WorldWideScience

Sample records for single crystal study

  1. single crystals

    Indian Academy of Sciences (India)

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  2. Crystal plasticity study of single crystal tungsten by indentation tests

    International Nuclear Information System (INIS)

    Yao, Weizhi

    2012-01-01

    Owing to its favorable material properties, tungsten (W) has been studied as a plasma-facing material in fusion reactors. Experiments on W heating in plasma sources and electron beam facilities have shown an intense micro-crack formation at the heated surface and sub-surface. The cracks go deep inside the irradiated sample, and often large distorted areas caused by local plastic deformation are present around the cracks. To interpret the crack-induced microscopic damage evolution process in W, one needs firstly to understand its plasticity on a single grain level, which is referred to as crystal plasticity. In this thesis, the crystal plasticity of single crystal tungsten (SCW) has been studied by spherical and Berkovich indentation tests and the finite element method with a crystal plasticity model. Appropriate values of the material parameters included in the crystal plasticity model are determined by fitting measured load-displacement curves and pile-up profiles with simulated counterparts for spherical indentation. The numerical simulations reveal excellent agreement with experiment. While the load-displacement curves and the deduced indentation hardness exhibit little sensitivity to the indented plane at small indentation depths, the orientation of slip directions within the crystals governs the development of deformation hillocks at the surface. It is found that several factors like friction, indentation depth, active slip systems, misoriented crystal orientation, misoriented sample surface and azimuthal orientation of the indenter can affect the indentation behavior of SCW. The Berkovich indentation test was also used to study the crystal plasticity of SCW after deuterium irradiation. The critical load (pop-in load) for triggering plastic deformation under the indenter is found to depend on the crystallographic orientation. The pop-in loads decrease dramatically after deuterium plasma irradiation for all three investigated crystallographic planes.

  3. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    Science.gov (United States)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  4. Synthesis and room temperature single crystal EPR studies of a ...

    Indian Academy of Sciences (India)

    Unknown

    Hamiltonian parameters calculated from single crystal rotations are: g ... studies on two nickel complexes with SalX ligands (X = NH, NCH3) have shown the ..... here the positive sign is required for a shell that is less than half-filled and the ...

  5. AFM studies on heavy ion irradiated YBCO single crystals

    International Nuclear Information System (INIS)

    Lakhani, Archana; Marhas, M.K.; Saravanan, P.; Ganesan, V.; Srinivasan, R.; Kanjilal, D.; Mehta, G.K.; Elizabeth, Suja; Bhat, H.L.

    2000-01-01

    Atomic Force Microscopy (AFM) is extensively used to characterise the surface morphology of high energy ion irradiated single crystals of high temperature superconductor - YBCO. Our earlier systematic studies on thin films of YBCO under high energy and heavy ion irradiation shows clear evidence of ion induced sputtering or erosion, even though the effect is more on the grain boundaries. These earlier results were supported by electrical resistance measurements. In order to understand more clearly, the nature of surface modification at these high energies, AFM studies were carried out on single crystals of YBCO. Single crystals were chosen in order to see the effect on crystallites alone without interference from grain boundaries. 200 MeV gold ions were used for investigation using the facilities available at Nuclear Science Centre, New Delhi. The type of ion and the range of energies were chosen to meet the threshold for electronically mediated defect production. The results are in conformity with our earlier studies and will be described in detail in the context of electronic energy loss mediated sputtering or erosion. (author)

  6. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  7. EPR studies of gamma-irradiated taurine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, A. E-mail: abulut@samsun.omu.edu.tr; Karabulut, B.; Tapramaz, R.; Koeksal, F

    2000-04-01

    An EPR study of gamma-irradiated taurine [C{sub 2}H{sub 7}NO{sub 3}S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of {sup 32}SO{sup -}{sub 2} and {sup 33}SO{sup -}{sub 2} radicals. The hyperfine values of {sup 33}SO{sup -}{sub 2} radical were used to obtain O-S-O bond angle for both sites.

  8. EPR studies of gamma-irradiated taurine single crystals

    International Nuclear Information System (INIS)

    Bulut, A.; Karabulut, B.; Tapramaz, R.; Koeksal, F.

    2000-01-01

    An EPR study of gamma-irradiated taurine [C 2 H 7 NO 3 S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of 32 SO - 2 and 33 SO - 2 radicals. The hyperfine values of 33 SO - 2 radical were used to obtain O-S-O bond angle for both sites

  9. Single crystal NMR studies of high temperature superconductors

    International Nuclear Information System (INIS)

    Pennington, C.H.; Durand, D.J.; Zax, D.B.; Slichter, C.P.; Rice, J.P.; Bukowski, E.D.; Ginsberg, D.M.

    1989-01-01

    The authors report Cu NMR studies in the normal state of a single crystal of the T/sub c/ = 90 K superconductor YBa 2 Cu 3 O/sub 7/minus/δ/. The authors have measured the magnetic shift tensor, the electric field gradient tensor, the nuclear spin-lattice relaxation rate tensor, and the time dependence and functional form of the transverse decay. From these data they obtain information about the charge state and magnetic state of the Cu atoms, and the existence and size of the electronic exchange coupling between spins of adjacent Cu atoms. 18 refs., 3 figs., 2 tabs

  10. Comprehensive studies on irradiated single-crystal diamond sensors

    Energy Technology Data Exchange (ETDEWEB)

    Stegler, Martin [DESY, Zeuthen (Germany)

    2015-07-01

    Single-crystal diamond sensors are used as part of the Beam and Radiation Instrumentation and Luminosity (BRIL) projects of the CMS experiment. Due to an upgrade of the Fast Beam Conditions Monitor (BCM1F) these diamond sensors are exchanged and the irradiated ones are now used for comprehensive studies. Current over voltage (IV), current over time (CT) and charge collection efficiency (CCE) measurements were performed for a better understanding of the radiation damage incurred during operation and to compensate in the future. The effect of illumination with various light sources on the charge collection efficiency was investigated and led to interesting results. Intensity and wavelength of the light were varied for deeper insight of polarization effects.

  11. Photoinduced surface voltage mapping study for large perovskite single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaojing; Liu, Yucheng; Gao, Fei; Yang, Zhou [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Liu, Shengzhong, E-mail: liusz@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Dalian Institute of Chemical Physics, iChEM, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2016-05-02

    Using a series of illumination sources, including white light (tungsten-halogen lamp), 445-nm, 532-nm, 635-nm, and 730-nm lasers, the surface photovoltage (SPV) images were mapped for centimeter-sized CH{sub 3}NH{sub 3}PbX{sub 3} (X = Cl, Br, I) perovskite single crystals using Kelvin probe force microscopy. The significant SPV signals were observed to be wavelength-dependent. We attribute the appreciable SPV to the built-in electric field in the space charge region. This study shines light into the understanding of photoinduced charge generation and separation processes at nanoscale to help advance the development of perovskite solar cells, optoelectronics, laser, photodetector, and light-emitting diode (LED).

  12. Bulk study of a DyNiAl single crystal

    Czech Academy of Sciences Publication Activity Database

    Prchal, J.; Andreev, Alexander V.; Javorský, P.; Honda, F.; Jurek, Karel

    272-276, - (2004), e419-e420 ISSN 0304-8853 R&D Projects: GA ČR GA106/02/0943 Keywords : rare-earth * DyNiAl * magnetic anisotropy * single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.031, year: 2004

  13. Growth and microtopographic study of CuInSe{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Sanjaysinh M.; Chaki, Sunil, E-mail: sunilchaki@yahoo.co.in; Deshpande, M. P. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat - 388120 (India); Tailor, J. P. [Applied Physics Department, S.V.N.I.T., Surat, Gujarat - 395007 (India)

    2016-05-23

    The CuInSe{sub 2} single crystals were grown by chemical vapour transport (CVT) technique using iodine as transporting agent. The elemental composition of the as-grown CuInSe{sub 2} single crystals was determined by energy dispersive analysis of X-ray (EDAX). The unit cell crystal structure and lattice parameters were determined by X-ray diffraction (XRD) technique. The surface microtopographic study of the as-grown CuInSe{sub 2} single crystals surfaces were done to study the defects, growth mechanism, etc. of the CVT grown crystals.

  14. Photoelectron diffraction studies of small adsorbates on single crystal surfaces

    International Nuclear Information System (INIS)

    Pascal, Mathieu

    2002-01-01

    The structural determination of small molecules adsorbed on single crystal surfaces has been investigated using scanned energy mode photoelectron diffraction (PhD). The experimental PhD data were compared to theoretical models using a simulation program based on multiple scattering calculations. Three adsorption systems have been examined on Ag(110), Cu(110) and Cu(111) crystals. The structure of the (2x1)-O adsorption phase on Ag(110) revealed that the O atoms occupied the long bridge site and are almost co-planar with the top layer of Ag atoms. The best agreement between multiple scattering theory and experiment has been obtained for a missing-row (or equivalently an 'added- row') reconstruction. Alternative buckled-row and unreconstructed surface models can be excluded. The adsorption of the benzoate species on Cu(110) has been found to occur via the carboxylate group. The molecules occupy short bridge sites with the O atoms being slightly displaced from atop sites and are aligned along the close-packed azimuth. The tilt of the molecule with respect to the surface and the degree to which the surface is relaxed have also been investigated. The adsorption of methyl on Cu(111) was studied using either azomethane or methyl iodide to prepare the surface layers. At saturation coverage the preferred adsorption site is the fcc threefold hollow site, whereas at half saturation coverage ∼ 30 % of the methyl species occupy the hop threefold hollow sites. Best agreement between theory and experiment corresponded to a methyl group adsorbed with C 3v symmetry. The height of the C above the surface in a pure methyl layer was 1.66 ± 0.02 A, but was reduced to 1.62 ± 0.02 A in the presence of co-adsorbed iodine, suggesting that iodine increases the strength of adsorption. Iodine was also found to occupy the fee threefold hollow sites with a Cu-l bondlength of 2.61 ± 0.02 A. (author)

  15. Study of the possibility of growing germanium single crystals under low temperature gradients

    Science.gov (United States)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.; Zhdankov, V. N.

    2014-03-01

    The possibility of growing germanium single crystals under low temperature gradients in order to produce a dislocation-free material has been studied. Germanium crystals with a dislocation density of about 100-200 cm-2 have been grown in a system with a weight control of crystal growth at maximum axial gradients of about 1.5 K/cm.

  16. Studies on various properties of pure and Li-doped Barium Hydrogen Phosphate (BHP) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nallamuthu, D. [Department of Physics, Aditanar College of Arts and Science, Tiruchendur 628216, Tamil Nadu (India); Selvarajan, P., E-mail: pselvarajanphy@yahoo.co.i [Department of Physics, Aditanar College of Arts and Science, Tiruchendur 628216, Tamil Nadu (India); Freeda, T.H. [Physics Research Centre, S.T. Hindu College, Nagercoil 629002 (India)

    2010-12-15

    Single crystals of pure and Li-doped barium hydrogen phosphate (BHP) were grown by solution method with gel technique. Various properties of the harvested crystals were studied by carrying out single crystal and powder XRD, FTIR, TG/DTA, microhardness and dielectric studies. Atomic absorption study was carried out for Li-doped BHP crystal to check the presence of Li dopants. Unit cell dimensions and diffracting planes of the grown crystals have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Density of the grown crystals was calculated using the XRD data. Thermal stability of the samples was checked by TG/DTA studies. Mechanical and dielectric characterizations of the harvested pure and Li-doped BHP crystals reveal the mechanical strength and ferroelectric transition. The observed results are reported and discussed.

  17. Study of dopamine reactivity on platinum single crystal electrode surfaces

    International Nuclear Information System (INIS)

    Chumillas, Sara; Figueiredo, Marta C.; Climent, Víctor; Feliu, Juan M.

    2013-01-01

    Dopamine is the biological molecule responsible, among other functions, of the heart beat and blood pressure regulation. Its loss, in the human body, can result in serious diseases such as Parkinson's, schizophrenia or depression. Structurally, this molecule belongs to the group of catecholamines, together with epinephrine (adrenaline) and norepinephrine (noradrenaline). The hydroquinone moiety of the molecule can be easily oxidized to quinone, rendering the electrochemical methods a convenient approach for the development of dopamine biosensors. The reactivity of similar aromatic molecules, such as catechol and hydroquinone, at well-ordered platinum surfaces, has recently been investigated in our group. In this paper, we extend these studies to the structurally related molecule dopamine. The study has been performed in neutral pH, since this is closer to the natural conditions for these molecules in biological media. Cyclic voltammetry and in situ infra-red spectroscopy have been combined to extract information about the behavior of this molecule on well-defined platinum surfaces. Dopamine appears to be electrochemically active and reveals interesting adsorption phenomena at low potentials (0.15–0.25 V vs RHE), sensitive to the single crystal orientation. The adsorption of dopamine on these surfaces is very strong, taking place at much lower potentials than the electron transfer from solution species. Specifically, the voltammetry of Pt(1 1 1) and Pt(1 0 0) in dopamine solutions shows an oxidation peak at potentials close to the onset of hydrogen evolution, which is related to the desorption of hydrogen and the adsorption of dopamine. On the other hand, adsorption on Pt(1 1 0) is irreversible and the surface appears totally blocked. Spectroscopic results indicate that dopamine is adsorbed flat on the surface. At potentials higher than 0.6 V vs RHE the three basal planes show a common redox process. The initial formation of the quinone moiety is followed by a

  18. Comparative Study of Phase Transformation in Single-Crystal Germanium during Single and Cyclic Nanoindentation

    Directory of Open Access Journals (Sweden)

    Koji Kosai

    2017-11-01

    Full Text Available Single-crystal germanium is a semiconductor material which shows complicated phase transformation under high pressure. In this study, new insight into the phase transformation of diamond-cubic germanium (dc-Ge was attempted by controlled cyclic nanoindentation combined with Raman spectroscopic analysis. Phase transformation from dc-Ge to rhombohedral phase (r8-Ge was experimentally confirmed for both single and cyclic nanoindentation under high loading/unloading rates. However, compared to single indentation, double cyclic indentation with a low holding load between the cycles caused more frequent phase transformation events. Double cyclic indentation caused more stress in Ge than single indentation and increased the possibility of phase transformation. With increase in the holding load, the number of phase transformation events decreased and finally became less than that under single indentation. This phenomenon was possibly caused by defect nucleation and shear accumulation during the holding process, which were promoted by a high holding load. The defect nucleation suppressed the phase transformation from dc-Ge to r8-Ge, and shear accumulation led to another phase transformation pathway, respectively. A high holding load promoted these two phenomena, and thus decreased the possibility of phase transformation from dc-Ge to r8-Ge.

  19. Effect of Chain Conformation on the Single-Molecule Melting Force in Polymer Single Crystals: Steered Molecular Dynamics Simulations Study.

    Science.gov (United States)

    Feng, Wei; Wang, Zhigang; Zhang, Wenke

    2017-02-28

    Understanding the relationship between polymer chain conformation as well as the chain composition within the single crystal and the mechanical properties of the corresponding single polymer chain will facilitate the rational design of high performance polymer materials. Here three model systems of polymer single crystals, namely poly(ethylene oxide) (PEO), polyethylene (PE), and nylon-66 (PA66) have been chosen to study the effects of chain conformation, helical (PEO) versus planar zigzag conformation (PE, PA66), and chain composition (PE versus PA66) on the mechanical properties of a single polymer chain. To do that, steered molecular dynamics simulations were performed on those polymer single crystals by pulling individual polymer chains out of the crystals. Our results show that the patterns of force-extension curve as well as the chain moving mode are closely related to the conformation of the polymer chain in the single crystal. In addition, hydrogen bonds can enhance greatly the force required to stretch the polymer chain out of the single crystal. The dynamic breaking and reformation of multivalent hydrogen bonds have been observed for the first time in PA66 at the single molecule level.

  20. Ellipsometric studies of ErMnO3 single crystals

    DEFF Research Database (Denmark)

    Babonas, G.-J.; Grivel, Jean-Claude; Reza, A.

    2007-01-01

    Ellipsometric studies of ErMnO3 single crystals have been carried out in the spectral range of 1-5 eV by means of photometric ellipsometers. Experimental ellipsometric data were analysed in the uniaxial crystal model. For the first time, the components of dielectric function of ErMnO3 were...

  1. Study of structural and optical properties of YAG and Nd:YAG single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kostić, S. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Lazarević, Z.Ž., E-mail: lzorica@yahoo.com [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Radojević, V. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia); Milutinović, A.; Romčević, M.; Romčević, N.Ž. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Valčić, A. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia)

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.

  2. Channeling effect studies in V3Si single crystals

    International Nuclear Information System (INIS)

    Meyer, O.

    1978-01-01

    Angular scans through the [100] and [110] channeling directions in V 3 Si have been performed using elastically scattered He ions for the V-rows and the 28 Si(d,p 8 ) 29 Si reaction for the Si-rows. The amplitude of thermal vibration perpendicular to the V-chains was found to be larger than that at 45 0 to them. The Si atoms however vibrate isotropically. The use of multi-row potentials instead of single-row potentials leads to better overall agreement between measured and calculated critical angles. (Auth.)

  3. A study of uranium adsorption to single-crystal tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Hastings, Aaron; Zhang, Jinsuo, E-mail: jzhang@osu.edu

    2015-12-15

    In this study we explore the adsorption of uranium to the (110) plane of tungsten. Potential functions were constructed to describe the interaction of adsorbed uranium atoms with the tungsten surface and the lateral interaction between adsorbed uranium atoms. Next, the behavior of the uranium adlayer under different conditions was studied through a Monte Carlo simulation of the grand canonical Hamiltonian in an off-lattice model. Our results are consistent with available studies in the literature. The simulation results indicate that the temperature and dipole–dipole interactions play an important role in governing the adsorption process.

  4. A study of uranium adsorption to single-crystal tungsten

    International Nuclear Information System (INIS)

    Samin, Adib; Hastings, Aaron; Zhang, Jinsuo

    2015-01-01

    In this study we explore the adsorption of uranium to the (110) plane of tungsten. Potential functions were constructed to describe the interaction of adsorbed uranium atoms with the tungsten surface and the lateral interaction between adsorbed uranium atoms. Next, the behavior of the uranium adlayer under different conditions was studied through a Monte Carlo simulation of the grand canonical Hamiltonian in an off-lattice model. Our results are consistent with available studies in the literature. The simulation results indicate that the temperature and dipole–dipole interactions play an important role in governing the adsorption process.

  5. Defect studies of ZnO single crystals electrochemically doped with hydrogen

    Science.gov (United States)

    Čížek, J.; Žaludová, N.; Vlach, M.; Daniš, S.; Kuriplach, J.; Procházka, I.; Brauer, G.; Anwand, W.; Grambole, D.; Skorupa, W.; Gemma, R.; Kirchheim, R.; Pundt, A.

    2008-03-01

    Various defect studies of hydrothermally grown (0001) oriented ZnO crystals electrochemically doped with hydrogen are presented. The hydrogen content in the crystals is determined by nuclear reaction analysis and it is found that already 0.3at.% H exists in chemically bound form in the virgin ZnO crystals. A single positron lifetime of 182ps is detected in the virgin crystals and attributed to saturated positron trapping at Zn vacancies surrounded by hydrogen atoms. It is demonstrated that a very high amount of hydrogen (up to ˜30at.%) can be introduced into the crystals by electrochemical doping. More than half of this amount is chemically bound, i.e., incorporated into the ZnO crystal lattice. This drastic increase of the hydrogen concentration is of marginal impact on the measured positron lifetime, whereas a contribution of positrons annihilated by electrons belonging to O-H bonds formed in the hydrogen doped crystal is found in coincidence Doppler broadening spectra. The formation of hexagonal shape pyramids on the surface of the hydrogen doped crystals by optical microscopy is observed and discussed.

  6. Reversible Single-Crystal-to-Single-Crystal Structural Transformation in a Mixed-Ligand 2D Layered Metal-Organic Framework: Structural Characterization and Sorption Study

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    2017-12-01

    Full Text Available A 3D supramolecular network, [Cd(bipy(C4O4(H2O2]·3H2O (1 (bipy = 4,4′-bipyridine and C4O42− = dianion of H2C4O4, constructed by mixed-ligand two-dimensional (2D metal-organic frameworks (MOFs has been reported and structurally determined by the single-crystal X-ray diffraction method and characterized by other physicochemical methods. In 1, the C4O42− and bipy both act as bridging ligands connecting the Cd(II ions to form a 2D layered MOF, which are then extended to a 3D supramolecular network via the mutually parallel and interpenetrating arrangements among the 2D-layered MOFs. Compound 1 shows a two-step dehydration process with weight losses of 11.0% and 7.3%, corresponding to the weight-loss of three guest and two coordinated water molecules, respectively, and exhibits an interesting reversible single-crystal-to-single-crystal (SCSC structural transformation upon de-hydration and re-hydration for guest water molecules. The SCSC structural transformation have been demonstrated and monitored by single-crystal and X-ray powder diffraction, and thermogravimetic analysis studies.

  7. Neutron-Phonon Interaction Studies in Copper, Zinc and Magnesium Single Crystals

    International Nuclear Information System (INIS)

    Maliszewski, E.; Sosnowski, J.; Blinowski, K.; Kozubowski, J.; Padlo, L.; Sledziewska, D.

    1963-01-01

    The phonon dispersion relations in copper single crystals has been studied by means of a triple-axis crystal neutron spectrometer. In the [100] direction the transversal branch, not reported in the papers of Cabie and Jacrot, has been found. This branch fits well to the recent data of sound velocity; however, it differs partly from the X-ray results of Jacobsen. For the longitudinal branch in the [100] direction the dispersion curve obtained by Cribier and Jacrot is lying well above the Jacobsen's curve, and the experimental points reported in the present paper support the results of Cribier and Jacrot. The phonon dispersion relations in zinc and magnesium single crystals has been studied using the cold neutron method and by means of a triple-axis crystal neutron spectrometer as well. The scattering surfaces in the [1010] plane were traced, the AT and AL branches found and the phonon dispersion relations in the [001] and [010] directions obtained. The results have been compared with those obtained by Johnson with X-rays. In the [001] direction the present results fit well lo Johnson's foe the AL branch. In the [010] direction for the AT branch a large discrepancy has been found between Johnson's and the present results. Some explanation of this discrepancy is given. Similar measurements in the same directions in magnesium single crystals are under way and will be reported. (author) [fr

  8. Numerical study of slip system activity and crystal lattice rotation under wedge nanoindents in tungsten single crystals

    Science.gov (United States)

    Volz, T.; Schwaiger, R.; Wang, J.; Weygand, S. M.

    2018-05-01

    Tungsten is a promising material for plasma facing components in future nuclear fusion reactors. In the present work, we numerically investigate the deformation behavior of unirradiated tungsten (a body-centered cubic (bcc) single crystal) underneath nanoindents. A finite element (FE) model is presented to simulate wedge indentation. Crystal plasticity finite element (CPFE) simulations were performed for face-centered and body-centered single crystals accounting for the slip system family {110} in the bcc crystal system and the {111} slip family in the fcc system. The 90° wedge indenter was aligned parallel to the [1 ¯01 ]-direction and indented the crystal in the [0 1 ¯0 ]-direction up to a maximum indentation depth of 2 µm. In both, the fcc and bcc single crystals, the activity of slip systems was investigated and compared. Good agreement with the results from former investigations on fcc single crystals was observed. Furthermore, the in-plane lattice rotation in the material underneath an indent was determined and compared for the fcc and bcc single crystals.

  9. Polarized Neutron Studies on Antiferromagnetic Single Crystals: Technical Report No. 4

    Science.gov (United States)

    Nathans, R.; Riste, T.; Shirane, G.; Shull, C.G.

    1958-11-26

    The theory of neutron scattering by magnetic crystals as given by Halpern and Johnson predicts changes in the polarization state of the neutron beam upon scattering which depend upon the relative orientation of the neutron polarization vector and the crystal magnetic axis. This was investigated experimentally with a polarized beam spectrometer using single crystals of Cr{sub 2}O{sub 3} and alpha - Fe{sub 2}O{sub 3} in which reside unique antiferromagnetic axes. Studies were made on several different reflections in both crystals for a number of different temperatures both below and above the Neel point. Results support the theoretical predictions and indicate directions for the moments in these crystals consistent with previous work. A more detailed study of the polarization changes in the (111) reflection in alpha - Fe{sub 2}O{sub 3} at room temperature on application of a magnetic field was carried out, The results indicate that the principal source of the parasitic ferromagnetism in hematite is essentially independent of the orientation of the antiferromagnetic domains within the crystal.

  10. Single-crystal neutron diffraction study of ammonium nitrate phase III

    International Nuclear Information System (INIS)

    Choi, C.S.; Prask, H.J.

    1982-01-01

    The crystal structure of ammonium nitrate phase III has been studied at room temperature by neutron diffraction using a single crystal containing 5% KNO 3 in solid-solution form. The space group is Pnma, with a = 7.6772 (4), b = 5.8208 (4), c = 7.1396 (5) A, Z = 4. The final residual after full-matrix least-squares refinement was R = 0.042 for 348 observed reflections. The ammonium ions are thermally disordered into two orientations, displaced by an angle of approximately 42 0 about an axis parallel to the c axis. (Auth.)

  11. Perturbed angular correlation study of surface magnetization in iron single crystals

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Sawicki, J.A.; Pleiter, F.; Waard, H. de

    1983-01-01

    The behaviour of closure domains at the surface of iron single crystals in an external magnetic field was studied by DPAC on samples implanted with 111 In. It is observed that the surface magnetization does not follow that of the bulk. The movement of both the 90 0 and 180 0 walls of the closure domains is blocked up to a certain 'starting' value of the external field that is related to the demagnetization factor of the sample and also depends on the precise orientation of the crystal axes and on the implanted indium dose. (Auth.)

  12. Single-crystal neutron diffraction studies of hydrogen-bonded systems: Two recent examples from IPNS

    Energy Technology Data Exchange (ETDEWEB)

    Koetzle, Thomas F. [IPNS Division, Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: tkoetzle@anl.gov; Piccoli, Paula M.B.; Schultz, Arthur J. [IPNS Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-02-21

    Beginning with work in the 1950s at the first generation of research reactors, studies of hydrogen-bonded systems have been a prime application for single-crystal neutron diffraction. The range of systems studied was extended in the 1960s and 1970s, with the advent of high flux reactor sources, and beginning around 1980 studies at pulsed neutron sources have made increasingly important contributions. Recently at the Argonne Intense Pulsed Neutron Source (IPNS), working with collaborators, we completed two studies of hydrogen-bonded systems that will serve to illustrate topics of current interest. In the first study, on andrographolide, an active diterpenoid natural product, our neutron diffraction results definitively characterize the hydrogen-bonding interactions. The second IPNS study is on tetraacetylethane (TAE), a {beta}-diketone enol system with a very short, strong intramolecular O-H...O hydrogen bond. At IPNS, we have determined the neutron crystal structure of TAE at five temperatures between 20 and 298 K to investigate changes in the structure with temperature and to probe for disorder. Despite the successes illustrated by the two examples presented here and by many other studies, at present applications of single-crystal neutron diffraction continue to be extremely flux limited and constrained by the requirement for mm-size crystals for many problems. These limitations are being addressed through the realization of powerful instruments at a new generation of pulsed neutron sources, including in the USA the TOPAZ and MaNDi single-crystal diffractometers that are under development at the Spallation Neutron Source (SNS)

  13. Single-crystal neutron diffraction studies of hydrogen-bonded systems: Two recent examples from IPNS

    Science.gov (United States)

    Koetzle, Thomas F.; Piccoli, Paula M. B.; Schultz, Arthur J.

    2009-02-01

    Beginning with work in the 1950s at the first generation of research reactors, studies of hydrogen-bonded systems have been a prime application for single-crystal neutron diffraction. The range of systems studied was extended in the 1960s and 1970s, with the advent of high flux reactor sources, and beginning around 1980 studies at pulsed neutron sources have made increasingly important contributions. Recently at the Argonne Intense Pulsed Neutron Source (IPNS), working with collaborators, we completed two studies of hydrogen-bonded systems that will serve to illustrate topics of current interest. In the first study, on andrographolide, an active diterpenoid natural product, our neutron diffraction results definitively characterize the hydrogen-bonding interactions. The second IPNS study is on tetraacetylethane (TAE), a β-diketone enol system with a very short, strong intramolecular O-H⋯O hydrogen bond. At IPNS, we have determined the neutron crystal structure of TAE at five temperatures between 20 and 298 K to investigate changes in the structure with temperature and to probe for disorder. Despite the successes illustrated by the two examples presented here and by many other studies, at present applications of single-crystal neutron diffraction continue to be extremely flux limited and constrained by the requirement for mm-size crystals for many problems. These limitations are being addressed through the realization of powerful instruments at a new generation of pulsed neutron sources, including in the USA the TOPAZ and MaNDi single-crystal diffractometers that are under development at the Spallation Neutron Source (SNS).

  14. Single-crystal neutron diffraction studies of hydrogen-bonded systems: Two recent examples from IPNS

    International Nuclear Information System (INIS)

    Koetzle, Thomas F.; Piccoli, Paula M.B.; Schultz, Arthur J.

    2009-01-01

    Beginning with work in the 1950s at the first generation of research reactors, studies of hydrogen-bonded systems have been a prime application for single-crystal neutron diffraction. The range of systems studied was extended in the 1960s and 1970s, with the advent of high flux reactor sources, and beginning around 1980 studies at pulsed neutron sources have made increasingly important contributions. Recently at the Argonne Intense Pulsed Neutron Source (IPNS), working with collaborators, we completed two studies of hydrogen-bonded systems that will serve to illustrate topics of current interest. In the first study, on andrographolide, an active diterpenoid natural product, our neutron diffraction results definitively characterize the hydrogen-bonding interactions. The second IPNS study is on tetraacetylethane (TAE), a β-diketone enol system with a very short, strong intramolecular O-H...O hydrogen bond. At IPNS, we have determined the neutron crystal structure of TAE at five temperatures between 20 and 298 K to investigate changes in the structure with temperature and to probe for disorder. Despite the successes illustrated by the two examples presented here and by many other studies, at present applications of single-crystal neutron diffraction continue to be extremely flux limited and constrained by the requirement for mm-size crystals for many problems. These limitations are being addressed through the realization of powerful instruments at a new generation of pulsed neutron sources, including in the USA the TOPAZ and MaNDi single-crystal diffractometers that are under development at the Spallation Neutron Source (SNS).

  15. Optical and dielectric studies of KH2PO4 crystal influenced by organic ligand of citric acid and l-valine: A single crystal growth and comparative study

    Directory of Open Access Journals (Sweden)

    Mohd Anis

    Full Text Available In the present study pure, citric acid (CA and l-valine (LV doped potassium dihydrogen phosphate (KDP crystals have been grown with the aim to investigate the nonlinear optical applications facilitated by UV–visible, third order nonlinear optical (TONLO and dielectric properties. The structural parameters of grown crystals have been confirmed by single crystal X-ray diffraction analysis. The enhancement in optical transparency of KDP crystal due to addition of CA and LV has been examined within 200–900 nm by means of UV–visible spectral analysis. In addition, the transmittance data have been used to evaluate the effect of dopants on reflectance, refractive index and extinction coefficient of grown crystals in the visible region. The Z-scan analysis has been performed at 632.8 nm to identify the nature of photoinduced nonlinear refraction and nonlinear absorption in doped KDP crystals. The influence of π-bonded ligand of dopant CA and LV on TONLO susceptibility (χ3, refractive index (n2 and absorption coefficient (β of KDP crystals has been evaluated to discuss laser assisted device applications. The decrease in dielectric constant and dielectric loss of KDP crystal due to addition of CA and LV has been explored using the temperature dependent dielectric studies. Keywords: Crystal growth, Nonlinear optical materials, UV–visible studies, Z-scan analysis, Dielectric studies

  16. Preparation of TiC single crystals

    International Nuclear Information System (INIS)

    Scheerer, B.; Fink, J.; Reichardt, W.

    1975-07-01

    TiC single crystals were prepared by vertical zone melting for measurements of the phonon dispersion by inelastic neutron scattering. The influence of the starting material and of the growing conditions on the growth of the crystal were studied. The crystals were characterized by chemical methods, EMX and neutron diffraction. It was possible to grow single crystals with a volume of up to 0.6 cm 3 and mosaic spread of less then 0.4 0 . (orig.) [de

  17. Electrical conduction studies in ferric-doped KHSO 4 single crystals

    Science.gov (United States)

    Sharon, M.; Kalia, A. K.

    1980-03-01

    Direct-current conductivity of ferric-doped (138, 267, and 490 ppm) single crystals of KHSO 4 has been studied. The mechanism for the dc conduction process is discussed. It is observed that the ferric ion forms a (Fe 3+-two vacancies) complex and the enthaply for its formation is 0.09 ± 0.01 eV. It is proposed that each ferric ion removes two protons from each HSO 4 dimer. The conductivity plot shows the presence of intrinsic and extrinsic regions. It is proposed that in the intrinsic region the dimer of HSO -4 breaks reversibly to form a long-chain monomer-type structure. The conductivity in the KHSO 4 crystal is proposed to be controlled by the rotation of HSO -4 tetrahedra along the axis which contains no hydrogen atom. Isotherm calculation for the trivalent-doped system is applied to this crystal and the results are compared with Co 2+-doped KHSO 4 crystal. The distribution coefficient of ferric ion in the KHSO 4 single crystal is calculated to be 4.5 × 10 -1. Ferric ion causes tapering in the crystal growth habit of KHSO 4 and it is believed to be due to the presence of (Fe 3+-two vacancies) complex. The enthalpy values for the various other processes are as follows: enthalpy for the breakage of HSO -4 dimer ( Hi) = 1.28 ± 0.01 eV; enthalpy for the rotation of HSO -4 tetrahedron ( Hm) = 0.58 ± 0.01 eV.

  18. Experimental and analytical parametric study of single-crystal unimorph beams for vibration energy harvesting.

    Science.gov (United States)

    Karami, M Amin; Bilgen, Onur; Inman, Daniel J; Friswell, Michael I

    2011-07-01

    This research presents an experimental and theoretical energy harvesting characterization of beam-like, uniform cross-section, unimorph structures employing single-crystal piezoelectrics. Different piezoelectric materials, substrates, and configurations are examined to identify the best design configuration for lightweight energy harvesting devices for low-power applications. Three types of piezoelectrics (singlecrystal PMN-PZT, polycrystalline PZT-5A, and PZT-5H-type monolithic ceramics) are evaluated in a unimorph cantilevered beam configuration. The devices have been excited by harmonic base acceleration. All of the experimental characteristics have been used to validate an exact electromechanical model of the harvester. The study shows the optimum choice of substrate material for single-crystal piezoelectric energy harvesting. Comparison of energy scavengers with stainless steel substrates reveals that single-crystal harvesters produce superior power compared with polycrystalline devices. To further optimize the power harvesting, we study the relation between the thickness of the substrate and the power output for different substrate materials. The relation between power and substrate thickness profoundly varies among different substrate materials. The variation is understood by examining the change of mechanical transmissibility and the variations of the coupling figure of merit of the harvesters with thickness ratio. The investigation identifies the optimal thickness of the substrate for different substrate materials. The study also shows that the densities of the substrates and their mechanical damping coefficients have significant effects on the power output.

  19. Studies of isotopic defined hydrogen beams scattering from Pd single-crystal surfaces

    International Nuclear Information System (INIS)

    Varlam, Mihai; Steflea, Dumitru

    2001-01-01

    An experimental investigation of hydrogen isotopes interaction with Pd single-crystal surface has been carried out using molecular beam technique. The energy dependence of the sticking probability and its relation with the trapping probability into the precursor state is studied by integrating the scattered angular distribution of hydrogen Isotopic defined beams from Pd (111) surface in the 40-400 K surface temperature range. The dependence has been evaluated by defining hydrogen molecular beams with different isotopic concentration - from the natural one to the 5% D/(D+H) ratio - and for different incident energies. The beam was directed onto a single-crystal Pd (111) surface. In the paper, we report the experimental results and some considerations related to it. (authors)

  20. Studies of isotopic defined hydrogen beams scattering from Pd single-crystal surfaces

    International Nuclear Information System (INIS)

    Varlam, Mihai; Steflea, Dumitru

    1999-01-01

    An experimental investigation of hydrogen isotopes interaction with Pd single-crystal surfaces has been carried out using molecular beam technique. The energy dependence of the sticking probability and its relation with the trapping probability into the precursor state is studied by integrating the scattered angular distribution of hydrogen isotopic defined beams from Pd (111) surfaces in the 40 - 400 K surface temperature range. The dependence has been evaluated by defining hydrogen molecular beams with different isotopic concentration - from the natural one until 5% D/(D + H) and different incident energies and directed onto a single - crystal Pd (111) surface. In the paper, we report the experimental results and some considerations related to them. (authors)

  1. Growth and study of some gel grown group II single crystals of iodate

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Single crystals of calcium iodate and barium iodate were grown by simple gel technique by single diffusion method. The optimum conditions were established by varying various parameters such as pH of gel solution, gel concentration, gel setting time, concentration of the reactants etc. Crystals having different.

  2. Integrated experimental and computational studies of deformation of single crystal copper at high strain rates

    Science.gov (United States)

    Rawat, S.; Chandra, S.; Chavan, V. M.; Sharma, S.; Warrier, M.; Chaturvedi, S.; Patel, R. J.

    2014-12-01

    Quasi-static (0.0033 s-1) and dynamic (103 s-1) compression experiments were performed on single crystal copper along ⟨100⟩ and ⟨110⟩ directions and best-fit parameters for the Johnson-Cook (JC) material model, which is an important input to hydrodynamic simulations for shock induced fracture, have been obtained. The deformation of single crystal copper along the ⟨110⟩ direction showed high yield strength, more strain hardening, and less strain rate sensitivity as compared to the ⟨100⟩ direction. Although the JC model at the macro-scale is easy to apply and describes a general response of material deformation, it lacks physical mechanisms that describe the influence of texture and initial orientation on the material response. Hence, a crystal plasticity model based on the theory of thermally activated motion of dislocations was used at the meso-scale, in which the evolution equations permit one to study and quantify the influence of initial orientation on the material response. Hardening parameters of the crystal plasticity model show less strain rate sensitivity along the ⟨110⟩ orientation as compared to the ⟨100⟩ orientation, as also shown by the JC model. Since the deformation process is inherently multiscale in nature, the shape changes observed in the experiments due to loading along ⟨100⟩ and ⟨110⟩ directions are also validated by molecular dynamics simulations at the nano-scale.

  3. Crystal growth, morphology, thermal and spectral studies of an organosulfur nonlinear optical bis(guanidinium) 5-sulfosalicylate (BG5SS) single crystals

    Science.gov (United States)

    Dhavamurthy, M.; Peramaiyan, G.; Babu, K. Syed Suresh; Mohan, R.

    2015-04-01

    Organosulfur nonlinear optical single crystals of orthorhombic bis(guanidinium) 5-sulfosalicylate (2CH6N3 +·C7H4O6S2-·H2O) with dimension 14 mm × 4 mm × 5 mm have been grown from methanol and water solvents in 1:1 ratio by the slow evaporation growth technique. The crystal structure and morphology of the crystals have been studied by single-crystal X-ray diffraction. FTIR spectroscopic studies were carried out to identify the functional groups and vibrational modes present in the grown crystals. The UV-Vis spectrum was studied to analyze the linear optical properties of the grown crystals. The thermal gravimetric analysis was conducted on the grown crystals, and the result revealed that the grown crystal is thermally stable up to 65 °C. The dielectric tensor components ɛ 11, ɛ 22 and ɛ 33 of BG5SS crystal were evaluated as a function of frequency at 40 °C. The surface laser damage threshold for the grown crystal was measured using Nd:YAG laser. Further, Vickers micro-hardness study was carried out to analyze the mechanical strength of the grown crystals for various loads.

  4. Growth and dielectric, mechanical, thermal and etching studies of an organic nonlinear optical L-arginine trifluoroacetate (LATF) single crystal

    International Nuclear Information System (INIS)

    Arjunan, S.; Mohan Kumar, R.; Mohan, R.; Jayavel, R.

    2008-01-01

    L-arginine trifluoroacetate, an organic nonlinear optical material, has been synthesized from aqueous solution. Bulk single crystal of dimension 57 mm x 5 mm x 3 mm has been grown by temperature lowering technique. Powder X-ray diffraction studies confirmed the monoclinic structure of the grown L-arginine trifluoroacetate crystal. Linear optical property of the grown crystal has been studied by UV-vis spectrum. Dielectric response of the L-arginine trifluoroacetate crystal was analysed for different frequencies and temperatures in detail. Microhardness study on the sample reveals that the crystal possesses relatively higher hardness compared to many organic crystals. Thermal analyses confirmed that the L-arginine trifluoroacetate material is thermally stable upto 212 deg. C. The etching studies have been performed to assess the perfection of the L-arginine trifluoroacetate crystal. Kurtz powder second harmonic generation test confirms the nonlinear optical properties of the as-grown L-arginine trifluoroacetate crystal

  5. Space growth studies of Ce-doped Bi12SiO20 single crystal

    International Nuclear Information System (INIS)

    Zhou, Y.F.; Wang, J.C.; Tang, L.A.; Pan, Z.L.; Chen, N.F.; Chen, W.C.; Huang, Y.Y.; He, W.

    2004-01-01

    Ce-doped Bi 12 SiO 20 (BSO) single crystal was grown on board of the Chinese Spacecraft-Shenzhou No. 3. A cylindrical crystal, 10 mm in diameter and 40 mm in length, was obtained. The morphology of crystals is significantly different for ground- and space-grown portions. The space- and ground-grown crystals have been characterized by Ce concentration distribution, X-ray rocking curve absorption spectrum and micro-Raman spectrum. The results show that the quality of Ce-doped BSO crystal grown in space is more homogeneous and more perfect than that of ground grown one

  6. Growth, optical, ICP and thermal studies of nonlinear optical single crystal: Sodium acid phthalate (NaAP)

    Science.gov (United States)

    Mahadevan, M.; Arivanandhan, M.; Elangovan, K.; Anandan, P.; Ramachandran, K.

    2017-07-01

    Good quality single crystals of sodium acid phthalate (NaAP) were grown by slow evaporation technique. Single crystal X-ray diffraction study of the grown crystal reveals that the crystal belongs to orthorhombic system with space group B2ab. Fourier transform infrared spectrum confirms the presence of the functional groups of the grown material. Inductively coupled plasma emission spectroscopy analysis is used to confirm the presence of Na element in the sample. Thermal analysis of the NaAP crystal shows that the crystal is stable up to 140°C. Optical transmittance of the grown crystal was recorded in the wavelength range from 200 and 800 nm using UV-Vis-NIR spectrophotometer. The second harmonic generation of NaAP was analysed using Kurtz powder technique.

  7. Experimental study and numerical simulation of the plastic deformation of zirconium single crystals

    International Nuclear Information System (INIS)

    Lebon, C.

    2011-01-01

    There is only few experimental data in the literature on the zirconium single crystals and no constitutive laws for this single crystal material are provided. The goal of this work is then to create an experimental database like the Critical Resolved Shear Stress (CRSS) for the prismatic slip, the strain-hardening, the activation of the prismatic glide system and the activation volumes. We determine theses parameters from image correlation method. Then, we develop a new multi-scale approach using dislocations dynamics concept and finite element computations. Finally, a first single crystal constitutive law for the zirconium is proposed and a good agreement with the experimental data is obtained. (author) [fr

  8. TL and OSL studies on lithium borate single crystals doped with Cu and Ag

    International Nuclear Information System (INIS)

    Rawat, N.S.; Kulkarni, M.S.; Tyagi, M.; Ratna, P.; Mishra, D.R.; Singh, S.G.; Tiwari, B.; Soni, A.; Gadkari, S.C.; Gupta, S.K.

    2012-01-01

    Lithium borate (LBO) single crystals doped with Cu and Ag (0.25 mol% each) (Li 2 B 4 O 7 :Cu,Ag) are grown by the Czochralski method. The thermoluminescence readout on Li 2 B 4 O 7 :Cu,Ag crystals showed three glow peaks at∼375, 441 and 516 K for the heating rate of 1 K/s. The thermoluminescence sensitivity of the grown Li 2 B 4 O 7 :Cu,Ag single crystals is found to be 5 times TLD-100 and a linear dose response in the range 1 mGy to 1 kGy. The glow curve deconvolution reveals nearly first order kinetics for all the three peaks with trap depths 0.77, 1.25 and 1.34 eV respectively and corresponding frequency factors 1.6×10 9 , 1.3×10 13 and 6.8×10 11 s −1 . The continuous wave optically stimulated luminescence (CW-OSL) measurements were performed on the LBO:Cu,Ag single crystals using blue light stimulation. The traps responsible for the three thermoluminescence peaks in Li 2 B 4 O 7 :Cu,Ag are found to be OSL sensitive. The qualitative correlation between TL peaks and CW-OSL response is established. The photoluminescence studies show that in case of co-doping of Ag in LBO:Cu the emission at 370 nm in Cu states dominates over the transitions in Ag states implying doping of Ag plays a role as sensitizer when co-doped with Cu and increases overall emission. - Highlights: ► Growth of crack free single crystals of Li2B4O7 :Cu and Ag. ► Study of TL and OSL parameters for Li2B4O7 :Cu and Ag. ► Correlation of OSL with TL peaks. ► Optimization of OSL readout time with respect to residual TL.

  9. Elastic neutron diffraction study of transforming and non-transforming single crystal ZrV2

    International Nuclear Information System (INIS)

    Bostock, J.; Wong, M.; MacVicar, M.L.A.; Levinson, M.

    1980-01-01

    The mosaic spread of single crystal ZrV 2 is unusually narrow, approx. 1' from room temperature to 130K. For non-transforming perfect single crystal the mosaic gradually increases to approx. 1.86' at 4.2K; for transforming, twinned single crystal the room temperature mosaic is maintained to 110K, then increases to 2.76' at 94K when the crystal transforms to a mixed cubic (30%) and rhombohedral state (70%). The onset of the electronic instability (approx. 100K) is accompanied by an increase in diffuse scattering background which, for the twinned crystal, peaks at the structural transformation. The electronic instability coupled to the localized lattice stress appears to be the driving mechanism for the transformation

  10. Diffraction. Single crystal, magnetic

    International Nuclear Information System (INIS)

    Heger, G.

    1999-01-01

    The analysis of crystal structure and magnetic ordering is usually based on diffraction phenomena caused by the interaction of matter with X-rays, neutrons, or electrons. Complementary information is achieved due to the different character of X-rays, neutrons and electrons, and hence their different interactions with matter and further practical aspects. X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (K.A.)

  11. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study

    International Nuclear Information System (INIS)

    Wu, Yuntao; Luo, Zhaohua; Jiang, Haochuan; Meng, Fang; Koschan, Merry; Melcher, Charles L.

    2015-01-01

    Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd 3 Ga 3 Al 2 O 12 :0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu) 3 Ga 3 Al 2 O 12 :1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce 3+ transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce 3+ emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under 137 Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal. - Highlights: • GGAG:Ce single crystal and GLuGAG:Ce optical ceramics were fabricated. • The light yield of both ceramic and crystal G(Lu)GAG:Ce reached the level of 45,000 photons/MeV. • GLuGAG:Ce optical ceramic showed a better energy resolution of 7.1% for 662 keV. • GLuGAG:Ce ceramics exhibited lower afterglow level than that of GGAG:Ce single crystals. • The possible optimization strategies for multicomponent aluminate garnets are discussed

  12. Comparative study of pressure-induced polymerization in C60 nanorods and single crystals

    International Nuclear Information System (INIS)

    Hou Yuanyuan; Liu Bingbing; Wang Lin; Yu Shidan; Yao Mingguang; Chen Ao; Liu Dedi; Zou Yonggang; Li Zepeng; Zou Bo; Cui Tian; Zou Guangtian; Iwasiewicz-Wabnig, Agnieszka; Sundqvist, Bertil

    2007-01-01

    In this paper, we report a comparative study of pressure-induced polymerization in C 60 nanorods and bulk single crystals, treated simultaneously under various pressures and temperatures in the same experiment. For both materials, orthorhombic, tetragonal and rhombohedral phases have been produced under high pressure and high temperature. The structures have been identified and compared between the two sample types by Raman and photoluminescence spectroscopy. There are differences between the Raman and photoluminescence spectra from the two types of materials for all polymeric phases, but especially for the tetragonal phase. From the comparison between nanorods and bulk samples, we tentatively assign photoluminescence peaks for various polymeric phases

  13. ESR studies of electron irradiated K3Ir(CN)6 in KCl single crystals

    International Nuclear Information System (INIS)

    Vugman, N.V.; Pinhal, N.M.

