-expressing interneurons. Twenty-four hours after the injection, the density of spines did not vary, but we found a significant increase in the density of their en passant boutons (EPB. We have also used entorhino-hippocampal organotypic cultures to study these interneurons in real-time. There was a rapid decrease in the apparition rate of spines after MK-801 administration, which persisted for 24 h and returned to basal levels afterwards. A similar reversible decrease was detected in spine density. Our results show that both spines and axons of interneurons can undergo remodeling and highlight NMDARs as regulators of this plasticity. These results are specially relevant given the importance of all these players on hippocampal physiology and the etiopathology of certain psychiatric disorders.

  17. Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies

    Directory of Open Access Journals (Sweden)

    Tasnuva Sarowar

    2016-01-01

    Full Text Available Shank proteins (Shank1, Shank2, and Shank3 act as scaffolding molecules in the postsynaptic density of many excitatory neurons. Mutations in SHANK genes, in particular SHANK2 and SHANK3, lead to autism spectrum disorders (ASD in both human and mouse models. Shank3 proteins are made of several domains—the Shank/ProSAP N-terminal (SPN domain, ankyrin repeats, SH3 domain, PDZ domain, a proline-rich region, and the sterile alpha motif (SAM domain. Via various binding partners of these domains, Shank3 is able to bind and interact with a wide range of proteins including modulators of small GTPases such as RICH2, a RhoGAP protein, and βPIX, a RhoGEF protein for Rac1 and Cdc42, actin binding proteins and actin modulators. Dysregulation of all isoforms of Shank proteins, but especially Shank3, leads to alterations in spine morphogenesis, shape, and activity of the synapse via altering actin dynamics. Therefore, here, we highlight the role of Shank proteins as modulators of small GTPases and, ultimately, actin dynamics, as found in multiple in vitro and in vivo models. The failure to mediate this regulatory role might present a shared mechanism in the pathophysiology of autism-associated mutations, which leads to dysregulation of spine morphogenesis and synaptic signaling.

  18. Prophylactic effects of sulforaphane on depression-like behavior and dendritic changes in mice after inflammation.

    Science.gov (United States)

    Zhang, Ji-Chun; Yao, Wei; Dong, Chao; Yang, Chun; Ren, Qian; Ma, Min; Han, Mei; Wu, Jin; Ushida, Yusuke; Suganuma, Hiroyuki; Hashimoto, Kenji

    2017-01-01

    Inflammation plays a role in the pathophysiology of depression. Sulforaphane (SFN), an isothiocyanate compound derived from broccoli, is a potent activator of the NF-E2-related factor-2 (Nrf2), which plays a role in inflammation. In this study, we examined whether the prevention effects of SFN in lipopolysaccharide (LPS) induced depression-like behavior in mice. Pretreatment with SFN significantly blocked an increase in the serum tumor necrosis factor-α (TNF-α) level and an increase in microglial activation of brain regions after a single administration of LPS (0.5 mg/kg). Furthermore, SFN significantly potentiated increased serum levels of IL-10 after LPS administration. In the tail-suspension test and forced swimming test, SFN significantly attenuated an increase of the immobility time after LPS administration. In addition, SFN significantly recovered to control levels for LPS-induced alterations in the proteins such as brain-derived neurotrophic factor, postsynaptic density protein 95 and AMPA receptor 1 (GluA1) and dendritic spine density in the brain regions. Finally, dietary intake of 0.1% glucoraphanin (a glucosinolate precursor of SFN) food during the juvenile and adolescence could prevent the onset of LPS-induced depression-like behaviors and dendritic spine changes in the brain regions at adulthood. In conclusion, these findings suggest that dietary intake of SFN-rich broccoli sprout has prophylactic effects on inflammation-related depressive symptoms. Therefore, supplementation of SFN-rich broccoli sprout could be prophylactic vegetable to prevent or minimize the relapse by inflammation in the remission state of depressed patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Statistical Physics of Neural Systems with Nonadditive Dendritic Coupling

    Directory of Open Access Journals (Sweden)

    David Breuer

    2014-03-01

    Full Text Available How neurons process their inputs crucially determines the dynamics of biological and artificial neural networks. In such neural and neural-like systems, synaptic input is typically considered to be merely transmitted linearly or sublinearly by the dendritic compartments. Yet, single-neuron experiments report pronounced supralinear dendritic summation of sufficiently synchronous and spatially close-by inputs. Here, we provide a statistical physics approach to study the impact of such nonadditive dendritic processing on single-neuron responses and the performance of associative-memory tasks in artificial neural networks. First, we compute the effect of random input to a neuron incorporating nonlinear dendrites. This approach is independent of the details of the neuronal dynamics. Second, we use those results to study the impact of dendritic nonlinearities on the network dynamics in a paradigmatic model for associative memory, both numerically and analytically. We find that dendritic nonlinearities maintain network convergence and increase the robustness of memory performance against noise. Interestingly, an intermediate number of dendritic branches is optimal for memory functionality.

  20. The Autism Related Protein Contactin-Associated Protein-Like 2 (CNTNAP2 Stabilizes New Spines: An In Vivo Mouse Study.

    Directory of Open Access Journals (Sweden)

    Amos Gdalyahu

    Full Text Available The establishment and maintenance of neuronal circuits depends on tight regulation of synaptic contacts. We hypothesized that CNTNAP2, a protein associated with autism, would play a key role in this process. Indeed, we found that new dendritic spines in mice lacking CNTNAP2 were formed at normal rates, but failed to stabilize. Notably, rates of spine elimination were unaltered, suggesting a specific role for CNTNAP2 in stabilizing new synaptic circuitry.

  1. Orientations of dendritic growth during solidification

    Science.gov (United States)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  2. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats.

    Science.gov (United States)

    Spiga, Saturnino; Talani, Giuseppe; Mulas, Giovanna; Licheri, Valentina; Fois, Giulia R; Muggironi, Giulia; Masala, Nicola; Cannizzaro, Carla; Biggio, Giovanni; Sanna, Enrico; Diana, Marco

    2014-09-02

    Alcoholism involves long-term cognitive deficits, including memory impairment, resulting in substantial cost to society. Neuronal refinement and stabilization are hypothesized to confer resilience to poor decision making and addictive-like behaviors, such as excessive ethanol drinking and dependence. Accordingly, structural abnormalities are likely to contribute to synaptic dysfunctions that occur from suddenly ceasing the use of alcohol after chronic ingestion. Here we show that ethanol-dependent rats display a loss of dendritic spines in medium spiny neurons of the nucleus accumbens (Nacc) shell, accompanied by a reduction of tyrosine hydroxylase immunostaining and postsynaptic density 95-positive elements. Further analysis indicates that "long thin" but not "mushroom" spines are selectively affected. In addition, patch-clamp experiments from Nacc slices reveal that long-term depression (LTD) formation is hampered, with parallel changes in field potential recordings and reductions in NMDA-mediated synaptic currents. These changes are restricted to the withdrawal phase of ethanol dependence, suggesting their relevance in the genesis of signs and/or symptoms affecting ethanol withdrawal and thus the whole addictive cycle. Overall, these results highlight the key role of dynamic alterations in dendritic spines and their presynaptic afferents in the evolution of alcohol dependence. Furthermore, they suggest that the selective loss of long thin spines together with a reduced NMDA receptor function may affect learning. Disruption of this LTD could contribute to the rigid emotional and motivational state observed in alcohol dependence.

  3. Cellular Automaton Modeling of Dendritic Growth Using a Multi-grid Method

    International Nuclear Information System (INIS)

    Natsume, Y; Ohsasa, K

    2015-01-01

    A two-dimensional cellular automaton model with a multi-grid method was developed to simulate dendritic growth. In the present model, we used a triple-grid system for temperature, solute concentration and solid fraction fields as a new approach of the multi-grid method. In order to evaluate the validity of the present model, we carried out simulations of single dendritic growth, secondary dendrite arm growth, multi-columnar dendritic growth and multi-equiaxed dendritic growth. From the results of the grid dependency from the simulation of single dendritic growth, we confirmed that the larger grid can be used in the simulation and that the computational time can be reduced dramatically. In the simulation of secondary dendrite arm growth, the results from the present model were in good agreement with the experimental data and the simulated results from a phase-field model. Thus, the present model can quantitatively simulate dendritic growth. From the simulated results of multi-columnar and multi-equiaxed dendrites, we confirmed that the present model can perform simulations under practical solidification conditions. (paper)

  4. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress

    Directory of Open Access Journals (Sweden)

    Kelly M. Moench

    2016-06-01

    Full Text Available Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies.

  5. Spiny Neurons of Amygdala, Striatum and Cortex Use Dendritic Plateau Potentials to Detect Network UP States

    Directory of Open Access Journals (Sweden)

    Katerina D Oikonomou

    2014-09-01

    Full Text Available Spiny neurons of amygdala, striatum, and cerebral cortex share four interesting features: [1] they are the most abundant cell type within their respective brain area, [2] covered by thousands of thorny protrusions (dendritic spines, [3] possess high levels of dendritic NMDA conductances, and [4] experience sustained somatic depolarizations in vivo and in vitro (UP states. In all spiny neurons of the forebrain, adequate glutamatergic inputs generate dendritic plateau potentials (dendritic UP states characterized by (i fast rise, (ii plateau phase lasting several hundred milliseconds and (iii abrupt decline at the end of the plateau phase. The dendritic plateau potential propagates towards the cell body decrementally to induce a long-lasting (longer than 100 ms, most often 200 – 800 ms steady depolarization (~20 mV amplitude, which resembles a neuronal UP state. Based on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-locked to the regenerative plateau potential taking place in the dendrite. The somatic plateau rises after the onset of the dendritic voltage transient and collapses with the breakdown of the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect the occurrence of dendritic plateau potentials (dendritic UP states. We propose that the somatic voltage waveform during a neuronal UP state is determined by dendritic plateau potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and transform coherent network activity into a ubiquitous neuronal UP state. The biophysical properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing network activity, as well as secure the stable amplitudes of successive UP states.

  6. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model.

    Science.gov (United States)

    Cheng, Connie; Lau, Sally K M; Doering, Laurie C

    2016-08-02

    Astrocytes are key participants in various aspects of brain development and function, many of which are executed via secreted proteins. Defects in astrocyte signaling are implicated in neurodevelopmental disorders characterized by abnormal neural circuitry such as Fragile X syndrome (FXS). In animal models of FXS, the loss in expression of the Fragile X mental retardation 1 protein (FMRP) from astrocytes is associated with delayed dendrite maturation and improper synapse formation; however, the effect of astrocyte-derived factors on the development of neurons is not known. Thrombospondin-1 (TSP-1) is an important astrocyte-secreted protein that is involved in the regulation of spine development and synaptogenesis. In this study, we found that cultured astrocytes isolated from an Fmr1 knockout (Fmr1 KO) mouse model of FXS displayed a significant decrease in TSP-1 protein expression compared to the wildtype (WT) astrocytes. Correspondingly, Fmr1 KO hippocampal neurons exhibited morphological deficits in dendritic spines and alterations in excitatory synapse formation following long-term culture. All spine and synaptic abnormalities were prevented in the presence of either astrocyte-conditioned media or a feeder layer derived from FMRP-expressing astrocytes, or following the application of exogenous TSP-1. Importantly, this work demonstrates the integral role of astrocyte-secreted signals in the establishment of neuronal communication and identifies soluble TSP-1 as a potential therapeutic target for Fragile X syndrome.

  7. Deconvolution of Voltage Sensor Time Series and Electro-diffusion Modeling Reveal the Role of Spine Geometry in Controlling Synaptic Strength.

    Science.gov (United States)

    Cartailler, Jerome; Kwon, Taekyung; Yuste, Rafael; Holcman, David

    2018-03-07

    Most synaptic excitatory connections are made on dendritic spines. But how the voltage in spines is modulated by its geometry remains unclear. To investigate the electrical properties of spines, we combine voltage imaging data with electro-diffusion modeling. We first present a temporal deconvolution procedure for the genetically encoded voltage sensor expressed in hippocampal cultured neurons and then use electro-diffusion theory to compute the electric field and the current-voltage conversion. We extract a range for the neck resistances of 〈R〉=100±35MΩ. When a significant current is injected in a spine, the neck resistance can be inversely proportional to its radius, but not to the radius square, as predicted by Ohm's law. We conclude that the postsynaptic voltage cannot only be modulated by changing the number of receptors, but also by the spine geometry. Thus, spine morphology could be a key component in determining synaptic transduction and plasticity. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. miR-191 and miR-135 are required for long-lasting spine remodelling associated with synaptic long-term depression

    Science.gov (United States)

    Hu, Zhonghua; Yu, Danni; Gu, Qin-Hua; Yang, Yanqin; Tu, Kang; Zhu, Jun; Li, Zheng

    2014-02-01

    Activity-dependent modification of dendritic spines, subcellular compartments accommodating postsynaptic specializations in the brain, is an important cellular mechanism for brain development, cognition and synaptic pathology of brain disorders. NMDA receptor-dependent long-term depression (NMDAR-LTD), a prototypic form of synaptic plasticity, is accompanied by prolonged remodelling of spines. The mechanisms underlying long-lasting spine remodelling in NMDAR-LTD, however, are largely unclear. Here we show that LTD induction causes global changes in miRNA transcriptomes affecting many cellular activities. Specifically, we show that expression changes of miR-191 and miR-135 are required for maintenance but not induction of spine restructuring. Moreover, we find that actin depolymerization and AMPA receptor exocytosis are regulated for extended periods of time by miRNAs to support long-lasting spine plasticity. These findings reveal a miRNA-mediated mechanism and a role for AMPA receptor exocytosis in long-lasting spine plasticity, and identify a number of candidate miRNAs involved in LTD.

  9. Numerical Simulation on Dendrite Growth During Solidification of Al-4%Cu Alloy

    Directory of Open Access Journals (Sweden)

    ZHANG Min

    2016-06-01

    Full Text Available A new two-dimensional cellular automata and finite difference (CA-FD model of dendritic growth was improved, which a perturbation function was introduced to control the growth of secondary and tertiary dendrite, the concentration of the solute was clearly defined as the liquid solute concentration and the solid-phase solute concentration in dendrite growth processes, and the eight moore calculations method was used to reduce the anisotropy caused by the shape of the grid in the process of redistribution and diffusion of solute. Single and multi equiaxed dendrites along different preferential direction, single and multi directions of columnar dendrites of Al-4% Cu alloy were simulated, as well as the distribution of liquid solute concentration and solid solute concentration. The simulation results show that the introduced perturbation function can promote the dendrite branching, liquid/solid phase solute calculation model is able to simulate the solute distribution of liquid/solid phase accurately in the process of dendritic growth, and the improved model can realize competitive growth of dendrite in any direction.

  10. Single Dose Toxicity of Chukyu (spine-healing Pharmacopuncture Injection in the Muscle of Rats

    Directory of Open Access Journals (Sweden)

    Jeong Hohyun

    2014-03-01

    Full Text Available Objectives: This study was performed to analyze the single dose toxicity of Chukyu (spine-healing pharmacopuncture. Methods: All experiments were conducted at the Biotoxtech, an institution authorized to perform non-clinical studies under the regulations of Good Laboratory Practice (GLP regulations. Sprague-Dawley rats were chosen for the pilot study. Doses of Chukyu (spine-healing pharmacopuncture, 0.1, 0.5 and 1.0 mL, were administered to the experimental groups, and a dose of normal saline solution, 1.0 mL, was administered to the control group. This study was conducted under the approval of the Institutional Animal Ethic Committee. Results: No deaths or abnormalities occurred in any of the four groups. No significant changes in weight, hematological parameters or clinical chemistry between the control group and the experimental groups were observed. To check for abnormalities in organs and tissues, we used microscopy to examine representative histological sections of each specified organ; the results showed no significant differences in any of the organs or tissues except in one case, where interstitial infiltrating macrophages were found in one female rat in the 0.5-mL/animal experimental group. Conclusion: The above findings suggest that treatment with Chukyu (spine-healing pharmacopuncture is relatively safe. Further studies on this subject are needed to yield more concrete evidence.

  11. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    Science.gov (United States)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  12. Fear extinction deficits following acute stress associate with increased spine density and dendritic retraction in basolateral amygdala neurons

    OpenAIRE

    Maroun, Mouna; Ioannides, Pericles J.; Bergman, Krista L.; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara L.

    2013-01-01

    Stress-sensitive psychopathologies such as post-traumatic stress disorder are characterized by deficits in fear extinction and dysfunction of corticolimbic circuits mediating extinction. Chronic stress facilitates fear conditioning, impairs extinction, and produces dendritic proliferation in the basolateral amygdala (BLA), a critical site of plasticity for extinction. Acute stress impairs extinction, alters plasticity in the medial prefrontal cortex-to-BLA circuit, and causes dendritic retrac...

  13. Coding and decoding with dendrites.

    Science.gov (United States)

    Papoutsi, Athanasia; Kastellakis, George; Psarrou, Maria; Anastasakis, Stelios; Poirazi, Panayiota

    2014-02-01

    Since the discovery of complex, voltage dependent mechanisms in the dendrites of multiple neuron types, great effort has been devoted in search of a direct link between dendritic properties and specific neuronal functions. Over the last few years, new experimental techniques have allowed the visualization and probing of dendritic anatomy, plasticity and integrative schemes with unprecedented detail. This vast amount of information has caused a paradigm shift in the study of memory, one of the most important pursuits in Neuroscience, and calls for the development of novel theories and models that will unify the available data according to some basic principles. Traditional models of memory considered neural cells as the fundamental processing units in the brain. Recent studies however are proposing new theories in which memory is not only formed by modifying the synaptic connections between neurons, but also by modifications of intrinsic and anatomical dendritic properties as well as fine tuning of the wiring diagram. In this review paper we present previous studies along with recent findings from our group that support a key role of dendrites in information processing, including the encoding and decoding of new memories, both at the single cell and the network level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down's syndrome.

    Directory of Open Access Journals (Sweden)

    Octavio Garcia

    2010-12-01

    Full Text Available Down's syndrome (DS is the most common genetic cause of mental retardation. Reduced number and aberrant architecture of dendritic spines are common features of DS neuropathology. However, the mechanisms involved in DS spine alterations are not known. In addition to a relevant role in synapse formation and maintenance, astrocytes can regulate spine dynamics by releasing soluble factors or by physical contact with neurons. We have previously shown impaired mitochondrial function in DS astrocytes leading to metabolic alterations in protein processing and secretion. In this study, we investigated whether deficits in astrocyte function contribute to DS spine pathology.Using a human astrocyte/rat hippocampal neuron coculture, we found that DS astrocytes are directly involved in the development of spine malformations and reduced synaptic density. We also show that thrombospondin 1 (TSP-1, an astrocyte-secreted protein, possesses a potent modulatory effect on spine number and morphology, and that both DS brains and DS astrocytes exhibit marked deficits in TSP-1 protein expression. Depletion of TSP-1 from normal astrocytes resulted in dramatic changes in spine morphology, while restoration of TSP-1 levels prevented DS astrocyte-mediated spine and synaptic alterations. Astrocyte cultures derived from TSP-1 KO mice exhibited similar deficits to support spine formation and structure than DS astrocytes.These results indicate that human astrocytes promote spine and synapse formation, identify astrocyte dysfunction as a significant factor of spine and synaptic pathology in the DS brain, and provide a mechanistic rationale for the exploration of TSP-1-based therapies to treat spine and synaptic pathology in DS and other neurological conditions.

  15. The Complete Reconfiguration of Dendritic Gold

    Science.gov (United States)

    Paneru, Govind; Flanders, Bret

    2014-03-01

    Reconfigurability-by-design is an important strategy in modern materials science, as materials with this capability could potentially be used to confer hydrophobic, lipophobic, or anti-corrosive character to substrates in a regenerative manner. The present work extends the directed electrochemical nanowire assembly (DENA) methodology, which is a technique that employs alternating voltages to grow single crystalline metallic nanowires and nano-dendrites from simple salt solutions, to enable the complete dissolution of macroscopic arrays of metallic dendrites following their growth. Our main finding is that structural reconfiguration of dendritic gold is induced by changes in the MHz-level frequencies of voltages that are applied to the dendrites. Cyclic voltammetry and micro-Raman spectroscopy have been used to show that dendritic gold grows and dissolves by the same chemical mechanisms as bulk gold. Hence, the redox chemistry that occurs at the crystal-solution interface is no different than the established electrochemistry of gold. What differs in this process and allows for reconfiguration to occur is the diffusive behavior of the gold chloride molecules in the solution adjacent to the interface. We will present a simple model that captures the physics of this behavior.

  16. Fatherhood contributes to increased hippocampal spine density and anxiety regulation in California mice.

    Science.gov (United States)

    Glasper, Erica R; Hyer, Molly M; Katakam, Jhansi; Harper, Robyn; Ameri, Cyrus; Wolz, Thomas

    2016-01-01

    Parenting alters the hippocampus, an area of the brain that undergoes significant experience-induced plasticity and contributes to emotional regulation. While the relationship between maternal care and hippocampal neuroplasticity has been characterized, the extent to which fatherhood alters the structure and function of the hippocampus is far less understood. Here, we investigated to what extent fatherhood altered anxiety regulation and dendritic morphology of the hippocampus using the highly paternal California mouse (Peromyscus californicus). Fathers spent significantly more time on the open arms of the elevated plus maze, compared to non-fathers. Total distance traveled in the EPM was not changed by paternal experience, which suggests that the increased time spent on the open arms of the maze indicates decreased anxiety-like behavior. Fatherhood also increased dendritic spine density of granule cells in the dentate gyrus and basal dendrites of pyramidal cells in area CA1 of the hippocampus. These findings parallel those observed in maternal rodents, suggesting that the hippocampus of fathers and mothers respond similarly to offspring.

  17. Basal Dendritic Morphology of Cortical Pyramidal Neurons in Williams Syndrome: Prefrontal Cortex and Beyond.

    Science.gov (United States)

    Hrvoj-Mihic, Branka; Hanson, Kari L; Lew, Caroline H; Stefanacci, Lisa; Jacobs, Bob; Bellugi, Ursula; Semendeferi, Katerina

    2017-01-01

    Williams syndrome (WS) is a unique neurodevelopmental disorder with a specific behavioral and cognitive profile, which includes hyperaffiliative behavior, poor social judgment, and lack of social inhibition. Here we examined the morphology of basal dendrites on pyramidal neurons in the cortex of two rare adult subjects with WS. Specifically, we examined two areas in the prefrontal cortex (PFC)-the frontal pole (Brodmann area 10) and the orbitofrontal cortex (Brodmann area 11)-and three areas in the motor, sensory, and visual cortex (BA 4, BA 3-1-2, BA 18). The findings suggest that the morphology of basal dendrites on the pyramidal neurons is altered in the cortex of WS, with differences that were layer-specific, more prominent in PFC areas, and displayed an overall pattern of dendritic organization that differentiates WS from other disorders. In particular, and unlike what was expected based on typically developing brains, basal dendrites in the two PFC areas did not display longer and more branched dendrites compared to motor, sensory and visual areas. Moreover, dendritic branching, dendritic length, and the number of dendritic spines differed little within PFC and between the central executive region (BA 10) and BA 11 that is part of the orbitofrontal region involved into emotional processing. In contrast, the relationship between the degree of neuronal branching in supra- versus infra-granular layers was spared in WS. Although this study utilized tissue held in formalin for a prolonged period of time and the number of neurons available for analysis was limited, our findings indicate that WS cortex, similar to that in other neurodevelopmental disorders such as Down syndrome, Rett syndrome, Fragile X, and idiopathic autism, has altered morphology of basal dendrites on pyramidal neurons, which appears more prominent in selected areas of the PFC. Results were examined from developmental perspectives and discussed in the context of other neurodevelopmental disorders

  18. Basal Dendritic Morphology of Cortical Pyramidal Neurons in Williams Syndrome: Prefrontal Cortex and Beyond

    Directory of Open Access Journals (Sweden)

    Branka Hrvoj-Mihic

    2017-08-01

    Full Text Available Williams syndrome (WS is a unique neurodevelopmental disorder with a specific behavioral and cognitive profile, which includes hyperaffiliative behavior, poor social judgment, and lack of social inhibition. Here we examined the morphology of basal dendrites on pyramidal neurons in the cortex of two rare adult subjects with WS. Specifically, we examined two areas in the prefrontal cortex (PFC—the frontal pole (Brodmann area 10 and the orbitofrontal cortex (Brodmann area 11—and three areas in the motor, sensory, and visual cortex (BA 4, BA 3-1-2, BA 18. The findings suggest that the morphology of basal dendrites on the pyramidal neurons is altered in the cortex of WS, with differences that were layer-specific, more prominent in PFC areas, and displayed an overall pattern of dendritic organization that differentiates WS from other disorders. In particular, and unlike what was expected based on typically developing brains, basal dendrites in the two PFC areas did not display longer and more branched dendrites compared to motor, sensory and visual areas. Moreover, dendritic branching, dendritic length, and the number of dendritic spines differed little within PFC and between the central executive region (BA 10 and BA 11 that is part of the orbitofrontal region involved into emotional processing. In contrast, the relationship between the degree of neuronal branching in supra- versus infra-granular layers was spared in WS. Although this study utilized tissue held in formalin for a prolonged period of time and the number of neurons available for analysis was limited, our findings indicate that WS cortex, similar to that in other neurodevelopmental disorders such as Down syndrome, Rett syndrome, Fragile X, and idiopathic autism, has altered morphology of basal dendrites on pyramidal neurons, which appears more prominent in selected areas of the PFC. Results were examined from developmental perspectives and discussed in the context of other

  19. Voltage Gated Calcium Channel Activation by Backpropagating Action Potentials Downregulates NMDAR Function

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Theis

    2018-04-01

    Full Text Available The majority of excitatory synapses are located on dendritic spines of cortical glutamatergic neurons. In spines, compartmentalized Ca2+ signals transduce electrical activity into specific long-term biochemical and structural changes. Action potentials (APs propagate back into the dendritic tree and activate voltage gated Ca2+ channels (VGCCs. For spines, this global mode of spine Ca2+ signaling is a direct biochemical feedback of suprathreshold neuronal activity. We previously demonstrated that backpropagating action potentials (bAPs result in long-term enhancement of spine VGCCs. This activity-dependent VGCC plasticity results in a large interspine variability of VGCC Ca2+ influx. Here, we investigate how spine VGCCs affect glutamatergic synaptic transmission. We combined electrophysiology, two-photon Ca2+ imaging and two-photon glutamate uncaging in acute brain slices from rats. T- and R-type VGCCs were the dominant depolarization-associated Ca2+conductances in dendritic spines of excitatory layer 2 neurons and do not affect synaptic excitatory postsynaptic potentials (EPSPs measured at the soma. Using two-photon glutamate uncaging, we compared the properties of glutamatergic synapses of single spines that express different levels of VGCCs. While VGCCs contributed to EPSP mediated Ca2+ influx, the amount of EPSP mediated Ca2+ influx is not determined by spine VGCC expression. On a longer timescale, the activation of VGCCs by bAP bursts results in downregulation of spine NMDAR function.

  20. RAB-10 Regulates Dendritic Branching by Balancing Dendritic Transport

    Science.gov (United States)

    Taylor, Caitlin A.; Yan, Jing; Howell, Audrey S.; Dong, Xintong; Shen, Kang

    2015-01-01

    The construction of a large dendritic arbor requires robust growth and the precise delivery of membrane and protein cargoes to specific subcellular regions of the developing dendrite. How the microtubule-based vesicular trafficking and sorting systems are regulated to distribute these dendritic development factors throughout the dendrite is not well understood. Here we identify the small GTPase RAB-10 and the exocyst complex as critical regulators of dendrite morphogenesis and patterning in the C. elegans sensory neuron PVD. In rab-10 mutants, PVD dendritic branches are reduced in the posterior region of the cell but are excessive in the distal anterior region of the cell. We also demonstrate that the dendritic branch distribution within PVD depends on the balance between the molecular motors kinesin-1/UNC-116 and dynein, and we propose that RAB-10 regulates dendrite morphology by balancing the activity of these motors to appropriately distribute branching factors, including the transmembrane receptor DMA-1. PMID:26633194

  1. The unfolded protein response is required for dendrite morphogenesis

    Science.gov (United States)

    Wei, Xing; Howell, Audrey S; Dong, Xintong; Taylor, Caitlin A; Cooper, Roshni C; Zhang, Jianqi; Zou, Wei; Sherwood, David R; Shen, Kang

    2015-01-01

    Precise patterning of dendritic fields is essential for the formation and function of neuronal circuits. During development, dendrites acquire their morphology by exuberant branching. How neurons cope with the increased load of protein production required for this rapid growth is poorly understood. Here we show that the physiological unfolded protein response (UPR) is induced in the highly branched Caenorhabditis elegans sensory neuron PVD during dendrite morphogenesis. Perturbation of the IRE1 arm of the UPR pathway causes loss of dendritic branches, a phenotype that can be rescued by overexpression of the ER chaperone HSP-4 (a homolog of mammalian BiP/ grp78). Surprisingly, a single transmembrane leucine-rich repeat protein, DMA-1, plays a major role in the induction of the UPR and the dendritic phenotype in the UPR mutants. These findings reveal a significant role for the physiological UPR in the maintenance of ER homeostasis during morphogenesis of large dendritic arbors. DOI: http://dx.doi.org/10.7554/eLife.06963.001 PMID:26052671

  2. The BDNF val-66-met Polymorphism Affects Neuronal Morphology and Synaptic Transmission in Cultured Hippocampal Neurons from Rett Syndrome Mice

    Directory of Open Access Journals (Sweden)

    Xin Xu

    2017-07-01

    Full Text Available Brain-derived neurotrophic factor (Bdnf has been implicated in several neurological disorders including Rett syndrome (RTT, an X-linked neurodevelopmental disorder caused by loss-of-function mutations in the transcriptional modulator methyl-CpG-binding protein 2 (MECP2. The human BDNF gene has a single nucleotide polymorphism (SNP—a methionine (met substitution for valine (val at codon 66—that affects BDNF’s trafficking and activity-dependent release and results in cognitive dysfunction. Humans that are carriers of the met-BDNF allele have subclinical memory deficits and reduced hippocampal volume and activation. It is still unclear whether this BDNF SNP affects the clinical outcome of RTT individuals. To evaluate whether this BDNF SNP contributes to RTT pathophysiology, we examined the consequences of expression of either val-BDNF or met-BDNF on dendrite and dendritic spine morphology, and synaptic function in cultured hippocampal neurons from wildtype (WT and Mecp2 knockout (KO mice. Our findings revealed that met-BDNF does not increase dendritic growth and branching, dendritic spine density and individual spine volume, and the number of excitatory synapses in WT neurons, as val-BDNF does. Furthermore, met-BDNF reduces dendritic complexity, dendritic spine volume and quantal excitatory synaptic transmission in Mecp2 KO neurons. These results suggest that the val-BDNF variant contributes to RTT pathophysiology, and that BDNF-based therapies should take into consideration the BDNF genotype of the RTT individuals.

  3. A Ca2+-based computational model for NDMA receptor-dependent synaptic plasticity at individual post-synaptic spines in the hippocampus

    Directory of Open Access Journals (Sweden)

    Owen Rackham

    2010-07-01

    Full Text Available Associative synaptic plasticity is synapse specific and requires coincident activity in presynaptic and postsynaptic neurons to activate NMDA receptors (NMDARs. The resultant Ca2+ influx is the critical trigger for the induction of synaptic plasticity. Given its centrality for the induction of synaptic plasticity, a model for NMDAR activation incorporating the timing of presynaptic glutamate release and postsynaptic depolarization by back-propagating action potentials could potentially predict the pre- and post-synaptic spike patterns required to induce synaptic plasticity. We have developed such a model by incorporating currently available data on the timecourse and amplitude of the postsynaptic membrane potential within individual spines. We couple this with data on the kinetics of synaptic NMDARs and then use the model to predict the continuous spine [Ca2+] in response to regular or irregular pre- and post-synaptic spike patterns. We then incorporate experimental data from synaptic plasticity induction protocols by regular activity patterns to couple the predicted local peak [Ca2+] to changes in synaptic strength. We find that our model accurately describes [Ca2+] in dendritic spines resulting from NMDAR activation during presynaptic and postsynaptic activity when compared to previous experimental observations. The model also replicates the experimentally determined plasticity outcome of regular and irregular spike patterns when applied to a single synapse. This model could therefore be used to predict the induction of synaptic plasticity under a variety of experimental conditions and spike patterns.

  4. THE KINETICS OF MULTIBRANCH INTEGRATION ON THE DENDRITIC ARBOR OF CA1 PYRAMIDAL NEURONS

    Directory of Open Access Journals (Sweden)

    Sunggu eYang

    2014-05-01

    Full Text Available The process by which synaptic inputs separated in time and space are integrated by the dendritic arbor to produce a sequence of action potentials is among the most fundamental signal transformations that takes place within the central nervous system. Some aspects of this complex process, such as integration at the level of individual dendritic branches, have been extensively studied. But other aspects, such as how inputs from multiple branches are combined, and the kinetics of that integration have not been systematically examined. Using a 3D digital holographic photolysis technique to overcome the challenges posed by the complexities of the 3D anatomy of the dendritic arbor of CA1 pyramidal neurons for conventional photolysis, we show that integration on a single dendrite is fundamentally different from that on multiple dendrites. Multibranch integration occurring at oblique and basal dendrites allows somatic action potential firing of the cell to faithfully follow the driving stimuli over a significantly wider frequency range than what is possible with single branch integration. However, multibranch integration requires greater input strength to drive the somatic action potentials. This tradeoff between sensitivity and kinetics may explain the puzzling report of the predominance of multibranch, rather than single branch, integration from in vivo recordings during presentation of visual stimuli.

  5. Layer 5 Pyramidal Neurons’ Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis

    Directory of Open Access Journals (Sweden)

    Diana Urrego

    2015-01-01

    Full Text Available This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans.

  6. Layer 5 Pyramidal Neurons' Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis

    Science.gov (United States)

    Urrego, Diana; Troncoso, Julieta; Múnera, Alejandro

    2015-01-01

    This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1). It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans. PMID:26064916

  7. Spine formation pattern of adult-born neurons is differentially modulated by the induction timing and location of hippocampal plasticity.

    Directory of Open Access Journals (Sweden)

    Noriaki Ohkawa

    Full Text Available In the adult hippocampus dentate gyrus (DG, newly born neurons are functionally integrated into existing circuits and play important roles in hippocampus-dependent memory. However, it remains unclear how neural plasticity regulates the integration pattern of new neurons into preexisting circuits. Because dendritic spines are major postsynaptic sites for excitatory inputs, spines of new neurons were visualized by retrovirus-mediated labeling to evaluate integration. Long-term potentiation (LTP was induced at 12, 16, or 21 days postinfection (dpi, at which time new neurons have no, few, or many spines, respectively. The spine expression patterns were investigated at one or two weeks after LTP induction. Induction at 12 dpi increased later spinogenesis, although the new neurons at 12 dpi didn't respond to the stimulus for LTP induction. Induction at 21 dpi transiently mediated spine enlargement. Surprisingly, LTP induction at 16 dpi reduced the spine density of new neurons. All LTP-mediated changes specifically appeared within the LTP-induced layer. Therefore, neural plasticity differentially regulates the integration of new neurons into the activated circuit, dependent on their developmental stage. Consequently, new neurons at different developmental stages may play distinct roles in processing the acquired information by modulating the connectivity of activated circuits via their integration.

  8. Stress-induced grey matter loss determined by MRI is primarily due to loss of dendrites and their synapses.

    Science.gov (United States)

    Kassem, Mustafa S; Lagopoulos, Jim; Stait-Gardner, Tim; Price, William S; Chohan, Tariq W; Arnold, Jonathon C; Hatton, Sean N; Bennett, Maxwell R

    2013-04-01

    Stress, unaccompanied by signs of post-traumatic stress disorder, is known to decrease grey matter volume (GMV) in the anterior cingulate cortex (ACC) and hippocampus but not the amygdala in humans. We sought to determine if this was the case in stressed mice using high-resolution magnetic resonance imaging (MRI) and to identify the cellular constituents of the grey matter that quantitatively give rise to such changes. Stressed mice showed grey matter losses of 10 and 15 % in the ACC and hippocampus, respectively but not in the amygdala or the retrosplenial granular area (RSG). Concurrently, no changes in the number or volumes of the somas of neurons, astrocytes or oligodendrocytes were detected. A loss of synaptic spine density of up to 60 % occurred on different-order dendrites in the ACC and hippocampus (CA1) but not in the amygdala or RSG. The loss of spines was accompanied by decreases in cumulative dendritic length of neurons of over 40 % in the ACC and hippocampus (CA1) giving rise to decreases in volume of dendrites of 2.6 mm(3) for the former and 0.6 mm(3) for the latter, with no change in the amygdala or RSG. These values are similar to the MRI-determined loss of GMV following stress of 3.0 and 0.8 mm(3) in ACC and hippocampus, respectively, with no changes in the amygdala or RSG. This quantitative study is the first to relate GMV changes in the cortex measured with MRI to volume changes in cellular constituents of the grey matter.

  9. Supramolecular effects in dendritic systems containing photoactive groups

    Directory of Open Access Journals (Sweden)

    GIANLUCA CAMILLO AZZELLINI

    2000-03-01

    Full Text Available In this article are described dendritic structures containing photoactive groups at the surface or in the core. The observed supramolecular effects can be attributed to the nature of the photoactive group and their location in the dendritic architecture. The peripheric azobenzene groups in these dendrimeric compounds can be regarded as single residues that retain the spectroscopic and photochemical properties of free azobenzene moiety. The E and Z forms of higher generation dendrimer, functionalized with azobenzene groups, show different host ability towards eosin dye, suggesting the possibility of using such dendrimer in photocontrolled host-guest systems. The photophysical properties of many dendritic-bipyridine ruthenium complexes have been investigated. Particularly in aerated medium more intense emission and a longer excited-state lifetime are observed as compared to the parent unsubstituted bipyridine ruthenium complexes. These differences can be attributed to a shielding effect towards dioxygen quenching originated by the dendritic branches.

  10. Standardized X-ray reports of the spine in osteogenesis imperfecta

    International Nuclear Information System (INIS)

    Koerber, Friederike; Demant, A.W.; Koerber, S.; Semler, O.; Schoenau, E.; Lackner, K.J.

    2011-01-01

    Purpose: In this study we present a standard for radiological reports in patients with osteogenesis imperfecta (OI). The parameters can be used to describe X-rays of the lateral spine and give an impartial description of anatomical structures during a treatment with bisphosphonates. Material and Methods: In this retrospective analysis we included 48 patients with OI (31 female, 17 male [1.5 months - 19 years, mean age 9.0 years]). Lateral spine X-rays were analyzed by 2 radiologists before and during treatment. The parameters of the standardized report are degree of kyphoscoliosis, compression of single vertebrae, predominant type of vertebral deformities and extent of vertebral compression (score 1 - 5). Results: There was no clear trend in the change of compression of single vertebrae. Some vertebrae with ventral compression showed an upgrowth to vertebrae with harmonic compression. Other deformities showed only marginal changes. In 26 patients the kyphoscoliosis improved (mean 10 degrees), in 36 patients the thoracic vertebrae compression increased and in 30 patients the vertebral height in the lumbar spine increased. The improvement of vertebral height was 1 point in the thoracic and lumbar spine. Conclusion: We propose a standardized report of X-rays of the lateral spine in patients with OI with quantitative and semiquantitative parameters using morphological criteria. These include compression of single vertebrae, degree of kyphoscoliosis, vertebral deformities and the severity of vertebral compression in the thoracic and lumbar spine. (orig.)

  11. Subcellular Location of PKA Controls Striatal Plasticity: Stochastic Simulations in Spiny Dendrites

    Science.gov (United States)

    Oliveira, Rodrigo F.; Kim, MyungSook; Blackwell, Kim T.

    2012-01-01

    Dopamine release in the striatum has been implicated in various forms of reward dependent learning. Dopamine leads to production of cAMP and activation of protein kinase A (PKA), which are involved in striatal synaptic plasticity and learning. PKA and its protein targets are not diffusely located throughout the neuron, but are confined to various subcellular compartments by anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Experiments have shown that blocking the interaction of PKA with AKAPs disrupts its subcellular location and prevents LTP in the hippocampus and striatum; however, these experiments have not revealed whether the critical function of anchoring is to locate PKA near the cAMP that activates it or near its targets, such as AMPA receptors located in the post-synaptic density. We have developed a large scale stochastic reaction-diffusion model of signaling pathways in a medium spiny projection neuron dendrite with spines, based on published biochemical measurements, to investigate this question and to evaluate whether dopamine signaling exhibits spatial specificity post-synaptically. The model was stimulated with dopamine pulses mimicking those recorded in response to reward. Simulations show that PKA colocalization with adenylate cyclase, either in the spine head or in the dendrite, leads to greater phosphorylation of DARPP-32 Thr34 and AMPA receptor GluA1 Ser845 than when PKA is anchored away from adenylate cyclase. Simulations further demonstrate that though cAMP exhibits a strong spatial gradient, diffusible DARPP-32 facilitates the spread of PKA activity, suggesting that additional inactivation mechanisms are required to produce spatial specificity of PKA activity. PMID:22346744

  12. Formation mechanism of PbTe dendritic nanostructures grown by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sangwoo; Kim, Hyunghoon; Lee, Ho Seong, E-mail: hs.lee@knu.ac.kr

    2017-02-01

    The formation mechanism of PbTe dendritic nanostructures grown at room temperature by electrodeposition in nitric acid electrolytes containing Pb and Te was investigated. Scanning electron microscopy and transmission electron microscopy analyses indicated that the PbTe dendritic nanostructures were composed of triangular-shaped units surrounded by {111} and {110} planes. Because of the interfacial energy anisotropy of the {111} and {110} planes and the difference in the current density gradient, the growth rate in the vertical direction of the (111) basal plane was slower than that in the direction of the tip of the triangular shape, leading to growth in the tip direction. In contrast to the general growth direction of fcc dendrites, namely <100>, the tip direction of the {111} basal plane for our samples was <112>, and the PbTe dendritic nanostructures grew in the tip direction. The angles formed by the main trunk and first branches were regular and approximately 60°, and those between the first and second branches were also approximately 60°. Finally, the nanostructures grew in single-crystalline dendritic form. - Highlights: • PbTe dendrite nanostructures were grown by electrodeposition. • PbTe dendritic nanostructures were composed of triangular-shaped units. • The formation mechanism of PbTe dendrite nanostructures was characterized.

  13. Thermosolutal convection and macrosegregation in dendritic alloys

    Science.gov (United States)

    Poirier, David R.; Heinrich, J. C.

    1993-01-01

    A mathematical model of solidification, that simulates the formation of channel segregates or freckles, is presented. The model simulates the entire solidification process, starting with the initial melt to the solidified cast, and the resulting segregation is predicted. Emphasis is given to the initial transient, when the dendritic zone begins to develop and the conditions for the possible nucleation of channels are established. The mechanisms that lead to the creation and eventual growth or termination of channels are explained in detail and illustrated by several numerical examples. A finite element model is used for the simulations. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. The major task was to develop the solidification model. In addition, other tasks that were performed in conjunction with the modeling of dendritic solidification are briefly described.

  14. Normal lumbar spine bone mineral densities with single-energy CT

    International Nuclear Information System (INIS)

    Hendrick, R.E.; Ritenour, E.R.; Geis, J.R.; Thickman, D.; Freeman, K.

    1988-01-01

    The authors report trabecular spine densities determined by single-energy CT in 267 healthy women, aged 22 to 75 years. Volunteers were scanned at eight sites with use of identical fourth-generation CT scanners, postpatient calibration phantoms, and analysis software that accounts for beam hardening as a function of patient size. Results indicate that a cubic polynomial best represents the decrease in bone density (in milligrams per milliliter of K 2 HPO 4 ) with age (in years): Bone Density = 140.9 + 4.44(Age) - 0.133(Age) 2 + 0.0008(Age) 3 , with statistical significance over the best linear and quadratic polynomial fits (P < .001). The mean bone densities of healthy women above age 30 years are found to be lower by an average of 8 mg/mL than reported by Cann et al, whose data indicate that the greatest loss in trabecular bone density in healthy women occurs in the 50-59-year group, while out data indicate greatest loss in the 60-75 year age group

  15. Cobb Angle Changes in Thoracic and Lumbar Spine Fractures ...

    African Journals Online (AJOL)

    The annual incidence of spinal column fracture is 350 per million populations. with Motor vehicular accident being the major single cause of spine injuries. The victims are predominantly young and male. The aim of this study to evaluate the clinical outcome of conservative treatment of closed thoracic and lumbar spine ...

  16. Dendritic cell vaccines.

    Science.gov (United States)

    Mosca, Paul J; Lyerly, H Kim; Clay, Timothy M; Morse, Michael A; Lyerly, H Kim

    2007-05-01

    Dendritic cells are antigen-presenting cells that have been shown to stimulate tumor antigen-specific T cell responses in preclinical studies. Consequently, there has been intense interest in developing dendritic cell based cancer vaccines. A variety of methods for generating dendritic cells, loading them with tumor antigens, and administering them to patients have been described. In recent years, a number of early phase clinical trials have been performed and have demonstrated the safety and feasibility of dendritic cell immunotherapies. A number of these trials have generated valuable preliminary data regarding the clinical and immunologic response to DC-based immunotherapy. The emphasis of dendritic cell immunotherapy research is increasingly shifting toward the development of strategies to increase the potency of dendritic cell vaccine preparations.

  17. Active action potential propagation but not initiation in thalamic interneuron dendrites

    Science.gov (United States)

    Casale, Amanda E.; McCormick, David A.