    1983-01-01

    ESR studies of KCl single crystals doped with small amounts of K 3 Ir(CN) 6 and submitted to a prolongued 2 MeV electron irradiation at room temperature reveal the presence of the [IR(CN) 5 Cl] 4- and [Ir(CN) 4 Cl 2 ] 4- new molecular species. Ligand spin densities and ligand field parameters are calculated from the experimental hyperfine and superhyperfine interactions and compared to previous data on the [Ir(CN) 5 ] 4- species. (Author) [pt

  14. Comparative study of broadband electrodynamic properties of single-crystal and thin-film strontium titanate

    International Nuclear Information System (INIS)

    Findikoglu, A. T.; Jia, Q. X.; Kwon, C.; Reagor, D. W.; Kaduchak, G.; Rasmussen, K. Oe.; Bishop, A. R.

    1999-01-01

    We have used a coplanar waveguide structure to study broadband electrodynamic properties of single-crystal and thin-film strontium titanate. We have incorporated both time- and frequency-domain measurements to determine small-signal effective refractive index and loss tangent as functions of frequency (up to 4 GHz), dc bias (up to 10 6 V/m), and cryogenic temperature (17 and 60 K). The large-signal impulse response of the devices and the associated phenomenological nonlinear wave equation illustrate how dissipation and nonlinearity combine to produce the overall response in the large-signal regime. (c) 1999 American Institute of Physics

  15. Principles of crystallization, and methods of single crystal growth

    International Nuclear Information System (INIS)

    Chacra, T.

    2010-01-01

    Most of single crystals (monocrystals), have distinguished optical, electrical, or magnetic properties, which make from single crystals, key elements in most of technical modern devices, as they may be used as lenses, Prisms, or grating sin optical devises, or Filters in X-Ray and spectrographic devices, or conductors and semiconductors in electronic, and computer industries. Furthermore, Single crystals are used in transducer devices. Moreover, they are indispensable elements in Laser and Maser emission technology.Crystal Growth Technology (CGT), has started, and developed in the international Universities and scientific institutions, aiming at some of single crystals, which may have significant properties and industrial applications, that can attract the attention of international crystal growth centers, to adopt the industrial production and marketing of such crystals. Unfortunately, Arab universities generally, and Syrian universities specifically, do not give even the minimum interest, to this field of Science.The purpose of this work is to attract the attention of Crystallographers, Physicists and Chemists in the Arab universities and research centers to the importance of crystal growth, and to work on, in the first stage to establish simple, uncomplicated laboratories for the growth of single crystal. Such laboratories can be supplied with equipment, which are partly available or can be manufactured in the local market. Many references (Articles, Papers, Diagrams, etc..) has been studied, to conclude the most important theoretical principles of Phase transitions,especially of crystallization. The conclusions of this study, are summarized in three Principles; Thermodynamic-, Morphologic-, and Kinetic-Principles. The study is completed by a brief description of the main single crystal growth methods with sketches, of equipment used in each method, which can be considered as primary designs for the equipment, of a new crystal growth laboratory. (author)

  16. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Podkopaev, O. I. [Joint-Stock Company “Germanium” (Russian Federation); Shimanskiy, A. F., E-mail: shimanaf@mail.ru [Siberian Federal University (Russian Federation); Kopytkova, S. A.; Filatov, R. A. [Joint-Stock Company “Germanium” (Russian Federation); Golubovskaya, N. O. [Siberian Federal University (Russian Federation)

    2016-10-15

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  17. Study of the effect of doping on the temperature stability of the optical properties of germanium single crystals

    International Nuclear Information System (INIS)

    Podkopaev, O. I.; Shimanskiy, A. F.; Kopytkova, S. A.; Filatov, R. A.; Golubovskaya, N. O.

    2016-01-01

    The effect of doping on the optical transmittance of germanium single crystals is studied by infrared Fourier spectroscopy. It is established that the introduction of silicon and tellurium additives into germanium doped with antimony provides a means for improving the temperature stability of the optical properties of the crystals.

  18. Single Crystal Surfaces

    Science.gov (United States)

    Aguilar-Santillan, Joaquin

    2014-06-01

    The present work studies (0001) Al2O3 and (111) Al2MgO4 wetting with pure molten Al by the sessile drop technique from 1073 K to 1473 K (800 °C to 1200 °C) under Ar at PO2 10-15 Pa. Al pure liquid wets a smooth and chemically homogeneous surface of an inert solid, the wetting driving force ( t, T) can be readily studied when surface solid roughness increases in the system. Both crystals planes (0001) Al2O3 and (111) Al2MgO4 have crystallographic surfaces with identical O-2 crystalline positions however considering Mg2+ content in Al2MgO4 structure may influence a reactive mode. Kinetic models results under similar experimental conditions show that Al wetting on (0001) Al2O3 is less reactive than (111) Al2MgO4, however at >1273 K (1000 °C) (0001) Al2O3 transformation occurs and a transition of wetting improves. The (111) Al2MgO4 and Al system promotes interface formations that slow its wetting process.

  19. Comparative study of the creep behaviour of single crystals and polycrystals of alpha uranium

    International Nuclear Information System (INIS)

    Andre, J.P.

    1964-03-01

    In the first chapter, one describes the creep machine developed to study the deformation of uranium at high temperature in vacuum with a continuous recording. The second chapter presents the results concerning the polycrystals of uranium. The application of the DORN method gives an activation energy for creep of 42 ± 2 Kc, above 550 Celsius degrees, equal to the activation energy for self-diffusion. The study of the variation of the creep rate with the applied stress and the metallographic observations of the deformation induced polygonization allow to conclude that the deformation is controlled by climb of dislocations. In the third chapter, the deformation above 550 Celsius degrees of single crystals of uranium (obtained by β → α change) is studied. The major deformation mode is slip. The preexisting polygonization of these single crystals is very stable and the disorientation between adjacent sub-grains increases with the deformation. The activation energy for creep is higher than that for polycrystals. These results show the influence of the polygonization due to the β → α change on the creep behaviour of α uranium. (authors) [fr

  20. Magnetic phase transitions in Er7Rh3 studied on single crystals

    International Nuclear Information System (INIS)

    Tsutaoka, Takanori; Obata, Keisuke; Cheyvuth, Seng; Koyama, Keiichi

    2014-01-01

    Highlights: • Magnetic and electrical properties of Er 7 Rh 3 were studied on single crystals. • The magnetic phase diagram along the c-axis was constructed. • The field-induced magnetic transitions in Er 7 Rh 3 can be explained by the magnetic structure with two magnetic propagation vectors. • The anomalies of electrical resistivity can also be described by the magnetic structure in Er 7 Rh 3 . - Abstract: Magnetic phase transitions in Er 7 Rh 3 with the Th 7 Fe 3 type hexagonal structure have been studied on single crystals by measuring magnetization, magnetic susceptibility and electrical resistivity. Er 7 Rh 3 possesses antiferromagnetic state below T N = 13 K. In the ordered state, the two successive magnetic transitions at T t1 = 6.2 K and T t2 = 4.5 K were observed. Several field-induced magnetic transitions were also observed along the a- and c-axes below T N ; magnetic field H – temperature T phase diagram along the c-axis was constructed. The field-induced magnetic transitions in Er 7 Rh 3 can be explained by the magnetic structure with two magnetic propagation vectors which were derived by the previous neutron diffraction studies. Electrical resistivity shows humps just below the magnetic transition temperatures, T N and T t1 due to the super-zone gap formation at the Fermi level; these anomalies can also be described by the magnetic structure changes in Er 7 Rh 3

  1. Thermoluminescence and electron spin resonance studies of irradiated biological single crystals

    International Nuclear Information System (INIS)

    Cooke, D.W.

    1977-01-01

    Single crystals of x-irradiated L-alanine:Cr 3+ have been studied between 90 and 300K by electron spin resonance (ESR) and thermoluminescence (TL) techniques. Ultraviolet (uv) photobleaching of the Cr 3+ electron traps and L-alanine radical centers was also investigated. The results demonstrate that the x-ray generated radical centers can be destroyed by uv-induced electron transport activity, and this destruction follows first order kinetics. Also, the transformation of the primary neutral radical species to a secondary radical in L-alanine was found not to be induced by intermolecular electron transport. The TL glow was determined to proceed by first-order kinetics at a temperature of 160K with an activation energy of 0.3 eV and a frequency factor of 1.0 x 10 8 s -1 . The emission spectrum consisted of a broad band (FWHM approx. = 100 nm) which peaked at approximately 420 nm. Scintillation activity was observed in the ferroelectric crystals triglycine sulfate (TGS), deuterated TGS, and TGS: L-alanine. The emission spectrum of TGS:L-alanine was obtained. New observations of scintillations and current pulses from glycine, a nonferroelectric crystal, which result from heating or cooling the sample between 77 and 300K with no previous irradiation were made. The scintillations and current pulses occur approximately in coincidence. Scintillations were also observed from the potent oncogen 3-hydroxyxanthine by cooling the sample from 300 to 90K with no previous irradiation

  2. Studies on transport properties of copper doped tungsten diselenide single crystals

    Science.gov (United States)

    Deshpande, M. P.; Parmar, M. N.; Pandya, Nilesh N.; Chaki, Sunil; Bhatt, Sandip V.

    2012-02-01

    During recent years, transition metal dichalcogenides of groups IVB, VB and VIB have received considerable attention because of the great diversity in their transport properties. 2H-WSe 2 (Tungsten diselenide) is an interesting member of the transition metal dichalcogenide (TMDC's) family and known to be a semiconductor useful for photovoltaic and optoelectronic applications. The anisotropy usually observed in this diamagnetic semiconductor material is a result of the sandwich structure of Se-W-Se layers interacting with each other, loosely bonded by the weak Van der Waals forces. Recent efforts in studying the influence of the anisotropic electrical and optical properties of this layered-type transition metal dichalcogenides have been implemented by doping the samples with different alkali group elements. Unfortunately, little work is reported on doping of metals in WSe 2. Therefore, it is proposed in this work to carry out a systematic growth of single crystals of WSe 2 by doping it with copper in different proportions i.e. Cu xWSe 2 ( x=0, 0.5, 1.0) by direct vapour transport technique. Transport properties like low and high temperature resistivity measurements, high pressure resistivity, Seebeck coefficient measurements at low temperature and Hall Effect at room temperature were studied in detail on all these samples. These measurements show that tungsten diselenide single crystals are p-type whereas doped with copper makes it n-type in nature. The results obtained and their implications are discussed in this paper.

  3. Temperature sensitivity of void nucleation and growth parameters for single crystal copper: a molecular dynamics study

    International Nuclear Information System (INIS)

    Rawat, S; Chavan, V M; Warrier, M; Chaturvedi, S

    2011-01-01

    The effect of temperature on the void nucleation and growth is studied using the molecular dynamics (MD) code LAMMPS (Large-Scale Atomic/Molecular Massively Parallel Simulator). Single crystal copper is triaxially expanded at 5 × 10 9  s −1 strain rate keeping the temperature constant. It is shown that the nucleation and growth of voids at these atomistic scales follows a macroscopic nucleation and growth (NAG) model. As the temperature increases there is a steady decrease in the nucleation and growth thresholds. As the melting point of copper is approached, a double-dip in the pressure–time profile is observed. Analysis of this double-dip shows that the first minimum corresponds to the disappearance of the long-range order due to the creation of stacking faults and the system no longer has a FCC structure. There is no nucleation of voids at this juncture. The second minimum corresponds to the nucleation and incipient growth of voids. We present the sensitivity of NAG parameters to temperature and the analysis of double-dip in the pressure–time profile for single crystal copper at 1250 K

  4. Spectroscopic and crystallographic studies of YAG:Pr4+ single crystals

    International Nuclear Information System (INIS)

    Pawlak, D.; Frukacz, Z.; Mierczyk, Z.; Suchocki, A.; Zachara, J.

    1998-01-01

    Y 3 Al 5 O 12 single crystals doped with praseodymium and magnesium ions have been prepared. The reversible color change of this crystal is observed when annealing in oxidizing or reducing atmospheres. The change is ascribed to the formation of Pr 4+ in the as-grown crystal, caused by the second dopant, Mg 2+ . The absorption spectra of YAG:Pr,Mg in the range 200-1100 nm, as grown and annealed in air and H 2 /N 2 atmosphere, are presented and discussed. Additional broad absorption bands are observed for the as-grown crystals and those annealed in oxidizing atmosphere. Crystallographic investigations of the original crystal and after annealing in a reducing atmosphere as described above, show no distinct structural differences. A redox mechanism is proposed to explain the color change during annealing. (orig.)

  5. Studies on the structural, optical and dielectric properties of samarium coordinated with salicylic acid single crystal

    Science.gov (United States)

    Singh, Harjinder; Slathia, Goldy; Gupta, Rashmi; Bamzai, K. K.

    2018-04-01

    Samarium coordinated with salicylic acid was successfully grown as a single crystal by low temperature solution technique using mixed solvent of methanol and water in equal ratio. Structural characterization was carried out by single crystal X-ray diffraction analysis and it crystallizes in centrosymmetric space group P121/c1. FTIR and UV-Vis-NIR spectroscopy confirmed the compound formation and help to determine the mode of binding of the ligand to the rare earth-metal ion. Dielectric constant and dielectric loss have been measured over the frequency range 100 Hz - 30MHz. The decrease in dielectric constant with increases in frequency is due to the transition from interfacial polarization to dipolar polarization. The small value of dielectric constant at higher frequency ensures that the crystal is good candidate for NLO devices. Dielectric loss represents the resistive nature of the material.

  6. Facile growth of a single-crystal pattern: a case study of HKUST-1.

    Science.gov (United States)

    Li, Shaozhou; Lu, Guang; Huang, Xiao; Li, Hai; Sun, Yinghui; Zhang, Hua; Chen, Xiaodong; Huo, Fengwei

    2012-12-18

    In order to fabricate metal-organic framework (MOF) based devices, it is desirable to precisely position high-quality and mono-sized MOF crystals on supports. In this work, we demonstrate a facile solution procedure for the fabrication of oriented and monodispersed single-crystal MOF pattern. We expect that such capability will expand the scope of applications of MOFs to advanced fields.

  7. A study on the growth of compound semiconductor single crystal by TOM technique

    International Nuclear Information System (INIS)

    Kim, H.C.; Kwon, S.I.; Chung, M.K.; Chang, J.S.

    1981-01-01

    This paper describes the merit of the HgI 2 single crystals obtained by solution growth, 2- and 3-region temperature growth, and temperature oscillation growth for soft γ-ray detectors which can be operated at room temperature. Special efforts are put on the design, construction, and operation of the TOM (Temperature Oscillation Method) single crystal growing furnace. Experimental results show that HgI 2 detectors fabricated by vapour phase growth method usually exhibit sufficient enough detector characteristics for soft γ-ray spectrometry. However, further investigation should be carried out to eliminate detector deterioration due to polarization effect. (author)

  8. In-situ TEM study of dislocation patterning during deformation in single crystal aluminum

    International Nuclear Information System (INIS)

    Landau, P; Shneck, R Z; Makov, G; Venkert, A

    2010-01-01

    The evolution of dislocation patterns in single crystal aluminum was examined using transmission electron microscopy (TEM). In-situ tensile tests of single crystals were carried out in a manner that activated double slip. Cross slip of dislocations, which is prominent in all stages of work hardening, plays an important role in dislocation motion and microstructural evolution. In spite of the limitations of in-situ straining to represent bulk phenomena, due to surface effects and the thickness of the samples, it is shown that experiments on prestrained samples can represent the early stages of deformation. Transition between stage I and stage II of work hardening and evolution during stage III were observed.

  9. Facile synthesis, single crystal analysis, and computational studies of sulfanilamide derivatives

    Science.gov (United States)

    Tahir, Muhammad Nawaz; Khalid, Muhammad; Islam, Ayesha; Ali Mashhadi, Syed Muddassir; Braga, Ataualpa A. C.

    2017-01-01

    Antibacterial resistance is a worldwide problem. Sulfanilamide is widely used antibacterial. For the first time, we report here a simple method for the derivative synthesis of the title drugs, single crystal XRD and density functional theory (DFT) studies. The optimized molecular structure, natural bond orbital (NBO), frontier molecular orbitals (FMOs) molecular electrostatic potential studies (MEP) and Mulliken population analysis (MPA) have been performed using M06-2X/6-31G(d, p). The FT-IR spectra and thermodynamic parameters were calculated at M06-2X/6-311 + G(2d,p) and B3LYP/6-31G(d, p) levels respectively, while, the UV-Vis analysis was performed using TD-DFT/B3LYP/6-31G(d, p) method. The experimental FT-IR spectra of both compounds were also carried out to reconfirm sbnd H⋯Osbnd hydrogen bonds. The DFT optimized parameters exhibiting good agreement with the experimental data. NBO analysis explored the hyper conjugative interaction and stability of title crystals, especially, reconfirmed the existence of sbnd H⋯Osbnd hydrogen bonds between the dimers. The FT-IR, thermodynamic parameters, MEP and MPA also revealed the hydrogen bonding detail is harmonious to XRD data. As a matter of the fact, the hydrogen bonding is a significant parameter for the understanding and design of molecular crystals, subsequently; it can also play a vital role in the supramolecular chemistry. Moreover, the global reactivity descriptors suggest that title compounds might be bioactive.

  10. High pressure studies of as grown WX2-x single crystals

    International Nuclear Information System (INIS)

    Solanki, G.K.; Agarwal, M.K.; Patel, Yogesh A.

    2011-01-01

    The structural optical and transport properties of tungsten metal dichalogenides having layered structure have been extensively studied in the last two decades. These materials shows highly anisotropic behaviour and have been receiving considerable interest for a variety of applications. Several of these layered semiconductors have attracted attention as a new class of solar cell material. We present here the results of simultaneous resistivity and thermoelectric power (TEP) measurements upto 7 GPa on single crystals of WS 2 , WS 1.9 , WSe 2 and WSe 1.9 grown using Direct Vapour Transport (DVT) technique. The observations clearly shows WS 2 and WS 1.9 are more resistive compared to other two crystals. In all samples an exponential fall of resistivity on increases in pressure upto 2.1 GPa but after 2.2 GPa the resistivity decreases substantially with increases pressure. The TEP of WSe 2 increases steadily and reaches maximum at 0.65 GPa, while for WSe 1.9 TEP increases upto pressure 0.5 GPa. In both the cases after attaining the maximum TEP, then decreases monotonically with increase in pressure. TEP of WS 2 and WS 1.9 increase upto pressure 1.1 GPa, beyond 1.1 GPa pressure in both the cases TEP decreases steadily with further increase in pressure. In all the samples, the sign of TEP is positive indicating that all of them are p-type and remain p-type with increase in pressure. The variation of thermoelectric power factor with pressure has been thoroughly studied. An analysis of the data point out that perfectly stoichiometric crystals of WSe 2 work as superior thermoelectric materials. The results have been presented and implications have been discussed. (author)

  11. Experimental study of single-vertex $(e^{-}-e^{+})$ pair creation in a crystal

    CERN Multimedia

    2002-01-01

    This experiment will study the newly predicted process of $e^{-}-e^{+}$ pair production by high energy photons incident along major axial direction of a single crystal. This process is based upon the well-known channeling properties of negatively charged particles along atomic rows of a crystal. The $e^{-}-e^{+}$ pair creation may proceed in a one-step process, without violating energy and momentum conversation laws, due to the lowering of the total energy of the channeled electron (Fig. 1). \\\\ \\\\ The pair creation rate should increase with increasing photon energies (above a threshold of a few GeV) and largely exceed the Bethe-Heitler process rate for photon energies of a few tens of GeV. It is also expected that the created particles share the photon energy nearly equally, in contrast with the rather flat energy distribution associated with the Bethe-Heitler process. \\\\ \\\\ The experimental set-up (Fig. 2) is designed for the study of those two features: photon energy dependence of the pair creation rate, an...

  12. Crystal structure and magnetic susceptibility of UOSe single crystals

    International Nuclear Information System (INIS)

    Kaczorowski, D.; Muenster Univ.; Poettgen, R.; Jeitschko, W.; Gajek, Z.; Zygmunt, A.

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T N =100±2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author)

  13. Crystal structure and magnetic susceptibility of UOSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczorowski, D. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Poettgen, R.; Jeitschko, W. (Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Gajek, Z.; Zygmunt, A. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research)

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T[sub N]=100[+-]2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author).

  14. Two rhodamine 6G derivative compounds: a structural and fluorescence single-crystal study.

    Science.gov (United States)

    Di Paolo, Matias; Bossi, Mariano L; Baggio, Ricardo; Suarez, Sebastián A

    2016-10-01

    The synthesis, characterization, structural analysis and fluorescence properties of two rhodamine 6G derivatives are described, namely a propargylamine derivative, 3',6'-bis(ethylamino)-2',7'-dimethyl-2-(methylcyanide)spiro[isoindole-1,9'-xanthen]-3(2H)-one (I), and a γ-aminobutyric acid (GABA) derivative, 3',6'-bis(ethylamino)-2',7'-dimethyl-3-oxospiro[isoindole-1,9'-xanthen]-2(3H)-yl)butyricacid (II). Both structures are compared with four similar ones from the Cambridge Structural Database (CSD), and the interactions involved in the stabilization are analyzed using the atoms in molecules (AIM) theory. Finally, a single-crystal in-situ reaction study is presented, carried out by fluorescence methods, which enabled the `opening' of the spirolactam ring in the solid phase.

  15. Optical study on neutron irradiation effect on hexagonal SiC single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Moritami; Kimura, Itsurou; Kanazawa, Satoshi; Kanno, Ikuo; Kamiya, Koji [Kyoto Univ. (Japan); Nakata, Toshitake; Watanabe, Masanori; Nakagawa, Masuo; Atobe, Kozo

    1996-04-01

    It is well known that SiC is a higher radiation resistant semiconductor on comparison with Si and Ge. Recently, on accompanying with advancement of developing program on nuclear fission reactor on space, development of electronic element workable effectively under severe radiation environment is desired. SiC is expected as one of such elements. Therefore, because of considering importance of understanding the effect on fundamental properties of SiC electronic element under radiation environment before its development, some studies on it was executed. In this paper, according to find out induction of interesting defect center in hexagonal 4H- and 6H-SiC single crystals irradiated with reactor neutron on light absorption and SER test, outlines of these experimental results were reported. (G.K.)

  16. Comparative study of neutron irradiation and carbon doping in MgB2 single crystals

    International Nuclear Information System (INIS)

    Krutzler, C.; Zehetmayer, M.; Eisterer, M.; Weber, H. W.; Zhigadlo, N. D.; Karpinski, J.

    2007-01-01

    We compare the reversible and irreversible magnetic properties of superconducting carbon doped and undoped MgB 2 single crystals before and after neutron irradiation. A large number of samples with transition temperatures between 38.3 and 22.8 K allows us to study the effects of disorder systematically. Striking similarities are found in the modification of the reversible parameters by irradiation and doping, which are discussed in terms of impurity scattering and changes of the Fermi surface. The irreversible properties are influenced by two counteracting mechanisms: they are enhanced by the newly introduced pinning centers but degraded by changes in the thermodynamic properties. Accordingly, the large neutron induced defects and the small defects from carbon doping lead to significantly different effects on the irreversible properties. Finally, the fishtail effect caused by all kinds of disorder is discussed in terms of an order-disorder transition of the flux-line lattice

  17. Study of clean and ion bombardment damaged silver single crystal surfaces by work function measurements

    International Nuclear Information System (INIS)

    Chelvayohan, N.

    1982-06-01

    Work function values of the (110), (100) and (111) faces of silver single crystal were measured by the photoelectric emission method and found to be 4.14 +- 0.04 eV, 4.22 +-0.04 eV and 4.46 +- 0.02 eV respectively. Oxygen adsorption on the faces were studied by surface potential measurement. Strong oxygen adsorption was observed on (110) and (100) faces, whereas the (111) face was found to be inert for oxygen adsorption. Oxygen adsorption on the (111) face damaged by argon ion bombardment was also investigated. The above results were compared with those of early reported work function and oxygen adsorption values. (U.K.)

  18. Magnetotransport study of topological superconductor Cu0.10Bi2Se3 single crystal

    Science.gov (United States)

    Li, M. T.; Fang, Y. F.; Zhang, J. C.; Yi, H. M.; Zhou, X. J.; Lin, C. T.

    2018-03-01

    We report a magnetotransport study of vortex-pinning in Cu0.10Bi2Se3 single crystal. The sample is demonstrated to be in clean limit and absent of Pauli spin-limiting effect. Interestingly, the resistivity versus magnetic field shows an anomalously pronounced increase when approaching the superconducting-normal state boundary for both {{B}app}\\parallel ab and {{B}app}\\parallel c configurations. We have investigated the flux-flowing behavior under various magnetic fields and temperatures, enabling us to establish its anisotropic vortex phase diagram. Our results suggest the Cu0.10Bi2Se3 can be served as one unique material for exploring exotic surface vortex states in topological superconductors.

  19. A multistep single-crystal-to-single-crystal bromodiacetylene dimerization

    Science.gov (United States)

    Hoheisel, Tobias N.; Schrettl, Stephen; Marty, Roman; Todorova, Tanya K.; Corminboeuf, Clémence; Sienkiewicz, Andrzej; Scopelliti, Rosario; Schweizer, W. Bernd; Frauenrath, Holger

    2013-04-01

    Packing constraints and precise placement of functional groups are the reason that organic molecules in the crystalline state often display unusual physical or chemical properties not observed in solution. Here we report a single-crystal-to-single-crystal dimerization of a bromodiacetylene that involves unusually large atom displacements as well as the cleavage and formation of several bonds. Density functional theory computations support a mechanism in which the dimerization is initiated by a [2 + 1] photocycloaddition favoured by the nature of carbon-carbon short contacts in the crystal structure. The reaction proceeded up to the theoretical degree of conversion without loss of crystallinity, and it was also performed on a preparative scale with good yield. Moreover, it represents the first synthetic pathway to (E)-1,2-dibromo-1,2-diethynylethenes, which could serve as synthetic intermediates for the preparation of molecular carbon scaffolds. Our findings both extend the scope of single-crystal-to-single-crystal reactions and highlight their potential as a synthetic tool for complex transformations.

  20. A numerical study of crack tip constraint in ductile single crystals

    Science.gov (United States)

    Patil, Swapnil D.; Narasimhan, R.; Mishra, R. K.

    In this work, the effect of crack tip constraint on near-tip stress and deformation fields in a ductile FCC single crystal is studied under mode I, plane strain conditions. To this end, modified boundary layer simulations within crystal plasticity framework are performed, neglecting elastic anisotropy. The first and second terms of the isotropic elastic crack tip field, which are governed by the stress intensity factor K and T-stress, are prescribed as remote boundary conditions and solutions pertaining to different levels of T-stress are generated. It is found that the near-tip deformation field, especially, the development of kink or slip shear bands, is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the crack tip are also strongly influenced by the level of T-stress, with progressive loss of crack tip constraint occurring as T-stress becomes more negative. A family of near-tip fields is obtained which are characterized by two terms (such as K and T or J and a constraint parameter Q) as in isotropic plastic solids.

  1. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    Science.gov (United States)

    To, C. K.; Yang, B.; Beling, C. D.; Fung, S.; Ling, C. C.; Gong, M.

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2MeV electrons with fluence of 6x1017cm-2. Isochronal annealing from 100°C-800°C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300°C and 600 °C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300°C and 600°C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300°C and 700°C.

  2. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    To, C K; Yang, B; Beling, C D; Fung, S; Ling, C C [Department of Physics, University of Hong Kong (Hong Kong); Gong, M, E-mail: sfung@hkucc.hku.h, E-mail: edwardto04@yahoo.com.h [Department of Physics, Sichuan University, Chengdu (China)

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2 MeV electrons with fluence of 6x10{sup 17}cm{sup -2}. Isochronal annealing from 100 deg. C - 800 deg. C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300 deg. C and 600 deg. C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300 deg. C and 600 deg. C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300 deg. C and 700 deg. C.

  3. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    International Nuclear Information System (INIS)

    To, C K; Yang, B; Beling, C D; Fung, S; Ling, C C; Gong, M

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2 MeV electrons with fluence of 6x10 17 cm -2 . Isochronal annealing from 100 deg. C - 800 deg. C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300 deg. C and 600 deg. C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300 deg. C and 600 deg. C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300 deg. C and 700 deg. C.

  4. Computer-guided facility for the study of single crystals at the gamma diffractometer GADI

    International Nuclear Information System (INIS)

    Heer, H.; Bleichert, H.; Gruhn, W.; Moeller, R.

    1984-10-01

    In the study of solid-state properties it is in many cases necessary to work with single crystals. The increased requirement in the industry and research as well as the desire for better characterization by means of γ-diffractometry made it necessary to improve and to modernize the existing instrument. The advantages of a computer-guided facility against the conventional, semiautomatic operation are manifold. Not only the process guidance, but also the data acquisition and evaluation are performed by the computer. By a remote control the operator is able to find quickly a reflex and to drive the crystal in every desired measuring position. The complete protocollation of all important measuring parameters, the convenient data storage, as well as the automatic evaluation are much useful for the user. Finally the measuring time can be increased to practically 24 hours per day. By this the versed characterization by means of γ-diffractometry is put on a completely new level. (orig.) [de

  5. Thermal diffuse scattering in time-of-flight neutron diffraction studied on SBN single crystals

    International Nuclear Information System (INIS)

    Prokert, F.; Savenko, B.N.; Balagurov, A.M.

    1994-01-01

    At time-of-flight (TOF) diffractometer D N-2, installed at the pulsed reactor IBR-2 in Dubna, Sr x Ba 1-x Nb 2 O 6 mixed single crystals (SBN-x) of different compositions (0.50 < x< 0.75) were investigated between 15 and 773 K. The diffraction patterns were found to be strongly influenced by the thermal diffuse scattering (TDS). The appearance of the TDS from the long wavelength acoustic models of vibration in single crystals is characterized by the ratio of the velocity of sound to the velocity of neutron. Due to the nature of the TOF Laue diffraction technique used on D N-2, the TDS around Bragg peaks has rather a complex profile. An understanding of the TDS close to Bragg peaks is essential in allowing the extraction of the diffuse scattering occurring at the diffuse ferroelectric phase transition in SBN crystals. 11 refs.; 9 figs.; 1 tab. (author)

  6. Study of photoluminescence from annealed bulk-ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yoneta, M.; Ohishi, M.; Saito, H. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Yoshino, K. [Department of Electrical and Electronic Engineering, Miyazaki University, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Honda, M. [Faculty of Science, Naruto University of Education, 748 Nakajima, Takashima, Naruto-cho, Naruto-shi 772-8502 (Japan)

    2006-03-15

    We have investigated the influence of rapid thermal annealing on the photoluminescence of bulk-ZnO single crystal. As-grown ZnO wafer, illuminated by 325 nm ultraviolet light at 4.2 K, emitted the visible luminescence of pale green centered of 2.29 eV. The luminescence was observed by the anneal at the temperature range between 400 C and 1000 C, however, its intensity decreased with anneal temperature. The free-exciton and the 2.18 eV emission line were obtained by the anneal at 1200 C for 60 sec. From the X-ray diffraction and the surface morphology measurements, the improvement of the crystallinity of bulk-ZnO crystal were confirmed. We suggest that a rapid thermal annealing technique is convenience to improve the the quality of bul-ZnO single crystals. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Scintillation of lead tungstate crystal studied with single-electron beam from KUFEL

    Energy Technology Data Exchange (ETDEWEB)

    Rizwan, Mohamad, E-mail: rizwan@nucl.kyushu-u.ac.jp; Uozumi, Yusuke; Matsuo, Kazuki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka (Japan); Ohgaki, Hideaki; Kii, Toshiteru; Zen, Heishun [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Tsamalaidze, Zviadi; Evtoukhovitch, Petr; Valentin, Samoilov [Joint Institute for Nuclear Research, JINR, Joliot-Curie Str.6, Dubna (Russian Federation)

    2015-04-29

    Lead tungstate (PWO) crystal has a very fast response, high atomic density and high radiation hardness. Therefore, they are suitable to be used for high-energy nuclear data measurements under high-background circumstances. Although a good electron-ion separation with a pulse shape analysis technique is essential, scintillation pulse shapes have not been observed with electron beams of a wide energy range. A single-electron beam technique has been developed at Kyoto University Free Electron Laser (KUFEL), and electron beams of 4-38 MeV are available. During the experiments, single electron beams bombarded a PWO crystal. By using oscilloscope we observed scintillation pulses of a PWO crystal coupled with a photomultiplier tube. Measured spectra were compared with the simulation code of EGS5 to analyze scattering effects. As the result, the pulse amplitudes show good linearity and the pulse shapes are almost constant in the observed energy range.

  8. X-ray diffraction studies of NbTe 2 single crystal

    Indian Academy of Sciences (India)

    The composition of the grown crystals was confirmed on the basis of energy dispersive analysis by X-ray (EDAX) and remaining structural characterization was also accomplished by X-ray diffraction (XRD) studies. Lattice parameters, volume and X-ray density have been carried out for the grown crystals. The particle size ...

  9. Growth and study of barium oxalate single crystals in agar gel

    Indian Academy of Sciences (India)

    Barium oxalate was grown in agar gel at ambient temperature. The effect of various parameters like gel concentration, gel setting time and concentration of the reactants on the growth of these crystals was studied. Prismatic platy shaped spherulites and dendrites were obtained. The grown crystals were characterized by ...

  10. Stages in the Recovery of Deformed Single Crystals of Iron Studied by Position Annihilation Techniques

    NARCIS (Netherlands)

    Lee, Jong-Lam; Waber, James T.; Park, Yong-Ki; Hosson, J.T.M. De

    Isochronal as well as isothermal measurements have been made on high purity single crystals of iron which had been cold rolled about 10% prior to annealing. Two steps were isolated corresponding first to the annihilation of screw dislocations and then to the elimination of edge dislocations at

  11. Adsorbates on cobalt and platinum single crystal surfaces studied by STM

    Energy Technology Data Exchange (ETDEWEB)

    Venvik, Hilde Johnsen

    1998-12-31

    This thesis on surface physics may contribute to the understanding of catalysts and so be of interest to companies working on oil and natural gas refining. The thesis deals with room temperature experimental investigations of adsorbates of CO and C{sub 2}H{sub 4} gases on Co and Pt single crystal surfaces. 252 refs., 51 figs., 1 table

  12. Damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses: theoretical and experimental study

    International Nuclear Information System (INIS)

    Meng, Qinglong; Zhang, Bin; Zhong, Sencheng; Zhu, Liguo

    2016-01-01

    The damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses has been studied theoretically and experimentally. Firstly, the model for the damage threshold prediction of crystal materials based on the improved rate equation has been proposed. Then, the experimental measure method of the damage threshold of crystal materials has been given in detail. On the basis, the variation of the damage threshold of lithium niobate crystal with the pulse duration has also been analyzed quantitatively. Finally, the damage threshold of lithium niobate crystal under multiple laser pulses has been measured and compared to the theoretical results. The results show that the transmittance of lithium niobate crystal is almost a constant when the laser pulse fluence is relative low, whereas it decreases linearly with the increase in the laser pulse fluence below the damage threshold. The damage threshold of lithium niobate crystal increases with the increase in the duration of the femtosecond laser pulse. And the damage threshold of lithium niobate crystal under multiple laser pulses is obviously lower than that irradiated by a single laser pulse. The theoretical data fall in good agreement with the experimental results. (orig.)

  13. Studies of synthetic single crystal diamonds as reliable dosimeters for electromagnetic ionizing radiation fields

    International Nuclear Information System (INIS)

    Pillon, Mario; Angelone, Maurizio; Almaviva, Salvatore; Marinelli, Marco; Milani, Enrico; Prestopino, Giuseppe; Tucciarone, Aldo; Verona, Claudio; Verona-Rinati, Gianluca; Baccaro, Stefania

    2008-01-01

    Full text: Spatial high resolution dosimetry is very important in all areas of radiation therapy and, in particular, whenever narrow photon beams are required for Stereotactic Radiotherapy (SRT) and small field segments are used for Intensity Modulated Radiotherapy (IMRT). The available detectors are often too large with respect to the beam size considered, which is characterized by high dose gradients and lack of charged particle equilibrium. An ideal solution is represented by single crystal diamond detectors, which are small solid state devices, radiation hard, tissue equivalent and capable of real time response. In the present work, synthetic CVD single crystal diamond dosimeters (SCD), fabricated at Rome 'Tor Vergata' University Laboratories, have been characterized. The devices consist of a p-type/intrinsic/metal layered structure. They have been analyzed in terms of reproducibility, linearity, depth dose distributions, energy, dose rate and field size dependence by using 6 and 10 MV Bremsstrahlung x-ray beams, produced by a CLINAC DHX Varian accelerator and the gamma irradiation facility CALLIOPE. The gamma Calliope plant is a pool-type irradiation facility equipped with the 60 Co γ-source in a high-volume (7 x 6 x 3.9m 3 ). Maximum dose rate is 9400 Gy/h. The measurements have been compared with a calibrated ionization chamber and a Fricke dosimeter. The SCD's response is shown to be linearly correlated with the ionization chamber output over the whole dose range explored. Reproducibility, energy and dose rate dependency lower than 1% were observed. A depth dose distribution and irradiation field dependence in agreement with those obtained by reference dosimeters within 2% of accuracy were demonstrated as well. The results of this study are very encouraging about the suitability of SCD for clinical dosimetry with photon beams. (author)

  14. Single-crystal and polycrystalline diamond erosion studies in Pilot-PSI

    Science.gov (United States)

    Kogut, D.; Aussems, D.; Ning, N.; Bystrov, K.; Gicquel, A.; Achard, J.; Brinza, O.; Addab, Y.; Martin, C.; Pardanaud, C.; Khrapak, S.; Cartry, G.

    2018-03-01

    Diamond is a promising candidate for enhancing the negative-ion surface production in the ion sources for neutral injection in fusion reactors; hence evaluation of its reactivity towards hydrogen plasma is of high importance. Single crystal and polycrystalline diamond samples were exposed in Pilot-PSI with the D+ flux of (4‒7)·1024 m-2s-1 and the impact energy of 7-9 eV per deuteron at different surface temperatures; under such conditions physical sputtering is negligible, however chemical sputtering is important. Net chemical sputtering yield Y = 9.7·10-3 at/ion at 800 °C was precisely measured ex-situ using a protective platinum mask (5 × 10 × 2 μm) deposited beforehand on a single crystal followed by the post-mortem analysis using Transmission Electron Microscopy (TEM). The structural properties of the exposed diamond surface were analyzed by Raman spectroscopy and X-ray Photoelectron Spectroscopy (XPS). Gross chemical sputtering yields were determined in-situ by means of optical emission spectroscopy of the molecular CH A-X band for several surface temperatures. A bell-shaped dependence of the erosion yield versus temperature between 400 °C and 1200 °C was observed, with a maximum yield of ∼1.5·10-2 at/ion attained at 900 °C. The yields obtained for diamond are relatively high (0.5-1.5)·10-2 at/ion, comparable with those of graphite. XPS analysis shows amorphization of diamond surface within 1 nm depth, in a good agreement with molecular dynamics (MD) simulation. MD was also applied to study the hydrogen impact energy threshold for erosion of [100] diamond surface at different temperatures.

  15. A facile approach towards synthesis, characterization, single crystal structure, and DFT study of 5-bromosalicylalcohol

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Rupali, E-mail: rastogirupali@ymail.com [ITM University, Department of Chemistry (India); Tarannum, Nazia [Ch. Charan Singh University, Department of Chemistry (India); Butcher, R. J. [Howard University, Chemistry Department (United States)

    2016-03-15

    5-Bromosalicylalcohol was prepared by the interaction of NaBH{sub 4} and 5-bromosalicylaldehyde. The use of sodium borohydride makes the reaction easy, facile, economic and does not require any toxic catalyst. The compound is characterized by FTIR, {sup 1}H NMR, {sup 13}C NMR, TEM and ESI-mass spectra. Crystal structure is determined by single crystal X-ray analysis. Quantum mechanical calculations of geometries, energies and thermodynamic parameters are carried out using density functional theory (DFT/B3LYP) method with 6-311G(d,p) basis set. The optimized geometrical parameters obtained by B3LYP method show good agreement with experimental data.

  16. Positron annihilation spectroscopic study of hydrothermal grown n-type zinc oxide single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Hui, C.W.; Zhang, Z.D.; Zhou, T.J.; Ling, C.C.; Beling, C.D.; Fung, S. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Brauer, G.; Anwand, W.; Skorupa, W. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf, Postfach 510119, 01314 Dresden (Germany)

    2007-07-01

    Positron lifetime and coincidence Doppler broadening spectroscopic (CDBS) measurements were carried out to study the defects in two hydrothermal (HT) grown ZnO single crystal samples (HT1 and HT2) obtained from two companies. Single component model could offer good fittings to the room temperature spectra of HT1 and HT2, with the positron lifetimes equal to 199 ps and 181 ps respectively. These two lifetime components were associated with saturated positron trapping into two V{sub Zn}-related defects with different microstructures. The positron lifetimes of HT1 was found to be temperature independent. For the HT2 sample, the positron lifetime remained unchanged with T>200 K and decreased with decreasing temperature as T<200 K. This could be explained by the presence of an additional positron trap having similar electronic environment to that of the delocalized state and competing in trapping positrons with the 181 ps component at low temperatures. Positron-electron autocorrelation function, which was the fingerprint of the annihilation site, was extracted from the CDBS spectrum. The obtained autocorrelation functions of HT1 and HT2 at room temperature, and HT2 at 50 K had features consistent with the above postulates that the 181 ps and the 199 ps components had distinct microstructures and the low temperature positron trap existed in HT2. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Polarized Raman scattering study of PSN single crystals and epitaxial thin films

    Directory of Open Access Journals (Sweden)

    J. Pokorný

    2015-06-01

    Full Text Available This paper describes a detailed analysis of the dependence of Raman scattering intensity on the polarization of the incident and inelastically scattered light in PbSc0.5Nb0.5O3 (PSN single crystals and epitaxially compressed thin films grown on (100-oriented MgO substrates. It is found that there are significant differences between the properties of the crystals and films, and that these differences can be attributed to the anticipated structural differences between these two forms of the same material. In particular, the scattering characteristics of the oxygen octahedra breathing mode near 810 cm-1 indicate a ferroelectric state for the crystals and a relaxor state for the films, which is consistent with the dielectric behaviors of these materials.

  18. Crystal ball single event display

    International Nuclear Information System (INIS)

    Grosnick, D.; Gibson, A.; Allgower, C.; Alyea, J.; Argonne National Lab., IL

    1997-01-01

    The Single Event Display (SED) is a routine that is designed to provide information graphically about a triggered event within the Crystal Ball. The SED is written entirely in FORTRAN and uses the CERN-based HICZ graphing package. The primary display shows the amount of energy deposited in each of the NaI crystals on a Mercator-like projection of the crystals. Ten different shades and colors correspond to varying amounts of energy deposited within a crystal. Information about energy clusters is displayed on the crystal map by outlining in red the thirteen (or twelve) crystals contained within a cluster and assigning each cluster a number. Additional information about energy clusters is provided in a series of boxes containing useful data about the energy distribution among the crystals within the cluster. Other information shown on the event display include the event trigger type and data about π o 's and η's formed from pairs of clusters as found by the analyzer. A description of the major features is given, along with some information on how to install the SED into the analyzer

  19. Photoacoustic and dielectric spectroscopic studies of 4-dimethylamino-n-methyl-4-stilbazolium tosylate single crystal: An efficient terahertz emitter

    Science.gov (United States)

    Manivannan, M.; Martin Britto Dhas, S. A.; Jose, M.

    2016-12-01

    Bulk terahertz emitting single crystal of 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) was synthesized by condensation method and grown by slow solvent evaporation technique from methanol. The structure and cell parameters of the grown crystals were derived from single crystal and powder X-ray diffraction analyses and the optical properties of the crystal were analyzed by UV-Vis Spectrophotometer. The presence of functional groups was identified by FTIR and FT-Raman spectroscopic studies. We demonstrated that in DAST crystal, the thermal transport properties such as thermal conductivity, thermal diffusivity and thermal effusivity are better than several well recognized standard materials using photoacoustic spectrophotometer. The dielectric measurement was made as a function of frequency (1 Hz-35 MHz) at different temperatures (30-200 °C). The dielectric constant and dielectric loss were found to be strongly dependent on temperature and frequency of the applied electric field. The semicircle in the cole-cole plot showed the presence of dielectric relaxation in the crystal with its diameter representing the resistance of the crystal. The resistivity and ac conductivity were calculated from the measured dielectric data.

  20. Growth, optical and EPR studies of {sup 151}Eu{sup 2+}:YAG single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Petrosyan, A.G., E-mail: pet@ipr.sci.am [Institute for Physical Research, National Academy of Sciences, Ashtarak, 0203 (Armenia); Asatryan, H.R. [Ioffe Physical-Technical Institute, Politekhnicheskaya ul. 26, St. Petersburg, 194021 (Russian Federation); Hovhannesyan, K.L.; Derdzyan, M.V. [Institute for Physical Research, National Academy of Sciences, Ashtarak, 0203 (Armenia); Feofilov, S.P. [Ioffe Physical-Technical Institute, Politekhnicheskaya ul. 26, St. Petersburg, 194021 (Russian Federation); Eganyan, A.V.; Sargsyan, R.S. [Institute for Physical Research, National Academy of Sciences, Ashtarak, 0203 (Armenia)

    2017-01-01

    Single crystals of {sup 151}Eu:YAG were grown by the vertical Bridgman method using Eu{sub 2}O{sub 3} with isotopic enrichment of {sup 151}Eu of 97.5%. Additional Hf{sup 4+}or Si{sup 4+} ions were introduced to favor a high concentrations of Eu{sup 2+}. As compared to Eu:YAG with natural isotope composition, the EPR spectra of YAG doped with {sup 151}Eu isotope show a reduced number of hyperfine structure components and a well-resolved structure of a bigger number of electronic transitions. Optical properties of obtained crystals and the effects of heat treatments under oxidizing and reducing conditions are reported. Based on the analysis of Eu{sup 3+} distribution in oxidized Eu,Hf:YAG, in comparison to that in Eu:YAG, the concentration of Eu{sup 2+} in as-grown Eu,Hf:YAG is determined. - Highlights: • YAG:Eu,Hf single crystals containing only {sup 151}Eu isotopes were prepared. • isotopic enriched crystals gave a well-resolved EPR hyperfine structure of Eu{sup 2+} centers. • the redox ratio was followed through the Eu{sup 2+} associated absorption band at 250 nm. • the band intensities at 378 nm correlate with the Eu{sup 2+} concentration.

  1. Comparative study of glycine single crystals with additive of potassium nitrate in different concentration ratios

    Energy Technology Data Exchange (ETDEWEB)

    Gujarati, Vivek P., E-mail: vivekgujarati@gmail.com; Deshpande, M. P., E-mail: vishwadeshpande@yahoo.co.in; Patel, Kamakshi R.; Chaki, S. H. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat (India)

    2016-05-06

    Semi-organic crystals of Glycine Potassium Nitrate (GPN) with potential applications in Non linear optics (NLO) were grown using slow evaporation technique. Glycine and Potassium Nitrate were taken in three different concentration ratios of 3:1, 2:1 and 1:1 respectively. We checked the solubility of the material in distilled water at different temperatures and could observe the growth of crystals in 7 weeks time. Purity of the grown crystals was confirmed by Energy Dispersive X-ray Analysis (EDAX) and CHN analysis. GSN Powder X-ray diffraction pattern was recorded to confirm the crystalline nature. To confirm the applications of grown crystals in opto-electronics field, UV-Vis-NIR study was carried out. Dielectric properties of the samples were studied in between the frequency range 1Hz to 100 KHz.