    2012-01-01

    Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033

  18. Sequential Elution Interactome Analysis of the Mind Bomb 1 Ubiquitin Ligase Reveals a Novel Role in Dendritic Spine Outgrowth*

    Science.gov (United States)

    Mertz, Joseph; Tan, Haiyan; Pagala, Vishwajeeth; Bai, Bing; Chen, Ping-Chung; Li, Yuxin; Cho, Ji-Hoon; Shaw, Timothy; Wang, Xusheng; Peng, Junmin

    2015-01-01

    The mind bomb 1 (Mib1) ubiquitin ligase is essential for controlling metazoan development by Notch signaling and possibly the Wnt pathway. It is also expressed in postmitotic neurons and regulates neuronal morphogenesis and synaptic activity by mechanisms that are largely unknown. We sought to comprehensively characterize the Mib1 interactome and study its potential function in neuron development utilizing a novel sequential elution strategy for affinity purification, in which Mib1 binding proteins were eluted under different stringency and then quantified by the isobaric labeling method. The strategy identified the Mib1 interactome with both deep coverage and the ability to distinguish high-affinity partners from low-affinity partners. A total of 817 proteins were identified during the Mib1 affinity purification, including 56 high-affinity partners and 335 low-affinity partners, whereas the remaining 426 proteins are likely copurified contaminants or extremely weak binding proteins. The analysis detected all previously known Mib1-interacting proteins and revealed a large number of novel components involved in Notch and Wnt pathways, endocytosis and vesicle transport, the ubiquitin-proteasome system, cellular morphogenesis, and synaptic activities. Immunofluorescence studies further showed colocalization of Mib1 with five selected proteins: the Usp9x (FAM) deubiquitinating enzyme, alpha-, beta-, and delta-catenins, and CDKL5. Mutations of CDKL5 are associated with early infantile epileptic encephalopathy-2 (EIEE2), a severe form of mental retardation. We found that the expression of Mib1 down-regulated the protein level of CDKL5 by ubiquitination, and antagonized CDKL5 function during the formation of dendritic spines. Thus, the sequential elution strategy enables biochemical characterization of protein interactomes; and Mib1 analysis provides a comprehensive interactome for investigating its role in signaling networks and neuronal development. PMID:25931508

  19. Saturated Reconstruction of a Volume of Neocortex

    Science.gov (United States)

    2015-07-30

    International Conference on Scientific and Statis- tical Database Management. Cajal, R.S. (1899). Textura del sistema nervioso del hombre y de los...spines, there were many more spines from other dendrites that invaded this territory, i.e., the central ‘‘red’’ dendrite contributes only 12%; n = 77...628 of the spines in cylinder 1. Furthermore, the central den- drite’s spines were completely intermingled with the spines of other dendrites (see

  20. Phencyclidine-induced Loss of Asymmetric Spine Synapses in Rodent Prefrontal Cortex is Reversed by Acute and Chronic Treatment with Olanzapine

    Science.gov (United States)

    Elsworth, John D; Morrow, Bret A; Hajszan, Tibor; Leranth, Csaba; Roth, Robert H

    2011-01-01

    Enduring cognitive deficits exist in schizophrenic patients, long-term abusers of phencyclidine (PCP), as well as in animal PCP models of schizophrenia. It has been suggested that cognitive performance and memory processes are coupled with remodeling of pyramidal dendritic spine synapses in prefrontal cortex (PFC), and that reduced spine density and number of spine synapses in the medial PFC of PCP-treated rats may potentially underlie, at least partially, the cognitive dysfunction previously observed in this animal model. The present data show that the decrease in number of asymmetric (excitatory) spine synapses in layer II/III of PFC, previously noted at 1-week post PCP treatment also occurs, to a lesser degree, in layer V. The decrease in the number of spine synapses in layer II/III was sustained and persisted for at least 4 weeks, paralleling the observed cognitive deficits. Both acute and chronic treatment with the atypical antipsychotic drug, olanzapine, starting at 1 week after PCP treatment at doses that restore cognitive function, reversed the asymmetric spine synapse loss in PFC of PCP-treated rats. Olanzapine had no significant effect on spine synapse number in saline-treated controls. These studies demonstrate that the effect of PCP on asymmetric spine synapse number in PFC lasts at least 4 weeks in this model. This spine synapse loss in PFC is reversed by acute treatment with olanzapine, and this reversal is maintained by chronic oral treatment, paralleling the time course of the restoration of the dopamine deficit, and normalization of cognitive function produced by olanzapine. PMID:21677652

  1. Statistical theory of synaptic connectivity in the neocortex

    Science.gov (United States)

    Escobar, Gina

    distributions of spine head volumes and spine lengths from mouse, rat, monkey, and human brains. We develope a statistical theory in which the equilibrium distribution of dendritic spine shapes is governed by the principle of synaptic entropy maximization under a "generalized cost" constraint. We find the generalized cost of dendritic spines and show that it universally depends on the spine shape, i.e. the dependence is the same in all the considered systems. We show that the modulatory and structural plasticity mechanisms in adults are in a statistical equilibrium with each other, the numbers of dendritic spines in different cortical areas are nearly optimally chosen for memory storage, and the distribution of spine shapes is governed by a single parameter -- the effective temperature. Our results suggest that the effective temperature of a cortical area may be viewed as a measure of longevity of stored memories. Finally, we test the hypothesis that the number of spines in the neuropil is chosen to optimize its storage information capacity.

  2. Comparison between basal and apical dendritic spines in estrogen-induced rapid spinogenesis of CA1 principal neurons in the adult hippocampus

    International Nuclear Information System (INIS)

    Murakami, Gen; Tsurugizawa, Tomokazu; Hatanaka, Yusuke; Komatsuzaki, Yoshimasa; Tanabe, Nobuaki; Mukai, Hideo; Hojo, Yasushi; Kominami, Shiro; Yamazaki, Takeshi; Kimoto, Tetsuya; Kawato, Suguru

    2006-01-01

    Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Here, we demonstrated the rapid effect of 17β-estradiol on the density and morphology of spines in the stratum oriens (s.o., basal side) and in the stratum lacunosum-moleculare (s.l.m., apical side) by imaging Lucifer Yellow-injected CA1 neurons in adult male rat hippocampal slices, because spines in s.o. and s.l.m. have been poorly understood as compared with spines in the stratum radiatum. The application of 1 nM estradiol-induced a rapid increase in the density of spines of pyramidal neurons within 2 h. This increase by estradiol was blocked by Erk MAP kinase inhibitor and estrogen receptor inhibitor in both regions. Effect of blockade by agonists of AMPA receptors and NMDA receptors was different between s.o. and s.l.m. In both regions, ERα agonist PPT induced the same enhancing effect of spinogenesis as that induced by estradiol

  3. Quantitative analysis of basal dendritic tree of layer III pyramidal neurons in different areas of adult human frontal cortex.

    Science.gov (United States)

    Zeba, Martina; Jovanov-Milosević, Natasa; Petanjek, Zdravko

    2008-01-01

    Large long projecting (cortico-cortical) layer IIIc pyramidal neurons were recently disclosed to be in the basis of cognitive processing in primates. Therefore, we quantitatively examined the basal dendritic morphology of these neurons by using rapid Golgi and Golgi Cox impregnation methods among three distinct Brodmann areas (BA) of an adult human frontal cortex: the primary motor BA4 and the associative magnopyramidal BA9 from left hemisphere and the Broca's speech BA45 from both hemispheres. There was no statistically significant difference in basal dendritic length or complexity, as dendritic spine number or their density between analyzed BA's. In addition, we analyzed each of these BA's immunocytochemically for distribution of SMI-32, a marker of largest long distance projecting neurons. Within layer IIIc, the highest density of SMI-32 immunopositive pyramidal neurons was observed in associative BA9, while in primary BA4 they were sparse. Taken together, these data suggest that an increase in the complexity of cortico-cortical network within human frontal areas of different functional order may be principally based on the increase in density of large, SMI-32 immunopositive layer IIIc neurons, rather than by further increase in complexity of their dendritic tree and synaptic network.

  4. A mouse model of visual perceptual learning reveals alterations in neuronal coding and dendritic spine density in the visual cortex

    Directory of Open Access Journals (Sweden)

    Yan eWang

    2016-03-01

    Full Text Available Visual perceptual learning (VPL can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS and a 55% gain in visual acuity (VA. Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1 than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.

  5. A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex.

    Science.gov (United States)

    Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng

    2016-01-01

    Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.

  6. Dendritic cell neoplasms: an overview.

    Science.gov (United States)

    Kairouz, Sebastien; Hashash, Jana; Kabbara, Wadih; McHayleh, Wassim; Tabbara, Imad A

    2007-10-01

    Dendritic cell neoplasms are rare tumors that are being recognized with increasing frequency. They were previously classified as lymphomas, sarcomas, or histiocytic neoplasms. The World Health Organization (WHO) classifies dendritic cell neoplasms into five groups: Langerhans' cell histiocytosis, Langerhans' cell sarcoma, Interdigitating dendritic cell sarcoma/tumor, Follicular dendritic cell sarcoma/tumor, and Dendritic cell sarcoma, not specified otherwise (Jaffe, World Health Organization classification of tumors 2001; 273-289). Recently, Pileri et al. provided a comprehensive immunohistochemical classification of histiocytic and dendritic cell tumors (Pileri et al., Histopathology 2002;59:161-167). In this article, a concise overview regarding the pathological, clinical, and therapeutic aspects of follicular dendritic, interdigitating dendritic, and Langerhans' cell tumors is presented.

  7. Data for spatial characterization of AC signal propagation over primary neuron dendrites

    Directory of Open Access Journals (Sweden)

    Hojeong Kim

    2016-03-01

    Full Text Available Action potentials generated near the soma propagate not only into the axonal nerve connecting to the adjacent neurons but also into the dendrites interacting with a diversity of synaptic inputs as well as voltage gated ion channels. Measuring voltage attenuation factors between the soma and all single points of the dendrites in the anatomically reconstructed primary neurons with the same cable properties, we report the signal propagation data showing how the alternating current (AC signal such as action potentials back-propagates over the dendrites among different types of primary neurons. Fitting equations and their parameter values for the data are also presented to quantitatively capture the spatial profile of AC signal propagation from the soma to the dendrites in primary neurons. Our data is supplemental to our original study for the dependency of dendritic signal propagation and excitability, and their relationship on the cell type-specific structure in primary neurons (DOI: 10.1016/j.neulet.2015.10.017 [1]. Keywords: Primary neurons, Dendritic signal processing, AC signal propagation, Voltage attenuation analysis

  8. Electrochemical migration of tin in electronics and microstructure of the dendrites

    Energy Technology Data Exchange (ETDEWEB)

    Minzari, Daniel, E-mail: dmin@mek.dtu.d [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark); Grumsen, Flemming Bjerg; Jellesen, Morten S.; Moller, Per; Ambat, Rajan [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark)

    2011-05-15

    Graphical abstract: The electrochemical migration of tin in electronics forms dendritic structures, consisting of a metallic tin core, which is surrounded by oxide layers having various thickness. Display Omitted Research highlights: Electrochemical migration occurs if two conductors are connected by condensed moisture. Metallic ions are dissolved and grow in a dendritic structure that short circuit the electrodes. The dendrite consists of a metallic tin core with oxide layers of various thickness surrounding. Detailed microstructure of dendrites is investigated using electron microscopy. The dendrite microstructure is heterogeneous along the growth direction. - Abstract: The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb ({approx}2 wt.%) was investigated by scanning electron microscopy and transmission electron microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12 V potential bias in 10 ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have heterogeneous microstructure along the growth direction, which is attributed to unstable growth conditions inside the micro-volume of electrolyte. Selected area electron diffraction showed that the dendrites are metallic tin having sections of single crystal orientation and lead containing intermetallic particles embedded in the structure. At certain areas, the dendrite structure was found to be surrounded by an oxide crust, which is believed to be due to unstable growth conditions during the dendrite formation. The oxide layer was found to be of nanocrystalline structure, which is expected to be formed by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.

  9. Outcomes and Toxicity for Hypofractionated and Single-Fraction Image-Guided Stereotactic Radiosurgery for Sarcomas Metastasizing to the Spine

    Energy Technology Data Exchange (ETDEWEB)

    Folkert, Michael R. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Bilsky, Mark H. [Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Tom, Ashlyn K. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Oh, Jung Hun [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Alektiar, Kaled M. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Laufer, Ilya [Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Tap, William D. [Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Yamada, Yoshiya, E-mail: yamadaj@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2014-04-01

    Purpose: Conventional radiation treatment (20-40 Gy in 5-20 fractions, 2-5 Gy per fraction) for sarcoma metastatic to the spine provides subtherapeutic doses, resulting in poor durable local control (LC) (50%-77% at 1 year). Hypofractionated (HF) and/or single-fraction (SF) image-guided stereotactic radiosurgery (IG-SRS) may provide a more effective means of managing these lesions. Methods and Materials: Patients with pathologically proven high-grade sarcoma metastatic to the spine treated with HF and SF IG-SRS were included. LC and overall survival (OS) were analyzed by the use of Kaplan-Meier statistics. Univariate and multivariate analyses were performed by the use of Cox regression with competing-risks analysis; all confidence intervals are 95%. Toxicities were assessed according to Common Terminology Criteria for Adverse Events, version 4.0. Results: From May 2005 to November 11, 2012, 88 patients with 120 discrete metastases received HF (3-6 fractions; median dose, 28.5 Gy; n=52, 43.3%) or SF IG-SRS (median dose, 24 Gy; n=68, 56.7%). The median follow-up time was 12.3 months. At 12 months, LC was 87.9% (confidence interval [CI], 81.3%-94.5%), OS was 60.6% (CI, 49.6%-71.6%), and median survival was 16.9 months. SF IG-SRS demonstrated superior LC to HF IG-SRS (12-month LC of 90.8% [CI, 83%-98.6%] vs 84.1% [CI, 72.9%-95.3%] P=.007) and retained significance on multivariate analysis (P=.030, hazard ratio 0.345; CI, 0.132-0.901]. Treatment was well tolerated, with 1% acute grade 3 toxicity, 4.5% chronic grade 3 toxicity, and no grade >3 toxicities. Conclusions: In the largest series of metastatic sarcoma to the spine to date, IG-SRS provides excellent LC in the setting of an aggressive disease with low radiation sensitivity and poor prognosis. Single-fraction IG-SRS is associated with the highest rates of LC with minimal toxicity.

  10. Preparing Methods and Its Influencing Factors about Nanoparticles Based on Dendritic Polymer

    OpenAIRE

    Zhang Jianwei; Li Jeff

    2017-01-01

    Based on the properties, structure and application of dendritic polymer, this paper analysed the methods of the preparation of nanoparticles using dendritic polymer, detailed preparation process, technical parameters and application effect about a single metal nanoparticles, bimetallic nanoparticles, sulfide and halide nanoparticles. The influencing factors of the preparation about nanoparticles were discussed, including the molecular algebra, the molar ratio of the metal ions to the dendriti...

  11. Numerical model for dendritic solidification of binary alloys

    Science.gov (United States)

    Felicelli, S. D.; Heinrich, J. C.; Poirier, D. R.

    1993-01-01

    A finite element model capable of simulating solidification of binary alloys and the formation of freckles is presented. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. Numerical simulations are shown in which an NH4Cl-H2O mixture and a Pb-Sn alloy melt are cooled. The solidification process is followed in time. Instabilities in the process can be clearly observed and the final compositions obtained.

  12. Dendrite Injury Triggers DLK-Independent Regeneration

    Directory of Open Access Journals (Sweden)

    Michelle C. Stone

    2014-01-01

    Full Text Available Axon injury triggers regeneration through activation of a conserved kinase cascade, which includes the dual leucine zipper kinase (DLK. Although dendrites are damaged during stroke, traumatic brain injury, and seizure, it is not known whether mature neurons monitor dendrite injury and initiate regeneration. We probed the response to dendrite damage using model Drosophila neurons. Two larval neuron types regrew dendrites in distinct ways after all dendrites were removed. Dendrite regeneration was also triggered by injury in adults. Next, we tested whether dendrite injury was initiated with the same machinery as axon injury. Surprisingly, DLK, JNK, and fos were dispensable for dendrite regeneration. Moreover, this MAP kinase pathway was not activated by injury to dendrites. Thus, neurons respond to dendrite damage and initiate regeneration without using the conserved DLK cascade that triggers axon regeneration.

  13. Vitamin E can improve behavioral tests impairment, cell loss, and dendrite changes in rats' medial prefrontal cortex induced by acceptable daily dose of aspartame.

    Science.gov (United States)

    Rafati, Ali; Noorafshan, Ali; Jahangir, Mahboubeh; Hosseini, Leila; Karbalay-Doust, Saied

    2018-01-01

    Aspartame is an artificial sweetener used in about 6000 sugar-free products. Aspartame consumption could be associated with various neurological disorders. This study aimed to evaluate the effect of aspartame onmedial Prefrontal Cortex (mPFC) as well as neuroprotective effects of vitamin E. The rats were divided into seven groups, including distilled water, corn oil, vitamin E (100mg/kg/day), and low (acceptable daily dose) and high doses of aspartame (40 and 200mg/kg/day) respectively, with or without vitamin E consumption, for 8 weeks. Behavioral tests were recorded and the brain was prepared for stereological assessments. Novel objects test and eight-arm radial maze showed impairmentoflong- and short-termmemoriesin aspartame groups. Besides, mPFC volume, infralimbic volume, neurons number, glial cells number, dendrites length per neuron,and number of spines per dendrite length were decreased by 7-61% in the rats treated with aspartame. However, neurons' number, glial cells number, and rats' performance in eight-arm radial mazes were improved by concomitant consumption of vitamin E and aspartame. Yet, the mPFC volume and infralimbic cortex were protected only in the rats receiving the low dose of aspartame+vitamin E. On the other hand, dendrites length, spines number,and novel object recognition were not protected by treatment with vitamin E+aspartame. The acceptable daily dose or higher doses of aspartame could induce memory impairments and cortical cells loss in mPFC. However, vitamin E could ameliorate some of these changes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. MRI of the lumbar spine. Technical aspect. T2-weighted fat saturation coronal dynamic MRI of the lumbar spine

    International Nuclear Information System (INIS)

    Clarisse, J.; Francke, J.P.; Leclet, H.; Bourgeois, Ph.; Chastanet, P.; Cotten, A.

    1998-01-01

    Assess the feasibility of 'dynamic' MRI of the lumbar spine and study the parameters of a single MRI sequence favorable for simultaneous imaging of the meningeal space and the epidural and foraminal venous system. Favor a decline in the number of sacco-radiculograms. Clinical assessment in the following circumstances: discordant clinical and and radiographic findings, difficulty in interpreting single or multiple disc-root conflicts, preoperative work-up in cases of narrow or stenotic lumbar canal. Dynamic MRI of the lumbar spine is possible if the hypothesis that the hyper-lordosis obtained in the supine position creates an anatomic and radiographic situation identical to the hyper-lordosis induced by the upright position is accepted. The 'radiculo-phlebographic' sequence gives images of the root sheaths and the epidural, foraminal and extra-foraminal veins simultaneously, particularly in the coronal plane. (authors)

  15. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates

    Science.gov (United States)

    Wang, Xu; Zeng, Wei; Hong, Liang; Xu, Wenwen; Yang, Haokai; Wang, Fan; Duan, Huigao; Tang, Ming; Jiang, Hanqing

    2018-03-01

    Problems related to dendrite growth on lithium-metal anodes such as capacity loss and short circuit present major barriers to next-generation high-energy-density batteries. The development of successful lithium dendrite mitigation strategies is impeded by an incomplete understanding of the Li dendrite growth mechanisms, and in particular, Li-plating-induced internal stress in Li metal and its effect on Li growth morphology are not well addressed. Here, we reveal the enabling role of plating residual stress in dendrite formation through depositing Li on soft substrates and a stress-driven dendrite growth model. We show that dendrite growth is mitigated on such soft substrates through surface-wrinkling-induced stress relaxation in the deposited Li film. We demonstrate that this dendrite mitigation mechanism can be utilized synergistically with other existing approaches in the form of three-dimensional soft scaffolds for Li plating, which achieves higher coulombic efficiency and better capacity retention than that for conventional copper substrates.

  16. Dendritic excitability modulates dendritic information processing in a purkinje cell model.

    Science.gov (United States)

    Coop, Allan D; Cornelis, Hugo; Santamaria, Fidel

    2010-01-01

    Using an electrophysiological compartmental model of a Purkinje cell we quantified the contribution of individual active dendritic currents to processing of synaptic activity from granule cells. We used mutual information as a measure to quantify the information from the total excitatory input current (I(Glu)) encoded in each dendritic current. In this context, each active current was considered an information channel. Our analyses showed that most of the information was encoded by the calcium (I(CaP)) and calcium activated potassium (I(Kc)) currents. Mutual information between I(Glu) and I(CaP) and I(Kc) was sensitive to different levels of excitatory and inhibitory synaptic activity that, at the same time, resulted in the same firing rate at the soma. Since dendritic excitability could be a mechanism to regulate information processing in neurons we quantified the changes in mutual information between I(Glu) and all Purkinje cell currents as a function of the density of dendritic Ca (g(CaP)) and Kca (g(Kc)) conductances. We extended our analysis to determine the window of temporal integration of I(Glu) by I(CaP) and I(Kc) as a function of channel density and synaptic activity. The window of information integration has a stronger dependence on increasing values of g(Kc) than on g(CaP), but at high levels of synaptic stimulation information integration is reduced to a few milliseconds. Overall, our results show that different dendritic conductances differentially encode synaptic activity and that dendritic excitability and the level of synaptic activity regulate the flow of information in dendrites.

  17. Lumbar spine chordoma

    Directory of Open Access Journals (Sweden)

    M.A. Hatem, M.B.Ch.B, MRes, LMCC

    2014-01-01

    Full Text Available Chordoma is a rare tumor arising from notochord remnants in the spine. It is slow-growing, which makes it difficult to diagnose and difficult to follow up after treatment. Typically, it occurs in the base of the skull and sacrococcygeal spine; it rarely occurs in other parts of the spine. CT-guided biopsy of a suspicious mass enabled diagnosis of lumbar spine chordoma.

  18. Effect of temperature gradient and crystallization rate on morphological peculiarities of cellular-dendrite structure in iron-nickel alloys

    International Nuclear Information System (INIS)

    Kralina, A.A.; Vorontsov, V.B.

    1977-01-01

    Cellular and dendritic structure of Fe-Ni single crystals (31 and 45 wt%Ni) grown according to Bridgeman have been studied by metallography. Growth rates at which the crystallization frontier becomes unstable and splits into cells have been determined for three temperature gradients. The transition from cells to dendrites occurs gradually through the changes in the cells regular structure and formation of secondary and tertiary branches. The dependence of cell diameter and distance between dendrites on crystallization rate and temperature gradient are discussed in terms of the admixture substructures development according to the schedule: cells - cellular dendrites - dendrites

  19. Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice

    OpenAIRE

    I?iguez, Sergio D.; Aubry, Antonio; Riggs, Lace M.; Alipio, Jason B.; Zanca, Roseanna M.; Flores-Ramirez, Francisco J.; Hernandez, Mirella A.; Nieto, Steven J.; Musheyev, David; Serrano, Peter A.

    2016-01-01

    Social stress, including bullying during adolescence, is a risk factor for common psychopathologies such as depression. To investigate the neural mechanisms associated with juvenile social stress-induced mood-related endophenotypes, we examined the behavioral, morphological, and biochemical effects of the social defeat stress model of depression on hippocampal dendritic spines within the CA1 stratum radiatum. Adolescent (postnatal day 35) male C57BL/6 mice were subjected to defeat episodes fo...

  20. Dose conformation to the spine during palliative treatments using dynamic wedges

    Energy Technology Data Exchange (ETDEWEB)

    Ormsby, Matthew A., E-mail: Matthew.Ormsby@usoncology.com [West Texas Cancer Center at Medical Center Hospital, Odessa, TX (United States); Herndon, R. Craig; Kaczor, Joseph G. [West Texas Cancer Center at Medical Center Hospital, Odessa, TX (United States)

    2013-07-01

    Radiation therapy is commonly used to alleviate pain associated with metastatic disease of the spine. Often, isodose lines are manipulated using dynamic or physical wedges to encompass the section of spine needing treatment while minimizing dose to normal tissue. We will compare 2 methods used to treat the entire thoracic spine. The first method treats the thoracic spine with a single, nonwedged posterior-anterior (PA) field. Dose is prescribed to include the entire spine. Isodose lines tightly conform to the top and bottom vertebrae, but vertebrae between these 2 received more than enough coverage. The second method uses a combination of wedges to create an isodose line that mimics the curvature of the thoracic spine. This “C”-shaped curvature is created by overlapping 2 fields with opposing dynamic wedges. Machine constraints limit the treatment length and therefore 2 isocenters are used. Each of the 2 PA fields contributes a portion of the total daily dose. This technique creates a “C”-shaped isodose line that tightly conforms to the thoracic spine, minimizing normal tissue dose. Spinal cord maximum dose is reduced, as well as mean dose to the liver, esophagus, and heart.

  1. Neuronal gain modulability is determined by dendritic morphology: A computational optogenetic study.

    Science.gov (United States)

    Jarvis, Sarah; Nikolic, Konstantin; Schultz, Simon R

    2018-03-01

    The mechanisms by which the gain of the neuronal input-output function may be modulated have been the subject of much investigation. However, little is known of the role of dendrites in neuronal gain control. New optogenetic experimental paradigms based on spatial profiles or patterns of light stimulation offer the prospect of elucidating many aspects of single cell function, including the role of dendrites in gain control. We thus developed a model to investigate how competing excitatory and inhibitory input within the dendritic arbor alters neuronal gain, incorporating kinetic models of opsins into our modeling to ensure it is experimentally testable. To investigate how different topologies of the neuronal dendritic tree affect the neuron's input-output characteristics we generate branching geometries which replicate morphological features of most common neurons, but keep the number of branches and overall area of dendrites approximately constant. We found a relationship between a neuron's gain modulability and its dendritic morphology, with neurons with bipolar dendrites with a moderate degree of branching being most receptive to control of the gain of their input-output relationship. The theory was then tested and confirmed on two examples of realistic neurons: 1) layer V pyramidal cells-confirming their role in neural circuits as a regulator of the gain in the circuit in addition to acting as the primary excitatory neurons, and 2) stellate cells. In addition to providing testable predictions and a novel application of dual-opsins, our model suggests that innervation of all dendritic subdomains is required for full gain modulation, revealing the importance of dendritic targeting in the generation of neuronal gain control and the functions that it subserves. Finally, our study also demonstrates that neurophysiological investigations which use direct current injection into the soma and bypass the dendrites may miss some important neuronal functions, such as gain

  2. GPU-accelerated 3D phase-field simulations of dendrite competitive growth during directional solidification of binary alloy

    International Nuclear Information System (INIS)

    Sakane, S; Takaki, T; Ohno, M; Shimokawabe, T; Aoki, T

    2015-01-01

    Phase-field method has emerged as the most powerful numerical scheme to simulate dendrite growth. However, most phase-field simulations of dendrite growth performed so far are limited to two-dimension or single dendrite in three-dimension because of the large computational cost involved. To express actual solidification microstructures, multiple dendrites with different preferred growth directions should be computed at the same time. In this study, in order to enable large-scale phase-field dendrite growth simulations, we developed a phase-field code using multiple graphics processing units in which a quantitative phase-field method for binary alloy solidification and moving frame algorithm for directional solidification were employed. First, we performed strong and weak scaling tests for the developed parallel code. Then, dendrite competitive growth simulations in three-dimensional binary alloy bicrystal were performed and the dendrite interactions in three-dimensional space were investigated. (paper)

  3. Posterior instrumentation, anterior column reconstruction with single posterior approach for treatment of pyogenic osteomyelitis of thoracic and lumbar spine.

    Science.gov (United States)

    Gorensek, M; Kosak, R; Travnik, L; Vengust, R

    2013-03-01

    Surgical treatment of thoracolumbar osteomyelitis consists of radical debridement, reconstruction of anterior column either with or without posterior stabilization. The objective of present study is to evaluate a case series of patients with osteomyelitis of thoracic and lumbar spine treated by single, posterior approach with posterior instrumentation and anterior column reconstruction. Seventeen patients underwent clinical and radiological evaluation pre and postoperatively with latest follow-up at 19 months (8-56 months) after surgery. Parameters assessed were site of infection, causative organism, angle of deformity, blood loss, duration of surgery, ICU stay, deformity correction, time to solid bony fusion, ambulatory status, neurologic status (ASIA impairment scale), and functional outcome (Kirkaldy-Willis criteria). Mean operating time was 207 min and average blood loss 1,150 ml. Patients spent 2 (1-4) days in ICU and were able to walk unaided 1.6 (1-2) days after surgery. Infection receded in all 17 patients postoperatively. Solid bony fusion occurred in 15 out of 17 patients (88 %) on average 6.3 months after surgery. Functional outcome was assessed as excellent or good in 82 % of cases. Average deformity correction was 8 (1-18) degrees, with loss of correction of 4 (0-19) degrees at final follow-up. Single, posterior approach addressing both columns poses safe alternative in treatment of pyogenic vertebral osteomyelitis of thoracic and lumbar spine. It proved to be less invasive resulting in faster postoperative recovery.

  4. Microtubule nucleation and organization in dendrites

    Science.gov (United States)

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.

    2016-01-01

    ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  5. Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB.

    Directory of Open Access Journals (Sweden)

    Fumiaki Imamura

    2009-08-01

    Full Text Available Projection neurons of mammalian olfactory bulb (OB, mitral and tufted cells, have dendrites whose morphologies are specifically differentiated for efficient odor information processing. The apical dendrite extends radially and arborizes in single glomerulus where it receives primary input from olfactory sensory neurons that express the same odor receptor. The lateral dendrites extend horizontally in the external plexiform layer and make reciprocal dendrodendritic synapses with granule cells, which moderate mitral/tufted cell activity. The molecular mechanisms regulating dendritic development of mitral/tufted cells is one of the unsolved important problems in the olfactory system. Here, we focused on TrkB receptors to test the hypothesis that neurotrophin-mediate mechanisms contributed to dendritic differentiation of OB mitral/tufted cells.With immunohistochemical analysis, we found that the TrkB neurotrophin receptor is expressed by both apical and lateral dendrites of mitral/tufted cells and that expression is evident during the early postnatal days when these dendrites exhibit their most robust growth and differentiation. To examine the effect of TrkB activation on mitral/tufted cell dendritic development, we cultured OB neurons. When BDNF or NT4 were introduced into the cultures, there was a significant increase in the number of primary neurites and branching points among the mitral/tufted cells. Moreover, BDNF facilitated filopodial extension along the neurites of mitral/tufted cells.In this report, we show for the first time that TrkB activation stimulates the dendritic branching of mitral/tufted cells in developing OB. This suggests that arborization of the apical dendrite in a glomerulus is under the tight regulation of TrkB activation.

  6. Adherence to the guidelines of paediatric cervical spine clearance in a level I trauma centre: A single centre experience

    NARCIS (Netherlands)

    Slaar, Annelie; Fockens, M. Matthijs; van Rijn, Rick R.; Maas, Mario; Goslings, J. Carel; Bakx, Roel; Streekstra, Geert J.; Beenen, Ludo F. M.; Schep, Niels W. L.

    2016-01-01

    International guidelines define if and what type of radiography is advised in children to clear the cervical spine (C-spine). However, adherence to these guidelines has never been evaluated in a paediatric population. Therefore, we wanted to assess the adherence to the guidelines for C-spine

  7. SpineData

    DEFF Research Database (Denmark)

    Kent, Peter; Kongsted, Alice; Jensen, Tue Secher

    2015-01-01

    Background: Large-scale clinical registries are increasingly recognized as important resources for quality assurance and research to inform clinical decision-making and health policy. We established a clinical registry (SpineData) in a conservative care setting where more than 10,000 new cases...... of spinal pain are assessed each year. This paper describes the SpineData registry, summarizes the characteristics of its clinical population and data, and signals the availability of these data as a resource for collaborative research projects. Methods: The SpineData registry is an Internet-based system...... that captures patient data electronically at the point of clinical contact. The setting is the government-funded Medical Department of the Spine Centre of Southern Denmark, Hospital Lillebaelt, where patients receive a multidisciplinary assessment of their chronic spinal pain. Results: Started in 2011...

  8. Simultaneous Changes of Spatial Memory and Spine Density after Intrahippocampal Administration of Fibrillar Aβ 1–42 to the Rat Brain

    OpenAIRE

    Borbély, Emőke; Horváth, János; Furdan, Szabina; Bozsó, Zsolt; Penke, Botond; Fülöp, Lívia

    2014-01-01

    Several animal models of Alzheimer's disease have been used in laboratory experiments. Intrahippocampal injection of fibrillar amyloid-beta (fAβ) peptide represents one of the most frequently used models, mimicking Aβ deposits in the brain. In our experiment synthetic fAβ 1–42 peptide was administered to rat hippocampus. The effect of the Aβ peptide on spatial memory and dendritic spine density was studied. The fAβ 1–42-treated rats showed decreased spatial learning ability measured in Morris...

  9. Postoperative 3D spine reconstruction by navigating partitioning manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Kadoury, Samuel, E-mail: samuel.kadoury@polymtl.ca [Department of Computer and Software Engineering, Ecole Polytechnique Montreal, Montréal, Québec H3C 3A7 (Canada); Labelle, Hubert, E-mail: hubert.labelle@recherche-ste-justine.qc.ca; Parent, Stefan, E-mail: stefan.parent@umontreal.ca [CHU Sainte-Justine Hospital Research Center, Montréal, Québec H3T 1C5 (Canada)

    2016-03-15

    Purpose: The postoperative evaluation of scoliosis patients undergoing corrective treatment is an important task to assess the strategy of the spinal surgery. Using accurate 3D geometric models of the patient’s spine is essential to measure longitudinal changes in the patient’s anatomy. On the other hand, reconstructing the spine in 3D from postoperative radiographs is a challenging problem due to the presence of instrumentation (metallic rods and screws) occluding vertebrae on the spine. Methods: This paper describes the reconstruction problem by searching for the optimal model within a manifold space of articulated spines learned from a training dataset of pathological cases who underwent surgery. The manifold structure is implemented based on a multilevel manifold ensemble to structure the data, incorporating connections between nodes within a single manifold, in addition to connections between different multilevel manifolds, representing subregions with similar characteristics. Results: The reconstruction pipeline was evaluated on x-ray datasets from both preoperative patients and patients with spinal surgery. By comparing the method to ground-truth models, a 3D reconstruction accuracy of 2.24 ± 0.90 mm was obtained from 30 postoperative scoliotic patients, while handling patients with highly deformed spines. Conclusions: This paper illustrates how this manifold model can accurately identify similar spine models by navigating in the low-dimensional space, as well as computing nonlinear charts within local neighborhoods of the embedded space during the testing phase. This technique allows postoperative follow-ups of spinal surgery using personalized 3D spine models and assess surgical strategies for spinal deformities.

  10. Postoperative 3D spine reconstruction by navigating partitioning manifolds

    International Nuclear Information System (INIS)

    Kadoury, Samuel; Labelle, Hubert; Parent, Stefan

    2016-01-01

    Purpose: The postoperative evaluation of scoliosis patients undergoing corrective treatment is an important task to assess the strategy of the spinal surgery. Using accurate 3D geometric models of the patient’s spine is essential to measure longitudinal changes in the patient’s anatomy. On the other hand, reconstructing the spine in 3D from postoperative radiographs is a challenging problem due to the presence of instrumentation (metallic rods and screws) occluding vertebrae on the spine. Methods: This paper describes the reconstruction problem by searching for the optimal model within a manifold space of articulated spines learned from a training dataset of pathological cases who underwent surgery. The manifold structure is implemented based on a multilevel manifold ensemble to structure the data, incorporating connections between nodes within a single manifold, in addition to connections between different multilevel manifolds, representing subregions with similar characteristics. Results: The reconstruction pipeline was evaluated on x-ray datasets from both preoperative patients and patients with spinal surgery. By comparing the method to ground-truth models, a 3D reconstruction accuracy of 2.24 ± 0.90 mm was obtained from 30 postoperative scoliotic patients, while handling patients with highly deformed spines. Conclusions: This paper illustrates how this manifold model can accurately identify similar spine models by navigating in the low-dimensional space, as well as computing nonlinear charts within local neighborhoods of the embedded space during the testing phase. This technique allows postoperative follow-ups of spinal surgery using personalized 3D spine models and assess surgical strategies for spinal deformities

  11. Conspicuous carotenoid-based pelvic spine ornament in three-spined stickleback populations—occurrence and inheritance

    Directory of Open Access Journals (Sweden)

    CR Amundsen

    2015-04-01

    Full Text Available Reports on reddish carotenoid-based ornaments in female three-spined sticklebacks (Gasterosteus aculeatus are few, despite the large interest in the species’ behaviour, ornamentation, morphology and evolution. We sampled sticklebacks from 17 sites in north-western Europe in this first extensive study on the occurrence of carotenoid-based female pelvic spines and throat ornaments. The field results showed that females, and males, with reddish spines were found in all 17 populations. Specimens of both sexes with conspicuous red spines were found in several of the sites. The pelvic spines of males were more intensely red compared to the females’ spines, and large specimens were more red than small ones. Fish infected with the tapeworm (Schistocephalus solidus had drabber spines than uninfected fish. Both sexes had red spines both during and after the spawning period, but the intensity of the red colour was more exaggerated during the spawning period. As opposed to pelvic spines, no sign of red colour at the throat was observed in any female from any of the 17 populations. A rearing experiment was carried out to estimate a potential genetic component of the pelvic spine ornament by artificial crossing and rearing of 15 family groups during a 12 months period. The results indicated that the genetic component of the red colour at the spines was low or close to zero. Although reddish pelvic spines seem common in populations of stickleback, the potential adaptive function of the reddish pelvic spines remains largely unexplained.

  12. Imaging the Traumatized Spine'Clearing The Cervical Spine'

    International Nuclear Information System (INIS)

    Monu, U.V.J.

    2015-01-01

    Failure to recognize and diagnose injury to the cervical spine on plain radiographs can lead to severe and devastating consequences to the patient in particular and to the radiologist financially and otherwise. CT examination of the cervical spine aids and significantly improves diagnoses in many instances. it is neither economically feasible nor desirable to obtain CT on all patients. Meticulous attention to detail and zero tolerance for deviations from the usual radiographic landmarks will help select cases that should obtain additional imaging in form of CT or MRI scans. Faced with a task of clearing a cervical spine, a number of options are available. The first discriminator is whether or not the patient can be cleared clinically. If that is not possible, radiographic evaluation is needed. Strict adherence to a minimum three view plain radiograph for C-spine series must be maintained. Deviation from established norms for cervical spine radiographs should trigger a CT for additional evaluation

  13. An inverse approach for elucidating dendritic function

    Directory of Open Access Journals (Sweden)

    Benjamin Torben-Nielsen

    2010-09-01

    Full Text Available We outline an inverse approach for investigating dendritic function-structure relationships by optimizing dendritic trees for a-priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a `hypothesis generator' in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is subsequently compared to real neurons. This comparison potentially allows us to propose hypotheses about the function of real neurons. In this way, we investigated dendrites that optimally perform input-order detection. Second, we can use it as a `function confirmation' by optimizing dendrites for functions hypothesized to be performed by classes of neurons. If the optimized, artificial, dendrites resemble the dendrites of real neurons the artificial dendrites corroborate the hypothesized function of the real neuron. Moreover, properties of the artificial dendrites can lead to predictions about yet unmeasured properties. In this way, we investigated wide-field motion integration performed by the VS cells of the fly visual system. In outlining the inverse approach and two applications, we also elaborate on the nature of dendritic function. We furthermore discuss the role of optimality in assigning functions to dendrites and point out interesting future directions.

  14. Thoracic spine pain

    Directory of Open Access Journals (Sweden)

    Aleksey Ivanovich Isaikin

    2013-01-01

    Full Text Available Thoracic spine pain, or thoracalgia, is one of the common reasons for seeking for medical advice. The epidemiology and semiotics of pain in the thoracic spine unlike in those in the cervical and lumbar spine have not been inadequately studied. The causes of thoracic spine pain are varied: diseases of the cardiovascular, gastrointestinal, pulmonary, and renal systems, injuries to the musculoskeletal structures of the cervical and thoracic portions, which require a thorough differential diagnosis. Facet, costotransverse, and costovertebral joint injuries and myofascial syndrome are the most common causes of musculoskeletal (nonspecific pain in the thoracic spine. True radicular pain is rarely encountered. Traditionally, treatment for thoracalgia includes a combination of non-drug and drug therapies. The cyclooxygenase 2 inhibitor meloxicam (movalis may be the drug of choice in the treatment of musculoskeletal pain.

  15. Phase field modeling of dendritic coarsening during isothermal

    Directory of Open Access Journals (Sweden)

    Zhang Yutuo

    2011-08-01

    Full Text Available Dendritic coarsening in Al-2mol%Si alloy during isothermal solidification at 880K was investigated by phase field modeling. Three coarsening mechanisms operate in the alloy: (a melting of small dendrite arms; (b coalescence of dendrites near the tips leading to the entrapment of liquid droplets; (c smoothing of dendrites. Dendrite melting is found to be dominant in the stage of dendritic growth, whereas coalescence of dendrites and smoothing of dendrites are dominant during isothermal holding. The simulated results provide a better understanding of dendrite coarsening during isothermal solidification.

  16. Golgi Study of Medium Spiny Neurons from Dorsolateral Striatum of the Turtle Trachemys scripta elegans.

    Science.gov (United States)

    González, Carolina; Mendoza, Janeth; Avila-Costa, María Rosa; Arias, Juan M; Barral, Jaime

    2013-10-25

    Comparative anatomy has shown similarities between reptilian and mammalian basal ganglia. Here the morphological characteristics of the medium spiny neurons (MSN) in the dorsolateral striatum (DLS) of the turtle are described after staining them with the Golgi technique. The soma of MSN in DLS showed three main forms: spherical, ovoid, and fusiform. The number of primary dendritic branches (3-4 dendrites/cell) was less than observed in mammals. The MSN axon originates mainly from the soma, and randomly it emerges at the beginning of the primary dendrite. The main differences between turtle and mammalian MSN were detected on dendritic spines. Short, thin, bifurcated and fungiform types of dendritic spines were observed in the turtle's MSN, according to their shape. In most of the analyzed spines, it was found that its length considerably exceeded that reported in mammals, with dendritic spines up to 8μm in length. These differences could play an important role in the modulation of motor networks preserved along the vertebrate evolution. Copyright © 2013. Published by Elsevier Ireland Ltd.

  17. Huntingtin-Interacting Protein 1-Related Protein Plays a Critical Role in Dendritic Development and Excitatory Synapse Formation in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Lin Peng

    2017-06-01

    Full Text Available Huntingtin-interacting protein 1-related (HIP1R protein is considered to be an endocytic adaptor protein like the other two members of the Sla2 family, Sla2p and HIP1. They all contain homology domains responsible for the binding of clathrin, inositol lipids and F-actin. Previous studies have revealed that HIP1R is highly expressed in different regions of the mouse brain and localizes at synaptic structures. However, the function of HIP1R in the nervous system remains unknown. In this study, we investigated HIP1R function in cultured rat hippocampal neurons using an shRNA knockdown approach. We found that, after HIP1R knockdown, the dynamics and density of dendritic filopodia, and dendritic branching and complexity were significantly reduced in developing neurons, as well as the densities of dendritic spines and PSD95 clusters in mature neurons. Moreover, HIP1R deficiency led to significantly reduced expression of the ionotropic glutamate receptor GluA1, GluN2A and GluN2B subunits, but not the GABAA receptor α1 subunit. Similarly, HIP1R knockdown reduced the amplitude and frequency of the miniature excitatory postsynaptic current, but not of the miniature inhibitory postsynaptic current. In addition, the C-terminal proline-rich region of HIP1R responsible for cortactin binding was found to confer a dominant-negative effect on dendritic branching in cultured developing neurons, implying a critical role of cortactin binding in HIP1R function. Taken together, the results of our study suggest that HIP1R plays important roles in dendritic development and excitatory synapse formation and function.

  18. CLINICAL-RADIOGRAPHIC CORRELATION OF DEGENERATIVE CHANGES OF THE SPINE - SYSTEMATIC REVIEW

    Directory of Open Access Journals (Sweden)

    Emiliano Neves Vialle

    Full Text Available ABSTRACT Systematic review of the literature on the evaluation of images of degenerative changes of the spine and its clinical correlation. A systematic literature review was conducted, and the results evaluated for the presence of clinical correlation, as well as the type of imaging method used. The search terms were "Intervertebral Disc Degeneration", "Intervertebral disc", "Classification", "Anulus fibrosus", "Nucleus pulposus", "Lumbar spine", "Degenerative disc disease", "Degeneration", "Zygapophyseal Joint". We also assessed whether there were inter- and intraobserver agreement in the selected works and possible guidelines regarding the treatment and prognosis of patients. Of the 91 reviewed abstracts, 31 articles were selected that met the inclusion criteria. Six articles were related to the cervical spine, 13 to the lumbar spine and 12 were about changes not related specifically to a single segment of the spine. Articles that determined limiting values considered normal were also included, since variations were considered signs of degeneration or pathology. It was not possible to establish the relationship between the changes identified in imaging and the clinical history of patients, either define treatment and prognosis guidelines.

  19. Regulation of dendrite growth and maintenance by exocytosis

    Science.gov (United States)

    Peng, Yun; Lee, Jiae; Rowland, Kimberly; Wen, Yuhui; Hua, Hope; Carlson, Nicole; Lavania, Shweta; Parrish, Jay Z.; Kim, Michael D.

    2015-01-01

    ABSTRACT Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential requirements for exocytosis in the growth and maintenance of different dendritic compartments. Rop promotes dendrite growth together with the exocyst, an octameric protein complex involved in tethering vesicles to the plasma membrane, with Rop–exocyst complexes and exocytosis predominating in primary dendrites over terminal dendrites. By contrast, membrane-associated proteins readily diffuse from primary dendrites into terminals, but not in the reverse direction, suggesting that diffusion, rather than targeted exocytosis, supplies membranous material for terminal dendritic growth, revealing key differences in the distribution of materials to these expanding dendritic compartments. PMID:26483382

  20. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  1. Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes.

    Science.gov (United States)

    Luo, Kui; Liu, Gang; He, Bin; Wu, Yao; Gong, Qingyong; Song, Bin; Ai, Hua; Gu, Zhongwei

    2011-04-01

    The quest for highly efficient and safe contrast agents has become the key factor for successful application of magnetic resonance imaging (MRI). The gadolinium (Gd) based dendritic macromolecules, with precise and tunable nanoscopic sizes, are excellent candidates as multivalent MRI probes. In this paper, a novel series of Gd-based multifunctional peptide dendritic probes (generation 2, 3, and 4) possessing highly controlled structures and single molecular weight were designed and prepared as liver MRI probes. These macromolecular Gd-ligand agents exhibited up to 3-fold increase in T(1) relaxivity comparing to Gd-DTPA complexes. No obvious in vitro cytotoxicity was observed from the measured concentrations. These dendritic probes were further functionalized with multiple galactosyl moieties and led to much higher cell uptake in vitro as demonstrated in T(1)-weighted scans. During in vivo animal studies, the probes provided better signal intensity (SI) enhancement in mouse liver, especially at 60 min post-injection, with the most efficient enhancement from the galactosyl moiety decorated third generation dendrimer. The imaging results were verified with analysis of Gd content in liver tissues. The design strategy of multifunctional Gd-ligand peptide dendritic macromolecules in this study may be used for developing other sensitive MRI probes with targeting capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  3. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    Science.gov (United States)

    Meredith, Rhiannon M.; van Ooyen, Arjen

    2012-01-01

    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  4. Dendritic brushes under theta and poor solvent conditions

    Science.gov (United States)

    Gergidis, Leonidas N.; Kalogirou, Andreas; Charalambopoulos, Antonios; Vlahos, Costas

    2013-07-01

    The effects of solvent quality on the internal stratification of polymer brushes formed by dendron polymers up to third generation were studied by means of molecular dynamics simulations with Langevin thermostat. The distributions of polymer units, of the free ends, the radii of gyration, and the back folding probabilities of the dendritic spacers were studied at the macroscopic states of theta and poor solvent. For high grafting densities we observed a small decrease in the height of the brush as the solvent quality decreases. The internal stratification in theta solvent was similar to the one we found in good solvent, with two and in some cases three kinds of populations containing short dendrons with weakly extended spacers, intermediate-height dendrons, and tall dendrons with highly stretched spacers. The differences increase as the grafting density decreases and single dendron populations were evident in theta and poor solvent. In poor solvent at low grafting densities, solvent micelles, polymeric pinned lamellae, spherical and single chain collapsed micelles were observed. The scaling dependence of the height of the dendritic brush at high density brushes for both solvents was found to be in agreement with existing analytical results.

  5. Microscope sterility during spine surgery.

    Science.gov (United States)

    Bible, Jesse E; O'Neill, Kevin R; Crosby, Colin G; Schoenecker, Jonathan G; McGirt, Matthew J; Devin, Clinton J

    2012-04-01

    Prospective study. Assess the contamination rates of sterile microscope drapes after spine surgery. The use of the operating microscope has become more prevalent in certain spine procedures, providing superior magnification, visualization, and illumination of the operative field. However, it may represent an additional source of bacterial contamination and increase the risk of developing a postoperative infection. This study included 25 surgical spine cases performed by a single spine surgeon that required the use of the operative microscope. Sterile culture swabs were used to obtain samples from 7 defined locations on the microscope drape after its use during the operation. The undraped technician's console was sampled in each case as a positive control, and an additional 25 microscope drapes were swabbed immediately after they were applied to the microscope to obtain negative controls. Swab samples were assessed for bacterial growth on 5% sheep blood Columbia agar plates using a semiquantitative technique. No growth was observed on any of the 25 negative control drapes. In contrast, 100% of preoperative and 96% of postoperative positive controls demonstrated obvious contamination. In the postoperative group, all 7 sites of evaluation were found to be contaminated with rates of 12% to 44%. Four of the 7 evaluated locations were found to have significant contamination rates compared with negative controls, including the shafts of the optic eyepieces on the main surgeon side (24%, P = 0.022), "forehead" portion on both the main surgeon (24%, P = 0.022) and assistant sides (28%, P = 0.010), and "overhead" portion of the drape (44%, P = 0.0002). Bacterial contamination of the operative microscope was found to be significant after spine surgery. Contamination was more common around the optic eyepieces, likely due to inadvertent touching of unsterile portions. Similarly, all regions above the eyepieces also have a propensity for contamination because of unknown contact

  6. Divergent Effects of Dendritic Cells on Pancreatitis

    Science.gov (United States)

    2015-09-01

    role of dendritic cells in pancreatitis. Dendritic cells are professional antigen presenting cells which initiate innate and adaptive immune... Lymphoid -tissue-specific homing of bone- marrow-derived dendritic cells . Blood. 113:6638–6647. http://dx.doi .org/10.1182/blood-2009-02-204321 Dapito...Award Number: W81XWH-12-1-0313 TITLE: Divergent Effects of Dendritic Cells on Pancreatitis PRINCIPAL INVESTIGATOR: Dr. George Miller

  7. REM sleep selectively prunes and maintains new synapses in development and learning.

    Science.gov (United States)

    Li, Wei; Ma, Lei; Yang, Guang; Gan, Wen-Biao

    2017-03-01

    The functions and underlying mechanisms of rapid eye movement (REM) sleep remain unclear. Here we show that REM sleep prunes newly formed postsynaptic dendritic spines of layer 5 pyramidal neurons in the mouse motor cortex during development and motor learning. This REM sleep-dependent elimination of new spines facilitates subsequent spine formation during development and when a new motor task is learned, indicating a role for REM sleep in pruning to balance the number of new spines formed over time. Moreover, REM sleep also strengthens and maintains newly formed spines, which are critical for neuronal circuit development and behavioral improvement after learning. We further show that dendritic calcium spikes arising during REM sleep are important for pruning and strengthening new spines. Together, these findings indicate that REM sleep has multifaceted functions in brain development, learning and memory consolidation by selectively eliminating and maintaining newly formed synapses via dendritic calcium spike-dependent mechanisms.

  8. Prophylaxis of surgical site infection in adult spine surgery: A systematic review.

    Science.gov (United States)

    Yao, Reina; Tan, Terence; Tee, Jin Wee; Street, John

    2018-06-01

    Surgical site infection (SSI) remains a significant source of morbidity in spine surgery, with reported rates varying from 0.7 to 16%. To systematically review and evaluate the evidence for strategies for prophylaxis of SSI in adult spine surgery in the last twenty years. Two independent systematic searches were conducted, at two international spine centers, encompassing PubMed, ClinicalTrials.gov, Cochrane Database, EBSCO Medline, ScienceDirect, Ovid Medline, EMBASE (Ovid), and MEDLINE. References were combined and screened, then distilled to 69 independent studies for final review. 11 randomized controlled trials (RCTs), 51 case-controlled studies (CCS), and 7 case series were identified. Wide variation exists in surgical indications, approaches, procedures, and even definitions of SSI. Intra-wound vancomycin powder was the most widely studied intervention (19 studies, 1 RCT). Multiple studies examined perioperative antibiotic protocols, closed-suction drainage, povidone-iodine solution irrigation, and 2-octyl-cyanoacrylate skin closure. 18 interventions were examined by a single study only. There is limited evidence for the efficacy of intra-wound vancomycin. There is strong evidence that closed-suction drainage does not affect SSI rates, while there is moderate evidence for the efficacy of povidone-iodine irrigation and that single-dose preoperative antibiotics is as effective as multiple doses. Few conclusions can be drawn about other interventions given the paucity and poor quality of studies. While a small body of evidence underscores a select few interventions for SSI prophylaxis in adult spine surgery, most proposed measures have not been investigated beyond a single study. Further high level evidence is required to justify SSI preventative treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Thyroid storm following anterior cervical spine surgery for tuberculosis of cervical spine

    Directory of Open Access Journals (Sweden)

    Sanjiv Huzurbazar

    2014-01-01

    Full Text Available Objective: The primary objective was to report this rare case and discuss the probable mechanism of thyroid storm following anterior cervical spine surgery for Kochs cervical spine.

  10. Enhanced MR angiography of the lower extremities with synergy spine coil

    International Nuclear Information System (INIS)

    Takashima, Hiroyuki; Watanabe, Naoki

    2002-01-01

    A synergy spine coil is a phased-array coil designed for spine imaging. The coil's sensitive area is narrow in both the x-axis and y-axis directions but very wide in the z-axis direction. It is therefore suitable for using in long parts of the body, such as the spine. We used the coil for enhanced MR angiography in the lower extremities, which requires a very long field of view on the z-axis direction. Using on the NEMA (National Electrical Manufacturers Association) standard test for special-purpose coils, the sensitive volume of the synergy spine coil was first measured by using a phantom. It was found that the sensitive lengths along x-axis and y-axis were 300 mm and 120 mm, respectively, while that along z-axis could set at any length required for the examination by modifying the element number. The above area was confirmed to be sufficient for obtaining enhanced MR angiograms of the lower extremities. The results of this study showed the use of the synergy spine coil in enhanced MR angiography of the lower extremities is superior to the use of a conventional whole body coil for obtaining good MR angiograms with a good single-to-noise ratio (SNR). (author)

  11. Disparities in Rates of Spine Surgery for Degenerative Spine Disease Between HIV Infected and Uninfected Veterans

    Science.gov (United States)

    King, Joseph T.; Gordon, Adam J.; Perkal, Melissa F.; Crystal, Stephen; Rosenthal, Ronnie A.; Rodriguez-Barradas, Maria C.; Butt, Adeel A.; Gibert, Cynthia L.; Rimland, David; Simberkoff, Michael S.; Justice, Amy C.

    2011-01-01

    Study Design Retrospective analysis of nationwide Veterans Health Administration (VA) clinical and administrative data. Objective Examine the association between HIV infection and the rate of spine surgery for degenerative spine disease. Summary of Background Data Combination anti-retroviral therapy (cART) has prolonged survival in patients with HIV/AIDS, increasing the prevalence of chronic conditions such as degenerative spine disease that may require spine surgery. Methods We studied all HIV infected patients under care in the VA from 1996–2008 (n=40,038) and uninfected comparator patients (n=79,039) matched on age, gender, race, year, and geographic region. The primary outcome was spine surgery for degenerative spine disease defined by ICD-9 procedure and diagnosis codes. We used a multivariate Poisson regression to model spine surgery rates by HIV infection status, adjusting for factors that might affect suitability for surgery (demographics, year, comorbidities, body mass index, cART, and laboratory values). Results Two-hundred twenty eight HIV infected and 784 uninfected patients underwent spine surgery for degenerative spine disease during 700,731 patient-years of follow-up (1.44 surgeries per 1,000 patient-years). The most common procedures were spinal decompression (50%), and decompression and fusion (33%); the most common surgical sites were the lumbosacral (50%), and cervical (40%) spine. Adjusted rates of surgery were lower for HIV infected patients (0.86 per 1,000 patient-years of follow-up) than for uninfected patients (1.41 per 1,000 patient-years; IRR 0.61, 95% CI: 0.51, 0.74, Pdegenerative spine disease. Possible explanations include disease prevalence, emphasis on treatment of non-spine HIV-related symptoms, surgical referral patterns, impact of HIV on surgery risk-benefit ratio, patient preferences, and surgeon bias. PMID:21697770

  12. Regulation of dendrite growth and maintenance by exocytosis

    OpenAIRE

    Peng, Yun; Lee, Jiae; Rowland, Kimberly; Wen, Yuhui; Hua, Hope; Carlson, Nicole; Lavania, Shweta; Parrish, Jay Z.; Kim, Michael D.

    2015-01-01

    Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential req...

  13. Research articles published by Korean spine surgeons: Scientific progress and the increase in spine surgery.

    Science.gov (United States)

    Lee, Soo Eon; Jahng, Tae-Ahn; Kim, Ki-Jeong; Hyun, Seung-Jae; Kim, Hyun Jib; Kawaguchi, Yoshiharu

    2017-02-01

    There has been a marked increase in spine surgery in the 21st century, but there are no reports providing quantitative and qualitative analyses of research by Korean spine surgeons. The study goal was to assess the status of Korean spinal surgery and research. The number of spine surgeries was obtained from the Korean National Health Insurance Service. Research articles published by Korean spine surgeons were reviewed by using the Medline/PubMed online database. The number of spine surgeries in Korea increased markedly from 92,390 in 2004 to 164,291 in 2013. During the 2000-2014 period, 1982 articles were published by Korean spine surgeons. The annual number of articles increased from 20 articles in 2000 to 293 articles in 2014. There was a positive correlation between the annual spine surgery and article numbers (particles with Oxford levels of evidence 1, 2, and 3. The mean five-year impact factor (IF) for article quality was 1.79. There was no positive correlation between the annual IF and article numbers. Most articles (65.9%) were authored by neurosurgical spine surgeons. But spinal deformity-related topics were dominant among articles authored by orthopedics. The results show a clear quantitative increase in Korean spinal surgery and research over the last 15years. The lack of a correlation between annual IF and published article numbers indicate that Korean spine surgeons should endeavor to increase research value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A prospective study of spine fractures diagnosed by total spine computed tomography in high energy trauma patients

    International Nuclear Information System (INIS)

    Takami, Masanari; Nohda, Kazuhiro; Sakanaka, Junya; Nakamura, Masamichi; Yoshida, Munehito

    2011-01-01

    Since it is known to be impossible to identify spinal fractures in high-energy trauma patients the primary trauma evaluation, we have been performing total spine computed tomography (CT) in high-energy trauma cases. We investigated the spinal fractures that it was possible to detect by total spine CT in 179 cases and evaluated the usefulness of total spine CT prospectively. There were 54 (30.2%) spinal fractures among the 179 cases. Six (37.5%) of the 16 cervical spine fractures that were not detected on plain X-ray films were identified by total spine CT. Six (14.0%) of 43 thoracolumbar spine fractures were considered difficult to diagnose based on the clinical findings if total spine CT had not been performed. We therefore concluded that total spine CT is very useful and should be performed during the primary trauma evaluation in high-energy trauma cases. (author)

  15. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis

    Directory of Open Access Journals (Sweden)

    Mala Misra

    2016-08-01

    Full Text Available Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.

  16. Motion in the unstable thoracolumbar spine when spine boarding a prone patient

    Science.gov (United States)

    Conrad, Bryan P.; Marchese, Diana L.; Rechtine, Glenn R.; Horodyski, MaryBeth

    2012-01-01

    Introduction Previous research has found that the log roll (LR) technique produces significant motion in the spinal column while transferring a supine patient onto a spine board. The purpose of this project was to determine whether log rolling a patient with an unstable spine from prone to supine with a pulling motion provides better thoracolumbar immobilization compared to log rolling with a push technique. Methods A global instability was surgically created at the L1 level in five cadavers. Two spine-boarding protocols were tested (LR Push and LR Pull). Both techniques entailed performing a 180° LR rotation of the prone patient from the ground to the supine position on the spine board. An electromagnetic tracking device registered motion between the T12 and L2 vertebral segments. Six motion parameters were tracked. Repeated-measures statistical analysis was performed to evaluate angular and translational motion. Results Less motion was produced during the LR Push compared to the LR Pull for all six motion parameters. The difference was statistically significant for three of the six parameters (flexion–extension, axial translation, and anterior–posterior (A–P) translation). Conclusions Both the LR Push and LR Pull generated significant motion in the thoracolumbar spine during the prone to supine LR. The LR Push technique produced statistically less motion than the LR Pull, and should be considered when a prone patient with a suspected thoracolumbar injury needs to be transferred to a long spine board. More research is needed to identify techniques to further reduce the motion in the unstable spine during prone to supine LR. PMID:22330191

  17. [Cervical spine trauma].

    Science.gov (United States)

    Yilmaz, U; Hellen, P

    2016-08-01

    In the emergency department 65 % of spinal injuries and 2-5 % of blunt force injuries involve the cervical spine. Of these injuries approximately 50 % involve C5 and/or C6 and 30 % involve C2. Older patients tend to have higher spinal injuries and younger patients tend to have lower injuries. The anatomical and development-related characteristics of the pediatric spine as well as degenerative and comorbid pathological changes of the spine in the elderly can make the radiological evaluation of spinal injuries difficult with respect to possible trauma sequelae in young and old patients. Two different North American studies have investigated clinical criteria to rule out cervical spine injuries with sufficient certainty and without using imaging. Imaging of cervical trauma should be performed when injuries cannot be clinically excluded according to evidence-based criteria. Degenerative changes and anatomical differences have to be taken into account in the evaluation of imaging of elderly and pediatric patients.

  18. Vertical solidification of dendritic binary alloys

    Science.gov (United States)

    Heinrich, J. C.; Felicelli, S.; Poirier, D. R.

    1991-01-01

    Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.

  19. Clinical significance of gas myelography and CT gas myelography of the thoracic spine and the lumbar spine

    International Nuclear Information System (INIS)

    Yoshinaga, Haruhiko

    1984-01-01

    Basic and clinical applications relating to air myelography of the cervical spine have already been studied and extensively been used as an adjuvant diagnostic method for diseases of the spine and the spinal cord. However, hardly any application and clinical evaluation have been made concerning gas myelography of the thoracic spine and the lumbar spine. The author examined X-ray findings of 183 cases with diseases of the thoracic spine and the lumbar spine, including contral cases. Gas X-ray photography included simple profile, forehead tomography, sagittal plane, and CT section. Morphological characteristics of normal X-ray pictures of the throacic spine and the lumbar spine were explained from 54 control cases, and all the diameters of the subarachnoidal space from the anterior to the posterior part were measured. X-ray findings were examined on pathological cases, namely 22 cases with diseases of the throacic spine and 107 cases with diseases of the lumbar spine, and as a result these were useful for pathological elucidation of spinal cord tumors, spinal carries, yellow ligament ossification, lumbar spinal canal stenosis, hernia of intervertebral disc, etc. Also, CT gas myelography was excellent in stereoobservation of the spine and the spinal cord in spinal cord tumors, yellow ligament ossification, and spinal canal stenosis. On the other hand, it is not suitable for the diagnoses of intraspinal vascular abnormality, adhesive arachinitis, and running abnormality of the cauda equina nerve and radicle. Gas myelography of the thoracic spine and the lambar spine, is very useful in clinics when experienced techniques are used in photographic conditions, and diagnoses are made, well understanding the characteristics of gas pictures. Thus, its application has been opened to selection of an operative technique, determination of operative ranges, etc. (J.P.N.)

  20. Clinical significance of gas myelography and CT gas myelography of the thoracic spine and the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Haruhiko (Tokyo Medical Coll. (Japan))

    1984-05-01

    Basic and clinical applications relating to air myelography of the cervical spine have already been studied and extensively been used as an adjuvant diagnostic method for diseases of the spine and the spinal cord. However, hardly any application and clinical evaluation have been made concerning gas myelography of the thoracic spine and the lumbar spine. The author examined X-ray findings of 183 cases with diseases of the thoracic spine and the lumbar spine, including contral cases. Gas X-ray photography included simple profile, forehead tomography, sagittal plane, and CT section. Morphological characteristics of normal X-ray pictures of the throacic spine and the lumbar spine were explained from 54 control cases, and all the diameters of the subarachnoidal space from the anterior to the posterior part were measured. X-ray findings were examined on pathological cases, namely 22 cases with diseases of the throacic spine and 107 cases with diseases of the lumbar spine, and as a result these were useful for pathological elucidation of spinal cord tumors, spinal carries, yellow ligament ossification, lumbar spinal canal stenosis, hernia of intervertebral disc, etc. Also, CT gas myelography was excellent in stereo observation of the spine and the spinal cord in spinal cord tumors, yellow ligament ossification, and spinal canal stenosis. On the other hand, it is not suitable for the diagnoses of intraspinal vascular abnormality, adhesive arachinitis, and running abnormality of the cauda equina nerve and radicle. Gas myelography of the thoracic spine and the lambar spine, is very useful in clinics when experienced techniques are used in photographic conditions, and diagnoses are made, well understanding the characteristics of gas pictures. Thus, its application has been opened to selection of an operative technique, determination of operative ranges, etc.

  1. Intrapartum Ultrasound Assessment of Fetal Spine Position

    Directory of Open Access Journals (Sweden)

    Salvatore Gizzo

    2014-01-01

    Full Text Available We investigated the role of foetal spine position in the first and second labour stages to determine the probability of OPP detection at birth and the related obstetrical implications. We conducted an observational-longitudinal cohort study on uncomplicated cephalic single foetus pregnant women at term. We evaluated the accuracy of ultrasound in predicting occiput position at birth, influence of fetal spine in occiput position during labour, labour trend, analgesia request, type of delivery, and indication to CS. The accuracy of the foetal spinal position to predict the occiput position at birth was high at the first labour stage. At the second labour stage, CS (40.3% and operative vaginal deliveries (23.9% occurred more frequently in OPP than in occiput anterior position (7% and 15.2%, resp., especially in cases of the posterior spine. In concordant posterior positions labour length was greater than other ones, and analgesia request rate was 64.1% versus 14.7% for all the others. The assessment of spinal position could be useful in obstetrical management and counselling, both before and during labour. The detection of spinal position, more than OPP, is predictive of successful delivery. In concordant posterior positions, the labour length, analgesia request, operative delivery, and caesarean section rate are higher than in the other combination.

  2. Detection of zinc translocation into apical dendrite of CA1 pyramidal neuron after electrical stimulation.

    Science.gov (United States)

    Suh, Sang Won

    2009-02-15

    Translocation of the endogenous cation zinc from presynaptic terminals to postsynaptic neurons after brain insult has been implicated as a potential neurotoxic event. Several studies have previously demonstrated that a brief electrical stimulation is sufficient to induce the translocation of zinc from presynaptic vesicles into the cytoplasm (soma) of postsynaptic neurons. In the present work I have extended those findings in three ways: (i) providing evidence that zinc translocation occurs into apical dendrites, (ii) presenting data that there is an apparent translocation into apical dendrites when only a zinc-containing synaptic input is stimulated, and (iii) presenting data that there is no zinc translocation into apical dendrite of ZnT3 KO mice following electrical stimulation. Hippocampal slices were preloaded with the "trappable" zinc fluorescent probe, Newport Green. After washout, a single apical dendrite in the stratum radiatum of hippocampal CA1 area was selected and focused on. Burst stimulation (100Hz, 500microA, 0.2ms, monopolar) was delivered to either the adjacent Schaffer-collateral inputs (zinc-containing) or to the adjacent temporo-ammonic inputs (zinc-free) to the CA1 dendrites. Stimulation of the Schaffer collaterals increased the dendritic fluorescence, which was blocked by TTX, low-Ca medium, or the extracellular zinc chelator, CaEDTA. Stimulation of the temporo-ammonic pathway caused no significant rise in the fluorescence. Genetic depletion of vesicular zinc by ZnT3 KO showed no stimulation-induced apical dendrite zinc rise. The present study provides evidence that synaptically released zinc translocates into postsynaptic neurons through the apical dendrites of CA1 pyramidal neurons during physiological synaptic activity.

  3. A requirement for NF-κB in developmental and plasticity-associated synaptogenesis

    Science.gov (United States)

    Boersma, Matthew C. H.; Dresselhaus, Erica C.; De Biase, Lindsay M.; Mihalas, Anca B.; Bergles, Dwight E.

    2011-01-01

    Structural plasticity of dendritic spines and synapses is a fundamental mechanism governing neuronal circuits and may form an enduring basis for information storage in the brain. We find that the p65 subunit of the NF-κB transcription factor, which is required for learning and memory, controls excitatory synapse and dendritic spine formation and morphology in murine hippocampal neurons. Endogenous NF-κB activity is elevated by excitatory transmission during periods of rapid spine and synapse development. During in-vitro synaptogenesis, NF-κB enhances dendritic spine and excitatory synapse density and loss of endogenous p65 decreases spine density and spine head volume. Cell-autonomous function of NF-κB within the postsynaptic neuron is sufficient to regulate the formation of both pre- and post-synaptic elements. During synapse development in-vivo, loss of NF-κB similarly reduces spine density and also diminishes the amplitude of synaptic responses. In contrast, after developmental synaptogenesis has plateaued, endogenous NF-κB activity is low and p65-deficiency no longer attenuates basal spine density. Instead, NF-κB in mature neurons is activated by stimuli that induce demand for new synapses, including estrogen and short-term bicuculline, and is essential for upregulating spine density in response to these stimuli. p65 is enriched in dendritic spines making local protein-protein interactions possible; however, the effects of NF-κB on spine density require transcription and the NF-κB-dependent regulation of PSD-95, a critical postsynaptic component. Collectively, our data define a distinct role for NF-κB in imparting transcriptional regulation required for the induction of changes to, but not maintenance of, excitatory synapse and spine density. PMID:21471377

  4. Src Kinase Dependent Rapid Non-genomic Modulation of Hippocampal Spinogenesis Induced by Androgen and Estrogen

    Directory of Open Access Journals (Sweden)

    Mika Soma

    2018-05-01

    Full Text Available Dendritic spine is a small membranous protrusion from a neuron's dendrite that typically receives input from an axon terminal at the synapse. Memories are stored in synapses which consist of spines and presynapses. Rapid modulations of dendritic spines induced by hippocampal sex steroids, including dihydrotestosterone (DHT, testosterone (T, and estradiol (E2, are essential for synaptic plasticity. Molecular mechanisms underlying the rapid non-genomic modulation through synaptic receptors of androgen (AR and estrogen (ER as well as its downstream kinase signaling, however, have not been well understood. We investigated the possible involvement of Src tyrosine kinase in rapid changes of dendritic spines in response to androgen and estrogen, including DHT, T, and E2, using hippocampal slices from adult male rats. We found that the treatments with DHT (10 nM, T (10 nM, and E2 (1 nM increased the total density of spines by ~1.22 to 1.26-fold within 2 h using super resolution confocal imaging of Lucifer Yellow-injected CA1 pyramidal neurons. We examined also morphological changes of spines in order to clarify differences between three sex steroids. From spine head diameter analysis, DHT increased middle- and large-head spines, whereas T increased small- and middle-head spines, and E2 increased small-head spines. Upon application of Src tyrosine kinase inhibitor, the spine increases induced through DHT, T, and E2 treatments were completely blocked. These results imply that Src kinase is essentially involved in sex steroid-induced non-genomic modulation of the spine density and morphology. These results also suggest that rapid effects of exogenously applied androgen and estrogen can occur in steroid-depleted conditions, including “acute” hippocampal slices and the hippocampus of gonadectomized animals.

  5. Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice.

    Science.gov (United States)

    Iñiguez, Sergio D; Aubry, Antonio; Riggs, Lace M; Alipio, Jason B; Zanca, Roseanna M; Flores-Ramirez, Francisco J; Hernandez, Mirella A; Nieto, Steven J; Musheyev, David; Serrano, Peter A

    2016-12-01

    Social stress, including bullying during adolescence, is a risk factor for common psychopathologies such as depression. To investigate the neural mechanisms associated with juvenile social stress-induced mood-related endophenotypes, we examined the behavioral, morphological, and biochemical effects of the social defeat stress model of depression on hippocampal dendritic spines within the CA1 stratum radiatum. Adolescent (postnatal day 35) male C57BL/6 mice were subjected to defeat episodes for 10 consecutive days. Twenty-four h later, separate groups of mice were tested on the social interaction and tail suspension tests. Hippocampi were then dissected and Western blots were conducted to quantify protein levels for various markers important for synaptic plasticity including protein kinase M zeta (PKMζ), protein kinase C zeta (PKCζ), the dopamine-1 (D1) receptor, tyrosine hydroxylase (TH), and the dopamine transporter (DAT). Furthermore, we examined the presence of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor subunit GluA2 as well as colocalization with the post-synaptic density 95 (PSD95) protein, within different spine subtypes (filopodia, stubby, long-thin, mushroom) using an immunohistochemistry and Golgi-Cox staining technique. The results revealed that social defeat induced a depression-like behavioral profile, as inferred from decreased social interaction levels, increased immobility on the tail suspension test, and decreases in body weight. Whole hippocampal immunoblots revealed decreases in GluA2, with a concomitant increase in DAT and TH levels in the stressed group. Spine morphology analyses further showed that defeated mice displayed a significant decrease in stubby spines, and an increase in long-thin spines within the CA1 stratum radiatum. Further evaluation of GluA2/PSD95 containing-spines demonstrated a decrease of these markers within long-thin and mushroom spine types. Together, these results indicate that juvenile

  6. Synaptic Control of Secretory Trafficking in Dendrites

    Directory of Open Access Journals (Sweden)

    Cyril Hanus

    2014-06-01

    Full Text Available Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK. Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.

  7. CREB Selectively Controls Learning-Induced Structural Remodeling of Neurons

    Science.gov (United States)

    Middei, Silvia; Spalloni, Alida; Longone, Patrizia; Pittenger, Christopher; O'Mara, Shane M.; Marie, Helene; Ammassari-Teule, Martine

    2012-01-01

    The modulation of synaptic strength associated with learning is post-synaptically regulated by changes in density and shape of dendritic spines. The transcription factor CREB (cAMP response element binding protein) is required for memory formation and in vitro dendritic spine rearrangements, but its role in learning-induced remodeling of neurons…

  8. Variability in millimeter wave scattering properties of dendritic ice crystals

    International Nuclear Information System (INIS)

    Botta, Giovanni; Aydin, Kültegin; Verlinde, Johannes

    2013-01-01

    A detailed electromagnetic scattering model for ice crystals is necessary for calculating radar reflectivity from cloud resolving model output in any radar simulator. The radar reflectivity depends on the backscattering cross sections and size distributions of particles in the radar resolution volume. The backscattering cross section depends on the size, mass and distribution of mass within the crystal. Most of the available electromagnetic scattering data for ice hydrometeors rely on simple ice crystal types and a single mass–dimensional relationship for a given type. However, a literature survey reveals that the mass–dimensional relationships for dendrites cover a relatively broad region in the mass–dimensional plane. This variability of mass and mass distribution of dendritic ice crystals cause significant variability in their backscattering cross sections, more than 10 dB for all sizes (0.5–5 mm maximum dimension) and exceeding 20 dB for the larger ones at X-, Ka-, and W-band frequencies. Realistic particle size distributions are used to calculate radar reflectivity and ice water content (IWC) for three mass–dimensional relationships. The uncertainty in the IWC for a given reflectivity spans an order of magnitude in value at all three frequencies because of variations in the unknown mass–dimensional relationship and particle size distribution. The sensitivity to the particle size distribution is reduced through the use of dual frequency reflectivity ratios, e.g., Ka- and W-band frequencies, together with the reflectivity at one of the frequencies for estimating IWC. -- Highlights: • Millimeter wave backscattering characteristics of dendritic crystals are modeled. • Natural variability of dendrite shapes leads to large variability in their mass. • Dendrite mass variability causes large backscattering cross section variability. • Reflectivity–ice water content relation is sensitive to mass and size distribution. • Dual frequency

  9. High dendritic expression of Ih in the proximity of the axon origin controls the integrative properties of nigral dopamine neurons.

    Science.gov (United States)

    Engel, Dominique; Seutin, Vincent

    2015-11-15

    The hyperpolarization-activated cation current Ih is expressed in dopamine neurons of the substantia nigra, but the subcellular distribution of the current and its role in synaptic integration remain unknown. We used cell-attached patch recordings to determine the localization profile of Ih along the somatodendritic axis of nigral dopamine neurons in slices from young rats. Ih density is higher in axon-bearing dendrites, in a membrane area close to the axon origin, than in the soma and axon-lacking dendrites. Dual current-clamp recordings revealed a similar contribution of Ih to the waveform of single excitatory postsynaptic potentials throughout the somatodendritic domain. The Ih blocker ZD 7288 increased the temporal summation in all dendrites with a comparable effect in axon- and non-axon dendrites. The strategic position of Ih in the proximity of the axon may influence importantly transitions between pacemaker and bursting activities and consequently the downstream release of dopamine. Dendrites of most neurons express voltage-gated ion channels in their membrane. In combination with passive properties, active currents confer to dendrites a high computational potential. The hyperpolarization-activated cation current Ih present in the dendrites of some pyramidal neurons affects their membrane and integration properties, synaptic plasticity and higher functions such as memory. A gradient of increasing h-channel density towards distal dendrites has been found to be responsible for the location independence of excitatory postsynaptic potential (EPSP) waveform and temporal summation in cortical and hippocampal pyramidal cells. However, reports on other cell types revealed that smoother gradients or even linear distributions of Ih can achieve homogeneous temporal summation. Although the existence of a robust, slowly activating Ih current has been repeatedly demonstrated in nigral dopamine neurons, its subcellular distribution and precise role in synaptic integration

  10. Loss of Dendritic Complexity Precedes Neurodegeneration in a Mouse Model with Disrupted Mitochondrial Distribution in Mature Dendrites

    Directory of Open Access Journals (Sweden)

    Guillermo López-Doménech

    2016-10-01

    Full Text Available Correct mitochondrial distribution is critical for satisfying local energy demands and calcium buffering requirements and supporting key cellular processes. The mitochondrially targeted proteins Miro1 and Miro2 are important components of the mitochondrial transport machinery, but their specific roles in neuronal development, maintenance, and survival remain poorly understood. Using mouse knockout strategies, we demonstrate that Miro1, as opposed to Miro2, is the primary regulator of mitochondrial transport in both axons and dendrites. Miro1 deletion leads to depletion of mitochondria from distal dendrites but not axons, accompanied by a marked reduction in dendritic complexity. Disrupting postnatal mitochondrial distribution in vivo by deleting Miro1 in mature neurons causes a progressive loss of distal dendrites and compromises neuronal survival. Thus, the local availability of mitochondrial mass is critical for generating and sustaining dendritic arbors, and disruption of mitochondrial distribution in mature neurons is associated with neurodegeneration.

  11. Transfer vibration through spine

    OpenAIRE

    Benyovszky, Adam

    2012-01-01

    Transfer Vibration through Spine Abstract In the bachelor project we deal with the topic of Transfer Vibration through Spine. The problem of TVS is trying to be solved by the critical review method. We analyse some diagnostic methods and methods of treatment based on this principle. Close attention is paid to the method of Transfer Vibration through Spine that is being currently solved by The Research Institute of Thermomechanics in The Czech Academy of Sciences in cooperation with Faculty of...

  12. Tuberculosis of the cervical spine

    African Journals Online (AJOL)

    Tuberculosis of the cervical spine is rare, comprising 3 -. 5% of cases of tuberculosis of the spine. Eight patients with tuberculosis of the cervicaJ spine seen during 1989 -. 1992 were reviewed. They all presented with neck pain. The 4 children presented with a kyphotic deformity. In all the children the disease was extensive, ...

  13. Sleeping dendrites: fiber-optic measurements of dendritic calcium activity in freely moving and sleeping animals

    Directory of Open Access Journals (Sweden)

    Julie Seibt

    2014-03-01

    Full Text Available Dendrites are the post-synaptic sites of most excitatory and inhibitory synapses in the brain, making them the main location of cortical information processing and synaptic plasticity. Although current hypotheses suggest a central role for sleep in proper cognitive function and brain plasticity, virtually nothing is known about changes in dendritic activity across the sleep-wake cycle and how waking experience modifies this activity. To start addressing these questions, we developed a method that allows long-term recordings of EEGs/EMG combined with in vivo cortical calcium (Ca2+ activity in freely moving and sleeping rats. We measured Ca2+ activity from populations of dendrites of layer (L 5 pyramidal neurons (n = 13 rats that we compared with Ca2+ activity from populations of neurons in L2/3 (n = 11 rats. L5 and L2/3 neurons were labelled using bolus injection of OGB1-AM or GCaMP6 (1. Ca2+ signals were detected using a fiber-optic system (cannula diameter = 400µm, transmitting the changes in fluorescence to a photodiode. Ca2+ fluctuations could then be correlated with ongoing changes in brain oscillatory activity during 5 major brain states: active wake [AW], quiet wake [QW], NREM, REM and NREM-REM transition (or intermediate state, [IS]. Our Ca2+ recordings show large transients in L5 dendrites and L2/3 neurons that oscillate predominantly at frequencies In summary, we show that this technique is successful in monitoring fluctuations in ongoing dendritic Ca2+ activity during natural brain states and allows, in principle, to combine behavioral measurement with imaging from various brain regions (e.g. deep structures in freely behaving animals. Using this method, we show that Ca2+ transients from populations of L2/3 neurons and L5 dendrites are deferentially regulated across the sleep/wake cycle, with dendritic activity being the highest during the IS sleep. Our correlation analysis suggests that specific sleep EEG activity during NREM and IS

  14. Different patterns of motor activity induce differential plastic changes in pyramidal neurons in the motor cortex of rats: A Golgi study.

    Science.gov (United States)

    Vázquez-Hernández, Nallely; González-Tapia, Diana C; Martínez-Torres, Nestor I; González-Tapia, David; González-Burgos, Ignacio

    2017-09-14

    Rehabilitation is a process which favors recovery after brain damage involving motor systems, and neural plasticity is the only real resource the brain has for inducing neurobiological events in order to bring about re-adaptation. Rats were placed on a treadmill and made to walk, in different groups, at different velocities and with varying degrees of inclination. Plastic changes in the spines of the apical and basal dendrites of fifth-layer pyramidal neurons in the motor cortices of the rats were detected after study with the Golgi method. Numbers of dendritic spines increased in the three experimental groups, and thin, mushroom, stubby, wide, and branched spines increased or decreased in proportion depending on the motor demands made of each group. Along with the numerical increase of spines, the present findings provide evidence that dendritic spines' geometrical plasticity is involved in the differential performance of motor activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Low-doses of cisplatin injure hippocampal synapses: a mechanism for 'chemo' brain?

    Science.gov (United States)

    Andres, Adrienne L; Gong, Xing; Di, Kaijun; Bota, Daniela A

    2014-05-01

    Chemotherapy-related cognitive deficits are a major neurological problem, but the underlying mechanisms are unclear. The death of neural stem/precursor cell (NSC) by cisplatin has been reported as a potential cause, but this requires high doses of chemotherapeutic agents. Cisplatin is frequently used in modern oncology, and it achieves high concentrations in the patient's brain. Here we report that exposure to low concentrations of cisplatin (0.1μM) causes the loss of dendritic spines and synapses within 30min. Longer exposures injured dendritic branches and reduced dendritic complexity. At this low concentration, cisplatin did not affect NSC viability nor provoke apoptosis. However, higher cisplatin levels (1μM) led to the rapid loss of synapses and dendritic disintegration, and neuronal-but not NSC-apoptosis. In-vivo treatment with cisplatin at clinically relevant doses also caused a reduction of dendritic branches and decreased spine density in CA1 and CA3 hippocampal neurons. An acute increase in cell death was measured in the CA1 and CA3 neurons, as well as in the NSC population located in the subgranular zone of the dentate gyrus in the cisplatin treated animals. The density of dendritic spines is related to the degree of neuronal connectivity and function, and pathological changes in spine number or structure have significant consequences for brain function. Therefore, this synapse and dendritic damage might contribute to the cognitive impairment observed after cisplatin treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Solidification behaviors of a single-crystal superalloy under lateral constraints

    International Nuclear Information System (INIS)

    Zhuangqi Hu; Huaming Wang

    1993-01-01

    The effect of lateral constraints ahead of solidification interface on the solidification behaviors of a newly developed hot corrosion resistant single-crystal nickel-base superalloy was investigated under commercial single-crystal production conditions. The lateral constraints or section variations ahead of solidification front were found to have drastic influences both on the modes of solidification and the profiles of solute segregation. As lateral constraints were imposed ahead of the directionally solidifying interface, the solidification microstructure of the single-crystal superalloy changed suddenly, through a γ/γ' eutectic-free zone which is characterized by an extremely-fine and highly-developed dendrite network, from the original well-branched dendritic structure to a fine cellular-dendrite or regular cell structure, accompanying which the primary arm spacing, the severity of segregation and the amount of microporosity decreased remarkably. The newly formed cellular dendrite or cell structure transforms always gradually to the initial coarse dendrite structure as the lateral constraint is finally released whether gradually or sharply. Moreover, an abnormal porosity zone was readily observed in the initial section beneath and away from the eutectic-free zone. The solidification microstructural changes were attributed to the drastic dynamical changes in local solidification cooling conditions and in momentum transport during solidification due to the presence of lateral constraint

  17. Randomly oriented twin domains in electrodeposited silver dendrites

    Directory of Open Access Journals (Sweden)

    Ivanović Evica R.

    2015-01-01

    Full Text Available Silver dendrites were prepared by electrochemical deposition. The structures of Ag dendrites, the type of twins and their distribution were investigated by scanning electron microscopy (SEM, Z-contrast high angle annular dark field transmission electron microscopy (HAADF, and crystallografically sensitive orientation imaging microscopy (OIM. The results revealed that silver dendrites are characterized by the presence of randomly distributed 180° rotational twin domains. The broad surface of dendrites was of the {111} type. Growth directions of the main dendrite stem and all branches were of type. [Projekat Ministarstva nauke Republike Srbije, br. 172054

  18. The cytoarchitecture of the torus semicircularis in the Tegu lizard, Tupinambis nigropunctatus.

    Science.gov (United States)

    Browner, R H; Rubinson, K

    1977-12-15

    The torus semicircularis (TS) of the Tegu lizard extends from the superficial caudal mesencephalon, dorsal to the exiting trochlear nerve, to a position ventral to the middle part of the optic tectum and its ventricle. It has an oblique orientation with the caudal pole abutting the midline while the rostal end is lateral and slightly ventral. The TS consists of a central nucleus and several adjacent cell groups. The central nucleus and the laminar nucleus, situated medially, extend the entire length of the TS while the cortical nucleus, situated dorsally and laterally, is present only in the caudal superficial portion. The central nucleus is composed of ovoid neurons with branched, radiating dendrites. The dendrites are directed medially and laterally with spines on the distal portion of the dendritic tree. The laminar nucleus consists of three to five neuronal layers. It is mainly composed of fusiform neurons with one dendritic trunk from each extremity of the soma. There is little branching and few dendritic spines. The cortical nucleus is a laminated region consisting of alternating layers of neurons and lateral lemniscal fibers. The neurons of the superficial layers are fusiform with their long axis perpendicular to the long axis of the brainstem. They possess two main dendritic trunks which parallel the laminae and are covered with dendritic spines. The deeper layers consist of pyramidal neurons with three dendritic trunks, secondary branches, and few spines. The long axis of these neurons extends from the center of the TS to the periphery. Two dendritic trunks extend dorsally or laterally towards the surface, while the third extends towards the central nucleus. The dendrites, thus, extend across the laminae. In addition, a cell-free lateral zone is described.

  19. Orchestration of transplantation tolerance by regulatory dendritic cell therapy or in-situ targeting of dendritic cells.

    Science.gov (United States)

    Morelli, Adrian E; Thomson, Angus W

    2014-08-01

    Extensive research in murine transplant models over the past two decades has convincingly demonstrated the ability of regulatory dendritic cells (DCregs) to promote long-term allograft survival. We review important considerations regarding the source of therapeutic DCregs (donor or recipient) and their mode of action, in-situ targeting of DCregs, and optimal therapeutic regimens to promote DCreg function. Recent studies have defined protocols and mechanisms whereby ex-vivo-generated DCregs of donor or recipient origin subvert allogeneic T-cell responses and promote long-term organ transplant survival. Particular interest has focused on how donor antigen is acquired, processed and presented by autologous dendritic cells, on the stability of DCregs, and on in-situ targeting of dendritic cells to promote their tolerogenic function. New evidence of the therapeutic efficacy of DCregs in a clinically relevant nonhuman primate organ transplant model and production of clinical grade DCregs support early evaluation of DCreg therapy in human graft recipients. We discuss strategies currently used to promote dendritic cell tolerogenicity, including DCreg therapy and in-situ targeting of dendritic cells, with a view to improved understanding of underlying mechanisms and identification of the most promising strategies for therapeutic application.

  20. Lumbar spine degenerative disease : effect on bone mineral density measurements in the lumbar spine and femoral neck

    International Nuclear Information System (INIS)

    Juhng, Seon Kwan; Koplyay, Peter; Jeffrey Carr, J.; Lenchik, Leon

    2001-01-01

    To determine the effect of degenerative disease of the lumbar spine on bone mineral density in the lumbar spine and femoral neck. We reviewed radiographs and dual energy x-ray absorptiometry scans of the lumbar spine and hip in 305 Caucasian women with suspected osteoporosis. One hundred and eight-six patient remained after excluding women less than 40 years of age (n=18) and those with hip osteoarthritis, scoliosis, lumbar spine fractures, lumbar spinal instrumentation, hip arthroplasty, metabolic bone disease other than osteoporosis, or medications known to influence bone metabolism (n=101). On the basis of lumbar spine radiographs, those with absent/mild degenerative disease were assigned to the control group and those with moderate/severe degenerative disease to the degenerative group. Spine radiographs were evaluated for degenerative disease by two radiologists working independently; discrepant evaluations were resolved by consensus. Lumbar spine and femoral neck bone mineral density was compared between the two groups. Forty-five (24%) of 186 women were assigned to the degenerative group and 141 (76%) to the control group. IN the degenerative group, mean bone mineral density measured 1.075g/cm? in the spine and 0.788g/cm 2 in the femoral neck, while for controls the corresponding figures were 0.989g/cm 2 and 0.765g/cm 2 . Adjusted for age, weight and height by means of analysis of variance, degenerative disease of the lumbar spine was a significant predictor of increased bone mineral density in the spine (p=0.0001) and femoral neck (p=0.0287). Our results indicate a positive relationship between degenerative disease of the lumbar spine and bone mineral density in the lumbar spine and femoral neck, and suggest that degenerative disease in that region, which leads to an intrinsic increase in bone mineral density in the femoral neck, may be a good negative predictor of osteoporotic hip fractures

  1. STELLA and SPINE data transmission experiments preliminary results and conclusions

    CERN Document Server

    Bartholome, P; Scanlan, J O

    1981-01-01

    Discusses the CERN-based proposal for a single experiment, Satellite Transmission Experiment Linking Laboratories (STELLA) and the ESA experimental programme SPINE (Space Informatics Network Experiments). Both projects are examples of experiments to explore the capability and utility of high speed data transmission by satellite, and used the European OTS. (2 refs).

  2. Gunshot wounds to the spine in post-Katrina New Orleans.

    Science.gov (United States)

    Trahan, Jayme; Serban, Daniel; Tender, Gabriel C

    2013-11-01

    Gunshot wounds (GSW) to the spine represent a major health concern within today's society. Our study assessed the epidemiologic characteristics of patients with GSW to the spine treated in New Orleans. A retrospective chart review was performed from January 2007 through November 2011 on all the patients who were seen in the emergency room and diagnosed with a gunshot wound to the spine. Epidemiologic factors, as well as the results of admission toxicology screening, were noted. Outcome analysis was performed on patients undergoing conservative versus operative management for their injuries. Clinical outcomes were assessed using the ASIA classification system. Complications related to initial injury, neurosurgical procedures, and hospital stay were noted. A total of 147 patients were enrolled. Of those diagnosed with a GSW to the spine, 88 (59.8%) received an admission toxicology screen. Seventy-three (83%) patients out of those tested had a positive screen, with the most common substances detected being cannabis, cocaine, and alcohol. In regards to management, 127 (87%) patients were treated conservatively and only one (0.7%) patient improved clinically from ASIA D to E. Of the 20 patients who underwent surgery, one (5%) patient had clinical improvement post-operatively from ASIA C to D. This study evaluates the largest number of patients with GSW to the spine per year treated in a single centre, illustrating the violent nature of New Orleans. In this urban population, there was a clear correlation between drug use and suffering a GSW to the spine. Surgical intervention was seldom indicated in these patients and was predominately used for fixation of unstable fractures and decompression of compressive injuries, particularly below T11. Minimally invasive techniques were used successfully at our institution to minimize the risk of post-operative CSF leak. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Sequence learning in differentially activated dendrites

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2003-01-01

    . It is proposed that the neural machinery required in such a learning/retrieval mechanism could involve the NMDA receptor, in conjunction with the ability of dendrites to maintain differentially activated regions. In particular, it is suggested that such a parcellation of the dendrite allows the neuron......Differentially activated areas of a dendrite permit the existence of zones with distinct rates of synaptic modification, and such areas can be individually accessed using a reference signal which localizes synaptic plasticity and memory trace retrieval to certain subregions of the dendrite...... to participate in multiple sequences, which can be learned without suffering from the 'wash-out' of synaptic efficacy associated with superimposition of training patterns. This is a biologically plausible solution to the stability-plasticity dilemma of learning in neural networks....

  4. Dendritic calcium channels and their activation by synaptic signals in auditory coincidence detector neurons.

    Science.gov (United States)

    Blackmer, Trillium; Kuo, Sidney P; Bender, Kevin J; Apostolides, Pierre F; Trussell, Laurence O

    2009-08-01

    The avian nucleus laminaris (NL) encodes the azimuthal location of low-frequency sound sources by detecting the coincidence of binaural signals. Accurate coincidence detection requires precise developmental regulation of the lengths of the fine, bitufted dendrites that characterize neurons in NL. Such regulation has been suggested to be driven by local, synaptically mediated, dendritic signals such as Ca(2+). We examined Ca(2+) signaling through patch clamp and ion imaging experiments in slices containing nucleus laminaris from embryonic chicks. Voltage-clamp recordings of neurons located in the NL showed the presence of large Ca(2+) currents of two types, a low voltage-activated, fast inactivating Ni(2+) sensitive channel resembling mammalian T-type channels, and a high voltage-activated, slowly inactivating Cd(2+) sensitive channel. Two-photon Ca(2+) imaging showed that both channel types were concentrated on dendrites, even at their distal tips. Single action potentials triggered synaptically or by somatic current injection immediately elevated Ca(2+) throughout the entire cell. Ca(2+) signals triggered by subthreshold synaptic activity were highly localized. Thus when electrical activity is suprathreshold, Ca(2+) channels ensure that Ca(2+) rises in all dendrites, even those that are synaptically inactive.