  2. Synthesis, crystal structure, growth, optical and third order nonlinear optical studies of 8HQ2C5N single crystal - An efficient third-order nonlinear optical material

    Energy Technology Data Exchange (ETDEWEB)

    Divya Bharathi, M.; Ahila, G.; Mohana, J. [Department of Physics, Presidency College, Chennai 600005 (India); Chakkaravarthi, G. [Department of Physics, CPCL Polytechnic College, Chennai 600068 (India); Anbalagan, G., E-mail: anbu24663@yahoo.co.in [Department of Nuclear Physics, University of Madras, Chennai 600025 (India)

    2017-05-01

    A neoteric organic third order nonlinear optical material 8-hydroxyquinolinium 2-chloro-5-nitrobenzoate dihydrate (8HQ2C5N) was grown by slow cooling technique using ethanol: water (1:1) mixed solvent. The calculated low value of average etch pit solidity (4.12 × 10{sup 3} cm{sup −2}) indicated that the title crystal contain less defects. From the single crystal X-ray diffraction data, it was endowed that 8HQ2C5N crystal belongs to the monoclinic system with centrosymmetric space group P2{sub 1}/c and the cell parameters values, a = 9.6546 (4) Ǻ, b = 7.1637(3) Ǻ, c = 24.3606 (12) Ǻ, α = γ = 90°, β = 92.458(2)° and volume = 1683.29(13) Ǻ{sup 3}. The FT-IR and FT-Raman spectrum were used to affirm the functional group of the title compound. The chemical structure of 8HQ2C5N was scrutinized by {sup 13}C and {sup 1}H NMR spectral analysis and thermal stability through the differential scanning calorimetry study. Using optical studies the lower cut-off wavelength and optical band gap of 8HQ2C5N were found to be 364 nm and 3.17 eV respectively. Using the single oscillator model suggested by Wemple – Didomenico, the oscillator energy (E{sub o}), the dispersion energy (E{sub d}) and static dielectric constant (ε{sub o}) were estimated. The third-order susceptibility were determined as Im χ{sup (3)} = 2.51 × 10{sup −5} esu and Re χ{sup (3)} = 4.46 × 10{sup −7} esu. The theoretical third-order nonlinear optical susceptibility χ{sup (3)} was calculated and the results were compared with experimental value. Photoluminescence spectrum of 8HQ2C5N crystal showed the yellow emission. The crystal had the single shot laser damage threshold of 5.562 GW/cm{sup 2}. Microhardness measurement showed that 8HQ2C5N belongs to a soft material category. - Highlights: • A new organic single crystals were grown and the crystal structure was reported. • Crystal possess, good transmittance, thermal and mechanical stability. • Single shot LDT value is found to be

  3. Single-crystal-silicon-based microinstrument to study friction and wear at MEMS sidewall interfaces

    International Nuclear Information System (INIS)

    Ansari, N; Ashurst, W R

    2012-01-01

    Since the advent of microelectromechanical systems (MEMS) technology, friction and wear are considered as key factors that determine the lifetime and reliability of MEMS devices that contain contacting interfaces. However, to date, our knowledge of the mechanisms that govern friction and wear in MEMS is insufficient. Therefore, systematically investigating friction and wear at MEMS scale is critical for the commercial success of many potential MEMS devices. Specifically, since many emerging MEMS devices contain more sidewall interfaces, which are topographically and chemically different from in-plane interfaces, studying the friction and wear characteristics of MEMS sidewall surfaces is important. The microinstruments that have been used to date to investigate the friction and wear characteristics of MEMS sidewall surfaces possess several limitations induced either by their design or the structural film used to fabricate them. Therefore, in this paper, we report on a single-crystal-silicon-based microinstrument to study the frictional and wear behavior of MEMS sidewalls, which not only addresses some of the limitations of other microinstruments but is also easy to fabricate. The design, modeling and fabrication of the microinstrument are described in this paper. Additionally, the coefficients of static and dynamic friction of octadecyltrichlorosilane-coated sidewall surfaces as well as sidewall surfaces with only native oxide on them are also reported in this paper. (paper)

  4. Theoretical study of diaquamalonatozinc(II) single crystal for applications in non-linear optical devices

    Science.gov (United States)

    Chakraborty, Mitesh; Rai, Vineet Kumar

    2017-12-01

    The aim of the present paper is to employ theoretical methods to investigate the zero field splitting (ZFS) parameter and to investigate the position of the dopant in the host. These theoretical calculations have been compared with the empirical results. The superposition model (SPM) with the microscopic spin-Hamiltonian (MSH) theory and the coefficient of fractional parentage have been employed to investigate the dopant manganese(II) ion substitution in the diaquamalonatozinc(II) (DAMZ) single crystal. The magnetic parameters, viz. g-tensor and D-tensor, has been determined by using the ORCA program package developed by F Neese et al. The unrestricted Kohn-Sham orbitals-based Pederson-Khanna (PK) as the unperturbed wave function is observed to be the most suitable for the computational calculation of spin-orbit tensor (D^{SO}) of the axial ZFS parameter D. The effects of spin-spin dipolar couplings are taken into account. The unrestricted natural orbital (UNO) is used for the calculation of spin-spin dipolar contributions to the ZFS tensor. A comparative study of the quantum mechanical treatment of Pederson-Khanna (PK) with coupled perturbation (CP) is reported in the present study. The unrestricted Kohn-Sham-based natural orbital with Pederson-Khanna-type of perturbation approach validates the experimental results in the evaluation of ZFS parameters. The theoretical results are appropriate with the experimental ones and indicate the interstitial occupancy of Mn^{2+} ion in the host matrix.

  5. Performance study of single undoped CsI crystals for the Mu2e experiment

    International Nuclear Information System (INIS)

    Donghia, R.

    2016-01-01

    The Mu2e experiment at Fermilab aims to measure the neutrinoless muon-to-electron conversion, which is a charged-lepton flavor-violating process. The goal of the experiment is to reach a single event sensitivity of 2.5 × 10"−"1"7, to set an upper limit on the muon conversion rate at 6.7 × 10"−"1"7 in a three-year run. For this purpose, the Mu2e detector is designed to identify electrons from muon conversion and reduce the background to a negligible level. It consists of a low-mass straw tracker and a pure CsI crystal calorimeter. In this paper, the performance of undoped CsI single crystal is reported. Crystals from many vendors have been characterized by determining their Light Yield (LY) and Longitudinal Response Uniformity (LRU), when read with a UV extended PMT, and their time resolution when coupled to a silicon photomultiplier. The crystals show a LY of ∼ 100 photoelectrons per MeV when wrapped with Tyvek and coupled to the PMT without optical grease. The LRU is well represented by a linear slope that is on average 0.6%/cm. Both measurements have been performed using a "2"2Na source. The timing performance has been evaluated exploiting cosmic rays, with MPPC readout. A timing resolution lower than 400 ps has been achieved (at ∼ 20 MeV, which is the energy released by a minimum ionizing particle in the crystal).

  6. Growth of emerald single crystals

    International Nuclear Information System (INIS)

    Bukin, G.V.; Godovikov, A.A.; Klyakin, V.A.; Sobolev, V.S.

    1986-01-01

    In addition to its use for jewelry, emerald can also be used in low-noise microwave amplifiers. The authors discuss flux crystallization of emerald and note that when emerald is grown by this method, it is desirable to use solvents which dissolve emerald with minimum deviations from congruence but at the same time with sufficient high efficiency. Emerald synthesis and crystal growth from slowly cooled solutions is discussed as another possibility. The techniques are examined. Vapor synthesis and growht of beryl crystals re reviewed and the authors experimentally study the seeded CVD crystallization of beryl from BeO, Al 2 O 3 and SiO 2 oxides, by using complex compounds as carrier agents. The color of crystals of emerald and other varieties of beryl is detemined by slelective light absorption in teh visible part of the spectrum and depends on the density and structural positions of chromphore ions: chromium, iron, vanadium, nickel, manganese and cobalt

  7. Study of dielectric relaxation and AC conductivity of InP:S single crystal

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.; El-Shazly, E. A.

    2012-07-01

    The dielectric relaxation and AC conductivity of InP:S single crystal were studied in the frequency range from 100 to 5.25 × 105 Hz and in the temperature range from 296 to 455 K. The dependence of the dielectric constant (ɛ1) and the dielectric loss (ɛ2) on both frequency and temperature was investigated. Since no peak was observed on the dielectric loss, we used a method based on the electric modulus to evaluate the activation energy of the dielectric relaxation. Scaling of the electric modulus spectra showed that the charge transport dynamics is independent of temperature. The AC conductivity (σAC) was found to obey the power law: Aωs. Analysis of the AC conductivity data and the frequency exponent showed that the correlated barrier hopping (CBH) model is the dominant mechanism for the AC conduction. The variation of AC conductivity with temperature at different frequencies showed that σAC is a thermally activated process.

  8. Contribution on creep polygonization study in crystals. Creep of single crystalline silver chloride and sodium chloride

    International Nuclear Information System (INIS)

    Pontikis, Vassilis

    1977-01-01

    Subgrain formation and their influence on plastic behavior of materials has been studied in the case of single crystals of silver chloride and sodium chloride crept at high temperature (T > 0.5 T melting ). It is shown that the creep rate ε is a function of the mean subgrain diameter d. For secondary creep ε ∝ d k with k = 2 for NaCl and AgCl. During secondary creep, the substructure changes continuously: sub-boundaries migrate and sub-grains rotate. We find that sub-boundaries migration accounts for 35 pc of the total strain and that subgrain misorientation θ increases linearly with strain ε: θ ∝ 0.14 ε. The stability of permanent creep seems related to the power that the substructure is able to dissipate. The possible subgrain formation mechanisms are examined. It is shown that subgrain formation is closely related to the geometrical conditions of deformation and to the heterogeneities of this later. (author) [fr

  9. Large magnetoresistance and Fermi surface study of Sb2Se2Te single crystal

    Science.gov (United States)

    Shrestha, K.; Marinova, V.; Graf, D.; Lorenz, B.; Chu, C. W.

    2017-09-01

    We have studied the magnetotransport properties of a Sb2Se2Te single crystal. Magnetoresistance (MR) is maximum when the magnetic field is perpendicular to the sample surface and reaches a value of 1100% at B = 31 T with no sign of saturation. MR shows Shubnikov de Haas (SdH) oscillations above B = 15 T. The frequency spectrum of SdH oscillations consists of three distinct peaks at α = 32 T, β = 80 T, and γ = 117 T indicating the presence of three Fermi surface pockets. Among these frequencies, β is the prominent peak in the frequency spectrum of SdH oscillations measured at different tilt angles of the sample with respect to the magnetic field. From the angle dependence β and Berry phase calculations, we have confirmed the trivial topology of the β-pocket. The cyclotron masses of charge carriers, obtained by using the Lifshitz-Kosevich formula, are found to be mβ*=0.16mo and m γ*=0.63 mo for the β and γ bands, respectively. The Large MR of Sb2Se2Te is suitable for utilization in electronic instruments such as computer hard discs, high field magnetic sensors, and memory devices.

  10. Single crystal neutron diffraction study of SrFeOsub(3-x)(x=0. 1)

    Energy Technology Data Exchange (ETDEWEB)

    Oda, H; Yamaguchi, Y; Takei, H; Watanabe, H [Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals

    1977-01-01

    Neutron diffraction study was carried out on single crystals of the perovskite oxide SrFeOsub(3-x)(x=0.1). SrFeOsub(3-x)(x=0.1) has a proper screw spin structure with the propagation vector parallel to (111) direction and its Neel temperature is 118 K. The electron configuration of Fe/sup 4 +/(3d/sup 4/) ion is close to the low-spin state (tsub(2g)sup(4)) and the oxygen ion has the unpaired electron with the magnetic moment of 0.3..mu..sub(B) antiparallel to the vector sum of the magnetic moments of two iron ions lying on the neighbouring planes perpendicular to the screw axis. The absolute value of the propagation vector is almost constant. 0.130x..sqrt..3.2..pi../a A/sup -1/, at temperatures below 50 K, while it decreases gradually at higher temperatures reaching 0.118x..sqrt..3.2..pi../a A/sup -1/ at Tsub(N).

  11. Single crystal study of the heavy-fermion antiferromagnet CePt2In7

    International Nuclear Information System (INIS)

    Tobash, Paul H; Ronning, F; Thompson, J D; Scott, B L; Bauer, E D; Moll, P J W; Batlogg, B

    2012-01-01

    We report the synthesis, structure, and physical properties of single crystals of CePt 2 In 7 . Single crystal x-ray diffraction analysis confirms the tetragonal I4/mmm structure of CePt 2 In 7 with unit cell parameters a = 4.5886(6) Å, c = 21.530(6) Å and V = 453.32(14) Å 3 . The magnetic susceptibility, heat capacity, Hall effect and electrical resistivity measurements are all consistent with CePt 2 In 7 undergoing an antiferromagnetic order transition at T N = 5.5 K, which is field independent up to 9 T. Above T N , the Sommerfeld coefficient of specific heat is γ ≈ 300 mJ mol -1 K -2 , which is characteristic of an enhanced effective mass of itinerant charge carriers. The electrical resistivity is typical of heavy-fermion behavior and gives a residual resistivity ρ 0 ∼ 0.2 µΩ cm, indicating good crystal quality. CePt 2 In 7 also shows moderate anisotropy of the physical properties that is comparable to structurally related CeMIn 5 (M = Co, Rh, Ir) heavy-fermion superconductors. (paper)

  12. A luminescence-optical spectroscopy study of Rb2KTiOF5 single crystals

    Science.gov (United States)

    Pustovarov, V. A.; Ogorodnikov, I. N.; Kozlov, A. V.; Isaenko, L. I.

    2018-06-01

    Large single crystals of Rb2KTiOF5 (RKTF), grown by slow solidification method, were studied (7-400 K) for various types of optical and radiation effects. The optical absorption spectra, the parameters of the Urbach rule at 293 K (σ = 0.24 and EU = 105 meV), the low-temperature reflection spectra (T = 7 K, E = 3.7-22 eV) were determined. The luminescence spectra (1.2-6.2 eV) and luminescence decay kinetics are studied upon excitation by a nanosecond electron beam (PCL), ultraviolet and vacuum ultraviolet light (PL), or X-rays radiation (XRL). PL excitation spectra under selective photoexcitation by synchrotron radiation (E = 3.7-22 eV, T = 7 K), temperature dependences of the intensity of steady-state XRL in different emission bands, as well as thermoluminescence (7-400 K) are studied. In the visible spectral region, we detected three luminescence bands that were attributed to radiative annihilation of intrinsic excitons (2.25 eV), recombination-type luminescence (2.1 eV) and luminescence of higher TiOF5 complexes (1.9 eV). The exponential component with lifetime of about 19 μs was revealed in the PCL decay kinetics at 2.25 eV. The low-energy onset of the intrinsic host absorption Ec = 3.55 eV was determined on the basis of the experimental data obtained. Spectra of optical constants were calculated by the Kramers-Krönig method, the energy of the onset of the interband transitions Eg = 4.2 eV was determined, and the main peaks of the optical spectra were identified.

  13. Combined ion beam and hyperfine interaction studies of LiNbO3 single crystals

    International Nuclear Information System (INIS)

    Marques, J.G.; Kling, A.; Soares, J.C.; Rebouta, L.

    1999-01-01

    A review of recent studies of LiNbO 3 crystals doped with Hf and Mg,Hf combining high precision RBS/channelling, PIXE/channelling and hyperfine interaction techniques is presented. The lattice location of Hf was found to depend strongly on the dopant concentration, crystal stoichiometry and Mg co-doping level. At low concentrations Hf occupies Li sites in congruent crystals, while it occupies both Li and Nb sites for higher doping levels or in near-stoichiometric crystals. Co-doping with Mg also forces a split location of Hf in Li and Nb sites and when the MgO amount exceeds 4.5 mol% Hf occupies only Nb sites. Neutron irradiation of these crystals displaces Hf from its initial lattice site and leads to a strong decrease of the Nb site fraction. The results are discussed in the framework of the Li and Nb vacancy models currently proposed in the literature for the defect structure of LiNbO 3 . (author)

  14. Analysis of Study Trend of Growth and Characterization of CdZnTe Single Crystal

    International Nuclear Information System (INIS)

    Lee, Kyu Hong; Ha, Jang Ho; Kim, Han Soo

    2011-05-01

    CdZnTe (CZT) alloys are very important semiconducting compounds due to their use in several strategic applications in medical, space, and security devices, especially, radiation detector. Specific problems of the bulk crystal growth are still to be solved. However, since industries require excellent bulk CZT crystals, a strong effort is being organized worldwide to optimize the growth process and obtain better material. This report presents the study trend of the bulk CZT crystal growth and characteristics. After the first section where the problems connected to the complicated phase diagram of CZT are presented, the second section describes the various general physical and chemical properties, together with the compensation problems of the CZT material. In the third section, various growth methods are described, paying attention to the defects generated in the different cases. Further, the annealing process which is an essential step for improving the crystal quality is described. In the last section, the general material characterization methods are presented, as a scientific approach for assessing the quality of the bulk crystal

  15. The effects of moisture on LiD single crystals studied by temperature-programmed decomposition

    International Nuclear Information System (INIS)

    Dinh, L.N.; Cecala, C.M.; Leckey, J.H.; Balooch, M.

    2001-01-01

    Temperature-programmed decomposition (TPD) technique was performed on LiOH powders and LiD single crystals previously exposed to different moisture levels. Our results show that the LiOH decomposition process is rate-limited by an inward moving reaction front mechanism with an activation energy barrier of ∼122-149 kJ/mol. The LiOH structure is stable even if kept at 320 K. However, LiOH structures formed on the surface of LiD single crystals during moisture exposure at low dosages may have multiple activation energy barriers, some of which may be much lower than 122 kJ/mol. The rate-limiting mechanism for the decomposition of LiOH structures with reduced activation energy barriers is consistent with a unimolecular nucleation model. We attribute the lowering of the activation energy barrier for the LiOH decomposition to the existence of sub-stoichiometric Li(OH) x with x 2 O formation is observed. The release of H 2 O molecules from LiOH · H 2 O structure has small activation energy barriers in the range of 48-69 kJ/mol and follows a unimolecular nucleation process. The loosely bonded H 2 O molecules in the LiOH · H 2 O structure can be easily pumped away at room temperature in a reasonable amount of time. Our experiments also suggest that handling LiD single crystals at an elevated temperature of 340 K or more reduces the growth rate of LiOH and LiOH · H 2 O significantly

  16. Vickers microhardness studies on solution-grown single crystals of potassium boro-succinate

    Science.gov (United States)

    Lakshmipriya, M.; Rajan Babu, D.; Ezhil Vizhi, R.

    2015-02-01

    The semiorganic crystals of potassium boro-succinate (KBS) were grown by slow evaporation method. KBS crystallizes in monoclinic system which was confirmed by powder XRD analysis. Vickers microhardness study has been carried out over a load range of 25-100 g. The Vickers hardness numbers (Hv) of the material increases as the load increases so the material is suitable for device fabrication. The Meyer index 'n' is estimated to be greater than 1.6, the crystal system belongs to the soft material category. The elastic stiffness coefficient, c11, has also been calculated using Wooster's empirical relation from the hardness data. The fracture toughness values 'Kc', determined from measurements of crack lengths, were estimated to be 0.15166 MN/m3/2. The brittleness indices 'Bi' were estimated as 276 m-1/2.

  17. Protein-detergent interactions in single crystals of membrane proteins studied by neutron crystallography

    International Nuclear Information System (INIS)

    Timmins, P.A.; Pebay-Peyroula, E.

    1994-01-01

    The detergent micelles surrounding membrane protein molecules in single crystals can be investigated using neutron crystallography combined with H 2 O/D 2 O contrast variation. If the protein structure is known then the contrast variation method allows phases to be determined at a contrast where the detergent dominates the scattering. The application of various constraints allows the resulting scattering length density map to be realistically modeled. The method has been applied to two different forms of the membrane protein porin. In one case both hydrogenated and partially deuterated protein were used, allowing the head group and tail to be distinguished

  18. Protein-detergent interactions in single crystals of membrane proteins studied by neutron crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Timmins, P.A. [ILL, Grenoble (France); Pebay-Peyroula, E. [IBS-UJF Grenoble (France)

    1994-12-31

    The detergent micelles surrounding membrane protein molecules in single crystals can be investigated using neutron crystallography combined with H{sub 2}O/D{sub 2}O contrast variation. If the protein structure is known then the contrast variation method allows phases to be determined at a contrast where the detergent dominates the scattering. The application of various constraints allows the resulting scattering length density map to be realistically modeled. The method has been applied to two different forms of the membrane protein porin. In one case both hydrogenated and partially deuterated protein were used, allowing the head group and tail to be distinguished.

  19. Specific heat studies of pure Nb3Sn single crystals at low temperature

    International Nuclear Information System (INIS)

    Escudero, R; Morales, F; Bernes, S

    2009-01-01

    Specific heat measurements performed on high purity vapor-grown Nb 3 Sn crystals show clear features related to both the martensitic and superconducting transitions. Our measurements indicate that the martensitic anomaly does not display hysteresis, meaning that the martensitic transition could be a weak first-order or a second-order thermodynamic transition. Careful measurements of the two transition temperatures display an inverse correlation between them. At low temperature, specific heat measurements show the existence of a single superconducting energy gap feature.

  20. Prototyping and performance study of a single crystal diamond detector for operation at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit; Kumar, Arvind; Topkar, Anita, E-mail: anita@barc.gov.in; Das, D.

    2017-06-21

    Prototype single crystal diamond detectors with different types of metallization and post metallization treatment were fabricated for the applications requiring fast neutron measurements in the Indian Test Blanket Module (TBM) at the International Thermonuclear Experimental Reactor (ITER) Experiment. The detectors were characterized by leakage current measurements to ascertain that the leakage currents are low and breakdown voltages are higher than the voltage required for full charge collection. The detector response to charged particles was evaluated using a {sup 238+239} Pu dual energy alpha source. The detectors showed an energy resolution of about 2% at 5.5 MeV. In order to study their suitability for the operation at higher temperatures, leakage current variation and alpha response were studied up to 300 °C. At 300 °C, peaks corresponding to 5.156 MeV and 5.499 MeV alphas could be separated and there was no significant degradation of energy resolution. Finally, the detector response to fast neutrons was evaluated using a Deuterium-Tritium (D-T) neutron generator. The observed spectrum showed peaks corresponding to various channels of n-C interactions with a clear isolated peak corresponding to ~8.5 MeV alphas. The detectors also showed high sensitivity of 3.4×10{sup −2} cps/n/(cm{sup 2} s)–4.5×10{sup −2} cps/n/(cm{sup 2} s) and excellent linearity of response in terms of count rate at different neutron flux in the observed range of 3.2×10{sup 5} n/(cm{sup 2} s) to 2.0×10{sup 6} n/(cm{sup 2} s).

  1. Prototyping and performance study of a single crystal diamond detector for operation at high temperatures

    Science.gov (United States)

    Kumar, Amit; Kumar, Arvind; Topkar, Anita; Das, D.

    2017-06-01

    Prototype single crystal diamond detectors with different types of metallization and post metallization treatment were fabricated for the applications requiring fast neutron measurements in the Indian Test Blanket Module (TBM) at the International Thermonuclear Experimental Reactor (ITER) Experiment. The detectors were characterized by leakage current measurements to ascertain that the leakage currents are low and breakdown voltages are higher than the voltage required for full charge collection. The detector response to charged particles was evaluated using a 238+239 Pu dual energy alpha source. The detectors showed an energy resolution of about 2% at 5.5 MeV. In order to study their suitability for the operation at higher temperatures, leakage current variation and alpha response were studied up to 300 °C. At 300 °C, peaks corresponding to 5.156 MeV and 5.499 MeV alphas could be separated and there was no significant degradation of energy resolution. Finally, the detector response to fast neutrons was evaluated using a Deuterium-Tritium (D-T) neutron generator. The observed spectrum showed peaks corresponding to various channels of n-C interactions with a clear isolated peak corresponding to 8.5 MeV alphas. The detectors also showed high sensitivity of 3.4×10-2 cps/n/(cm2 s)-4.5×10-2 cps/n/(cm2 s) and excellent linearity of response in terms of count rate at different neutron flux in the observed range of 3.2×105 n/(cm2 s) to 2.0×106 n/(cm2 s).

  2. Studies of Second Order Optical Nonlinearities of 4-Aminobenzophenone (ABP) Single Crystal Films

    Science.gov (United States)

    Bhowmik, Achintya; Thakur, Mrinal

    1998-03-01

    Specific organic materials exhibit very high second order optical susceptibilities. Growth of single crystal films of these materials and characterization of nonlinear optical properties are necessary for implementation of device applications. We have grown large-area films ( 1 cm^2 area, 4 μm thick) of ABP by a modification of the shear method. Single crystal nature of the films was confirmed by polarized optical microscopy. X-ray diffraction analysis showed a [100] surface orientation. The absorption spectra revealed transparency from 390 nm to 1940 nm. Significant elements of the second order optical susceptibility tensor were measured by detailed SHG experiments using a Nd:YAG laser (1064 nm, 100 ps, 82 MHz). Second-harmonic power was measured using lock-in detection with carefully selected polarization conditions while the film was rotated about the propagation direction. Using LiNbØas the reference, d-coefficients of ABP were found to be d_23=7.2 pm/V and d_22=0.7 pm/V. Type-I and type-II phase-matching directions were identified on the film by analyzing the optical indicatrix surfaces at fundamental and second-harmonic frequencies.

  3. Structural study of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yuto [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Matsushita, Yoshitaka [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Oda, Migaku; Yoshida, Hiroyuki [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan)

    2017-02-15

    Single crystals of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} were synthesized and the crystal structures at 293 K and 113 K were studied using X-ray diffraction experiments. We found a structural phase transition from the room-temperature crystal structure with space group C2/c to a low-temperature structure with space group P2{sub 1}/c, resulting from a rotational displacement of SiO{sub 4} tetrahedra. The temperature dependence of magnetic susceptibility shows a broad maximum around 116 K, suggesting an opening of the Haldane gap expected for one-dimensional antiferromagnets with S=1. However, an antiferromagnetic long-range order was developed below 24 K, probably caused by a weak inter-chain magnetic coupling in the compound. - Graphical abstract: Low temperature crystal structure of LiVSi{sub 2}O{sub 6} and an orbital arrangement within the V-O zig-zag chain along the c-axis. - Highlights: • A low temperature structure of LiVSi{sub 2}O{sub 6} was determined by single crystal X-ray diffraction measurements. • The origin of the structural transition is a rotational displacement of SiO{sub 4} tetrahedra. • The uniform orbital overlap in the V-O zigzag chain makes the system a quasi one-dimensional antiferromagnet.

  4. Epitaxial growth of thin single-crystals and their quality study by Rutherford scattering in channeling conditions

    International Nuclear Information System (INIS)

    Kirsch, Robert.

    1975-01-01

    Some aspects of thin crystalline layers are reminded: vacuum deposition, epitaxial growth, annealing and interdiffusion ion channeling and scattering of 1-2MeV helium ions are used to study the crystalline quality, the annealing effects and in some cases the interdiffusion in epitaxial multilayers of silver, copper gold and nickel. Thin single-crystals of gold and nickel oriented (III) plan parallel to the surface were obtained by successive epitaxial growth from muscovite mica clivages. The mounting techniques of single crystalline, self-supporting, 300 to 1200 Angstroems thick, gold and nickel targets of 3mm diameter are described. The gold single-crystals have dislocation densities of 10 8 cm -2 and the various epitaxial layers are obtained without twinning [fr

  5. From fundamental studies of reactivity on single crystals to the design of catalysts

    Science.gov (United States)

    H. Larsen, Jane; Chorkendorff, Ib

    One of the prominent arguments for performing surface science studies have for many years been to improve and design new and better catalysts. Although surface science has provided the fundamental framework and tools for understanding heterogeneous catalysis until now there have been extremely few examples of actually designing new catalysts based solely on surface science studies. In this review, we shall demonstrate how a close collaboration between different fundamental disciplines like structural-, theoretical-and reactivity-studies of surfaces as well as a strong interaction with industry can have strong synergetic effects and how this was used to develop a new catalyst. As so often before the studies reviewed here were not initiated with the objective to solve a specific problem, but realizing that a new class of very stable two-dimensional alloys could be synthesized from otherwise immiscible metals made it possible to present a new solution to a specific problem in the industrial catalysis relating to methane activation in the steam reforming process. Methane is the main constituent of natural gas and it is an extremely important raw material for many large scale chemical processes such as production of hydrogen, ammonia, and methanol. In the steam reforming process methane and water are converted into a mixture of mainly hydrogen and carbon monoxide, the so-called synthesis gas. Industrially the steam reforming process usually takes place over a catalyst containing small nickel crystallites highly dispersed on a porous support material like aluminum/magnesium oxides in order to achieve a high active metal area. There is a general consensus that the rate limiting step of this process is the dissociative sticking of methane on the nickel surface. Driven by the desire to understand this step and hopefully be able to manipulate the reactivity, a large number of investigations of the methane/nickel interaction have been performed using nickel single crystals as

  6. Growth, optical, electrical and photoconductivity studies of a novel nonlinear optical single crystal: Mercury cadmium chloride thiocyanate

    Science.gov (United States)

    Kumar, S. M. Ravi; Selvakumar, S.; Sagayaraj, P.; Anbarasi, A.

    2015-02-01

    SCN- ligand based organometallic non-linear optical mercury cadmium chloride thiocyanate (MCCTC) crystals are grown from water plus methanol mixed solvent by slow evaporation technique. The grown crystals are confirmed by single crystal X-ray diffraction analysis which reveals that the MCCTC belongs to rhombohedral system with R3c space group. MCCTC exhibits a SHG efficiency which is nearly 17 times more than that of KDP. The dielectric constant, dielectric loss measurements of the sample have been carried out for different frequencies (100 Hz to 5 MHz) and, temperatures (308 to 388 K) and the results are discussed. Photoconductivity study confirms that the title compound possesses negative photoconducting nature. The surface morphology of MCCTC was also investigated

  7. Patterning of Perovskite Single Crystals

    KAUST Repository

    Corzo, Daniel

    2017-06-12

    As the internet-of-things hardware integration continues to develop and the requirements for electronics keep diversifying and expanding, the necessity for specialized properties other than the classical semiconductor performance becomes apparent. The success of emerging semiconductor materials depends on the manufacturability and cost as much as on the properties and performance they offer. Solution-based semiconductors are an emerging concept that offers the advantage of being compatible with large-scale manufacturing techniques and have the potential to yield high-quality electronic devices at a lower cost than currently available solutions. In this work, patterns of high-quality MAPbBr3 perovskite single crystals in specific locations are achieved through the modification of the substrate properties and solvent engineering. The fabrication of the substrates involved modifying the surface adhesion forces through functionalization with self-assembled monolayers and patterning them by photolithography processes. Spin coating and blade coating were used to deposit the perovskite solution on the modified silicon substrates. While single crystal perovskites were obtained with the modification of substrates alone, solvent engineering helped with improving the Marangoni flows in the deposited droplets by increasing the contact angle and lowering the evaporation rate, therefore controlling and improving the shape of the grown perovskite crystals. The methodology is extended to other types of perovskites such as the transparent MAPbCl3 and the lead-free MABi2I9, demonstrating the adaptability of the process. Adapting the process to electrode arrays opened up the path towards the fabrication of optoelectronic devices including photodetectors and field-effect transistors, for which the first iterations are demonstrated. Overall, manufacturing and integration techniques permitting the fabrication of single crystalline devices, such as the method in this thesis work, are

  8. High resolution transmission electron microscopy studies of {sigma} phase in Ni-based single crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Sun Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Pan [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Feng Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Han Xiaodong; Mao Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2012-09-25

    Graphical abstract: (a) TEM micrograph of {sigma} phase; (b) HRTEM image of {sigma}/{gamma} interface corresponding to the area of the white frame in (a); (c) an enlarged image of area from the white frame in (b). The combination of {sigma}/{gamma} interface appears very well, and a two-atomic-layer step is shown on the {sigma}/{gamma} interface. In addition, {sigma} phase has the orientation relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma}}, (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. Highlights: Black-Right-Pointing-Pointer Elemental characteristic of {sigma} phase is studied by HAADF techniques and EDS analysis. Black-Right-Pointing-Pointer Interfacial characteristics of {sigma}/{gamma} interface are revealed by HRTEM. Black-Right-Pointing-Pointer An atomic structural {sigma}/{gamma} interface with a two-atomic-layer step has been proposed. - Abstract: By means of high resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field image technique (HAADF), morphological of plate-shaped {sigma} phase and interfacial characteristics between plate-shaped {sigma} phase and {gamma} phase in Ni-based single crystal superalloys have been studied. On the basis of HRTEM observations, an atomic structural interface between {sigma} phase and {gamma} phase with a step has been proposed. {sigma} Phase has the relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma},} (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. The compositional characteristics of the {sigma} phase which

  9. Effect of SHI irradiation on structural, surface morphological and optical studies of CVT grown ZnSSe single crystals

    International Nuclear Information System (INIS)

    Kannappan, P.; Asokan, K.; Krishna, J.B.M.; Dhanasekaran, R.

    2013-01-01

    Highlights: •CVT grown ZnSSe single crystals were irradiated with 120 MeV Au ion. •The GIXRD results show the FWHM increases with increasing ion fluency. •The AFM study show the surface roughness increases with ion fluency. •The optical band gap energy vary with increasing ion fluency. •The PL emission decreases with increasing ion fluency. -- Abstract: The ZnSSe single crystals grown by chemical vapour transport (CVT) method have been irradiated by 120 MeV Au 9+ ions at room temperature with fluences of 1 × 10 12 and 5 × 10 12 ions/cm 2 . The grazing incidence X-ray diffraction (GIXRD) results show that the full width at half maximum (FWHM) value for the as grown ZnSSe crystal is 0.215°; and for the irradiated samples, the FWHM values are 0.413° and 0.625°, with the increase of ion fluences. The atomic force microscopy (AFM) studies reveal the formation of the pits and islands due to irradiation. The optical absorption cut off wavelength is found to be 441 nm for as grown ZnSSe crystal. The cut off values are increased to 447 nm and 457 nm for the irradiated samples with increasing ion fluency. The photoluminescence studies show the emission for the as grown ZnSSe is 590 nm whereas for the irradiated samples in the emission range it is 580–590 nm and 575–595 nm due to SHI irradiation. FT-Raman spectra analysis has been made for the ZnSSe single crystals and irradiated samples. The results are discussed in detail

  10. Effect of SHI irradiation on structural, surface morphological and optical studies of CVT grown ZnSSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kannappan, P. [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Asokan, K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Krishna, J.B.M. [UGC-DAE Consortium for Scientific Research, III-/LB-8, Bidhan nagar, Kolkata 700 098 (India); Dhanasekaran, R., E-mail: rdcgc@yahoo.com [Crystal Growth Centre, Anna University, Chennai 600 025 (India)

    2013-12-15

    Highlights: •CVT grown ZnSSe single crystals were irradiated with 120 MeV Au ion. •The GIXRD results show the FWHM increases with increasing ion fluency. •The AFM study show the surface roughness increases with ion fluency. •The optical band gap energy vary with increasing ion fluency. •The PL emission decreases with increasing ion fluency. -- Abstract: The ZnSSe single crystals grown by chemical vapour transport (CVT) method have been irradiated by 120 MeV Au{sup 9+} ions at room temperature with fluences of 1 × 10{sup 12} and 5 × 10{sup 12} ions/cm{sup 2}. The grazing incidence X-ray diffraction (GIXRD) results show that the full width at half maximum (FWHM) value for the as grown ZnSSe crystal is 0.215°; and for the irradiated samples, the FWHM values are 0.413° and 0.625°, with the increase of ion fluences. The atomic force microscopy (AFM) studies reveal the formation of the pits and islands due to irradiation. The optical absorption cut off wavelength is found to be 441 nm for as grown ZnSSe crystal. The cut off values are increased to 447 nm and 457 nm for the irradiated samples with increasing ion fluency. The photoluminescence studies show the emission for the as grown ZnSSe is 590 nm whereas for the irradiated samples in the emission range it is 580–590 nm and 575–595 nm due to SHI irradiation. FT-Raman spectra analysis has been made for the ZnSSe single crystals and irradiated samples. The results are discussed in detail.

  11. Studies of the kinetics and mechanisms of ammonia synthesis and hydrodesulfurization on metal single-crystal surfaces

    International Nuclear Information System (INIS)

    Gellman, A.J.; Asscher, M.; Somorjai, G.A.

    1985-01-01

    The authors studied the ammonia synthesis reaction over Fe and Re single crystal surfaces and the hydrodesulfurization of thiophene over the Mo(100) single crystal surface. The studies have been performed using UHV surface science tools with the capability of exposing the surfaces to high pressure, high temperature reaction conditions. The ammonia synthesis reaction was shown to be extremely sensitive to surface structure on both Fe and Re, favoring surfaces with a rough or open topography. The HDS reaction on the Mo(100) surface has been shown to be similar to that on MoS/sub 2/ and appears to proceed via a reaction path that does not produce a strong Mo-S bond as an intermediate species

  12. A study of point defect aggregates in #betta#-irradiated LiF single crystals

    International Nuclear Information System (INIS)

    Frugoli, P.A.; Pimentel, C.A.F.

    1982-11-01

    Diffuse X-ray scattering near the Bragg Reflection and Bragg profile analaysis have been made in #betta#-irradiated LiF single crystal X-ray diffractometer. An estimate of the half-width of the diffraction patterns was done and preferential alteration in the profile parameters was observed. Clusters with mean parameter sizes from hundreds to thousands of angstroms were observed but each sample has presented a set of average size values. The nature of clusters was found to be dependent on the #betta#-dose: vacancy at low dose (approximately 10 MRad) and interstitial at high dose (approximately 50 MRad). Some process of coalescence at 50 MRad seems to occur. (Author) [pt

  13. Magnetic measurements on Tl-2212 and Bi-2212 single crystals: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Oussena, M. (Physics Dept., Univ. of Southampton (United Kingdom)); Porter, S. (Physics Dept., Univ. of Southampton (United Kingdom)); Volkozub, A. (Physics Dept., Univ. of Southampton (United Kingdom)); De Groot, P.A.J. (Physics Dept., Univ. of Southampton (United Kingdom)); Lanchester, P.C. (Physics Dept., Univ. of Southampton (United Kingdom)); Ogborne, D. (Physics Dept., Univ. of Southampton (United Kingdom) Chemistry Dept., Univ. of Southampton (United Kingdom)); Weller, M.T. (Physics Dept., Univ. of Southampton (United Kingdom) Chemistry Dept., Univ. of Southampton (United Kingdom)); Balakrishnan, G. (Physics Dept., Univ. of Southampton (United Kingdom) Physics Dept., Univ. of Warwick, Coventry (United Kingdom)); Paul, D.McK. (Physics Dept., Univ. of Southampton (United Kingdom) Physics Dept., Univ. of Warwick, Coventry (United Kingdom))

    1994-02-01

    We have compared the magnetic behaviour of two identically shaped single crystals, Tl[sub 2]Ba[sub 2]CaCu[sub 2]O[sub 8] and Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8]. The critical current density is found to decrease more rapidly with temperature in Bi-2212 although it is the highest in this material at low temperatures (T < 10K). I-V characteristic curves have been obtained from measurements of magnetic sweep rate dependencies of the hysteresis loops. We have found that the characteristic temperature at which flux motion becomes important is significantly higher in Tl-2212 than in Bi-2212. Hence the Tl-2212 has a larger effective pinning. (orig.)

  14. Magnetic measurements on Tl-2212 and Bi-2212 single crystals: a comparative study

    International Nuclear Information System (INIS)

    Oussena, M.; Porter, S.; Volkozub, A.; De Groot, P.A.J.; Lanchester, P.C.; Ogborne, D.; Weller, M.T.; Balakrishnan, G.; Paul, D.McK.

    1994-01-01

    We have compared the magnetic behaviour of two identically shaped single crystals, Tl 2 Ba 2 CaCu 2 O 8 and Bi 2 Sr 2 CaCu 2 O 8 . The critical current density is found to decrease more rapidly with temperature in Bi-2212 although it is the highest in this material at low temperatures (T < 10K). I-V characteristic curves have been obtained from measurements of magnetic sweep rate dependencies of the hysteresis loops. We have found that the characteristic temperature at which flux motion becomes important is significantly higher in Tl-2212 than in Bi-2212. Hence the Tl-2212 has a larger effective pinning. (orig.)

  15. Nanotribology at single crystal electrodes: Influence of ionic adsorbates on friction forces studied with AFM

    Energy Technology Data Exchange (ETDEWEB)

    Hausen, Florian; Nielinger, Michael; Ernst, Siegfried [Institut fuer Physikalische und Theoretische Chemie, Universitaet Bonn, Roemerstrasse 164, D-53117 Bonn (Germany); Baltruschat, Helmut [Institut fuer Physikalische und Theoretische Chemie, Universitaet Bonn, Roemerstrasse 164, D-53117 Bonn (Germany)], E-mail: baltruschat@uni-bonn.de

    2008-09-01

    We present friction force measurements on Au(1 1 1) single crystal electrode surfaces performed under electrochemical conditions using an atomic force microscope (AFM). At monoatomic steps friction is increased in both scan directions. In 0.05 M sulfuric acid an increase of friction is observed with the increase of adsorbed sulfate. Friction force increases non-linearly with load. Cu UPD also increases friction in presence of sulfate. However, in presence of 4 x 10{sup -4} M chloride friction is much smaller for all deposited Cu coverages - ranging from a submonolayer up to bulk copper compared to the solution without chloride. After dissolution of bulk copper clusters deposited on Au(1 1 1) we observed an area with higher friction forces due to the formation of an alloy between gold and copper.

  16. Optical and transport properties of single crystal rubrene: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lipeng [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Lu, Jing [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Faculty of Chemistry, Northeast Normal University, Changchun (China); Long, Guankui; Zheng, Fulu [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Zhang, Jingping [Faculty of Chemistry, Northeast Normal University, Changchun (China); Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-12-20

    Optical and charge transport properties of single crystal rubrene are investigated using the multi-mode Brownian oscillator (MBO) model, the charge hopping model with quantum nuclear tunneling, and the Munn–Silbey approach. The MBO model is adopted to calculate absorption and photoluminescence spectra, yielding results in excellent agreement with measurements. In addition, temperature dependence of zero phonon lines (ZPL) and phonon sidebands (PSBs) of absorption spectra is also examined using the MBO model, revealing a nearly linear dependence of line widths of the ZPL and the PSBs on temperature. Model parameters obtained from MBO fitting and TD-DFT computation are then utilized for hole mobility calculations. It is found that temperature dependence of the calculated mobility is in general agreement with measurements, exhibiting “band-like” transport behavior.

  17. Single crystal study of antiferromagnetic CePd3Al9

    International Nuclear Information System (INIS)

    Baumbach, R E; Scott, B L; Ronning, F; Thompson, J D; Bauer, E D

    2014-01-01

    Single crystal x-ray diffraction, magnetic susceptibility (M), heat capacity (C), and electrical resistivity (ρ) measurements are reported for specimens of the new tetragonal compound CePd 3 Al 9 , which forms in a new structure type. X-ray diffraction measurements reveal that the nearest neighbor Ce–Ce distances are large (d Ce–Ce  = 5.272 Å), suggesting that this compound may be described as a stoichiometric dilute Kondo lattice. Thermodynamic and transport measurements reveal antiferromagnetic order near T N  = 0.9 K. The ordered ground state emerges from a lattice of localized Ce ions that are weakly hybridized with the conduction electrons, as revealed by the moderate electronic coefficient of the specific heat γ ≈ 45 mJ mol −1  K −2 (extrapolated from above T N ) and the lack of evidence for Kondo coherence in the magnetic susceptibility and electrical resistivity. The application of a magnetic field initially suppresses the magnetic order at a rate of −0.04 K kOe −1 , but Zeeman splitting of the doublet ground state produces a nonmagnetic singlet before T N reaches zero. The data additionally reveal that chemical/structural disorder plays an important role, as evidenced by results from single crystal x-ray diffraction, the broadness of the peak at T N in the heat capacity, and the small residual resistivity ratio RRR = ρ 300 K /ρ 0  = 1.3. (paper)

  18. Single-crystal study of the charge density wave metal LuNiC2

    Science.gov (United States)

    Steiner, S.; Michor, H.; Sologub, O.; Hinterleitner, B.; Höfenstock, F.; Waas, M.; Bauer, E.; Stöger, B.; Babizhetskyy, V.; Levytskyy, V.; Kotur, B.

    2018-05-01

    We report on single-crystal growth, single-crystal x-ray diffraction, physical properties, and density functional theory (DFT) electronic structure as well as Fermi surface calculations for two ternary carbides, LuCoC2 and LuNiC2. Electrical resistivity measurements reveal for LuNiC2 a charge density wave (CDW) transition at TCDW≃450 K and, for T >TCDW , a significant anisotropy of the electrical resistivity, which is lowest along the orthorhombic a axis. The analysis of x-ray superstructure reflections suggest a commensurate CDW state with a Peierls-type distortion of the Ni atom periodicity along the orthorhombic a axis. DFT calculations based on the CDW modulated monoclinic structure model of LuNiC2 as compared to results of the orthorhombic parent type reveal the formation of a partial CDW gap at the Fermi level which reduces the electronic density of states from N (EF)=1.03 states/eV f.u. without CDW to N (EF)=0.46 states/eV f.u. in the CDW state. The corresponding bare DFT Sommerfeld value of the latter, γDFTCDW=0.90 mJ/mol K2, reaches reasonable agreement with the experimental value γ =0.83 (5 ) mJ/mol K2 of LuNiC2. LuCoC2 displays a simple metallic behavior with neither CDW ordering nor superconductivity above 0.4 K. Its experimental Sommerfeld coefficient, γ =5.9 (1) mJ/mol K2, is in realistic correspondence with the calculated, bare Sommerfeld coefficient, γDFT=3.82 mJ/mol K2, of orthorhombic LuCoC2.

  19. Growth and surface topography of WSe_2 single crystal

    International Nuclear Information System (INIS)

    Dixit, Vijay; Vyas, Chirag; Pataniya, Pratik; Jani, Mihir; Pathak, Vishal; Patel, Abhishek; Pathak, V. M.; Patel, K. D.; Solanki, G. K.

    2016-01-01

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe_2 were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe_2 crystals. Single crystalline nature of the crystals was confirmed by SAED.

  20. Antiferromagnetism in chromium alloy single crystals

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Trego, A.L.; Mackintosh, A.R.

    1965-01-01

    The antiferromagnetism of single crystals of dilute alloys of V, Mn and Re in Cr has been studied at 95°K and 300°K by neutron diffraction. The addition of V causes the diffraction peaks to decrease in intensity and move away from (100), while Mn and Re cause them to increase and approach (100) s...

  1. Synthesis and temperature dependent Raman studies of large crystalline faces topological GeBi4Te7 single crystal

    Science.gov (United States)

    Mal, Priyanath; Bera, G.; Turpu, G. R.; Srivastava, Sunil K.; Das, Pradip

    2018-05-01

    We present a study of structural and vibrational properties of topological insulator GeBi4Te7. Modified Bridgeman technique is employed to synthesize the single crystal with relatively large crystalline faces. Sharp (0 0 l) reflection confirms the high crystallinity of the single crystal. We have performed temperature dependent Raman measurement for both parallel and perpendicular to crystallographic c axis geometry. In parallel configuration we have observed seven Raman modes whereas in perpendicular geometry only four of these are identified. Appearance and disappearance of Raman modes having different intensities for parallel and perpendicular to c measurement attribute to the mode polarization. Progressive blue shift is observed with lowering temperature, reflects the increase in internal stress.

  2. Lithium tantalate single crystal for pyroelectricity-based laser energy-meter: growth, application and phase transition study

    International Nuclear Information System (INIS)

    Bhaumik, Indranil; Ganesamoorthy, S.; Bhatt, R.; Karnal, A.K.; Gupta, P.K.