  5. Analysis of the Functional Independence Measure Value of Cervical Spine Injury Patients with Conservative Management

    Directory of Open Access Journals (Sweden)

    M. Zafrullah Arifin

    2012-06-01

    Full Text Available Analysis of the Functional Independence Measure Value of Cervical Spine Injury Patients with Conservative Management. Cervical spine injury is one of the most common spinal cord injuries in trauma patients. From 100,000 spinal cord injury cases reported in the United States of America (2008, sixty seven percent involve cervical spine injury. American Spinal Cord Injury Association (ASIA impairment score is used as an initial assessment but not enough attention prognostic outcome of these patients was paid to. The objective of this study is to analyze the value of functional independence measure (FIM cervical spine injury patients with conservative management and its correlation with age, sex, type of trauma, onset of trauma, cervical abnormalities, type of cervical spine lesion and ASIA impairment score. A prospective cohort study was performed to all patients with cervical spine injury treated inNeurosurgery Department of Dr. Hasan Sadikin Hospital Bandung that fullfiled the inclusion criteria. The subjects were classified based on age, sex, single/multiple trauma, acute /chronic, cervical abnormalities, complete/incomplete lesion and ASIA impairment score. The FIM examination was performed in Outpatient clinic of Neurosurgery. T-test and chi-square test was done to analyze the data. There were 17 cervical spine injury patients treated in Neurosurgery Department of Dr. Hasan Sadikin Hospital during April 2009–April 2010. The average FIM value of cervical spine injury in those patients is 4+ 1.63 by cohort prospective study. There were no correlation between FIM value with age, sex, type of trauma, onset of trauma and cervical abnormalities. Significant correlations were found between FIM value with type of cervical spine lesion and ASIA impairment score in cervical spine patients. Type of cervical spine lesion and ASIA impairment score have significant correlation with FIM value of patients in 6 months after cervical injury.

  6. Slice cultures of the imprinting-relevant forebrain area MNH of the domestic chick: quantitative characterization of neuronal morphology.

    Science.gov (United States)

    Hofmann, H; Braun, K

    1995-05-26

    The persistence of morphological features of neurons in slice cultures of the imprinting-relevant forebrain area MNH (mediorostral neostriatum and hyperstriatum ventrale) of the domestic chick was analysed at 7, 14, 21 and 28 days in vitro. After having been explanted and kept in culture the neurons in vitro have larger soma areas, longer and more extensively branched dendritic trees and lower spine frequencies compared to the neurons in vivo. During the analyzed culturing period, the parameters soma area, total and mean dendritic length, number of dendrites, number of dendritic nodes per dendrite and per neuron as well as the spine densities in different dendritic segments showed no significant differences between early and late periods. Highly correlated in every age group were the total dendritic length and the number of dendritic nodes per neuron, indicating regular ramification during dendritic growth. Since these morphological parameters remain stable during the first 4 weeks in vitro, this culture system may provide a suitable model to investigate experimentally induced morphological changes.

  7. Blastic plasmacytoid dendritic cell neoplasm (BPDCN): the cutaneous sanctuary.

    Science.gov (United States)

    Pileri, A; Delfino, C; Grandi, V; Agostinelli, C; Pileri, S A; Pimpinelli, N

    2012-12-01

    Blastic plasmacytoid dendritic cell neoplasm (BPDNC) is a rare tumour, which stems from plasmacytoid dendritic cells. Although the aetiology is still unclear, in the last few years various reports suggested a potential role of chromosomal aberrations in the oncogenesis. The disease is currently enclosed among "acute myeloid leukemia (AML) and related precursor neoplasms" in the last WHO classification. BPDCN has an aggressive course, however, it has been suggested that an exclusive cutaneous involvement at presentation is related to a better clinical outcome. We review the literature about BPDCN, and we present a series of 11 cases, all characterised by disease limited to the skin at presentation. Furthermore, we examined all cases of the last 10 years stored in the database of the multidisciplinary study group on cutaneous lymphomas of the University of Florence. Basing on the clinical features, patient were classified into two groups: with a single-lesion or multiple eruptive-lesions presentation. The former were treated with radiotherapy (limited field, electron beam therapy). The latter were treated with different therapeutic options, depending on age and co-morbidities. All patients with a single lesion achieved complete response. Five of 6 patients with eruptive lesions achieved a clinical response (2 complete and 3 partial response). Notably, the progression free survival was higher in the single-lesion than in the eruptive-lesion group (23 vs. 9 months). However all patients relapsed and 8 of 11 died. Although the small number of selected patients, we could speculate that the concept of "cutaneous sanctuary" is particularly true in patients with a single lesion-presentation. In these patients, especially if >70 year-old aged, radiotherapy should be encouraged as the treatment of choice.

  8. Adverse Outcomes After Palliative Radiation Therapy for Uncomplicated Spine Metastases: Role of Spinal Instability and Single-Fraction Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Tai-Chung, E-mail: lamtaichung@gmail.com [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Boston, Massachusetts (United States); Uno, Hajime [Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Krishnan, Monica [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Boston, Massachusetts (United States); Lutz, Steven [Department of Radiation Oncology, Blanchard Valley Regional Medical Center, Findlay, Ohio (United States); Groff, Michael [Department of Neurosurgery, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Cheney, Matthew [Harvard Radiation Oncology Program, Boston, Massachusetts (United States); Balboni, Tracy [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Boston, Massachusetts (United States); Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts (United States)

    2015-10-01

    Purpose: Level I evidence demonstrates equivalent pain response after single-fraction (SF) or multifraction (MF) radiation therapy (RT) for bone metastases. The purpose of this study is to provide additional data to inform the incidence and predictors of adverse outcomes after RT for spine metastases. Methods and Materials: At a single institution, 299 uncomplicated spine metastases (without cord compression, prior RT, or surgery) treated with RT from 2008 to 2013 were retrospectively reviewed. The spinal instability neoplastic score (SINS) was used to assess spinal instability. The primary outcome was time to first spinal adverse event (SAE) at the site, including symptomatic vertebral fracture, hospitalization for site-related pain, salvage surgery, interventional procedure, new neurologic symptoms, or cord compression. Fine and Gray's multivariable model assessed associations of the primary outcome with SINS, SF RT, and other significant baseline factors. Propensity score matched analysis further assessed the relationship of SF RT to first SAEs. Results: The cumulative incidence of first SAE after SF RT (n=66) was 6.8% at 30 days, 16.9% at 90 days, and 23.6% at 180 days. For MF RT (n=233), the incidence was 3.5%, 6.4%, and 9.2%, respectively. In multivariable analysis, SF RT (hazard ratio [HR] = 2.8, 95% confidence interval [CI] 1.5-5.2, P=.001) and SINS ≥11 (HR=2.5 , 95% CI 1.3-4.9, P=.007) were predictors of the incidence of first SAE. In propensity score matched analysis, first SAEs had developed in 22% of patients with SF RT versus 6% of those with MF RT cases (HR=3.9, 95% CI 1.6-9.6, P=.003) at 90 days after RT. Conclusion: In uncomplicated spinal metastases treated with RT alone, spinal instability with SINS ≥11 and SF RT were associated with a higher rate of SAEs.

  9. A game of two discs: a case of non-contiguous and occult cervical spine injury in a rugby player

    OpenAIRE

    O'Sullivan, Michael D.; Piggot, Robert; Jaddan, Mutaz; McCabe, John P.

    2016-01-01

    The aim of this case report was to highlight the application of magnetic resonance imaging (MRI) in elucidating serious and occult injuries in a single case of hyperflextion injury of a patient cervical spine (C-Spine). A chart and radiology review was performed to establish the sequence of care and how the results of imaging studies influenced the clinical management in this trauma case. Plain radiographs and computed tomography (CT) imaging modalities of the C-Spine revealed bilateral C4/C5...

  10. Analyzing dendritic growth in a population of immature neurons in the adult dentate gyrus using laminar quantification of disjointed dendrites

    Directory of Open Access Journals (Sweden)

    Shira eRosenzweig

    2011-03-01

    Full Text Available In the dentate gyrus of the hippocampus, new granule neurons are continuously produced throughout adult life. A prerequisite for the successful synaptic integration of these neurons is the sprouting and extension of dendrites into the molecular layer of the dentate gyrus. Thus, studies aimed at investigating the developmental stages of adult neurogenesis often use dendritic growth as an important indicator of neuronal health and maturity. Based on the known topography of the dentate gyrus, characterized by distinct laminar arrangement of granule neurons and their extensions, we have developed a new method for analysis of dendritic growth in immature adult-born granule neurons. The method is comprised of laminar quantification of cell bodies, primary, secondary and tertiary dendrites separately and independently from each other. In contrast to most existing methods, laminar quantification of dendrites does not require the use of exogenous markers and does not involve arbitrary selection of individual neurons. The new method relies on immonuhistochemical detection of endogenous markers such as doublecortin to perform a comprehensive analysis of a sub-population of immature neurons. Disjointed, orphan dendrites that often appear in the thin histological sections are taken into account. Using several experimental groups of rats and mice, we demonstrate here the suitable techniques for quantifying neurons and dendrites, and explain how the ratios between the quantified values can be used in a comparative analysis to indicate variations in dendritic growth and complexity.

  11. Concomitant lower thoracic spine disc disease in lumbar spine MR imaging studies.

    Science.gov (United States)

    Arana, Estanislao; Martí-Bonmatí, Luis; Dosdá, Rosa; Mollá, Enrique

    2002-11-01

    Our objective was to study the coexistence of lower thoracic-spine disc changes in patients with low back pain using a large field of view (FOV) in lumbar spine MR imaging. One hundred fifty patients with low back pain were referred to an MR examination. All patients were studied with a large FOV (27 cm), covering from the coccyx to at least the body of T11. Discs were coded as normal, protrusion, and extrusion (either epiphyseal or intervertebral). The relationship between disc disease and level was established with the Pearson chi(2) test. The T11-12 was the most commonly affected level of the lower thoracic spine with 58 disc cases rated as abnormal. Abnormalities of T11-12 and T12-L1 discs were significantly related only to L1-L2 disease ( p=0.001 and p=0.004, respectively) but unrelated to other disc disease, patient's gender, and age. No correlation was found between other discs. Magnetic resonance imaging of the lumbar spine can detect a great amount of lower thoracic disease, although its clinical significance remains unknown. A statistically significant relation was found within the thoracolumbar junctional region (T11-L2), reflecting common pathoanatomical changes. The absence of relation with lower lumbar spine discs is probably due to differences in their pathomechanisms.

  12. Concomitant lower thoracic spine disc disease in lumbar spine MR imaging studies

    International Nuclear Information System (INIS)

    Arana, Estanislao; Marti-Bonmati, Luis; Dosda, Rosa; Molla, Enrique

    2002-01-01

    Our objective was to study the coexistence of lower thoracic-spine disc changes in patients with low back pain using a large field of view (FOV) in lumbar spine MR imaging. One hundred fifty patients with low back pain were referred to an MR examination. All patients were studied with a large FOV (27 cm), covering from the coccyx to at least the body of T11. Discs were coded as normal, protrusion, and extrusion (either epiphyseal or intervertebral). The relationship between disc disease and level was established with the Pearson χ 2 test. The T11-12 was the most commonly affected level of the lower thoracic spine with 58 disc cases rated as abnormal. Abnormalities of T11-12 and T12-L1 discs were significantly related only to L1-L2 disease (p=0.001 and p=0.004, respectively) but unrelated to other disc disease, patient's gender, and age. No correlation was found between other discs. Magnetic resonance imaging of the lumbar spine can detect a great amount of lower thoracic disease, although its clinical significance remains unknown. A statistically significant relation was found within the thoracolumbar junctional region (T11-L2), reflecting common pathoanatomical changes. The absence of relation with lower lumbar spine discs is probably due to differences in their pathomechanisms. (orig.)

  13. Standardized X-ray reports of the spine in osteogenesis imperfecta; Standard zur Befundung von Roentgenaufnahmen der Wirbelsaeule bei Patienten mit Osteogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Koerber, Friederike; Demant, A.W.; Koerber, S. [Universitaetsklinikum Koeln (Germany). Kinderradiologie, Inst. und Poliklinik fuer Radiologische Diagnostik; Semler, O.; Schoenau, E. [Universitaetsklinikum Koeln (Germany). Osteologie, Klinik und Poliklinik fuer Allgemeine Kinderheilkunde; Lackner, K.J. [Universitaetsklinikum Koeln (Germany). Inst. und Poliklinik fuer Radiologische Diagnostik

    2011-05-15

    Purpose: In this study we present a standard for radiological reports in patients with osteogenesis imperfecta (OI). The parameters can be used to describe X-rays of the lateral spine and give an impartial description of anatomical structures during a treatment with bisphosphonates. Material and Methods: In this retrospective analysis we included 48 patients with OI (31 female, 17 male [1.5 months - 19 years, mean age 9.0 years]). Lateral spine X-rays were analyzed by 2 radiologists before and during treatment. The parameters of the standardized report are degree of kyphoscoliosis, compression of single vertebrae, predominant type of vertebral deformities and extent of vertebral compression (score 1 - 5). Results: There was no clear trend in the change of compression of single vertebrae. Some vertebrae with ventral compression showed an upgrowth to vertebrae with harmonic compression. Other deformities showed only marginal changes. In 26 patients the kyphoscoliosis improved (mean 10 degrees), in 36 patients the thoracic vertebrae compression increased and in 30 patients the vertebral height in the lumbar spine increased. The improvement of vertebral height was 1 point in the thoracic and lumbar spine. Conclusion: We propose a standardized report of X-rays of the lateral spine in patients with OI with quantitative and semiquantitative parameters using morphological criteria. These include compression of single vertebrae, degree of kyphoscoliosis, vertebral deformities and the severity of vertebral compression in the thoracic and lumbar spine. (orig.)

  14. Dendritic slow dynamics enables localized cortical activity to switch between mobile and immobile modes with noisy background input.

    Directory of Open Access Journals (Sweden)

    Hiroki Kurashige

    Full Text Available Mounting lines of evidence suggest the significant computational ability of a single neuron empowered by active dendritic dynamics. This motivates us to study what functionality can be acquired by a network of such neurons. The present paper studies how such rich single-neuron dendritic dynamics affects the network dynamics, a question which has scarcely been specifically studied to date. We simulate neurons with active dendrites networked locally like cortical pyramidal neurons, and find that naturally arising localized activity--called a bump--can be in two distinct modes, mobile or immobile. The mode can be switched back and forth by transient input to the cortical network. Interestingly, this functionality arises only if each neuron is equipped with the observed slow dendritic dynamics and with in vivo-like noisy background input. If the bump activity is considered to indicate a point of attention in the sensory areas or to indicate a representation of memory in the storage areas of the cortex, this would imply that the flexible mode switching would be of great potential use for the brain as an information processing device. We derive these conclusions using a natural extension of the conventional field model, which is defined by combining two distinct fields, one representing the somatic population and the other representing the dendritic population. With this tool, we analyze the spatial distribution of the degree of after-spike adaptation and explain how we can understand the presence of the two distinct modes and switching between the modes. We also discuss the possible functional impact of this mode-switching ability.

  15. THC alters alters morphology of neurons in medial prefrontal cortex, orbital prefrontal cortex, and nucleus accumbens and alters the ability of later experience to promote structural plasticity.

    Science.gov (United States)

    Kolb, Bryan; Li, Yilin; Robinson, Terry; Parker, Linda A

    2018-03-01

    Psychoactive drugs have the ability to alter the morphology of neuronal dendrites and spines and to influence later experience-dependent structural plasticity. If rats are given repeated injections of psychomotor stimulants (amphetamine, cocaine, nicotine) prior to being placed in complex environments, the drug experience interferes with the ability of the environment to increase dendritic arborization and spine density. Repeated exposure to Delta 9-Tetrahydrocannabinol (THC) changes the morphology of dendrites in medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc). To determine if drugs other than psychomotor stimulants will also interfere with later experience-dependent structural plasticity we gave Long-Evans rats THC (0.5 mg/kg) or saline for 11 days before placing them in complex environments or standard laboratory caging for 90 days. Brains were subsequently processed for Golgi-Cox staining and analysis of dendritic morphology and spine density mPFC, orbital frontal cortex (OFC), and NAcc. THC altered both dendritic arborization and spine density in all three regions, and, like psychomotor stimulants, THC influenced the effect of later experience in complex environments to shape the structure of neurons in these three regions. We conclude that THC may therefore contribute to persistent behavioral and cognitive deficits associated with prolonged use of the drug. © 2017 Wiley Periodicals, Inc.

  16. Traumatic thoracolumbar spine fractures

    NARCIS (Netherlands)

    J. Siebenga (Jan)

    2013-01-01

    textabstractTraumatic spinal fractures have the lowest functional outcomes and the lowest rates of return to work after injury of all major organ systems.1 This thesis will cover traumatic thoracolumbar spine fractures and not osteoporotic spine fractures because of the difference in fracture

  17. Imaging skeletal anatomy of injured cervical spine specimens: comparison of single-slice vs multi-slice helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Obenauer, S.; Alamo, L.; Herold, T.; Funke, M.; Kopka, L.; Grabbe, E. [Department of Radiology, Georg August-University Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen (Germany)

    2002-08-01

    Our objective was to compare a single-slice CT (SS-CT) scanner with a multi-slice CT (MS-CT) scanner in the depiction of osseous anatomic structures and fractures of the upper cervical spine. Two cervical spine specimens with artificial trauma were scanned with a SS-CT scanner (HighSpeed, CT/i, GE, Milwaukee, Wis.) by using various collimations (1, 3, 5 mm) and pitch factors (1, 1.5, 2, 3) and a four-slice helical CT scanner (LightSpeed, QX/i, GE, Milwaukee, Wis.) by using various table speeds ranging from 3.75 to 15 mm/rotation for a pitch of 0.75 and from 7.5 to 30 mm/rotation for a pitch of 1.5. Images were reconstructed with an interval of 1 mm. Sagittal and coronal multiplanar reconstructions of the primary and reconstructed data set were performed. For MS-CT a tube current resulting in equivalent image noise as with SS-CT was used. All images were judged by two observers using a 4-point scale. The best image quality for SS-CT was achieved with the smallest slice thickness (1 mm) and a pitch smaller than 2 resulting in a table speed of up to 2 mm per gantry rotation (4 points). A reduction of the slice thickness rather than of the table speed proved to be beneficial at MS-CT. Therefore, the optimal scan protocol in MS-CT included a slice thickness of 1.25 mm with a table speed of 7.5 mm/360 using a pitch of 1.5 (4 points), resulting in a faster scan time than when a pitch of 0.75 (4 points) was used. This study indicates that MS-CT could provide equivalent image quality at approximately four times the volume coverage speed of SS-CT. (orig.)

  18. Advanced dendritic web growth development and development of single-crystal silicon dendritic ribbon and high-efficiency solar cell program

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.

    1986-01-01

    Efforts to demonstrate that the dendritic web technology is ready for commercial use by the end of 1986 continues. A commercial readiness goal involves improvements to crystal growth furnace throughput to demonstrate an area growth rate of greater than 15 sq cm/min while simultaneously growing 10 meters or more of ribbon under conditions of continuous melt replenishment. Continuous means that the silicon melt is being replenished at the same rate that it is being consumed by ribbon growth so that the melt level remains constant. Efforts continue on computer thermal modeling required to define high speed, low stress, continuous growth configurations; the study of convective effects in the molten silicon and growth furnace cover gas; on furnace component modifications; on web quality assessments; and on experimental growth activities.

  19. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells.

    Science.gov (United States)

    Rudolph, Stephanie; Hull, Court; Regehr, Wade G

    2015-11-25

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The

  20. Aquatic antagonists: cutaneous sea urchin spine injury.

    Science.gov (United States)

    Hsieh, Clifford; Aronson, Erica R; Ruiz de Luzuriaga, Arlene M

    2016-11-01

    Injuries from sea urchin spines are commonly seen in coastal regions with high levels of participation in water activities. Although these injuries may seem minor, the consequences vary based on the location of the injury. Sea urchin spine injuries may cause arthritis and synovitis from spines in the joints. Nonjoint injuries have been reported, and dermatologic aspects of sea urchin spine injuries rarely have been discussed. We present a case of a patient with sea urchin spines embedded in the thigh who subsequently developed painful skin nodules. Tissue from the site of the injury demonstrated foreign-body type granulomas. Following the removal of the spines and granulomatous tissue, the patient experienced resolution of the nodules and associated pain. Extraction of sea urchin spines can attenuate the pain and decrease the likelihood of granuloma formation, infection, and long-term sequelae.

  1. Digital tomosynthesis for verifying spine position during radiotherapy: a phantom study

    International Nuclear Information System (INIS)

    Gurney-Champion, Oliver J; Dahele, Max; Slotman, Ben J; Verbakel, Wilko F A R; Mostafavi, Hassan

    2013-01-01

    Monitoring the stability of patient position is essential during high-precision radiotherapy such as spine stereotactic body radiotherapy (SBRT). We evaluated the combination of digital tomosynthesis (DTS) and triangulation for spine position detection, using non-clinical DTS software and an anthropomorphic pelvic phantom that includes a bone-like spine structure. Kilovoltage cone beam CT projection images over 2–16° gantry rotation were used to generate single slice DTS images. Each DTS slice was registered to a digitally reconstructed DTS derived from the planning CT scan to determine 2D shifts between actual phantom and treatment plan position. Two or more DTS registrations, central axes 4–22° apart, were triangulated to determine the 3D phantom position. Using sequentially generated DTS images, the phantom position can be updated every degree with a small latency of DTS and triangulation angle. The precision of position determination was investigated as function of DTS and triangulation angle. To mimic the scenario of spine SBRT, the effect on the standard deviation of megavoltage radiation delivery during kV image acquisition was tested. In addition, the ability of the system to detect different types of movement was investigated for a variety of small sudden and gradual movements during kV image acquisition. (paper)

  2. Novel derivative of Paeonol, Paeononlsilatie sodium, alleviates behavioral damage and hippocampal dendritic injury in Alzheimer's disease concurrent with cofilin1/phosphorylated-cofilin1 and RAC1/CDC42 alterations in rats.

    Directory of Open Access Journals (Sweden)

    Fei Han

    Full Text Available Alzheimer's disease (AD is a typical hippocampal amnesia and the most common senile dementia. Many studies suggest that cognitive impairments are more closely correlated with synaptic loss than the burden of amyloid deposits in AD progression. To date, there is no effective treatment for this disease. Paeonol has been widely employed in traditional Chinese medicine. This compound improves learning behavior in an animal model; however, the mechanism remains unclear. In this study, Paeononlsilatie sodium (Pa, a derivative of Paeonol, attenuated D-galactose (D-gal and AlCl3-induced behavioral damages in rats based on evaluations of the open field test (OFT, elevated plus maze test (EPMT, and Morris water maze test (MWMT. Pa increased the dendritic complexity and the density of dendritic spines. Correlation analysis indicated that morphological changes in neuronal dendrites are closely correlated with behavioral changes. Pa treatment reduced the production of Aβ, affected the phosphorylation and redistribution of cofilin1 and inhibited rod-like formation in hippocampal neurons. The induction of D-gal and AlCl3 promoted the expression of RAC1/CDC42 expression; however, the tendency of gene expression was inhibited by pretreatment with Pa. Taken together, our results suggest that Pa may represent a novel therapeutic agent for the improvement of cognitive and emotional behaviors and dendritic morphology in an AD animal model.

  3. Sport injuries of the cervical spine

    International Nuclear Information System (INIS)

    Bargon, G.

    1981-01-01

    The article reports on injuries of the cervical spine occurring during sports activities. An attempt is made to reconstruct the movements which led to the cervical spine injuries in question. In two cases of accidents occuring during bathing, one football accident and a toboggan accident, the injuries concerned point to hyperextension of the cervical spine as cause of the injury. In another football accident and a riding accident, the changes observed allow us to conclude that the movement leading to the injury must have been a hyperflexion. One accident occurring while jumping on the trampolin resulted in an injury of the upper cervical spine pointing to the action of a compressive force on the cervical spine in addition to the force resulting in hyperflexion. (orig.) [de

  4. Sport injuries of the cervical spine

    Energy Technology Data Exchange (ETDEWEB)

    Bargon, G

    1981-03-01

    The article reports on injuries of the cervical spine occurring during sports activities. An attempt is made to reconstruct the movements which led to the cervical spine injuries in question. In two cases of accidents occuring during bathing, one football accident and a toboggan accident, the injuries concerned point to hyperextension of the cervical spine as cause of the injury. In another football accident and a riding accident, the changes observed allow us to conclude that the movement leading to the injury must have been a hyperflexion. One accident occurring while jumping on the trampolin resulted in an injury of the upper cervical spine pointing to the action of a compressive force on the cervical spine in addition to the force resulting in hyperflexion.

  5. Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression.

    Science.gov (United States)

    Hajszan, Tibor; Dow, Antonia; Warner-Schmidt, Jennifer L; Szigeti-Buck, Klara; Sallam, Nermin L; Parducz, Arpad; Leranth, Csaba; Duman, Ronald S

    2009-03-01

    Although it has been postulated for many years that depression is associated with loss of synapses, primarily in the hippocampus, and that antidepressants facilitate synapse growth, we still lack ultrastructural evidence that changes in depressive behavior are indeed correlated with structural synaptic modifications. We analyzed hippocampal spine synapses of male rats (n=127) with electron microscopic stereology in association with performance in the learned helplessness paradigm. Inescapable footshock (IES) caused an acute and persistent loss of spine synapses in each of CA1, CA3, and dentate gyrus, which was associated with a severe escape deficit in learned helplessness. On the other hand, IES elicited no significant synaptic alterations in motor cortex. A single injection of corticosterone reproduced both the hippocampal synaptic changes and the behavioral responses induced by IES. Treatment of IES-exposed animals for 6 days with desipramine reversed both the hippocampal spine synapse loss and the escape deficit in learned helplessness. We noted, however, that desipramine failed to restore the number of CA1 spine synapses to nonstressed levels, which was associated with a minor escape deficit compared with nonstressed control rats. Shorter, 1-day or 3-day desipramine treatments, however, had neither synaptic nor behavioral effects. These results indicate that changes in depressive behavior are associated with remarkable remodeling of hippocampal spine synapses at the ultrastructural level. Because spine synapse loss contributes to hippocampal dysfunction, this cellular mechanism may be an important component in the neurobiology of stress-related disorders such as depression.

  6. Phospholipid Homeostasis Regulates Dendrite Morphogenesis in Drosophila Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Shan Meltzer

    2017-10-01

    Full Text Available Disruptions in lipid homeostasis have been observed in many neurodevelopmental disorders that are associated with dendrite morphogenesis defects. However, the molecular mechanisms of how lipid homeostasis affects dendrite morphogenesis are unclear. We find that easily shocked (eas, which encodes a kinase with a critical role in phospholipid phosphatidylethanolamine (PE synthesis, and two other enzymes in this synthesis pathway are required cell autonomously in sensory neurons for dendrite growth and stability. Furthermore, we show that the level of Sterol Regulatory Element-Binding Protein (SREBP activity is important for dendrite development. SREBP activity increases in eas mutants, and decreasing the level of SREBP and its transcriptional targets in eas mutants largely suppresses the dendrite growth defects. Furthermore, reducing Ca2+ influx in neurons of eas mutants ameliorates the dendrite morphogenesis defects. Our study uncovers a role for EAS kinase and reveals the in vivo function of phospholipid homeostasis in dendrite morphogenesis.

  7. Dendritic ion channelopathy in acquired epilepsy

    Science.gov (United States)

    Poolos, Nicholas P.; Johnston, Daniel

    2012-01-01

    Summary Ion channel dysfunction or “channelopathy” is a proven cause of epilepsy in the relatively uncommon genetic epilepsies with Mendelian inheritance. But numerous examples of acquired channelopathy in experimental animal models of epilepsy following brain injury have also been demonstrated. Our understanding of channelopathy has grown due to advances in electrophysiology techniques that have allowed the study of ion channels in the dendrites of pyramidal neurons in cortex and hippocampus. The apical dendrites of pyramidal neurons comprise the vast majority of neuronal surface membrane area, and thus the majority of the neuronal ion channel population. Investigation of dendritic ion channels has demonstrated remarkable plasticity in ion channel localization and biophysical properties in epilepsy, many of which produce hyperexcitability and may contribute to the development and maintenance of the epileptic state. Here we review recent advances in dendritic physiology and cell biology, and their relevance to epilepsy. PMID:23216577

  8. Pre-existing lumbar spine diagnosis as a predictor of outcomes in National Football League athletes.

    Science.gov (United States)

    Schroeder, Gregory D; Lynch, T Sean; Gibbs, Daniel B; Chow, Ian; LaBelle, Mark; Patel, Alpesh A; Savage, Jason W; Hsu, Wellington K; Nuber, Gordon W

    2015-04-01

    It is currently unknown how pre-existing lumbar spine conditions may affect the medical evaluation, draft status, and subsequent career performance of National Football League (NFL) players. To determine if a pre-existing lumbar diagnosis affects a player's draft status or his performance and longevity in the NFL. Cohort study; Level 3. The investigators evaluated the written medical evaluations and imaging reports of prospective NFL players from a single franchise during the NFL Scouting Combine from 2003 to 2011. Players with a reported lumbar spine diagnosis and with appropriate imaging were included in this study. Athletes were then matched to control draftees without a lumbar spine diagnosis by age, position, year, and round drafted. Career statistics and performance scores were calculated. Of a total of 2965 athletes evaluated, 414 were identified as having a pre-existing lumbar spine diagnosis. Players without a lumbar spine diagnosis were more likely to be drafted than were those with a diagnosis (80.2% vs. 61.1%, respectively, P study suggest that athletes with pre-existing lumbar spine conditions were less likely to be drafted and that the diagnosis is associated with a decrease in career longevity but not performance. Players with lumbar fusion have achieved successful careers in the NFL. © 2015 The Author(s).

  9. Training on motor and visual spatial learning tasks in early adulthood produces large changes in dendritic organization of prefrontal cortex and nucleus accumbens in rats given nicotine prenatally.

    Science.gov (United States)

    Muhammad, A; Mychasiuk, R; Hosain, S; Nakahashi, A; Carroll, C; Gibb, R; Kolb, B

    2013-11-12

    Experience-dependent plasticity is an ongoing process that can be observed and measured at multiple levels. The first goal of this study was to examine the effects of prenatal nicotine on the performance of rats in three behavioral tasks (elevated plus maze (EPM), Morris water task (MWT), and Whishaw tray reaching). The second goal of this experiment sought to examine changes in dendritic organization following exposure to the behavioral training paradigm and/or low doses of prenatal nicotine. Female Long-Evans rats were administered daily injections of nicotine for the duration of pregnancy and their pups underwent a regimen of behavioral training in early adulthood (EPM, MWT, and Whishaw tray reaching). All offspring exposed to nicotine prenatally exhibited substantial increases in anxiety. Male offspring also showed increased efficiency in the Whishaw tray-reaching task and performed differently than the other groups in the probe trial of the MWT. Using Golgi-Cox staining we examined the dendritic organization of the medial and orbital prefrontal cortex as well as the nucleus accumbens. Participation in the behavioral training paradigm was associated with dramatic reorganization of dendritic morphology and spine density in all brain regions examined. Although both treatments (behavior training and prenatal nicotine exposure) markedly altered dendritic organization, the effects of the behavioral experience were much larger than those of the prenatal drug exposure, and in some cases interacted with the drug effects. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Beyond the spine

    DEFF Research Database (Denmark)

    Donovan, James; Cassidy, J David; Cancelliere, Carol

    2015-01-01

    Over the past two decades, clinical research within the chiropractic profession has focused on the spine and spinal conditions, specifically neck and low back pain. However, there is now a small group of chiropractors with clinical research training that are shifting their focus away from...... highlight recent research in these new areas and discuss how clinical research efforts in musculoskeletal areas beyond the spine can benefit patient care and the future of the chiropractic profession....

  11. The actin-binding protein capulet genetically interacts with the microtubule motor kinesin to maintain neuronal dendrite homeostasis.

    Directory of Open Access Journals (Sweden)

    Paul M B Medina

    Full Text Available BACKGROUND: Neurons require precise cytoskeletal regulation within neurites, containing microtubule tracks for cargo transport in axons and dendrites or within synapses containing organized actin. Due to the unique architecture and specialized function of neurons, neurons are particularly susceptible to perturbation of the cytoskeleton. Numerous actin-binding proteins help maintain proper cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS: From a Drosophila forward genetic screen, we identified a mutation in capulet--encoding a conserved actin-binding protein--that causes abnormal aggregates of actin within dendrites. Through interaction studies, we demonstrate that simultaneous genetic inactivation of capulet and kinesin heavy chain, a microtubule motor protein, produces elongate cofilin-actin rods within dendrites but not axons. These rods resemble actin-rich structures induced in both mammalian neurodegenerative and Drosophila Alzheimer's models, but have not previously been identified by loss of function mutations in vivo. We further demonstrate that mitochondria, which are transported by Kinesin, have impaired distribution along dendrites in a capulet mutant. While Capulet and Cofilin may biochemically cooperate in certain circumstances, in neuronal dendrites they genetically antagonize each other. CONCLUSIONS/SIGNIFICANCE: The present study is the first molecularly defined loss of function demonstration of actin-cofilin rods in vivo. This study suggests that simultaneous, seemingly minor perturbations in neuronal dendrites can synergize producing severe abnormalities affecting actin, microtubules and mitochondria/energy availability in dendrites. Additionally, as >90% of Alzheimer's and Parkinson's cases are sporadic this study suggests mechanisms by which multiple mutations together may contribute to neurodegeneration instead of reliance on single mutations to produce disease.

  12. Robotic systems in spine surgery.

    Science.gov (United States)

    Onen, Mehmet Resid; Naderi, Sait

    2014-01-01

    Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.

  13. F42. CHONDROTIN-6 SULFATE CLUSTERS: ASSOCIATION OF SYNAPTIC DOMAINS AND REGULATION OF SYNAPTIC PLASTICITY DURING FEAR LEARNING

    Science.gov (United States)

    Chelini, Gabriele; Berciu, Cristina; Pilobello, Kanoelani; Peter, Durning; Rachel, Jenkins; Kahn, Moazzzam; Ramikie, Teniel; Subramanian, Siva; Ressler, Kerry; Pantazopoulos, Charalampos; Berretta, Sabina

    2018-01-01

    Abstract Background Emerging evidence from our group and others has brought the brain extracellular matrix (ECM) to the forefront of investigations on brain disorders. Our group has shown that organized perisynaptic ECM aggregates, i.e. perineuronal nets (PNNs) are decreased in several brain regions in people with schizophrenia (SZ) and bipolar disorder (BD). PNNs were detected by their expression of specific chondroitin sulfate proteoglycans (CSPGs), main components of the ECM, thought to play a key role in synaptic regulation during development and adulthood. Our studies have also shown that glial cells expressing CSPGs are altered in these disorders, suggesting a link between glial cell and PNN abnormalities. Finally, we have recently shown that novel CSPG structures, bearing a distinct CS-6 sulfation pattern and named CS-6 glial clusters, are decreased in the amygdala of people with SZ and BD. The morphology and function of CS-6 glial clusters is not currently known, but evidence from rodents and on the role of CSPGs in regulating synaptic functions strongly suggest that they may affect synaptic plasticity. We tested this hypothesis using a combination of human postmortem and rodent brain studies. Methods High Resolution electron microscopy was used to investigate the ultrastructural organization of CS-6 glia clusters. A transgenic mouse model expressing green fluorescent protein in a subset of excitatory pyramidal neurons was used to investigate dendritic spines association with CS-6 glia clusters. Mice were exposed to a single session of auditory fear conditioning for a total of 15 minutes. Animals were euthanized 4 hours after behavioral test. Multiplex immunocytochemistry was used to visualize CS-6 clusters. Results In human tissue, we show that CS-6 glia clusters are widespread in several brain regions, including the amygdala, entorhinal cortex, thalamus and hippocampus. Ultrastructural results show that CS-6 glia clusters are formed by CS-6 accumulations

  14. Immune monitoring using mRNA-transfected dendritic cells

    DEFF Research Database (Denmark)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by m......RNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate...... and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA....

  15. The role of the faceguard in the production of flexion injuries to the cervical spine in football.

    Science.gov (United States)

    Melvin, W J; Dunlop, H W; Hetherington, R F; Kerr, J W

    1965-11-20

    The precise role of the single-bar face mask in producing major flexion violence to the cervical spine has been studied by review of game movies, analysis of the radiographs and detailed interviews with two players who sustained fractures of cervical spine. The single-bar face mask can become fixed in the ground, thereby forcing a runner's head down onto his chest as the trunk moves forward. Preventive measures embodying modifications in the face mask, strict coaching in football techniques and the institution of safety factors in the playing rules are proposed. Appreciation of the mechanism of injury is urged in order to encourage careful inspection of protective head gear as well as to direct the attention of team physicians to the possibility of serious flexion injury to the cervical spine occurring without dramatic evidence. This report is not a plea for abandonment of the face mask but rather a suggestion for careful selection of a safe and efficient mask.

  16. Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Lemtiri-Chlieh Fouad

    2011-12-01

    Full Text Available Abstract Background Dendritic spines represent the postsynaptic component of the vast majority of excitatory synapses present in the mammalian forebrain. The ability of spines to rapidly alter their shape, size, number and receptor content in response to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP, widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine enlargement and the formation of new dendritic spines. In our studies, we focus on Kalirin-7 (Kal7, a Rho GDP/GTP exchange factor (Rho-GEF localized to the postsynaptic density that plays a crucial role in the development and maintenance of dendritic spines both in vitro and in vivo. Previous studies have shown that mice lacking Kal7 (Kal7KO have decreased dendritic spine density in the hippocampus as well as focal hippocampal-dependent learning impairments. Results We have performed a detailed electrophysiological characterization of the role of Kal7 in hippocampal synaptic plasticity. We show that loss of Kal7 results in impaired NMDA receptor-dependent LTP and long-term depression, whereas a NMDA receptor-independent form of LTP is shown to be normal in the absence of Kal7. Conclusions These results indicate that Kal7 is an essential and selective modulator of NMDA receptor-dependent synaptic plasticity in the hippocampus.

  17. Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity

    KAUST Repository

    Lemtiri-Chlieh, Fouad

    2011-12-19

    Background: Dendritic spines represent the postsynaptic component of the vast majority of excitatory synapses present in the mammalian forebrain. The ability of spines to rapidly alter their shape, size, number and receptor content in response to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP), widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine enlargement and the formation of new dendritic spines. In our studies, we focus on Kalirin-7 (Kal7), a Rho GDP/GTP exchange factor (Rho-GEF) localized to the postsynaptic density that plays a crucial role in the development and maintenance of dendritic spines both in vitro and in vivo. Previous studies have shown that mice lacking Kal7 (Kal7 KO) have decreased dendritic spine density in the hippocampus as well as focal hippocampal-dependent learning impairments.Results: We have performed a detailed electrophysiological characterization of the role of Kal7 in hippocampal synaptic plasticity. We show that loss of Kal7 results in impaired NMDA receptor-dependent LTP and long-term depression, whereas a NMDA receptor-independent form of LTP is shown to be normal in the absence of Kal7.Conclusions: These results indicate that Kal7 is an essential and selective modulator of NMDA receptor-dependent synaptic plasticity in the hippocampus. 2011 Lemtiri-Chlieh et al; licensee BioMed Central Ltd.

  18. Transient potentials in dendritic systems of arbitrary geometry.

    Science.gov (United States)

    Butz, E G; Cowan, J D

    1974-09-01

    A simple graphical calculus is developed that generates analytic solutions for membrane potential transforms at any point on the dendritic tree of neurons with arbitrary dendritic geometries, in response to synaptic "current" inputs. Such solutions permit the computation of transients in neurons with arbitrary geometry and may facilitate analysis of the role of dendrites in such cells.

  19. Does applying the Canadian Cervical Spine rule reduce cervical spine radiography rates in alert patients with blunt trauma to the neck? A retrospective analysis

    Directory of Open Access Journals (Sweden)

    Yesupalan Rajam

    2008-06-01

    Full Text Available Abstract Background A cautious outlook towards neck injuries has been the norm to avoid missing cervical spine injuries. Consequently there has been an increased use of cervical spine radiography. The Canadian Cervical Spine rule was proposed to reduce unnecessary use of cervical spine radiography in alert and stable patients. Our aim was to see whether applying the Canadian Cervical Spine rule reduced the need for cervical spine radiography without missing significant cervical spine injuries. Methods This was a retrospective study conducted in 2 hospitals. 114 alert and stable patients who had cervical spine radiographs for suspected neck injuries were included in the study. Data on patient demographics, high risk & low risk factors as per the Canadian Cervical Spine rule and cervical spine radiography results were collected and analysed. Results 28 patients were included in the high risk category according to the Canadian Cervical Spine rule. 86 patients fell into the low risk category. If the Canadian Cervical Spine rule was applied, there would have been a significant reduction in cervical spine radiographs as 86/114 patients (75.4% would not have needed cervical spine radiograph. 2/114 patients who had significant cervical spine injuries would have been identified when the Canadian Cervical Spine rule was applied. Conclusion Applying the Canadian Cervical Spine rule for neck injuries in alert and stable patients would have reduced the use of cervical spine radiographs without missing out significant cervical spine injuries. This relates to reduction in radiation exposure to patients and health care costs.

  20. The experimental study of selective arterial embolization in the lumbar spine of dogs

    International Nuclear Information System (INIS)

    Ni Caifang; Xu Ming; Liu Yizhi; Ding Yi; Yang Huilin; Tang Tiansi

    2002-01-01

    Objective: To establish the model of acute spinal infarction, to evaluate the relative factors affecting results in spinal embolization, and to provide the theoretical basis with the preoperative embolization of spinal tumors. Methods: Through the SAE of the lumbar arteries, the neuro-function of the posterior legs of dogs, MRI findings, and pathologic changes of the spinal specimen were observed in 12 dogs. The embolizing agents was gelfoam (GF). Results: The significant ischemia changes of spinal column and the corresponding muscles at the occluding spinal after embolizing more than one segmental arteries occurred in 9 dogs, but there were no paraplegia or obvious changes in 3 dogs having been embolized single lumbar arteries no matter they sent out the radiculomedullary artery (RA) or not. Paraplegia occurred in one dog after embolizing the multisegmental arteries. Conclusion: (1) The method of SAE in dog can be used to set up the experimental model of the acute ischemia of spine. (2) The occlusion in single-segmental arteries can not result in the infarction of the whole spine. (3) The serious complication may result from embolizing multisegmental spinal arteries (especially sending out RA). (4) The protecting embolization should be carried out in order to decrease the reaction during SAE in spine

  1. The FAt Spondyloarthritis Spine Score (FASSS)

    DEFF Research Database (Denmark)

    Pedersen, Susanne Juhl; Zhao, Zheng; Lambert, Robert Gw

    2013-01-01

    an important measure of treatment efficacy as well as a surrogate marker for new bone formation. The aim of this study was to develop and validate a new scoring method for fat lesions in the spine, the Fat SpA Spine Score (FASSS), which in contrast to the existing scoring method addresses the localization......Studies have shown that fat lesions follow resolution of inflammation in the spine of patients with axial spondyloarthritis (SpA). Fat lesions at vertebral corners have also been shown to predict development of new syndesmophytes. Therefore, scoring of fat lesions in the spine may constitute both...

  2. Using vitamin E to prevent the impairment in behavioral test, cell loss and dendrite changes in medial prefrontal cortex induced by tartrazine in rats.

    Science.gov (United States)

    Rafati, Ali; Nourzei, Nasrin; Karbalay-Doust, Saied; Noorafshan, Ali

    2017-03-01

    Tartrazine is a food color that may adversely affect the nervous system. Vitamin E is a neuro-protective agent. This study aimed to evaluate the effects of tartrazine and vitamin E on the performance of rats in memory and learning tests as well as the structure of medial Prefrontal Cortex (mPFC). The rats were first divided into seven groups which received the followings for a period of seven weeks: distilled water, corn oil, vitamin E (100mg/kg/day), a low dose (50mg/kg/day) and a high dose (50mg/kg/day) of tartrazine with and without vitamin E. Behavioral tests were conducted and the brain was extracted for stereological methods The high dose of tartrazine decreased the exploration time of novel objects (Ptartrazine led into an increase in working and reference memory errors in acquisition and retention phases (eight-arm radial maze) compared to distilled water group (Ptartrazine induced a reduction in the volume of mPFC (∼13%) and its subdivision. Not only that, but the number of neurons and glial cells (∼14%) as well as the mushroom and thin spines per dendrite length declined. The length of dendrites per neuron also reduced in comparison to the distilled water group (Ptartrazine prevented the above-mentioned changes. An acceptable daily dose of tartrazine could induce impairment in spatial memory and dendrite structure. Moreover, a high dose of tartrazine may defect the visual memory, mPFC structure, the spatial memory and also cause dendrite changes. Vitamin E could prevent the behavioral and structural changes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Anatomy of large animal spines and its comparison to the human spine: a systematic review.

    Science.gov (United States)

    Sheng, Sun-Ren; Wang, Xiang-Yang; Xu, Hua-Zi; Zhu, Guo-Qing; Zhou, Yi-Fei

    2010-01-01

    Animal models have been commonly used for in vivo and in vitro spinal research. However, the extent to which animal models resemble the human spine has not been well known. We conducted a systematic review to compare the morphometric features of vertebrae between human and animal species, so as to give some suggestions on how to choose an appropriate animal model in spine research. A literature search of all English language peer-reviewed publications was conducted using PubMed, OVID, Springer and Elsevier (Science Direct) for the years 1980-2008. Two reviewers extracted data on the anatomy of large animal spines from the identified articles. Each anatomical study of animals had to include at least three vertebral levels. The anatomical data from all animal studies were compared with the existing data of the human spine in the literature. Of the papers retrieved, seven were included in the review. The animals in the studies involved baboon, sheep, porcine, calf and deer. Distinct anatomical differences of vertebrae were found between the human and each large animal spine. In cervical region, spines of the baboon and human are more similar as compared to other animals. In thoracic and lumbar regions, the mean pedicle height of all animals was greater than the human pedicles. There was similar mean pedicle width between animal and the human specimens, except in thoracic segments of sheep. The human spinal canal was wider and deeper in the anteroposterior plane than any of the animals. The mean human vertebral body width and depth were greater than that of the animals except in upper thoracic segments of the deer. However, the mean vertebral body height was lower than that of all animals. This paper provides a comprehensive review to compare vertebrae geometries of experimental animal models to the human vertebrae, and will help for choosing animal model in vivo and in vitro spine research. When the animal selected for spine research, the structural similarities and

  4. Characterization of dendritic morphology and neurotransmitter phenotype of thoracic descending propriospinal neurons after complete spinal cord transection and GDNF treatment

    Science.gov (United States)

    Deng, Lingxiao; Ruan, Yiwen; Chen, Chen; Frye, Christian Corbin; Xiong, Wenhui; Jin, Xiaoming; Jones, Kathryn; Sengelaub, Dale; Xu, Xiao-Ming

    2016-01-01

    After spinal cord injury (SCI), poor regeneration of damaged axons of the central nervous system (CNS) causes limited functional recovery. This limited spontaneous functional recovery has been attributed, to a large extent, to the plasticity of propriospinal neurons, especially the descending propriospinal neurons (dPSNs). Compared with the supraspinal counterparts, dPSNs have displayed significantly greater regenerative capacity, which can be further enhanced by glial cell line-derived neurotrophic factor (GDNF). In the present study, we applied a G-mutated rabies virus (G-Rabies) co-expressing green fluorescence protein (GFP) to reveal Golgi-like dendritic morphology of dPSNs. We also investigated the neurotransmitters expressed by dPSNs after labeling with a retrograde tracer Fluoro-Gold (FG). dPSNs were examined in animals with sham injuries or complete spinal transections with or without GDNF treatment. Bilateral injections of G-Rabies and FG were made into the 2nd lumbar (L2) spinal cord at 3 days prior to a spinal cord transection performed at the 11th thoracic level (T11). The lesion gap was filled with Gelfoam containing either saline or GDNF in the injury groups. Four days post-injury, the rats were sacrificed for analysis. For those animals receiving G-rabies injection, the GFP signal in the T7–9 spinal cord was visualized via 2-photon microscopy. Dendritic morphology from stack images was traced and analyzed using a Neurolucida software. We found that dPSNs in sham injured animals had a predominantly dorsal-ventral distribution of dendrites. Transection injury resulted in alterations in the dendritic distribution with dorsal-ventral retraction and lateral-medial extension. Treatment with GDNF significantly increased the terminal dendritic length of dPSNs. The density of spine-like structures was increased after injury, and treatment with GDNF enhanced this effect. For the group receiving FG injections, immunohistochemistry for glutamate, choline

  5. Dendritic cells in Barrett's esophagus and esophageal adenocarcinoma.

    Science.gov (United States)

    Bobryshev, Yuri V; Tran, Dinh; Killingsworth, Murray C; Buckland, Michael; Lord, Reginald V N

    2009-01-01

    Like other premalignant conditions that develop in the presence of chronic inflammation, the development and progression of Barrett's esophagus is associated with the development of an immune response, but how this immune response is regulated is poorly understood. A comprehensive literature search failed to find any report of the presence of dendritic cells in Barrett's intestinal metaplasia and esophageal adenocarcinoma and this prompted our study. We used immunohistochemical staining and electron microscopy to examine whether dendritic cells are present in Barrett's esophagus and esophageal adenocarcinoma. Immunohistochemical staining with CD83, a specific marker for dendritic cells, was performed on paraffin-embedded sections of Barrett's intestinal metaplasia (IM, n = 12), dysplasia (n = 11) and adenocarcinoma (n = 14). CD83+ cells were identified in the lamina propria surrounding intestinal type glands in Barrett's IM, dysplasia, and cancer tissues. Computerized quantitative analysis showed that the numbers of dendritic cells were significantly higher in cancer tissues. Double immunostaining with CD83, CD20, and CD3, and electron microscopy demonstrated that dendritic cells are present in Barrett's esophagus and form clusters with T cells and B cells directly within the lamina propria. These findings demonstrate that dendritic cells are present in Barrett's tissues, with a significant increase in density in adenocarcinoma compared to benign Barrett's esophagus. Dendritic cells may have a role in the pathogenesis and immunotherapy treatment of Barrett's esophagus and adenocarcinoma.

  6. Depression as an independent predictor of postoperative delirium in spine deformity patients undergoing elective spine surgery.

    Science.gov (United States)

    Elsamadicy, Aladine A; Adogwa, Owoicho; Lydon, Emily; Sergesketter, Amanda; Kaakati, Rayan; Mehta, Ankit I; Vasquez, Raul A; Cheng, Joseph; Bagley, Carlos A; Karikari, Isaac O

    2017-08-01

    OBJECTIVE Depression is the most prevalent affective disorder in the US, and patients with spinal deformity are at increased risk. Postoperative delirium has been associated with inferior surgical outcomes, including morbidity and mortality. The relationship between depression and postoperative delirium in patients undergoing spine surgery is relatively unknown. The aim of this study was to determine if depression is an independent risk factor for the development of postoperative delirium in patients undergoing decompression and fusion for deformity. METHODS The medical records of 923 adult patients (age ≥ 18 years) undergoing elective spine surgery at a single major academic institution from 2005 through 2015 were reviewed. Of these patients, 255 (27.6%) patients had been diagnosed with depression by a board-certified psychiatrist and constituted the Depression group; the remaining 668 patients constituted the No-Depression group. Patient demographics, comorbidities, and intra- and postoperative complication rates were collected for each patient and compared between groups. The primary outcome investigated in this study was rate of postoperative delirium, according to DSM-V criteria, during initial hospital stay after surgery. The association between depression and postoperative delirium rate was assessed via multivariate logistic regression analysis. RESULTS Patient demographics and comorbidities other than depression were similar in the 2 groups. In the Depression group, 85.1% of the patients were taking an antidepressant prior to surgery. There were no significant between-group differences in intraoperative variables and rates of complications other than delirium. Postoperative complication rates were also similar between the cohorts, including rates of urinary tract infection, fever, deep and superficial surgical site infection, pulmonary embolism, deep vein thrombosis, urinary retention, and proportion of patients transferred to the intensive care unit. In

  7. Imaging of cervical spine injuries of childhood

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Geetika; El-Khoury, Georges Y. [University of Iowa Hospitals and Clinics, Department of Radiology, 3951 JPP, Iowa, IA (United States)

    2007-06-15

    Cervical spine injuries of children, though rare, have a high morbidity and mortality. The pediatric cervical spine is anatomically and biomechanically different from that of adults. Hence, the type, level and outcome of cervical spine injuries in children are different from those seen in adults. Normal developmental variants seen in children can make evaluation of the pediatric cervical spine challenging. This article reviews the epidemiology of pediatric cervical spine trauma, normal variants seen in children and specific injuries that are more common in the pediatric population. We also propose an evidence-based imaging protocol to avoid unnecessary imaging studies and minimize radiation exposure in children. (orig.)

  8. Dendritic thickness: a morphometric parameter to classify mouse retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    L.D. Loopuijt

    2007-10-01

    Full Text Available To study the dendritic morphology of retinal ganglion cells in wild-type mice we intracellularly injected these cells with Lucifer yellow in an in vitro preparation of the retina. Subsequently, quantified values of dendritic thickness, number of branching points and level of stratification of 73 Lucifer yellow-filled ganglion cells were analyzed by statistical methods, resulting in a classification into 9 groups. The variables dendritic thickness, number of branching points per cell and level of stratification were independent of each other. Number of branching points and level of stratification were independent of eccentricity, whereas dendritic thickness was positively dependent (r = 0.37 on it. The frequency distribution of dendritic thickness tended to be multimodal, indicating the presence of at least two cell populations composed of neurons with dendritic diameters either smaller or larger than 1.8 µm ("thin" or "thick" dendrites, respectively. Three cells (4.5% were bistratified, having thick dendrites, and the others (95.5% were monostratified. Using k-means cluster analysis, monostratified cells with either thin or thick dendrites were further subdivided according to level of stratification and number of branching points: cells with thin dendrites were divided into 2 groups with outer stratification (0-40% and 2 groups with inner (50-100% stratification, whereas cells with thick dendrites were divided into one group with outer and 3 groups with inner stratification. We postulate, that one group of cells with thin dendrites resembles cat ß-cells, whereas one group of cells with thick dendrites includes cells that resemble cat a-cells.

  9. Gorham's disease of the spine

    International Nuclear Information System (INIS)

    Livesley, P.J.; Saifuddin, A.; Webb, P.J.; Mitchell, N.; Ramani, P.

    1996-01-01

    Massive osteolysis is a rare condition and is very uncommon in the spine. The MRI appearance of Gorham's disease of the spine has not previously been reported. We present here a case of this condition with imaging details. (orig.)

  10. Changes in use of cervical spine magnetic resonance imaging for pediatric patients with nonaccidental trauma.

    Science.gov (United States)

    Oh, Ahyuda; Sawvel, Michael; Heaner, David; Bhatia, Amina; Reisner, Andrew; Tubbs, R Shane; Chern, Joshua J

    2017-09-01

    OBJECTIVE Past studies have suggested correlations between abusive head trauma and concurrent cervical spine (c-spine) injury. Accordingly, c-spine MRI (cMRI) has been increasingly used in radiographic assessments. This study aimed to determine trends in cMRI use and treatment, and outcomes related to c-spine injury in children with nonaccidental trauma (NAT). METHODS A total of 503 patients with NAT who were treated between 2009 and 2014 at a single pediatric health care system were identified from a prospectively maintained database. Additional data on selected clinical events were retrospectively collected from electronic medical records. In 2012, a clinical pathway on cMRI usage for patients with NAT was implemented. The present study compared cMRI use and clinical outcomes between the prepathway (2009-2011) and postpathway (2012-2014) periods. RESULTS There were 249 patients in the prepathway and 254 in the postpathway groups. Incidences of cranial injury and Injury Severity Scores were not significantly different between the 2 groups. More patients underwent cMRI in the years after clinical pathway implementation than before (2.8% vs 33.1%, p spine injury in this population increased the use of cMRI and cervical collar immobilization over a 6-year period. However, severe c-spine injury remains rare, and increased use of cMRI might not affect outcomes markedly.

  11. Sex differences in hippocampal estradiol-induced N-methyl-D-aspartic acid binding and ultrastructural localization of estrogen receptor-alpha.

    Science.gov (United States)

    Romeo, Russell D; McCarthy, J Brian; Wang, Athena; Milner, Teresa A; McEwen, Bruce S

    2005-01-01

    Estradiol increases dendritic spine density and synaptogenesis in the CA1 region of the female hippocampus. This effect is specific to females, as estradiol-treated males fail to show increases in hippocampal spine density. Estradiol-induced spinogenesis in the female is dependent upon upregulation of the N-methyl-D-aspartic acid (NMDA) receptor as well as on non-nuclear estrogen receptors (ER), including those found in dendrites. Thus, in the male, the inability of estradiol to induce spinogenesis may be related to a failure of estradiol to increase hippocampal NMDA receptors as well as a paucity of dendritic ER. In the first experiment, we sought to investigate this possibility by assessing NMDA receptor binding, using [(3)H]-glutamate autoradiography, in estradiol-treated males and females. We found that while estradiol increases NMDA binding in gonadectomized females, estradiol fails to modulate NMDA binding in gonadectomized males. To further investigate sex differences in the hippocampus, we conducted a second separate, but related, ultrastructural study in which we quantified ERalpha-immunoreactivity (ERalpha-ir) in neuronal profiles in the CA1 region of the hippocampus in intact males and females in diestrus and proestrus. Consistent with previous reports in the female, we found ERalpha-ir in several extranuclear sites including dendrites, spines, terminals and axons. Statistical analyses revealed that females in proestrus had a 114.3% increase in ERalpha-labeled dendritic spines compared to females in diestrus and intact males. Taken together, these studies suggest that both the ability of estrogen to increase NMDA binding in the hippocampus and the presence of ERalpha in dendritic spines may contribute to the observed sex difference in estradiol-induced hippocampal spinogenesis. Copyright (c) 2005 S. Karger AG, Basel.

  12. Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin

    NARCIS (Netherlands)

    van Gisbergen, Klaas P. J. M.; Aarnoudse, Corlien A.; Meijer, Gerrit A.; Geijtenbeek, Teunis B. H.; van Kooyk, Yvette

    2005-01-01

    Dendritic cells play a pivotal role in the induction of antitumor immune responses. Immature dendritic cells are located intratumorally within colorectal cancer and intimately interact with tumor cells, whereas mature dendritic cells are present peripheral to the tumor. The majority of colorectal

  13. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization

    Science.gov (United States)

    Zou, Wei; Yadav, Smita; DeVault, Laura; Jan, Yuh Nung; Sherwood, David R.

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth. PMID:26394140

  14. X-Ray Exam: Cervical Spine

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Cervical Spine KidsHealth / For Parents / X-Ray ... MRI): Lumbar Spine Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  15. A Comparison of Cervical Spine Motion After Immobilization With a Traditional Spine Board and Full-Body Vacuum-Mattress Splint

    OpenAIRE

    Etier, Brian E.; Norte, Grant E.; Gleason, Megan M.; Richter, Dustin L.; Pugh, Kelli F.; Thomson, Keith B.; Slater, Lindsay V.; Hart, Joe M.; Brockmeier, Stephen F.; Diduch, David R.

    2017-01-01

    Background: The National Athletic Trainers’ Association (NATA) advocates for cervical spine immobilization on a rigid board or vacuum splint and for removal of athletic equipment before transfer to an emergency medical facility. Purpose: To (1) compare triplanar cervical spine motion using motion capture between a traditional rigid spine board and a full-body vacuum splint in equipped and unequipped athletes, (2) assess cervical spine motion during the removal of a football helmet and shoulde...

  16. Variation in armour of three-spine stickleback

    OpenAIRE

    Wiig, Elisabeth

    2014-01-01

    The three-spine stickleback is an adaptable fish with variation in morphology and behaviour, inhabiting saltwater, brackish water and fresh water. It is armoured with 30-35 bone plates along its lateral line. In addition, it is equipped with three spines on its back and two pelvic spine. These features constitute an excellent anti-predator defence system. Yet, there is a strong selection for reduction in armour of three-spine stickleback in freshwater stickleback. In this project, the bone st...

  17. 49 CFR 572.19 - Lumbar spine, abdomen and pelvis.

    Science.gov (United States)

    2010-10-01

    ...-Year-Old Child § 572.19 Lumbar spine, abdomen and pelvis. (a) The lumbar spine, abdomen, and pelvis... 49 Transportation 7 2010-10-01 2010-10-01 false Lumbar spine, abdomen and pelvis. 572.19 Section..., the lumbar spine assembly shall flex by an amount that permits the rigid thoracic spine to rotate from...

  18. Conspicuous and aposematic spines in the animal kingdom

    Science.gov (United States)

    Inbar, Moshe; Lev-Yadun, Simcha

    2005-04-01

    Spines serve as a common physical defence mechanism in both the plant and animal kingdoms. Here we argue that as in plants, defensive animal spines are often conspicuous (shape and colour) and should be considered aposematic. Conspicuous spines may evolve as signals or serve as a cue for potential predators. Spine conspicuousness in animals has evolved independently across and within phyla occupying aquatic and terrestrial ecosystems, indicating that this convergent phenomenon is highly adaptive. Still, many spines are cryptic, suggesting that conspicuity is not simply constrained by developmental factors such as differences in the chemical composition of the integument. Aposematism does not preclude the signalling role of conspicuous spines in the sexual arena.

  19. Con-nectin axons and dendrites.

    Science.gov (United States)

    Beaudoin, Gerard M J

    2006-07-03

    Unlike adherens junctions, synapses are asymmetric connections, usually between axons and dendrites, that rely on various cell adhesion molecules for structural stability and function. Two cell types of adhesion molecules found at adherens junctions, cadherins and nectins, are thought to mediate homophilic interaction between neighboring cells. In this issue, Togashi et al. (see p. 141) demonstrate that the differential localization of two heterophilic interacting nectins mediates the selective attraction of axons and dendrites in cooperation with cadherins.

  20. Bone density of the radius, spine, and proximal femur in osteoporosis

    International Nuclear Information System (INIS)

    Mazess, R.B.; Barden, H.; Ettinger, M.; Schultz, E.

    1988-01-01

    Bone mineral density (BMD) was measured in 140 normal young women (aged 20 to 39 years) and in 423 consecutive women over age 40 referred for evaluation of osteoporosis. Lumbar spine and proximal femur BMD was measured using dual-photon absorptiometry ( 153 Gd), whereas the radius shaft measurement used single-photon absorptiometry ( 125 I). There were 324 older women with no fractures, of which 278 aged 60 to 80 years served as age-matched controls. There were 99 women with fractures including 32 with vertebral and 22 with hip fractures. Subsequently, another 25 women with hip fractures had BMD measured in another laboratory; their mean BMD was within 2% of that of the original series. The mean age in both the nonfracture and fracture groups was 70 +/- 5 years. The BMD in the age-matched controls was 20% to 25% below that of normal young women for the radius, spine, and femur, but the Ward's triangle region of the femur showed even greater loss (35%). The mean BMD at all sites in the crush fracture cases was about 10% to 15% below that of age-matched controls. Spinal abnormality was best discriminated by spine and femoral measurements (Z score about 0.9). In women with hip fractures, the BMD was 10% below that of age-matched controls for the radius and the spine, and the BMD for the femoral sites was about 25% to 30% below that of age-matched control (Z score about 1.6). Femoral densities gave the best discrimination of hip fracture cases and even reflected spinal osteopenia. In contrast, neither the spine nor the radius reflected the full extent of femoral osteopenia in hip fracture

  1. Dendrites Enable a Robust Mechanism for Neuronal Stimulus Selectivity.

    Science.gov (United States)

    Cazé, Romain D; Jarvis, Sarah; Foust, Amanda J; Schultz, Simon R

    2017-09-01

    Hearing, vision, touch: underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Nonlinear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of nonpreferred stimuli. Using a multi-subunit nonlinear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of loss of synapses or dendrites than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially nonselective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.

  2. Return to golf after spine surgery.

    Science.gov (United States)

    Abla, Adib A; Maroon, Joseph C; Lochhead, Richard; Sonntag, Volker K H; Maroon, Adara; Field, Melvin

    2011-01-01

    no published evidence indicates when patients can resume golfing after spine surgery. The objective of this study is to provide data from surveys sent to spine surgeons. a survey of North American Spine Society members was undertaken querying the suggested timing of return to golf. Of 1000 spine surgeons surveyed, 523 responded (52.3%). The timing of recommended return to golf and the reasons were questioned for college/professional athletes and avid and recreational golfers of both sexes. Responses were tallied for lumbar laminectomy, lumbar microdiscectomy, lumbar fusion, and anterior cervical discectomy with fusion. the most common recommended time for return to golf was 4-8 weeks after lumbar laminectomy and lumbar microdiscectomy, 2-3 months after anterior cervical fusion, and 6 months after lumbar fusion. The results showed a statistically significant increase in the recommended time to resume golf after lumbar fusion than after cervical fusion in all patients (p golf after spine surgery depends on many variables, including the general well-being of patients in terms of pain control and comfort when golfing. This survey serves as a guide that can assist medical practitioners in telling patients the average times recommended by surgeons across North America regarding return to golf after spine surgery.

  3. Effects of decreased inhibition on synaptic plasticity and dendritic morphology in the juvenile prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Xanthippi Konstantoudaki

    2014-03-01

    , we tested whether synaptic plasticity properties of intra-cortical layer II synapses are affected. In adult control mice, tetanic stimulation results in long-term potentiation that lasts at least 50 min (Konstantoudaki et al, 2013. In control mice of the age tested in this study (PD 20-30, LTP could not be induced with the same stimulation. However, we find that Rac1 KO mice do express long-term potentiation. We next studied the dendritic morphology of layer II neurons in the prefrontal cortex, in an effort to identify the mechanism by which Rac1 KO mice exhibit LTP, while the control mice of the same age do not. For this, we stained mouse brains of Rac1 KO and Rac1 heterozygous mice with the Golgi-Cox method. We analyzed the number of secondary apical dendrites, their thickness, as well as the number of spines. We find that the dendrites of pyramidal neurons of Rac1 KO mice have decreased thickness and increased number of spines compared to pyramidal neurons from Rac1 heterozygous mice. These findings could also provide a mechanistic explanation for the presence of LTP in Rac1 KO mice. In conclusion, we find that decreased inhibition during development alters the morphological and functional characteristics of pyramidal neurons in layer II prefrontal cortex of mice. These alterations could provide a cellular substrate for emotional and cognitive dysfunctions present in these mice (Konstantoudaki et al, 2012.

  4. Membrane voltage changes in passive dendritic trees: a tapering equivalent cylinder model.

    Science.gov (United States)

    Poznański, R R

    1988-01-01

    An exponentially tapering equivalent cylinder model is employed in order to approximate the loss of the dendritic trunk parameter observed from anatomical data on apical and basilar dendrites of CA1 and CA3 hippocampal pyramidal neurons. This model allows dendritic trees with a relative paucity of branching to be treated. In particular, terminal branches are not required to end at the same electrotonic distance. The Laplace transform method is used to obtain analytic expressions for the Green's function corresponding to an instantaneous pulse of current injected at a single point along a tapering equivalent cylinder with sealed ends. The time course of the voltage in response to an arbitrary input is computed using the Green's function in a convolution integral. Examples of current input considered are (1) an infinitesimally brief (Dirac delta function) pulse and (2) a step pulse. It is demonstrated that inputs located on a tapering equivalent cylinder are more effective at the soma than identically placed inputs on a nontapering equivalent cylinder. Asymptotic solutions are derived to enable the voltage response behaviour over both relatively short and long time periods to be analysed. Semilogarithmic plots of these solutions provide a basis for estimating the membrane time constant tau m from experimental transients. Transient voltage decrement from a clamped soma reveals that tapering tends to reduce the error associated with inadequate voltage clamping of the dendritic membrane. A formula is derived which shows that tapering tends to increase the estimate of the electrotonic length parameter L.

  5. Neutrophils, dendritic cells and Toxoplasma.

    Science.gov (United States)

    Denkers, Eric Y; Butcher, Barbara A; Del Rio, Laura; Bennouna, Soumaya

    2004-03-09

    Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.

  6. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis

    DEFF Research Database (Denmark)

    Siegel, Gabriele; Obernosterer, Gregor; Fiore, Roberto

    2009-01-01

    of acyl protein thioesterase 1 (APT1), an enzyme regulating the palmitoylation status of proteins that are known to function at the synapse, including the alpha(13) subunits of G proteins (Galpha(13)). RNA-interference-mediated knockdown of APT1 and the expression of membrane-localized Galpha(13) both...... suppress spine enlargement caused by inhibition of miR-138, suggesting that APT1-regulated depalmitoylation of Galpha(13) might be an important downstream event of miR-138 function. Our results uncover a previously unknown miRNA-dependent mechanism in neurons and demonstrate a previously unrecognized...

  7. Survey of French spine surgeons reveals significant variability in spine trauma practices in 2013.

    Science.gov (United States)

    Lonjon, G; Grelat, M; Dhenin, A; Dauzac, C; Lonjon, N; Kepler, C K; Vaccaro, A R

    2015-02-01

    In France, attempts to define common ground during spine surgery meetings have revealed significant variability in clinical practices across different schools of surgery and the two specialities involved in spine surgery, namely, neurosurgery and orthopaedic surgery. To objectively characterise this variability by performing a survey based on a fictitious spine trauma case. Our working hypothesis was that significant variability existed in trauma practices and that this variability was related to a lack of strong scientific evidence in spine trauma care. We performed a cross-sectional survey based on a clinical vignette describing a 31-year-old male with an L1 burst fracture and neurologic symptoms (numbness). Surgeons received the vignette and a 14-item questionnaire on the management of this patient. For each question, surgeons had to choose among five possible answers. Differences in answers across surgeons were assessed using the Index of Qualitative Variability (IQV), in which 0 indicates no variability and 1 maximal variability. Surgeons also received a questionnaire about their demographics and surgical experience. Of 405 invited spine surgeons, 200 responded to the survey. Five questions had an IQV greater than 0.9, seven an IQV between 0.5 and 0.9, and two an IQV lower than 0.5. Variability was greatest about the need for MRI (IQV=0.93), degree of urgency (IQV=0.93), need for fusion (IQV=0.92), need for post-operative bracing (IQV=0.91), and routine removal of instrumentation (IQV=0.94). Variability was lowest for questions about the need for surgery (IQV=0.42) and use of the posterior approach (IQV=0.36). Answers were influenced by surgeon specialty, age, experience level, and type of centre. Clinical practice regarding spine trauma varies widely in France. Little published evidence is available on which to base recommendations that would diminish this variability. Copyright © 2015. Published by Elsevier Masson SAS.

  8. Blocking PirB up-regulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia

    Science.gov (United States)

    Bochner, David N.; Sapp, Richard W.; Adelson, Jaimie D.; Zhang, Siyu; Lee, Hanmi; Djurisic, Maja; Syken, Josh; Dan, Yang; Shatz, Carla J.

    2015-01-01

    During critical periods of development, the brain easily changes in response to environmental stimuli, but this neural plasticity declines by adulthood. By acutely disrupting paired immunoglobulin-like receptor B(PirB) function at specific ages, we show that PirB actively represses neural plasticity throughout life. We disrupted PirB function either by genetically introducing a conditional PirB allele into mice or by minipump infusion of a soluble PirB ectodomain (sPirB) into mouse visual cortex. We found that neural plasticity, as measured by depriving mice of vision in one eye and testing ocular dominance, was enhanced by this treatment both during the critical period and when PirB function was disrupted in adulthood. Acute blockade of PirB triggered the formation of new functional synapses, as indicated by increases in miniature excitatory postsynaptic current (mEPSC) frequency and spine density on dendrites of layer 5 pyramidal neurons. In addition, recovery from amblyopia— the decline in visual acuity and spine density resulting from long-term monocular deprivation— was possible after a 1-week infusion of sPirB after the deprivation period. Thus, neural plasticity in adult visual cortex is actively repressed and can be enhanced by blocking PirB function. PMID:25320232

  9. A Simulation Study on the Effects of Dendritic Morphology on Layer V Prefontal Pyramidal Cell Firing Behavior

    Directory of Open Access Journals (Sweden)

    Maria ePsarrou

    2014-09-01

    Full Text Available Pyramidal cells, the most abundant neurons in neocortex, exhibit significant structural variability across different brain areas and layers in different species. Moreover, in response to a somatic step current, these cells display a range of firing behaviors, the most common being (1 repetitive action potentials (Regular Spiking - RS, and (2 an initial cluster of 2-5 action potentials with short ISIs followed by single spikes (Intrinsic Bursting - IB. A correlation between firing behavior and dendritic morphology has recently been reported. In this work we use computational modeling to investigate quantitatively the effects of the basal dendritic tree morphology on the firing behavior of 112 three-dimensional reconstructions of layer V PFC rat pyramidal cells. Particularly, we focus on how different morphological (diameter, total length, volume and branch number and passive (Mean Electrotonic Path length features of basal dendritic trees shape somatic firing when the spatial distribution of ionic mechanisms in the basal dendritic trees is uniform or non-uniform. Our results suggest that total length, volume and branch number are the best morphological parameters to discriminate the cells as RS or IB, regardless of the distribution of ionic mechanisms in basal trees. The discriminatory power of total length, volume and branch number remains high in the presence of different apical dendrites. These results suggest that morphological variations in the basal dendritic trees of layer V pyramidal neurons in the PFC influence their firing patterns in a predictive manner and may in turn influence the information processing capabilities of these neurons.

  10. Characterization and prediction of rate-dependent flexibility in lumbar spine biomechanics at room and body temperature.

    Science.gov (United States)

    Stolworthy, Dean K; Zirbel, Shannon A; Howell, Larry L; Samuels, Marina; Bowden, Anton E

    2014-05-01

    The soft tissues of the spine exhibit sensitivity to strain-rate and temperature, yet current knowledge of spine biomechanics is derived from cadaveric testing conducted at room temperature at very slow, quasi-static rates. The primary objective of this study was to characterize the change in segmental flexibility of cadaveric lumbar spine segments with respect to multiple loading rates within the range of physiologic motion by using specimens at body or room temperature. The secondary objective was to develop a predictive model of spine flexibility across the voluntary range of loading rates. This in vitro study examines rate- and temperature-dependent viscoelasticity of the human lumbar cadaveric spine. Repeated flexibility tests were performed on 21 lumbar function spinal units (FSUs) in flexion-extension with the use of 11 distinct voluntary loading rates at body or room temperature. Furthermore, six lumbar FSUs were loaded in axial rotation, flexion-extension, and lateral bending at both body and room temperature via a stepwise, quasi-static loading protocol. All FSUs were also loaded using a control loading test with a continuous-speed loading-rate of 1-deg/sec. The viscoelastic torque-rotation response for each spinal segment was recorded. A predictive model was developed to accurately estimate spine segment flexibility at any voluntary loading rate based on measured flexibility at a single loading rate. Stepwise loading exhibited the greatest segmental range of motion (ROM) in all loading directions. As loading rate increased, segmental ROM decreased, whereas segmental stiffness and hysteresis both increased; however, the neutral zone remained constant. Continuous-speed tests showed that segmental stiffness and hysteresis are dependent variables to ROM at voluntary loading rates in flexion-extension. To predict the torque-rotation response at different loading rates, the model requires knowledge of the segmental flexibility at a single rate and specified

  11. Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Sebastian Jessberger

    2008-11-01

    Full Text Available Newborn granule cells become functionally integrated into the synaptic circuitry of the adult dentate gyrus after a morphological and electrophysiological maturation process. The molecular mechanisms by which immature neurons and the neurites extending from them find their appropriate position and target area remain largely unknown. Here we show that single-cell-specific knockdown of cyclin-dependent kinase 5 (cdk5 activity in newborn cells using a retrovirus-based strategy leads to aberrant growth of dendritic processes, which is associated with an altered migration pattern of newborn cells. Even though spine formation and maturation are reduced in cdk5-deficient cells, aberrant dendrites form ectopic synapses onto hilar neurons. These observations identify cdk5 to be critically involved in the maturation and dendrite extension of newborn neurons in the course of adult neurogenesis. The data presented here also suggest a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation.

  12. Finite element simulation and clinical follow-up of lumbar spine biomechanics with dynamic fixations.

    Directory of Open Access Journals (Sweden)

    Yolanda Más

    Full Text Available Arthrodesis is a recommended treatment in advanced stages of degenerative disc disease. Despite dynamic fixations were designed to prevent abnormal motions with better physiological load transmission, improving lumbar pain and reducing stress on adjacent segments, contradictory results have been obtained. This study was designed to compare differences in the biomechanical behaviour between the healthy lumbar spine and the spine with DYNESYS and DIAM fixation, respectively, at L4-L5 level. Behaviour under flexion, extension, lateral bending and axial rotation are compared using healthy lumbar spine as reference. Three 3D finite element models of lumbar spine (healthy, DYNESYS and DIAM implemented, respectively were developed, together a clinical follow-up of 58 patients operated on for degenerative disc disease. DYNESYS produced higher variations of motion with a maximum value for lateral bending, decreasing intradiscal pressure and facet joint forces at instrumented level, whereas screw insertion zones concentrated stress. DIAM increased movement during flexion, decreased it in another three movements, and produced stress concentration at the apophyses at instrumented level. Dynamic systems, used as single systems without vertebral fusion, could be a good alternative to degenerative disc disease for grade II and grade III of Pfirrmann.

  13. Efficacy of limited CT for nonvisualized lower cervical spine in patients with blunt trauma

    International Nuclear Information System (INIS)

    Tehranzadeh, J.; Bonk, R.T.; Ansari, A.; Mesgarzadeh, M.

    1994-01-01

    Records of 100 patients with blunt injury and nonvisualization of C7 and T1 on cross-table lateral and swimmer's views were reviewed to evaluate the usefulness of limited computed tomographic (CT) scans in ''clearing'' the lower cervical vertebrae of injury. CT was deemed necessary and performed in all of these cases because the lower cervical spine could not be evaluated clinically or with plain radiographs. Ninety-seven of these 100 patients had normal findings on CT and only three patients showed cervical spine fractures. All three had isolated and stable fractures. Two of these patients had ''clay-shoveler'' fractures at C6 and C7, respectively, and one had a single laminar fracture at C7. All three patients were conservatively treated. This study emphasizes the value of clinical correlation in the evaluation of cervical spine trauma. When deemed necessary in symptomatic patients, CT is useful to exclude skeletal injury in the lower cervical spine thus avoiding delay in the patient's workup and unnecessary hospitalization, and expediting patient discharge. Lack of pain and neurological findings in nonintoxicated, conscious, and alert patients is generally not associated with significant soft tissue or skeletal injury. (orig.)

  14. Efficacy of limited CT for nonvisualized lower cervical spine in patients with blunt trauma

    Energy Technology Data Exchange (ETDEWEB)

    Tehranzadeh, J [Dept. of Radiological Sciences, Univ. of California, Irvine, Medical Center, Orange, CA (United States); Bonk, R T [Dept. of Radiological Sciences, Univ. of California, Irvine, Medical Center, Orange, CA (United States); Ansari, A [Dept. of Radiological Sciences, Univ. of California, Irvine, Medical Center, Orange, CA (United States); Mesgarzadeh, M [Dept. of Diagnostic Imaging, Temple Univ., Health Sciences Center, Philadelphia, PA (United States)

    1994-07-01

    Records of 100 patients with blunt injury and nonvisualization of C7 and T1 on cross-table lateral and swimmer's views were reviewed to evaluate the usefulness of limited computed tomographic (CT) scans in ''clearing'' the lower cervical vertebrae of injury. CT was deemed necessary and performed in all of these cases because the lower cervical spine could not be evaluated clinically or with plain radiographs. Ninety-seven of these 100 patients had normal findings on CT and only three patients showed cervical spine fractures. All three had isolated and stable fractures. Two of these patients had ''clay-shoveler'' fractures at C6 and C7, respectively, and one had a single laminar fracture at C7. All three patients were conservatively treated. This study emphasizes the value of clinical correlation in the evaluation of cervical spine trauma. When deemed necessary in symptomatic patients, CT is useful to exclude skeletal injury in the lower cervical spine thus avoiding delay in the patient's workup and unnecessary hospitalization, and expediting patient discharge. Lack of pain and neurological findings in nonintoxicated, conscious, and alert patients is generally not associated with significant soft tissue or skeletal injury. (orig.)

  15. Recrystallization phenomena of solution grown paraffin dendrites

    NARCIS (Netherlands)

    Hollander, F.F.A.; Hollander, F.; Stasse, O.; van Suchtelen, J.; van Enckevort, W.J.P.

    2001-01-01

    Paraffin crystals were grown from decane solutions using a micro-Bridgman set up for in-situ observation of the morphology at the growth front. It is shown that for large imposed velocities, dendrites are obtained. After dendritic growth, aging or recrystallization processes set in rather quickly,

  16. A Rare Nasal Bone Fracture: Anterior Nasal Spine Fracture

    Directory of Open Access Journals (Sweden)

    Egemen Kucuk

    2014-04-01

    Full Text Available Anterior nasal spine fractures are a quite rare type of nasal bone fractures. Associated cervical spine injuries are more dangerous than the nasal bone fracture. A case of the anterior nasal spine fracture, in a 18-year-old male was presented. Fracture of the anterior nasal spine, should be considered in the differential diagnosis of the midface injuries and also accompanying cervical spine injury should not be ignored.

  17. Retropharyngeal cold abscess without Pott's spine | Singh | South ...

    African Journals Online (AJOL)

    Retropharyngeal cold abscess without Pott's spine. ... pyogenic osteomyelitis, tube‚rculosis of the spine, or external injuries caused by endoscopes ... in an adult woman without tuberculosis of the cervical spine who was managed surgically by ...

  18. Differential association of GABAB receptors with their effector ion channels in Purkinje cells.

    Science.gov (United States)

    Luján, Rafael; Aguado, Carolina; Ciruela, Francisco; Cózar, Javier; Kleindienst, David; de la Ossa, Luis; Bettler, Bernhard; Wickman, Kevin; Watanabe, Masahiko; Shigemoto, Ryuichi; Fukazawa, Yugo

    2018-04-01

    Metabotropic GABA B receptors mediate slow inhibitory effects presynaptically and postsynaptically through the modulation of different effector signalling pathways. Here, we analysed the distribution of GABA B receptors using highly sensitive SDS-digested freeze-fracture replica labelling in mouse cerebellar Purkinje cells. Immunoreactivity for GABA B1 was observed on presynaptic and, more abundantly, on postsynaptic compartments, showing both scattered and clustered distribution patterns. Quantitative analysis of immunoparticles revealed a somato-dendritic gradient, with the density of immunoparticles increasing 26-fold from somata to dendritic spines. To understand the spatial relationship of GABA B receptors with two key effector ion channels, the G protein-gated inwardly rectifying K + (GIRK/Kir3) channel and the voltage-dependent Ca 2+ channel, biochemical and immunohistochemical approaches were performed. Co-immunoprecipitation analysis demonstrated that GABA B receptors co-assembled with GIRK and Ca V 2.1 channels in the cerebellum. Using double-labelling immunoelectron microscopic techniques, co-clustering between GABA B1 and GIRK2 was detected in dendritic spines, whereas they were mainly segregated in the dendritic shafts. In contrast, co-clustering of GABA B1 and Ca V 2.1 was detected in dendritic shafts but not spines. Presynaptically, although no significant co-clustering of GABA B1 and GIRK2 or Ca V 2.1 channels was detected, inter-cluster distance for GABA B1 and GIRK2 was significantly smaller in the active zone than in the dendritic shafts, and that for GABA B1 and Ca V 2.1 was significantly smaller in the active zone than in the dendritic shafts and spines. Thus, GABA B receptors are associated with GIRK and Ca V 2.1 channels in different subcellular compartments. These data provide a better framework for understanding the different roles played by GABA B receptors and their effector ion channels in the cerebellar network.

  19. Neuronal plasticity in the hedgehog supraoptic nucleus during hibernation.

    Science.gov (United States)

    Sanchez-Toscano, F; Caminero, A A; Machin, C; Abella, G

    1989-01-01

    The purpose of the present study was to identify processes of plasticity in the receptive field of neurosecretory neurons of the supraoptic nucleus during hibernation in the hedgehog, in order to correlate them with the increased neurosecretory activity observed in this nucleus during this annual period. Using the Rapid Golgi method, a quantitative study was conducted in the receptive field of bipolar and multipolar neurons (the main components of the nucleus). Results indicate a generalized increase in the following characteristics: (1) number of dendritic spines per millimeter along the dendritic shafts; (2) degree of branching in the dendritic field; and (3) dendritic density around the neuronal soma. These data demonstrate modification of the dendritic field in the supraoptic nucleus during hibernation, a change undoubtedly related to functional conditions. Since the observed changes affect structures such as dendritic spines which are directly related to the arrival of neural afferences, the discussion is centered on the types of stimuli which may be responsible for the observed processes.

  20. Early effects of 16O radiation on neuronal morphology and cognition in a murine model

    Science.gov (United States)

    Carr, Hannah; Alexander, Tyler C.; Groves, Thomas; Kiffer, Frederico; Wang, Jing; Price, Elvin; Boerma, Marjan; Allen, Antiño R.

    2018-05-01

    Astronauts exposed to high linear energy transfer radiation may experience cognitive injury. The pathogenesis of this injury is unknown but may involve glutamate receptors or modifications to dendritic structure and/or dendritic spine density and morphology. Glutamate is the major excitatory neurotransmitter in the central nervous system, where it acts on ionotropic and metabotropic glutamate receptors located at the presynaptic terminal and in the postsynaptic membrane at synapses in the hippocampus. Dendritic spines are sites of excitatory synaptic transmission, and changes in spine structure and dendrite morphology are thought to be morphological correlates of altered brain function associated with hippocampal-dependent learning and memory. The aim of the current study is to assess whether behavior, glutamate receptor gene expression, and dendritic structure in the hippocampus are altered in mice after early exposure to 16O radiation in mice. Two weeks post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Y-maze. During Y-maze testing, mice exposed to 0.1 Gy and 0.25 Gy radiation failed to distinguish the novel arm, spending approximately the same amount of time in all 3 arms during the retention trial. Exposure to 16O significantly reduced the expression of Nr1 and GluR1 in the hippocampus and modulated spine morphology in the dentate gyrus and cornu Ammon 1 within the hippocampus. The present data provide evidence that 16O radiation has early deleterious effects on mature neurons that are associated with hippocampal learning and memory.

  1. Charcot arthropathy of the lumbar spine treated using one-staged posterior three-column shortening and fusion.

    Science.gov (United States)

    David, Kenny Samuel; Agarwala, Amit Omprakash; Rampersaud, Yoga Raja

    2010-06-15

    Case report. We present a case of lumbar Charcot arthropathy successfully treated surgically using posterior 3-column resection, spinal shortening, and fusion. The operative treatment of Charcot arthropathy of the spine has conventionally been a combination of anterior and posterior surgery. The morbidity associated with these surgical procedures can be considerable. A posterior-only approach to the problem would avoid the additional morbidity associated with an anterior approach. We present a case of lumbar Charcot arthropathy with deformity treated successfully using such a procedure. Discussion of the patient's clinical and radiologic history, the technical merits of the operative intervention and a review of the relevant background literature are presented. A multilevel, single-stage, posterior 3-column resection with primary shortening and instrumented fusion augmented with rhBMP2 in a multiply operated patient with deformity provided a optimal biologic and mechanical environment for healing of the Charcot arthropathy and improved the sagittal and coronal profile of the spine. A single-stage, multilevel, posterior 3-column resection and primary shortening can be a useful surgical strategy in symptomatic patients with Charcot arthropathy of the spine.

  2. Chondrosarcoma of the Mobile Spine and Sacrum

    Directory of Open Access Journals (Sweden)

    Ryan M. Stuckey

    2011-01-01

    Full Text Available Chondrosarcoma is a rare malignant tumor of bone. This family of tumors can be primary malignant tumors or a secondary malignant transformation of an underlying benign cartilage tumor. Pain is often the initial presenting complaint when chondrosarcoma involves the spine. In the mobile spine, chondrosarcoma commonly presents within the vertebral body and shows a predilection for the thoracic spine. Due to the resistance of chondrosarcoma to both radiation and chemotherapy, treatment is focused on surgery. With en bloc excision of chondrosarcoma of the mobile spine and sacrum patients can have local recurrence rates as low as 20%.

  3. Synapse density and dendritic complexity are reduced in the prefrontal cortex following seven days of forced abstinence from cocaine self-administration.

    Directory of Open Access Journals (Sweden)

    Khampaseuth Rasakham

    Full Text Available Chronic cocaine exposure in both human addicts and in rodent models of addiction reduces prefrontal cortical activity, which subsequently dysregulates reward processing and higher order executive function. The net effect of this impaired gating of behavior is enhanced vulnerability to relapse. Previously we have shown that cocaine-induced increases in brain-derived neurotrophic factor (BDNF expression in the medial prefrontal cortex (PFC is a neuroadaptive mechanism that blunts the reinforcing efficacy of cocaine. As BDNF is known to affect neuronal survival and synaptic plasticity, we tested the hypothesis that abstinence from cocaine self-administration would lead to alterations in neuronal morphology and synaptic density in the PFC. Using a novel technique, array tomography and Golgi staining, morphological changes in the rat PFC were analyzed following 14 days of cocaine self-administration and 7 days of forced abstinence. Our results indicate that overall dendritic branching and total synaptic density are significantly reduced in the rat PFC. In contrast, the density of thin dendritic spines are significantly increased on layer V pyramidal neurons of the PFC. These findings indicate that dynamic structural changes occur during cocaine abstinence that may contribute to the observed hypo-activity of the PFC in cocaine-addicted individuals.

  4. Surgical site infections following instrumented stabilization of the spine

    Directory of Open Access Journals (Sweden)

    Dapunt U

    2017-09-01

    Full Text Available Ulrike Dapunt,1 Caroline Bürkle,1 Frank Günther,2 Wojciech Pepke,1 Stefan Hemmer,1 Michael Akbar1 1Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, 2Department for Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany Background: Implant-associated infections are still a feared complication in the field of orthopedics. Bacteria attach to the implant surface and form so-called biofilm colonies that are often difficult to diagnose and treat. Since the majority of studies focus on prosthetic joint infections (PJIs of the hip and knee, current treatment options (eg, antibiotic prophylaxis of implant-associated infections have mostly been adapted according to these results. Objective: The aim of this study was to evaluate patients with surgical site infections following instrumented stabilization of the spine with regard to detected bacteria species and the course of the disease. Patients and methods: We performed a retrospective single-center analysis of implant-associated infections of the spine from 2010 to 2014. A total of 138 patients were included in the study. The following parameters were evaluated: C-reactive protein serum concentration, microbiological evaluation of tissue samples, the time course of the disease, indication for instrumented stabilization of the spine, localization of the infection, and the number of revision surgeries required until cessation of symptoms. Results: Coagulase-negative Staphylococcus spp. were most commonly detected (n=69, 50%, followed by fecal bacteria (n=46, 33.3%. In 23.2% of cases, no bacteria were detected despite clinical suspicion of an infection. Most patients suffered from degenerative spine disorders (44.9%, followed by spinal fractures (23.9%, non-degenerative scoliosis (20.3%, and spinal tumors (10.1%. Surgical site infections occurred predominantly within 3

  5. Accountable disease management of spine pain.

    Science.gov (United States)

    Smith, Matthew J

    2011-09-01

    The health care landscape has changed with new legislation addressing the unsustainable rise in costs in the US system. Low-value service lines caring for expensive chronic conditions have been targeted for reform; for better or worse, the treatment of spine pain has been recognized as a representative example. Examining the Patient Protection and Affordable Care Act and existing pilot studies can offer a preview of how chronic care of spine pain will be sustained. Accountable care in an organization capable of collecting, analyzing, and reporting clinical data and operational compliance is forthcoming. Interdisciplinary spine pain centers integrating surgical and medical management, behavioral medicine, physical reconditioning, and societal reintegration represent the model of high-value care for patients with chronic spine pain. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Imaging the cervical spine following rugby related injury

    International Nuclear Information System (INIS)

    Beck, J.J.W.

    2016-01-01

    Rugby Union and Rugby League are popular sports with high participation across the world. The high impact nature of the sport results in a high proportion of injuries. Rugby has an association with cervical spine injury which has potentially catastrophic consequences for the patient. Anecdotal evidence suggests that radiographers find it challenging to visualise the cervicothoracic junction on the lateral supine cervical spine projection in broad shouldered athletes. This paper intends to analyse the risk factors for cervical spine injuries in rugby and discuss the imaging strategy in respect to radiography and CT scanning in high risk patient groups such as rugby players who are suspected of suffering a cervical spine injury. - Highlights: • Rugby as a participation sport represents a risk of cervical spine injury. • Conventional radiography lacks sensitivity in identifying cervical spine injury. • The body habitus of rugby players makes the imaging of the cervicothoracic junction challenging. • CT scanning should replace radiography in the event of serious suspicion of cervical spine injury. • The notion of CT being a high dose modality should be questioned.

  7. Endotracheal intubation in patients with cervical spine immobilization: a comparison of macintosh and airtraq laryngoscopes.

    LENUS (Irish Health Repository)

    Maharaj, Chrisen H

    2007-07-01

    The Airtraq laryngoscope (Prodol Ltd., Vizcaya, Spain) is a novel single-use tracheal intubation device. The authors compared ease of intubation with the Airtraq and Macintosh laryngoscopes in patients with cervical spine immobilization in a randomized, controlled clinical trial.

  8. Dendritic biomimicry: microenvironmental hydrogen-bonding effects on tryptophan fluorescence.

    Science.gov (United States)

    Koenig, S; Müller, L; Smith, D K

    2001-03-02

    Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.

  9. Characteristics of the Dendrite Growth in the Electrochemical Alane Production Process

    Directory of Open Access Journals (Sweden)

    Park Hyun-Kyu

    2016-01-01

    Full Text Available The electrochemical alane production process was proposed for a feasible production of alane. The operation of process was difficult because of short circuit by a dendrite growth in the reactor. Therefore, characteristics of the dendrite growth in the process were investigated. We conducted the electrochemical alane production process using Teflon block for inhibition of the dendrite growth. The obtained dendrite was characterized by XRD, SEM and ICP-AES. It was concluded that the dendrite growth was attributed to a melting and agglomeration of Al fine particles existed in the solution.