    2009-01-01

    Single crystals of lithium tantalate have been grown. Dielectric-spectroscopy study reveals phase transition in congruent lithium tantalate (CLT) single crystal is diffusive and frequency dependent in contrast to that in near stoichiometric lithium tantalate where it is sharper. The ac conductivity measurements show that the conductivity is lower for 0.5Mg-SLT as compared to 1.0Mg-SLT. This is explained in terms of a Li-vacancy model. Calculation of activation energy from the lnσ vs. 1000/T plot reveals that hopping of Li + ions becomes difficult for 0.5 Mg-SLT. The pyroelectric response of CLT for pulsed Nd:YAG laser output has been tested. (author)

  3. Study of a macrodefect in a silicon carbid single crystal by means of X-ray phase contrast

    Energy Technology Data Exchange (ETDEWEB)

    Argunova, T. S., E-mail: argunova2002@mail.ru [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Kohn, V. G. [National Research Centre “Kurchatov Institute” (Russian Federation); Lim, J. H. [Pohang Accelerator Laboratory (Korea, Republic of); Je, J. H. [Pohang University of Science and Technology, Department of Materials Science and Engineering (Korea, Republic of)

    2016-11-15

    The morphology of a macrodefect in a single-crystal silicon carbide wafer has been investigated by the computer simulation of an experimental X-ray phase-contrast image. A micropipe, i.e., a long cavity with a small (elliptical in the general case) cross section, in a single crystal has been considered as a macrodefect. A far-field image of micropipe has been measured with the aid of synchrotron radiation without a monochromator. The parameters of micropipe elliptical cross section are determined based on one projection in two directions: parallel and perpendicular to the X-ray beam propagation direction, when scanning along the pipe axis. The results demonstrate the efficiency of the phase contrast method supplemented with computer simulation for studying such macrodefects when the defect position in the sample volume is unknown beforehand.

  4. High-quality single crystals for neutron experiments

    Indian Academy of Sciences (India)

    studies and our collaborative research projects with other UK and international groups will be discussed. Keywords. Crystal growth; floating zone method; neutron scattering. ... of single crystals of new materials is a highly competitive business.

  5. EPR and optical absorption studies of paramagnetic molecular ion (VO2+) in Lithium Sodium Acid Phthalate single crystal

    Science.gov (United States)

    Subbulakshmi, N.; Kumar, M. Saravana; Sheela, K. Juliet; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.

    2017-12-01

    Electron Paramagnetic Resonance (EPR) spectroscopic studies of VO2+ ions as paramagnetic impurity in Lithium Sodium Acid Phthalate (LiNaP) single crystal have been done at room temperature on X-Band microwave frequency. The lattice parameter values are obtained for the chosen system from Single crystal X-ray diffraction study. Among the number of hyperfine lines in the EPR spectra only two sets are reported from EPR data. The principal values of g and A tensors are evaluated for the two different VO2+ sites I and II. They possess the crystalline field around the VO2+ as orthorhombic. Site II VO2+ ion is identified as substitutional in place of Na1 location and the other site I is identified as interstitial location. For both sites in LiNaP, VO2+ are identified in octahedral coordination with tetragonal distortion as seen from the spin Hamiltonian parameter values. The ground state of vanadyl ion in the LiNaP single crystal is dxy. Using optical absorption data the octahedral and tetragonal parameters are calculated. By correlating EPR and optical data, the molecular orbital bonding parameters have been discussed for both sites.

  6. Single Crystal Filters for Neutron Spectrometry

    International Nuclear Information System (INIS)

    Habib, N.

    2008-01-01

    A study of neutron transmission properties trough a large single crystals specimens of Si, Ge, Pb, Bi and sapphire at 300 K and 80 K have been made for a wide range of neutron energies. The effectiveness of such filters is given by the ratio of the total cross-section of unwanted epithermal neutrons to that the desired thermal neutron beam and by the optimum choice of the crystal orientation, its mosaic spread, thickness and temperature.Our study indicates that sapphire is significantly more effective than the others for a wide range of neutron energies

  7. The high-pressure behavior of spherocobaltite (CoCO3): a single crystal Raman spectroscopy and XRD study

    Science.gov (United States)

    Chariton, Stella; Cerantola, Valerio; Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Kupenko, Ilya; McCammon, Catherine; Dubrovinsky, Leonid

    2018-01-01

    Magnesite (MgCO3), calcite (CaCO3), dolomite [(Ca, Mg)CO3], and siderite (FeCO3) are among the best-studied carbonate minerals at high pressures and temperatures. Although they all exhibit the calcite-type structure ({R}\\bar{3}{c}) at ambient conditions, they display very different behavior at mantle pressures. To broaden the knowledge of the high-pressure crystal chemistry of carbonates, we studied spherocobaltite (CoCO3), which contains Co2+ with cation radius in between those of Ca2+ and Mg2+ in calcite and magnesite, respectively. We synthesized single crystals of pure spherocobaltite and studied them using Raman spectroscopy and X-ray diffraction in diamond anvil cells at pressures to over 55 GPa. Based on single crystal diffraction data, we found that the bulk modulus of spherocobaltite is 128 (2) GPa and K' = 4.28 (17). CoCO3 is stable in the calcite-type structure up to at least 56 GPa and 1200 K. At 57 GPa and after laser heating above 2000 K, CoCO3 partially decomposes and forms CoO. In comparison to previously studied carbonates, our results suggest that at lower mantle conditions carbonates can be stable in the calcite-type structure if the radius of the incorporated cation(s) is equal or smaller than that of Co2+ (i.e., 0.745 Å).

  8. Non linear optical studies on semiorganic single crystal: L-arginine 4-nitrophenalate 4-nitrophenol dihydrate (LAPP)

    Science.gov (United States)

    Mahadevan, M.; Sankar, P. K.; Vinitha, G.; Arivanandhan, M.; Ramachandran, K.; Anandan, P.

    2017-07-01

    L-arginine 4-nitrophenalate 4-nitrophenol dihydrate (LAPP) has been synthesized and grown by solution growth at room temperature using deionized water as a solvent. The various functional groups of the sample were identified by Fourier transform infra-red and Fourier transforms - Raman spectroscopic analyses. The Laser damage threshold of LAPP has been studied. Refractive index of LAPP single crystal was measured using Metricon prism coupler Instrument. The etching studies were carried out to study the quality of the grown crystals. The third order nonlinear optical properties of LAPP sample was analyzed by the Z-scan technique using 532 nm diode pumped CW Nd: YAG laser. The LAPP material exhibits negative optical nonlinearity. The results show that LAPP sample has potential applications in nonlinear optics and it can be exploited for optical limiting or switching.

  9. Experimental and numerical study of the high-temperature structure of copper single crystal surfaces

    International Nuclear Information System (INIS)

    Loisel, Bertrand

    1989-01-01

    The structure of copper single crystal surfaces has been investigated on an atomic scale using two complementary tools: helium beam diffraction experiments and computer simulations by molecular dynamics. In the case of stepped surfaces, the roughening transition occurs at low temperature. Our helium beam diffraction experiments in the range 70-1000 K reveal this transition at 650±50 K and 150±50 K respectively on the (331) and (310) surfaces. We emphasize the role of the terrace and step structure on the thermal roughness, which is ruled by microscopic energies related to the creation and interaction of defects on the step edges. Adsorbing oxygen on a rough (310) surface gives rise to ordered superstructures. In our computer simulations, the interatomic forces are derived from an empiric N-body potential which leads to a realistic description of the static and dynamical properties of the bulk metal and its surfaces. We analyze the results of high-temperature simulations on the (110) surface. Two types of disorder are distinguished: the creation of adatom-vacancy pairs and the enhancement of the vibrational amplitudes of the atoms near their equilibrium site. We establish that both phenomena take place in the same temperature range. These simulations also indicate the very anisotropic behaviour of the surface at high temperatures (> 1000 K). (author) [fr

  10. ESR study of irradiated single crystals of the cocrystalline complex of cytidine: Salicylic acid

    International Nuclear Information System (INIS)

    Close, D.M.; Sagstuen, E.

    1983-01-01

    Irradiation at 77 K of single crystals of the 1:1 complex of cytidine and salicylic acid produces a phenoxyl radical formed by oxidation of the salicylic acid. Anisotropic hyperfine coupling tensors have been determined for this radical which are associated with the para and ortho hydrogens. No cytidine oxidation products (alkoxy or hydroxyalkyl radicals) were observed at 77 K. Following the decay of the phenoxyl radical at room temperature, four radicals were detected. These include the cytosine 5--yl and 6--yl radicals, formed by H addition to the cytosine ring, and an anisotropic doublet. By UV irradiation at room temperature, it is possible to convert a significant fraction of 6-yl radicals into 5-yl radicals. Hyperfine coupling and g tensors determined for the anisotropic doublet indicate that this radical is formed in the C/sub 1'/-C/sub 2'/ region of the sugar moiety. These results indicate a shift in radiation damage away from the salicylic acid upon warming, and show that the radiation chemistry of the cocrystalline complex is different from that of the isolated bases

  11. Synchrotron Topographic and Diffractometer Studies of Buried Layered Structures Obtained by Implantation with Swift Heavy Ions in Silicon Single Crystals

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Wieteska, K.; Zymierska, D.; Graeff, W.; Czosnyka, T.; Choinski, J.

    2006-01-01

    A distribution of crystallographic defects and deformation in silicon crystals subjected to deep implantation (20-50 μm) with ions of the energy of a few MeV/amu is studied. Three different buried layered structures (single layer, binary buried structure and triple buried structure) were obtained by implantation of silicon single crystals with 184 MeV argon ions, 29.7 MeV boron ions, and 140 MeV argon ions, each implantation at a fluency of 1x10 14 ions cm -2 . The implanted samples were examined by means of white beam X-ray section and projection topography, monochromatic beam topography and by recording local rocking curves with the beam restricted to 50 x 50 μm 2 . The experiment pointed to a very low level of implantation-induced strain (below 10 -5 ). The white beam Bragg case section experiment revealed a layer producing district black contrast located at a depth of the expected mean ion range. The presence of these buried layered structures in studied silicon crystals strongly affected the fringe pattern caused by curvature of the samples. In case of white beam projection and monochromatic beam topographs the implanted areas were revealed as darker regions with a very tiny grain like structure. One may interpret these results as the effect of considerable heating causing annihilation of point defects and formation of dislocation loops connected with point defect clusters. (author)

  12. X-ray diffraction study of stacking faults in a single crystal of 2H SiC

    International Nuclear Information System (INIS)

    Pandey, D.; Krishna, P.

    1977-01-01

    The nature of random stacking faults in a heavily disordered single crystal of 2H SiC has been investigated by studying the broadening of x-ray diffraction maxima. The intensity distribution along the 10.1 reciprocal lattice row was recorded on a four-circle, computer-controlled single crystal diffractometer. The 10.1 reflections with 1 even were found to be considerably broadened showing that the stacking faults present are predominantly intrinsic faults ( both growth and deformation faults). A careful study of the half-width values of different 10.1 reflections revealed that the fault probabilities are large. Exact expressions for the diffracted intensity and the observable diffraction effects were obtained and these were then used to calculate the deformation and growth fault probabilities which were found to be 0.20 and 0.11 respectively. It is suggested that several deformation fault configurations result from a clustering of growth faults. The results obtained are compared with those obtained for 2H ZnS crystals. (author)

  13. Experimental study of micro-milling mechanism and surface quality of a nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qi; Gong, Yadong; Zhou, Yun Guang; Wen, Xue Long [School of Mechanical Engineering and Automation, Northeastern University, Shenyang (China)

    2017-01-15

    Micro-milling is widely used as a method for machining of micro-parts with high precision and efficiency. Taking the nickel-based single-crystal superalloy DD98 as the research object, the crystal characteristics of single-crystal materials were analysed, and the removal mechanism of single-crystal micro-milled parts was described. Based on molecular dynamics, a simulation model for nickel-based single-crystal superalloy DD98 micro-milling was established. Based on the response surface method of central composite design, the influences of spindle speed, feed rate, and milling depth on the surface roughness were examined, and a second-order regression model of the DD98 surface roughness was established. Using analysis of variance and the residuals of the model, a significant influence on surface roughness was found in the following order from large to small: Feed rate, spindle speed, and milling depth. Comparisons were conducted between the micro-milling experimental values and the predicted model values for different process parameters. The results show that the model fit is relatively high, and the adaptability is good. Scanning electron microscopy analysis of the micro-milling surfaces was performed to verify the slip and the removal mechanism of single-crystal materials. These results offer a theoretical reference and experimental basis for micro-milling of single-crystal materials.

  14. Spectroscopic studies of organometallic compounds on single crystal metal surfaces: Surface acetylides of silver (110)

    Science.gov (United States)

    Madix, Robert J.

    The nature of compounds formed by the reaction of organic molecules with metal surfaces can be studied with a battery of analytical methods based on both physicals and chemical understanding. In this paper the application of UPS, XPS, LEED and EELS as well as temperature programmed reaction spectroscopy (TPRS) and chemical titration methods to the characterization of surface complexes is discussed. Particular emphasis is given to the reaction of acetylene with a single crystal surface of silver, Ag(110). Previous work has shown that this surface, when clean, is unreactive to hydrocarbons, alcohols and carboxylic acids under ultra high vacuum conditions. Preadsorption of oxygen, however, renders the surface reactive, and a wide variety of organometallic surface compounds can be formed. As expected then, no stable adsorption state and no reaction was observed with clean Ag(110) following room temperature exposure to acetylene. Following exposure at 150 K, however, a weekly bound chemisorption state was observed to desorb at 195 K, indicating a binding energy to the surface of approximately 12 kcal/gmole. Reaction with preadsorbed oxygen gave water formulation upon dosing and produced surface intermediates which yeilded two acetylene desorption states at 195 and 175 K. Heating above 300 K to completely desorb the higher temperature state produced new, well-defined LEED Features due to residual surface carbon which disappeared when the surface was heated above 550 K. Clearly, there were distinc changes in the nature of the absorbed layer at 195, 300 and 550 K. These changes were reflected in XPS. For the weakly chemisorbed acetylene a large C(ls) peak at 285.6 eV with a small, broad, indistinc shoulder at higher binding energy (288.2) was observed. The spectrum of the species following acetylene desorption at 275 K, however, showed the formulation of a large C(ls) peak at 283.6 eV in addition to peaks characteristics of the weakly chemisorbed state. This result

  15. Growth of CuSO4 · 5H2O single crystals and study of some of their properties

    Science.gov (United States)

    Manomenova, V. L.; Stepnova, M. N.; Grebenev, V. V.; Rudneva, E. B.; Voloshin, A. E.

    2013-05-01

    Large single crystals of copper sulfate pentahydrate CuSO4 · 5H2O of optical quality have been grown; they can be applied as broadband UV optical filters. Their transmission spectra are measured. The crystal thermal stability is investigated and the onset temperature of dehydration is determined to be 46°C.

  16. Studies on the growth aspects, structural, thermal, dielectric and third order nonlinear optical properties of solution grown 4-methylpyridinium p-nitrophenolate single crystal

    Science.gov (United States)

    Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan

    2016-11-01

    An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.

  17. Tracer diffusion studies of 26Mg, 30Si and 18O in single crystal forsterite (Mg2SiO4) and of 18O in single crystal SiO2

    International Nuclear Information System (INIS)

    Schachtner, R.

    1981-01-01

    Tracer diffusion coefficients of Mg, Si and O in monocrystalline forsterite were determined by Sims as a function of temperature and crystal orientation. Former results on oxygen diffusion in SiO 2 single crystals using nuclear activation methods were confirmed by Sims data. The influence of crystal defects and impurities is discussed. (TW)

  18. Single crystal polarized neutron diffraction study of the magnetic structure of HoFeO3.

    Science.gov (United States)

    Chatterji, T; Stunault, A; Brown, P J

    2017-09-27

    Polarised neutron diffraction measurements have been made on HoFeO 3 single crystals magnetised in both the [0 0 1] and [1 0 0] directions (Pbnm setting). The polarisation dependencies of Bragg reflection intensities were measured both with a high field of [Formula: see text] T parallel to [0 0 1] at [Formula: see text] K and with the lower field [Formula: see text] T parallel to [1 0 0] at [Formula: see text] K. A Fourier projection of magnetization induced parallel to [0 0 1], made using the hk0 reflections measured in 9 T, indicates that almost all of it is due to alignment of Ho moments. Further analysis of the asymmetries of general reflections in these data showed that although, at 70 K, 9 T applied parallel to [0 0 1] hardly perturbs the antiferromagnetic order of the Fe sublattices, it induces significant antiferromagnetic order of the Ho sublattices in the [Formula: see text] plane, with the antiferromagnetic components of moment having the same order of magnitude as the induced ferromagnetic ones. Strong intensity asymmetries measured in the low temperature [Formula: see text] structure with a lower field, 0.5 T [Formula: see text] [1 0 0] allowed the variation of the ordered components of the Ho and Fe moments to be followed. Their absolute orientations, in the [Formula: see text] domain stabilised by the field were determined relative to the distorted perovskite structure. This relationship fixes the sign of the Dzyalshinski-Moriya (D-M) interaction which leads to the weak ferromagnetism. Our results indicate that the combination of strong y-axis anisotropy of the Ho moments and Ho-Fe exchange interactions breaks the centrosymmetry of the structure and could lead to ferroelectric polarization.

  19. Study of the Bulk Charge Carrier Dynamics in Anatase and Rutile TiO2 Single Crystals by Femtosecond Time Resolved Spectroscopy

    KAUST Repository

    Maity, Partha; Mohammed, Omar F.; Katsiev, Khabiboulakh; Idriss, Hicham

    2018-01-01

    as the best model for fundamental studies. Their ultrafast charge carrier dynamics especially on TiO2 anatase single crystal (the most active phase) are unresolved. Here femtosecond time resolved spectroscopy (TRS) was carried out to explore the dynamics

  20. EPR and optical absorption study of Cu{sup 2+} doped lithium sulphate monohydrate (LSMH) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sheela, K. Juliet; Subramanian, P., E-mail: psubramaniangri@gmail.com [Department of Physics, Gandhigram Rural Institute-Deemed University, Gandhigram, Dindigul-624302, Tamilnadu (India); Krishnan, S. Radha; Shanmugam, V. M. [CSIR-Central Electrochemical Research Institute, Karaikudi-63006, Tamilnadu (India)

    2016-05-23

    EPR study of Cu{sup 2+} doped NLO active Lithium Sulphate monohydrate (Li{sub 2}SO{sub 4.}H{sub 2}O) single crystals were grown successfully by slow evaporation method at room temperature. The principal values of g and A tensors indicate existence of orthorhombic symmetry around the Cu{sup 2+} ion. From the direction cosines of g and A tensors, the locations of Cu{sup 2+} in the lattice have been identified as interstitial site. Optical absorption confirms the rhombic symmetry and ground state wave function of the Cu{sup 2+} ion in a lattice as d{sub x2-y2}.

  1. The studies of radiation distorations in CdS single crystals by using a proton back-scattering method

    International Nuclear Information System (INIS)

    Grigor'ev, A.N.; Dikij, N.P.; Matyash, P.P.; Nikolajchuk, L.I.; Pivovar, L.I.

    1974-01-01

    The radiation defects in semiconducting CdS single crystals induced during doping with 140 keV Na ions (10 15 -2.10 16 ion/cm 2 ) were studied by the orientation dependence of 700 keV proton backscattering. The absence of discrete peaks in the scattered proton eneryg spectra indicates a small contribution of direct scattering at large angles. The defects formed during doping increase the fractionof dechanneled particles, which are then scattered at large anlges. No amorphization of CdS was observed at high Na ion dose 2x10 16 ion/cm 2

  2. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals.

    Science.gov (United States)

    Zhu, L-F; Friák, M; Lymperakis, L; Titrian, H; Aydin, U; Janus, A M; Fabritius, H-O; Ziegler, A; Nikolov, S; Hemzalová, P; Raabe, D; Neugebauer, J

    2013-04-01

    We employ ab initio calculations and investigate the single-crystalline elastic properties of (Ca,Mg)CO3 crystals covering the whole range of concentrations from pure calcite CaCO3 to pure magnesite MgCO3. Studying different distributions of Ca and Mg atoms within 30-atom supercells, our theoretical results show that the energetically most favorable configurations are characterized by elastic constants that nearly monotonously increase with the Mg content. Based on the first principles-derived single-crystalline elastic anisotropy, the integral elastic response of (Ca,Mg)CO3 polycrystals is determined employing a mean-field self-consistent homogenization method. As in case of single-crystalline elastic properties, the computed polycrystalline elastic parameters sensitively depend on the chemical composition and show a significant stiffening impact of Mg atoms on calcite crystals in agreement with the experimental findings. Our analysis also shows that it is not advantageous to use a higher-scale two-phase mix of stoichiometric calcite and magnesite instead of substituting Ca atoms by Mg ones on the atomic scale. Such two-phase composites are not significantly thermodynamically favorable and do not provide any strong additional stiffening effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Scattering Study of Conductive-Dielectric Nano/Micro-Grained Single Crystals Based on Poly(ethylene glycol, Poly(3-hexyl thiophene and Polyaniline

    Directory of Open Access Journals (Sweden)

    Samira Agbolaghi

    2017-12-01

    Full Text Available Two types of rod-coil block copolymers including poly(3-hexylthiophene-block-poly(ethylene glycol (P3HT-b-PEG and PEG-block-polyaniline (PANI were synthesized using Grignard metathesis polymerization, Suzuki coupling, and interfacial polymerization. Afterward, two types of single crystals were grown by self-seeding methodology to investigate the coily and rod blocks in grafted brushes and ordered crystalline configurations. The conductive P3HT fibrillar single crystals covered by the dielectric coily PEG oligomers were grown from toluene, xylene, and anisole, and characterized by atomic force microscopy (AFM and grazing wide angle X-ray scattering (GIWAXS. Longer P3HT backbones resulted in folding, whereas shorter ones had a high tendency towards backbone lamination. The effective factors on folding of long P3HT backbones in the single crystal structures were the solvent quality and crystallization temperature. Better solvents due to decelerating the growth condition led to a higher number of foldings. Via increasing the crystallization temperature, the system decreased the folding number to maintain its stability. Poorer solvents also reflected a higher stacking in hexyl side chain and π-π stacking directions. The dielectric lamellar PEG single crystals sandwiched between the PANI nanorods were grown from amyl acetate, and analyzed using the interface distribution function (IDF of SAXS and AFM. The molecular weights of PANI and PEG blocks and crystallization temperature were focused while studying the grown single crystals.

  4. Single-Crystal Diamond Nanobeam Waveguide Optomechanics

    Science.gov (United States)

    Khanaliloo, Behzad; Jayakumar, Harishankar; Hryciw, Aaron C.; Lake, David P.; Kaviani, Hamidreza; Barclay, Paul E.

    2015-10-01

    Single-crystal diamond optomechanical devices have the potential to enable fundamental studies and technologies coupling mechanical vibrations to both light and electronic quantum systems. Here, we demonstrate a single-crystal diamond optomechanical system and show that it allows excitation of diamond mechanical resonances into self-oscillations with amplitude >200 nm . The resulting internal stress field is predicted to allow driving of electron spin transitions of diamond nitrogen-vacancy centers. The mechanical resonances have a quality factor >7 ×105 and can be tuned via nonlinear frequency renormalization, while the optomechanical interface has a 150 nm bandwidth and 9.5 fm /√{Hz } sensitivity. In combination, these features make this system a promising platform for interfacing light, nanomechanics, and electron spins.

  5. Single-Crystal Diamond Nanobeam Waveguide Optomechanics

    Directory of Open Access Journals (Sweden)

    Behzad Khanaliloo

    2015-12-01

    Full Text Available Single-crystal diamond optomechanical devices have the potential to enable fundamental studies and technologies coupling mechanical vibrations to both light and electronic quantum systems. Here, we demonstrate a single-crystal diamond optomechanical system and show that it allows excitation of diamond mechanical resonances into self-oscillations with amplitude >200  nm. The resulting internal stress field is predicted to allow driving of electron spin transitions of diamond nitrogen-vacancy centers. The mechanical resonances have a quality factor >7×10^{5} and can be tuned via nonlinear frequency renormalization, while the optomechanical interface has a 150 nm bandwidth and 9.5  fm/sqrt[Hz] sensitivity. In combination, these features make this system a promising platform for interfacing light, nanomechanics, and electron spins.

  6. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-01-01

    -23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating

  7. Confinement stabilises single crystal vaterite rods.

    OpenAIRE

    Schenk, AS; Albarracin, EJ; Kim, YY; Ihli, J; Meldrum, FC

    2014-01-01

    Single-crystals of vaterite, the least-stable anhydrous polymorph of CaCO3, are rare in biogenic and synthetic systems. We here describe the synthesis of high aspect ratio single crystal vaterite rods under additive-free conditions by precipitating CaCO3 within the cylindrical pores of track-etch membranes.

  8. An EPMA study on KNbO3 and NaNbO3 single crystals - potential reference materials for quantitative microanalysis

    International Nuclear Information System (INIS)

    Samardzzija, Z.; Bernik, S.; Malic, B.; Ceh, M.; Marinenko, R.B.

    2004-01-01

    Single crystals of KNbO 3 and NaNbO 3 were selected from the limited number of suitable alkali compounds that are available and evaluated as possible reference materials for the electron-probe microanalysis (EPMA) of alkaline niobates with a composition described by the general formula K 1-x Na x NbO 3 . The EPMA study verified that KNbO 3 and NaNbO 3 single crystals are stable under the electron beam and compositionally homogeneous. A quantitative microanalysis confirmed the composition of pure KNbO 3 , while the NaNbO 3 crystal contained 0.3 mass fraction % of Ca. A significant improvement in the accuracy of the quantitative EPMA of polycrystalline potassium-sodium niobates was achieved using these single crystals as standards. The crystals can also be useful as reference materials for the analysis of sodium and potassium in other materials. (author)

  9. Accurate X-ray diffraction studies of KTiOPO{sub 4} single crystals doped with niobium

    Energy Technology Data Exchange (ETDEWEB)

    Novikova, N. E., E-mail: natnov@ns.crys.ras.ru; Sorokina, N. I.; Alekseeva, O. A.; Verin, I. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Scientific Research Center (Russian Federation); Kharitonova, E. P.; Orlova, E. I.; Voronkova, V. I. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-01-15

    Single crystals of potassium titanyl phosphate doped with 4% of niobium (КТР:4%Nb) and 6% of niobium (KTP:6%Nb) are studied by accurate X-ray diffraction at room temperature. The niobium atoms are localized near the Ti1 and Ti2 atomic positions, and their positions are for the first time refined independent of the titanium atomic positions. Maps of difference electron density in the vicinity of K1 and K2 atomic positions are analyzed. It is found that in the structure of crystal КТР:4%Nb, additional positions of K atoms are located farther from the main positions and from each other than in КТР and KTP:6%Nb crystals. The nonuniform distribution of electron density found in the channels of the КТР:4%Nb structure is responsible for ~20% increase in the signal of second harmonic generation.

  10. Antimicrobial activity and second harmonic studies on organic non-centrosymmetric pure and doped ninhydrin single crystals

    Science.gov (United States)

    Prasanyaa, T.; Jayaramakrishnan, V.; Haris, M.

    2013-03-01

    In this paper, we report the successful growth of pure, Cu2+ ions and Cd2+ ions doped on ninhydrin single crystals by slow solvent evaporation technique. The presence of Cu2+ and Cd2+ ions in the specimen of ninhydrin single crystal has been determined by atomic absorption spectroscopy. The powder X-ray diffraction analysis was done to calculate the lattice parameters of the pure and doped crystals. The percentage of transmittance of the crystal was recorded using the UV-Vis Spectrophotometer. Thermal behaviors of the grown crystals have been examined by the thermal gravimetric/differential thermal analysis. The hardness of the grown crystals was assessed and the results show the minor variation in the hardness value for the pure and doped ninhydrin samples. The value of the work hardening coefficient n was found to be 2.0, 1.0 and 1.06 for pure, copper and cadmium doped ninhydrin crystals respectively. The second harmonic generation efficiency of Cd2+ and Cu2+ doped ninhydrin is 8.3 and 6.3 times greater than well known nonlinear crystal of potassium dihydrogen phosphate respectively. The antibacterial and antifungal activities of the title compound were performed by disk diffusion method against the standard bacteria Escherichia coli, Xanthomonas oryzae and against the fungus Aspergillis niger and Aspergillus flavus.

  11. Temperature and Pressure Dependences of the Elastic Properties of Tantalum Single Crystals Under Tensile Loading: A Molecular Dynamics Study

    Science.gov (United States)

    Li, Wei-bing; Li, Kang; Fan, Kan-qi; Zhang, Da-xing; Wang, Wei-dong

    2018-04-01

    Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.

  12. Molecular dynamics study on the evolution of interfacial dislocation network and mechanical properties of Ni-based single crystal superalloys

    Science.gov (United States)

    Li, Nan-Lin; Wu, Wen-Ping; Nie, Kai

    2018-05-01

    The evolution of misfit dislocation network at γ /γ‧ phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the γ‧ phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension-compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations.

  13. Structure of Radicals from X-irradiated Guanine Derivatives: An Experimental and Computational Study of Sodium Guanosine Dihydrate Single Crystals

    Science.gov (United States)

    Jayatilaka, Nayana; Nelson, William H.

    2008-01-01

    In sodium guanosine dihydrate single crystals, the guanine moiety is deprotonated at N1 due to growth from high-pH (>12) solutions. EPR and ENDOR study of crystals x-irradiated at 10 K detected evidence for three radical forms. Radical R1,characterized by two proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the N1-deprotonated guanine unit. R1 exhibited an unusually distorted structure leading to net positive isotropic components of the hydrogen couplings. Radical R2, characterized by one proton and one nitrogen hyperfine coupling was identified as the primary electron loss product. This product is equivalent to that of deprotonation at N1 by the guanine cation and represents the first ENDOR characterization of that product. Radical R3, characterized by a single hydrogen hyperfine coupling, was identified as the product of net dehydrogenation at C1 of the ribose moiety. The identification of radicals R1-R3 was supported by DFT calculations on several possible structures using the B3LYP/6-311G(2df,p)//6-31G(d,p) approach. Radical R4, detected after warming the crystals to room temperature, was identified as the well-known product of net hydrogenation of C8 of the (N1-deprotonated) guanine component. Radical R1, evidently formed by protonation of the primary electron addition product, was present as roughly 60% of the total radicals detected at 10 K. Radical R2 was present as roughly 27% of the total yield, and the concentration of R3 contributed the remaining 13%. R3 is evidently the product of oneelectron oxidation followed by deprotonation; thus, the balance of oxidation and reduction products is approximately equal within experimental uncertainty. PMID:17249824

  14. Study of the temperature evolution of defect agglomerates in neutron irradiated molybdenum single crystals

    International Nuclear Information System (INIS)

    Lambri, O.A.; Zelada-Lambri, G.I.; Cuello, G.J.; Bozzano, P.B.; Garcia, J.A.

    2009-01-01

    Small angle neutron scattering as a function of temperature, differential thermal analysis, electrical resistivity and transmission electron microscopy studies have been performed in low rate neutron irradiated single crystalline molybdenum, at room temperature, for checking the evolution of the defects agglomerates in the temperature interval between room temperature and 1200 K. The onset of vacancies mobility was found to happen in temperatures within the stage III of recovery. At around 550 K, the agglomerates of vacancies achieve the largest size, as determined from the Guinier approximation for spherical particles. In addition, the decrease of the vacancy concentration together with the dissolution of the agglomerates at temperatures higher than around 920 K was observed, which produce the release of internal stresses in the structure.

  15. Study of the temperature evolution of defect agglomerates in neutron irradiated molybdenum single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lambri, O.A. [Instituto de Fisica Rosario. Member of the CONICET' s Research Staff, Avda. Pellegrini 250, (2000) Rosario, Santa Fe (Argentina); Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avda. Pellegrini 250, (2000) Rosario, Santa Fe (Argentina)], E-mail: olambri@fceia.unr.edu.ar; Zelada-Lambri, G.I. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avda. Pellegrini 250, (2000) Rosario, Santa Fe (Argentina); Cuello, G.J. [Institut Laue Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble (France); Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain); Bozzano, P.B. [Laboratorio de Microscopia Electronica. Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avda. Gral. Paz 1499, (1650) San Martin (Argentina); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)

    2009-04-15

    Small angle neutron scattering as a function of temperature, differential thermal analysis, electrical resistivity and transmission electron microscopy studies have been performed in low rate neutron irradiated single crystalline molybdenum, at room temperature, for checking the evolution of the defects agglomerates in the temperature interval between room temperature and 1200 K. The onset of vacancies mobility was found to happen in temperatures within the stage III of recovery. At around 550 K, the agglomerates of vacancies achieve the largest size, as determined from the Guinier approximation for spherical particles. In addition, the decrease of the vacancy concentration together with the dissolution of the agglomerates at temperatures higher than around 920 K was observed, which produce the release of internal stresses in the structure.

  16. Production and several properties of single crystal austenitic stainless steels

    International Nuclear Information System (INIS)

    Okamoto, Kazutaka; Yoshinari, Akira; Kaneda, Junya; Aono, Yasuhisa; Kato, Takahiko

    1998-01-01

    The single crystal austenitic stainless steels Type 316L and 304L were grown in order to improve the resistance to stress corrosion cracking (SCC) using a unidirectional solidification method which can provide the large size single crystals. The mechanical properties and the chemical properties were examined. The orientation and temperature dependence of tensile properties of the single crystals were measured. The yield stress of the single crystal steels are lower than those of the conventional polycrystal steels because of the grain boundary strength cannot be expected in the single crystal steels. The tensile properties of the single crystal austenitic stainless steel Type 316L depend strongly on the orientation. The tensile strength in orientation are about 200 MPa higher than those in the and orientations. The microstructure of the single crystal consists of a mixture of the continuous γ-austenitic single crystal matrix and the δ-ferrite phase so that the effects of the γ/δ boundaries on the chemical properties were studied. The effects of the δ-ferrite phases and the γ/δ boundaries on the resistance to SCC were examined by the creviced bent beam test (CBB test). No crack is observed in all the CBB test specimens of the single crystals, even at the γ/δ boundaries. The behavior of the radiation induced segregation (RIS) at the γ/δ boundaries in the single crystal austenitic stainless steel Type 316L was evaluated by the electron irradiation test in the high voltage electron microscope (HVEM). The depletion of oversized solute chromium at the γ/δ boundary in the single crystal austenitic stainless steel Type 316L is remarkably lower than that at the grain boundary in the polycrystalline-type 316L. (author)

  17. Relaxor-PT Single Crystal Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2014-07-01

    Full Text Available Relaxor-PbTiO3 piezoelectric single crystals have been widely used in a broad range of electromechanical devices, including piezoelectric sensors, actuators, and transducers. This paper reviews the unique properties of these single crystals for piezoelectric sensors. Design, fabrication and characterization of various relaxor-PT single crystal piezoelectric sensors and their applications are presented and compared with their piezoelectric ceramic counterparts. Newly applicable fields and future trends of relaxor-PT sensors are also suggested in this review paper.

  18. Efficient green luminescence of terbium oxalate crystals: A case study with Judd-Ofelt theory and single crystal structure analysis and the effect of dehydration on luminescence

    Science.gov (United States)

    Alexander, Dinu; Joy, Monu; Thomas, Kukku; Sisira, S.; Biju, P. R.; Unnikrishnan, N. V.; Sudarsanakumar, C.; Ittyachen, M. A.; Joseph, Cyriac

    2018-06-01

    Design and synthesis of Lanthanide based metal organic framework is a frontier area of research owing to their structural diversity enabling specific applications. The luminescence properties of rare earths, tuned by the structural features of Ln-MOFs are investigated extensively. Rare earth oxalates which can be synthesized in a facile method, ensuring the structural features of MOFs with excellent photoluminescence characteristics deserves much attention. This work is the first time report on the single crystal structure and Judd-Ofelt (JO) theoretical analysis - their correlation with the intense and sharp green luminescence of Terbium oxalate crystals. The intense green luminescence observed for Terbium oxalate crystals for a wide range of excitation from DUV to visible region despite the luminescence limiting factors are discussed. The absence of concentration quenching and lifting up of forbidden nature of f-f transitions, allowing direct excitation of Terbium ions is analysed with the help of JO theory and single crystal structure analysis. The JO analysis predicted the asymmetry of Terbium sites, allowing the electric dipole transitions and from the JO intensity parameters, promising spectroscopic parameters - emission cross section, branching ratio, gain band width and gain coefficient of the material were calculated. The single crystal structure analysis revealed the asymmetry of Tb sites and structure of Terbium oxalate is formed by the hydrogen bonded stacking of overlapped six Terbium membered rings connected by the oxalate ligands. The molecularly thick layers thus formed on the crystal surface are imaged by the atomic force microscopy. The presence of water channels in the structure and the effect of lattice water molecules on the luminescence intensity are also investigated.

  19. Systematic study of radiation hardness of single crystal CVD diamond material investigated with an Au beam and IBIC method

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszko, Jerzy; Koenig, Wolfgang; Traeger, Michael [GSI, Darmstadt (Germany); Draveny, Antoine; Galatyuk, Tetyana [TU, Darmstadt (Germany); Grilj, Veljko [RBI, Zagreb (Croatia); Collaboration: HADES-Collaboration

    2016-07-01

    For the future high rate CBM experiment at FAIR a radiation hard and fast beam detector is required. The detector has to perform precise T0 measurement (σ<50 ps) and should also offer decent beam monitoring capability. These tasks can be performed by utilizing single-crystal Chemical Vapor Deposition (ScCVD) diamond based detector. A prototype, segmented, detector have been constructed and the properties of this detector have been studied with a high current density beam (about 3.10{sup 6}/s/mm{sup 2}) of 1.23 A GeV Au ions in HADES. The irradiated detector properties have been studied at RBI in Zagreb by means of IBIC method. Details of the design, the intrinsic properties of the detectors and their performance after irradiation with such beam are reported.

  20. A far ultraviolet spectroscopic study of the reflectance, luminescence and electronic properties of SrMgF4 single crystals

    International Nuclear Information System (INIS)

    Ogorodnikov, I.N.; Pustovarov, V.A.; Omelkov, S.I.; Isaenko, L.I.; Yelisseyev, A.P.; Goloshumova, A.A.; Lobanov, S.I.

    2014-01-01

    The electronic properties of single crystals of SrMgF 4 have been determined using low-temperature (10–293 K) time-resolved vacuum ultraviolet synchrotron radiation spectroscopy, far ultraviolet (3.7–36 eV) reflectance spectra and calculations for the spectra of optical functions. The bandgap of investigated compound was found at E g =12.55eV, the energy threshold for creation of the unrelaxed excitons at E n=1 =11.37eV, and the low-energy fundamental absorption edge at 10.3 eV. Two groups of photoluminescence (PL) bands have been identified: the exciton-type emissions at 2.6–3.3 and 3.3–4.2 eV and defect-related emissions at 1.8–2.6 and 4.2–5.5 eV. It was shown that PL excitation (PLE) for the exciton-type emission bands occurs mainly at the low-energy tail of the fundamental absorption of the crystal with a maximum at 10.7 eV. At excitation energies above E g the energy transfer from the host lattice to the PL emission centers is inefficient. The paper discusses the origin of the excitonic-type PLE spectra taking into account the results of modeling the PLE spectra shape in the framework of a simple diffusion theory and surface energy losses. -- Highlights: • Far-ultraviolet reflection spectra of SrMgF 4 were studied. • Photoluminescence (PL) emission and PL excitation spectra were studied. • Optical function spectra were calculated on the basis of experimental data. • Electronic structure properties of undoped SrMgF 4 crystals were determined

  1. Interaction of Pd single atoms with different CeO2 crystal planes: A first-principles study

    Science.gov (United States)

    He, Bingling; Wang, Jinlong; Ma, Dongwei; Tian, Zhixue; Jiang, Lijuan; Xu, Yan; Cheng, Sujun

    2018-03-01

    The adsorption of single Pd atoms on the various CeO2 surfaces, including (111), (110), and (100), has been studied based on the first-principles calculations. It is found that, according to the calculated adsorption energy, interaction strength between Pd and the three CeO2 surfaces follows the order of (100) > (110) > (111). Interestingly, the effect of the electron localization on the surface Ce ions due to the Pd adsorption on its adsorption stability is more significant for the (110) surface than that for the (111) and (100) surfaces. We also find that the formal oxidation states of Pd0, Pdδ+ (δ < 1) and Pd1+ may appear on the CeO2 (111) surface, and Pdδ+ (δ < 1) and Pd1+ could coexist on the CeO2 (100) surfaces. However, under suitable conditions the CeO2 (110) surface may be covered with Pd2+ ions. Present theoretical results clearly suggest that the interaction between Pd and CeO2 nanocrystals significantly depends on the crystal planes of CeO2. It is expected that our study will give useful insights into the effect of CeO2 crystal plane on the physicochemical and catalytic properties of CeO2 supported Pd catalyst.

  2. Defect free single crystal thin layer

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud

    2016-01-28

    A gallium nitride film can be a dislocation free single crystal, which can be prepared by irradiating a surface of a substrate and contacting the surface with an etching solution that can selectively etch at dislocations.

  3. Defect free single crystal thin layer

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud; Ooi, Boon S.

    2016-01-01

    A gallium nitride film can be a dislocation free single crystal, which can be prepared by irradiating a surface of a substrate and contacting the surface with an etching solution that can selectively etch at dislocations.

  4. The preparation and testing of Nb-Zr and Nb-ZrO2 single crystals for deformation studies

    International Nuclear Information System (INIS)

    Botta Filho, W.J.; Christian, J.W.; Taylor, G.

    1987-01-01

    The difficulties to obtain adequate single crystals of Nb-Zr and Nb-ZrO 2 alloys for deformation studies are discussed. Low-temperature internal oxidation of Nb-Zr alloys followed by ageing at higher temperatures resulted in the precipitation of ZrO 2 particles. However, the effect of this treatment on the particles size and distribution and on the crystallographic structure of the particle was not completely understood. Compression tests in the temperature range 4.2K to 373K showed a small effect of zirconia particles on the mechanical properties of Nb-Zr solid solutions and a significative effect of the amount of oxygen remaining in solid solution after the oxidation treatment. (author) [pt

  5. Synthesis and single crystal x-ray diffraction study of a Schiff base derived from 4-acylpyrazolone and 2-aminophenol

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Naresh; Kant, Rajni, E-mail: vivek-gupta2k2@hotmail.com; Gupta, Vivek K., E-mail: vivek-gupta2k2@hotmail.com [Department of Physics and Electronics, University of Jammu, Jammu Tawi - 180006 (India); Jadeja, R. N. [Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India)

    2014-04-24

    The title compound, (Z)-1-(3-chlorophenyl)-4[1((2hydroxyphenyl)amino)propylidene] -3-methyl-1H-pyrazol-5(4H)-one was synthesized by refluxing compound 1-(m-chlorophenyl)-3-methyl-4-propionyl-5-pyrazolone, with 2-aminophenol in ethanol. The compound crystallizes in the orthorhombic crystal system with space group Pca2{sub 1} having unit cell parameters: a = 26.2993(8), b = 7.0724(2) and c = 18.7170(5)Å. The structure contains two crystallographically independent molecules, A, and, B, in the asymmetric unit cell. The crystal structure was solved by direct method using single crystal X-ray diffraction data collected at room temperature and refined by full-matrix least-squares procedures to a final R- value of 0.049 for 5207 observed reflections.

  6. An X-ray camera for single-crystal studies at high temperatures under controlled atmosphere

    International Nuclear Information System (INIS)

    Adlhart, W.; Tzafaras, N.; Sueno, S.; Jagodzinski, H.; Huber, H.

    1982-01-01

    A vacuum heating camera has been developed for extremely low background X-ray film work between room temperature and 2000 K. It can be used with modified conventional Weissenberg goniometers and with a specially designed focusing goniometer. The temperature control is maintained by a Pt/Pt-10% Rh thermocouple, a three-term proportional, integral and derivative (PID) controller and a programmable power supply. The accuracy in the absolute temperature setting is 10 K, the stability better than 1 K and the maximum thermal gradient over the crystal 7 K mm -1 at 1330 K. A small oxygen pressure can be applied, depending on the temperature, to control oxidation or reduction reactions of the sample. (Auth.)

  7. Spin-flip transition of L10-type MnPt alloy single crystal studied by neutron scattering

    International Nuclear Information System (INIS)

    Hama, Hiroaki; Motomura, Ryo; Shinozaki, Tatsuya; Tsunoda, Yorihiko

    2007-01-01

    Magnetic structure, tetragonality, and the spin-flip transition for an L1 0 -type MnPt ordered alloy were studied by neutron scattering using a single-crystal specimen. Tetragonality of the lattice showed strong correlation with the spin-flip transition. Although the spin-flip transition looks like a gradual change of the easy axis in the temperature range between 580 and 770 K, two modes of magnon-gap peaks with different energies were observed in this transition temperature range. Thus, the crystal consists of two regions with different anisotropy energies and the volume fractions of these regions with different spin directions change gradually with temperature. The tetragonality and spin-flip transition are discussed using the hard-sphere model for atomic radii of Pt and Mn. The Invar effect of Mn atoms is proposed using high- and low-spin transitions of Mn moments in analogy with the two-γ model of Fe moments in FeNi Invar alloy

  8. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-04-01

    Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.

  9. Peak effect studies in single crystals CeRu2 and 2H-NbS2

    Indian Academy of Sciences (India)

    vibrating sample magnetometer (VSM) (Oxford Instruments, UK) on single crystal sam- ples of CeRu2 and 2H-NbS2. All the measurements were carried out by cooling the sample in zero field (ZFC mode) and then by applying the magnetic field. The measurements were carried out with the magnetic field parallel to the cube ...

  10. Stress-induced martensite variant reorientation in magnetic shape memory Ni–Mn–Ga single crystal studied by neutron diffraction

    Czech Academy of Sciences Publication Activity Database

    Molnár, Peter; Šittner, Petr; Lukáš, Petr; Hannula, S.-P.; Heczko, Oleg

    2008-01-01

    Roč. 17, č. 3 (2008), 035014/1-035014/4 ISSN 0964-1726 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10480505 Keywords : NiMnGa single crystal * neutron diffraction * stress induced martensite reorientation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.743, year: 2008

  11. Single Crystals Grown Under Unconstrained Conditions

    Science.gov (United States)

    Sunagawa, Ichiro

    Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).

  12. Raman scattering study of the structural phase transition in single crystal KDy(MoO4)2

    Science.gov (United States)

    Peschanskii, A. V.

    2017-11-01

    Raman scattering of light in single-crystal KDy(MoO4)2 is studied at frequencies of 3-1000 cm-1 for temperatures ranging from 2 to 300 K, including that of a structural phase transition of the cooperative Jahn-Teller type (TC ˜ 14.5 K). During the transition to the low-temperature phase, a series of additional phonon lines corresponding to the Ag, B1g, B2g, and B3g modes is observed which indicates a doubling of the unit cell during the phase transition. An analysis of the symmetry of the phonon modes shows that the low-temperature phase has a predominantly monoclinic symmetry with conservation of a second order axis along the crystallographic b direction, i.e., perpendicular to the layers. Excitations are discovered which correspond to low-energy electronic transitions between levels of the ground-state 6H15/2 multiplet of the Dy3+ ion, which is split in the crystal field with a C2 symmetry. In the vicinity of the first excited Kramers doublet of the Dy3+ ion in crystalline KDy(MoO4)2, the scattered spectrum contains four lines [16.5, 21.0, 24.9, and 29.1 cm-1 (2 K)] at low temperatures, instead of a single line [18.3 cm-1 (25 K)] above the phase transition temperature (14.5 K). This indicates the existence of four nonequivalent dysprosium ions in the low-temperature phase.

  13. Structural study of intermediate phase in layered perovskite SrBi sub 2 Ta sub 2 O sub 9 single crystal

    CERN Document Server

    Onodera, A; Yamashita, H

    2003-01-01

    The crystal structure of an intermediate phase of Bi-layered ferroelectric SrBi sub 2 Ta sub 2 O sub 9 single crystals was studied by means of X-ray diffraction. An analysis of the extinction rules and X-ray intensities demonstrated that the crystal structure is orthorhombic with space group A2 sub 1 am in the ferroelectric phase and Amam in the intermediate phase; this conclusion is in good agreement with the findings of previous powder neutron diffraction studies.

  14. Optical and Magnetic Resonance Studies of Na-Diffused ZnO Bulk Single Crystals

    Science.gov (United States)

    Glaser, E. R.; Garces, N. Y.; Parmar, N. S.; Lynn, K. G.