  10. Multiplanar CT of the spine

    International Nuclear Information System (INIS)

    Rothman, S.L.G.; Glenn, W.V. Jr.

    1986-01-01

    This is an illustrated text on computed tomography (CT) of the lumbar spine with an emphasis on the role and value of multiplanar imaging for helping determine diagnoses. The book has adequate discussion of scanning techniques for the different regions, interpretations of various abnormalities, degenerative disk disease, and different diagnoses. There is a 50-page chapter on detailed sectional anatomy of the spine and useful chapters on the postoperative spine and the planning and performing of spinal surgery with CT multiplanar reconstruction. There are comprehensive chapters on spinal tumors and trauma. The final two chapters of the book are devoted to CT image processing using digital networks and CT applications of medical computer graphics

  11. A Comparison of Cervical Spine Motion After Immobilization With a Traditional Spine Board and Full-Body Vacuum-Mattress Splint.

    Science.gov (United States)

    Etier, Brian E; Norte, Grant E; Gleason, Megan M; Richter, Dustin L; Pugh, Kelli F; Thomson, Keith B; Slater, Lindsay V; Hart, Joe M; Brockmeier, Stephen F; Diduch, David R

    2017-12-01

    The National Athletic Trainers' Association (NATA) advocates for cervical spine immobilization on a rigid board or vacuum splint and for removal of athletic equipment before transfer to an emergency medical facility. To (1) compare triplanar cervical spine motion using motion capture between a traditional rigid spine board and a full-body vacuum splint in equipped and unequipped athletes, (2) assess cervical spine motion during the removal of a football helmet and shoulder pads, and (3) evaluate the effect of body mass on cervical spine motion. Controlled laboratory study. Twenty healthy male participants volunteered for this study to examine the influence of immobilization type and presence of equipment on triplanar angular cervical spine motion. Three-dimensional cervical spine kinematics was measured using an electromagnetic motion analysis system. Independent variables included testing condition (static lift and hold, 30° tilt, transfer, equipment removal), immobilization type (rigid, vacuum-mattress), and equipment (on, off). Peak sagittal-, frontal-, and transverse-plane angular motions were the primary outcome measures of interest. Subjective ratings of comfort and security did not differ between immobilization types ( P > .05). Motion between the rigid board and vacuum splint did not differ by more than 2° under any testing condition, either with or without equipment. In removing equipment, the mean peak motion ranged from 12.5° to 14.0° for the rigid spine board and from 11.4° to 15.4° for the vacuum-mattress splint, and more transverse-plane motion occurred when using the vacuum-mattress splint compared with the rigid spine board (mean difference, 0.14 deg/s [95% CI, 0.05-0.23 deg/s]; P = .002). In patients weighing more than 250 lb, the rigid board provided less motion in the frontal plane ( P = .027) and sagittal plane ( P = .030) during the tilt condition and transfer condition, respectively. The current study confirms similar motion in the

  12. Sensitivity of lumbar spine loading to anatomical parameters

    DEFF Research Database (Denmark)

    Putzer, Michael; Ehrlich, Ingo; Rasmussen, John

    2016-01-01

    Musculoskeletal simulations of lumbar spine loading rely on a geometrical representation of the anatomy. However, this data has an inherent inaccuracy. This study evaluates the in uence of dened geometrical parameters on lumbar spine loading utilizing ve parametrized musculoskeletal lumbar spine ...... lumbar spine model for a subject-specic approach with respect to bone geometry. Furthermore, degeneration processes could lead to computational problems and it is advised that stiffness properties of discs and ligaments should be individualized....

  13. Mechanism and patterns of cervical spine fractures-dislocations in vertebral artery injury

    Directory of Open Access Journals (Sweden)

    Pankaj Gupta

    2012-01-01

    Full Text Available Purpose: To identify the fracture patterns and mechanism of injury, based on subaxial cervical spine injury classification system (SLIC, on non-contrast computed tomography (NCCT of cervical spine predictive of vertebral artery injury (VAI. Patients and Methods: We retrospectively analyzed cervical spine magnetic resonance imaging (MRI of 320 patients who were admitted with cervical spine injury in our level I regional trauma center over a period of two years (April 2010 to April 2012. Diagnosis of VAI was based on hyperintensity replacing the flow void on a T2-weighted axial image. NCCT images of the selected 43 patients with MRI diagnosis of VAI were then assessed for the pattern of injury. The cervical spinal injuries were classified into those involving the C1 and C2 and subaxial spine. For the latter, SLIC was used. Results: A total of 47 VAI were analyzed in 43 patients. Only one patient with VAI on MRI had no detectable abnormality on NCCT. C1 and C2 injuries were found in one and six patients respectively. In subaxial injuries, the most common mechanism of injury was distraction (37.5% with facet dislocation with or without fracture representing the most common pattern of injury (55%. C5 was the single most common affected vertebral level. Extension to foramen transversarium was present in 20 (42.5% cases. Conclusion: CT represents a robust screening tool for patients with VAI. VAI should be suspected in patients with facet dislocation with or without fractures, foramina transversarium fractures and C1-C3 fractures, especially type III odontoid fractures and distraction mechanism of injury.

  14. Size-affected single-slip behavior of Rene N5 microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shade, P.A., E-mail: paul.shade@wpafb.af.mil [Department of Materials Science and Engineering, Ohio State University, 477 Watts Hall, 2041 College Road, Columbus, OH 43210 (United States); Air Force Research Laboratory, Materials and Manufacturing Directorate, 2230 10th Street, Wright-Patterson AFB, OH 45433 (United States); Uchic, M.D.; Dimiduk, D.M. [Air Force Research Laboratory, Materials and Manufacturing Directorate, 2230 10th Street, Wright-Patterson AFB, OH 45433 (United States); Viswanathan, G.B.; Wheeler, R. [UES Inc., 4401 Dayton-Xenia Road, Dayton, OH 45432 (United States); Fraser, H.L. [Department of Materials Science and Engineering, Ohio State University, 477 Watts Hall, 2041 College Road, Columbus, OH 43210 (United States)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Microcompression testing was conducted on the single crystal superalloy Rene N5. Black-Right-Pointing-Pointer All microcrystals exhibited size-affected plastic flow. Black-Right-Pointing-Pointer Dendrite core microcrystals were stronger than those from interdendritic regions. - Abstract: Microcompression testing was conducted on the cast single crystal nickel-base superalloy Rene N5. Microcrystals were selectively fabricated from either dendrite core or interdendritic regions. The compression axis was oriented for single-slip deformation and microcrystal diameters ranged from 2.5 to 80 {mu}m. All microcrystals displayed several hallmarks of size-affected plastic flow, including a size-affected and stochastic flow-stress and initial strain hardening rate, as well as an intermittent flow response. The magnitude of size-affected flow-stress scaling behavior was dependent upon the plastic strain level of the flow-stress measurement, with increasing size-dependence for increasing strain levels. TEM analysis demonstrated the activation of multiple slip-systems, despite the microcrystals being oriented for single-slip deformation. Zig-zag slip was also observed in microcrystals that achieved flow stresses of {approx}1300 MPa or higher. For microcrystals fabricated within interdendritic regions the flow-stress values are, on average, lower compared to dendrite core microcrystals. This difference in flow-stress is especially pronounced for microcrystals which are 5 {mu}m in diameter. The microcrystal diameter for which bulk-like properties are estimated to be observed is approximately 350 {mu}m, which is approaching the measured primary dendrite arm spacing for this crystal (430 {mu}m).

  15. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer.

    LENUS (Irish Health Repository)

    Michielsen, Adriana J

    2011-01-01

    Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5) could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.

  16. A dendrite-suppressing composite ion conductor from aramid nanofibres.

    Science.gov (United States)

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A

    2015-01-27

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  17. Fragile X Mental Retardation Protein and Dendritic Local Translation of the Alpha Subunit of the Calcium/Calmodulin-Dependent Kinase II Messenger RNA Are Required for the Structural Plasticity Underlying Olfactory Learning.

    Science.gov (United States)

    Daroles, Laura; Gribaudo, Simona; Doulazmi, Mohamed; Scotto-Lomassese, Sophie; Dubacq, Caroline; Mandairon, Nathalie; Greer, Charles August; Didier, Anne; Trembleau, Alain; Caillé, Isabelle

    2016-07-15

    In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown. Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity. Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons. Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Dendritic growth forms of borax crystals

    International Nuclear Information System (INIS)

    Takoo, R.K.; Patel, B.R.; Joshi, M.S.

    1983-01-01

    A variety of dendritic forms of borax grown from solutions by the film formation method is given. The changing growth morphology is followed as a function of concentration and temperature. The initial, intermediate and final growth morphologies are described and discussed. Influence of evaporation rate and supersaturation on the mechanism of growth is assessed. It is suggested that under all crystallization conditions, borax crystals have dendritic form in the initial stages of growth. (author)

  19. A game of two discs: a case of non-contiguous and occult cervical spine injury in a rugby player.

    Science.gov (United States)

    O'Sullivan, Michael D; Piggot, Robert; Jaddan, Mutaz; McCabe, John P

    2016-03-14

    The aim of this case report was to highlight the application of magnetic resonance imaging (MRI) in elucidating serious and occult injuries in a single case of hyperflextion injury of a patient cervical spine (C-Spine). A chart and radiology review was performed to establish the sequence of care and how the results of imaging studies influenced the clinical management in this trauma case. Plain radiographs and computed tomography (CT) imaging modalities of the C-Spine revealed bilateral C4/C5 facetal subluxation with no obvious fractures; however, the MR imaging of the C-Spine revealed a non-contiguous and occult injury to C6/C7 disc with a posterior annular tear and associated disc extrusion. This altered the operative intervention that was initially planned. MR imaging proved an invaluable diagnostic addition in this particular case of cervical trauma in a rugby player following a hyperflextion injury, by revealing a serious non-contiguous and occult injury of the C-Spine. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2016.

  20. Thermosolutal convection during dendritic solidification

    Science.gov (United States)

    Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.

    1989-01-01

    This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.

  1. Monosegmental fixation for the treatment of fractures of the thoracolumbar spine

    Directory of Open Access Journals (Sweden)

    Defino Helton

    2007-01-01

    Full Text Available Background : A short vertebral arthrodesis has been one of the objectives of the surgical treatment of fractures of the thoracolumbar spine. We present here clinical, functional and radiographic outcome obtained after monosegmental fixation (single posterior or combined anterior and posterior of specific types of unstable thoracolumbar fractures. Materials and Methods : Twenty four patients with fractures of the thoracolumbar spine submitted to monosegmental surgical treatment (Group I - 18 single posterior monosegmental fixations and Group II - 6 combined anterior and posterior fixations were retrospectively evaluated according to clinical, radiographic and functional parameters. The indication for surgery was instability or neurological deficit. All the procedures were indicated and performed by the senior surgeon (Helton LA Defino. Results : The patients from group I were followed-up from 2 to 12 years (mean: 6.65±2.96. The clinical, functional and radiographic results show that a single posterior monosegmental fixation is adequate and a satisfactory procedure to be used in specific types of thoracolumbar spine fractures, The patients from group II were followed-up from 9 to 15 years (mean: 13 ± 2,09 years. On group II the results of clinical evaluation showed moderate indices of residual pain and of satisfaction with the final result. The values obtained by functional evaluation showed that 66.6% of the patients were unable to return to their previous job and presented a moderate disability index (Oswestry = 16.6 and a significant reduction of quality of life based on the SF-36 questionnaire. Radiographic evaluation showed increased kyphosis of the fixed vertebral segment during the late postoperative period, accompanied by a reduction of the height of the intervertebral disk. Conclusion : It is possible to stabilize the fractures which have an anterior good load-bearing capacity by a standalone posterior monosegmental fixation. However

  2. When is an Inhibitory Synapse Effective?

    Science.gov (United States)

    Qian, Ning; Sejnowski, Terrence J.

    1990-10-01

    Interactions between excitatory and inhibitory synaptic inputs on dendrites determine the level of activity in neurons. Models based on the cable equation predict that silent shunting inhibition can strongly veto the effect of an excitatory input. The cable model assumes that ionic concentrations do not change during the electrical activity, which may not be a valid assumption, especially for small structures such as dendritic spines. We present here an analysis and computer simulations to show that for large Cl^- conductance changes, the more general Nernst-Planck electrodiffusion model predicts that shunting inhibition on spines should be much less effective than that predicted by the cable model. This is a consequence of the large changes in the intracellular ionic concentration of Cl^- that can occur in small structures, which would alter the reversal potential and reduce the driving force for Cl^-. Shunting inhibition should therefore not be effective on spines, but it could be significantly more effective on the dendritic shaft at the base of the spine. In contrast to shunting inhibition, hyperpolarizing synaptic inhibition mediated by K^+ currents can be very effective in reducing the excitatory synaptic potentials on the same spine if the excitatory conductance change is less than 10 nS. We predict that if the inhibitory synapses found on cortical spines are to be effective, then they should be mediated by K^+ through GABA_B receptors.

  3. Paediatric cervical spine injury but NEXUS negative

    OpenAIRE

    Maxwell, Melanie J; Jardine, Andrew D

    2007-01-01

    Cervical spine injuries in paediatric patients following trauma are extremely rare. The National Emergency X‐Radiography Utilization Study (NEXUS) guidelines are a set of clinical criteria used to guide physicians in identifying trauma patients requiring cervical spine imaging. It is validated for use in children. A case of a child who did not fulfil the NEXUS criteria for imaging but was found to have a cervical spine fracture is reported.

  4. The surgical management of the rheumatoid spine: Has the evolution of surgical intervention changed outcomes?

    Directory of Open Access Journals (Sweden)

    Robin Bhatia

    2014-01-01

    Full Text Available Context: Surgery for the rheumatoid cervical spine has been shown to stabilize the unstable spine; arrest/improve the progression of neurological deficit, help neck pain, and possibly decelerate the degenerative disease process. Operative intervention for the rheumatoid spine has significantly changed over the last 30 years. Aims: The purpose of this study was to review all cases of cervical rheumatoid spine requiring surgical intervention in a single unit over the last 30 years. Materials and Methods: A prospectively-maintained spine database was retrospectively searched for all cases of rheumatoid spine, leading to a review of indications, imaging, Ranawat and Myelopathy Disability Index measures, surgical morbidity, and survival curve analysis. Results: A total of 224 cases were identified between 1981 and 2011. Dividing the data into three time-epochs, there has been a significant increase in the ratio of segment-saving Goel-Harms C1-C2: Occipitocervical fixation (OCF surgery and survival has increased between 1981 and 2011 from 30% to 51%. Patients undergoing C1-C2 fixation were comparatively less myelopathic and in a better Ranawat class preoperatively, but postoperative outcome measures were well-preserved with favorable mortality rates over mean 39.6 months of follow-up. However, 11% of cases required OCF at mean 28 months post-C1-C2 fixation, largely due to instrumentation failure (80%. Conclusion: We present the largest series of surgically managed rheumatoid spines, revealing comparative data on OCF and C1-C2 fixation. Although survival has improved over the last 30 years, there have been changes in medical, surgical and perioperative management over that period of time too confounding the interpretation; however, the analysis presented suggests that rheumatoid patients presenting early in the disease process may benefit from C1 to C2 fixation, albeit with a proportion requiring OCF at a later time.

  5. Degenerative disease of the spine

    International Nuclear Information System (INIS)

    Czervionke, L.F.; Daniels, D.L.

    1991-01-01

    With few exceptions, magnetic resonance imaging (MRI) is becoming the modality of choice for the evaluation of degenerative disorders of the entire spine. With the implementation of surface coils and continued refinement and development of new pulse sequences, osseous and soft tissue structures of the spine can now be studied in great detail. The introduction of paramagnetic contrast agents has made it possible to differentiate epidural scar from recurrent disc herniation in the postoperative setting and to discern previously undetected degenerative changes within the intervertebral disc itself. This paper discusses the spectrum of degenerative diseases of the spine, including disc degeneration (intervertebral osteochondrosis), disc herniation, spinal stenosis, spondylosis deformans, and osteoarthritis. A brief description of the MR techniques and strategies used to evaluate these disorders is also

  6. Spine growth mechanisms: friction and seismicity at Mt. Unzen, Japan

    Science.gov (United States)

    Hornby, Adrian; Kendrick, Jackie; Hirose, Takehiro; Henton De Angelis, Sarah; De Angelis, Silvio; Umakoshi, Kodo; Miwa, Takahiro; Wadsworth, Fabian; Dingwell, Don; Lavallee, Yan

    2014-05-01

    The final episode of dome growth during the 1991-1995 eruption of Mt. Unzen was characterised by spine extrusion accompanied by repetitive seismicity. This type of cyclic activity has been observed at several dome-building volcanoes and recent work suggests a source mechanism of brittle failure of magma in the conduit. Spine growth may proceed by densification and closure of permeable pathways within the uppermost conduit magma, leading to sealing of the dome and inflation of the edifice. Amplified stresses on the wall rock and plug cause brittle failure near the conduit wall once static friction forces are overcome, and during spine growth these fractures may propagate to the dome surface. The preservation of these features is rare, and the conduit is typically inaccessible; therefore spines, the extruded manifestation of upper conduit material, provide the opportunity to study direct evidence of brittle processes in the conduit. At Mt. Unzen the spine retains evidence for brittle deformation and slip, however mechanical constraints on the formation of these features and their potential impact on eruption dynamics have not been well constrained. Here, we conduct an investigation into the process of episodic spine growth using high velocity friction apparatus at variable shear slip rate (0.4-1.5 m.s-1) and normal stress (0.4-3.5 MPa) on dome rock from Mt. Unzen, generating frictional melt at velocity >0.4 m.s-1 and normal stress >0.7 MPa. Our results show that the presence of frictional melt causes a deviation from Byerlee's frictional rule for rock friction. Melt generation is a disequilibrium process: initial amphibole breakdown leads to melt formation, followed by chemical homogenization of the melt layer. Ultimately, the experimentally generated frictional melts have a similar final chemistry, thickness and comminuted clast size distribution, thereby facilitating the extrapolation of a single viscoelastic model to describe melt-lubricated slip events at Mt

  7. Neuroimaging for spine and spinal cord surgery

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Izumi [Hokkaido Neurosurgical Memorial Hospital (Japan); Iwasaki, Yoshinobu; Hida, Kazutoshi

    2001-01-01

    Recent advances in neuroimaging of the spine and spinal cord are described based upon our clinical experiences with spinal disorders. Preoperative neuroradiological examinations, including magnetic resonance (MR) imaging and computerized tomography (CT) with three-dimensional reconstruction (3D-CT), were retrospectively analyzed in patients with cervical spondylosis or ossification of the posterior longitudinal ligament (130 cases), spinal trauma (43 cases) and intramedullary spinal cord tumors (92 cases). CT scan and 3D-CT were useful in elucidating the spine pathology associated with degenerative and traumatic spine diseases. Visualization of the deformity of the spine or fracture-dislocation of the spinal column with 3D-CT helped to determine the correct surgical treatment. MR imaging was most important in the diagnosis of both spine and spinal cord abnormalities. The axial MR images of the spinal cord were essential in understanding the laterality of the spinal cord compression in spinal column disorders and in determining surgical approaches to the intramedullary lesions. Although non-invasive diagnostic modalities such as MR imaging and CT scans are adequate for deciding which surgical treatment to use in the majority of spine and spinal cord disorders, conventional myelography is still needed in the diagnosis of nerve root compression in some cases of cervical spondylosis. (author)

  8. Efficacy of limited CT for nonvisualized lower cervical spine in patients with blunt trauma

    Energy Technology Data Exchange (ETDEWEB)

    Tehranzadeh, J. (Dept. of Radiological Sciences, Univ. of California, Irvine, Medical Center, Orange, CA (United States)); Bonk, R.T. (Dept. of Radiological Sciences, Univ. of California, Irvine, Medical Center, Orange, CA (United States)); Ansari, A. (Dept. of Radiological Sciences, Univ. of California, Irvine, Medical Center, Orange, CA (United States)); Mesgarzadeh, M. (Dept. of Diagnostic Imaging, Temple Univ., Health Sciences Center, Philadelphia, PA (United States))

    1994-07-01

    Records of 100 patients with blunt injury and nonvisualization of C7 and T1 on cross-table lateral and swimmer's views were reviewed to evaluate the usefulness of limited computed tomographic (CT) scans in ''clearing'' the lower cervical vertebrae of injury. CT was deemed necessary and performed in all of these cases because the lower cervical spine could not be evaluated clinically or with plain radiographs. Ninety-seven of these 100 patients had normal findings on CT and only three patients showed cervical spine fractures. All three had isolated and stable fractures. Two of these patients had ''clay-shoveler'' fractures at C6 and C7, respectively, and one had a single laminar fracture at C7. All three patients were conservatively treated. This study emphasizes the value of clinical correlation in the evaluation of cervical spine trauma. When deemed necessary in symptomatic patients, CT is useful to exclude skeletal injury in the lower cervical spine thus avoiding delay in the patient's workup and unnecessary hospitalization, and expediting patient discharge. Lack of pain and neurological findings in nonintoxicated, conscious, and alert patients is generally not associated with significant soft tissue or skeletal injury. (orig.)

  9. CD163 positive subsets of blood dendritic cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Møller, Holger Jon; Moestrup, Søren Kragh

    2006-01-01

    CD163 and CD91 are scavenging receptors with highly increased expression during the differentiation of monocytes into the anti-inflammatory macrophage phenotype. In addition, CD91 is expressed in monocyte-derived dendritic cells (MoDCs), where the receptor is suggested to be important...... for internalization of CD91-targeted antigens to be presented on the dendritic cell surface for T-cell stimulation. Despite their overlap in functionality, the expression of CD91 and CD163 has never been compared and the expression of CD163 in the monocyte-dendritic cell lineage is not yet characterized. CD163...... expression in dendritic cells (DCs) was investigated using multicolor flow cytometry in peripheral blood from 31 healthy donors and 15 HIV-1 patients in addition to umbilical cord blood from 5 newborn infants. Total RNA was isolated from MACS purified DCs and CD163 mRNA was determined with real-time reverse...

  10. High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus.

    Science.gov (United States)

    Baude, A; Nusser, Z; Molnár, E; McIlhinney, R A; Somogyi, P

    1995-12-01

    The cellular and subcellular localization of the GluRA, GluRB/C and GluRD subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type glutamate receptor was determined in the rat hippocampus using polyclonal antipeptide antibodies in immunoperoxidase and immunogold procedures. For the localization of the GluRD subunit a new polyclonal antiserum was developed using the C-terminal sequence of the protein (residues 869-881), conjugated to carrier protein and absorbed to colloidal gold for immunization. The purified antibodies immunoprecipitated about 25% of 3[H]AMPA binding activity from the hippocampus, cerebellum or whole brain, but very little from neocortex. These antibodies did not precipitate a significant amount of 3[H]kainate binding activity. The antibodies also recognize the GluRD subunit, but not the other AMPA receptor subunits, when expressed in transfected COS-7 cells and only when permeabilized with detergent, indicating an intracellular epitope. All subunits were enriched in the neuropil of the dendritic layers of the hippocampus and in the molecular layer of the dentate gyrus. The cellular distribution of the GluRD subunit was studied more extensively. The strata radiatum, oriens and the dentate molecular layer were more strongly immunoreactive than the stratum lacunosum moleculare, the stratum lucidum and the hilus. However, in the stratum lucidum of the CA3 area and in the hilus the weakly reacting dendrites were surrounded by immunopositive rosettes, shown in subsequent electron microscopic studies to correspond to complex dendritic spines. In the stratum radiatum, the weakly reacting apical dendrites contrasted with the surrounding intensely stained neuropil. The cell bodies of pyramidal and granule cells were moderately reactive. Some non-principal cells and their dendrites in the pyramidal cell layer and in the alveus also reacted very strongly for the GluRD subunit. At the subcellular level, silver intensified immunogold

  11. CO2-switchable fluorescence of a dendritic polymer and its applications

    Science.gov (United States)

    Gao, Chunmei; Lü, Shaoyu; Liu, Mingzhu; Wu, Can; Xiong, Yun

    2015-12-01

    The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the solubility of curcumin, and the drug released faster in the presence of CO2. Such CO2 responsive fluorescent dendritic polymers are potentially applicable in cellular imaging or drug controlled release.The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the

  12. Low dose prenatal ethanol exposure induces anxiety-like behaviour and alters dendritic morphology in the basolateral amygdala of rat offspring.

    Directory of Open Access Journals (Sweden)

    Carlie L Cullen

    Full Text Available Prenatal exposure to high levels of alcohol is strongly associated with poor cognitive outcomes particularly in relation to learning and memory. It is also becoming more evident that anxiety disorders and anxiety-like behaviour can be associated with prenatal alcohol exposure. This study used a rat model to determine if prenatal exposure to a relatively small amount of alcohol would result in anxiety-like behaviour and to determine if this was associated with morphological changes in the basolateral amygdala. Pregnant Sprague Dawley rats were fed a liquid diet containing either no alcohol (Control or 6% (vol/vol ethanol (EtOH throughout gestation. Male and Female offspring underwent behavioural testing at 8 months (Adult or 15 months (Aged of age. Rats were perfusion fixed and brains were collected at the end of behavioural testing for morphological analysis of pyramidal neuron number and dendritic morphology within the basolateral amygdala. EtOH exposed offspring displayed anxiety-like behaviour in the elevated plus maze, holeboard and emergence tests. Although sexually dimorphic behaviour was apparent, sex did not impact anxiety-like behaviour induced by prenatal alcohol exposure. This increase in anxiety - like behaviour could not be attributed to a change in pyramidal cell number within the BLA but rather was associated with an increase in dendritic spines along the apical dendrite which is indicative of an increase in synaptic connectivity and activity within these neurons. This study is the first to link increases in anxiety like behaviour to structural changes within the basolateral amygdala in a model of prenatal ethanol exposure. In addition, this study has shown that exposure to even a relatively small amount of alcohol during development leads to long term alterations in anxiety-like behaviour.

  13. The Spine of the Cosmic Web

    NARCIS (Netherlands)

    Aragón-Calvo, Miguel A.; Platen, Erwin; van de Weijgaert, Rien; Szalay, Alexander S.

    2010-01-01

    We present the SpineWeb framework for the topological analysis of the Cosmic Web and the identification of its walls, filaments, and cluster nodes. Based on the watershed segmentation of the cosmic density field, the SpineWeb method invokes the local adjacency properties of the boundaries between

  14. The Spine of the Cosmic Web

    NARCIS (Netherlands)

    Aragón-Calvo, Miguel A.; Platen, Erwin; van de Weijgaert, Rien; Szalay, Alexander S.

    We present the SpineWeb framework for the topological analysis of the Cosmic Web and the identification of its walls, filaments, and cluster nodes. Based on the watershed segmentation of the cosmic density field, the SpineWeb method invokes the local adjacency properties of the boundaries between

  15. Surgery for failed cervical spine reconstruction.

    Science.gov (United States)

    Helgeson, Melvin D; Albert, Todd J

    2012-03-01

    Review article. To review the indications, operative strategy, and complications of revision cervical spine reconstruction. With many surgeons expanding their indications for cervical spine surgery, the number of patients being treated operatively has increased. Unfortunately, the number of patients requiring revision procedures is also increasing, but very little literature exists reviewing changes in the indications or operative planning for revision reconstruction. Narrative and review of the literature. In addition to the well-accepted indications for primary cervical spine surgery (radiculopathy, myelopathy, instability, and tumor), we have used the following indications for revision surgery: pseudarthrosis, adjacent segment degeneration, inadequate decompression, iatrogenic instability, and deformity. Our surgical goal for pseudarthrosis is obviously to obtain a fusion, which can usually be performed with an approach not done previously. Our surgical goals for instability and deformity are more complex, with a focus on decompression of any neurologic compression, correction of deformity, and stability. Revision cervical spine reconstruction is safe and effective if performed for the appropriate indications and with proper planning.

  16. Size-affected single-slip behavior of René N5 microcrystals

    International Nuclear Information System (INIS)

    Shade, P.A.; Uchic, M.D.; Dimiduk, D.M.; Viswanathan, G.B.; Wheeler, R.; Fraser, H.L.

    2012-01-01

    Highlights: ► Microcompression testing was conducted on the single crystal superalloy René N5. ► All microcrystals exhibited size-affected plastic flow. ► Dendrite core microcrystals were stronger than those from interdendritic regions. - Abstract: Microcompression testing was conducted on the cast single crystal nickel-base superalloy René N5. Microcrystals were selectively fabricated from either dendrite core or interdendritic regions. The compression axis was oriented for single-slip deformation and microcrystal diameters ranged from 2.5 to 80 μm. All microcrystals displayed several hallmarks of size-affected plastic flow, including a size-affected and stochastic flow-stress and initial strain hardening rate, as well as an intermittent flow response. The magnitude of size-affected flow-stress scaling behavior was dependent upon the plastic strain level of the flow-stress measurement, with increasing size-dependence for increasing strain levels. TEM analysis demonstrated the activation of multiple slip-systems, despite the microcrystals being oriented for single-slip deformation. Zig-zag slip was also observed in microcrystals that achieved flow stresses of ∼1300 MPa or higher. For microcrystals fabricated within interdendritic regions the flow-stress values are, on average, lower compared to dendrite core microcrystals. This difference in flow-stress is especially pronounced for microcrystals which are 5 μm in diameter. The microcrystal diameter for which bulk-like properties are estimated to be observed is approximately 350 μm, which is approaching the measured primary dendrite arm spacing for this crystal (430 μm).

  17. Two-photon imaging during prolonged middle cerebral artery occlusion in mice reveals recovery of dendritic structure after reperfusion.

    Science.gov (United States)

    Li, Ping; Murphy, Timothy H

    2008-11-12

    Filament occlusion of the middle cerebral artery (MCA) is a well accepted animal model of focal ischemia. Advantages of the model are relatively long occlusion times and a large penumbra region that simulates aspects of human stroke. Here, we use two-photon and confocal microscopy in combination with regional measurement of blood flow using laser speckle to assess the spatial relationship between the borders of the MCA ischemic territory and loss of dendrite structure, as well as the effect of reperfusion on dendritic damage in adult YFP (yellow fluorescent protein) and GFP (green fluorescent protein) C57BL/6 transgenic mice with fluorescent (predominantly layer 5) neurons. By examining the spatial extent of dendritic damage, we determined that 60 min of MCA occlusion produced a core with severe structural damage that did not recover after reperfusion (begins approximately 3.8 mm lateral to midline), a reversibly damaged area up to 0.6 mm medial to the core that recovered after reperfusion (penumbra), and a relatively structurally intact area ( approximately 1 mm wide; medial penumbra) with hypoperfusion. Loss of structure was preceded by a single ischemic depolarization 122.1 +/- 10.2 s after occlusion onset. Reperfusion of animals after 60 min of ischemia was not associated with exacerbation of damage (reperfusion injury) and resulted in a significant restoration of blebbed dendritic structure, but only within approximately 0.6 mm lateral of the dendritic damage structural border. In summary, we find that recovery of dendritic structure can occur after reperfusion after even 60 min of ischemia, but is likely restricted to a relatively small penumbra region with partial blood flow or oxygenation.

  18. Imaging of spine injuries

    International Nuclear Information System (INIS)

    Lomoschitz, F. . e-mai: friedrich.lomoschitz@univie.ac.at

    2001-01-01

    Spinal trauma requires a prompt and detailed diagnosis for estimating the prognosis and installing proper therapy. Conventional radiograms are the first imaging modality in most cases. In the cervical and the lumbar spine, a CT has to be performed in patients with polytrauma and a higher risk of complications or with signs of instability. Especially for imaging the cervicocranium, multiplanar reformations in sagittal and coronal planes are necessary. For fractures of the thoracic spine, MR imaging is superior to CT because of the better detection of associated neurologic complications. (author)

  19. Structural and optical properties of solid-state synthesized Au dendritic structures

    International Nuclear Information System (INIS)

    Gentile, A.; Ruffino, F.; Romano, L.; Boninelli, S.; Reitano, R.; Piccitto, G.; Grimaldi, M.G.

    2014-01-01

    Graphical abstract: - Highlights: • Au dendritic structures were produced on surfaces. • The chemical and structural properties of the dendritic structures are presented. • The optical properties of the dendritic structures are presented. • The ability of the dendritic structures to serve as light scattering centers is presented. - Abstract: Au dendrites (Au Ds) are synthesized, on various substrates, by a simple physical methodology involving the deposition of a thin Au film on a Si surface followed by thermal processes at high temperatures (>1273 K) in an inert ambient (N 2 ), using fast heating and cooling rates (1273 K/min). Microscopic analyses reveal the evolution, thanks to the thermal processes, of the Au film from a continuous coating to dendritic structures covering the entire sample surface. In particular, transmission electron microscopy analyses indicate that, below the Au surface, the dendritic structures consist of Si atoms originating from the substrate. Furthermore, optical characterizations reveal the ability of the Au Ds to serve as scattering centers in the infrared region. Finally, on the basis of the experimental observations, a phenomenological model for the growth of the Au Ds is proposed

  20. Effects of dendritic load on the firing frequency of oscillating neurons.

    Science.gov (United States)

    Schwemmer, Michael A; Lewis, Timothy J

    2011-03-01

    We study the effects of passive dendritic properties on the dynamics of neuronal oscillators. We find that the addition of a passive dendrite can sometimes have counterintuitive effects on firing frequency. Specifically, the addition of a hyperpolarized passive dendritic load can either increase, decrease, or have negligible effects on firing frequency. We use the theory of weak coupling to derive phase equations for "ball-and-stick" model neurons and two-compartment model neurons. We then develop a framework for understanding how the addition of passive dendrites modulates the frequency of neuronal oscillators. We show that the average value of the neuronal oscillator's phase response curves measures the sensitivity of the neuron's firing rate to the dendritic load, including whether the addition of the dendrite causes an increase or decrease in firing frequency. We interpret this finding in terms of to the slope of the neuronal oscillator's frequency-applied current curve. We also show that equivalent results exist for constant and noisy point-source input to the dendrite. We note that the results are not specific to neurons but are applicable to any oscillator subject to a passive load.

  1. Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons.

    Science.gov (United States)

    Zhou, Wen-Liang; Yan, Ping; Wuskell, Joseph P; Loew, Leslie M; Antic, Srdjan D

    2008-02-01

    Basal dendrites of neocortical pyramidal neurons are relatively short and directly attached to the cell body. This allows electrical signals arising in basal dendrites to strongly influence the neuronal output. Likewise, somatic action potentials (APs) should readily propagate back into the basilar dendritic tree to influence synaptic plasticity. Two recent studies, however, determined that sodium APs are severely attenuated in basal dendrites of cortical pyramidal cells, so that they completely fail in distal dendritic segments. Here we used the latest improvements in the voltage-sensitive dye imaging technique (Zhou et al., 2007) to study AP backpropagation in basal dendrites of layer 5 pyramidal neurons of the rat prefrontal cortex. With a signal-to-noise ratio of > 15 and minimal temporal averaging (only four sweeps) we were able to sample AP waveforms from the very last segments of individual dendritic branches (dendritic tips). We found that in short- (< 150 microm) and medium (150-200 microm in length)-range basal dendrites APs backpropagated with modest changes in AP half-width or AP rise-time. The lack of substantial changes in AP shape and dynamics of rise is inconsistent with the AP-failure model. The lack of substantial amplitude boosting of the third AP in the high-frequency burst also suggests that in short- and medium-range basal dendrites backpropagating APs were not severely attenuated. Our results show that the AP-failure concept does not apply in all basal dendrites of the rat prefrontal cortex. The majority of synaptic contacts in the basilar dendritic tree actually received significant AP-associated electrical and calcium transients.

  2. MRI of cervical spine injuries complicating ankylosing spondylitis

    Energy Technology Data Exchange (ETDEWEB)

    Koivikko, Mika P.; Koskinen, Seppo K. [Helsinki Medical Imaging Center, Helsinki University Central Hospital, Toeoeloe Hospital, Department of Radiology, Helsinki (Finland)

    2008-09-15

    The objective was to study characteristic MRI findings in cervical spine fractures complicating ankylosing spondylitis (AS). Technical issues related to MRI are also addressed. A review of 6,774 consecutive cervical spine multidetector CT (MDCT) scans obtained during 6.2 years revealed 33 ankylosed spines studied for suspected acute cervical spine injury complicating AS. Of these, 20 patients also underwent MRI. On MRI, of these 20 patients, 19 had a total of 29 cervical and upper thoracic spine fractures. Of 20 transverse fractures traversing both anterior and posterior columns, 7 were transdiskal and exhibited less bone marrow edema than did those traversing vertebral bodies. One Jefferson's, 1 atlas posterior arch (Jefferson's on MDCT), 2 odontoid process, and 5 non-contiguous spinous process fractures were detectable. MRI showed 2 fractures that were undetected by MDCT, and conversely, MDCT detected 6 fractures not seen on MRI; 16 patients had spinal cord findings ranging from impingement and contusion to complete transection. Magnetic resonance imaging can visualize unstable fractures of the cervical and upper thoracic spine. Paravertebral hemorrhages and any ligamentous injuries should alert radiologists to seek transverse fractures. Multiple fractures are common and often complicated by spinal cord injuries. Diagnostic images can be obtained with a flexible multipurpose coil if the use of standard spine array coil is impossible due to a rigid collar or excessive kyphosis. (orig.)

  3. Dendrite tungsten liquation in molybdenum alloys

    International Nuclear Information System (INIS)

    Kantor, M.M.; Ageeva, E.N.; Kolotinskij, V.N.

    1992-01-01

    A study was made on primary crystallization structure of ingots of Mo-W-B system alloys with electron microscopy were used to establish, that cells and cellular dendrites were the main elements of primary crystallization structure. Method of local X-ray spectral analysis enabled to establish, that intracrystallite liquation at cellular growth developed more intensively, as compared to the case of cellular dendrite formation. Change of boron content in alloys didn't practically affect the degree of development of intracrystallite W liquation in Mo

  4. Surgical Site Infections in Pediatric Spine Surgery: Comparative Microbiology of Patients with Idiopathic and Nonidiopathic Etiologies of Spine Deformity.

    Science.gov (United States)

    Maesani, Matthieu; Doit, Catherine; Lorrot, Mathie; Vitoux, Christine; Hilly, Julie; Michelet, Daphné; Vidal, Christophe; Julien-Marsollier, Florence; Ilharreborde, Brice; Mazda, Keyvan; Bonacorsi, Stéphane; Dahmani, Souhayl

    2016-01-01

    Surgical site infections (SSIs) are a concern in pediatric spine surgery with unusually high rates for a clean surgery and especially for patients with deformity of nonidiopathic etiology. Microbiologic differences between etiologies of spine deformities have been poorly investigated. We reviewed all cases of SSI in spinal surgery between 2007 and 2011. Characteristics of cases and of bacteria according to the etiology of the spine disease were investigated. Of 496 surgeries, we identified 51 SSIs (10.3%) in 49 patients. Staphylococcus aureus was the most frequent pathogen whatever the etiology (n = 31, 61% of infection cases). The second most frequent pathogens vary according to the etiology of the spine deformity. It was Gram-negative bacilli (GNB) in nonidiopathic cases (n = 19, 45% of cases) and anaerobe in idiopathic cases (n = 8, 38% of cases), particularly Gram-positive anaerobic cocci (n = 5, 24% of cases). Infection rate was 6.8% in cases with idiopathic spine disease (n = 21) and 15.9% in cases with nonidiopathic spine disease (n = 30). Nonidiopathic cases were more frequently male with lower weight. American Society of Anesthesiologists score was more often greater than 2, they had more frequently sacral implants and postoperative intensive care unit stay. GNB were significantly associated with a nonidiopathic etiology, low weight, younger age and sacral fusion. SSIs were polymicrobial in 31% of cases with a mean of 1.4 species per infection cases. S. aureus is the first cause of SSI in pediatric spine surgery. However, Gram-positive anaerobic cocci should be taken into account in idiopathic patients and GNB in nonidiopathic patients when considering antibiotic prophylaxis and curative treatment.

  5. Effectiveness of Treatment of Idiopathic Scoliosis by SpineCor Dynamic Bracing with Special Physiotherapy Programme in SpineCor System.

    Science.gov (United States)

    Rożek, Karina; Potaczek, Tomasz; Zarzycka, Maja; Lipik, Ewa; Jasiewicz, Barbara

    2016-10-28

    The SpineCor dynamic brace for the treatment of idiopathic scoliosis is designed to maintain the correct position of the spine and a new movement strategy for 20 hours per day. The SpineCor exercise system intensifies and complements the brace treatment. This study evaluated the effectiveness of a comprehensive treatment of idiopathic scoliosis involving the SpineCor system. The study assessed a group of 40 patients (38 girls and 2 boys) with idiopathic scoliosis treated with the SpineCor brace. The average age at beginning of treatment was 13.1 yrs (10-15). Minimum treatment time was 18 months. 28 participants met the SRS criteria. Angles of the curve before and after bracing based on imaging studies were measured at the beginning and end of the treatment, analyzed and compared. Rehabilitation focused on teaching active corrective movement throughout the brace treatment. A control group was formed of 33 patients, including 21 meeting the SRS criteria, who used the SpineCor dynamic brace but did not participate in the associated exercise programme. Among patients from the exercise group who met the SRS criteria, 25% demonstrated reduced curve angles, 35.7% demonstrated curve progression and 39.3% showed stabilization (no change). Among patients meeting the SRS criteria from the control group, a decrease in curve angle was observed in 14.3% of the patients, curve progression in 57.1% and stabilization in 28.6%. 1. The addition of a dedicated physiotherapy programme to SpineCor dynamic bracing improves the chances of obtaining a positive outcome. 2. It is necessary to further analyse the course of the comprehensive treatment, also with regard to other types of braces and kinesiotherapy programmes.

  6. Pott's Spine with Bilateral Psoas Abscesses

    OpenAIRE

    Masavkar, Sanjeevani; Shanbag, Preeti; Inamdar, Prithi

    2012-01-01

    A high degree of suspicion and appropriate imaging studies are required for the early diagnosis of Pott's spine. We describe a 4-year-old boy with Pott's disease of the lumbar spine with bilateral psoas abscesses. The child responded to conservative treatment with antituberculous treatment and ultrasonographically guided percutaneous drainage of the abscesses.

  7. Equine dendritic cells generated with horse serum have enhanced functionality in comparison to dendritic cells generated with fetal bovine serum.

    Science.gov (United States)

    Ziegler, Anja; Everett, Helen; Hamza, Eman; Garbani, Mattia; Gerber, Vinzenz; Marti, Eliane; Steinbach, Falko

    2016-11-15

    Dendritic cells are professional antigen-presenting cells that play an essential role in the initiation and modulation of T cell responses. They have been studied widely for their potential clinical applications, but for clinical use to be successful, alternatives to xenogeneic substances like fetal bovine serum (FBS) in cell culture need to be found. Protocols for the generation of dendritic cells ex vivo from monocytes are well established for several species, including horses. Currently, the gold standard protocol for generating dendritic cells from monocytes across various species relies upon a combination of GM-CSF and IL-4 added to cell culture medium which is supplemented with FBS. The aim of this study was to substitute FBS with heterologous horse serum. For this purpose, equine monocyte-derived dendritic cells (eqMoDC) were generated in the presence of horse serum or FBS and analysed for the effect on morphology, phenotype and immunological properties. Changes in the expression of phenotypic markers (CD14, CD86, CD206) were assessed during dendritic cell maturation by flow cytometry. To obtain a more complete picture of the eqMoDC differentiation and assess possible differences between FBS- and horse serum-driven cultures, a transcriptomic microarray analysis was performed. Lastly, immature eqMoDC were primed with a primary antigen (ovalbumin) or a recall antigen (tetanus toxoid) and, after maturation, were co-cultured with freshly isolated autologous CD5 + T lymphocytes to assess their T cell stimulatory capacity. The microarray analysis demonstrated that eqMoDC generated with horse serum were indistinguishable from those generated with FBS. However, eqMoDC incubated with horse serum-supplemented medium exhibited a more characteristic dendritic cell morphology during differentiation from monocytes. A significant increase in cell viability was also observed in eqMoDC cultured with horse serum. Furthermore, eqMoDC generated in the presence of horse serum

  8. Dendritic functionalization of monolayer-protected gold nanoparticles

    International Nuclear Information System (INIS)

    Cutler, Erin C.; Lundin, Erik; Garabato, B. Davis; Choi, Daeock; Shon, Young-Seok

    2007-01-01

    This paper describes the facile synthesis of nanoparticle-cored dendrimers (NCDs) and nanoparticle megamers from monolayer-protected gold clusters using either single or multi-step reactions. First, 11-mercaptoundecanoic acid/hexanethiolate-protected gold clusters were synthesized using the Schiffrin reaction followed by the ligand place-exchange reaction. A convergent approach for the synthesis of nanoparticle-cored dendrimers uses a single step reaction that is an ester coupling reaction of hydroxy-functionalized dendrons with carboxylic acid-functionalized gold clusters. A divergent approach, which is based on multi-step reactions, employs the repetition of an amide coupling reaction and a Michael addition reaction to build polyamidoamine dendritic architectures around a nanoparticle core. Nanoparticle megamers, which are large dendrimer-induced nanoparticle aggregates with an average diameter of more than 300 nm, were prepared by the amide coupling reaction between polyamiodoamine [G-2] dendrimers and carboxylic acid-functionalized gold clusters. 1 H NMR spectroscopy, FT-IR spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) were used for the characterization of these hybrid nanoparticles

  9. Upper spine morphology in hypophosphatemic rickets and healthy controls

    DEFF Research Database (Denmark)

    Gjørup, Hans; Sonnesen, Liselotte; Beck-Nielsen, Signe S

    2014-01-01

    BACKGROUND/OBJECTIVES: The aim of this study was to describe upper spine morphology in adult patients with hypophosphatemic rickets (HR) compared with controls to assess differences in spine morphology in terms of severity of skeletal impact and to study associations between spine morphology...

  10. Periscopic Spine Surgery

    National Research Council Canada - National Science Library

    Cleary, Kevin R

    2000-01-01

    .... Key research accomplishments for the first year are: ̂Demonstrated the value of intraoperative CT for visualization and verification of the anatomy in complex spine surgeries in the neurosurgery operating room...

  11. Conserved RNA-Binding Proteins Required for Dendrite Morphogenesis in Caenorhabditis elegans Sensory Neurons

    Science.gov (United States)

    Antonacci, Simona; Forand, Daniel; Wolf, Margaret; Tyus, Courtney; Barney, Julia; Kellogg, Leah; Simon, Margo A.; Kerr, Genevieve; Wells, Kristen L.; Younes, Serena; Mortimer, Nathan T.; Olesnicky, Eugenia C.; Killian, Darrell J.

    2015-01-01

    The regulation of dendritic branching is critical for sensory reception, cell−cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans. PMID:25673135

  12. Gonadal dose reduction in lumbar spine radiography

    International Nuclear Information System (INIS)

    Moilanen, A.; Kokko, M.L.; Pitkaenen, M.

    1983-01-01

    Different ways to minimize the gonadal dose in lumbar spine radiography have been studied. Two hundred and fifty lumbar spine radiographs were reviewed to assess the clinical need for lateral L5/S1 projection. Modern film/screen combinations and gonadal shielding of externally scattered radiation play a major role in the reduction of the genetic dose. The number of exposures should be minimized. Our results show that two projections, anteroposterior (AP) and lateral, appear to be sufficient in routine radiography of the lumbar spine. (orig.)

  13. Pyramidal neurons in the septal and temporal CA1 field of the human and hedgehog tenrec hippocampus.

    Science.gov (United States)

    Liagkouras, Ioannis; Michaloudi, Helen; Batzios, Christos; Psaroulis, Dimitrios; Georgiadis, Marios; Künzle, Heinz; Papadopoulos, Georgios C

    2008-07-07

    The present study examines comparatively the cellular density of disector-counted/Nissl-stained CA1 pyramidal neurons and the morphometric characteristics (dendritic number/length, spine number/density and Sholl-counted dendritic branch points/20 microm) of the basal and apical dendritic systems of Golgi-impregnated CA1 neurons, in the septal and temporal hippocampus of the human and hedgehog tenrec brain. The obtained results indicate that in both hippocampal parts the cellular density of the CA1 pyramidal neurons is lower in human than in tenrec. However, while the human pyramidal cell density is higher in the septal hippocampal part than in the temporal one, in the tenrec the density of these cells is higher in the temporal part. The dendritic tree of the CA1 pyramidal cells, more developed in the septal than in temporal hippocampus in both species studied, is in general more complex in the human hippocampus. The basal and the apical dendritic systems exhibit species related morphometric differences, while dendrites of different orders exhibit differences in their number and length, and in their spine density. Finally, in both species, as well as hippocampal parts and dendritic systems, changes of dendritic morphometric features along ascending dendritic orders fluctuate in a similar way, as do the number of dendritic branch points in relation to the distance from the neuron soma.

  14. Rheumatoid arthritis: Radiological changes in the cervical spine

    International Nuclear Information System (INIS)

    Al-Boukai, Ahmad A.; Al-Arfaj, Abdurahman S.

    2003-01-01

    Objective was to describe the radiographic cervical spine changes in rheumatoid arthritis patients.Forty-nine patients (37 females and 12 males ) diagnosed with rheumatoid arthritis at King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia between June 1998 and December 2000, were studied for their radiographic cervical spine changes . Their mean age at disease onset was 41.4 + 13.4 years (range of 18-73)and mean duration of disease was 9.1+-6.28 years (range of 2-34). Their demographic data including rheumatoid factor status was obtained. Standard conventional radiographs cervical spine were obtained to study the cervical spine changes. Cervical radiographic changes were found in 34 patients (27 females and 7 males) 10 had subluxation (7 with atlanto-axial subluxation,2 with sub-axial subluxation,and one with lateral subluxation ). No vertical impaction was seen. Erosion of odontoid process was seen in one patient .All were rheumatoid seropositive Cervical spine changes in patients with rheumatoid arthritis are common, in particular subluxation in the upper cervical spine. Our study showed somewhat lesser prevalence of these changes. These were clinically correlated with disease duration, female sex, and rheumatoid factor, but were not clinically significant. (author)

  15. The Burden of Clostridium difficile after Cervical Spine Surgery.

    Science.gov (United States)

    Guzman, Javier Z; Skovrlj, Branko; Rothenberg, Edward S; Lu, Young; McAnany, Steven; Cho, Samuel K; Hecht, Andrew C; Qureshi, Sheeraz A

    2016-06-01

    Study Design Retrospective database analysis. Objective The purpose of this study is to investigate incidence, comorbidities, and impact on health care resources of Clostridium difficile infection after cervical spine surgery. Methods A total of 1,602,130 cervical spine surgeries from the Nationwide Inpatient Sample database from 2002 to 2011 were included. Patients were included for study based on International Classification of Diseases Ninth Revision, Clinical Modification procedural codes for cervical spine surgery for degenerative spine diagnoses. Baseline patient characteristics were determined. Multivariable analyses assessed factors associated with increased incidence of C. difficile and risk of mortality. Results Incidence of C. difficile infection in postoperative cervical spine surgery hospitalizations is 0.08%, significantly increased since 2002 (p difficile infection were significantly increased in patients with comorbidities such as congestive heart failure, renal failure, and perivascular disease. Circumferential cervical fusion (odds ratio [OR] = 2.93, p difficile infection after degenerative cervical spine surgery. C. difficile infection after cervical spine surgery results in extended length of stay (p costs (p difficile after cervical spine surgery is nearly 8% versus 0.19% otherwise (p difficile to be a significant predictor of inpatient mortality (OR = 3.99, p difficile increases the risk of in-hospital mortality and costs approximately $6,830,695 per year to manage in patients undergoing elective cervical spine surgery. Patients with comorbidities such as renal failure or congestive heart failure have increased probability of developing infection after surgery. Accepted antibiotic guidelines in this population must be followed to decrease the risk of developing postoperative C. difficile colitis.

  16. Dysphagia associated with cervical spine and postural disorders.

    Science.gov (United States)

    Papadopoulou, Soultana; Exarchakos, Georgios; Beris, Alexander; Ploumis, Avraam

    2013-12-01

    Difficulties with swallowing may be both persistent and life threatening for the majority of those who experience it irrespective of age, gender, and race. The purpose of this review is to define oropharyngeal dysphagia and describe its relationship to cervical spine disorders and postural disturbances due to either congenital or acquired disorders. The etiology and diagnosis of dysphagia are analyzed, focusing on cervical spine pathology associated with dysphagia as severe cervical spine disorders and postural disturbances largely have been held accountable for deglutition disorders. Scoliosis, kyphosis–lordosis, and osteophytes are the primary focus of this review in an attempt to elucidate the link between cervical spine disorders and dysphagia. It is important for physicians to be knowledgeable about what triggers oropharyngeal dysphagia in cases of cervical spine and postural disorders. Moreover, the optimum treatment for dysphagia, including the use of therapeutic maneuvers during deglutition, neck exercises, and surgical treatment, is discussed.

  17. A direct comparison of spine rotational stiffness and dynamic spine stability during repetitive lifting tasks.

    Science.gov (United States)

    Graham, Ryan B; Brown, Stephen H M

    2012-06-01

    Stability of the spinal column is critical to bear loads, allow movement, and at the same time avoid injury and pain. However, there has been a debate in recent years as to how best to define and quantify spine stability, with the outcome being that different methods are used without a clear understanding of how they relate to one another. Therefore, the goal of the present study was to directly compare lumbar spine rotational stiffness, calculated with an EMG-driven biomechanical model, to local dynamic spine stability calculated using Lyapunov analyses of kinematic data, during a series of continuous dynamic lifting challenges. Twelve healthy male subjects performed 30 repetitive lifts under three varying load and three varying rate conditions. With an increase in the load lifted (constant rate) there was a significant increase in mean, maximum, and minimum spine rotational stiffness (pstiffness (pstiffness and a non-significant decrease in local dynamic stability (p>0.05). Weak linear relationships were found for the varying rate conditions (r=-0.02 to -0.27). The results suggest that spine rotational stiffness and local dynamic stability are closely related to one another, as they provided similar information when movement rate was controlled. However, based on the results from the changing lifting rate conditions, it is evident that both models provide unique information and that future research is required to completely understand the relationship between the two models. Using both techniques concurrently may provide the best information regarding the true effects of (in) stability under different loading and movement scenarios, and in comparing healthy and clinical populations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. MRI of the lumbar spine. Technical aspect. T2-weighted fat saturation coronal dynamic MRI of the lumbar spine; IRM du rachis lombaire. Aspects techniques. Coupe coronales en T2 et saturation de graisse IRM dynamique du rachis lombaire

    Energy Technology Data Exchange (ETDEWEB)

    Clarisse, J; Francke, J P; Leclet, H; Bourgeois, Ph; Chastanet, P; Cotten, A [Hopital Roger Salengro, 59 - Lille (France)

    1998-06-01

    Assess the feasibility of `dynamic` MRI of the lumbar spine and study the parameters of a single MRI sequence favorable for simultaneous imaging of the meningeal space and the epidural and foraminal venous system. Favor a decline in the number of sacco-radiculograms. Clinical assessment in the following circumstances: discordant clinical and and radiographic findings, difficulty in interpreting single or multiple disc-root conflicts, preoperative work-up in cases of narrow or stenotic lumbar canal. Dynamic MRI of the lumbar spine is possible if the hypothesis that the hyper-lordosis obtained in the supine position creates an anatomic and radiographic situation identical to the hyper-lordosis induced by the upright position is accepted. The `radiculo-phlebographic` sequence gives images of the root sheaths and the epidural, foraminal and extra-foraminal veins simultaneously, particularly in the coronal plane. (authors)

  19. Polyetheretherketone (PEEK) Rods in Lumbar Spine Degenerative Disease: A Case Series.

    Science.gov (United States)

    Ormond, D Ryan; Albert, Ladislau; Das, Kaushik

    2016-08-01

    Retrospective case series. The purpose of our study was to retrospectively review the results of posterior lumbar fusion using polyetheretherketone (PEEK) rods. Pedicle screw and rod instrumentation has become the preferred technique for performing stabilization and fusion in the lumbar spine for degenerative disease. Rigid fixation with titanium rods leads to high fusion rates, but may also contribute to stress shielding and adjacent segment degeneration (ASD). Thus, some have advocated using semirigid rods made of PEEK. Although the biomechanical properties of PEEK rods have shown improved stress-shielding characteristics and anterior load-sharing properties, there are very few clinical studies evaluating their application in the lumbar spine. We evaluated a retrospective cohort of 42 patients who underwent posterior lumbar fusion from 2007 to 2009 for the treatment of lumbar spine degenerative disease using PEEK rods. Reoperation rate was the primary outcome evaluated. Fusion rate was also evaluated. Eight of the 42 patients with PEEK rods required reoperation. Reasons for reoperation mainly included ASD (5/8) and nonunion with cage migration (3/8). Radiographically, documented fusion rate was 86%. Mean follow-up was 31.4 months. No statistical differences were found in fusion rates or reoperation between age above 55 years and younger than 55 years (P=1.00), male and female (P=0.110), single or multilevel fusion (P=0.67), and fusion with and without an interbody graft (P=0.69). Smokers showed a trend towards increased risk of reoperation for ASD or instrumentation failure (P=0.056). PEEK rods demonstrate a similar fusion and reoperation rate in comparison to other instrumentation modalities in the treatment of degenerative lumbar spine disease.

  20. Distal axotomy enhances retrograde presynaptic excitability onto injured pyramidal neurons via trans-synaptic signaling.

    Science.gov (United States)

    Nagendran, Tharkika; Larsen, Rylan S; Bigler, Rebecca L; Frost, Shawn B; Philpot, Benjamin D; Nudo, Randolph J; Taylor, Anne Marion

    2017-09-20

    Injury of CNS nerve tracts remodels circuitry through dendritic spine loss and hyper-excitability, thus influencing recovery. Due to the complexity of the CNS, a mechanistic understanding of injury-induced synaptic remodeling remains unclear. Using microfluidic chambers to separate and injure distal axons, we show that axotomy causes retrograde dendritic spine loss at directly injured pyramidal neurons followed by retrograde presynaptic hyper-excitability. These remodeling events require activity at the site of injury, axon-to-soma signaling, and transcription. Similarly, directly injured corticospinal neurons in vivo also exhibit a specific increase in spiking following axon injury. Axotomy-induced hyper-excitability of cultured neurons coincides with elimination of inhibitory inputs onto injured neurons, including those formed onto dendritic spines. Netrin-1 downregulation occurs following axon injury and exogenous netrin-1 applied after injury normalizes spine density, presynaptic excitability, and inhibitory inputs at injured neurons. Our findings show that intrinsic signaling within damaged neurons regulates synaptic remodeling and involves netrin-1 signaling.Spinal cord injury can induce synaptic reorganization and remodeling in the brain. Here the authors study how severed distal axons signal back to the cell body to induce hyperexcitability, loss of inhibition and enhanced presynaptic release through netrin-1.

  1. Right thoracic curvature in the normal spine

    Directory of Open Access Journals (Sweden)

    Masuda Keigo

    2011-01-01

    Full Text Available Abstract Background Trunk asymmetry and vertebral rotation, at times observed in the normal spine, resemble the characteristics of adolescent idiopathic scoliosis (AIS. Right thoracic curvature has also been reported in the normal spine. If it is determined that the features of right thoracic side curvature in the normal spine are the same as those observed in AIS, these findings might provide a basis for elucidating the etiology of this condition. For this reason, we investigated right thoracic curvature in the normal spine. Methods For normal spinal measurements, 1,200 patients who underwent a posteroanterior chest radiographs were evaluated. These consisted of 400 children (ages 4-9, 400 adolescents (ages 10-19 and 400 adults (ages 20-29, with each group comprised of both genders. The exclusion criteria were obvious chest and spinal diseases. As side curvature is minimal in normal spines and the range at which curvature is measured is difficult to ascertain, first the typical curvature range in scoliosis patients was determined and then the Cobb angle in normal spines was measured using the same range as the scoliosis curve, from T5 to T12. Right thoracic curvature was given a positive value. The curve pattern was organized in each collective three groups: neutral (from -1 degree to 1 degree, right (> +1 degree, and left ( Results In child group, Cobb angle in left was 120, in neutral was 125 and in right was 155. In adolescent group, Cobb angle in left was 70, in neutral was 114 and in right was 216. In adult group, Cobb angle in left was 46, in neutral was 102 and in right was 252. The curvature pattern shifts to the right side in the adolescent group (p Conclusions Based on standing chest radiographic measurements, a right thoracic curvature was observed in normal spines after adolescence.

  2. Spine device clinical trials: design and sponsorship.

    Science.gov (United States)

    Cher, Daniel J; Capobianco, Robyn A

    2015-05-01

    Multicenter prospective randomized clinical trials represent the best evidence to support the safety and effectiveness of medical devices. Industry sponsorship of multicenter clinical trials is purported to lead to bias. To determine what proportion of spine device-related trials are industry-sponsored and the effect of industry sponsorship on trial design. Analysis of data from a publicly available clinical trials database. Clinical trials of spine devices registered on ClinicalTrials.gov, a publicly accessible trial database, were evaluated in terms of design, number and location of study centers, and sample size. The relationship between trial design characteristics and study sponsorship was evaluated using logistic regression and general linear models. One thousand six hundred thrity-eight studies were retrieved from ClinicalTrials.gov using the search term "spine." Of the 367 trials that focused on spine surgery, 200 (54.5%) specifically studied devices for spine surgery and 167 (45.5%) focused on other issues related to spine surgery. Compared with nondevice trials, device trials were far more likely to be sponsored by the industry (74% vs. 22.2%, odds ratio (OR) 9.9 [95% confidence interval 6.1-16.3]). Industry-sponsored device trials were more likely multicenter (80% vs. 29%, OR 9.8 [4.8-21.1]) and had approximately four times as many participating study centers (pdevices not sponsored by the industry. Most device-related spine research is industry-sponsored. Multicenter trials are more likely to be industry-sponsored. These findings suggest that previously published studies showing larger effect sizes in industry-sponsored vs. nonindustry-sponsored studies may be biased as a result of failure to take into account the marked differences in design and purpose. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Three-spined stickleback Gasterosteus aculeatus, as a possible paratenic host for salmonid nematodes in a subarctic lake.

    Science.gov (United States)

    Braicovich, Paola E; Kuhn, Jesper A; Amundsen, Per-Arne; Marcogliese, David J

    2016-03-01

    In Takvatn, a subarctic lake in northern Norway, 35 of 162 three-spined sticklebacks examined were infected with 106 specimens of third-stage larvae of Philonema oncorhynchi. The prevalence and mean intensity of P. oncorhynchi were 10 % and 2.0 in 2013 and 24 % and 3.0 in 2014, respectively. A single specimen of Cystidicola farionis was found in an additional sample. While the latter is considered an accidental infection, three-spined sticklebacks may function as paratenic hosts of P. oncorhynchi, potentially enhancing its transmission to salmonids due to their central role in the lacustrine food web of this subarctic lake.

  4. The effects of early-life seizures on hippocampal dendrite development and later-life learning and memory.

    Science.gov (United States)

    Casanova, J R; Nishimura, Masataka; Swann, John W

    2014-04-01

    Severe childhood epilepsy is commonly associated with intellectual developmental disabilities. The reasons for these cognitive deficits are likely multifactorial and will vary between epilepsy syndromes and even among children with the same syndrome. However, one factor these children have in common is the recurring seizures they experience - sometimes on a daily basis. Supporting the idea that the seizures themselves can contribute to intellectual disabilities are laboratory results demonstrating spatial learning and memory deficits in normal mice and rats that have experienced recurrent seizures in infancy. Studies reviewed here have shown that seizures in vivo and electrographic seizure activity in vitro both suppress the growth of hippocampal pyramidal cell dendrites. A simplification of dendritic arborization and a resulting decrease in the number and/or properties of the excitatory synapses on them could help explain the observed cognitive disabilities. There are a wide variety of candidate mechanisms that could be involved in seizure-induced growth suppression. The challenge is designing experiments that will help focus research on a limited number of potential molecular events. Thus far, results suggest that growth suppression is NMDA receptor-dependent and associated with a decrease in activation of the transcription factor CREB. The latter result is intriguing since CREB is known to play an important role in dendrite growth. Seizure-induced dendrite growth suppression may not occur as a single process in which pyramidal cells dendrites simply stop growing or grow slower compared to normal neurons. Instead, recent results suggest that after only a few hours of synchronized epileptiform activity in vitro dendrites appear to partially retract. This acute response is also NMDA receptor dependent and appears to be mediated by the Ca(+2)/calmodulin-dependent phosphatase, calcineurin. An understanding of the staging of seizure-induced growth suppression and the

  5. Spine micromorphology of normal and hyperhydric Mammillaria gracilis Pfeiff. (Cactaceae) shoots.

    Science.gov (United States)

    Peharec, P; Posilović, H; Balen, B; Krsnik-Rasol, M

    2010-07-01

    Artificial conditions of tissue culture affect growth and physiology of crassulacean acid metabolism plants which often results in formation of hyperhydric shoots. In in vitro conditions Mammillaria gracilis Pfeiff. (Cactaceae) growth switches from organized to unorganized way, producing a habituated organogenic callus which simultaneously regenerates morphologically normal as well as altered hyperhydric shoots. In this study, influence of tissue culture conditions on morphology of cactus spines of normal and hyperhydric shoots was investigated. Spines of pot-grown Mammillaria plants and of in vitro regenerated shoots were examined with stereo microscope and scanning electron microscope. The pot-grown plants had 16-17 spines per areole. In vitro grown normal shoots, even though they kept typical shoot morphology, had lower number of spines (11-12) and altered spine morphology. This difference was even more pronounced in spine number (six to seven) and morphology of the hyperhydric shoots. Scanning electron microscopy analysis revealed remarkable differences in micromorphology of spine surface between pot-grown and in vitro grown shoots. Spines of in vitro grown normal shoots showed numerous long trichomes, which were more elongated on spines of the hyperhydric shoots; the corresponding structures on spine surface of pot-grown plants were noticed only as small protrusions. Scanning electron microscopy morphometric studies showed that the spines of pot-grown plants were significantly longer compared to the spines of shoots grown in tissue culture. Moreover, transverse section shape varies from elliptical in pot-grown plants to circular in normal and hyperhydric shoots grown in vitro. Cluster and correspondence analyses performed on the scanning electron microscope obtained results suggest great variability among spines of pot-grown plants. Spines of in vitro grown normal and hyperhydric shoots showed low level of morphological variation among themselves despite the

  6. Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study

    Directory of Open Access Journals (Sweden)

    Yi Eunhee S

    2010-04-01

    Full Text Available Abstract Background Abnormal immune responses are believed to be highly relevant in the pathogenesis of chronic obstructive pulmonary disease (COPD. Dendritic cells provide a critical checkpoint for immunity by their capacity to both induce and suppress immunity. Although evident that cigarette smoke, the primary cause of COPD, significantly influences dendritic cell functions, little is known about the roles of dendritic cells in the pathogenesis of COPD. Methods The extent of dendritic cell infiltration in COPD tissue specimens was determined using immunohistochemical localization of CD83+ cells (marker of matured myeloid dendritic cells, and CD1a+ cells (Langerhans cells. The extent of tissue infiltration with Langerhans cells was also determined by the relative expression of the CD207 gene in COPD versus control tissues. To determine mechanisms by which dendritic cells accumulate in COPD, complimentary studies were conducted using monocyte-derived human dendritic cells exposed to cigarette smoke extract (CSE, and dendritic cells extracted from mice chronically exposed to cigarette smoke. Results In human COPD lung tissue, we detected a significant increase in the total number of CD83+ cells, and significantly higher amounts of CD207 mRNA when compared with control tissue. Human monocyte-derived dendritic cells exposed to CSE (0.1-2% exhibited enhanced survival in vitro when compared with control dendritic cells. Murine dendritic cells extracted from mice exposed to cigarette smoke for 4 weeks, also demonstrated enhanced survival compared to dendritic cells extracted from control mice. Acute exposure of human dendritic cells to CSE induced the cellular pro-survival proteins heme-oxygenase-1 (HO-1, and B cell lymphoma leukemia-x(L (Bcl-xL, predominantly through oxidative stress. Although activated human dendritic cells conditioned with CSE expressed diminished migratory CCR7 expression, their migration towards the CCR7 ligand CCL21 was not

  7. A Model of Dendritic Cell Therapy for Melanoma

    Directory of Open Access Journals (Sweden)

    Ami eRadunskaya

    2013-03-01

    Full Text Available Dendritic cells are a promising immunotherapy tool for boosting an individual's antigen specific immune response to cancer. We develop a mathematical model using differential and delay-differential equations to describe the interactions between dendritic cells, effector-immune cells and tumor cells. We account for the trafficking of immune cells between lymph, blood, and tumor compartments. Our model reflects experimental results both for dendritic-cell trafficking and for immune suppression of tumor growth in mice. In addition, in silico experiments suggest more effective immunotherapy treatment protocols can be achieved by modifying dose location and schedule. A sensitivity analysis of the model reveals which patient-specific parameters have the greatest impact on treatment efficacy.

  8. Spine Metastases in Lung Cancer

    Directory of Open Access Journals (Sweden)

    O.Yu. Stolyarova

    2015-10-01

    Full Text Available The purpose and the objectives of the study were to determine the incidence of metastatic lesions to various parts of the spine, the assessment of the association with other clinical signs of lung cancer (localization, form, histology, degree of differentiation, staging, nature of extraosseous metastasis, to investigate the effect of these parameters on the survi­val of the patients. Material and methods. The study included 1071 patients with lung cancer aged 24 to 86 years. None of the examined patients has been operated previously for lung cancer, and after arriving at a diagnosis, all patients received radiation therapy, 73 % of them — combined radiochemothe­rapy. Results. Metastasis in the vertebral bodies and vertebral joints occurs in 13 % of patients with lung cancer and in 61 % of patients with bone form of the disease, the ratio of the defeat of thoracic, sacral, lumbar and cervical spine was 6 : 4 : 2 : 1. The development of metastases in the spine is mostly associa­ted with the localization of the tumor in the upper lobe of the lung, the peripheral form of the disease, with non-small cell histologic variants (adenocarcinoma and squamous cell carcinoma. The number of metastases in the spinal column directly correlates with the degree of metastatic involvement of the inguinal lymph nodes, abdominal wall and the liver, has an impact on the invasion of lung tumor into the esophagus and the trachea. The life expectancy of the deceased persons with spine metastases is less than that of other patients with the lung cancer, but the overall survival rate in these groups of patients is not very different. Conclusions. Clinical features of lung cancer with metastases in the spine necessitate the development of medical technology of rational radiochemotherapy in such patients.

  9. Distinguishing linear vs. nonlinear integration in CA1 radial oblique dendrites: it’s about time

    Directory of Open Access Journals (Sweden)

    José Francisco eGómez González

    2011-11-01

    Full Text Available It was recently shown that multiple excitatory inputs to CA1 pyramidal neuron dendrites must be activated nearly simultaneously to generate local dendritic spikes and superlinear responses at the soma; even slight input desynchronization prevented local spike initiation (Gasparini, 2006;Losonczy, 2006. This led to the conjecture that CA1 pyramidal neurons may only express their nonlinear integrative capabilities during the highly synchronized sharp waves and ripples that occur during slow wave sleep and resting/consummatory behavior, whereas during active exploration and REM sleep (theta rhythm, inadequate synchronization of excitation would lead CA1 pyramidal cells to function as essentially linear devices. Using a detailed single neuron model, we replicated the experimentally observed synchronization effect for brief inputs mimicking single synaptic release events. When synapses were driven instead by double pulses, more representative of the bursty inputs that occur in vivo, we found that the tolerance for input desynchronization was increased by more than an order of magnitude. The effect depended mainly on paired pulse facilitation of NMDA receptor-mediated responses at Schaffer collateral synapses. Our results suggest that CA1 pyramidal cells could function as nonlinear integrative units in all major hippocampal states.

  10. Neuronal trafficking of voltage-gated potassium channels

    DEFF Research Database (Denmark)

    Jensen, Camilla S; Rasmussen, Hanne Borger; Misonou, Hiroaki

    2011-01-01

    The computational ability of CNS neurons depends critically on the specific localization of ion channels in the somatodendritic and axonal membranes. Neuronal dendrites receive synaptic inputs at numerous spines and integrate them in time and space. The integration of synaptic potentials is regul......The computational ability of CNS neurons depends critically on the specific localization of ion channels in the somatodendritic and axonal membranes. Neuronal dendrites receive synaptic inputs at numerous spines and integrate them in time and space. The integration of synaptic potentials...

  11. Minimally invasive spine surgery: Hurdles to be crossed

    Directory of Open Access Journals (Sweden)

    Mahesh Bijjawara

    2014-01-01

    Full Text Available MISS as a concept is noble and all surgeons need to address and minimize the surgical morbidity for better results. However, we need to be cautions and not fall prey into accepting that minimally invasive spine surgery can be done only when certain metal access systems are used. Minimally invasive spine surgery (MISS has come a long way since the description of endoscopic discectomy in 1997 and minimally invasive TLIF (mTLIF in 2003. Today there is credible evidence (though not level-I that MISS has comparable results to open spine surgery with the advantage of early postoperative recovery and decreased blood loss and infection rates. However, apart from decreasing the muscle trauma and decreasing the muscle dissection during multilevel open spinal instrumentation, there has been little contribution to address the other morbidity parameters like operative time , blood loss , access to decompression and atraumatic neural tissue handling with the existing MISS technologies. Since all these parameters contribute to a greater degree than posterior muscle trauma for the overall surgical morbidity, we as surgeons need to introspect before we accept the concept of minimally invasive spine surgery being reduced to surgeries performed with a few tubular retractors. A spine surgeon needs to constantly improve his skills and techniques so that he can minimize blood loss, minimize traumatic neural tissue handling and minimizing operative time without compromising on the surgical goals. These measures actually contribute far more, to decrease the morbidity than approach related muscle damage alone. Minimally invasine spine surgery , though has come a long way, needs to provide technical solutions to minimize all the morbidity parameters involved in spine surgery, before it can replace most of the open spine surgeries, as in the case of laparoscopic surgery or arthroscopic surgery.

  12. A Comparative study for striatal-direct and -indirect pathway neurons to DA depletion-induced lesion in a PD rat model.

    Science.gov (United States)

    Zheng, Xuefeng; Wu, Jiajia; Zhu, Yaofeng; Chen, Si; Chen, Zhi; Chen, Tao; Huang, Ziyun; Wei, Jiayou; Li, Yanmei; Lei, Wanlong

    2018-04-16

    Striatal-direct and -indirect Pathway Neurons showed different vulnerability in basal ganglia disorders. Therefore, present study aimed to examine and compare characteristic changes of densities, protein and mRNA levels of soma, dendrites, and spines between striatal-direct and -indirect pathway neurons after DA depletion by using immunohistochemistry, Western blotting, real-time PCR and immunoelectron microscopy techniques. Experimental results showed that: 1) 6OHDA-induced DA depletion decreased the soma density of striatal-direct pathway neurons (SP+), but no significant changes for striatal-indirect pathway neurons (ENK+). 2) DA depletion resulted in a decline of dendrite density for both striatal-direct (D1+) and -indirect (D2+) pathway neurons, and D2+ dendritic density declined more obviously. At the ultrastructure level, the densities of D1+ and D2+ dendritic spines reduced in the 6OHDA groups compared with their control groups, but the density of D2+ dendritic spines reduced more significant than that of D1. 3) Striatal DA depletion down-regulated protein and mRNA expression levels of SP and D1, on the contrary, ENK and D2 protein and mRNA levels of indirect pathway neurons were up-regulated significantly. Present results suggested that indirect pathway neurons be more sensitive to 6OHDA-induced DA depletion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Cytoarchitectonic and quantitative Golgi study of the hedgehog supraoptic nucleus.

    Science.gov (United States)

    Caminero, A A; Machín, C; Sanchez-Toscano, F

    1992-02-01

    A cytoarchitectural study was made of the supraoptic nucleus (SON) of the hedgehog with special attention to the quantitative comparison of its main neuronal types. The main purposes were (1) to relate the characteristics of this nucleus in the hedgehog (a primitive mammalian insectivorous brain) with those in the SONs of more evolutionarily advanced species; (2) to identify quantitatively the dendritic fields of the main neuronal types in the hedgehog SON and to study their synaptic connectivity. From a descriptive standpoint, 3 neuronal types were found with respect to the number of dendritic stems arising from the neuronal soma: bipolar neurons (48%), multipolar neurons (45.5%) and monopolar neurons (6.5%). Within the multipolar type 2 subtypes could be distinguished, taking into account the number of dendritic spines: (a) with few spines (93%) and (b) very spiny (7%). These results indicate that the hedgehog SON is similar to that in other species except for the very spiny neurons, the significance of which is discussed. In order to characterise the main types more satisfactorily (bipolar and multipolars with few spines) we undertook a quantitative Golgi study of their dendritic fields. Although the patterns of the dendritic field are similar in both neuronal types, the differences in the location of their connectivity can reflect functional changes and alterations in relation to the synaptic afferences.

  14. Evaluation and management of 2 ferocactus spines in the orbit.

    Science.gov (United States)

    Russell, David J; Kim, Tim I; Kubis, Kenneth

    2013-01-01

    A 49-year-old woman, who had fallen face first in a cactus 1 week earlier, presented with a small, mobile, noninflamed subcutaneous nodule at the rim of her right lateral orbit with no other functional deficits. A CT scan was obtained, which revealed a 4-cm intraorbital tubular-shaped foreign body resembling a large cactus spine. A second preoperative CT scan, obtained for an intraoperative guidance system, demonstrated a second cactus spine, which was initially not seen on the first CT scan. Both spines were removed surgically without complication. The authors discuss factors that can cause diagnosis delay, review the radiographic features of cactus spines, and discuss the often times benign clinical course of retained cactus spine foreign bodies. To the authors' knowledge, this is the first case report of cactus spines in the orbit. Health-care professionals should have a low threshold for imaging in cases of traumatic injuries involving cactus spines.

  15. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    Science.gov (United States)

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and

  16. Morphological Characterization of the Action Potential Initiation Segment in GnRH Neuron Dendrites and Axons of Male Mice.

    Science.gov (United States)

    Herde, Michel K; Herbison, Allan E

    2015-11-01

    GnRH neurons are the final output neurons of the hypothalamic network controlling fertility in mammals. In the present study, we used ankyrin G immunohistochemistry and neurobiotin filling of live GnRH neurons in brain slices from GnRH-green fluorescent protein transgenic male mice to examine in detail the location of action potential initiation in GnRH neurons with somata residing at different locations in the basal forebrain. We found that the vast majority of GnRH neurons are bipolar in morphology, elaborating a thick (primary) and thinner (secondary) dendrite from opposite poles of the soma. In addition, an axon-like process arising predominantly from a proximal dendrite was observed in a subpopulation of GnRH neurons. Ankyrin G immunohistochemistry revealed the presence of a single action potential initiation zone ∼27 μm in length primarily in the secondary dendrite of GnRH neurons and located 30 to 140 μm distant from the cell soma, depending on the type of process and location of the cell body. In addition to dendrites, the GnRH neurons with cell bodies located close to hypothalamic circumventricular organs often elaborated ankyrin G-positive axon-like structures. Almost all GnRH neurons (>90%) had their action potential initiation site in a process that initially, or ultimately after a hairpin loop, was coursing in the direction of the median eminence. These studies indicate that action potentials are initiated in different dendritic and axonal compartments of the GnRH neuron in a manner that is dependent partly on the neuroanatomical location of the cell body.

  17. Xenopus laevis Retinal Ganglion Cell Dendritic Arbors Develop Independently of Visual Stimulation

    Directory of Open Access Journals (Sweden)

    Barbara Lom

    2004-01-01

    Full Text Available Newly formed neurons must locate their appropriate target cells and then form synaptic connections with these targets in order to establish a functional nervous system. In the vertebrate retina, retinal ganglion cell (RGC dendrites extend from the cell body and form synapses with nearby amacrine and bipolar cells. RGC axons, however, exit the retina and synapse with the dendrites of midbrain neurons in the optic tectum. We examined how visual stimulation influenced Xenopus RGC dendritic arborization. Neuronal activity is known to be an important factor in shaping dendritic and axonal arborization. Thus, we reared tadpoles in dark and light environments then used rhodamine dextran retrograde labeling to identify RGCs in the retina. When we compared RGC dendritic arbors from tadpoles reared in dark and light environments, we found no morphological differences, suggesting that physiological visual activity did not contribute to the morphological development of Xenopus RGC dendritic arbors.

  18. Setting the equation: establishing value in spine care.

    Science.gov (United States)

    Resnick, Daniel K; Tosteson, Anna N A; Groman, Rachel F; Ghogawala, Zoher

    2014-10-15

    Topic review. Describe value measurement in spine care and discuss the motivation for, methods for, and limitations of such measurement. Spinal disorders are common and are an important cause of pain and disability. Numerous complementary and competing treatment strategies are used to treat spinal disorders, and the costs of these treatments is substantial and continue to rise despite clear evidence of improved health status as a result of these expenditures. The authors present the economic and legislative imperatives forcing the assessment of value in spine care. The definition of value in health care and methods to measure value specifically in spine care are presented. Limitations to the utility of value judgments and caveats to their use are presented. Examples of value calculations in spine care are presented and critiqued. Methods to improve and broaden the measurement of value across spine care are suggested, and the role of prospective registries in measuring value is discussed. Value can be measured in spine care through the use of appropriate economic measures and patient-reported outcomes measures. Value must be interpreted in light of the perspective of the assessor, the duration of the assessment period, the degree of appropriate risk stratification, and the relative value of treatment alternatives.

  19. Selectable six-element multicoil array for entire spine imaging

    International Nuclear Information System (INIS)

    Byrne, J.W.; Bluma-Walter, J.; Prorok, R.J.

    1990-01-01

    This article introduces a new multicoil array that can provide entire spine imaging in two acquisitions with no need to manually reposition either the coil or the patient. A selectable contoured multicoil array with six elements was used to obtain coverage of the entire spine. The first four elements were used for imaging the upper spine region (cervical/thoracic) during the first acquisition, and the last four elements were used for imaging the lower spine region (thoracic/lumbar) during the second acquisition. The overall coil length was approximately 75 cm

  20. Loss of mTOR-Dependent Macroautophagy Causes Autistic-like Synaptic Pruning Deficits

    OpenAIRE

    Tang, Guomei; Gudsnuk, Kathryn; Kuo, Sheng-Han; Cotrina, Marisa L.; Rosoklija, Gorazd; Sosunov, Alexander; Sonders, Mark S.; Kanter, Ellen; Castagna, Candace; Yamamoto, Ai; Yue, Zhenyu; Arancio, Ottavio; Peterson, Bradley S.; Champagne, Frances; Dwork, Andrew J.

    2014-01-01

    Developmental alterations of excitatory synapses are implicated in autism spectrum disorders (ASDs). Here, we report increased dendritic spine density with reduced developmental spine pruning in layer V pyramidal neurons in postmortem ASD temporal lobe. These spine deficits correlate with hyperactivated mTOR and impaired autophagy. In Tsc2+/- ASD mice where mTOR is constitutively overactive, we observed postnatal spine pruning defects, blockade of autophagy, and ASD-like social...

  1. Degenerative disorders of the spine

    International Nuclear Information System (INIS)

    Gallucci, Massimo; Puglielli, Edoardo; Splendiani, Alessandra; Pistoia, Francesca; Spacca, Giorgio

    2005-01-01

    Patients with back pain and degenerative disorders of the spine have a significant impact on health care costs. Some authors estimate that up to 80% of all adults experience back pain at some point in their lives. Disk herniation represents one of the most frequent causes. Nevertheless, other degenerative diseases have to be considered. In this paper, pathology and imaging of degenerative spine diseases will be discussed, starting from pathophysiology of normal age-related changes of the intervertebral disk and vertebral body. (orig.)

  2. Degenerative disorders of the spine

    Energy Technology Data Exchange (ETDEWEB)

    Gallucci, Massimo; Puglielli, Edoardo; Splendiani, Alessandra [University of L' Aquila, Department of Radiology, L' Aquila (Italy); Pistoia, Francesca; Spacca, Giorgio [S. Salvatore Hospital, Department of Neuroscience, L' Aquila (Italy)

    2005-03-01

    Patients with back pain and degenerative disorders of the spine have a significant impact on health care costs. Some authors estimate that up to 80% of all adults experience back pain at some point in their lives. Disk herniation represents one of the most frequent causes. Nevertheless, other degenerative diseases have to be considered. In this paper, pathology and imaging of degenerative spine diseases will be discussed, starting from pathophysiology of normal age-related changes of the intervertebral disk and vertebral body. (orig.)

  3. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.

    Science.gov (United States)

    Hausselt, Susanne E; Euler, Thomas; Detwiler, Peter B; Denk, Winfried

    2007-07-01

    Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs) playing a major role. SACs generate larger dendritic Ca(2+) signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS) in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+)] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+) channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.

  4. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.

    Directory of Open Access Journals (Sweden)

    Susanne E Hausselt

    2007-07-01

    Full Text Available Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs playing a major role. SACs generate larger dendritic Ca(2+ signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+ channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.

  5. Towards deep learning with segregated dendrites.

    Science.gov (United States)

    Guerguiev, Jordan; Lillicrap, Timothy P; Richards, Blake A

    2017-12-05

    Deep learning has led to significant advances in artificial intelligence, in part, by adopting strategies motivated by neurophysiology. However, it is unclear whether deep learning could occur in the real brain. Here, we show that a deep learning algorithm that utilizes multi-compartment neurons might help us to understand how the neocortex optimizes cost functions. Like neocortical pyramidal neurons, neurons in our model receive sensory information and higher-order feedback in electrotonically segregated compartments. Thanks to this segregation, neurons in different layers of the network can coordinate synaptic weight updates. As a result, the network learns to categorize images better than a single layer network. Furthermore, we show that our algorithm takes advantage of multilayer architectures to identify useful higher-order representations-the hallmark of deep learning. This work demonstrates that deep learning can be achieved using segregated dendritic compartments, which may help to explain the morphology of neocortical pyramidal neurons.

  6. GSK3α and GSK3β Phosphorylate Arc and Regulate its Degradation

    Directory of Open Access Journals (Sweden)

    Agata Gozdz

    2017-06-01

    Full Text Available The selective and neuronal activity-dependent degradation of synaptic proteins appears to be crucial for long-term synaptic plasticity. One such protein is activity-regulated cytoskeleton-associated protein (Arc, which regulates the synaptic content of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR, excitatory synapse strength and dendritic spine morphology. The levels of Arc protein are tightly regulated, and its removal occurs via proteasome-mediated degradation that requires prior ubiquitination. Glycogen synthase kinases α and β (GSK3α, GSKβ; collectively named GSK3α/β are serine-threonine kinases with abundant expression in the central nervous system. Both GSK3 isozymes are tonically active under basal conditions, but their activity is regulated by intra- and extracellular factors, intimately involved in neuronal activity. Similar to Arc, GSK3α and GSK3β contribute to synaptic plasticity and the structural plasticity of dendritic spines. The present study identified Arc as a GSK3α/β substrate and showed that GSKβ promotes Arc degradation under conditions that induce de novo Arc synthesis. We also found that GSK3α/β inhibition potentiated spine head thinning that was caused by the prolonged stimulation of N-methyl-D-aspartate receptors (NMDAR. Furthermore, overexpression of Arc mutants that were resistant to GSK3β-mediated phosphorylation or ubiquitination resulted in a stronger reduction of dendritic spine width than wildtype Arc overexpression. Thus, GSK3β terminates Arc expression and limits its effect on dendritic spine morphology. Taken together, the results identify GSK3α/β-catalyzed Arc phosphorylation and degradation as a novel mechanism for controlling the duration of Arc expression and function.

  7. Human intestinal dendritic cells as controllers of mucosal immunity

    Directory of Open Access Journals (Sweden)

    David Bernardo

    2013-06-01

    Full Text Available Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  8. Improvement in Scoliosis Top View: Evaluation of Vertebrae Localization in Scoliotic Spine-Spine Axial Presentation

    Directory of Open Access Journals (Sweden)

    Paweł Główka

    2016-11-01

    Full Text Available Morphological analysis of the scoliotic spine is based on two-dimensional X-rays: coronal and sagittal. The three-dimensional character of scoliosis has raised the necessity for analyzing scoliosis in three planes. We proposed a new user-friendly method of graphical presentation of the spine in the third plane–the Spine Axial Presentation (SAP. Eighty-five vertebrae of patients with scoliosis were analyzed. Due to different positions during X-rays (standing and computer tomography (CT (supine, the corresponding measurements cannot be directly compared. As a solution, a software creating Digital Reconstructed Radiographs (DRRs from CT scans was developed to replace regular X-rays with DRRs. Based on the measurements performed on DRRs, the coordinates of vertebral bodies central points were defined. Next, the geometrical centers of vertebral bodies were determined on CT scans. The reproducibility of measurements was tested with Intraclass Correlation Coefficient (ICC, using p = 0.05. The intra-observer reproducibility and inter-observer reliability for vertebral body central point’s coordinates (x, y, z were high for results obtained based on DRRs and CT scans, as well as for comparison results obtained based on DRR and CT scans. Based on two standard radiographs, it is possible to localize vertebral bodies in 3D space. The position of vertebral bodies can be present in the Spine Axial Presentation.

  9. Bilateral locked facets in the thoracic spine

    NARCIS (Netherlands)

    M.H.A. Willems; Braakman, R. (Reinder); B. van Linge (Bert)

    1984-01-01

    textabstractTwo cases of traumatic bilateral locked facets in the thoracic spine are reported. Both patients had only minor neurological signs. They both made a full neurological recovery after surgical reduction of the locked facets. Bilateral locked facets are very uncommon in the thoracic spine.

  10. Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2009-03-01

    Large-conductance calcium-dependent potassium channels (BK channels) are homogeneously distributed along the somatodendritic axis of layer 5 pyramidal neurons of the rat somatosensory cortex. The relevance of this conductance for dendritic calcium electrogenesis was studied in acute brain slices using somatodendritic patch clamp recordings and calcium imaging. BK channel activation reduces the occurrence of dendritic calcium spikes. This is reflected in an increased critical frequency of somatic spikes necessary to activate the distal initiation zone. Whilst BK channels repolarise the somatic spike, they dampen it only in the distal dendrite. Their activation reduces dendritic calcium influx via glutamate receptors. Furthermore, they prevent dendritic calcium electrogenesis and subsequent somatic burst discharges. However, the time window for coincident somatic action potential and dendritic input to elicit dendritic calcium events is not influenced by BK channels. Thus, BK channel activation in layer 5 pyramidal neurons affects cellular excitability primarily by establishing a high threshold at the distal action potential initiation zone.

  11. Electroless Growth of Aluminum Dendrites in NaCl-AlCl3 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, H.A.; Berg, Rolf W.

    1989-01-01

    The spontaneous growth of aluminum dendrites after deposition was observed and examined in sodium chloride-aluminumchloride melts. The concentration gradient of AlCl3 in the vicinity of the cathode surface resulting from electrolysisconstitutes a type of concentration cell with aluminum dendrites...... as electrodes. The short-circuit discharge of thecell is found to be the driving force for the growth of aluminum dendrites. Such a concentration gradient is proposed to beone of the causes for dendrite formation in the case of metal deposition....

  12. The top 100 classic papers in lumbar spine surgery.

    Science.gov (United States)

    Steinberger, Jeremy; Skovrlj, Branko; Caridi, John M; Cho, Samuel K

    2015-05-15

    Bibliometric review of the literature. To analyze and quantify the most frequently cited papers in lumbar spine surgery and to measure their impact on the entire lumbar spine literature. Lumbar spine surgery is a dynamic and complex field. Basic science and clinical research remain paramount in understanding and advancing the field. While new literature is published at increasing rates, few studies make long-lasting impacts. The Thomson Reuters Web of Knowledge was searched for citations of all papers relevant to lumbar spine surgery. The number of citations, authorship, year of publication, journal of publication, country of publication, and institution were recorded for each paper. The most cited paper was found to be the classic paper from 1990 by Boden et al that described magnetic resonance imaging findings in individuals without back pain, sciatica, and neurogenic claudication showing that spinal stenosis and herniated discs can be incidentally found when scanning patients. The second most cited study similarly showed that asymptomatic patients who underwent lumbar spine magnetic resonance imaging frequently had lumbar pathology. The third most cited paper was the 2000 publication of Fairbank and Pynsent reviewing the Oswestry Disability Index, the outcome-measure questionnaire most commonly used to evaluate low back pain. The majority of the papers originate in the United States (n=58), and most were published in Spine (n=63). Most papers were published in the 1990s (n=49), and the 3 most common topics were low back pain, biomechanics, and disc degeneration. This report identifies the top 100 papers in lumbar spine surgery and acknowledges those individuals who have contributed the most to the advancement of the study of the lumbar spine and the body of knowledge used to guide evidence-based clinical decision making in lumbar spine surgery today. 3.

  13. Short-term combined effects of thoracic spine thrust manipulation and cervical spine nonthrust manipulation in individuals with mechanical neck pain: a randomized clinical trial.

    Science.gov (United States)

    Masaracchio, Michael; Cleland, Joshua A; Hellman, Madeleine; Hagins, Marshall

    2013-03-01

    Randomized clinical trial. To investigate the short-term effects of thoracic spine thrust manipulation combined with cervical spine nonthrust manipulation (experimental group) versus cervical spine nonthrust manipulation alone (comparison group) in individuals with mechanical neck pain. Research has demonstrated improved outcomes with both nonthrust manipulation directed at the cervical spine and thrust manipulation directed at the thoracic spine in patients with neck pain. Previous studies have not determined if thoracic spine thrust manipulation may increase benefits beyond those provided by cervical nonthrust manipulation alone. Sixty-four participants with mechanical neck pain were randomized into 1 of 2 groups, an experimental or comparison group. Both groups received 2 treatment sessions of cervical spine nonthrust manipulation and a home exercise program consisting of active range-of-motion exercises, and the experimental group received additional thoracic spine thrust manipulations. Outcome measures were collected at baseline and at a 1-week follow-up, and included the numeric pain rating scale, the Neck Disability Index, and the global rating of change. Participants in the experimental group demonstrated significantly greater improvements (Ppain rating scale and Neck Disability Index at the 1-week follow-up compared to those in the comparison group. In addition, 31 of 33 (94%) participants in the experimental group, compared to 11 of 31 participants (35%) in the comparison group, indicated a global rating of change score of +4 or higher at the 1-week follow-up, with an associated number needed to treat of 2. Individuals with neck pain who received a combination of thoracic spine thrust manipulation and cervical spine nonthrust manipulation plus exercise demonstrated better overall short-term outcomes on the numeric pain rating scale, the Neck Disability Index, and the global rating of change.