    2013-03-01

    Photoluminescence (PL) and optically-detected magnetic resonance (ODMR) at 24 GHz were performed on bulk ZnO crystals after diffusion of Na impurities that were explored as an alternate doping source for p-type conductivity. PL at 2K revealed strong bandedge excitonic recombination at 3.361 eV and a broad ``orange'' PL band at 2.17 eV with FWHM of ~0.5 eV. This ``orange'' emission is very similar to that reported previously[1] from thermoluminescence measurements of intentionally Na-doped bulk ZnO and, thus, strongly suggests the incorporation and activation of the Na-diffused impurities. ODMR performed on this ``orange'' PL revealed two signals. The first was a sharp feature with g-value of ~1.96 and is a well-known ``fingerprint'' of shallow donors in ZnO. The second signal consisted of a pair of lines with an intensity ratio of ~3:1 and with g-tensors (g∥,g⊥ ~2.008-2.029) very similar to ESR signals attributed previously[2] to holes bound to Na impurities located at the axial and non-axial Zn host lattice sites in Na-doped ZnO. Thus, the ``orange'' PL can be tentatively assigned to radiative recombination between residual shallow donors and deep Na-related hole traps.

  15. Comparative study of transparent ceramic and single crystal Ce doped LuAG scintillators

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei; Yanagida, Satoko; Yoshikawa, Akira; Yagi, Hideki; Yanagitani, Takagimi

    2011-01-01

    Transparent ceramic Ce 0.5% doped Lu 3 Al 5 O 12 (LuAG) scintillator grown by the sintering method and single crystalline Ce doped LuAG grown by the Czochralski method are prepared. They are cut to the physical dimensions 4 × 4 × 2 mm 3 . Their transmittance and radio luminescence spectra are evaluated. They are both transmissive in wavelength longer than 500 nm and intense Ce 3+ 5d–4f emission appears around 520 nm. When 137 Cs γ-ray is irradiated, 662 keV photo-absorption peaks are clearly observed in each sample. The transparent ceramic one shows higher light yield than that of the single crystalline one. The absolute light yield of the ceramic sample is turned out to be 14800 ± 1500 ph/MeV. The decay time constants are evaluated under pulse X-ray excitation. The main component of the decay time of ceramic and single crystalline one are determined as 37 and 46 ns, respectively.

  16. Prospects for the synthesis of large single-crystal diamonds

    International Nuclear Information System (INIS)

    Khmelnitskiy, R A

    2015-01-01

    The unique properties of diamond have stimulated the study of and search for its applications in many fields, including optics, optoelectronics, electronics, biology, and electrochemistry. Whereas chemical vapor deposition allows the growth of polycrystalline diamond plates more than 200 mm in diameter, most current diamond application technologies require large-size (25 mm and more) single-crystal diamond substrates or films suitable for the photolithography process. This is quite a challenge, because the largest diamond crystals currently available are 10 mm or less in size. This review examines three promising approaches to fabricating large-size diamond single crystals: growing large-size single crystals, the deposition of heteroepitaxial diamond films on single-crystal substrates, and the preparation of composite diamond substrates. (reviews of topical problems)

  17. Studies on the effect of different operational parameters on the crystallization kinetics of α-lactose monohydrate single crystals in aqueous solution

    Science.gov (United States)

    Parimaladevi, P.; Srinivasan, K.

    2014-09-01

    Supersaturation dependent nucleation, size and morphology of alpha-lactose monohydrate (α-LM) crystals from aqueous solution were investigated by adopting two different crystallization methods, slow evaporation and fast evaporation, in the supersaturation range between σ=0.05 and 1.30. The induction period of nucleation is comparatively long in case of slow evaporation and is very short in case of fast evaporation process as the interconversion between α-L and β-L is uncontrollable in the former and is under control in the latter case. Moreover α-LM crystals with tomahawk morphology were obtained throughout the supersaturation range by slow evaporation method whereas crystals with tomahawk, triangular and needle-like morphologies were obtained in supersaturation ranges σ=0.05-0.5, σ=0.5-0.9 and σ=0.9-1.30 respectively by fast evaporation method. Experimentally observed nucleation parameters were verified with theoretically deuced values. It is realized that the fast evaporation method employed in the present study is found to be highly efficient in controlling the interconversion between α-L and β-L as well as in suppressing the inhibitory activity of β molecule on the nucleation and growth of α-LM crystals when compared to conventional slow evaporation method and is successful in producing the industrially preferred needle-like crystals at high supersaturation ranges.

  18. Resistivity distribution of silicon single crystals using codoping

    Science.gov (United States)

    Wang, Jong Hoe

    2005-07-01

    Numerous studies including continuous Czochralski method and double crucible technique have been reported on the control of macroscopic axial resistivity distribution in bulk crystal growth. The simple codoping method for improving the productivity of silicon single-crystal growth by controlling axial specific resistivity distribution was proposed by Wang [Jpn. J. Appl. Phys. 43 (2004) 4079]. Wang [J. Crystal Growth 275 (2005) e73] demonstrated using numerical analysis and by experimental results that the axial specific resistivity distribution can be modified in melt growth of silicon crystals and relatively uniform profile is possible by B-P codoping method. In this work, the basic characteristic of 8 in silicon single crystal grown using codoping method is studied and whether proposed method has advantage for the silicon crystal growth is discussed.

  19. Electroerosion impulse effect on W single crystal structure

    International Nuclear Information System (INIS)

    Aleshina, S.A.; Khvostikova, V.D.; Zolotykh, B.N.; Marchuk, A.I.

    1977-01-01

    The mechanism has been studied of brittle failure of single crystal tungsten on planes of crystallographic orientations [100], [110]; [111] in the process of electro-erosion machining by pulses of energies ranging from 1200 to 5000 μJ and of duration of 1 μs. It is shown that the electro-erosion machining of single crystal tungsten is characterized by the formation of a defect layer with a grid of microcracks which lie at a depth of approximately 80 μm. The appearance and the distribution of cracks on the surface of single crystals depends on the crystallogrpahic orientation

  20. Effect of L-aspartic acid on the growth, structure and spectral studies of Zinc (tris) Thiourea Sulphate (ZTS) single crystals

    Science.gov (United States)

    Samuel, Bincy Susan; Krishnamurthy, R.; Rajasekaran, R.

    2014-11-01

    Single crystals of pure and L-aspartic acid doped Zinc (Tris) Thiourea Sulphate (ZTS) were grown from aqueous solution by solution growth method. The cell parameters and structure of the grown crystals were determined by X-ray diffraction studies. The presence of functional group in the compound has been confirmed by FTIR and FT-Raman analysis. The optical transparency range has been studied through UV-Vis spectroscopy. TGA/DTA studies show thermal stability of the grown crystals. Microhardness study reveals that the hardness number (Hv) increases with load for pure and doped ZTS crystals. Dielectric studies have been carried out and the results are discussed. The second harmonic generation was confirmed for L-aspartic acid doped ZTS which is greater than pure ZTS.

  1. Single Crystal Diffuse Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Richard Welberry

    2018-01-01

    Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.

  2. Bloch walls in a nickel single crystal

    International Nuclear Information System (INIS)

    Peters, J.; Treimer, W.

    2001-01-01

    We present a consistent theory for the dependence of the magnetic structure in bulk samples on external static magnetic fields and corresponding experimental results. We applied the theory of micromagnetism to this crystal and calculated the Bloch wall thickness as a function of external magnetic fields. The theoretical results agree well with the experimental data, so that the Bloch wall thickness of a 71 deg. nickel single crystal was definitely determined with some hundred of nanometer

  3. Numerical and experimental study of a solid pellet feed continuous Czochralski growth process for silicon single crystals

    Science.gov (United States)

    Anselmo, A.; Prasad, V.; Koziol, J.; Gupta, K. P.

    1993-07-01

    A polysilicon pellets (≅1 mm diameter) feed continuous Czochralski (CCZ) growth process for silicon single crystals is proposed and investigated. Experiments in an industrial puller (14-18 inch diameter crucible) successfully demonstrate the feasibility of this process. The advantages of the proposed scheme are: a steady state growth process, a low aspect ratio melt, uniformity of heat addition and a growth apparatus with single crucible and no baffle(s). The addition of dopant with the solid charge will allow a better control of oxygen concentration leading to crystals of uniform properties and better quality. This paper presents theoretical results on melting of fully and partially immersed silicon spheres and numerical solutions on temperature and flow fields in low aspect ration melts with and without the addition of solid pellets. The theoretical and experimental results obtained thus far show a great promise for the proposed scheme.

  4. EPR and optical absorption studies of VO2+ doped L-alanine (C3H7NO2) single crystals

    International Nuclear Information System (INIS)

    Biyik, Recep

    2009-01-01

    VO 2+ doped L-alanine (C 3 H 7 NO 2 ) single crystals and powders are examined by electron paramagnetic resonance (EPR) and optical absorption spectroscopy. Three magnetically different sites are resolved from angular variations of L-alanine single crystal EPR spectra. In some specific orientations each VO 2+ line splits into three superhyperfine lines with intensities of 1:2:1 and maximum splitting value of 2.23 mT. The local symmetries of VO 2+ complex sites are nearly axial. The optical absorption spectra show three bands. Spin Hamiltonian parameters are measured and molecular orbital coefficients are calculated by correlating EPR and optical absorption data for the central vanadyl ion.

  5. Relating mechanical properties and chemical bonding in an inorganic-organic framework material: a single-crystal nanoindentation study.

    Science.gov (United States)

    Tan, Jin Chong; Furman, Joshua D; Cheetham, Anthony K

    2009-10-14

    We report the application of nanoindentation and atomic force microscopy to establish the fundamental relationships between mechanical properties and chemical bonding in a dense inorganic-organic framework material: Ce(C(2)O(4))(HCO(2)), 1. Compound 1 is a mixed-ligand 3-D hybrid which crystallizes in an orthorhombic space group, in which its three basic building blocks, i.e. the inorganic metal-oxygen-metal (M-O-M) chains and the two organic bridging ligands, (oxalate and formate) are all oriented perpendicular to one another. This unique architecture enabled us to decouple the elastic and plastic mechanical responses along the three primary axes of a single crystal to understand the contribution associated with stiff vs compliant basic building blocks. The (001)-oriented facet that features rigid oxalate ligands down the c-axis exhibits the highest stiffness and hardness (E approximately 78 GPa and H approximately 4.6 GPa). In contrast, the (010)-oriented facet was found to be the most compliant and soft (E approximately 43 GPa and H approximately 3.9 GPa), since the formate ligand, which is the more compliant building block within this framework, constitutes the primary linkages down the b-axis. Notably, intermediate stiffness and hardness (E approximately 52 GPa and H approximately 4.1 GPa) were measured on the (100)-oriented planes. This can be attributed to the Ce-O-Ce chains that zigzag down the a-axis (Ce...Ce metal centers form an angle of approximately 132 degrees) and also the fact that the 9-coordinated CeO(9) polyhedra are expected to be geometrically more compliant. Our results present the first conclusive evidence that the crystal orientation dominated by inorganic chains is not necessarily more robust from the mechanical properties standpoint. Rigid organic bridging ligands (such as oxalate), on the other hand, can be used to produce greater stiffness and hardness properties in a chosen crystallographic orientation. This study demonstrates that

  6. Ultrahigh vacuum STM/STS studies of the Bi-O surface in Bi2Sr2CuOy single crystals

    International Nuclear Information System (INIS)

    Ikeda, Kazuto; Tomeno, Izumi; Takamuku, Kenshi; Yamaguchi, Koji; Itti, Rittaporn; Koshizuka, Naoki

    1992-01-01

    Scanning tunneling microscopic and spectroscopic studies were made on cleaved surfaces of Bi 2 Sr 2 CuO y single crystals using an ultrahigh-vacuum scanning tunneling microscope (UHV-STM). The modulation structures of the Bi-O surface were observed at room temperature with atomic resolution. The tunneling spectra showed electronic gap structures similar to those observed for the Bi-O surface of superconducting Bi-2212 single crystals. This suggests that superconductivity is not directly related to the electronic structure observed in the Bi-O plane. (orig.)

  7. Electrical transport properties study of Mo{sub 0.6}W{sub 0.4}Se{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chaki, Sunil; Deshpande, M. P.; Tailor, J. P.; Chaudhary, M. D.; Sakaria, Pallavi N. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat-388120 (India)

    2012-06-05

    The mixed transition metal dichalcogenide single crystals Mo{sub 0.6}W{sub 0.4}Se{sub 2} were characterized employing EDAX (Energy Dispersive Analysis of X-ray), (XRD) X-ray diffraction, SEM (Scanning Electron Microscope) and UV-Vis-NIR spectroscopy techniques. The electrical transport properties of as-grown Mo{sub 0.6}W{sub 0.4}Se{sub 2} single crystals were studied by two probe d. c. resistivity, Hall Effect and thermoelectric power measurement set-up. The obtained results are discussed in details.

  8. Study of the fluorescence blinking behavior of single F2 color centers in LiF crystal

    International Nuclear Information System (INIS)

    Boichenko, S V; Koenig, K; Zilov, S A; Dresvianskiy, V P; Rakevich, A L; Kuznetsov, A V; Bartul, A V; Martynovich, E F; Voitovich, A P

    2014-01-01

    Using confocal fluorescence microscopy technique, we observed experimentally the luminescence of single F 2 color centers in LiF crystal. It is disclosed that the fluorescence shows blinking behavior. It is shown that this phenomenon is caused by the F 2 center reorientation occurring during the experiment. The ratio of luminescence intensities of differently oriented centers is assessed theoretically for two different experiment configurations. The calculated ratios are in fine agreement with experimental result

  9. EPR and optical studies of Cu2+ ions doped in magnesium potassium phosphate hexahydrate single crystals

    International Nuclear Information System (INIS)

    Kripal, Ram; Shukla, Santwana

    2011-01-01

    An electron paramagnetic resonance (EPR) study of Cu 2+ -doped magnesium potassium phosphate is performed at liquid nitrogen temperature (LNT; 77 K). Two magnetically non-equivalent sites for Cu 2+ are observed. The spin Hamiltonian parameters are determined with the fitting of spectra to a rhombic symmetry crystalline field. The ground state wavefunction is also determined. The g-anisotropy is evaluated and compared with the experimental value. With the help of an optical study, the nature of the bonding in the complex is discussed.

  10. X-ray diffraction studies of NbTe2 single crystal

    Indian Academy of Sciences (India)

    Unknown

    X-ray (EDAX) and remaining structural characterization was also accomplished by X-ray diffraction (XRD) studies. Lattice parameters, volume and ... The layered structure compound, NbTe2, is one of the typical materials which lead to charge .... financial assistance to carry out this work. References. Brown B E 1966 Acta ...

  11. High-pressure behavior of α-boron studied on single crystals by X-ray diffraction, Raman and IR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chuvashova, Irina, E-mail: irina.chuvashova@gmail.com [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth (Germany); Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth (Germany); Bykova, Elena; Bykov, Maxim [Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth (Germany); Svitlyk, Volodymyr [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Gasharova, Biliana [Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); IBPT, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Mathis, Yves-Laurent [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); IBPT, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Caracas, Razvan [CNRS, Laboratoire de Géologie de Lyon, ENS de Lyon, UCBL Lyon 1, Université de Lyon (France); Dubrovinsky, Leonid [Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth (Germany); Dubrovinskaia, Natalia [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth (Germany)

    2017-01-15

    In the present study single crystals of rhombohedral α-B were investigated under pressure to 60 GPa by means of single-crystal X-ray diffraction. The bulk modulus of α-B was found to be K=224(7) GPa (K′=3.0(3)). Measurements of interatomic distances as a function of pressure revealed that the intericosahedral two-center two-electron (2c–2e) bonds are almost as stiff as some of intraicosahedral ones. The three-center two-electron (3c–2e) intericosahedral bonds show much higher compliance compared to other bonds in α-B. The vibrational properties of α-B under pressure were investigated by Raman spectroscopy at pressures up to 160 GPa and IR spectroscopy at pressures up to 53 GPa. - Graphical abstract: The rhombohedral α-B is highly incompressible and extremely stable: it maintains its crystal structure up to 160 GPa and its intericosahedral 2e2c bonds are almost as stiff as some of intraicosahedral ones. - Highlights: • Structural stability of α-B has been investigated up to 160 GPa on single crystals. • Single-crystal x-ray diffraction reveals that α-B is highly incompressible. • Compressibility of B{sub 12} icosahedra is considerably lower than that of the bulk material. • Intericosahedral 2e2c bonds are almost as stiff as some of intraicosahedral ones.

  12. High Pressure Low Temperature X-Ray Diffraction Studies of UO2 and UN single crystals.

    Science.gov (United States)

    Antonio, Daniel; Mast, Daniel; Lavina, Barbara; Gofryk, Krzysztof

    Uranium dioxide is the most commonly used nuclear fuel material in commercial reactors, while uranium nitride also has many thermal and physical properties that make it attractive for potential use in reactors. Both have a cubic fcc lattice structure at ambient conditions and transition to antiferromagnetic order at low temperature. UO2 is a Mott insulator that orders in a complex non-collinear 3k magnetic structure at about 30 K, while UN has appreciable conductivity and orders in a simpler 1k magnetic structure below 52 K. Both compounds are characterized by strong magneto-structural interactions, understanding of which is vital for modeling their thermo-physical properties. While UO2 and UN have been extensively studied at and above room temperature, little work has been done to directly study the structure of these materials at low temperatures where magnetic interactions are dominant. In the course of our systematic studies on magneto vibrational behavior of UO2 and UN, here we present our recent results of high pressure X-Ray Diffraction (up to 35 GPa) measured below the Neel temperature using synchrotron radiation. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.

  13. Spectral studies of 2-pyrazoline derivatives: structural elucidation through single crystal XRD and DFT calculations.

    Science.gov (United States)

    Chinnaraja, D; Rajalakshmi, R; Srinivasan, T; Velmurugan, D; Jayabharathi, J

    2014-04-24

    A series of biologically active N-thiocarbamoyl pyrazoline derivatives have been synthesized using anhydrous potassium carbonate as the catalyst. All the synthesized compounds were characterized by FT-IR, (1)H NMR, (13)C NMR spectral studies, LCMS, CHN Analysis and X-ray diffraction analysis (compound 7). In order to supplement the XRD parameters, molecular modelling was carried out by Gaussian 03W. From the optimized structure, the energy, dipolemoment and HOMO-LUMO energies of all the systems were calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Friction stir welding of single crystal aluminium

    DEFF Research Database (Denmark)

    Fonda, Richard Warren; Wert, John A.; Reynolds, A.P.

    2007-01-01

    Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution...... of crystallographic texture around the tool in each weld. The extent of both dynamic recrystallisation and conventional recrystallisation varied considerably as a function of weld orientation. As the base plate begins to interact with the deformation field surrounding the tool, regions of the single crystal rotate...

  15. Structure of single-chain single crystals of isotactic polystyrene and their radiation resistance

    International Nuclear Information System (INIS)

    Bu Haishan; Cao Jie; Xu Shengyong; Zhang Ze

    1997-01-01

    The structure of the single-chain single crystals of isotactic polystyrene (i-PS) was investigated by electron diffraction (ED) and high resolution electron microscopy (HREM). The nano-scale single-chain single crystals were found to be very stable to electron irradiation. According to the unit cell of i-PS crystals, the reflection rings in ED pattern and the lattice fringes in HREM images could be indexed, but the lower-index diffractions were not found. It is proposed that the single-chain single crystals are very small, thus secondary electrons may be allowed to escape and radiation damage is highly reduced, and that there are less lower-index lattice planes in the single-chain single crystals to provide sufficient diffraction intensity for recording. HREM images can be achieved at room temperature in the case of single-chain single crystals because of its stability to electron irradiation, therefore, this might be a novel experimental approach to the study of crystal structure of macromolecules

  16. Growth, mechanical, and magnetic study of SmFeO{sub 3} single crystal grown by optical floating zone technique

    Energy Technology Data Exchange (ETDEWEB)

    Babu, P. Ramesh [Centre for Crystal Growth, VIT University, Vellore, Tamil Nadu (India); Bhaumik, Indranil [Crystal Growth Laboratory, Laser Materials Development and Devices Division, RRCAT, Indore (India); Ganesamoorthy, S. [Material Science Group, IGCAR, Kalpakkam, Tamil Nadu (India); Kalainathan, S., E-mail: kalainathan@yahoo.com [Centre for Crystal Growth, VIT University, Vellore, Tamil Nadu (India); Bhatt, R.; Karnal, A.K.; Gupta, P.K. [Crystal Growth Laboratory, Laser Materials Development and Devices Division, RRCAT, Indore (India)

    2016-08-15

    Single crystals of Samarium orthoferrite (SmFeO{sub 3}) have been grown by the optical floating zone technique. The growth parameters to yield good quality crystals are 5 mm/h for pulling and 30–40 rpm for rotation. The mechanical behavior of the grown crystal has been investigated. Rosette pattern has been observed around the indentation and the microhardness has been found to decreases non-linearly with the applied load. For load higher than 1.96 N there is a transition from palmqvist to median crack due to plastic deformation of the crystal. The hardness parameters like fracture toughness, brittleness index, and yield strength have also been calculated for palmqvist and median cracks occurring on the crystal surface. The magnetic investigations revealed that a magnetic transition in the range of 300–180 K. Above 180 K, the magnetization decreases as Sm and Fe sublattices have opposite spins. At high temperature, two anomalies are observed, one due to near spin reorientation (T{sub SR} = 480 K) and the other is AFM to paramagnetic transitions (T{sub N} = 670 K). The M–H curves exhibit a shape change with temperature due to the emergence and enlargement of multi-domain state of the SmFeO{sub 3} crystals. Bloch parameter (3.28 × 10{sup −5} K{sup −3/2}) has also been evaluated. - Highlights: • SmFeO{sub 3} single crystals have been grown by OFZ technique in air. • The microhardness has been found to decreases non-linearly with the applied load. • At 472 K, spin reorientation occurs in Fe sublattice. • The M–H curves exhibit a shape change with temperature due to the emergence and enlargement of multi-domain state. • Bloch 3/2-law holds good for SmFeO{sub 3} (B-parameter as 3.28 × 10{sup −5} K{sup −3/2}).

  17. Studies at IBM on anisotropy in single crystals of the high-temperature oxide superconductor Y1Ba2Cu3O7/sub -//sub x/ (invited)

    International Nuclear Information System (INIS)

    Gallagher, W.J.

    1988-01-01

    A series of studies carried out at IBM on the magnetic, transport, and optical properties of single crystal Y 1 Ba 2 Cu 3 O/sub 7-//sub x/ demonstrate the overriding importance of anisotropy in its superconducting and normal-state properties

  18. Inkjet printing of single-crystal films.

    Science.gov (United States)

    Minemawari, Hiromi; Yamada, Toshikazu; Matsui, Hiroyuki; Tsutsumi, Jun'ya; Haas, Simon; Chiba, Ryosuke; Kumai, Reiji; Hasegawa, Tatsuo

    2011-07-13

    The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science. Whether based on inorganic or organic materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. 'Printed electronics' is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials. However, because of the strong self-organizing tendency of the deposited materials, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid-air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C(8)-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4 cm(2) V(-1) s(-1). This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.

  19. Chlorination of irradiated polyethylene single crystals

    International Nuclear Information System (INIS)

    Grimm, H.J.

    1978-01-01

    The chlorination of electron beam-irradiation polyethylene (PE) single crystals was studied for a range of irradiation doses, temperatures, and chlorine interaction times. The results presented show that PE chlorination was quite extensive, even in unirradiated PE single crystals at 25 0 C in the dark. Electron Spin Resonance (ESR, EPR) was used in this study in order to determine the alkyl radical concentration, decay constant, and diffusivity for (unchlorinated) specimens. An alkyl radical diffusivity D/sub a/ = 1.6 x 10 -17 cm 2 /sec at 25 0 C was estimated from ESR data and alkyl radical migration as one-dimensional unsteady-state diffusion process. In irradiated PE, chlorination occurred mainly via chain reactions which were initiated by the irradiation-produced free radicals. Chlorine content values were determined by X-ray Energy Spectroscopy (XES). It was found that the magnitude of the chlorine uptake increased with increasing dose, and decreased with decreasing temperature at constant dose. Otherwise the observed PE chlorination phenomena was quite similar for all of the doses and temperatures studied here, consisting of a two step mechanism: a fast uptake which occurred between time tCl 2 = 0 - 5 minutes and a slower, approximately first-order rate of uptake which occurred between times tCl 2 = 5 - 120 minutes. Chlorination was essentially complete by time tCl 2 = 120 minutes. The rapid uptake probably occurred in the amorphous surface zones where Cl 2 is relatively high and the second, slower step was probably attributable to Cl 2 diffusion into the crystalline regions and subsequent chlorination there. Inasmuch as the PE density decreases with increasing dose (for 1-600 Mrad), Cl 2 diffusivity was enhanced, resulting in higher chlorine uptake values at higher doses

  20. Press forging of single crystal calcium fluoride

    International Nuclear Information System (INIS)

    Turk, R.R.

    1975-01-01

    Single crystals of high-purity calcium fluoride have been deformed uniaxially in an attempt to improve strength and resistance to cleavage, without impairing infrared transmission. Order of magnitude increases in strength, such as those found in forged KCl, have not been attained, but fine-grained polycrystalling material has been produced which is resistant to crystalline cleavage. Deformation rates of 10 -2 min -1 , reductions of 10 to 73 percent in height, and deformation temperatures of 550 to 1000 0 C have been used. Flexural strengths over 13,000 psi and grain sizes down to 5 μm have been obtained. Reduction of residual stress through heat treatment has been studied, and resultant techniques applied before, during, and after deformation. No increase in infrared absorption has been noted at the CO laser wavelength of 5.3 μm

  1. Cyclic deformation of Nb single crystals

    International Nuclear Information System (INIS)

    Guiu, F.; Anglada, M.

    1982-01-01

    The temperature and strain-rate dependence of the cyclic flow stress of Nb single crystals with two different axial orientations has been studied at temperatures between 175 and 350 K. This dependence is found to be independent of the crystal orientation when the internal stresses are taken into account, and the results are discussed in terms of the theory of thermally activated dislocation glide. A transition temperature can be identified at about 250 K which separates two regions with different thermally activated deformation behaviour. Above this transition temperature the strain rate can be described by a stress power law, and the activation energy can be represented by a logarithmic function of the stress, as in Escaig's model of screw dislocation mobility. In the temperature range 170 to 250 K the results are also in agreement with the more recent model proposed by Seeger. The large experimental errors inherent in the values of activation enthalpy at low stresses are emphasized and taken into account in the discussion of the results. It is suggested that either impurity-kink interactions or the flexibility of the screw dislocations are responsible for the trend towards the high values of activation enthalpy measured at the low stresses. (author)

  2. A temperature dependent tunneling study of the spin density wave gap in EuFe2As2 single crystals.

    Science.gov (United States)

    Dutta, Anirban; Anupam; Hossain, Z; Gupta, Anjan K

    2013-09-18

    We report temperature dependent scanning tunneling microscopy and spectroscopy measurements on single crystals of EuFe2As2 in the 15-292 K temperature range. The in situ cleaved crystals show atomic terraces with homogeneous tunnel spectra that correlate well with the spin density wave (SDW) transition at a temperature, TSDW ≈ 186 K. Above TSDW the local tunnel spectra show a small depression in the density of states (DOS) near the Fermi energy (EF). The gap becomes more pronounced upon entering the SDW state with a gap value ∼90 meV at 15 K. However, the zero bias conductance remains finite down to 15 K indicating a finite DOS at the EF in the SDW phase. Furthermore, no noticeable change is observed in the DOS at the antiferromagnetic ordering transition of Eu(2+) moments at 19 K.

  3. Theoretical studies of the optical and EPR spectra for VO^{2+} in Na_3C_6H_5O_7·2H_2O single crystal

    Directory of Open Access Journals (Sweden)

    Ch.-Y. Li

    2015-06-01

    Full Text Available On the basis of the perturbation formulas for a d^1 configuration ion in a tetragonal crystal field, the three optical absorption bands and electron paramagnetic resonance (EPR parameters (g factors g_i and hyperfine structure constants A_i for i = || and ⊥, respectively of VO^{2+} in Na_3C_6H_5O_7·2H_2O (TSCD single crystals were studied using the perturbation theory method. By simulating the calculated optical and EPR spectra to the observed values, local structure parameters and negative signs of the hyperfine structure constants A_i of the octahedral (VO_6^{8-} cluster in TSCD single crystal can be obtained.

  4. Lattice effects in YVO3 single crystal

    NARCIS (Netherlands)

    Marquina, C; Sikora, M; Ibarra, MR; Nugroho, AA; Palstra, TTM

    In this paper we report on the lattice effects in the Mott insulator yttrium orthovanadate (YVO3). Linear thermal expansion and magnetostriction experiments have been performed on a single crystal, in the temperature range from 5 K to room temperature. The YVO3 orders antiferromagnetically at T-N =

  5. Neutron forward diffraction by single crystal prisms

    Indian Academy of Sciences (India)

    We have derived analytic expressions for the deflection as well as transmitted fraction of monochromatic neutrons forward diffracted by a single crystal prism. In the vicinity of a Bragg reflection, the neutron deflection deviates sharply from that for an amorphous prism, exhibiting three orders of magnitude greater sensitivity to ...

  6. Properties of single crystal beta''-aluminas

    International Nuclear Information System (INIS)

    Bates, J.B.; Brown, G.M.; Kaneda, T.; Brundage, W.E.; Wang, J.C.; Engstrom, H.

    1979-01-01

    Large single crystals of sodium beta''-alumina were grown by slow evaporation of Na 2 O at 1690 0 C from a mixture of Na 2 CO 3 , MgO, and Al 2 O 3 . Polarized Raman measurements were made on the Na β'' single crystals and on single crystals of Li, K, Rb, and Ag β'' prepared by ion exchange of Na β''. The low frequency Raman spectra of Na, K, Rb, and Ag β'' contained four or more bands due to vibrations of the mobile cations. These results were analyzed by assuming the spectra to be due to the normal modes of a defect cluster consisting of a cation vacancy surrounded by three cations. From model calculations, the Raman band of Na β'' at 33 cm -1 is assigned to the attempt mode for diffusion of Na + ions. The structure of a Ag β'' single crystal was investigated by neutron diffraction, and 20% of the Ag + ion sites were found to be vacant

  7. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, Roderik Adriaan; Pinedo, Herbert Michael

    2013-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  8. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, R.A.; Pinedo, Herbert Michael

    2010-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  9. Positron annihilation and thermoluminescence studies of thermally induced defects in α-Al2O3 single crystals

    International Nuclear Information System (INIS)

    Muthe, K P; Gupta, S K; Sudarshan, K; Pujari, P K; Kulkarni, M S; Rawat, N S; Bhatt, B C

    2009-01-01

    α-Al 2 O 3 crystals were subjected to different thermal treatments at a temperature of 1500 deg. C in a strongly reducing ambience of carbon and vacuum. Positron annihilation spectroscopy (PAS) and thermally stimulated luminescence (TL) studies were carried out to understand the nature of defects generated. Results show the presence of aluminium vacancies in crystals annealed in vacuum. On annealing in the presence of graphite, ingress of carbon in these vacancies is indicated by different PAS measurements. A simultaneous enhancement of dosimetry properties has been observed. The study provides evidence that association of carbon with aluminium vacancies helps in creation of effective dosimetry traps.

  10. Influence of solvents on the habit modification of alpha lactose monohydrate single crystals

    Science.gov (United States)

    Parimaladevi, P.; Srinivasan, K.

    2013-02-01

    Restricted evaporation of solvent method was adopted for the growth of alpha lactose monohydrate single crystals from different solvents. The crystal habits of grown crystals were analysed. The form of crystallization was confirmed by powder x-ray diffraction analysis. Thermal behaviour of the grown crystals was studied by using differential scanning calorimetry.

  11. Defects in N{sup +} ion-implanted ZnO single crystals studied by positron annihilation and Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, G.; Anwand, W.; Skorupa, W. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf, Dresden (Germany); Kuriplach, J.; Melikhova, O.; Cizek, J.; Prochazka, I. [Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles Univ., Prague (Czech Republic); Wenckstern, H. von; Brandt, M.; Lorenz, M.; Grundmann, M. [Institut fuer Experimentelle Physik II, Universitaet Leipzig (Germany)

    2007-07-01

    High quality ZnO single crystals of dimensions 10 x 10 x 0.5 mm{sup 3}, grown by a hydrothermal approach, have been implanted by 40 keV N{sup +} ions to a fluence of 1 x 10{sup 15} cm{sup -2} at room temperature. Their properties revealed by positron annihilation and Hall effect measurements are given in the as-grown and as-irradiated states, and after post-implantation annealing in an oxygen ambient at 200 C and 500 C. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Investigations on critical parameters, growth, structural and spectral studies of beta-alaninium picrate (BAP) single crystals

    International Nuclear Information System (INIS)

    Shanthi, D; Selvarajan, P; Perumal, S

    2014-01-01

    Beta-alaninium picrate (BAP) salt has been synthesized and the solubility of the synthesized sample in double distilled water was determined at different temperatures. Solution stability was studied by observing the metastable zone width by employing the polythermal method. Induction period values for different supersaturation ratios at room temperature were determined based on the isothermal method. The nucleation parameters such as critical radius, critical free energy change, interfacial tension, and nucleation rate have been estimated for BAP salt on the basis of the classical nucleation theory. The lattice parameters of the grown BAP crystal were determined using the x-ray diffraction (XRD) technique. The reflection planes of the sample were confirmed by the powder XRD study and diffraction peaks were indexed. Fourier transform infrared spectroscopy and Fourier transform–Raman studies were used to confirm the presence of various functional groups in the BAP crystal. The nonlinear optical property of the grown crystal was studied using the Kurtz–Perry powder technique. UV–visible spectral studies were carried out to understand optical transparency and the type of band gap of the grown BAP crystal. (paper)

  13. Mesoporous Zeolite Single Crystals for Catalytic Hydrocarbon Conversion

    DEFF Research Database (Denmark)

    Schmidt, I.; Christensen, Claus H.; Kustova, Marina

    2005-01-01

    Recently, mesoporous zeolite single crystals were discovered. They constitute a novel family of materials that features a combined micropore and mesopore architecture within each individual crystal. Here, we briefly summarize recent catalytic results from cracking and isomerization of alkalies......, alkylation of aromatics and present new results on isomerization of aromatics. Specifically, the shape-selective isomerization of meta-xylenc into para-xylene and ortho-xylene is studied. In all these reactions, rnesoporous zeolite single crystals prove to be unique catalysts since they provide easy...... transport to and from active sites and at the same time maintain the shape-selectivity required. Thus, all these results support the idea that the beneficial effect of the mesopores system in the mesoporous zeolite single crystals call be solely attributed to enhanced mass transport....

  14. Infrared spectroscopic study on polytypic transformation of growing single crystal of n-hexatriacontane ( n-C 36H 74)

    Science.gov (United States)

    Kubota, Hideki; Kaneko, Fumitoshi; Kawaguchi, Tatsuya; Kawasaki, Masatsugu

    2005-02-01

    There are two polytypic structures, single-layered structure Mon and double-layered structure Orth II for the M 011 modification of n-hexatriacontane ( n-C 36H 74). The solution crystal growth of the two polytypes under controlled supersaturation was investigated by the oblique IR transmission method. As to the supersaturation dependence of growth behavior, there was a significant difference between the two polytypes. While the overgrowth of Orth II took place on the (0 0 1) face of the Mon crystal at moderate supersaturations, the overgrowth of Mon on the Orth II crystals was not confirmed at any supersaturations below 0.30. The growth rate of Mon showed about a second-order dependence on supersaturation, whereas that of Orth II showed a first-order dependence. The growth mechanism of the M 011 modification and the cause for the one-way overgrowth were deduced on the basis of the thermodynamical stabilities and the supersaturation dependence of the growth rates.

  15. Radiation effects in corundum single crystals

    International Nuclear Information System (INIS)

    Gevorkyan, V.A.; Harutunyan, V.V.; Hakhverdyan, E.A.

    2005-01-01

    On the basis of new experimental results and analysis of publications it is shown that in the lattice of corundum crystals the high-energy particles create stable structural defects due to knocking out of atoms from normal sites of the anionic sublattice; this leads to the formation of F and F '+ centers as well as to other complex [Al i '+ F] type color centers. The essence of 'radiation memory' effect in corundum single crystals is that the high-energy particles irradiation, annealing at high temperatures and additional irradiation by X-rays result in the restoration of some spectral bands of the optical absorption in the range 200-650 nm

  16. Spectroelectrochemical study of the adsorption of acetate anions at gold single crystal and thin-film electrodes

    International Nuclear Information System (INIS)

    Berna, Antonio; Delgado, Jose Manuel; Orts, Jose Manuel; Rodes, Antonio; Feliu, Juan Miguel

    2008-01-01

    Acetate adsorption at gold electrodes is studied in perchloric acid solutions by cyclic voltammetry and in-situ infrared spectroscopy. External reflection measurements, performed with gold single crystal electrodes, are combined with Surface Enhanced Infrared Reflection Absorption Spectroscopy experiments under attenuated total reflection conditions (ATR-SEIRAS) carried out with sputtered gold thin-film electrodes. Theoretical harmonic IR frequencies of acetate species adsorbed with different geometries on Au clusters with (1 1 1), (1 0 0) and (1 1 0) orientations have been obtained from B3LYP/LANL2DZ, 6-31 + G* calculations. The theoretical and experimental results confirm that, irrespective of the surface crystallographic orientation, bonding of acetate to the surface involves the two oxygen atoms of the carboxylate group, with the OCO plane perpendicular to the metal surface. DFT calculations reveal also that the total charge of the metal cluster-acetate supermolecule has small effect on the vibrational frequencies of adsorbed acetate species. Both the external and the internal reflection measurements show the co-adsorption of acetate and perchlorate anions. Step-scan measurements carried out with the gold thin-film electrodes have allowed the monitoring of the time-dependent behaviour of perchlorate, acetate and water bands in potential step experiments. Acetate adsorption under those conditions is shown to involve perchlorate desorption and to follow a Langmuir-type kinetics. The step-scan spectra also show the rise and decay of transient water structures with parallel time-dependent shifts of the background intensity in the infrared spectra

  17. Study of the Bulk Charge Carrier Dynamics in Anatase and Rutile TiO2 Single Crystals by Femtosecond Time Resolved Spectroscopy

    KAUST Repository

    Maity, Partha

    2018-04-02

    Understanding of the fundamentals behind charge carriers of photo-catalytic materials are still illusive hindering progress in our quest for renewable energy. TiO2 anatase and rutile are the most understood phases in photo-catalysis and serve as the best model for fundamental studies. Their ultrafast charge carrier dynamics especially on TiO2 anatase single crystal (the most active phase) are unresolved. Here femtosecond time resolved spectroscopy (TRS) was carried out to explore the dynamics of photo-excited charge carriers’ recombination in anatase single crystal, for the first time using pump fluence effects, and compares it to that of the rutile single crystal. A significant difference in charge carrier recombination rates between both crystals is observed. We found that the time constants for carrier recombination are two orders of magnitude slower for anatase (101) when compared to those of rutile (110). Moreover, bulk defects introduced by reduction of the samples via annealing in ultra-high vacuum resulted in faster recombination rates for both polymorphs. Both states (fresh and reduced) probed by pump fluence dependence measurements revealed that the major recombination channel in fresh and reduced anatase and reduced rutile is the first-order Shockley–Reed mediated. However, for fresh rutile, third-body Auger recombination was observed, attributed to the presence of higher density of intrinsic charge carriers. At all excitation wavelengths and fluence investigated, anatase (101) single crystal show longer charge carrier lifetime when compared to rutile (110) single. This may explain the superiority of the anatase phase for the electron transfer H+ reduction to molecular hydrogen.

  18. Electron spin resonance and E.N.D.O.R. double resonance study of free radicals produced by gamma irradiation of imidazole single crystals

    International Nuclear Information System (INIS)

    Lamotte, B.

    1970-01-01

    Gamma irradiation of imidazole single crystals at 300 deg. K gives two radicals. Identification and detailed studies of their electronic and geometric structure have been made by ESR and ENDOR techniques. A study of the hydrogen bonded protons hyperfine tensor is made and let us conclude to the inexistence of movement and tunneling of these protons. The principal low temperature radical, produced by gamma irradiation at 77 deg. K has been also studied by ESR and a model has been proposed. (author) [fr

  19. Development of a large area, curved two-dimensional detector for single-crystal neutron diffraction studies

    International Nuclear Information System (INIS)

    Moon, Myung-Kook; Lee, Chang-Hee; Kim, Shin-Ae; Noda, Yukio

    2013-01-01

    A new type of two-dimensional curved position-sensitive neutron detector has been developed for a high-throughput single-crystal neutron diffractometer, which was designed to cover 110° horizontally and 56° vertically. The prototype curved detector covering 70° horizontally and 45° vertically was first developed to test the technical feasibility of the detector parameters, the internal anode and cathode structures for the curved shape, technical difficulties in the assembly procedure, and so on. Then, based on this experience, a full-scale curved detector with twice the active area of the prototype was fabricated with newly modified anode and cathode planes and optimized design parameters in terms of mechanical and electric properties. The detector was installed in a dedicated diffractometer at the ST3 beam port of the research reactor HANARO. In this paper, the fabrication and application of the prototype and a new larger-area curved position-sensitive neutron detector for single crystal diffraction is presented

  20. Mesoscale martensitic transformation in single crystals of topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-09-05

    Liquid crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of doubletwisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with considerable precision by relying on chemically nano-patterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of meso-crystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local re-organization of the crystalline array, without diffusion of the double twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the sub-micron regime, is found to be martensitic in nature, with the diffusion-less feature associated to the collective behavior of the double twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal-nucleation and the controlled growth of soft matter.

  1. Growth, structural, optical, thermal and laser damage threshold studies of an organic single crystal: 1,3,5 – triphenylbenzene (TPB)

    International Nuclear Information System (INIS)

    Raja, R. Subramaniyan; Babu, G. Anandha; Ramasamy, P.

    2016-01-01

    Good quality single crystals of pure hydrocarbon 1,3,5-Triphenylbenzene (TPB) have been successfully grown using toluene as a solvent using controlled slow cooling solution growth technique. TPB crystallizes in orthorhombic structure with the space group Pna2 1 . The structural perfection of the grown crystal has been analysed by high resolution X-ray diffraction measurements. The range and percentage of the optical transmission are ascertained by recording the UV-vis spectrum. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study its thermal properties. Powder second harmonic generation studies were carried out to explore its NLO properties. Laser damage threshold value has been determined using Nd:YAG laser operating at 1064 nm.

  2. Raman study of ? crystals

    Science.gov (United States)

    Pimenta, M. A.; Oliveira, M. A. S.; Bourson, P.; Crettez, J. M.

    1997-09-01

    In this work we present a polarized Raman study of 0953-8984/9/37/020/img7 single crystals for several values of the concentration 0953-8984/9/37/020/img8 made using different scattering geometries. The Raman spectra, composed of broad bands, have been fitted in accordance with a symmetry analysis which allowed us to assign the vibrational modes, and determine their frequencies and damping constants. The results are compatible with an average hexagonal symmetry for the solid solutions with x in the range 0953-8984/9/37/020/img9. In each of the spectra we found two bands at about 590 and 0953-8984/9/37/020/img10, probably associated with the existence of 0953-8984/9/37/020/img11 structures in the solid solutions.

  3. Irradiation creep in zirconium single crystals

    International Nuclear Information System (INIS)

    MacEwen, S.R.; Fidleris, V.

    1976-07-01

    Two identical single crystals of crystal bar zirconium have been creep tested in reactor. Both specimens were preirradiated at low stress to a dose of about 4 x 10 23 n/m 2 (E > 1 MeV), and were then loaded to 25 MPa. The first specimen was loaded with reactor at full power, the second during a shutdown. The loading strain for both crystals was more than an order of magnitude smaller than that observed when an identical unirradiated crystal was loaded to the same stress. Both crystals exhibited periods of primary creep, after which their creep rates reached nearly constant values when the reactor was at power. During shutdowns the creep rates decreased rapidly with time. Electron microscopy revealed that the irradiation damage consisted of prismatic dislocation loops, approximately 13.5 nm in diameter. Cleared channels, identified as lying on (1010) planes, were also observed. The results are discussed in terms of the current theories for flux enhanced creep in the light of the microstructures observed. (author)

  4. Disappearing Enantiomorphs: Single Handedness in Racemate Crystals.

    Science.gov (United States)

    Parschau, Manfred; Ernst, Karl-Heinz

    2015-11-23

    Although crystallization is the most important method for the separation of enantiomers of chiral molecules in the chemical industry, the chiral recognition involved in this process is poorly understood at the molecular level. We report on the initial steps in the formation of layered racemate crystals from a racemic mixture, as observed by STM at submolecular resolution. Grown on a copper single-crystal surface, the chiral hydrocarbon heptahelicene formed chiral racemic lattice structures within the first layer. In the second layer, enantiomerically pure domains were observed, underneath which the first layer contained exclusively the other enantiomer. Hence, the system changed from a 2D racemate into a 3D racemate with enantiomerically pure layers after exceeding monolayer-saturation coverage. A chiral bias in form of a small enantiomeric excess suppressed the crystallization of one double-layer enantiomorph so that the pure minor enantiomer crystallized only in the second layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    Science.gov (United States)

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  6. Isotopically pure single crystal epitaxial diamond films and their preparation

    International Nuclear Information System (INIS)

    Banholzer, W.F.; Anthony, T.R.; Williams, D.M.

    1992-01-01

    The present invention is directed to the production of single crystal diamond consisting of isotopically pure carbon-12 or carbon-13. In the present invention, isotopically pure single crystal diamond is grown on a single crystal substrate directly from isotopically pure carbon-12 or carbon-13. One method for forming isotopically pure single crystal diamond comprises the steps of placing in a reaction chamber a single substrate heated to an elevated diamond forming temperature. Another method for forming isotopically pure single crystal diamond comprises diffusing isotopically pure carbon-12 or carbon-13 through a metallic catalyst under high pressure to a region containing a single crystal substrate to form an isotopically pure single crystal diamond layer on said single crystal substrate

  7. Crystal growth and characterization of new semiorganic nonlinear optical single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kulshrestha, Shobha, E-mail: shobha011986@gmail.com; Shrivastava, A. K., E-mail: ashwaniaks@rediffmail.com [School of Studies in Physics, Jiwaji University Gwalior (M.P.) – 474 011 (India)

    2016-05-06

    An organic material of a L-histidine monohydrochloride single crystal was grown in a distilled water solution using the slow evaporation method at 40–45°C. The grown crystal was transparent and colourless, with a size of about 20 × 9 × 5 mm{sup 3}, obtained within a period of 21 days. The solubility of grown crystals have found out at various temperatures. The UV-visible transmittance studies show that the grown crystals have wide optical transparency in the entire visible region It is observed that the crystal has transparency window from 255nm to 700nm and its energy gap (Eg) found to be is 3.1eV. The grown crystal was subjected to powder X-ray diffraction analysis, confirming that the orthorhombic crystalline nature of the crystal. To identify the surface morphology, the as grown crystal was subjected to FE-SEM technique. The chemical composition of the grown crystal was estimated by Energy dispersive X-ray analysis. The optical behaviour of the grown crystal was analyzed by PL study.

  8. Single crystal spectrometer FOX at KENS

    International Nuclear Information System (INIS)

    Takahashi, M.

    2001-01-01

    Single crystal spectrometer FOX installed at H1 thermal neutron line on KENS has been renewed recently for the measurement of very weak scattering. We have installed a multidetector system of 36 linearly placed 3 He detectors with collimators instead of former four-circle diffractometer and scintillator detectors. Though the system is quite simple, a large two-dimensional reciprocal space is observed effectively with high S/N rate on new FOX. (author)

  9. Photoluminescence properties of boron doped InSe single crystals

    International Nuclear Information System (INIS)

    Ertap, H.; Bacıoğlu, A.; Karabulut, M.