  14. Grain growth competition during thin-sample directional solidification of dendritic microstructures: A phase-field study

    International Nuclear Information System (INIS)

    Tourret, D.; Song, Y.; Clarke, A.J.; Karma, A.

    2017-01-01

    We present the results of a comprehensive phase-field study of columnar grain growth competition in bi-crystalline samples in two dimensions (2D) and in three dimensions (3D) for small sample thicknesses allowing a single row of dendrites to form. We focus on the selection of grain boundary (GB) orientation during directional solidification in the steady-state dendritic regime, and study its dependence upon the orientation of two competing grains. In 2D, we map the entire orientation range for both grains, performing several simulations for each configuration to account for the stochasticity of GB orientation selection and to assess the average GB behavior. We find that GB orientation selection depends strongly on whether the primary dendrite growth directions have lateral components (i.e. components perpendicular to the axis of the temperature gradient) that point in the same or opposite directions in the two grains. We identify a range of grain orientations in which grain selection follows the classical description of Walton and Chalmers. We also identify conditions that favor unusual overgrowth of favorably-oriented dendrites at a converging GB. We propose a simple analytical description that reproduces the average GB orientation selection from 2D simulations within statistical fluctuations of a few degrees. In 3D, we find a similar GB orientation selection as in 2D when secondary branches grow in planes parallel and perpendicular to the sample walls. Remarkably, quasi-2D behavior is also observed even when those perpendicular sidebranching planes are rotated by a finite azimuthal angle about the primary dendrite growth axis as long as the absolute values of those azimuthal angles are equal in both grains. In contrast, when the absolute values of those azimuthal angles differ markedly, we find that unusual overgrowth events at a converging GB are promoted by a high azimuthal angle in the least-favorably-oriented grain. We also find that diverging GBs can be

  15. File list: Unc.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...203,SRX818202,SRX818182,SRX818195,SRX818196,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Dendritic_Cells.bed ...

  16. File list: Unc.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...189,SRX818202,SRX818182,SRX818195,SRX818196,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.Dendritic_Cells.bed ...

  17. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Lumbar Spine KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Lumbar Spine What's in this article? ...

  18. Brachial Plexopathy After Cervical Spine Surgery.

    Science.gov (United States)

    Than, Khoi D; Mummaneni, Praveen V; Smith, Zachary A; Hsu, Wellington K; Arnold, Paul M; Fehlings, Michael G; Mroz, Thomas E; Riew, K Daniel

    2017-04-01

    Retrospective, multicenter case-series study and literature review. To determine the prevalence of brachial plexopathy after cervical spine surgery and to review the literature to better understand the etiology and risk factors of brachial plexopathy after cervical spine surgery. A retrospective case-series study of 12 903 patients at 21 different sites was performed to analyze the prevalence of several different complications, including brachial plexopathy. A literature review of the US National Library of Medicine and the National Institutes of Health (PubMed) database was conducted to identify articles pertaining to brachial plexopathy following cervical spine surgery. In our total population of 12 903 patients, only 1 suffered from postoperative brachial plexopathy. The overall prevalence rate was thus 0.01%, but the prevalence rate at the site where this complication occurred was 0.07%. Previously reported risk factors for postoperative brachial plexopathy include age, anterior surgical procedures, and a diagnosis of ossification of the posterior longitudinal ligament. The condition can also be due to patient positioning during surgery, which can generally be detected via the use of intraoperative neuromonitoring. Brachial plexopathy following cervical spine surgery is rare and merits further study.

  19. Fifty top-cited spine articles from mainland China: A citation analysis.

    Science.gov (United States)

    Wu, Yaohong; Zhao, Yachao; Lin, Linghan; Lu, Zhijun; Guo, Zhaoyang; Li, Xiaoming; Chen, Rongchun; Ma, Huasong

    2018-02-01

    Objective To identify the 50 top-cited spine articles from mainland China and to analyze their main characteristics. Methods Web of Science was used to identify the 50 top-cited spine articles from mainland China in 27 spine-related journals. The title, year of publication, number of citations, journal, anatomic focus, subspecialty, evidence level, city, institution and author were recorded. Results The top 50 articles had 29-122 citations and were published in 11 English-language journals; most (32) were published in the 2000s. The journal Spine had the largest number of articles and The Lancet had the highest impact factor. The lumber spine was the most discussed anatomic area (18). Degenerative spine disease was the most common subspecialty topic (22). Most articles were clinical studies (29); the others were basic research (21). Level IV was the most common evidence level (17). Conclusions This list indicates the most influential articles from mainland China in the global spine research community. Identification of these articles provides insights into the trends in spine care in mainland China and the historical contributions of researchers from mainland China to the international spine research field.

  20. Differential distribution of voltage-gated ion channels in cortical neurons: implications for epilepsy.

    Science.gov (United States)

    Child, Nicholas D; Benarroch, Eduardo E

    2014-03-18

    Neurons contain different functional somatodendritic and axonal domains, each with a characteristic distribution of voltage-gated ion channels, synaptic inputs, and function. The dendritic tree of a cortical pyramidal neuron has 2 distinct domains, the basal and the apical dendrites, both containing dendritic spines; the different domains of the axon are the axonal initial segment (AIS), axon proper (which in myelinated axons includes the node of Ranvier, paranodes, juxtaparanodes, and internodes), and the axon terminals. In the cerebral cortex, the dendritic spines of the pyramidal neurons receive most of the excitatory synapses; distinct populations of γ-aminobutyric acid (GABA)ergic interneurons target specific cellular domains and thus exert different influences on pyramidal neurons. The multiple synaptic inputs reaching the somatodendritic region and generating excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) sum and elicit changes in membrane potential at the AIS, the site of initiation of the action potential.

  1. Denervation-induced homeostatic dendritic plasticity in morphological granule cell models

    Directory of Open Access Journals (Sweden)

    Hermann Cuntz

    2014-03-01

    Full Text Available Neuronal death and subsequent denervation of target areas are major consequences of several neurological conditions such asischemia or neurodegeneration (Alzheimer's disease. The denervation-induced axonal loss results in reorganization of the dendritic tree of denervated neurons. The dendritic reorganization has been previously studied using entorhinal cortex lesion (ECL. ECL leads to shortening and loss of dendritic segments in the denervated outer molecular layer of the dentate gyrus. However, the functional importance of these long-term dendritic alterations is not yet understood and their impact on neuronal electrical properties remains unclear. Here we analyzed what happens to the electrotonic structure and excitability of dentate granule cells after lesion-induced alterations of their dendritic morphology, assuming all other parameters remain equal. We performed comparative electrotonic analysis in anatomically and biophysically realistic compartmental models of 3D-reconstructed healthy and denervated granule cells. Using the method of morphological modeling based on optimization principles minimizing the amount of wiring and maximizing synaptic democracy, we built artificial granule cells which replicate morphological features of their real counterparts. Our results show that somatofugal and somatopetal voltage attenuation in the passive cable model are strongly reduced in denervated granule cells. In line with these predictions, the attenuation both of simulated backpropagating action potentials and forward propagating EPSPs was significantly reduced in dendrites of denervated neurons. Intriguingly, the enhancement of action potential backpropagation occurred specifically in the denervated dendritic layers. Furthermore, simulations of synaptic f-I curves revealed a homeostatic increase of excitability in denervated granule cells. In summary, our morphological and compartmental modeling indicates that unless modified by changes of

  2. Cervical spine injury in child abuse: report of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Rooks, V.J.; Sisler, C.; Burton, B. [Tripler Army Medical Center, Honolulu, HI (United States). Dept. of Radiology

    1998-03-01

    Pediatric cervical spine injuries have rarely been reported in the setting of child abuse. We report two cases of unsuspected lower cervical spine fracture-dislocation in twin infant girls who had no physical examination findings to suggest cervical spine injury. Classic radio-graphic findings of child abuse were noted at multiple other sites in the axial and appendicular skeleton. Magnetic resonance (MR) imaging proved to be valuable in both the initial evaluation of the extent of cervical spine injury and in following postoperative changes. The unexpected yet devastating findings in these two cases further substantiate the importance of routine evaluation of the cervical spine in cases of suspected child abuse. (orig.)

  3. Cervical spine injury in child abuse: report of two cases

    International Nuclear Information System (INIS)

    Rooks, V.J.; Sisler, C.; Burton, B.

    1998-01-01

    Pediatric cervical spine injuries have rarely been reported in the setting of child abuse. We report two cases of unsuspected lower cervical spine fracture-dislocation in twin infant girls who had no physical examination findings to suggest cervical spine injury. Classic radio-graphic findings of child abuse were noted at multiple other sites in the axial and appendicular skeleton. Magnetic resonance (MR) imaging proved to be valuable in both the initial evaluation of the extent of cervical spine injury and in following postoperative changes. The unexpected yet devastating findings in these two cases further substantiate the importance of routine evaluation of the cervical spine in cases of suspected child abuse. (orig.)

  4. Development of rat telencephalic neurons after prenatal x-irradiation

    International Nuclear Information System (INIS)

    Norton, S.

    1979-01-01

    Telencephalic neurons of rats, irradiated at day 15 of gestation with 125 R, develop synaptic connections on dendrites during maturation which appear to be normal spines in Golgi-stained light microscope preparations. At six weeks of postnatal age both control and irradiated rats have spiny dendritic processes on cortical pyramidal cells and caudate Golgi type II neurons. However, when the rats are 6 months old the irradiated rats have more neurons with beaded dendritic processes that lack spines or neurons and are likely to be degenerating neurons. The apparently normal development of the neurons followed by degeneration in the irradiated rat has a parallel in previous reports of the delayed hyperactivity which develops in rats irradiated on the fifteenth gestational day

  5. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite

    DEFF Research Database (Denmark)

    Chen, Wei R; Shen, Gongyu Y; Shepherd, Gordon M

    2002-01-01

    recordings with computational modeling to analyze action-potential initiation and propagation in the primary dendrite. In response to depolarizing current injection or distal olfactory nerve input, fast Na(+) action potentials were recorded along the entire length of the primary dendritic trunk. With weak......-to-moderate olfactory nerve input, an action potential was initiated near the soma and then back-propagated into the primary dendrite. As olfactory nerve input increased, the initiation site suddenly shifted to the distal primary dendrite. Multi-compartmental modeling indicated that this abrupt shift of the spike......-initiation site reflected an independent thresholding mechanism in the distal dendrite. When strong olfactory nerve excitation was paired with strong inhibition to the mitral cell basal secondary dendrites, a small fast prepotential was recorded at the soma, which indicated that an action potential was initiated...

  6. Defensive Medicine in U.S. Spine Neurosurgery.

    Science.gov (United States)

    Din, Ryan S; Yan, Sandra C; Cote, David J; Acosta, Michael A; Smith, Timothy R

    2017-02-01

    Observational cross-sectional survey. To compare defensive practices of U.S. spine and nonspine neurosurgeons in the context of state medical liability risk. Defensive medicine is a commonly reported and costly phenomenon in neurosurgery. Although state liability risk is thought to contribute greatly to defensive practice, variation within neurosurgical specialties has not been well explored. A validated, online survey was sent via email to 3344 members of the American Board of Neurological Surgeons. The instrument contained eight question domains: surgeon characteristics, patient characteristics, practice type, insurance type, surgeon liability profile, basic surgeon reimbursement, surgeon perceptions of medical legal environment, and the practice of defensive medicine. The overall response rate was 30.6% (n = 1026), including 499 neurosurgeons performing mainly spine procedures (48.6%). Spine neurosurgeons had a similar average practice duration as nonspine neurosurgeons (16.6 vs 16.9 years, P = 0.64) and comparable lifetime case volume (4767 vs 4,703, P = 0.71). The average annual malpractice premium for spine neurosurgeons was similar to nonspine neurosurgeons ($104,480.52 vs $101,721.76, P = 0.60). On average, spine neurosurgeons had a significantly higher rate of ordering labs, medications, referrals, procedures, and imaging solely for liability concerns compared with nonspine neurosurgeons (89.2% vs 84.6%, P = 0.031). Multivariate analysis revealed that spine neurosurgeons were roughly 3 times more likely to practice defensively compared with nonspine neurosurgeons (odds ratio, OR = 2.9, P = 0.001) when controlling for high-risk procedures (OR = 7.8, P < 0.001), annual malpractice premium (OR = 3.3, P = 0.01), percentage of patients publicly insured (OR = 1.1, P = 0.80), malpractice claims in the last 3 years (OR = 1.13, P = 0.71), and state medical-legal environment (OR = 1.3, P = 0

  7. Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits

    Directory of Open Access Journals (Sweden)

    David LaBerge

    2017-06-01

    Full Text Available Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz. Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local “clock,” which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system’s timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity.

  8. Biomechanics of coupled motion in the cervical spine during simulated whiplash in patients with pre-existing cervical or lumbar spinal fusion

    Science.gov (United States)

    Huang, H.; Nightingale, R. W.

    2018-01-01

    Objectives Loss of motion following spine segment fusion results in increased strain in the adjacent motion segments. However, to date, studies on the biomechanics of the cervical spine have not assessed the role of coupled motions in the lumbar spine. Accordingly, we investigated the biomechanics of the cervical spine following cervical fusion and lumbar fusion during simulated whiplash using a whole-human finite element (FE) model to simulate coupled motions of the spine. Methods A previously validated FE model of the human body in the driver-occupant position was used to investigate cervical hyperextension injury. The cervical spine was subjected to simulated whiplash exposure in accordance with Euro NCAP (the European New Car Assessment Programme) testing using the whole human FE model. The coupled motions between the cervical spine and lumbar spine were assessed by evaluating the biomechanical effects of simulated cervical fusion and lumbar fusion. Results Peak anterior longitudinal ligament (ALL) strain ranged from 0.106 to 0.382 in a normal spine, and from 0.116 to 0.399 in a fused cervical spine. Strain increased from cranial to caudal levels. The mean strain increase in the motion segment immediately adjacent to the site of fusion from C2-C3 through C5-C6 was 26.1% and 50.8% following single- and two-level cervical fusion, respectively (p = 0.03, unpaired two-way t-test). Peak cervical strains following various lumbar-fusion procedures were 1.0% less than those seen in a healthy spine (p = 0.61, two-way ANOVA). Conclusion Cervical arthrodesis increases peak ALL strain in the adjacent motion segments. C3-4 experiences greater changes in strain than C6-7. Lumbar fusion did not have a significant effect on cervical spine strain. Cite this article: H. Huang, R. W. Nightingale, A. B. C. Dang. Biomechanics of coupled motion in the cervical spine during simulated whiplash in patients with pre-existing cervical or lumbar spinal fusion: A Finite Element Study. Bone

  9. 49 CFR 572.85 - Lumbar spine flexure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Lumbar spine flexure. 572.85 Section 572.85... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES 9-Month Old Child § 572.85 Lumbar spine flexure. (a) When subjected to continuously applied force in accordance with paragraph (b...

  10. Degenerative Changes in the Spine: Is This Arthritis?

    Science.gov (United States)

    ... in my spine. Does this mean I have arthritis? Answers from April Chang-Miller, M.D. Yes. ... spine. Osteoarthritis is the most common form of arthritis. Doctors may also refer to it as degenerative ...

  11. Functional Identification of Dendritic Cells in the Teleost Model, Rainbow Trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Bassity, Elizabeth; Clark, Theodore G.

    2012-01-01

    Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro. PMID:22427987

  12. Brachial Plexopathy After Cervical Spine Surgery

    OpenAIRE

    Than, Khoi D.; Mummaneni, Praveen V.; Smith, Zachary A.; Hsu, Wellington K.; Arnold, Paul M.; Fehlings, Michael G.; Mroz, Thomas E.; Riew, K. Daniel

    2017-01-01

    Study Design: Retrospective, multicenter case-series study and literature review. Objectives: To determine the prevalence of brachial plexopathy after cervical spine surgery and to review the literature to better understand the etiology and risk factors of brachial plexopathy after cervical spine surgery. Methods: A retrospective case-series study of 12?903 patients at 21 different sites was performed to analyze the prevalence of several different complications, including brachial plexopathy....

  13. Tophaceous gout in the cervical spine

    Energy Technology Data Exchange (ETDEWEB)

    Cabot, Jonathan [Royal Adelaide Hospital, Department of Orthopaedic Surgery, Adelaide, South Australia (Australia); Mosel, Leigh; Kong, Andrew; Hayward, Mike [Flinders Medical Centre, Department of Medical Imaging, Bedford Park, South Australia (Australia)

    2005-12-01

    Gout is a common metabolic disorder typically affecting the distal joints of the appendicular skeleton. Involvement of the axial skeleton, particularly the facet joints and posterior column of the cervical spine, is rare. This case report highlights such a presentation in a 76-year old female who presented with cervical spine pain following a fall. Her radiological findings were suggestive of a destructive metastatic process. Histological diagnosis confirmed tophaceous gout. (orig.)

  14. Tophaceous gout in the cervical spine

    International Nuclear Information System (INIS)

    Cabot, Jonathan; Mosel, Leigh; Kong, Andrew; Hayward, Mike

    2005-01-01

    Gout is a common metabolic disorder typically affecting the distal joints of the appendicular skeleton. Involvement of the axial skeleton, particularly the facet joints and posterior column of the cervical spine, is rare. This case report highlights such a presentation in a 76-year old female who presented with cervical spine pain following a fall. Her radiological findings were suggestive of a destructive metastatic process. Histological diagnosis confirmed tophaceous gout. (orig.)

  15. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.

    Directory of Open Access Journals (Sweden)

    Bardia F Behabadi

    Full Text Available Neocortical pyramidal neurons (PNs receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

  16. Automated curved planar reformation of 3D spine images

    International Nuclear Information System (INIS)

    Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    Traditional techniques for visualizing anatomical structures are based on planar cross-sections from volume images, such as images obtained by computed tomography (CT) or magnetic resonance imaging (MRI). However, planar cross-sections taken in the coordinate system of the 3D image often do not provide sufficient or qualitative enough diagnostic information, because planar cross-sections cannot follow curved anatomical structures (e.g. arteries, colon, spine, etc). Therefore, not all of the important details can be shown simultaneously in any planar cross-section. To overcome this problem, reformatted images in the coordinate system of the inspected structure must be created. This operation is usually referred to as curved planar reformation (CPR). In this paper we propose an automated method for CPR of 3D spine images, which is based on the image transformation from the standard image-based to a novel spine-based coordinate system. The axes of the proposed spine-based coordinate system are determined on the curve that represents the vertebral column, and the rotation of the vertebrae around the spine curve, both of which are described by polynomial models. The optimal polynomial parameters are obtained in an image analysis based optimization framework. The proposed method was qualitatively and quantitatively evaluated on five CT spine images. The method performed well on both normal and pathological cases and was consistent with manually obtained ground truth data. The proposed spine-based CPR benefits from reduced structural complexity in favour of improved feature perception of the spine. The reformatted images are diagnostically valuable and enable easier navigation, manipulation and orientation in 3D space. Moreover, reformatted images may prove useful for segmentation and other image analysis tasks

  17. Equine dendritic cells generated with horse serum have enhanced functionality in comparison to dendritic cells generated with fetal bovine serum

    OpenAIRE

    Ziegler, Anja; Everett, Helen; Hamza, Eman; Garbani, Mattia; Gerber, Vinzenz; Marti, Eliane; Steinbach, Falko

    2016-01-01

    BACKGROUND: Dendritic cells are professional antigen-presenting cells that play an essential role in the initiation and modulation of T cell responses. They have been studied widely for their potential clinical applications, but for clinical use to be successful, alternatives to xenogeneic substances like fetal bovine serum (FBS) in cell culture need to be found. Protocols for the generation of dendritic cells ex vivo from monocytes are well established for several species, including hor...

  18. Development of non-dendritic microstructures in AA6061 cast billets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.-D.; Chadwick, T.A.; Bryant, J.D. [Reynolds Metals Co., Chester, VA (United States)

    2000-07-01

    Non-dendritic structures have been shown to have many advantages over conventional, dendritic structures in castable aluminum alloys. Examples include high structural integrity, reduced porosity, excellent formability and enhanced near net-shape forming capability. Non-dendritic materials are characterized by an equiaxed, globularized grain structure. Previous work has focused on the application of these structures in traditional casting alloys such as A356 and A357, and on the processing of these alloys during semi-solid forming and squeeze casting. There is considerably less information on the impact of non-dendritic microstructures upon solid state deformation, and the use of such microstructures in the processing of traditional wrought aluminum alloys. In this paper, we will present our recent work in casting non-dendritic AA6061 alloy using different techniques, and discuss the effects of cast structure on deformation behavior during solid state processing at elevated temperatures. Cast microstructures were modified during direct chill casting using three different methods: magneto-hydrodynamic (MHD) agitation, mechanical stirring, and high loadings of grain refiner. A detailed microstructure characterization will be presented and discussed in terms of structural integrity, grain morphology, and their effects on deformation in the solid state. (orig.)

  19. Nanofibrous nonwovens based on dendritic-linear-dendritic poly(ethylene glycol) hybrids

    DEFF Research Database (Denmark)

    Kikionis, Stefanos; Ioannou, Efstathia; Andren, Oliver C.J.

    2017-01-01

    unsuccessful. Nevertheless, when these DLD hybrids were blended with an array of different biodegradable polymers as entanglement enhancers, nanofibrous nonwovens were successfully prepared by electrospinning. The pseudogeneration degree of the DLDs, the nature of the co-electrospun polymer and the solvent...... nanofibers. Such dendritic nanofibrous scaffolds can be promising materials for biomedical applications due to their biocompatibility, biodegradability, multifunctionality, and advanced structural architecture....

  20. D1 receptors regulate dendritic morphology in normal and stressed prelimbic cortex.

    Science.gov (United States)

    Lin, Grant L; Borders, Candace B; Lundewall, Leslie J; Wellman, Cara L

    2015-01-01

    Both stress and dysfunction of prefrontal cortex are linked to psychological disorders, and structure and function of medial prefrontal cortex (mPFC) are altered by stress. Chronic restraint stress causes dendritic retraction in the prelimbic region (PL) of mPFC in rats. Dopamine release in mPFC increases during stress, and chronic administration of dopaminergic agonists results in dendritic remodeling. Thus, stress-induced alterations in dopaminergic transmission in PL may contribute to dendritic remodeling. We examined the effects of dopamine D1 receptor (D1R) blockade in PL during daily restraint stress on dendritic morphology in PL. Rats either underwent daily restraint stress (3h/day, 10 days) or remained unstressed. In each group, rats received daily infusions of either the D1R antagonist SCH23390 or vehicle into PL prior to restraint; unstressed and stressed rats that had not undergone surgery were also examined. On the final day of restraint, rats were euthanized and brains were processed for Golgi histology. Pyramidal neurons in PL were reconstructed and dendritic morphology was quantified. Vehicle-infused stressed rats demonstrated dendritic retraction compared to unstressed rats, and D1R blockade in PL prevented this effect. Moreover, in unstressed rats, D1R blockade produced dendritic retraction. These effects were not due to attenuation of the HPA axis response to acute stress: plasma corticosterone levels in a separate group of rats that underwent acute restraint stress with or without D1R blockade were not significantly different. These findings indicate that dopaminergic transmission in mPFC during stress contributes directly to the stress-induced retraction of apical dendrites, while dopamine transmission in the absence of stress is important in maintaining normal dendritic morphology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. File list: InP.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Dendritic_Cells hg19 Input control Blood Dendritic Cells SRX627429...,SRX627427 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.Dendritic_Cells.bed ...

  2. Progress on the development of human in vitro dendritic cell based assays for assessment of the sensitizing potential of a compound

    International Nuclear Information System (INIS)

    Galvao dos Santos, G.; Reinders, J.; Ouwehand, K.; Rustemeyer, T.; Scheper, R.J.; Gibbs, S.

    2009-01-01

    Allergic contact dermatitis is the result of an adaptive immune response of the skin to direct exposure to an allergen. Since many chemicals are also allergens, European regulations require strict screening of all ingredients in consumer products. Until recently, identifying a potential allergen has completely relied on animal testing (e.g.: Local Lymph Node Assay). In addition to the ethical problems, both the 7th Amendment to the Cosmetics Directive and REACH have stimulated the development of alternative tests for the assessment of potential sensitizers. This review is aimed at summarising the progress on cell based assays, in particular dendritic cell based assays, being developed as animal alternatives. Primary cells (CD34 + derived dendritic cells, monocyte derived dendritic cells) as well as dendritic cell-like cell lines (THP-1, U-937, MUTZ-3, KG-1, HL-60, and K562) are extensively described along with biomarkers such as cell surface markers, cytokines, chemokines and kinases. From this review, it can be concluded that no single cell based assay nor single marker is yet able to distinguish all sensitizers from non-sensitizers in a test panel of chemicals, nor is it possible to rank the sensitizing potential of the test chemicals. This suggests that sensitivity and specificity may be increased by a tiered assay approach. Only a limited number of genomic and proteomic studies have been completed until now. Such studies have the potential to identify novel biomarkers for inclusion in future assay development. Although progress is promising, this review suggests that it may be difficult to meet the up and coming European regulatory deadlines.

  3. Geranylgeranyltransferase I is essential for dendritic development of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Wu Kong-Yan

    2010-06-01

    Full Text Available Abstract Background During cerebellar development, Purkinje cells (PCs form the most elaborate dendritic trees among neurons in the brain, but the mechanism regulating PC arborization remains largely unknown. Geranylgeranyltransferase I (GGT is a prenyltransferase that is responsible for lipid modification of several signaling proteins, such as Rho family small GTPase Rac1, which has been shown to be involved in neuronal morphogenesis. Here we show that GGT plays an important role in dendritic development of PCs. Results We found that GGT was abundantly expressed in the developing rat cerebellum, in particular molecular layer (ML, the region enriched with PC dendrites. Inhibition or down-regulation of GGT using small interference RNA (siRNA inhibited dendritic development of PCs. In contrast, up-regulation of GGT promoted dendritic arborization of PCs. Furthermore, neuronal depolarization induced by high K+ or treatment with brain-derived neurotrophic factor (BDNF promoted membrane association of Rac1 and dendritic development of PCs in cultured cerebellar slices. The effect of BDNF or high K+ was inhibited by inhibition or down-regulation of GGT. Conclusion Our results indicate that GGT plays an important role in Purkinje cell development, and suggest a novel role of GGT in neuronal morphogenesis in vivo.

  4. Apparatus for growing a dendritic web

    International Nuclear Information System (INIS)

    Duncan, C.S.; Mchugh, J.P.; Piotrowski, P.A.; Skutch, M.E.

    1983-01-01

    A melt system including a susceptor-crucible assembly having improved gradient control when melt replenishment is used during dendritic web growth. The improvement lies in the formation of a thermal barrier in the base of the receptor which is in the form of a vertical slot in the region of the susceptor underlying the crucible at the location of a compartmental separator dividing the crucible into a growth compartment and a melt replenishment compartment. The result achieved is a step change in temperature gradient in the melt thereby providing a more uniform temperature in the growth compartment from which the dendritic web is drawn

  5. Epidural Hematoma Following Cervical Spine Surgery.

    Science.gov (United States)

    Schroeder, Gregory D; Hilibrand, Alan S; Arnold, Paul M; Fish, David E; Wang, Jeffrey C; Gum, Jeffrey L; Smith, Zachary A; Hsu, Wellington K; Gokaslan, Ziya L; Isaacs, Robert E; Kanter, Adam S; Mroz, Thomas E; Nassr, Ahmad; Sasso, Rick C; Fehlings, Michael G; Buser, Zorica; Bydon, Mohamad; Cha, Peter I; Chatterjee, Dhananjay; Gee, Erica L; Lord, Elizabeth L; Mayer, Erik N; McBride, Owen J; Nguyen, Emily C; Roe, Allison K; Tortolani, P Justin; Stroh, D Alex; Yanez, Marisa Y; Riew, K Daniel

    2017-04-01

    A multicentered retrospective case series. To determine the incidence and circumstances surrounding the development of a symptomatic postoperative epidural hematoma in the cervical spine. Patients who underwent cervical spine surgery between January 1, 2005, and December 31, 2011, at 23 institutions were reviewed, and all patients who developed an epidural hematoma were identified. A total of 16 582 cervical spine surgeries were identified, and 15 patients developed a postoperative epidural hematoma, for a total incidence of 0.090%. Substantial variation between institutions was noted, with 11 sites reporting no epidural hematomas, and 1 site reporting an incidence of 0.76%. All patients initially presented with a neurologic deficit. Nine patients had complete resolution of the neurologic deficit after hematoma evacuation; however 2 of the 3 patients (66%) who had a delay in the diagnosis of the epidural hematoma had residual neurologic deficits compared to only 4 of the 12 patients (33%) who had no delay in the diagnosis or treatment ( P = .53). Additionally, the patients who experienced a postoperative epidural hematoma did not experience any significant improvement in health-related quality-of-life metrics as a result of the index procedure at final follow-up evaluation. This is the largest series to date to analyze the incidence of an epidural hematoma following cervical spine surgery, and this study suggest that an epidural hematoma occurs in approximately 1 out of 1000 cervical spine surgeries. Prompt diagnosis and treatment may improve the chance of making a complete neurologic recovery, but patients who develop this complication do not show improvements in the health-related quality-of-life measurements.

  6. Chemoresistance of human monocyte-derived dendritic cells is regulated by IL-17A.

    Directory of Open Access Journals (Sweden)

    Selma Olsson Åkefeldt

    Full Text Available Dendritic cells initiate adaptive immune responses, leading either to control cancer by effector T cells or to exacerbate cancer by regulatory T cells that inhibit IFN-γ-mediated Th1-type response. Dendritic cells can also induce Th17-type immunity, mediated by IL-17A. However, the controversial role of this cytokine in cancer requires further investigations. We generated dendritic cells from peripheral blood monocytes to investigate lifespan, phenotype and chemoresistance of dendritic cells, treated with IL-17A with or without IFN-γ. Studying the expression of Bcl-2 family members, we demonstrated that dendritic cells constitutively express one pro-survival Bcl-2 member: MCL1. Immature dendritic cells were CD40(lowHLADR(low CD1a(+ MCL1(+, did not express CD14, CD68 or BCL2A1, and displayed a short 2-day lifespan. IL-17A-treated DC exhibited a semi-mature (CD40(high HLADR(low pre-M2 (CCL22(+ CD206(+ CD163(+ IL1RN(+ IL-10(- CXCL10(- IL-12(- mixed (CD1a(+ CD14+ CD68(+ macrophage-dendritic cell phenotype. They efficiently exerted mannose receptor-mediated endocytosis and did not produce superoxide anions, in the absence of TLR engagement. Interestingly, IL-17A promoted a long-term survival of dendritic cells, beyond 12 days, that correlated to BCL2A1 induction, a pro-survival Bcl-2 family member. BCL2A1 transcription was activated by NF-κB, downstream of IL-17A transduction. Thus, immature dendritic cells only express MCL1, whereas IL-17A-treated dendritic cells concomitantly expressed two pro-survival Bcl-2 family members: MCL1 and BCL2A1. These latter developed chemoresistance to 11 of the 17 chemotherapy agents tested. However, high doses of either vinblastine or cytarabine decreased MCL1 expression and induced dendritic cell death. When IL-17A is produced in vivo, administration of anti-IL-17A biotherapy may impair dendritic cell survival by targeting BCL2A1 expression. Consequently, depending on the effector or regulatory role of dendritic

  7. Cervical bracing practices after degenerative cervical surgery: a survey of cervical spine research society members.

    Science.gov (United States)

    Lunardini, David J; Krag, Martin H; Mauser, Nathan S; Lee, Joon Y; Donaldson, William H; Kang, James D

    2018-05-21

    Context: Prior studies have shown common use of post-operative bracing, despite advances in modern day instrumentation rigidity and little evidence of brace effectiveness. To document current practice patterns of brace use after degenerative cervical spine surgeries among members of the Cervical Spine Research Society (CSRS), to evaluate trends, and to identify areas of further study. A questionnaire survey METHODS: A 10 question survey was sent to members of the Cervical Spine Research Society to document current routine bracing practices after various common degenerative cervical spine surgical scenarios, including fusion and non-fusion procedures. The overall bracing rate was 67%. This included 8.4% who used a hard collar in each scenario. Twenty-two percent of surgeons never used a hard collar, while 34% never used a soft collar, and 3.6% (3 respondents) did not use a brace in any surgical scenario. Bracing frequency for specific surgical scenarios varied from 39% after foraminotomy to 88% after multi-level corpectomy with anterior & posterior fixation. After one, two and three level anterior cervical discectomy & fusion (ACDF), bracing rates were 58%, 65% and 76% for an average of 3.3, 4.3 and 5.3 weeks, respectively. After single level corpectomy, 77% braced for an average of 6.2 weeks. After laminectomy and fusion, 72% braced for an average of 5.4 weeks. Significant variation persists among surgeons on the type and length of post-operative brace usage after cervical spine surgeries. Overall rates of bracing have not changed significantly with time. Given the lack evidence in the literature to support bracing, reconsidering use of a brace after certain surgeries may be warranted. Copyright © 2018. Published by Elsevier Inc.

  8. RSA in Spine: A Review.

    Science.gov (United States)

    Humadi, Ali; Dawood, Sulaf; Halldin, Klas; Freeman, Brian

    2017-12-01

    Systematic review of literature. This systematic review was conducted to investigate the accuracy of radiostereometric analysis (RSA), its assessment of spinal motion and disorders, and to investigate the limitations of this technique in spine assessment. Systematic review in all current literature to invesigate the role of RSA in spine. The results of this review concluded that RSA is a very powerful tool to detect small changes between 2 rigid bodies such as a vertebral segment. The technique is described for animal and human studies for cervical and lumbar spine and can be used to analyze range of motion, inducible displacement, and fusion of segments. However, there are a few disadvantages with the technique; RSA percutaneous procedure needs to be performed to implant the markers (and cannot be used preoperatively), one needs a specific knowledge to handle data and interpret the results, and is relatively time consuming and expensive. RSA should be looked at as a very powerful research instrument and there are many questions suitable for RSA studies.

  9. Lumbar Spine Surgery in Patients with Parkinson Disease.

    Science.gov (United States)

    Schroeder, Joshua E; Hughes, Alexander; Sama, Andrew; Weinstein, Joseph; Kaplan, Leon; Cammisa, Frank P; Girardi, Federico P

    2015-10-21

    Parkinson disease is the second most common neurodegenerative condition. The literature on patients with Parkinson disease and spine surgery is limited, but increased complications have been reported. All patients with Parkinson disease undergoing lumbar spine surgery between 2002 and 2012 were identified. Patients' charts, radiographs, and outcome questionnaires were reviewed. Parkinson disease severity was assessed with use of the modified Hoehn and Yahr staging scale. Complications and subsequent surgeries were analyzed. Risk for reoperation was assessed. Ninety-six patients underwent lumbar spine surgery. The mean patient age was 63.0 years. The mean follow-up duration was 30.1 months. The Parkinson disease severity stage was Parkinson disease severity stage of ≥3 (p Parkinson disease is good, with improvement of spine-related pain. A larger prospective study is warranted. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  10. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA.

    Science.gov (United States)

    Das Banerjee, Tania; Dagda, Raul Y; Dagda, Marisela; Chu, Charleen T; Rice, Monica; Vazquez-Mayorga, Emmanuel; Dagda, Ruben K

    2017-08-01

    Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit β of PKA (PKA/RIIβ) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIβ and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity. © 2017 International Society for Neurochemistry.

  11. Cytoarchitectonic and quantitative Golgi study of the hedgehog supraoptic nucleus.

    Science.gov (United States)

    Caminero, A A; Machín, C; Sanchez-Toscano, F

    1992-01-01

    A cytoarchitectural study was made of the supraoptic nucleus (SON) of the hedgehog with special attention to the quantitative comparison of its main neuronal types. The main purposes were (1) to relate the characteristics of this nucleus in the hedgehog (a primitive mammalian insectivorous brain) with those in the SONs of more evolutionarily advanced species; (2) to identify quantitatively the dendritic fields of the main neuronal types in the hedgehog SON and to study their synaptic connectivity. From a descriptive standpoint, 3 neuronal types were found with respect to the number of dendritic stems arising from the neuronal soma: bipolar neurons (48%), multipolar neurons (45.5%) and monopolar neurons (6.5%). Within the multipolar type 2 subtypes could be distinguished, taking into account the number of dendritic spines: (a) with few spines (93%) and (b) very spiny (7%). These results indicate that the hedgehog SON is similar to that in other species except for the very spiny neurons, the significance of which is discussed. In order to characterise the main types more satisfactorily (bipolar and multipolars with few spines) we undertook a quantitative Golgi study of their dendritic fields. Although the patterns of the dendritic field are similar in both neuronal types, the differences in the location of their connectivity can reflect functional changes and alterations in relation to the synaptic afferences. Images Fig. 2 Fig. 3 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:1452481

  12. Morphological analysis of activity-reduced adult-born neurons in the mouse olfactory bulb

    Directory of Open Access Journals (Sweden)

    Jeffrey E Dahlen

    2011-05-01

    Full Text Available Adult born neurons are added to the olfactory bulb (OB throughout life in rodents. While many factors have been identified as regulating the survival and integration of adult-born neurons (ABNs into existing circuitry, the understanding of how these factors affect ABN morphology and connectivity is limited. Here we compare how cell intrinsic (siRNA knock down of voltage gated sodium channels NaV1.1-1.3 and circuit level (naris occlusion reductions in activity affect ABN morphology during integration into the OB. We found that both manipulations reduce the number of dendritic spines (and thus likely the number of reciprocal synaptic connections formed with the surrounding circuitry and inhibited dendritic ramification of ABNs. Further, we identified regions of ABN apical dendrites where the largest and most significant decreases occur following siRNA knock down or naris occlusion. In siRNA knock down cells, reduction of spines is observed in proximal regions of the apical dendrite. This suggests that distal regions of the dendrite may remain active independent of NaV1.1-1.3 channel expression, perhaps facilitated by activation of T-type calcium channels and NMDA receptors. By contrast, circuit level reduction of activity by naris occlusion resulted in a global depression of spine number. Together, these results indicate that ABNs retain the ability to develop their typical overall morphological features regardless of experienced activity, and activity modulates the number and location of formed connections.

  13. Immunological Characterization of Whole Tumour Lysate-Loaded Dendritic Cells for Cancer Immunotherapy

    Science.gov (United States)

    Ottobrini, Luisa; Biasin, Mara; Borelli, Manuela; Lucignani, Giovanni; Trabattoni, Daria; Clerici, Mario

    2016-01-01

    Introduction Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies. Matherials & Methods We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC), as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras). Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation. Results Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines. Conclusion Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer. PMID:26795765

  14. Historical contributions from the Harvard system to adult spine surgery.

    Science.gov (United States)

    Schoenfeld, Andrew J

    2011-10-15

    Literature review. To document the historical contributions from the Harvard Medical School system to the field of adult spine surgery. Despite the fact that significant contributions to the discipline of spinal surgery have derived from the Harvard system, no prior study documents the history of the Harvard spine services in a cohesive narrative. This historical perspective reviews the history of adult spine surgery within the Harvard system and outlines the significant contributions made by orthopedic and neurosurgical practitioners to the field. Literature reviews were performed from historical works, as well as scientific publications to fashion a cohesive review covering the history of spine surgery at Harvard from the early 19th century to the present. The development of the spine surgical services at the three main Harvard hospitals, and significant spine surgical personalities within the system, are discussed, including W. Jason Mixter, MD, Joseph S. Barr Sr., MD, and Marius N. Smith-Petersen, MD. Substantial developments that have arisen from the Harvard teaching hospitals include the recognition of disc herniation as the cause of radicular symptoms in the lower extremities, the description of lumbar discectomy as a surgical treatment for radicular pain, osteotomy for the correction of spinal deformity, and the first attempt to create a systematic algorithm capable of informing treatment for cervical spine trauma. Despite humble beginnings, the surgeons and scientists at Harvard have influenced nearly every facet of spine surgery over the course of the last two centuries.

  15. The shaping of two distinct dendritic spikes by A-type voltage-gated K+ channels

    Directory of Open Access Journals (Sweden)

    Sungchil eYang

    2015-12-01

    Full Text Available Dendritic ion channels have been a subject of intense research in neuroscience because active ion channels in dendrites shape input signals. Ca2+-permeable channels including NMDA receptors (NMDARs have been implicated in supralinear dendritic integration, and the IA conductance in sublinear integration. Despite their essential roles in dendritic integration, it has remained uncertain whether these conductances coordinate with, or counteract, each other in the process of dendritic integration. To address this question, experiments were designed in hippocampal CA1 neurons with a recent 3D digital holography system that has shown excellent performance for spatial photoactivation. The results demonstrated a role of IA as a key contributor to two distinct dendritic spikes, low- and high-threshold Ca2+ spikes, through a preferential action of IA on Ca2+-permeable channel-mediated currents, over fast AMPAR-mediated currents. It is likely that the rapid kinetics of IA provides feed-forward inhibition to counteract the delayed Ca2+ channel-mediated dendritic excitability. This research reveals one dynamic ionic mechanism of dendritic integration, and may contribute to a new understanding of neuronal hyperexcitability embedded in several neural diseases such as epilepsy, fragile X syndrome and Alzheimer's disease.

  16. File list: InP.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Dendritic_Cells mm9 Input control Blood Dendritic Cells SRX885956,...76,SRX122481,SRX667880,SRX667874,SRX667878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.05.AllAg.Dendritic_Cells.bed ...

  17. Retardation of fetal dendritic development induced by gestational hyperglycemia is associated with brain insulin/IGF-I signals.

    Science.gov (United States)

    Jing, Yu-Hong; Song, Yan-Feng; Yao, Ya-Ming; Yin, Jie; Wang, De-Gui; Gao, Li-Ping

    2014-10-01

    Hyperglycemia is an essential risk factor for mothers and fetuses in gestational diabetes. Clinical observation has indicated that the offspring of mothers with diabetes shows impaired somatosensory function and IQ. However, only a few studies have explored the effects of hyperglycemia on fetal brain development. Neurodevelopment is susceptible to environmental conditions. Thus, this study aims to investigate the effects of maternal hyperglycemia on fetal brain development and to evaluate insulin and insulin-like growth factor-I (IGF-I) signals in fetal brain under hyperglycemia or controlled hyperglycemia. At day 1 of pregnancy, gestational rats were intraperitoneally injected with streptozocin (60 mg/kg). Some of the hyperglycemic gestational rats were injected with insulin (20 IU, two times a day) to control hyperglycemia; the others were injected with saline of equal volume. The gestational rats were sacrificed at days 14, 16, and 18 of embryo development. The dendritic spines of subplate cortex neurons in the fetal brain were detected by Golgi-Cox staining. The mRNA levels of insulin receptors (IRs) and IGF-IR in the fetal brain were measured using qRT-PCR. The protein levels of synaptophysin, IR, and IGF-IR in the fetal brain were detected by western blot. No significant difference in fetal brain formation was observed between the maternal hyperglycemic group and insulin-treated group. By contrast, obvious retardation of dendritic development in the fetus was observed in the maternal hyperglycemic group. Similarly, synaptophysin expression was lower in the fetus of the maternal hyperglycemic group than in that of the insulin-treated group. The mRNA and protein expression levels of IRs in the fetal brain were higher in the hyperglycemic group than in the insulin-treated group. By contrast, the levels of IGF-IR in the brain were lower in the fetus of the maternal hyperglycemic group than in that of the insulin-treated group. These results suggested that

  18. Occurrences of dendritic gold at the McLaughlin Mine hot-spring gold deposit

    Science.gov (United States)

    Sherlock, R. L.; Lehrman, N. J.

    1995-06-01

    Two styles of gold dendrites are variably developed at the McLaughlin Mine. The most abundant occurrence is hosted by amber-coloured hydrocarbon-rich opal. Silica likely precipitated from a boiling hydrothermal fluid and complexed with immiscible hydrocarbons forming an amorphous hydrocarbon-silica phase. This phase likely scavenged particulate gold by electrostatic attraction to the hydrocarbon-silica phase. The dendritic nature of the gold is secondary and is the result of dewatering of the amorphous hydrocarbon-silica phase and crystallization of gold into syneresis fractures. The second style of dendritic gold is hosted within vein swarms that focused large volumes of fluid flow. The dendrites occur along with hydrocarbon-rich silica at the upper contact of the vein margins which isolated the dendrites allowing sufficient time for them to grow. In a manner similar to the amber-coloured opal, the dendrites may have formed by scavenging particulate gold by electrostatic attraction to the hydrocarbon-silica phase.

  19. Sarcomeres pattern proprioceptive sensory dendritic endings through Perlecan/UNC-52 in C. elegans

    Science.gov (United States)

    Liang, Xing; Dong, Xintong; Moerman, Donald G.; Shen, Kang; Wang, Xiangming

    2015-01-01

    Sensory dendrites innervate peripheral tissues through cell-cell interactions that are poorly understood. The proprioceptive neuron PVD in C. elegans extends regular terminal dendritic branches between muscle and hypodermis. We found that the PVD branch pattern was instructed by adhesion molecule SAX-7/L1CAM, which formed regularly spaced stripes on the hypodermal cell. The regularity of the SAX-7 pattern originated from the repeated and regularly spaced dense body of the sarcomeres in the muscle. The extracellular proteoglycan, UNC-52/Perlecan, links the dense body to the hemidesmosome on the hypodermal cells, which in turn instructed the SAX-7 stripes and PVD dendrites. Both UNC-52 and hemidesmosome components exhibited highly regular stripes that interdigitated with the SAX-7 stripe and PVD dendrites, reflecting the striking precision of subcellular patterning between muscle, hypodermis and dendrites. Hence, the muscular contractile apparatus provides the instructive cues to pattern proprioceptive dendrites. PMID:25982673

  20. Three Cases of Spine Fractures after an Airplane Crash.

    Science.gov (United States)

    Lee, Han Joo; Moon, Bong Ju; Pennant, William A; Shin, Dong Ah; Kim, Keung Nyun; Yoon, Do Heum; Ha, Yoon

    2015-10-01

    While injuries to the spine after an airplane crash are not rare, most crashes result in fatal injuries. As such, few studies exist that reported on spine fractures sustained during airplane accidents. In this report, we demonstrate three cases of spine fractures due to crash landing of a commercial airplane. Three passengers perished from injuries after the crash landing, yet most of the passengers and crew on board survived, with injuries ranging from minor to severe. Through evaluating our three spine fracture patients, it was determined that compression fracture of the spine was the primary injury related to the airplane accident. The first patient was a 20-year-old female who sustained a T6-8 compression fracture without neurologic deterioration. The second patient was a 33-year-old female with an L2 compression fracture, and the last patient was a 49-year-old male patient with a T8 compression fracture. All three patients were managed conservatively and required spinal orthotics. During the crash, each of these patients were subjected to direct, downward high gravity z-axis (Gz) force, which gave rise to load on the spine vertically, thereby causing compression fracture. Therefore, new safety methods should be developed to prevent excessive Gz force during airplane crash landings.