    2015-01-01

    Undoped and boron doped InSe single crystals were grown by Bridgman–Stockbarger technique. The PL properties of undoped, 0.1% and 0.5% boron doped InSe single crystals have been investigated at different temperatures. PL measurements revealed four emission bands labeled as A, B, C and D in all the single crystals studied. These emission bands were associated with the radiative recombination of direct free excitons (n=1), impurity-band transitions, donor–acceptor recombinations and structural defect related band (impurity atoms, defects, defect complexes, impurity-vacancy complex etc.), respectively. The direct free exciton (A) bands of undoped, 0.1% and 0.5% boron doped InSe single crystals were observed at 1.337 eV, 1.335 eV and 1.330 eV in the PL spectra measured at 12 K, respectively. Energy positions and PL intensities of the emission bands varied with boron addition. The FWHM of direct free exciton band increases while the FWHM of the D emission band decreases with boron doping. Band gap energies of undoped and boron doped InSe single crystals were calculated from the PL measurements. It was found that the band gap energies of InSe single crystals decreased with increasing boron content. - Highlights: • PL spectra of InSe crystals have been studied as a function of temperature. • Four emission bands were observed in the PL spectra at low temperatures. • PL intensity and position of free exciton band vary with doping and temperature. • Temperature dependences of the bands observed in the PL spectra were analyzed

  10. Study on the Reactivity of Amino Acid Chemosensor, NPFNP, with Ethanol: Structural Elucidation through Single Crystal XRD and DFT Calculations

    Directory of Open Access Journals (Sweden)

    Beena Varghese

    2017-01-01

    Full Text Available A novel ethoxy derivative of an amino acid chemosensor, 3-naphthyl-1-phenyl-5-(2ʹ-fluoro-5ʹ-nitrophenyl-2-pyrazoline (NPFNP, has been synthesized and characterized by different spectroscopic methods.  A single crystal of the ethoxy derivative, 3-naphthyl-1-phenyl-5-(2ʹ-ethoxy-5ʹ-nitrophenyl-2-pyrazoline NPENP, has been obtained and characterized.  The structure holds interest as it carries biologically active pyrazoline as a central ring attaching to electron donating and withdrawing substituents. The major motivation for this work was to gain detailed insight into the structural parameters of this compound for investigating the influence of crystal packing and geometrical dimensions on optical properties. Time-dependent DFT calculations have been employed for comparing the XRD data with theoretical parameters. The results show that the DFT method at B3LYP/6-31G level can well reproduce the structure of the title compound.

  11. Single crystal growth of yttrium calcium oxy borate (YCOB) crystals by flux technique and their characterization. CP-3.5

    International Nuclear Information System (INIS)

    Arun Kumar, R.; Senthilkumar, M.; Dhanasekaran, R.

    2007-01-01

    Yttrium calcium oxy borate single crystals were grown by the flux technique for the first time. Polycrystalline YCOB material was prepared by solid state reaction method. Single crystals of YCOB were grown using boron-tri-oxide flux. Several transparent single crystals of dimensions 10 x 5 x 5 mm 3 were obtained. The grown crystals were characterized by powder XRD and UV- VIS-NIR studies. The results of powder XRD confirm the crystalline structure of YCOB. The UV- VIS-NIR transmission spectrum reveals that the crystal is highly transparent (above 75%) from ultraviolet (220 nm) to near IR regions enabling it as a suitable candidate for high power UV applications

  12. NMR studies of spin excitations in superconducting Bi2Sr2CaCu2O8+δ single crystals

    Science.gov (United States)

    Takigawa, M.; Mitzi, D. B.

    1994-08-01

    The oxygen NMR shift and the Cu nuclear spin-lattice relaxation rate (1/T1) were measured in Bi2.1Sr1.9Ca0.9Cu2.1O8+δ single crystals. While both the shift and 1/(T1T) decrease sharply near Tc, 1/(T1T) becomes nearly constant at low temperatures, indicating a gapless superconducting state with finite density of states at the Fermi level. From the oxygen shift data, the residual spin susceptibility at T=0 is estimated to be 10% of the value at room temperature. Our results are most consistent with a d-wave pairing model with strong (resonant) impurity scattering.

  13. Study of coexistence of ferromagnetism and superconductivity in single-crystal ErRh4B4

    International Nuclear Information System (INIS)

    Sinha, S.K.; Crabtree, G.W.; Hinks, D.G.; Mook, H.

    1981-01-01

    Neutron diffraction and resistivity measurements on single crystals of ErRh 4 B 4 have revealed that both superconductivity and ferromagnetic order coexist in this material between 0.71 and 1.2 0 K. In this intermediate phase, a linear polarized modulated structure with a wavelength of approximately 100 A is observed. The modulated moment increases faster than the ferromagnetic moment down to 0.71 K and then disappears suddenly, with loss of superconductivity and a transition to a normal ferromagnetic state. This transition is accompanied by temperature hysteresis of about 60 mK. The same hysteresis, in the inverse sense, is exhibited by the ferromagnetic component. We interpret the intermediate phase as being one of coexisting normal ferromagnetic domains and superconducting sinusoidally ordered domains. Evidence of a small percentage of small ferromagnetic regions of size approx. 100 A is also seen in both the intermediate and ferromagnetic phases. 3 figures

  14. First-order phase transitions in CaFe2As2 single crystal: a local probe study

    International Nuclear Information System (INIS)

    Alzamora, M; Munevar, J; Baggio-Saitovitch, E; Bud'ko, S L; Ni Ni; Canfield, P C; Sanchez, D R

    2011-01-01

    57 Fe Moessbauer spectroscopy has been used to investigate the structural and magnetic phase transitions of CaFe 2 As 2 (T N = 173 K) single crystals. For this compound we found that V ZZ is positive and parallel to the c-axis of the tetragonal structure. For CaFe 2 As 2 a magnetic hyperfine field B hf was observed at the 57 Fe nucleus below T N ∼ 173 K. Analysis of the temperature dependence of B hf data using the Bean-Rodbell model shows that the Fe spins undergo a first-order magnetic transition at ∼ 173 K. A collinear antiferromagnetic structure is established below this temperature with the Fe spin lying in the (a, b) plane. Below T N the paramagnetic fraction of Fe decreases down to 150 K and for lower temperatures all the Fe spins are magnetically ordered.

  15. High-pressure single-crystal elasticity study of CO{sub 2} across phase I-III transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jin S., E-mail: zhang72@illinois.edu; Bass, Jay D. [Department of Geology, University of Illinois, Urbana-Champaign, Illinois 61801 (United States); Shieh, Sean R. [Departments of Earth Sciences and Physics and Astronomy, University of Western Ontario, London, Ontario N6A 5B7 (Canada); Dera, Przemyslaw [Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Prakapenka, Vitali [Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637 (United States)

    2014-04-07

    Sound velocities and elastic moduli of solid single-crystal CO{sub 2} were measured at pressures up to 11.7(3) GPa by Brillouin spectroscopy. The aggregate adiabatic bulk modulus (K{sub S}), shear modulus (G), and their pressure derivatives for CO{sub 2} Phase I are K{sub S0} = 3.4(6) GPa, G{sub 0} = 1.8(2) GPa, (dK{sub S}/dP){sub 0} = 7.8(3), (dG/dP){sub 0} = 2.5(1), (d{sup 2}K{sub S}/dP{sup 2}){sub 0} = −0.23(3) GPa{sup −1}, and (d{sup 2}G/dP{sup 2}){sub 0} = −0.10(1) GPa{sup −1}. A small increase of elastic properties was observed between 9.8(1) and 10.5(3) GPa, in agreement with the CO{sub 2} I-III transition pressure determined from previous x-ray diffraction experiments. Above the transition pressure P{sub T}, we observed a mixture dominated by CO{sub 2}-I, with minor CO{sub 2}-III. The CO{sub 2}-I + III mixture shows slightly increased sound velocities compared to pure CO{sub 2}-I. Elastic anisotropy calculated from the single-crystal elasticity tensor exhibits a decrease with pressure beginning at 7.9(1) GPa, which is lower than P{sub T}. Our results coincide with recent X-ray Raman observations, suggesting that a pressure-induced electronic transition is related to local structural and optical changes.

  16. Development of n- and p-type Doped Perovskite Single Crystals Using Solid-State Single Crystal Growth (SSCG) Technique

    Science.gov (United States)

    2017-10-09

    for AGG should be minimal. For this purpose, the seeds for AGG may also be provided externally. This process is called the solid-state single...bonding process . Figure 31 shows (a) the growth of one large single crystal from one small single crystal seed as well as (b) the growth of one...one bi-crystal seed : One large bi-crystal can be grown from one small bi-crystal by SSCG process . Fig. 32. Diffusion bonding process for

  17. Spall response of single-crystal copper

    Science.gov (United States)

    Turley, W. D.; Fensin, S. J.; Hixson, R. S.; Jones, D. R.; La Lone, B. M.; Stevens, G. D.; Thomas, S. A.; Veeser, L. R.

    2018-02-01

    We performed a series of systematic spall experiments on single-crystal copper in an effort to determine and isolate the effects of crystal orientation, peak stress, and unloading strain rate on the tensile spall strength. Strain rates ranging from 0.62 to 2.2 × 106 s-1 and peak shock stresses in the 5-14 GPa range, with one additional experiment near 50 GPa, were explored as part of this work. Gun-driven impactors, called flyer plates, generated flat top shocks followed by spall. This work highlights the effect of crystal anisotropy on the spall strength by showing that the spall strength decreases in the following order: [100], [110], and [111]. Over the range of stresses and strain rates explored, the spall strength of [100] copper depends strongly on both the strain rate and shock stress. Except at the very highest shock stress, the results for the [100] orientation show linear relationships between the spall strength and both the applied compressive stress and the strain rate. In addition, hydrodynamic computer code simulations of the spall experiments were performed to calculate the relationship between the strain rate near the spall plane in the target and the rate of free surface velocity release during the pullback. As expected, strain rates at the spall plane are much higher than the strain rates estimated from the free surface velocity release rate. We have begun soft recovery experiments and molecular dynamics calculations to understand the unusual recompression observed in the spall signature for [100] crystals.

  18. Comparative optical study of thulium-doped YVO4 , GdVO4 , and LuVO4 single crystals

    Science.gov (United States)

    Lisiecki, R.; Solarz, P.; Dominiak-Dzik, G.; Ryba-Romanowski, W.; Sobczyk, M.; Černý, Pavel; Šulc, Jan; Jelínková, Helena; Urata, Yoshiharu; Higuchi, Mikio

    2006-07-01

    YVO4:Tm3+ crystals grown by the Czochralski technique and GdVO4:Tm3+ and LuVO4:Tm3+ crystals grown by the floating-zone technique were investigated using methods of optical spectroscopy. Polarized absorption and emission spectra were recorded at room temperature and at 6K . The crystal-field analysis was performed assuming the D2d site symmetry for Tm3+ ions. In this way the missing crystal-field components of the H63 ground multiplet were located. Room temperature absorption spectra were analyzed in the framework of the Judd-Ofelt theory. Evaluated radiative lifetimes of luminescent levels of Tm3+ follow a general trend diminishing in agreement with the sequence: YVO4:Tm3+→GdVO4:Tm3+→LuVO4:Tm3+ . Luminescence lifetimes measured for the systems under study are similar except for the F43 lifetime, which appears to be surprisingly short for LuVO4:Tm3+ . Anisotropy of optical spectra is particularly pronounced in LuVO4:Tm3+ . Peak absorption cross section for the band relevant for optical pumping at about 805nm is roughly three times higher for π polarization. Stimulated emission cross sections for the F43-H63 transition near 1800nm were evaluated using the reciprocity method. The diode-pumped continuous wave laser operation in GdVO4:Tm3+ with a slope efficiency of up to 40% is demonstrated. In LuVO4:Tm3+ the diode-pumped laser oscillation in a pulsed mode was observed.

  19. Study of thermochemically reduced and electron-irradiated LiNbO3 single crystals by positron annihilation and optical absorption measurements

    International Nuclear Information System (INIS)

    Pareja, R.; Gonzalez, R.; Pedrosa, M.A.

    1984-01-01

    Irradiation of LiNbO 3 single crystals using Van de Graaff electrons with an energy of 1.5 MeV introduces an optical absorption band similar to that observed in thermochemically reduced samples. As-grown, reduced, or irradiated crystals show single-component positron lifetime spectra with an average decay time of 234 ps. (author)

  20. Colour centre-free perovskite single crystals

    International Nuclear Information System (INIS)

    Petit, Pierre-Olivier; Petit, Johan; Goldner, Philippe; Viana, Bruno

    2009-01-01

    Yb 3+ :YAlO 3 (YAP) and Yb 3+ :GdAlO 3 (GAP) are interesting 1 μm high-power laser media thanks to their very good thermo-mechanical properties. However, as-grown perovskite single crystals exhibit colour centres. Parasitic thermal load generated by these centres is deleterious for high-power laser action and can lead to crystal damages. Moreover these defects decrease Yb 3+ lifetime. They are related to trapped holes on the oxygen network. In the present work, several schemes to remove colour centres are presented. Attention is focused on cerium codoping, thermal annealing under reducing atmosphere and growth of non-stoechiometric compounds.

  1. Cryogenic motion performances of a piezoelectric single crystal micromotor

    Science.gov (United States)

    Li, Xiaotian; Wu, Yuting; Chen, Zhijiang; Wei, Xiaoyong; Luo, Haosu; Dong, Shuxiang

    2014-04-01

    This study investigates the cryogenic performances of a millimeter-size piezoelectric ultrasonic linear micromotor. The piezoelectric vibrator of the micromotor is made of Pb(In1/2Nb1/2)O3 -Pb(Mg1/3Nb2/3)-PbTiO3 single crystal and operated in first-bending wobbling mode. Experiments show that the piezoelectric single crystal micromotor works effectively even at extremely low temperature of -175 °C, although its resonance peaks vary with temperature significantly. This work confirms the feasibility of cryogenic operation of the piezo-micromotor, which is meaningful for aerospace or superconducting microwave application.

  2. Regularities of recrystallization in rolled Zr single crystals

    International Nuclear Information System (INIS)

    Isaenkova, M; Perlovich, Yu; Fesenko, V; Krymskaya, O; Krapivka, N; Thu, S S

    2015-01-01

    Experiments by rolled single crystals give a more visible conception of the operating mechanisms of plastic deformation and the following recrystallization, than experiments by polycrystals. Studies by usage of X-ray diffraction methods were conducted by Zr single crystals. It was revealed, that regions of the α-Zr matrix, deformed mainly by twinning, are characterized with decreased tendency to recrystallization. Orientations of recrystallized α-Zr grains correspond to “slopes” of maxima in the rolling texture, where the level of crystalline lattice distortion is maximal and the number of recrystallization nuclei is most of all. (paper)

  3. Nature of the magnetic ground state in the mixed valence compound CeRuSn: a single-crystal study

    International Nuclear Information System (INIS)

    Fikáček, J; Prokleška, J; Prchal, J; Custers, J; Sechovský, V

    2013-01-01

    We report on detailed low-temperature measurements of the magnetization, the specific heat and the electrical resistivity on high-quality CeRuSn single crystals. The compound orders antiferromagnetically at T N = 2.8 K with the Ce 3+ ions locked within the a–c plane of the monoclinic structure. Magnetization shows that below T N CeRuSn undergoes a metamagnetic transition when applying a magnetic field of 1.5 and 0.8 T along the a- and c-axis, respectively. This transition manifests in a tremendous negative jump of ∼25% in the magnetoresistance. The value of the saturated magnetization along the easy magnetization direction (c-axis) and the magnetic entropy above T N derived from specific heat data correspond to the scenario of only one third of the Ce ions in the compound being trivalent and carrying a stable Ce 3+ magnetic moment, whereas the other two thirds of the Ce ions are in a nonmagnetic tetravalent and/or mixed valence state. This is consistent with the low-temperature CeRuSn crystal structure i.e., a superstructure consisting of three unit cells of the CeCoAl type piled up along the c-axis, and in which the Ce 3+ ions are characterized by large distances from the Ru ligands while the Ce–Ru distances of the other Ce ions are much shorter causing a strong 4f-ligand hybridization and hence leading to tetravalent and/or mixed valence Ce ions. (paper)

  4. Point-contact spectroscopic studies on normal and superconducting AFe2As2-type iron pnictide single crystals

    International Nuclear Information System (INIS)

    Lu Xin; Park, W K; Greene, L H; Yuan, H Q; Chen, G F; Luo, G L; Wang, N L; Sefat, A S; McGuire, M A; Jin, R; Sales, B C; Mandrus, D; Gillett, J; Sebastian, Suchitra E

    2010-01-01

    Point-contact Andreev reflection spectroscopy is applied to investigate the gap structure in iron pnictide single-crystal superconductors of the AFe 2 As 2 (A = Ba, Sr) family ('Fe-122'). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba 0.6 K 0.4 )Fe 2 As 2 and Ba(Fe 0.9 Co 0.1 ) 2 As 2 , and the other with a V 2/3 background conductance universally observed, extending even up to 100 meV for Sr 0.6 Na 0.4 Fe 2 As 2 and Sr(Fe 0.9 Co 0.1 ) 2 As 2 . The latter is also observed in point-contact junctions on the nonsuperconducting parent compound BaFe 2 As 2 and superconducting (Ba 0.6 K 0.4 )Fe 2 As 2 crystals. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba 0.6 K 0.4 Fe 2 As 2 , double peaks due to Andreev reflection with a strongly sloping background are frequently observed for point contacts on freshly cleaved c-axis surfaces. If normalized using a background baseline and analyzed using the Blonder-Tinkham-Klapwijk model, the data show a gap size of ∼ 3.0-4.0 meV with 2Δ 0 /k B T c ∼ 2.0-2.6, consistent with the smaller gap size reported for the LnFeAsO family ('Fe-1111'). For the Ba(Fe 0.9 Co 0.1 ) 2 As 2 , the G(V) curves typically display a zero-bias conductance peak.

  5. Growth of single crystals of BaFe12O19 by solid state crystal growth

    International Nuclear Information System (INIS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-01-01

    Single crystals of BaFe 12 O 19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe 12 O 19 are buried in BaFe 12 O 19 +1 wt% BaCO 3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe 12 O 19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe 12 O 19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth. - Highlights: • Single crystals of BaFe 12 O 19 are grown by solid state crystal growth. • A single crystal up to ∼130 μm thick (c-axis direction) grows on the seed crystal. • The single crystal and surrounding ceramic matrix have similar composition. • Micro-Raman scattering shows the single crystal has the BaFe 12 O 19 structure.

  6. Stacking fault tetrahedron induced plasticity in copper single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang, E-mail: lz592@uowmail.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Kiet; Su, Lihong; Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Pei, Linqing [Department of Mechanical Engineering, Chongqing University, Chongqing 400044 (China)

    2017-01-05

    Stacking fault tetrahedron (SFT) is the most common type of vacancy clustered defects in fcc metals and alloys, and can play an important role in the mechanical properties of metallic materials. In this study, molecular dynamics (MD) simulations were carried out to investigate the incipience of plasticity and the underlying atomic mechanisms in copper single crystals with SFT. Different deformation mechanisms of SFT were reported due to the crystal orientations and loading directions (compression and tension). The results showed that the incipient plasticity in crystals with SFT resulted from the heterogeneous dislocation nucleation from SFT, so the stress required for plastic deformation was less than that needed for perfect single crystals. Three crystal orientations ([1 0 0], [1 1 0] and [1 1 1]) were specified in this study because they can represent most of the typical deformation mechanisms of SFT. MD simulations revealed that the structural transformation of SFT was frequent under the applied loading; a metastable SFT structure and the collapse of SFT were usually observed. The structural transformation resulted in a different reduction of yield stress in compression and tension, and also caused a decreased or reversed compression/tension asymmetry. Compressive stress can result in the unfaulting of Frank loop in some crystal orientations. According to the elastic theory of dislocation, the process of unfaulting was closely related to the size of the dislocation loop and the stacking fault energy.

  7. Annealing behavior of solution grown polyethylene single crystals

    NARCIS (Netherlands)

    Loos, J.; Tian, M.

    2006-01-01

    The morphology evolution of solution grown polyethylene single crystals has been studied upon annealing below their melting temperature by using atomic force microscopy (AFM). AFM investigations have been performed ex situ, which means AFM investigations at room temperature after the annealing

  8. Lattice effects in HoVo(3) single crystal

    NARCIS (Netherlands)

    Sikora, M.; Marquina, C.; Ibarra, M. R.; Nugroho, A. A.; Palstra, T. T. M.

    We report the study of lattice effects in the Mott insulator HoVO3 performed by means of linear thermal expansion on a single crystal in the temperature range 10-290 K. The holmium orthovanadate HoVO3 reveals gradual orbital ordering (OO) below T-OO = 200K and orders antiferromagnetically at T-N =

  9. Dynamic Actuation of Single-Crystal Diamond Nanobeams

    OpenAIRE

    Sohn, Young-Ik; Burek, Michael J.; Kara, Vural; Kearns, Ryan; Lončar, Marko

    2014-01-01

    We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ~50MHz. Frequency tuning and parametric actuation are also studied.

  10. Detection of anomalies in NLO sulphamic acid single crystals by ...

    Indian Academy of Sciences (India)

    The ultrasonic pulse echo overlap technique (PEO) has been used to measure the ... acid single crystals in the range of 300–400 K. This study evaluated all the elastic stiff- .... tic constants C11, C22, C33, C44, C55 and C66 have direct rela-.

  11. ESR-ENDOR study of x-irradiated single crystals of α.D.glucopyranose and α-methyl.D.glucopyranoside; environmental effects upon radiation and free radical chemistry in carbohydrate model systems

    International Nuclear Information System (INIS)

    Madden, K.P.

    1980-01-01

    Single crystals of x-irradiated α-D-glucopyranose (αGlu) and α-methyl-D-glucopyranoside (αMeGlu) were studied using electron spin resonance and electron nuclear double resonance spectroscopy, to determine products and reaction mechanisms in carbohydrate radiation and free-radical chemistry. Four free-radical products were identified in αMeGlu single crystals irradiated and studied at 77K. Irradiation and observation at 12K produced yet another species. Four free radicals were identified in αGlu single crystals irradiated and observed at 12K and 77K. Free radical reaction in αGlu and αMeGlu were induced by slowly warming crystals irradiated at 77K until conversion occurred. Environmental influences upon these free-radical reaction mechanisms are discussed. The results from previous work on irradiated aqueous glasses of αGlu is briefly reviewed, and compared to those obtained from the single crystal system

  12. The new single crystal diffractometer SC3

    International Nuclear Information System (INIS)

    Schefer, J.; Koch, M.; Keller, P.; Fischer, S.; Thut, R.

    1996-01-01

    Single crystal diffraction is a powerful method for the determination of precise structure parameters, superlattices, stress. Neutron single crystal diffraction gives additionally to X-rays information on magnetic structures, both commensurate and incommensurate, hydrogen positions, hydrogen bonding behavior and accurate bondlengths, e.g. important in cuprates. The method is therefore especially powerful if combined with X-ray diffraction results. The new instrument at SINQ has been designed for inorganic materials and is positioned at a thermal beam tube, pointing on a water scatterer. This scatterer is presently operating with H 2 O at ambient temperature, but a change to another medium at different temperature is possible. The instrument will be equipped with three area detectors, moving at fixed difference in 2Θ. each detector may be individually moved around a vertical circle (tilting angle γ), allowing to use not only 4-circle geometry in the temperature range from 1.5 to 380 K, but also any equipment from a dilution refrigerator (7 mK) to a heavy magnet. A high temperature furnace for 4-circle geometry is foreseen as a future option. (author) 6 figs., 1 tab., 7 refs

  13. The new single crystal diffractometer SC3

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, J; Koch, M; Keller, P; Fischer, S; Thut, R [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    Single crystal diffraction is a powerful method for the determination of precise structure parameters, superlattices, stress. Neutron single crystal diffraction gives additionally to X-rays information on magnetic structures, both commensurate and incommensurate, hydrogen positions, hydrogen bonding behavior and accurate bondlengths, e.g. important in cuprates. The method is therefore especially powerful if combined with X-ray diffraction results. The new instrument at SINQ has been designed for inorganic materials and is positioned at a thermal beam tube, pointing on a water scatterer. This scatterer is presently operating with H{sub 2}O at ambient temperature, but a change to another medium at different temperature is possible. The instrument will be equipped with three area detectors, moving at fixed difference in 2{Theta}. each detector may be individually moved around a vertical circle (tilting angle {gamma}), allowing to use not only 4-circle geometry in the temperature range from 1.5 to 380 K, but also any equipment from a dilution refrigerator (7 mK) to a heavy magnet. A high temperature furnace for 4-circle geometry is foreseen as a future option. (author) 6 figs., 1 tab., 7 refs.

  14. Thermal shock cracking of GSO single crystal

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Yamamoto, Kazunari; Tamura, Takaharu; Kurashige, Kazuhisa; Ishibashi, Hiroyuki; Susa, Kenzo

    1998-01-01

    The quantitative estimation of the failure stress of a gadolinium orthosilicate (Gd 2 SiO 5 , hereafter abbreviated as GSO) single crystal due to thermal shock was investigated. A cylindrical test specimen was heated in a silicone oil bath, then subjected to thermal shock by pouring room temperature silicone oil. Cracking occurred during cooling. The heat conduction analysis was performed to obtain temperature distribution in a GSO single crystal at cracking, using the surface temperatures measured in the thermal shock cracking test. Then the thermal stress was calculated using temperature profile of the test specimen obtained from the heat conduction analysis. It is found from the results of the thermal stress analysis and the observation of the cracking in test specimens that the thermal shock cracking occurs in a cleavage plane due to the stress normal to the plane. Three-point bending tests were also performed to examine the relationship between the critical stress for thermal shock cracking and the three-point bending strength obtained from small-sized test specimens. (author)

  15. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-04-01

    With the soaring advancement of organolead halide perovskite solar cells rising from a power conversion efficiency of merely 3% to more than 22% shortly in five years, researchers’ interests on this big material family have been greatly spurred. So far, both in-depth studies on the fundamental properties of organolead halide perovskites and their extended applications such as photodetectors, light emitting diodes, and lasing have been intensively reported. The great successes have been ascribed to various superior properties of organolead halide hybrid perovskites such as long carrier lifetimes, high carrier mobility, and solution-processable high quality thin films, as will be discussed in Chapter 1. Notably, most of these studies have been limited to their polycrystalline thin films. Single crystals, as a counter form of polycrystals, have no grain boundaries and higher crystallinity, and thus less defects. These characteristics gift single crystals with superior optical, electrical, and mechanical properties, which will be discussed in Chapter 2. For example, organolead halide perovskite single crystals have been reported with much longer carrier lifetimes and higher carrier mobilities, which are especially intriguing for optoelectronic applications. Besides their superior optoelectronic properties, organolead halide perovskites have shown large composition versatility, especially their organic components, which can be controlled to effectively adjust their crystal structures and further fundamental properties. Single crystals are an ideal platform for such composition-structure-property study since a uniform structure with homogeneous compositions and without distraction from grain boundaries as well as excess defects can provide unambiguously information of material properties. As a major part of work of this dissertation, explorative work on the composition-structure-property study of organic-cation-alloyed organolead halide perovskites using their single

  16. Growth of single crystals of BaFe12O19 by solid state crystal growth

    Science.gov (United States)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  17. Neutron single crystal diffraction studies of orientational glass state in the [Rbx(NH4)1-x]3H(SO4)2 mixed crystals

    International Nuclear Information System (INIS)

    Smirnov, L.S.; Reehuis, M.; Loose, A.; Hohlwein, D.; Hoffmann, J.U.; Wozniak, K.; Dominiak, P.; Baranov, A.I.; Dolbinina, V.V.

    2005-01-01

    The [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystal with the concentration x=0.0 at room temperature crystallizes in a monoclinic C2/c with sp.gr. (space group), which is stabilized for x>0.09 down to low temperatures. This system is transformed in the orientational glass state below the freezing temperature T g =30 K. The differential Fourier maps for the [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystals show that if for x=0.0 and 0.11 at 293 K the obtained maps reflect different orientational positions of crystallographically independent NH 4 (1) and NH 4 (2) groups, then the differential Fourier maps for x=0.20 at 9 K in the orientational glass state are similar for both ammonium groups reflecting their static disorder. The existence of the modulated structure in the [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystals with x=0.11 at 2 K is discovered, while the modulated structure for x=0.20 at 2 K is absent. This observation supposes that there should be two different regions of the orientational glass state on x-T phase diagram of the [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystals

  18. Electronic transport properties of single crystal thallium-2201 superconductors

    International Nuclear Information System (INIS)

    Yandrofski, R.M.

    1992-01-01

    Four-probe resistance measurements on single crystals of the calcium-free thallium-based superconducting Tl 2 Ba 2 CuO 6+σ phase (Tl-2201) were performed in magnetic fields up to 12 Telsa. Single crystals of sizes were grown by a self-flux technique and were characterized by single crystal X-ray diffraction and X-ray Dispersive Analysis. Field measurements were taken at dc and at low frequencies using a lock-in technique. Techniques were developed to oxygen-anneal the as-grown single crystals to generate single crystal samples of the same Tl-2201 phase with varying transition interaction effect against appropriate composite general alternatives are developed for the standard two-way layout with a single observation per cell. Nonparametric aligned-rank test procedures are introduced. One of the new procedures is shown to be equivalent to a slight modification of the previously studied Latin square procedures when the factors have the same number of levels. The equal in distribution technique is used to show that any statistic based on the joint ranks should not be used to test the hypotheses of interest. The tests based on aligning with the averages do not depend on the nuisance main effects, while those based on aligning with the median do depend on the nuisance main effects. The relative power performance of the competing tests are examined via Monte Carlo simulation. Power studies conducted on the 5 x 5, 5 x 6, and 5 x 9 two-way layouts with one observation per cell show that the new procedures based on a comparison of all possible pairs of rank-profiles perform quite well for two types of product interaction, a general class of interaction effects proposed by Martin, and several sets of specific interaction effects. Approximate critical values for some of the proposed procedures are explored in the special case when the main effect parameters for one factor are known

  19. Growth and characterization of nonlinear optical single crystal: Nicotinic L-tartaric

    Energy Technology Data Exchange (ETDEWEB)

    Sheelarani, V.; Shanthi, J., E-mail: shanthinelson@gmail.com [Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-641043 (India)

    2015-06-24

    Nonlinear optical single crystals were grown from Nicotinic and L-Tartaric acid by slow evaporation technique at room temperature. Structure of the grown crystal was confirmed by single crystal X-ray diffraction studies, The crystallinity of the Nicotinic L-Tartaric (NLT) crystals was confirmed from the powder XRD pattern. The transparent range and cut off wavelength of the grown crystal was studied by the UV–Vis spectroscopic analysis.The thermal stability of the crystal was studied by TG-DTA. The second harmonic generation (SHG) efficiency of NLT was confirmed by Kurtz Perry technique.

  20. Order-disorder-reorder process in thermally treated dolomite samples: a combined powder and single-crystal X-ray diffraction study

    Science.gov (United States)

    Zucchini, A.; Comodi, P.; Katerinopoulou, A.; Balic-Zunic, T.; McCammon, C.; Frondini, F.

    2012-04-01

    A combined powder and single-crystal X-ray diffraction analysis of dolomite [CaMg(CO3)2] heated to 1,200°C at 3 GPa was made to study the order-disorder-reorder process. The order/disorder transition is inferred to start below 1,100°C, and complete disorder is attained at approximately 1,200°C. Twinned crystals characterized by high internal order were found in samples annealed over 1,100°C, and their fraction was found to increase with temperature. Evidences of twinning domains combined with probable remaining disordered portions of the structure imply that reordering processes occur during the quench. Twin domains are hereby proposed as a witness to thermally induced intra-layer-type cation disordering.

  1. Scanning/friction force microscopy study of YBa2Cu3O7-δ single crystals grown in BaZrO3 crucibles

    International Nuclear Information System (INIS)

    Lang, H.P.; Jess, P.; Hubler, U.

    1996-01-01

    Very pure YBa 2 Cu 3 O 7-δ (YBCO) single crystals grown in BaZrO 3 crucibles are studied in the as-grown and the oxidized state by scanning force (SFM), friction force (FFM) and scanning tunneling microscopies (STM). The images show clean terraces with step-heights of one unit cell along YBCO(001), i.e. 1.2 nm. Only close to step edges is material contrast observed by FFM indicating traces of flux. Some crystal surfaces exhibit over-layer features, such as star-like, ribbon-like and checkerboard-like structures, which exhibit friction contrast implying the presence of different materials on the surface. Tunneling spectroscopy at 4-7 K in high vacuum reveals a superconducting energy gap of 2Δ ∼ 26 meV

  2. Transmission electron microscope studies of phase transitions in single crystals and ceramics of ferroelectric Pb(Sc1/2Ta1/2)O3

    International Nuclear Information System (INIS)

    Baba-Kishi, K.Z.; Barber, D.J.

    1990-01-01

    An account is given of transmission electron microscope investigations of the phase transitions in single crystals and ceramics of the complex perovskite-structured ferroelectric 'relaxor' compound Pb(Sc 1/2 Ta 1/2 )O 3 . The crystal symmetries pertaining to both the non-polar paraelectric (PE) and polar ferroelectric (FE) states have been studied by the technique of convergent-beam electron diffraction. A new phase transition has been discovered in the temperature range for which the FE and PE states coexist. The new phase transition is interpreted as the creation of a modulated antiferroelectric state, and this is viewed as marking a departure from relaxor behaviour towards more 'normal' ferroelectric behaviour. (orig.)

  3. Temperature dependent tunneling study of CaFe{sub 1.96}Ni{sub 0.04}As{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Anirban, E-mail: adatta@iitk.ac.in; Gupta, Anjan K. [Department of Physics, IIT Kanpur, Kanpur-208 016 (India); Thamizhavel, A. [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400 005 (India)

    2014-04-24

    We report on temperature dependent scanning tunneling microscopy and spectroscopy studies on CaFe{sub 1.96}Ni{sub 0.04}As{sub 2} single crystals in 5.4 – 19.7 K temperature range across the normal metal - superconductor transition temperature, T{sub C} = 14K. The in-situ cleaved crystals show reasonably flat surface with signatures of atomic resolution. The tunnel spectra show significant spatial inhomogeneity below T{sub C}, which reduces significantly as the temperature goes above the T{sub C}. We discuss these results in terms of an inhomogeneous electronic phase that may exist due to the vicinity of this composition to the quantum critical point.

  4. Investigations of morphological changes during annealing of polyethylene single crystals

    NARCIS (Netherlands)

    Tian, M.; Loos, J.

    2001-01-01

    The morphological evolution of isolated individual single crystals deposited on solid substrates was investigated during annealing experiments using in situ and ex situ atomic force microscopy techniques. The crystal morphology changed during annealing at temperatures slightly above the original

  5. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-01-01

    Despite their outstanding charge transport characteristics, organolead halide perovskite single crystals grown by hitherto reported crystallization methods are not suitable for most optoelectronic devices due to their small aspect ratios

  6. Growth and characterization of nonlinear optical single crystals: bis ...

    Indian Academy of Sciences (India)

    Administrator

    molecules have received great attention for NLO applica- tions. However ... Figure 3. Single crystals of bis(cyclohexylammonium) terephthalate (crystal a) and cyclohexylammo- .... from ground state to higher energy states.17 Optical window ...

  7. Organic field-effect transistors using single crystals

    International Nuclear Information System (INIS)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-01-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm 2 Vs -1 , achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps. (topical review)

  8. Organic field-effect transistors using single crystals

    Directory of Open Access Journals (Sweden)

    Tatsuo Hasegawa and Jun Takeya

    2009-01-01

    Full Text Available Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs, the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  9. Role of crystal orientation on chemical mechanical polishing of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Aibin, E-mail: abzhu@mail.xjtu.edu.cn; He, Dayong; Luo, Wencheng; Liu, Yangyang

    2016-11-15

    Highlights: • The role of crystal orientation in cooper CMP by quasi-continuum was studied. • The atom displacement diagrams were obtained and analyzed. • The stress distribution diagrams and load-displacement curves were analyzed. • This research is helpful to revealing the material removal mechanism of CMP. - Abstract: The material removal mechanism of single crystal copper in chemical mechanical polishing (CMP) has not been intensively investigated. And the role of crystal orientation in CMP of single crystal cooper is not quite clear yet. Quasi-continuum method was adopted in this paper to simulate the process of nano-particles grinding on single crystal copper in CMP process. Three different crystal orientations, i.e. x[100]y[001], x[001]y[110] and x[–211]y[111], were chosen for analysis. The atom displacement diagrams, stress distribution diagrams and load-displacement curves were obtained. After analyzing the deformation mechanism, residual stress of the work piece material and cutting force, results showed that, the crystal orientation of work piece has great influence on the deformation characteristics and surface quality of work piece during polishing. In the A(001)[100] orientation, the residual stress distribution after polishing is deeper, and the stress is larger than that in the B(110)[001] and C(111)[–211] orientations. And the average tangential cutting force in the A(001)[100] orientation is much larger than those in the other two crystal orientation. This research is helpful to revealing the material removal mechanism of CMP process.

  10. Solar cell structure incorporating a novel single crystal silicon material

    Science.gov (United States)

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  11. Electronic structure of single crystal C60

    International Nuclear Information System (INIS)

    Wu, J.; Shen, Z.X.; Dessau, D.S.; Cao, R.; Marshall, D.S.; Pianetta, P.; Lindau, I.; Yang, X.; Terry, J.; King, D.M.; Wells, B.O.; Elloway, D.; Wendt, H.R.; Brown, C.A.; Hunziker, H.; Vries, M.S. de

    1992-01-01

    We report angle-resolved photoemission data from single crystals of C 60 cleaved in UHV. Unlike the other forms of pure carbon, the valence band spectrum of C 60 consists of many sharp features that can be essentially accounted for by the quantum chemical calculations describing individual molecules. This suggests that the electronic structure of solid C 60 is mainly determined by the bonding interactions within the individual molecules. We also observe remarkable intensity modulations of the photoemission features as a function of photon energy, suggesting strong final state effects. Finally, we address the issue of the band width of the HOMO state of C 60 . We assert that the width of the photoemission peak of C 60 does not reflect the intrinsic band width because it is broadened by the non 0-0 transitions via the Franck-Condon principle. Our view point provides a possible reconciliation between these photoemission data and those measured by other techniques. (orig.)

  12. Photoluminescent properties of single crystal diamond microneedles

    Science.gov (United States)

    Malykhin, Sergey A.; Ismagilov, Rinat R.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Fedotov, Pavel V.; Ermakova, Anna; Siyushev, Petr; Katamadze, Konstantin G.; Jelezko, Fedor; Rakovich, Yury P.; Obraztsov, Alexander N.

    2018-01-01

    Single crystal needle-like diamonds shaped as rectangular pyramids were produced by combination of chemical vapor deposition and selective oxidation with dimensions and geometrical characteristics depending on the deposition process parameters. Photoluminescence spectra and their dependencies on wavelength of excitation radiation reveal presence of nitrogen- and silicon-vacancy color centers in the diamond crystallites. Photoluminescence spectra, intensity mapping, and fluorescence lifetime imaging microscopy indicate that silicon-vacancy centers are concentrated at the crystallites apex while nitrogen-vacancy centers are distributed over the whole crystallite. Dependence of the photoluminescence on excitation radiation intensity demonstrates saturation and allows estimation of the color centers density. The combination of structural parameters, geometry and photoluminescent characteristics are prospective for advantageous applications of these diamond crystallites in quantum information processing and optical sensing.

  13. Hydrogen Annealing Of Single-Crystal Superalloys

    Science.gov (United States)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  14. EPR of CU+2:Mb single crystal

    International Nuclear Information System (INIS)

    Nascimento, O.R.; Ribeiro, S.C.; Bemski, G.

    1976-01-01

    Copper introduced into met-myoglobin crystals occupies various sites as indicated by EPR parameters. CU 2+ (A) is probably liganded to histidine A10, lysine A14 and asparagine GH4 (Banaszak, 1965) and shows super-hyperfine interaction with a single (imidazole) nitrogen. Cu 2+ (B) and Cu 2+ (C) correspond to other anisotropic sites described with lesser details. Cu 2+ (A) exhibits a transition to an isotropic form with a transition temperature of 40.5 0 C. This transition is indicative of a conformational change in myoglobin and could correspond to a motion of A helix away from the GH section. The transition temperature is 7 0 C higher than the previously reported (Atanasov, 1971) one for myoglobin in solution

  15. Neutron Diffraction Study of the Irreversible R-MA-MC Phase Transition in Single Crystal Pb[(Zn1/3Nb2/3)1-xTix]O3

    NARCIS (Netherlands)

    Ohwada, Kenji; Hirota, Kazuma; Rehrig, Paul W.; Gehring, Peter M.; Noheda, Beatriz; Fujii, Yasuhiko; Park, Seung-Eek Eagle; Shirane, Gen

    2001-01-01

    Single crystals of the relaxor PZN-xPT display an enormously strong piezoelectric character. Recent x-ray scattering studies have revealed novel electric-field induced phase transitions in PZN-8%PT. As-grown crystals exhibit a rhombohedral structure that, under application of an electric field

  16. Single-crystal growth of ceria-based materials

    International Nuclear Information System (INIS)

    Ulbrich, Gregor

    2015-01-01

    In this work it could be shown that Skull-Melting is a suitable method for growing ceria single crystals. Twenty different ceria-based single crystals could be manufactured. It was possible to dope ceria single crystals with Gd, Sm, Y, Zr, Ti, Ta, and Pr in different concentrations. Also co-doping with the named metals was realized. However, there remain some problems for growing ceria-based single crystals by Skull-Melting. As ignition metal zirconium was used because no ceria-based material works well. For that reason all single crystals show small zirconium contamination. Another problem is the formation of oxygen by the heat-induced reduction of ceria during the melting process. Because of that the skull of sintered material is often destroyed by gas pressure. This problem had to be solved individually for every single crystal. The obtained single crystals were characterized using different methods. To ensure the single crystal character the y were examined by Laue diffraction. All manufactured crystals are single crystals. Also powder diffraction patterns of the milled and oxidized samples were measured. For the determination of symmetry and metric the structural parameters were analyzed by the Rietveld method. All synthesized materials crystallize in space group Fm-3m known from calcium fluoride. The cubic lattice parameter a was determined for all crystals. In the case of series with different cerium and zirconium concentrations a linear correlation between cerium content and cubic lattice parameter was detected. The elemental composition was determined by WDX. All crystals show a homogeneous elemental distribution. The oxygen content was calculated because the WDX method isn't useful for determination.

  17. Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy.

    Science.gov (United States)

    Zhang, Hang; Xu, Qingyan

    2017-10-27

    Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS). In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD) method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter ( d w ), the spiral pitch ( h b ) and the spiral diameter ( h s ), were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure.

  18. Neutron transmission and reflection at a copper single crystal

    International Nuclear Information System (INIS)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Fayek, M.; Habib, N.; Wahba, M.

    1991-01-01

    Neutron transmission and reflection at a copper single crystal cut along the (111) plane were studied with the fixed-scattering-angle spectrometer installed at the ET-RR-1 reactor. The transmission was measured for neutron wavelengths between 0.15 and 0.46 nm and various orientations of the (111) plane with respect to the incident beam. When used as a neutron band pass filter, the crystal is optimally oriented when the neutron beam is incident parallel to the [111] direction. The reflectivity was measured for the (111) plane at 45deg with respect to the incident beam. The results were found to be in reasonable agreement with a value predicted for the reflected intensity at an imperfect crystal with finite absorption. (orig.) [de

  19. Neutron transmission and reflection at a copper single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Fayek, M.; Habib, N. (Atomic Energy Establishment, Cairo (Egypt). Reactor and Neutron Physics Dept.); Wahba, M. (Ain Shams Univ., Cairo (Egypt). Dept. of Engineering Physics and Mathematics)

    1991-06-01

    Neutron transmission and reflection at a copper single crystal cut along the (111) plane were studied with the fixed-scattering-angle spectrometer installed at the ET-RR-1 reactor. The transmission was measured for neutron wavelengths between 0.15 and 0.46 nm and various orientations of the (111) plane with respect to the incident beam. When used as a neutron band pass filter, the crystal is optimally oriented when the neutron beam is incident parallel to the (111) direction. The reflectivity was measured for the (111) plane at 45deg with respect to the incident beam. The results were found to be in reasonable agreement with a value predicted for the reflected intensity at an imperfect crystal with finite absorption. (orig.).

  20. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies

    International Nuclear Information System (INIS)

    Islam, Zahirul; Lang, Jonathan C.; Ruff, Jacob P. C.; Ross, Kathryn A.; Gaulin, Bruce D.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Qu Zhe

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (∼1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  1. In situ dehydration behavior of zeolite-like pentagonite: A single-crystal X-ray study

    International Nuclear Information System (INIS)

    Danisi, Rosa Micaela; Armbruster, Thomas; Lazic, Biljana

    2013-01-01

    The structural modifications upon heating of pentagonite, Ca(VO)(Si 4 O 10 )·4H 2 O (space group Ccm2 1 , a=10.3708(2), b=14.0643(2), c=8.97810(10) Å, V=1309.53(3) Å 3 ) were investigated by in situ temperature dependent single-crystal X-ray structure refinements. Diffraction data of a sample from Poona district (India) have been measured in steps of 25 up to 250 °C and in steps of 50 °C between 250 and 400 °C. Pentagonite has a porous framework structure made up by layers of silicate tetrahedra connected by V 4+ O 5 square pyramids. Ca and H 2 O molecules are extraframework occupants. Room temperature diffraction data allowed refinement of H positions. The hydrogen-bond system links the extraframework occupants to the silicate layers and also interconnects the H 2 O molecules located inside the channels. Ca is seven-fold coordinated forming four bonds to O of the tetrahedral framework and three bonds to extraframework H 2 O. The H 2 O molecule at O9 showing a high displacement parameter is not bonded to Ca. The dehydration in pentagonite proceeds in three steps. At 100 °C the H 2 O molecule at O8 was released while O9 moved towards Ca. As a consequence the displacement parameter of H 2 O at O9 halved compared to that at room temperature. The unit-cell volume decreased to 1287.33(3) Å 3 leading to a formula with 3H 2 O per formula unit (pfu). Ca remained seven-fold coordinated. At 175 °C Ca(VO)(Si 4 O 10 )·3H 2 O transformed into a new phase with 1H 2 O molecule pfu characterized by doubling of the c axis and the monoclinic space group Pn. Severe bending of specific T--O--T angles led to contraction of the porous three-dimensional framework. In addition, H 2 O at O9 was expelled while H 2 O at O7 approached a position in the center of the channel. The normalized volume decreased to 1069.44(9) Å 3 . The Ca coordination reduced from seven- to six-fold. At 225 °C a new anhydrous phase with space group Pna2 1 but without doubling of c had formed. Release of

  2. In situ dehydration behavior of zeolite-like pentagonite: A single-crystal X-ray study

    Energy Technology Data Exchange (ETDEWEB)

    Danisi, Rosa Micaela, E-mail: rosa.danisi@krist.unibe.ch [Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, Bern CH-3012 (Switzerland); Armbruster, Thomas; Lazic, Biljana [Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, Bern CH-3012 (Switzerland)

    2013-01-15

    The structural modifications upon heating of pentagonite, Ca(VO)(Si{sub 4}O{sub 10}){center_dot}4H{sub 2}O (space group Ccm2{sub 1}, a=10.3708(2), b=14.0643(2), c=8.97810(10) A, V=1309.53(3) A{sup 3}) were investigated by in situ temperature dependent single-crystal X-ray structure refinements. Diffraction data of a sample from Poona district (India) have been measured in steps of 25 up to 250 Degree-Sign C and in steps of 50 Degree-Sign C between 250 and 400 Degree-Sign C. Pentagonite has a porous framework structure made up by layers of silicate tetrahedra connected by V{sup 4+}O{sub 5} square pyramids. Ca and H{sub 2}O molecules are extraframework occupants. Room temperature diffraction data allowed refinement of H positions. The hydrogen-bond system links the extraframework occupants to the silicate layers and also interconnects the H{sub 2}O molecules located inside the channels. Ca is seven-fold coordinated forming four bonds to O of the tetrahedral framework and three bonds to extraframework H{sub 2}O. The H{sub 2}O molecule at O9 showing a high displacement parameter is not bonded to Ca. The dehydration in pentagonite proceeds in three steps. At 100 Degree-Sign C the H{sub 2}O molecule at O8 was released while O9 moved towards Ca. As a consequence the displacement parameter of H{sub 2}O at O9 halved compared to that at room temperature. The unit-cell volume decreased to 1287.33(3) A{sup 3} leading to a formula with 3H{sub 2}O per formula unit (pfu). Ca remained seven-fold coordinated. At 175 Degree-Sign C Ca(VO)(Si{sub 4}O{sub 10}){center_dot}3H{sub 2}O transformed into a new phase with 1H{sub 2}O molecule pfu characterized by doubling of the c axis and the monoclinic space group Pn. Severe bending of specific T--O--T angles led to contraction of the porous three-dimensional framework. In addition, H{sub 2}O at O9 was expelled while H{sub 2}O at O7 approached a position in the center of the channel. The normalized volume decreased to 1069.44(9) A{sup 3

  3. Study of the 23Na EFG (Electrostatic Field Gradient) tensor on single crystals of Na2S.9H2O by wideline NMR

    International Nuclear Information System (INIS)

    Miksche, G.

    1982-01-01

    The quadrupole coupling constant |e 2 qQ/n| if 23 Na has been determined by measuring single crystals of Na 2 S.9H 2 O at room temperature. A value of 687.5 +- 1.2 kHz was found. The asymmetry parameter eta = (qsub(x'x') - qsub(y'y')) / qsub(z'z') of the efg-tensor is zero, there is axial symmetry. The principle axis of the efg-tensor runs parallel to the main crystallographic axis c, the value of the main component of the efg-tensor in c-direction is 171.875 +- 0.6 kHz. The longitudinal relaxation time T 1 has been evaluated as 1.8 s. On this account, the mean distance between two Na-atoms has been determined by measuring the splitting of the central line due to dipole-dipole interaction. The Na-Na distance was found with 0.36 +- 0.007 nm. This value is in good agreement with results from neutron diffraction studies. It was not possible to determine direction and length of hydrogen bonds by NMR-results. A method of growing single crystals of Na 2 S.9H 2 O of demanded size and purity has been described. Constructional details and technical data of a self-made wideline-NMR-spectrometer are added in an appendix. (Author)

  4. A combined temperature-dependent electron and single-crystal X-ray diffraction study of the fresnoite compound Rb2V4+V25+O8

    International Nuclear Information System (INIS)

    Withers, R.L.; Hoeche, Thomas; Liu Yun; Esmaeilzadeh, Saeid; Keding, Ralf; Sales, Brian

    2004-01-01

    High-purity Rb 2 V 3 O 8 has been grown and temperature-dependent electron and single-crystal X-ray diffraction used to carefully investigate its fresnoite-type reciprocal lattice. In contrast to other recently investigated representatives of the fresnoite family of compounds, Rb 2 V 3 O 8 is not incommensurately modulated with an incommensurate basal plane primary modulation wave vector given by q∼0.3 *. A careful low-temperature electron diffraction study has, however, revealed the existence of weak incommensurate satellite reflections characterized by the primitive primary modulation wave vector q 1 ∼0.16c*. The reciprocal space positioning of these incommensurate satellite reflections, the overall (3+1)-d superspace group symmetry, as well as the shapes of the refined displacement ellipsoids determined from single-crystal XRD refinement, are all consistent with their arising from a distinct type of condensed rigid unit modes (RUMs) of distortion of the Rb 2 V 3 O 8 parent structure

  5. Laser generation in opal-like single-crystal and heterostructure photonic crystals

    Science.gov (United States)

    Kuchyanov, A. S.; Plekhanov, A. I.

    2016-11-01

    This study describes the laser generation of a 6Zh rhodamine in artificial opals representing single-crystal and heterostructure films. The spectral and angular properties of emission and the threshold characteristics of generation are investigated. In the case where the 6Zh rhodamine was in a bulk opal, the so-called random laser generation was observed. In contrast to this, the laser generation caused by a distributed feedback inside the structure of the photonic bandgap was observed in photonic-crystal opal films.

  6. How far could energy transport within a single crystal

    Science.gov (United States)

    Zhang, Yifan; Che, Yanke; Zhao, Jincai; Steve, Granick

    Efficient transport of excitation energy over long distance is a vital process in light-harvesting systems and molecular electronics. The energy transfer distance is largely restricted by the probability decay of the exciton when hopping within a single crystal. Here, we fabricated an organic single crystal within which the energy could transfer more than 100 μm, a distance only limited by its crystal size. Our system could be regarded as a ``Sprint relay game'' performing on different surface of tracks. Photoinduced ``athletes'' (excitons) triggered intermolecular ``domino'' reaction to propagate energy for a long distance. In addition, athletes with the same ability runs much farther on smooth ideal track (single crystal assembled from merely van der Waals interaction) than bumpy mud track (crystal assembled from combination of pi-stacking, hydrogen bond and van der Waals interactions). Our finding presents new physics on enhancing energy transfer length within a single crystal. Current Affiliation: Institute for Basic Science, South Korea.

  7. Investigations on the optical, thermal and surface modifications of electron irradiated L-threonine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh Kumar, G.; Gokul Raj, S. [Department of Physics, Presidency College, Chepauk, Chennai 600005 (India); Bogle, K.A.; Dhole, S.D.; Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411007 (India); Mohan, R. [Department of Physics, Presidency College, Chepauk, Chennai 600005 (India)], E-mail: professormohan@yahoo.co.in

    2008-06-15

    L-Threonine single crystals have been irradiated by 6 MeV electrons. Irradiated crystals at various electron fluences were subjected to various techniques such as UV-vis-NIR, atomic force microscopy (AFM) and thermomechanical analyses. Thermal strength of the irradiated crystals has also been studied through differential scanning calorimetry (DSC) measurements. The results have been discussed in detail.

  8. First-Principles Studies of Pentaerythritol Tetranitrate (PETN) Single Crystal Unit Cell Volumes and Vibrational Frequencies under Hydrostatic Pressure

    Science.gov (United States)

    Perger, Warren F.; Zhao, Jijun; Winey, J. M.; Gupta, Y. M.

    2006-07-01

    The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used. The pressure-induced shift of the vibrational frequencies is presented.

  9. Thermomechanical fatigue in single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Moverare Johan J.

    2014-01-01

    Full Text Available Thermomechanical fatigue (TMF is a mechanism of deformation which is growing in importance due to the efficiency of modern cooling systems and the manner in which turbines and associated turbomachinery are now being operated. Unfortunately, at the present time, relatively little research has been carried out particularly on TMF of single crystal (SX superalloys, probably because the testing is significantly more challenging than the more standard creep and low cycle fatigue (LCF cases; the scarcity and relative expense of the material are additional factors. In this paper, the authors summarise their experiences on the TMF testing of SX superalloys, built up over several years. Emphasis is placed upon describing: (i the nature of the testing method, the challenges involved in ensuring that an given testing methodology is representative of engine conditions (ii the behaviour of a typical Re-containing second generation alloy such as CMSX-4, and its differing performance in out-of-phase/in-phase loading and crystallographic orientation and (iii the differences in behaviour displayed by the Re-containing alloys and new Re-free variants such as STAL15. It is demonstrated that the Re-containing superalloys are prone to different degradation mechanisms involving for example microtwinning, TCP precipitation and recrystallisation. The performance of STAL15 is not too inferior to alloys such as CMSX-4, suggesting that creep resistance itself does not correlate strongly with resistance to TMF. The implications for alloy design efforts are discussed.

  10. Magnetoresistance in terbium and holmium single crystals

    International Nuclear Information System (INIS)

    Singh, R.L.; Jericho, M.H.; Geldart, D.J.W.

    1976-01-01

    The longitudinal magnetoresistance of single crystals of terbium and holmium metals in their low-temperature ferromagnetic phase has been investigated in magnetic fields up to 80 kOe. Typical magnetoresistance isotherms exhibit a minimum which increases in depth and moves to higher fields as the temperature increases. The magnetoresistance around 1 0 K, where inelastic scattering is negligible, has been interpreted as the sum of a negative contribution due to changes in the domain structure and a positive contribution due to normal magnetoresistance. At higher temperatures, a phenomenological approach has been developed to extract the inelastic phonon and spin-wave components from the total measured magnetoresistance. In the temperature range 4--20 0 K (approximately), the phonon resistivity varies as T 3 . 7 for all samples. Approximate upper and lower bounds have been placed on the spin-wave resistivity which is also found to be described by a simple power law in this temperature range. The implications of this result for theoretical treatments of spin-wave resistivity due to s-f exchange interactions are considered. It is concluded that the role played by the magnon energy gap is far less transparent than previously suggested

  11. KBr-Li Br and KBr-LiBr doped with Ti mixed single crystal by Czochralski method and glow curve studies

    International Nuclear Information System (INIS)

    Faripour, H.; Faripour, N.

    2003-01-01

    Mixed-single Crystals: pure KBr-LiBr and KBr-LiBr with Ti dopant were grown by Czochralski method. Because of difference between lattice parameters of KBr and LiBr, the growth speed of crystals were relatively low, and they were annealed in a special temperature condition providing some cleavages. They were exposed by β radiation and the glow curve was analysed for each crystal. Analysing of glow curve, showed that Ti impurity has been the curves of main peak curve appearance temperature decreasing

  12. Study to Determine the Feasibility of Utilizing Skull-Melting Techniques for the Growth of Single Crystals of Yttrium Vanadate

    Science.gov (United States)

    1986-04-01

    these conditions and the sublimation product (IrO 2 ) contaminates the melt and resultant crystal. The goal of this program is to explore the...element; if the skull-melting operation is carried out under oxidizing conditions, the combustion products of high-purity graphite (CO 2 and CO) do not...polycrstalline ingots. Subsequent annealing of 16 S’ .1i" these 0 2 -defficient ingots in air at 1200 degrees C resulted in powdering and disintergration

  13. Czochralski method of growing single crystals. State-of-art

    International Nuclear Information System (INIS)

    Bukowski, A.; Zabierowski, P.

    1999-01-01

    Modern Czochralski method of single crystal growing has been described. The example of Czochralski process is given. The advantages that caused the rapid progress of the method have been presented. The method limitations that motivated the further research and new solutions are also presented. As the example two different ways of the technique development has been described: silicon single crystals growth in the magnetic field; continuous liquid feed of silicon crystals growth. (author)

  14. LASER PROCESSING ON SINGLE CRYSTALS BY UV PULSE LASER

    OpenAIRE

    龍見, 雅美; 佐々木, 徹; 高山, 恭宜

    2009-01-01

    Laser processing by using UV pulsed laser was carried out on single crystal such as sapphire and diamond in order to understand the fundamental laser processing on single crystal. The absorption edges of diamond and sapphire are longer and shorter than the wave length of UV laser, respectively. The processed regions by laser with near threshold power of processing show quite different state in each crystal.

  15. Frictional properties of single crystals HMX, RDX and PETN explosives

    International Nuclear Information System (INIS)

    Wu, Y.Q.; Huang, F.L.

    2010-01-01

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations.

  16. Spall behaviour of single crystal aluminium at three principal orientations

    Science.gov (United States)

    Owen, G. D.; Chapman, D. J.; Whiteman, G.; Stirk, S. M.; Millett, J. C. F.; Johnson, S.

    2017-10-01

    A series of plate impact experiments have been conducted to study the spall strength of the three principal crystallographic orientations of single crystal aluminium ([100], [110] and, [111]) and ultra-pure polycrystalline aluminium. The samples have been shock loaded at two impact stresses (4 GPa and 10 GPa). Significant differences have been observed in the elastic behaviour, the pullback velocities, and the general shape of the wave profiles, which can be accounted for by considerations of the microscale homogeneity, the dislocation density, and the absence of grain boundaries in the single crystal materials. The data have shown that there is a consistent order of spall strength measured for the four sample materials. The [111] orientation has the largest spall strength and elastic limit, followed closely by [110], [100], and then the polycrystalline material. This order is consistent with both quasi-static data and geometrical consideration of Schmid factors.

  17. Azeotropic binary solvent mixtures for preparation of organic single crystals

    NARCIS (Netherlands)

    Li, X.; Kjellander, B.K.C.; Anthony, J.E.; Bastiaansen, C.W.M.; Broer, D.J.; Gelinck, G.H.

    2009-01-01

    Here, a new approach is introduced to prepare large single crystals of π-conjugated organic molecules from solution. Utilizing the concept of azeotropism, single crystals of tri-isopropylsilylethynyl pentacene (TIPS-PEN) with dimensions up to millimeters are facilely self-assembled from homogeneous

  18. Azeotropic binary solvent mixtures for preparation of organic single crystals

    NARCIS (Netherlands)

    Li, X.; Kjellander, B.K.C.; Anthony, J.E.; Bastiaansen, C.W.M.; Broer, D.J.; Gelinck, G.H.

    2009-01-01

    Here, a new approach is introduced to prepare large single crystals of p-conjugated organic molecules from solution. Utilizing the concept of azeotropism, single crystals of tri-isopropylsilylethynyl pentacene (TIPS-PEN) with dimensions up to millimeters are facilely self-assembled from homogeneous

  19. Valence-band and core-level photoemission study of single-crystal Bi2CaSr2Cu2O8 superconductors

    International Nuclear Information System (INIS)

    Shen, Z.; Lindberg, P.A.P.; Wells, B.O.; Mitzi, D.B.; Lindau, I.; Spicer, W.E.; Kapitulnik, A.

    1988-01-01

    High-quality single crystals of Bi 2 CaSr 2 Cu 2 O 8 superconductors have been prepared and cleaved in ultrahigh vacuum. Low-energy electron diffraction measurements show that the surface structure is consistent with the bulk crystal structure. Ultraviolet photoemission and x-ray photoemission experiments were performed on these well-characterized sample surfaces. The valence-band and the core-level spectra obtained from the single-crystal surfaces are in agreement with spectra recorded from polycrystalline samples, justifying earlier results from polycrystalline samples. Cu satellites are observed both in the valence band and Cu 2p core level, signaling the strong correlation among the Cu 3d electrons. The O 1s core-level data exhibit a sharp, single peak at 529-eV binding energy without any clear satellite structures

  20. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Hänsel-Ziegler, W.; Freund, H.-J. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Seiler, A. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Laboratorium für Applikationen der Synchrotronstrahlung, KIT Campus Süd, Kaiserstr. 12, 76131 Karlsruhe (Germany); Bondarchuk, O. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); CIC energiGUNE, Parque Tecnologico, C/Albert Einstein 48, CP 01510 Minano (Alava) (Spain); Risse, T., E-mail: risse@chemie.fu-berlin.de [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany)

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic

  1. Diamond turning of Si and Ge single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Blake, P.; Scattergood, R.O.

    1988-12-01

    Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

  2. Single mode dye-doped polymer photonic crystal lasers

    International Nuclear Information System (INIS)

    Christiansen, Mads B; Buß, Thomas; Smith, Cameron L C; Petersen, Sidsel R; Jørgensen, Mette M; Kristensen, Anders

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e.g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be −0.045 or −0.066 nm K -1 , depending on the material

  3. Single mode dye-doped polymer photonic crystal lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...... emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e. g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be -0.045 or -0...

  4. Distributed Feedback Laser Based on Single Crystal Perovskite

    Science.gov (United States)

    Sun, Shang; Xiao, Shumin; Song, Qinghai

    2017-06-01

    We demonstrate a single crystal perovskite based, with grating-structured photoresist on top, highly polarized distributed feedback laser. A lower laser threshold than the Fabry-Perot mode lasers from the same single crystal CH3NH3PbBr3 microplate was obtained. Single crystal CH3NH3PbBr3 microplates was synthesized with one-step solution processed precipitation method. Once the photoresist on top of the microplate was patterned with electron beam, the device was realized. This one-step fabrication process utilized the advantage of single crystal to the greatest extend. The ultra-low defect density in single crystalline microplate offer an opportunity for lower threshold lasing action compare with poly-crystal perovskite films. In the experiment, the lasing action based on the distributed feedback grating design was found with lower threshold and higher intensity than the Fabry-Perot mode lasers supported by the flat facets of the same microplate.

  5. A study on density functional theory of the effect of pressure on the formation and migration enthalpies of intrinsic point defects in growing single crystal Si

    Science.gov (United States)

    Sueoka, Koji; Kamiyama, Eiji; Kariyazaki, Hiroaki

    2012-05-01

    In 1982, Voronkov presented a model describing point defect behavior during the growth of single crystal Si from a melt and derived an expression to predict if the crystal was vacancy- or self-interstitial-rich. Recently, Vanhellemont claimed that one should take into account the impact of compressive stress introduced by the thermal gradient at the melt/solid interface by considering the hydrostatic pressure dependence of the formation enthalpy of the intrinsic point defects. To evaluate the impact of thermal stress more correctly, the pressure dependence of both the formation enthalpy (Hf) and the migration enthalpy (Hm) of the intrinsic point defects should be taken into account. Furthermore, growing single crystal Si is not under hydrostatic pressure but almost free of external pressure (generally in Ar gas under reduced pressure). In the present paper, the dependence of Hf and Hm on the pressure P, or in other words, the pressure dependence of the formation energy (Ef) and the relaxation volume (vf), is quantified by density functional theory calculations. Although a large number of ab initio calculations of the properties of intrinsic point defects have been published during the last years, calculations for Si crystals under pressure are rather scarce. For vacancies V, the reported pressure dependences of HfV are inconsistent. In the present study, by using 216-atom supercells with a sufficient cut-off energy and mesh of k-points, the neutral I and V are found to have nearly constant formation energies EfI and EfV for pressures up to 1 GPa. For the relaxation volume, vfI is almost constant while vfV decreases linearly with increasing pressure P. In case of the hydrostatic pressure Ph, the calculated formation enthalpy HfI and migration enthalpy HmI at the [110] dumbbell site are given by HfI = 3.425 - 0.057 × Ph (eV) and HmI = 0.981 - 0.039 × Ph (eV), respectively, with Ph given in GPa. The calculated HfV and HmV dependencies on Ph given by HfV = 3.543 - 0

  6. Acquisition of Single Crystal Growth and Characterization Equipment. Final report

    International Nuclear Information System (INIS)

    Maple, M. Brian; Zocco, Diego A.

    2008-01-01

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering

  7. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    Science.gov (United States)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  8. Single crystal EPR study at 95 GHz of a large Fe based molecular nanomagnet: toward the structuring of magnetic nanoparticle properties.

    Science.gov (United States)

    Castelli, L; Fittipaldi, M; Powell, A K; Gatteschi, D; Sorace, L

    2011-08-28

    A W-band single-crystal EPR study has been performed on a molecular cluster comprising 19 iron(III) ions bridged by oxo- hydroxide ions, Fe(19), in order to investigate magnetic nanosystems with a behavior in between the one of Magnetic NanoParticles (MNP) and that of Single Molecule Magnets (SMM). The Fe(19) has a disk-like shape: a planar Fe(7) core with a brucite (Mg(OH)(2)) structure enclosed in a "shell" of 12 Fe(III) ions. EPR and magnetic measurements revealed an S = 35/2 ground state with an S = 33/2 excited state lying ∼ 8 K above. The presence of other low-lying excited states was also envisaged. Rhombic Zero Field Splitting (ZFS) tensors were determined, the easy axes lying in the Fe(19) plane for both the multiplets. At particular temperatures and orientations, a partially resolved fine structure could be observed which could not be distinguished in powder spectra, due to orientation disorder. The similarities of the EPR behavior of Fe(19) and MNP, together with the accuracy of single crystal analysis, helped to shed light on spectral features observed in MNP spectra, that is a sharp line at g = 2 and a low intensity transition at g = 4. Moreover, a theoretical analysis has been used to estimate the contribution to the total magnetic anisotropy of core and surface; this latter is crucial in determining the easy axis-type anisotropy, alike that of MNP surface. This journal is © The Royal Society of Chemistry 2011

  9. Reshock and release response of aluminum single crystal

    International Nuclear Information System (INIS)

    Huang, H.; Asay, J. R.

    2007-01-01

    Reshock and release experiments were performed on single crystal aluminum along three orientations and on polycrystalline 1050 aluminum with 50 μm grain size at shock stresses of 13 and 21 GPa to investigate the mechanisms for previously observed quasielastic recompression behavior. Particle velocity profiles obtained during reshocking both single crystals and polycrystalline aluminum from initial shock stresses of 13-21 GPa show similar quasielastic recompression behavior. Quasielastic release response is also observed in all single crystals, but the magnitude of the effect is crystal orientation dependent, with [111] and [110] exhibiting more ideal elastic-plastic release for unloading from the shocked state than for the [100] orientation and polycrystalline aluminum. The quasielastic response of 1050 aluminum is intermediate to that of the [100] and [111] orientations. Comparison of the wave profiles obtained for both unloading and reloading of single crystals and polycrystalline 1050 aluminum from shocked states suggests that the observed quasielastic response of polycrystalline aluminum results from the averaging response of single crystals for shock propagation along different orientations, and that the response of 1050 aluminum with large grain boundaries is not significantly different from the results obtained on single crystal aluminum. The yield strength of the single crystals and 1050 aluminum is found to increase with shock stress, which is consistent with previous results [H. Huang and I. R. Asay, J. Appl. Phys. 98, 033524 (2005)

  10. Electron paramagnetic resonance spectral study of [Mn(acs){sub 2}(2–pic){sub 2}(H{sub 2}O){sub 2}] single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kocakoç, Mehpeyker, E-mail: mkocakoc@cu.edu.tr [Çukurova University (Turkey); Tapramaz, Recep, E-mail: recept@omu.edu.tr [Ondokuz Mayıs University (Turkey)

    2016-03-25

    Acesulfame potassium salt is a synthetic and non-caloric sweetener. It is also important chemically for its capability of being ligand in coordination compounds, because it can bind over Nitrogen and Oxygen atoms of carbonyl and sulfonyl groups and ring oxygen. Some acesulfame containing transition metal ion complexes with mixed ligands exhibit solvato and thermo chromic properties and these properties make them physically important. In this work single crystals of Mn{sup +2} ion complex with mixed ligand, [Mn(acs){sub 2}(2-pic){sub 2}(H{sub 2}O){sub 2}], was studied with electron paramagnetic resonance (EPR) spectroscopy. EPR parameters were determined. Zero field splitting parameters indicated that the complex was highly symmetric. Variable temperature studies showed no detectable chance in spectra.

  11. Domain wall motion and magnetization reversal processes in a FeSi picture frame single crystal studied by the time-dependent neutron depolarization technique

    International Nuclear Information System (INIS)

    Schaik, F.J. van.

    1979-01-01

    The three dimensional neutron depolarization technique, which gives detailed information about the static properties of ferromagnetic materials, has been extended to a method by means of which the time dependence of magnetic phenomena can be studied. The measurement of the neutron depolarization against time is made possible by applying a periodical magnetic field on the investigated specimen and by continuous sampling of the transmitted neutron intensity in time channels, which are started synchronously with the applied field. The technique has been used in the study of the magnetic domain structure at room temperature of a (010) [001] picture frame FeSi single crystal (3.5 wt.% Si) with outer dimensions of (15 x 10 x 0.26) mm and a frame width of 2.78 mm. (Auth.)

  12. Growth, structural, optical and surface analysis of piperazinium tartrate: A NLO single crystal

    Science.gov (United States)

    Gupta, Apurva; Raseel Rahman M., K.; Nair, Lekha

    2018-05-01

    Single crystal of piperazinium tartrate (PPZT) was grown by the slow evaporation solution growth technique at room temperature. Crystallinity of grown crystal was examined by powder X-ray diffraction. High transparency and wide band gap were observed in the UV-Visible spectroscopic studies. Intense and broad emissions were observed in the blue region, as that is indicated by photoluminescence spectroscopy. The quality of the grown PPZT single crystals were analyzed by the etching studies using the water as the etchant.

  13. Chiral multichromic single crystals for optical devices (LDRD 99406).

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Richard Alan; Felix, Ana M. (University of New Mexico, Albuquerque, NM)

    2006-12-01

    This report summarizes our findings during the study of a novel system that yields multi-colored materials as products. This system is quite unusual as it leads to multi-chromic behavior in single crystals, where one would expect that only a single color would exist. We have speculated that these novel solids might play a role in materials applications such as non-linear optics, liquid crystal displays, piezoelectric devices, and other similar applications. The system examined consisted of a main-group alkyl compound (a p block element such as gallium or aluminum) complexed with various organic di-imines. The di-imines had substituents of two types--either alkyl or aromatic groups attached to the nitrogen atoms. We observed that single crystals, characterized by X-ray crystallography, were obtained in most cases. Our research during January-July, 2006, was geared towards understanding the factors leading to the multi-chromic nature of the complexes. The main possibilities put forth initially considered (a) the chiral nature of the main group metal, (b) possible reduction of the metal to a lower-valent, radical state, (c) the nature of the ligand(s) attached to the main group metal, and (d) possible degradation products of the ligand leading to highly-colored products. The work carried out indicates that the most likely explanation considered involves degradation of the aromatic ligands (a combination of (c) and (d)), as the experiments performed can clearly rule out (a) and (b).

  14. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    KAUST Repository

    Saidaminov, Makhsud I.

    2015-07-06

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.

  15. Excitonic polaritons of zinc diarsenide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Stamov, I.G. [T.G. Shevchenko State University of Pridnestrovie, Tiraspol, Republic of Moldova (Moldova, Republic of); Zalamai, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of); Dorogan, A. [Technical University of Moldova, Chisinau, Republic of Moldova (Moldova, Republic of)

    2017-02-01

    Excitonic polaritons of ZnAs{sub 2} single crystals had been investigated. Parameters of singlet excitons with Г{sub 2}¯(z) symmetry and orthoexcitons 2Г{sub 1}¯(y)+Г{sub 2}¯(x) had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V{sub 1}) and electron (C{sub 1}) bands. The values of effective masses of electrons (m{sub c}{sup *}=0.10 m{sub 0}) and holes (m{sub v1}{sup *}=0.89 m{sub 0}) had been estimated. It was revealed that the hole mass m{sub v1}{sup *} changes from 1.03 m{sub 0} to 0.55 m{sub 0} at temperature increasing from 10 K up to 230 K and that the electron mass m{sub c}{sup *} does not depend on temperature. The integral absorption A (eV cm{sup −1}) of the states n=1, 2 and 3 of Г{sub 2}¯(z) excitons depends on the A{sub n}≈n{sup −3} equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for Г{sub 2}¯(z) and Г{sub 2}¯(Ñ…) excitons differ. The ground states of B and C excitons formed by V{sub 3} – C{sub 1} and V{sub 4} – C{sub 1} bands and its parameters had been determined.

  16. Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel

    International Nuclear Information System (INIS)

    Zhuang, Zhi; Yoshimura, Hideyuki; Aizawa, Mamoru

    2013-01-01

    Hydroxyapatite (HAp) is an inorganic constituent compound of human bones and teeth, with superior biocompatibility and bioactivity characteristics. Its crystal structure is hexagonal, characterized by a(b)- and c-planes. In vertebrate long bones, HAp crystals have a c-axis orientation, while in tooth enamel, they have an a(b)-axis orientation. Many methods can be used to synthesize c-axis oriented HAp single crystals; however, to the best of our knowledge, there have been no reports on a synthesis method for a(b)-axis oriented HAp single crystals. In this study, we successfully synthesized plate-like HAp crystals at the air–liquid interface of a starting solution via an enzyme reaction of urea with urease. Crystal phase analysis and ultrastructure observations were carried out, and the results indicated that the particles were single crystals, with almost the same a(b)-axis orientation as tooth enamel. It is hoped that by utilizing their unique surface charge and atomic arrangement, the resulting particles can be used as a high-performance biomaterial, capable of adsorbing bio-related substances and a model for tooth enamel. - Highlights: ► Synthesis of plate-like hydroxyapatite crystals at air–liquid interface ► Ultrastructural analysis of plate-like hydroxyapatite crystals ► Plate-like hydroxyapatite single crystals with a high a(b)-axis orientation ► Plate-like hydroxyapatite single crystals as a model for tooth enamel

  17. Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Zhi, E-mail: zhuang@meiji.ac.jp [Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Yoshimura, Hideyuki, E-mail: hyoshi@isc.meiji.ac.jp [Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Aizawa, Mamoru, E-mail: mamorua@isc.meiji.ac.jp [Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan)

    2013-07-01

    Hydroxyapatite (HAp) is an inorganic constituent compound of human bones and teeth, with superior biocompatibility and bioactivity characteristics. Its crystal structure is hexagonal, characterized by a(b)- and c-planes. In vertebrate long bones, HAp crystals have a c-axis orientation, while in tooth enamel, they have an a(b)-axis orientation. Many methods can be used to synthesize c-axis oriented HAp single crystals; however, to the best of our knowledge, there have been no reports on a synthesis method for a(b)-axis oriented HAp single crystals. In this study, we successfully synthesized plate-like HAp crystals at the air–liquid interface of a starting solution via an enzyme reaction of urea with urease. Crystal phase analysis and ultrastructure observations were carried out, and the results indicated that the particles were single crystals, with almost the same a(b)-axis orientation as tooth enamel. It is hoped that by utilizing their unique surface charge and atomic arrangement, the resulting particles can be used as a high-performance biomaterial, capable of adsorbing bio-related substances and a model for tooth enamel. - Highlights: ► Synthesis of plate-like hydroxyapatite crystals at air–liquid interface ► Ultrastructural analysis of plate-like hydroxyapatite crystals ► Plate-like hydroxyapatite single crystals with a high a(b)-axis orientation ► Plate-like hydroxyapatite single crystals as a model for tooth enamel.

  18. High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Bratlie, Kaitlin [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    (100). Based on spectroscopic signatures, mechanisms for catalytic isomerization and dehydrocyclization of n-hexane were identified. The structure sensitivity of benzene hydrogenation on shape controlled platinum nanoparticles was also studied. The nanoparticles showed similar selectivities to those found for Pt(111) and Pt(100) single-crystals. Additionally, the nanoparticles have lower activation energies than their single-crystal counterparts.

  19. The control of the growth orientations of electrodeposited single-crystal nanowire arrays: a case study for hexagonal CdS

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hongyu; Li Xiaohong; Chen Yan; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Li Feng; Liu Baoting [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-06-04

    The controllable growth of highly aligned and ordered semiconductor nanowire arrays is crucial for their potential applications in nanodevices. In the present study, both the growth orientation and the microstructure of hexagonal CdS nanowire arrays electrodeposited in a porous alumina template with 40 nm diameter pores have been controlled by simply tuning the deposition current density. An extremely low current density of 0.05 mA cm{sup -2} is favorable for the growth of single-crystal CdS nanowires along the normal direction of the intrinsic low-surface-energy (103) face. This can be understood well by a modified critical dimension model given in the present work.

  20. The control of the growth orientations of electrodeposited single-crystal nanowire arrays: a case study for hexagonal CdS

    International Nuclear Information System (INIS)

    Sun Hongyu; Li Xiaohong; Chen Yan; Li Wei; Zhang Xiangyi; Li Feng; Liu Baoting

    2008-01-01

    The controllable growth of highly aligned and ordered semiconductor nanowire arrays is crucial for their potential applications in nanodevices. In the present study, both the growth orientation and the microstructure of hexagonal CdS nanowire arrays electrodeposited in a porous alumina template with 40 nm diameter pores have been controlled by simply tuning the deposition current density. An extremely low current density of 0.05 mA cm -2 is favorable for the growth of single-crystal CdS nanowires along the normal direction of the intrinsic low-surface-energy (103) face. This can be understood well by a modified critical dimension model given in the present work

  1. Single-crystal X-ray diffraction study of SrGeO3 high-pressure perovskite phase at 100 K

    Science.gov (United States)

    Nakatsuka, Akihiko; Arima, Hiroshi; Ohtaka, Osamu; Fujiwara, Keiko; Yoshiasa, Akira

    2017-10-01

    Single-crystal X-ray diffraction study of SrGeO3 perovskite (cubic; space group Pmɜ¯m) synthesized at 6 GPa and 1223 K was conducted at a low temperature of 100 K. The residual electron density revealed the presence of the bonding electron at the center of the Ge-O bond, in accordance with our previous conclusion that the Ge-O bond is strongly covalent. From comparison with our previous structure-refinement result at 296 K, the mean square displacement (MSD) of the O atom in the direction of the Ge-O bond is suggested to exhibit no significant temperature dependence, in contrast to that in the direction perpendicular to the bond. Thus, the strong covalency of the Ge-O bond can have a large influence on the temperature dependence of thermal vibration of the O atom.

  2. Ordered distribution of I and Cl in the low-temperature crystal structure of mutnovskite, Pb4As2S6ICl: An X-ray single-crystal study

    International Nuclear Information System (INIS)

    Bindi, Luca; Garavelli, Anna; Pinto, Daniela; Pratesi, Giovanni; Vurro, Filippo

    2008-01-01

    To study the temperature-dependent structural changes and to analyze the crystal chemical behavior of the halogens as a function of temperature, a crystal of the recently discovered mineral mutnovskite, ideally Pb 2 AsS 3 (I,Cl,Br), has been investigated by X-ray single-crystal diffraction methods at 300 and 110 K. At room temperature (RT) mutnovskite was confirmed to possess a centrosymmetric structure-type, space group Pnma, while at low temperature (110 K) it adopts a non-centrosymmetric orthorhombic structure-type, space group Pnm2 1 , with a=11.5394(9) A, b=6.6732(5) A, c=9.3454(7) A, V=719.64(9) A 3 and Z=2. Mutnovskite reconverts to the centrosymmetric-type upon returning to RT thus indicating that the phase transition is completely reversible in character. The refinement of the LT-structure leads to a residual factor R=0.0336 for 1827 independent observed reflections [F o >4σ(F o )] and 80 variables. The crystal structure of cooled mutnovskite is topologically identical to that observed at RT and the slight structural changes occurring during the phase transition Pnma→Pnm2 1 are mainly restricted to the coordination polyhedra around Pb. The structure solution revealed that I and Cl are ordered into two specific sites. Indeed, the unique mixed (I,Cl) position in the RT-structure (Wyckoff position 4c) transforms into two 2a Wyckoff positions in the LT-structure hosting I and Cl, respectively. - Graphical abstract: In the crystal structure of mutnovskite at 110 K the two halogens I and Cl are ordered into two specific sites and only slight changes in the coordination environment around Pb atoms occur during the phase transition Pnma→Pnm2 1 from the RT-structure to the LT-structure. Two kinds of layers alternating along a are present in the LT-structure: Layer I contains Cl atoms and [001] columns of Pb1 and Pb4 prisms, layer II contains I atoms and [001] columns of Pb2 and Pb3 prisms

  3. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands

    Science.gov (United States)

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.

  4. An in-situ X-ray diffraction study on the electrochemical formation of PtZn alloys on Pt(1 1 1) single crystal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Drnec, J., E-mail: drnec@esrf.fr [ESRF, Grenoble (France); Bizzotto, D. [Department of Chemistry, AMPEL, University of British Columbia, Vancouver, BC (Canada); Carlà, F. [ESRF, Grenoble (France); Fiala, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Sode, A. [Ruhr-Universität Bochum, Bochum (Germany); Balmes, O.; Detlefs, B.; Dufrane, T. [ESRF, Grenoble (France); Felici, R., E-mail: felici@esrf.fr [ESRF, Grenoble (France)

    2015-11-01

    Highlights: • PtZn electrochemical alloying is observed on single crystal Pt electrodes. • In-situ X-ray characterization during alloy formation and dissolution is provided. • Structural model of the surface during alloying and dissolution is discussed. • X-ray based techniques can be used in in-operando studies of bimetallic fuel cell catalysts. - Abstract: The electrochemical formation and dissolution of the oxygen reduction reaction (ORR) PtZn catalyst on Pt(1 1 1) surface is followed by in-situ X-ray diffraction (XRD) and X-ray reflectivity (XRR) measurements. When the crystalline Pt surface is polarized to sufficiently negative potential values, with respect to an Ag/AgCl|KCl reference electrode, the electrodeposited zinc atoms diffuse into the bulk and characteristic features are observed in the X-ray patterns. The surface structure and composition during deposition and dissolution is determined from analysis of XRR curves and measurements of crystal truncation rods. Thin Zn-rich surface layer is present during the alloy formation while a Zn-depleted layer forms during dissolution.

  5. Bulk crystal growth and their effective third order nonlinear optical properties of 2-(4-fluorobenzylidene) malononitrile (FBM) single crystal

    Science.gov (United States)

    Priyadharshini, A.; Kalainathan, S.

    2018-04-01

    2-(4-fluorobenzylidene) malononitrile (FBM), an organic third order nonlinear (TONLO) single crystal with the dimensions of 32 × 7 × 11 mm3, has been successfully grown in acetone solution by slow evaporation technique at 35 °C. The crystal system (triclinic), space group (P-1) and crystalline purity of the titular crystal were measured by single crystal and powder X-ray diffraction, respectively. The molecular weight and the multiple functional groups of the FBM material were confirmed through the mass and FT-IR spectral analysis. UV-Vis-NIR spectral study enroles that the FBM crystal exhibits excellent transparency (83%) in the entire visible and near infra-red region with a wide bandgap 2.90 eV. The low dielectric constant (εr) value of FBM crystal is appreciable for microelectronics industry applications. Thermal stability and melting point (130.09 °C) were ascertained by TGA-DSC analysis. The laser-induced surface damage threshold (LDT) value of FBM specimen is found to be 2.14 GW/cm2, it is fairly good compared to other reported NLO crystals. The third - order nonlinear optical character of the FBM crystal was confirmed through the typical single beam Z-scan technique. All these finding authorized that the organic crystal of FBM is favorably suitable for NLO applications.

  6. Crystal growth and optical properties of Sm:CaNb2O6 single crystal

    International Nuclear Information System (INIS)

    Di Juqing; Xu Xiaodong; Xia Changtai; Zeng Huidan; Cheng Yan; Li Dongzhen; Zhou Dahua; Wu Feng; Cheng Jimeng; Xu Jun

    2012-01-01

    Highlights: ► Sm:CaNb 2 O 6 single crystal was grown by the Czochralski method. ► Thermal expansion coefficients and J–O parameters were calculated. ► We found that this crystal had high quantum efficiency of 97%. - Abstract: Sm:CaNb 2 O 6 single crystal has been grown by the Czochralski method. Its high-temperature X-ray powder diffraction, optical absorption, emission spectroscopic as well as lifetime have been studied. Thermal expansion coefficients (α), J–O parameters (Ω i ), radiative lifetime (τ rad ), branching ratios (β) and stimulated emission cross-sections (σ e ) were calculated. The quantum efficiency (η) was calculated to be 97%. The intense peak emission cross section at 610, 658 nm were calculated to be 2.40 × 10 −21 , 2.42 × 10 −21 cm 2 . These results indicate that Sm:CaNb 2 O 6 crystal has potential use in visible laser and photonic devices area.

  7. Ultra-large single crystals by abnormal grain growth.

    Science.gov (United States)

    Kusama, Tomoe; Omori, Toshihiro; Saito, Takashi; Kise, Sumio; Tanaka, Toyonobu; Araki, Yoshikazu; Kainuma, Ryosuke

    2017-08-25

    Producing a single crystal is expensive because of low mass productivity. Therefore, many metallic materials are being used in polycrystalline form, even though material properties are superior in a single crystal. Here we show that an extraordinarily large Cu-Al-Mn single crystal can be obtained by abnormal grain growth (AGG) induced by simple heat treatment with high mass productivity. In AGG, the sub-boundary energy introduced by cyclic heat treatment (CHT) is dominant in the driving pressure, and the grain boundary migration rate is accelerated by repeating the low-temperature CHT due to the increase of the sub-boundary energy. With such treatment, fabrication of single crystal bars 70 cm in length is achieved. This result ensures that the range of applications of shape memory alloys will spread beyond small-sized devices to large-scale components and may enable new applications of single crystals in other metallic and ceramics materials having similar microstructural features.Growing large single crystals cheaply and reliably for structural applications remains challenging. Here, the authors combine accelerated abnormal grain growth and cyclic heat treatments to grow a superelastic shape memory alloy single crystal to 70 cm.

  8. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    Science.gov (United States)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

  9. Studies of Double-Layer Effects at Single-Crystal Gold Electrodes. 3. Reduction Kinetics of Fluoropentaamminecobalt(III) Cation in Aqueous Solutions

    Czech Academy of Sciences Publication Activity Database

    Hromadová, Magdaléna; Fawcett, W. R.

    2004-01-01

    Roč. 108, - (2004), s. 3277-3282 ISSN 1089-5647 R&D Projects: GA ČR GP203/02/P082 Institutional research plan: CEZ:AV0Z4040901 Keywords : double - layer * single crystal * reduction kinetics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2003

  10. Magnetism of UCo.sub.2./sub.Si.sub.2./sub. single crystal studied under applied magnetic field and hydrostatic pressure

    Czech Academy of Sciences Publication Activity Database

    Mihalik, M.; Kolomiyets, O.; Griveau, J.C.; Andreev, Alexander V.; Sechovský, V.

    2007-01-01

    Roč. 76, Suppl. A (2007), s. 54-55 ISSN 0031-9015 R&D Projects: GA ČR GA202/06/0178 Institutional research plan: CEZ:AV0Z10100520 Keywords : uranium intermetallics * single crystals * antiferromagnetism * high pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.212, year: 2007

  11. Multiband superconductivity in heavy fermion compound CePt3Si without inversion symmetry. An NMR study on a high-quality single crystal

    International Nuclear Information System (INIS)

    Mukuda, Hidekazu; Nishide, Sachihiro; Harada, Atsushi

    2009-01-01

    We report on novel superconducting characteristics of the heavy fermion (HF) superconductor CePt 3 Si without inversion symmetry through 195 Pt-NMR study on a single crystal with T c =0.46 K that is lower than T c - 0.75 K for polycrystals. We show that the intrinsic superconducting characteristics inherent to CePt 3 Si can be understood in terms of the unconventional strong-coupling state with a line-node gap below T c =0.46 K. The mystery about the sample dependence of T c is explained by the fact that more or less polycrystals and single crystals inevitably contain some disordered domains, which exhibit a conventional BCS s-wave superconductivity (SC) below 0.8 K. In contrast, the Neel temperature T N - 2.2 K is present regardless of the quality of samples, revealing that the Fermi surface responsible for SC differ from that for the antiferromagnetic order. These unusual characteristics of CePt 3 Si can be also described by a multiband model; in the homogeneous domains, the coherent HF bands are responsible for the unconventional SC, whereas in the disordered domains the conduction bands existing commonly in LaPt 3 Si may be responsible for the conventional s-wave SC. We remark that some impurity scatterings in the disordered domains break up the 4f-electrons-derived coherent bands but not others. In this context, the small peak in 1/T 1 just below T c reported before [Yogi et al. (2004)] is not due to a two-component order parameter composed of spin-singlet and spin-triplet Cooper pairing states, but due to the contamination of the disorder domains which are in the s-wave SC state. (author)

  12. Thermal, mechanical, optical and dielectric properties of piperazinium hydrogen phosphite monohydrate NLO single crystal

    Science.gov (United States)

    Rajkumar, R.; Praveen Kumar, P.

    2018-05-01

    Optical transparent crystal of piperazinium hydrogen phosphite monohydrate (PHPM) was grown by slow evaporation method. The grown crystal was characterized by single crystal X-ray diffraction analysis and the crystal belongs to monoclinic system. The functional groups present in PHPM crystal were confirmed by FTIR analysis. UV-Visible spectrum shows that the PHPM crystal is transparent in the visible region. The mechanical behavior of PHPM crystal was characterized by Vickers hardness test. Thermal stability of PHPM crystal was analyzed by thermogravimetric analysis. Dielectric studies were also carried out for the grown crystal. The third-order nonlinear parameters such as nonlinear refractive index and nonlinear absorption coefficient have been calculated using Z scan technique.

  13. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    International Nuclear Information System (INIS)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K

    2003-01-01

    Pyroelectric properties of phosphoric acid (H 3 PO 4 )-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H 3 PO 4 have been studied. Incorporation of H 3 PO 4 into the crystal lattice is found to induce an internal bias field (E b ) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient (λ), dielectric constant (ε') and polarization (P). A high E b value in the range 9 x 10 3 -15.5 x 10 4 V m -1 is obtained for crystals grown with 0.1-0.5 mol of H 3 PO 4 in the solution, and a specific concentration of 0.2-0.25 mol of H 3 PO 4 in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F d = 428 μC m -2 K -1

  14. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2003-12-21

    Pyroelectric properties of phosphoric acid (H{sub 3}PO{sub 4})-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H{sub 3}PO{sub 4} have been studied. Incorporation of H{sub 3}PO{sub 4} into the crystal lattice is found to induce an internal bias field (E{sub b}) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient ({lambda}), dielectric constant ({epsilon}') and polarization (P). A high E{sub b} value in the range 9 x 10{sup 3}-15.5 x 10{sup 4} V m{sup -1} is obtained for crystals grown with 0.1-0.5 mol of H{sub 3}PO{sub 4} in the solution, and a specific concentration of 0.2-0.25 mol of H{sub 3}PO{sub 4} in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F{sub d} = 428 {mu}C m{sup -2} K{sup -1}.

  15. Spherical Nb single crystals containerlessly grown by electrostatic levitation

    International Nuclear Information System (INIS)

    Sung, Y.S.; Takeya, H.; Hirata, K.; Togano, K.

    2003-01-01

    Spherical Nb (T m =2750 K) single crystals were grown via containerless electrostatic levitation (ESL). Samples became spherical at melting in levitation and undercooled typically 300-450 K prior to nucleation. As-processed samples were still spherical without any macroscopic shape change by solidification showing a uniform dendritic surface morphology. Crystallographic {111} planes exposed in equilateral triangular shapes on the surface by preferential macroetching and spotty back-reflection Laue patterns confirm the single crystal nature of the ESL-processed Nb samples. No hysteresis in magnetization between zero field and field cooling also implies a clean defect-free condition of the spherical Nb single crystals

  16. Dielectric and baric characteristics of TlS single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Mustafaeva, S.N., E-mail: solmust@gmail.com [Institute of Physics, ANAS, G. Javid prosp. 33, Az 1143 Baku (Azerbaijan); Asadov, M.M. [Institute of Chemical Problems, ANAS, G. Javid prosp. 29, Az 1143 Baku (Azerbaijan); Ismailov, A.A. [Institute of Physics, ANAS, G. Javid prosp. 33, Az 1143 Baku (Azerbaijan)

    2014-11-15

    The investigation of the frequency dependences of the dielectric coefficients and ac-conductivity of the TlS single crystals made it possible to elucidate the nature of dielectric loss and the charge transfer mechanism. Moreover, we evaluated the density and energy spread of localized states near the Fermi level, the average hopping time and the average hopping length. It was shown that the dc-conductivity of the TlS single crystals can be controlled by varying the hydrostatic pressure. This has opened up possibilities for using TlS single crystals as active elements of pressure detectors.

  17. Growth of Ga2O3 single crystal

    OpenAIRE

    龍見, 雅美; 小池, 裕之; 市木, 伸明; Tatsumi, Masami; Koike, Hiroyuki; Ichiki, Nobuaki

    2010-01-01

    Single crystals of β-Ga2O3 for substrates of GaN LED were grown by Floating Zone(FZ) method. The transparent single crystals of 5-6 mm in diameter were reproducibly obtained by applying necking procedure and the preferential growth direction was . Many cracks were induced along the cleavage plane of (100) in slicing process, which is related to thermal stress and the growth direction. However, this preliminary growth experiments suggested that β-Ga2O3 single crystal is promising as a substrat...

  18. Radiation defects produced by neutron irradiation in germanium single crystals

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Honda, Makoto; Atobe, Kozo; Yamaji, Hiromichi; Ide, Mutsutoshi; Okada, Moritami.

    1992-01-01

    The nature of defects produced in germanium single crystals by neutron irradiation at 25 K was studied by measuring the electrical resistivity. It was found that two levels located at E c -0.06 eV and E c -0.13 eV were introduced in an arsenic-doped sample. Electron traps at E c -0.10eV were observed in an indium-doped sample. The change in electrical resistivity during irradiation was also studied. (author)

  19. Polarised IR-microscope spectra of guanidinium hydrogensulphate single crystal.

    Science.gov (United States)

    Drozd, M; Baran, J

    2006-07-01

    Polarised IR-microscope spectra of C(NH(2))(3)*HSO(4) small single crystal samples were measured at room temperature. The spectra are discussed on the basis of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the Ocdots, three dots, centeredO distance of 2.603A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polariser angle are described. Detailed assignments for bands derived from stretching and bending modes of sulphate anions and guanidinium cations were performed. The observed intensities of these bands in polarised infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  20. Polarized IR-microscope spectra of guanidinium hydrogenselenate single crystal.

    Science.gov (United States)

    Drozd, M; Baran, J

    2005-10-01

    The polarized IR-microscope spectra of C(NH2)3.HSeO4 small single crystal samples were measured at room temperature. The spectra are discussed with the framework of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the O...O distance of 2.616 A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polarizer angle are described. Detailed assignment for bands derived from stretching and bending modes of selenate anions and guanidinium cations were performed. The observed intensities of these bands in polarized infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  1. Giant negative photoresistance of ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Barzola-Quiquia, Jose; Esquinazi, Pablo [Division of Superconductivity and Magnetism, University of Leipzig (Germany); Heluani, Silvia [Laboratorio de Fisica del Solido, FCEyT, Universidad Nacional de Tucuman, 4000 S. M. de Tucuman (Argentina); Villafuerte, Manuel [Dept. de Fisica, FCEyT, Universidad Nacional de Tucuman (Argentina); CONICET, Tucuman (Argentina); Poeppl, Andreas [Division of Magnetic Resonance of Complex Quantum Solids, University of Leipzig, D-04103 Leipzig (Germany)

    2011-07-01

    ZnO is a wide band gap semiconductor exhibiting the largest charge-carrier mobility among oxides. ZnO is a material with potential applications for short-wavelength optoelectronic devices, as a blue light emitting diodes and in spintronics. In this contribution we have measured the temperature dependence (30 K < T < 300 K) of the electrical resistance of ZnO single crystals prepared by hydrothermal method in darkness and under the influence of light in the ultraviolet range. The resistance decreases several orders of magnitude at temperatures T < 200 K after illumination. Electron paramagnetic resonance studies under illumination reveal that the excitation of Li acceptor impurities is the origin for the giant negative photoresistance effect. Permanent photoresistance effect is also observed, which remains many hours after leaving the crystal in darkness.

  2. Preparation of high purity yttrium single crystals by electrotransport

    International Nuclear Information System (INIS)

    Volkov, V.T.; Nikiforova, T.V.; Ionov, A.M.; Pustovit, A.N.; Sikharulidse, G.G.

    1981-01-01

    The possibility of obtaining yttrium crystals of high purity by the method of solid state electrotransport (SSE) was investigated in the present work. The behaviour of low contents of iron, aluminium, silicon, tantalum, copper, silver and vanadium as metallic impurities was studied using mass spectrometry. It is shown that all the impurities investigated, except copper, migrate to the anode. During electrotransfer a purification with respect to these impurities by a factor of 4 - 6 is obtained. It is proposed that the diffusion coefficients of the metallic impurities investigated are anomalously high and that the behaviour of the impurities during SSE in adapters necessitates further investigation. By using a three-stage process with intermediate removal of the anode end yttrium single crystals with a resistance ratio rho 293 /rhosub(4.2)=570 were produced. (Auth.)

  3. Growth, and magnetic study of Sm0.4Er0.6FeO3 single crystal grown by optical floating zone technique

    Science.gov (United States)

    Wu, Anhua; Zhao, Xiangyang; Man, Peiwen; Su, Liangbi; Kalashnikova, A. M.; Pisarev, R. V.

    2018-03-01

    Sm0.4Er0.6FeO3 single crystals were successfully grown by optical floating zone method; high quality samples with various orientations were manufactured. Based on these samples, Magnetic property of Sm0.4Er0.6FeO3 single crystals were investigated systemically by means of the temperature dependence of magnetization. It indicated that compositional variations not only alter the spin reorientation temperature, but also the compensation temperature of the orthoferrites. Unlike single rare earth orthoferrites, the reversal transition temperature point of Sm0.4Er0.6FeO3 increases as magnetic field increases, which is positive for designing novel spin switching or magnetic sensor device.

  4. Impacts of Co-doping on the superconductivity and the orbital ordering state in Fe1-xCoxSe single crystal studied by the electrical transport.

    Science.gov (United States)

    Urata, Takahiro; Tanabe, Yoichi; Heguri, Satoshi; Tanigaki, Katsumi

    2015-03-01

    In the FeSe with the simplest crystal structure in the Fe-based superconductor families, although both the superconductivity and the orbital ordering states are investigated, the relation between them is still unclear. Here, we report Co doping effects on the superconductivity and the orbital ordering state in Fe1-xCoxSe single crystals. The electrical transport measurements demonstrated that the superconductivity vanishes at 4 % Co doping while the orbital ordering state may be robust against Co doping. Present results suggest that the orbital ordering state is not related to the emergence of the superconductivity in FeSe.

  5. Growth features of ammonium hydrogen d-tartrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Ammonium hydrogen d-tartrate (d-AHT) single crystals were grown in silica gel. The growth fea- ... solution (specific gravity, 1⋅04 g/cc) with d-tartaric acid solution having ... resulting in the production of crystal nuclei. The interface.

  6. On the growth of calcium tartrate tetrahydrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Calcium tartrate single crystals were grown using silica gel as the growth medium. Calcium for- mate mixed with formic acid was taken as the supernatant solution. It was observed that the nucleation den- sity was reduced and the size of the crystals was improved to a large extent compared to the conventional way.

  7. Tensile properties of electron-beam-welded single crystals of molybdenum

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi; Irie, Hirosada; Fujii, Tadayuki.

    1987-01-01

    The purpose of this study is to investigate the macro- and microstructures and the tensile properties of electron-beam-welded single crystals of molybdenum. The single-crystal sheets were prepared by means of secondary recrystallization. The welding was carried out by a melt-run technique. The weld metal had the same crystallographic orientation as the base metal, and no grain boundary was observed. However, many large weld pores were formed mostly along the weld bond. The strength and ductility of the welded joints of single crystals were almost the same as those of the base metal (''annealed'' single crystals). It is concluded that the joint efficiency of molybdenum single crystals at room temperature or above was excellent and nearly 100 %. (author)

  8. Magnetic order of Nd5Pb3 single crystals

    Science.gov (United States)

    Yan, J.-Q.; Ochi, M.; Cao, H. B.; Saparov, B.; Cheng, J.-G.; Uwatoko, Y.; Arita, R.; Sales, B. C.; Mandrus, D. G.

    2018-04-01

    We report millimeter-sized Nd5Pb3 single crystals grown out of a Nd-Co flux. We experimentally study the magnetic order of Nd5Pb3 single crystals by measuring the anisotropic magnetic properties, electrical resistivity under high pressure up to 8 GPa, specific heat, and neutron single crystal diffraction. Two successive magnetic orders are observed at T N1  =  44 K and T N2  =  8 K. The magnetic cells can be described with a propagation vector k=(0.5, 0, 0) . Cooling below T N1, Nd1 and Nd3 order forming ferromagnetic stripes along the b-axis, and the ferromagnetic stripes are coupled antiferromagnetically along the a-axis for the k=(0.5, 0, 0) magnetic domain. Cooling below T N2, Nd2 orders antiferromagnetically to nearby Nd3 ions. All ordered moments align along the crystallographic c-axis. The magnetic order at T N1 is accompanied by a quick drop of electrical resistivity upon cooling and a lambda-type anomaly in the temperature dependence of specific heat. At T N2, no anomaly was observed in electrical resistivity but there is a weak feature in specific heat. The resistivity measurements under hydrostatic pressures up to 8 GPa suggest a possible phase transition around 6 GPa. Our first-principles band structure calculations show that Nd5Pb3 has the same electronic structure as does Y5Si3 which has been reported to be a one-dimensional electride with anionic electrons that do not belong to any atom. Our study suggests that R 5Pb3 (R  =  rare earth) can be a materials playground for the study of magnetic electrides. This deserves further study after experimental confirmation of the presence of anionic electrons.

  9. Catalyzed hydrogenation of nitrogen and ethylene on metal (Fe, Pt) single crystal surfaces and effects of coadsorption: A sum frequency generation vibrational spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Staffan Per Gustav [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    High-pressure catalytic reactions and associated processes, such as adsorption have been studied on a molecular level on single crystal surfaces. Sum Frequency Generation (SFG) vibrational spectroscopy together with Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) and Gas Chromatography (GC) were used to investigate the nature of species on catalytic surfaces and to measure the catalytic reaction rates. Special attention has been directed at studying high-pressure reactions and in particular, ammonia synthesis in order to identify reaction intermediates and the influence of adsorbates on the surface during reaction conditions. The adsorption of gases N2, H2, O2 and NH3 that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH2 (~3325 cm-1) and NH (~3235 cm-1) under high pressure of ammonia (200 Torr) on the clean Fe(111) surface. Addition of 0.5 Torr of oxygen to 200 Torr of ammonia does not significantly change the bonding of dissociation intermediates to the surface. However, it leads to a phase change of nearly 180° between the resonant and non-resonant second order non-linear susceptibility of the surface, demonstrated by the reversal of the SFG spectral features. Heating the surface in the presence of 200 Torr ammonia and 0.5 Torr oxygen reduces the oxygen coverage, which can be seen from the SFG spectra as another relative phase change of 180°. The reduction of the oxide is also supported by Auger electron spectroscopy. The result suggests that the phase change of the spectral features could serve as a sensitive indicator of the chemical environment of the adsorbates.

  10. Unidirectional growth and characterization of L-arginine monohydrochloride monohydrate single crystals

    International Nuclear Information System (INIS)

    Sangeetha, K.; Babu, R. Ramesh; Bhagavannarayana, G.; Ramamurthi, K.

    2011-01-01

    Highlights: → L-Arginine monohydrochloride monohydrate (LAHCl) single crystal was grown successfully by unidirectional solution growth method for the first time. → High crystalline perfection was observed for UDS grown crystal compared to CS grown crystal. → The optical transparency and mechanical stability are high for UDS grown LAHCl single crystal. → Optical birefringence measurement on this material. → The piezoelectric resonance frequencies observation - first time observation on this material. - Abstract: L-Arginine monohydrochloride monohydrate (LAHCl) single crystals were grown successfully by conventional and unidirectional solution growth methods. The crystalline perfection of grown crystals was analyzed by high-resolution X-ray diffraction. The linear optical transmittance, mechanical stability of conventional and unidirectional grown LAHCl single crystals were analyzed and compared along (0 0 1) plane. The refractive index and birefringence of LAHCl single crystals were also measured using He-Ne laser source. From the dielectric studies, piezoelectric resonance frequencies were observed in kHz frequency range for both conventional and unidirectional grown LAHCl single crystals along (0 0 1) plane.

  11. Types of defect ordering in undoped and lanthanum-doped Bi2201 single crystals

    International Nuclear Information System (INIS)

    Martovitsky, V. P.

    2006-01-01

    Undoped and lanthanum-doped Bi2201 single crystals having a perfect average structure have been comparatively studied by x-ray diffraction. The undoped Bi2201 single crystals exhibit very narrow satellite reflections; their half-width is five to six times smaller than that of Bi2212 single crystals grown by the same technique. This narrowness indicates three-dimensional defect ordering in the former crystals. The lanthanumdoped Bi2201 single crystals with x = 0.7 and T c = 8-10 K exhibit very broad satellite reflections consisting of two systems (modulations) misoriented with respect to each other. The modulation-vector components of these two modulations are found to be q 1 = 0.237b* + 0.277c* and q 2 = 0.238b* + 0.037c*. The single crystals having a perfect average structure and a homogeneous average distribution of doping lanthanum consist of 70-to 80-A-thick layers that alternate along the c axis and have two different types of modulated superlattice. The crystals having a less perfect average structure also consist of alternating layers, but they have different lanthanum concentrations. The low value of T c in the undoped Bi2201 single crystals (9.5 K) correlates with three-dimensional defect ordering in them, and an increase in T c to 33 K upon lanthanum doping can be related to a thin-layer structure of these crystals and to partial substitution of lanthanum for the bismuth positions

  12. Single crystal magnetisation of UFe10Mo2

    International Nuclear Information System (INIS)

    Estrela, P.; Godinho, M.; Spirlet, J.C.

    1997-01-01

    Magnetisation measurements have been performed for different directions on aligned UFe 10 Mo 2 single crystals. The results confirm a basal plane anisotropy and suggest an important magnetic contribution from the uranium sublattice. (orig.)

  13. Metal Halide Perovskite Single Crystals: From Growth Process to Application

    Directory of Open Access Journals (Sweden)

    Shuigen Li

    2018-05-01

    Full Text Available As a strong competitor in the field of optoelectronic applications, organic-inorganic metal hybrid perovskites have been paid much attention because of their superior characteristics, which include broad absorption from visible to near-infrared region, tunable optical and electronic properties, high charge mobility, long exciton diffusion length and carrier recombination lifetime, etc. It is noted that perovskite single crystals show remarkably low trap-state densities and long carrier diffusion lengths, which are even comparable with the best photovoltaic-quality silicon, and thus are expected to provide better optoelectronic performance. This paper reviews the recent development of crystal growth in single-, mixed-organic-cation and fully inorganic halide perovskite single crystals, in particular the solution approach. Furthermore, the application of metal hybrid perovskite single crystals and future perspectives are also highlighted.

  14. Hydrothermal syntheses and single crystal structural ...

    Indian Academy of Sciences (India)

    Unknown

    Colourless. 84 lined stainless steel bomb. After heating in a pro- grammable oven at the respective temperatures and autogenous pressures for the notified time scale, cooling was carried out on a ramp of 10°C/h to room temperature. The crystals were collected by filtration, washed with, deionized water followed by diethyl-.

  15. Nanomechanical resonant structures in single-crystal diamond

    OpenAIRE

    Burek, Michael J.; Ramos, Daniel; Patel, Parth; Frank, Ian W.; Lončar, Marko

    2013-01-01

    With its host of outstanding material properties, single-crystal diamond is an attractive material for nanomechanical systems. Here, the mechanical resonance characteristics of freestanding, single-crystal diamond nanobeams fabricated by an angled-etching methodology are reported. Resonance frequencies displayed evidence of significant compressive stress in doubly clamped diamond nanobeams, while cantilever resonance modes followed the expected inverse-length-squared trend. Q-factors on the o...

  16. Synthesis of polyimides from α,αʹ-bis(3-aminophenoxy)-p-xylene: Spectroscopic, single crystal XRD and thermal studies

    Science.gov (United States)

    Ashraf, Ahmad Raza; Akhter, Zareen; Simon, Leonardo C.; McKee, Vickie; Castel, Charles Dal

    2018-05-01

    The meta-catenated ether-based diamine monomer α,αʹ-bis(3-aminophenoxy)-p-xylene (3APX) was synthesized from dinitro precursor α,αʹ-bis(3-nitrophenoxy)-p-xylene (3NPX). FTIR, 1H and 13C NMR spectroscopic studies accompanied by elemental analysis were performed for structural elucidations of 3NPX and 3APX. The spatial orientations of 3APX were explored by single crystal X-ray diffraction analysis. Its crystal system was found to be monoclinic, adopting the space group P21/c. The synthesized diamine monomer (3APX) was used for preparation of new series of polyimides by reacting with three different dianhydrides (BTDA, ODPA, 6FDA). The relevant copolyimides were developed via incorporation of 4,4ʹ-methylenedianiline (MDA) in the backbone of afore-synthesized polyimides. The structures of polyimides and copolyimides were verified by FTIR and 1H NMR spectroscopic techniques. Their properties were evaluated by dynamic and isothermal TGA (nitrogen and air atmospheres) and WAXRD studies. Polyimides displayed significantly high thermal stability as their degradation started around 400 °C and it was improved further by execution of copolymerization strategy with MDA. The 5% weight loss temperature (T5) of polyimides under nitrogen atmosphere was in the range of 425-460 °C while for copolyimides it increased to 454-498 °C. Thermal decomposition in air was slower than nitrogen between 400 and 550 °C however it was accelerated above 550 °C. Isothermal TGA disclosed that copolyimides have the ability to endure elevated temperatures for extended period. WAXRD analysis showed the amorphous nature of polyimides and copolyimides.

  17. Studies on the concentration dependence of specific rotation of Alpha lactose monohydrate (α-LM) aqueous solutions and growth of α-LM single crystals

    Science.gov (United States)

    Vinodhini, K.; Divya Bharathi, R.; Srinivasan, K.

    2018-02-01

    Lactose is an optically active substance. As it is one of the reducing sugars, exhibits mutarotation in solution when it dissolves in any solvent. In solution, lactose exists in two isomeric forms, alpha-Lactose (α-L) and beta-lactose (β-L) through the mutarotation reaction. Mutarotation produces a dynamic equilibrium between two isomers in a solution and kinetics of this process determines the growth rate of alpha lactose monohydrate (α-LM) crystals. Since no data were available on the specific rotation of aqueous α-LM solutions at different concentrations at 33 °C, the initial experiments were carried out on the specific rotation of aqueous α-LM solutions at different concentrations at 33 °C. The specific rotations of the solutions were decreased with increasing time through the mutarotation reaction. The initial and final (equilibrium) specific rotations of the solutions were determined by using automatic digital polarimeter. The compositions of α and β-L in all prepared solutions were calculated from initial and final optical rotations by the method of Sharp and Doob. The composition of α-L decreased whereas, the composition of β-L increased in solutions with increasing concentration of α-LM at 33 °C. Experimental results revealed that this method could be easily and safely employed to study the dependence of specific rotation of solutions on their concentration. The effect of β-lactose on the morphology of nucleated α-LM single crystals has been studied at different experimental conditions.

  18. Thermal expansion behavior of empressite, AgTe: A structural study by means of in situ high-temperature single-crystal X-ray diffraction

    International Nuclear Information System (INIS)

    Bindi, Luca

    2009-01-01

    The crystal structure of empressite, AgTe, a rare silver telluride, has been investigated by in situ X-ray single-crystal diffraction methods within the temperature range 298-463 K. AgTe remains orthorhombic, space group Pmnb (Pnma as standard), and shows only normal thermal expansion over the entire temperature range. The unit-cell parameters show a gradual increase with the increase of temperature. Slight adjustments in the geometry of Ag-tetrahedra and in the crystal-chemical environment of tellurium atoms occur in a continuous way without abrupt structural changes. The coefficients of thermal expansion along various axes are: α a = 1.5 x 10 -5 K -1 , α b = 3.0 x 10 -5 K -1 , α c = 2.2 x 10 -5 K -1 , and the bulk thermal expansion coefficient α V is 5.4 x 10 -5 K -1 for the temperature range 298-463 K

  19. Crystal growth and scintillation properties of Pr-doped SrI2 single crystals

    Science.gov (United States)

    Yokota, Yuui; Ito, Tomoki; Yoshino, Masao; Yamaji, Akihiro; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2018-04-01

    Pr-doped SrI2 (Pr:SrI2) single crystals with various Pr concentrations were grown by the halide-micro-pulling-down (H-μ-PD) method, and the scintillation properties were investigated. Pr1%:SrI2 single crystal with high transparency could be grown by the H-μ-PD method while Pr2, 3 and 5%:SrI2 single crystals included some cracks and opaque parts. In the photoluminescence spectrum of the Pr1%:SrI2 single crystal, an emission peak originated from the Pr3+ ion was observed around 435 nm while the radioluminescence spectra showed an emission peak around 535 nm for the undoped SrI2 and Pr:SrI2 single crystals. Light yields of Pr1, 2, 3 and 5%:SrI2 single crystals under γ-ray irradiation were 7700, 8700, 7200 and 6700 photons/MeV, respectively. Decay times of Pr1 and 2%:SrI2 single crystals under γ-ray irradiation were 55.9 and 35.0 ns of the fast decay component, and 435 and 408 ns of the slow decay component, respectively.

  20. The sublimation kinetics of GeSe single crystals

    Science.gov (United States)

    Irene, E. A.; Wiedemeier, H.

    1975-01-01

    The sublimation kinetics of (001) oriented GeSe single crystal platelets was studied by high-temperature mass spectroscopy, quantitative vacuum microbalance techniques, and hot stage optical microscopy. For a mean experimental temperature of 563 K, the activation enthalpy and entropy are found to equal 32.3 kcal/mole and 19.1 eu, respectively. The vaporization coefficient is less than unity for the range of test temperatures, and decreases with increasing temperature. The combined experimental data are correlated by means of a multistep surface adsorption mechanism.

  1. Lattice effects in HoVo3 single crystal

    International Nuclear Information System (INIS)

    Sikora, M.; Marquina, C.; Ibarra, M.R.; Nugroho, A.A.; Palstra, T.T.M.

    2007-01-01

    We report the study of lattice effects in the Mott insulator HoVO 3 performed by means of linear thermal expansion on a single crystal in the temperature range 10-290 K. The holmium orthovanadate HoVO 3 reveals gradual orbital ordering (OO) below T OO =200 K and orders antiferromagnetically at T N =113 K. A first-order structural phase transition takes place at T S ∼38 K, which is probably accompanied by change of the OO type and hence the type of antiferromagnetic spin ordering

  2. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.

    2013-10-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano-crystalline metals, the superiority of small single crystals has neither been fundamentally explained nor quantified to this date. Here we present a molecular dynamics study of aluminum single crystals in the size range from 4.1 nm to 40.5 nm. We show that the ultimate mechanical strength deteriorates exponentially as the single crystal size increases. The small crystals superiority is explained by their ability to continuously form vacancies and to recover them. © 2013 Published by Elsevier B.V.

  3. Hydrothermal growth of PbSO4 (Anglesite) single crystal

    International Nuclear Information System (INIS)

    Kikuta, Ko-ichi; Yoneta, Yasuhito; Yogo, Toshinobu; Hirano, Shin-ichi

    1994-01-01

    Hydrothermal growth of single crystals of PbSO 4 , which is known as a natural mineral called anglesite, was investigated. Lead nitrate and nitric acid solutions were found to be useful for the growth of angle-site on the basis of the experimental results on the dissolution behavior. Relatively large euhedral single crystals bound by {210} and {101} planes were successfully grown in 1.5 mol/kg Pb(NO 3 ) 2 at 400degC and 100 MPa. Optical characterization revealed that the grown anglesite crystals can be useful for scintillators material. (author)

  4. Iron single crystal growth from a lithium-rich melt

    Science.gov (United States)

    Fix, M.; Schumann, H.; Jantz, S. G.; Breitner, F. A.; Leineweber, A.; Jesche, A.

    2018-03-01

    α -Fe single crystals of rhombic dodecahedral habit were grown from a Li84N12Fe∼3 melt. Crystals of several millimeter along a side form at temperatures around T ≈ 800 ° C. Upon further cooling the growth competes with the formation of Fe-doped Li3N. The b.c.c. structure and good sample quality of α -Fe single crystals were confirmed by X-ray and electron diffraction as well as magnetization measurements and chemical analysis. A nitrogen concentration of 90 ppm was detected by means of carrier gas hot extraction. Scanning electron microscopy did not reveal any sign of iron nitride precipitates.

  5. Effect of Metal Dopant on Ninhydrin—Organic Nonlinear Optical Single Crystals

    Directory of Open Access Journals (Sweden)

    R. S. Sreenivasan

    2013-01-01

    Full Text Available In the present work, metal (Cu2+-substituted ninhydrin single crystals were grown by slow evaporation method. The grown crystals have been subjected to single crystal XRD, powder X-ray diffraction, FTIR, dielectric and SHG studies. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in monoclinic system with noncentrosymmetric space group P21 with lattice parameters a=11.28 Å, b=5.98 Å, c=5.71 Å, α=90∘, β=98.57, γ=90∘, and V=381 (Å3, which agrees very well with the reported value. The sharp and strong peaks in the powder X-ray diffraction pattern confirm the good crystallinity of the grown crystals. The presence of dopants marginally altered the lattice parameters without affecting the basic structure of the crystal. The UV-Vis transmittance spectrum shows that the crystal has a good optical transmittance in the entire visible region with lower cutoff wavelength 314 nm. The vibrational frequencies of various functional groups in the crystals have been derived from FT-IR analysis. Based on the shifts in the vibrations, the presence of copper in the lattice of the grown crystal is clearly established from the pure ninhydrin crystals. Both dielectric constant and dielectric loss decrease with the increase in frequency. The second harmonic generation efficiency was measured by employing powder Kurtz method.

  6. Attenuation of thermal neutrons by an imperfect single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K.; Adib, M. [National Research Centre, Cairo (Egypt). Reactor and Neutron Physics Dept.

    1996-06-14

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3-40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range. (author).

  7. Attenuation of thermal neutrons by an imperfect single crystal

    Science.gov (United States)

    Naguib, K.; Adib, M.

    1996-06-01

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.

  8. Comparative study of the creep behaviour of single crystals and polycrystals of alpha uranium; Etude comparee du comportement au fluage de l'uranium alpha mono et polycristallin

    Energy Technology Data Exchange (ETDEWEB)

    Andre, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-03-01

    In the first chapter, one describes the creep machine developed to study the deformation of uranium at high temperature in vacuum with a continuous recording. The second chapter presents the results concerning the polycrystals of uranium. The application of the DORN method gives an activation energy for creep of 42 {+-} 2 Kc, above 550 Celsius degrees, equal to the activation energy for self-diffusion. The study of the variation of the creep rate with the applied stress and the metallographic observations of the deformation induced polygonization allow to conclude that the deformation is controlled by climb of dislocations. In the third chapter, the deformation above 550 Celsius degrees of single crystals of uranium (obtained by {beta} {yields} {alpha} change) is studied. The major deformation mode is slip. The preexisting polygonization of these single crystals is very stable and the disorientation between adjacent sub-grains increases with the deformation. The activation energy for creep is higher than that for polycrystals. These results show the influence of the polygonization due to the {beta} {yields} {alpha} change on the creep behaviour of {alpha} uranium. (authors) [French] Dans le premier chapitre, on decrit la machine de fluage sous vide a enregistrement continu, mise au point pour etudier le phenomene. Le deuxieme chapitre presente les resultats relatifs aux polycristaux. L'utilisation de la methode de DORN a permis de constater que, au-dessus de 550 degres Celsius, l'energie d'activation pour le fluage avait une valeur constante egale a 42 {+-} 2 Kc, voisine de la chaleur d'autodiffusion. L'etude de l'influence de la contrainte appliquee sur la vitesse de fluage et l'observation micrographique de la polygonisation developpee au cours de la deformation permettent de conclure que le phenomene est controle par la montee des dislocations. Dans le troisieme chapitre, on etudie le comportement au fluage au-dessus de 550 C des monocristaux obtenus par

  9. Thermal, Dielectric Studies on Pure and Amino Acid L-Glutamic Acid, L-Histidine L-Valine Doped Potassium Dihydrogen Phosphate Single Crystals

    Science.gov (United States)

    Kumaresan, P.; Babu, S. Moorthy; Anbarasan, P. M.

    Amino acids (L-Glutamic acid, L-Histidine, L-Valine) doped potassium dihydrogen phosphate crystals were grown by the solution growth technique. Slow cooling as well as slow evaporation methods were employed to grow these crystals. The concentration of dopants in the mother solution was varied from 0.1 mole % to 10 mole %. The solubility data for all dopant concentrations were determined. The variation in pH and the corresponding habit modification of the grown crystals were characterized with UV - VIS, FT-IR and SHG trace elements, and dielectric studies reveal slight distortion of lattice parameter for the heavily doped KDP crystals. TGA-DTA studies reveal good thermal stability. The dopants increase the hardness value of the material, which also depends on the concentration of the dopants. Amino acids doping improved the NLO properties. The detailed results on the spectral parameters, habit modifications and constant values will be presented.

  10. A 350 mK, 9 T scanning tunneling microscope for the study of superconducting thin films on insulating substrates and single crystals.

    Science.gov (United States)

    Kamlapure, Anand; Saraswat, Garima; Ganguli, Somesh Chandra; Bagwe, Vivas; Raychaudhuri, Pratap; Pai, Subash P

    2013-12-01

    We report the construction and performance of a low temperature, high field scanning tunneling microscope (STM) operating down to 350 mK and in magnetic fields up to 9 T, with thin film deposition and in situ single crystal cleaving capabilities. The main focus lies on the simple design of STM head and a sample holder design that allows us to get spectroscopic data on superconducting thin films grown in situ on insulating substrates. Other design details on sample transport, sample preparation chamber, and vibration isolation schemes are also described. We demonstrate the capability of our instrument through the atomic resolution imaging and spectroscopy on NbSe2 single crystal and spectroscopic maps obtained on homogeneously disordered NbN thin film.

  11. Influence of submelting on formation of single crystals of nickel alloy with cellular-dendritic structure

    International Nuclear Information System (INIS)

    Pankin, G.N.; Esin, V.O.; Ponomarev, V.V.

    1996-01-01

    A study was made into specific features of cellular - dendritic structure formation in single crystals of nickel base alloy ZhS26 which had been crystallized following the pattern of solid solution. The single crystals in growing were subjected to periodic partial remelting to suppress the transition of cellular structure into a cellular - dendritic one during directional solidification. The results obtained showed the possibility to stabilize cellular growth of solid solution by way of inversion of interphase surface motion in the process of directional crystallization. 4 refs.; 5 figs

  12. Controlled growth of filamentary crystals and fabrication of single-crystal whisker probes

    International Nuclear Information System (INIS)

    Givargizov, E. I.

    2006-01-01

    The growth of filamentary crystals (whiskers) on a single-crystal substrate through the vapour-liquid-solid mechanism is described. The possibility of fabricating oriented systems of whiskers on the basis of this mechanism of crystal growth is noted. A phenomenon that is important for nanotechnology is noted: the existence of a critical diameter of whiskers, below which they are not formed. The phenomenon of radial periodic instability, which is characteristic of nanowhiskers, is described and the ways of its elimination are shown. The possibility of transforming whiskers into single-crystal tips and the growth of crystalline diamond particles at their apices are noted as important for practice. Possible applications of systems of whiskers and tips are described briefly. Particular attention is paid to the latest direction in whisker technology-fabrication of single-crystal whisker probes for atomic force microscopy

  13. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  14. Electron spin resonance study of a La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 3 single crystal

    CERN Document Server

    Joh, K W; Lee, C E; Hur, N H; Ri, H C

    2003-01-01

    Comprehensive measurements of electron spin resonance were carried out on a La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 3 single crystal over a wide temperature range covering the ferromagnetic as well as the paramagnetic phases. Our analysis of the asymmetric lineshapes indicates that the phase segregation of good and poor conducting regions persists far above the ferromagnetic-paramagnetic phase transition temperature.

  15. Luminescence and charge trapping in Cs.sub.2./sub.HfCl.sub.6./sub. single crystals: optical and magnetic resonance spectroscopy study

    Czech Academy of Sciences Publication Activity Database

    Král, Robert; Babin, Vladimir; Mihóková, Eva; Buryi, Maksym; Laguta, Valentyn; Nitsch, Karel; Nikl, Martin

    2017-01-01

    Roč. 121, č. 22 (2017), s. 12375-12382 ISSN 1932-7447 R&D Projects: GA MŠk LO1409; GA ČR GA17-09933S Institutional support: RVO:68378271 Keywords : Cs2HfCl6 * single crystal * luminescence * temperature dependence * EPR spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.536, year: 2016

  16. Light emission from organic single crystals operated by electrolyte doping

    Science.gov (United States)

    Matsuki, Keiichiro; Sakanoue, Tomo; Yomogida, Yohei; Hotta, Shu; Takenobu, Taishi

    2018-03-01

    Light-emitting devices based on electrolytes, such as light-emitting electrochemical cells (LECs) and electric double-layer transistors (EDLTs), are solution-processable devices with a very simple structure. Therefore, it is necessary to apply this device structure into highly fluorescent organic materials for future printed applications. However, owing to compatibility problems between electrolytes and organic crystals, electrolyte-based single-crystal light-emitting devices have not yet been demonstrated. Here, we report on light-emitting devices based on organic single crystals and electrolytes. As the fluorescent materials, α,ω-bis(biphenylyl)terthiophene (BP3T) and 5,6,11,12-tetraphenylnaphthacene (rubrene) single crystals were selected. Using ionic liquids as electrolytes, we observed clear light emission from BP3T LECs and rubrene EDLTs.

  17. EPR and optical studies of Cu{sup 2+} ions doped in magnesium potassium phosphate hexahydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram; Shukla, Santwana, E-mail: ram_kripal2001@rediffmail.com, E-mail: shukla.santwana@gmail.com [EPR Laboratory, Department of Physics, University of Allahabad, Allahabad 211002 (India)

    2011-03-15

    An electron paramagnetic resonance (EPR) study of Cu{sup 2+}-doped magnesium potassium phosphate is performed at liquid nitrogen temperature (LNT; 77 K). Two magnetically non-equivalent sites for Cu{sup 2+} are observed. The spin Hamiltonian parameters are determined with the fitting of spectra to a rhombic symmetry crystalline field. The ground state wavefunction is also determined. The g-anisotropy is evaluated and compared with the experimental value. With the help of an optical study, the nature of the bonding in the complex is discussed.

  18. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates

    KAUST Repository

    Chao, Chunying; Ren, Zhaohui; Zhu, Yihan; Xiao, Zhen; Liu, Zhenya; Xú , Gang; Mai, Jiangquan; Li, Xiang; Shen, Ge; Han, Gaorong

    2012-01-01

    Free-standing single-crystal PbTiO 3 nanoplates (see picture) were synthesized by a facile hydrothermal method. A "self-templated" crystal growth is presumed to lead to the formation of the PbTiO 3 nanoplates, which have ferroelectric single

  19. Scanning tunneling spectroscopic studies of superconducting NbN single crystal thin films at 4.2 K

    International Nuclear Information System (INIS)

    Kashiwaya, S.; Koyanagi, M.; Matsuda, M.; Shoji, A.; Shibata, H.

    1991-01-01

    This paper reports on a Low Temperature Scanning Tunneling Microscope (LTSTM) constructed to study the microscopic properties of superconductors. It has atomic resolution from room temperature to 4.2 K. Conductance spectra obtained between a Pt tip and a NbN thin film agreed well with theoretical curves based on the BCS theory

  20. Thermal, dielectric studies on pure and amino acid ( L-glutamic acid, L-histidine, L-valine) doped KDP single crystals

    Science.gov (United States)

    Kumaresan, P.; Moorthy Babu, S.; Anbarasan, P. M.

    2008-05-01

    Amino acids ( L-glutamic acid, L-histidine, L-valine) doped potassium dihydrogen phospate crystals are grown by solution growth technique. Slow cooling as well as slow evaporation methods were employed to grow these crystals. The concentration of dopants in the mother solution was varied from 0.1 mol% to 10 mol%. The solubility data for all dopants concentration were determined. There is variation in pH value and hence, there is habit modification of the grown crystals were characterized with UV-VIS, FT-IR studies, SHG trace elements and dielectric studies reveal slight distortion of lattice parameter for the heavily doped KDP crystals. UV-Visible spectra confirm the improvement in the transparency of these crystals on doping metal ions. FT-IR spectra reveal strong absorption band between 1400 and 1600 cm -1 for metal ion doped crystals. TGA-DTA studies reveal good thermal stability. The dopants increase the hardness value of the material and it also depends on the concentration of the dopants. Amino acids doping improved the NLO properties. The detailed results on the spectral parameters, habit modifications and constant values will be presented.

  1. Docking studies of antidepressants against single crystal structure of tryptophan 2, 3-dioxygenase using Molegro Virtual Docker software.

    Science.gov (United States)

    Dawood, Shazia; Zarina, Shamshad; Bano, Samina

    2014-09-01

    Tryptophan 2, 3-dioxygenase (TDO) a heme containing enzyme found in mammalian liver is responsible for tryptophan (Trp) catabolism. Trp is an essential amino acid that is degraded in to N-formylkynurenine by the action of TDO. The protein ligand interaction plays a significant role in structural based drug designing. The current study illustrates the binding of established antidepressants (ADs) against TDO enzyme using in-silico docking studies. For this purpose, Fluoxetine, Paroxetine, Sertraline, Fluvoxamine, Seproxetine, Citalopram, Moclobamide, Hyperforin and Amoxepine were selected. In-silico docking studies were carried out using Molegro Virtual Docker (MVD) software. Docking results show that all ADs fit well in the active site of TDO moreover Hyperforin and Paroxetine exhibited high docking scores of -152.484k cal/mol and -139.706k cal/mol, respectively. It is concluded that Hyperforin and Paroxetine are possible lead molecules because of their high docking scores as compared to other ADs examined. Therefore, these two ADs stand as potent inhibitors of TDO enzyme.

  2. Defect sensitive etching of hexagonal boron nitride single crystals

    Science.gov (United States)

    Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam

    2017-12-01

    Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.

  3. Time-resolved luminescent spectroscopy of YAG:Ce single crystal and single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Vozniak, T.; Puzikov, V.; Danko, A.; Nizhankovski, S.

    2010-01-01

    The peculiarities of the luminescence and energy transfer from YAG host to the emission centers formed by the Y Al antisite defects and Ce 3+ ions have been studied in YAG:Ce single crystals, grown from the melt by modified Bridgman method in Ar and CO 2 + H 2 atmospheres, and YAG:Ce single crystalline film, grown by liquid phase epitaxy method, using the comparative time-resolved luminescent spectroscopy under excitation by synchrotron radiation in the range of fundamental adsorption of this garnet.

  4. Neutron and resonant x-ray scattering studies of RNi2B2C (R = rare earth) single crystals

    International Nuclear Information System (INIS)

    Stassis, C.; Goldman, A.I.; Iowa State Univ., Ames, IA

    1996-01-01

    This family of intermetallic compounds is ideal for the study of the interplay between superconductivity and magnetism since, in several of these compounds (Ho, Er, Tm, Dy), superconductivity coexists with magnetic ordering. The most important findings of the scattering studies are (a) in the Ho-compound, a complex magnetic structure characterized by two incommensurate wave vectors, rvec k a = 0.585 rvec a* and rvec k c = 0.915 rvec c*, exists in the vicinity of 5 K, where the almost reentrant behavior of this compound occurs; (b) an incommensurate magnetic structure with wave vector along rvec a*, close to the zone boundary, is observed in several of these compounds; and (c) pronounced soft-phonon behavior was observed for both the acoustic and first optical Δ 4 [ξ00] branches in the superconducting Lu and Ho compounds, a behavior characteristic of strongly coupled conventional superconductors. Furthermore, these phonon anomalies occur at wave vectors close to those of the incommensurate magnetically ordered structures observed in the magnetic compounds of this family. This observation suggests that both the magnetic ordering and phonon softening originate from common nesting features of the Fermi surfaces of these compounds. Band theoretical calculations are in qualitative agreement with these results

  5. Proline adsorption on TiO 2(1 1 0) single crystal surface: A study by high resolution photoelectron spectroscopy

    Science.gov (United States)

    Fleming, G. J.; Adib, K.; Rodriguez, J. A.; Barteau, M. A.; Idriss, H.

    2007-12-01

    The surface chemistry and binding of DL-proline were investigated on the oxidised (stoichiometric) and reduced (sub-stoichiometric) TiO 2(1 1 0) single crystal surfaces. TiO 2 was chosen as the substrate as it best represents the surface of a biomedical implant, which bio-molecules interact with during the healing of bone/teeth fractures (molecular recognition). High resolution X-ray photoelectron spectroscopy (HR-XPS) studies of the C1s and N1s regions revealed that DL-proline is present in two forms (dissociated and zwitterionic) on the oxidised TiO 2 surface. On TiO 2(1 1 0) surfaces reduced by Ar + sputtering, a significant increase in the amount of zwitterionic proline at the surface was detected when compared with the oxidised surface. Study of the temperature effect showed that in both cases the zwitterionic structure was the less stable structure. The reason for its relative instability appears to be thermodynamic.

  6. Fermi surface of a disordered Cu-Al -alloy single crystal studied by high-resolution Compton scattering and electron diffraction

    Science.gov (United States)

    Kwiatkowska, J.; Maniawski, F.; Matsumoto, I.; Kawata, H.; Shiotani, N.; Lityńska, L.; Kaprzyk, S.; Bansil, A.

    2004-08-01

    We have measured high resolution Compton scattering profiles for momentum transfer along a series of 28 independent directions from Cu0.842Al0.158 disordered alloy single crystals with normals to the surfaces oriented along the [100], [110], and [111] directions. The experimental spectra are interpreted via parallel first-principles KKR-CPA (Korringa-Kohn-Rostoker coherent-potential approximation) computations of these directional profiles. The Fermi surface determined by inverting the Compton data is found to be in good agreement with the KKR-CPA predictions. An electron diffraction study of the present Cu0.842Al0.158 sample is additionally undertaken to gain insight into short-range ordering effects. The scattering pattern displays not only the familiar diffuse scattering peaks, but also shows the presence of weak streaks interconnecting the four diffuse scattering spots around the (110) reciprocal lattice points. This study provides a comprehensive picture of the evolution of the shape of the Fermi surface of Cu with the addition of Al . Our results are consistent with the notion that Fermi surface nesting is an important factor in driving short-range ordering effects in disordered alloys.

  7. Observation of plastic deformation in freestanding single crystal Au nanowires

    International Nuclear Information System (INIS)

    Lee, Dongyun; Zhao Manhong; Wei Xiaoding; Chen Xi; Jun, Seong C.; Hone, James; Herbert, Erik G.; Oliver, Warren C.; Kysar, Jeffrey W.

    2006-01-01

    Freestanding single crystal nanowires of gold were fabricated from a single grain of pure gold leaf by standard lithographic techniques, with center section of 7 μm in length, 250 nm in width, and 100 nm in thickness. The ends remained anchored to a silicon substrate. The specimens were deflected via nanoindenter until plastic deformation was achieved. Nonlocalized and localized plastic deformations were observed. The resulting force-displacement curves were simulated using continuum single crystal plasticity. A set of material parameters which closely reproduce the experimental results suggests that the initial critical resolved shear stress was as high as 135 MPa

  8. Free radical formation in single crystals of 9-methyladenine X-irradiated at 10 K. An electron paramagnetic resonance and electron nuclear double resonance study

    International Nuclear Information System (INIS)

    Hole, E.O.; Sagstuen, E.; Nelson, W.H.

    1995-01-01

    Single crystals of 9-methyladenine were X-irradiated at 10 K and at 65 K and were studied using K-band EPR, ENDOR and field-swept ENDOR (FSE) techniques in the temperature range 10 K to 290 K. Three major radicals are stabilized in 9-methyladenine at 10 K. These are: MA1, the adenine anion, probably protonated at N3; MA2, the species formed by net hydrogen abstraction from the 9-methyl group; and MA3, the radical formed by net hydrogen addition to C8 of the adenine moiety. Radical MA1 decayed at about 80 K, possibly into the C2 H adduct (MA4). The other two species (MA2, MA3) were stable at room temperature. A fifth radical species was clearly present in the EPR spectra at 10 K but was not detectable by ENDOR. This species, which decayed above 200 K (possibly into MA3), remains unidentified. The radical population at room temperature is as described by previous authors. The mechanisms for radical formation in 9-methyladenine are discussed in light of the hydrogen bonding scheme and molecular stacking interactions. 32 refs., 4 figs., 2 tabs

  9. Single crystal magnetic, dielectric and thermal studies of the relaxor ferroelectric Pb(Fe2/3W1/3)O3

    International Nuclear Information System (INIS)

    Ye, Z.G.; Sato, M.; Kita, E.; Bursill, L.A.; Schmid, H.

    1998-01-01

    The magnetic, dielectric and thermal properties of the complex perovskite Pb(Fe 2/3 W 1/3 )O 3 [PFW] have been studied on single crystals by means of a SQUID magnetometer, dielectric measurements and thermal analysis. Anomalies in the temperature dependence of the magnetization have revealed magnetic phase transitions at T N1 =350 K and T N2 =20 K. These two steps of antiferromagnetic ordering are attributed to the microstructural feature of the complex perovskite, characterized by ordered and disordered arrangements on the B-site, giving rise to a strong superexchange interaction of - Fe 3 + - O - Fe 3+ - type with a higher ordering temperature, and to a weak superexchange interaction of the B-site ordered elpasolite type - Fe 3+ + - O - W - O - Fe 3+ - with a lower Neel temperature. The low temperature antiferromagnetic phase exhibits a weak ferromagnetism. The dielectric properties of PFW show a relaxor ferroelectric behaviour with a dispersive maximum of permittivity at Tm (170 -190 K). The magnetic phase transition at T N2 =20 K results in anomalies both of the real part of permittivity and the dissipation factor, suggesting a magneto-electric coupling via magneto-structural interactions

  10. Hydrogenation of the alpha,beta-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and Prenal over Pt Single Crystals: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, C.J.; Somorjai, G.A.

    2008-11-26

    Sum-frequency generation vibrational spectroscopy (SFG-VS) and kinetic measurements using gas chromatography have been used to study the surface reaction intermediates during the hydrogenation of three {alpha},{beta}-unsaturated aldehydes, acrolein, crotonaldehyde, and prenal, over Pt(111) at Torr pressures (1 Torr aldehyde, 100 Torr hydrogen) in the temperature range of 295K to 415K. SFG-VS data showed that acrolein has mixed adsorption species of {eta}{sub 2}-di-{sigma}(CC)-trans, {eta}{sub 2}-di-{sigma}(CC)-cis as well as highly coordinated {eta}{sub 3} or {eta}{sub 4} species. Crotonaldehyde adsorbed to Pt(111) as {eta}{sub 2} surface intermediates. SFG-VS during prenal hydrogenation also suggested the presence of the {eta}{sub 2} adsorption species, and became more highly coordinated as the temperature was raised to 415K, in agreement with its enhanced C=O hydrogenation. The effect of catalyst surface structure was clarified by carrying out the hydrogenation of crotonaldehyde over both Pt(111) and Pt(100) single crystals while acquiring the SFG-VS spectra in situ. Both the kinetics and SFG-VS showed little structure sensitivity. Pt(100) generated more decarbonylation 'cracking' product while Pt(111) had a higher selectivity for the formation of the desired unsaturated alcohol, crotylalcohol.

  11. Deposition of thin layer (monoatomic layer) of barium on gold single crystal surfaces and studies of its oxidation employing X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ahmad, H.; Ahmad, R.; Khalid, M.; Alvi, R.A.

    2007-01-01

    Due to the high reactivity of barium with oxygen, some oxygen diffuse into the bulk to form bulk oxide and it is very difficult to differentiate the oxide over layer and the bulk oxide. To study the oxidation of barium surface layer, a thin layer (monolayer) of barium is developed over gold single crystal surface. Gold is selected as support because it is one of the least reactive metal in transition metal group and have very low probability of reaction with oxygen at room temperature (300K). Nitrous oxide (N/sub 2/O) was used as oxidant. Thin layer of barium was deposited on Au(100) surface. The barium coverage on gold surface was calculated that varied from 0.4 to 1.4 monolayer (ML). Photoelectron spectra for O(ls), N(ls), Ba (3d), and Au (4f) have been recorded on X-ray photoelectron spectrometer at different binding energy region specific for each element. The decomposition of nitrous oxide has been observed in all cases. It has found that nitrogen is evolved in the gaseous state and oxygen is adsorbed/chemisorbed on barium over layer. (author)

  12. Variable-temperature single-crystal X-ray diffraction study of tetragonal and cubic perovskite-type barium titanate phases.

    Science.gov (United States)

    Nakatani, Tomotaka; Yoshiasa, Akira; Nakatsuka, Akihiko; Hiratoko, Tatsuya; Mashimo, Tsutomu; Okube, Maki; Sasaki, Satoshi

    2016-02-01

    A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.

  13. Intermolecular effects on the radiogenic formation of electron-capture phosphorus-centered radicals. A single-crystal ESR study of diastereoisomeric precursors

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, O.M.; Janssen, R.A.J.; de Waal, B.F.M.; Buck, H.M. (Eindhoven Univ. of Technology (Netherlands))

    1990-01-31

    ESR experiments on X-irradiated single crystals of the 2R,4S,5R and 2S,4S,5R diastereoisomers of 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide reveal that the yield of radiogenic electron-capture reactions in the solid state strongly depends on intermolecular interactions in the crystal. In the present case a high yield of P-Cl three-electron-bond phosphoranyl radical anions is found in crystals of the 2R,4S,5R isomer, whereas no radical formation can be detected for the 2S,4S,5R isomer. An analysis of nonbonded interactions with neighboring molecules reveals that the geometry relaxation necessary for the radical stabilization is easily accommodated in crystals of the 2R,4S,SR isomer but not in the 2S,4S,5R isomer, explaining the observed difference in electron-capture efficiency. Experiments on radical formation in a MeTHF host matrix give further insight into the importance of the environment on radiogenic radical formation. The possible concurrent effect of the matrix on the electronic configuration and spin density distribution of the resulting phosphoranyl radical is discussed.

  14. Intermolecular effects on the radiogenic formation of electron-capture phosphorus-centered radicals. A single-crystal ESR study of diastereoisomeric precursors

    International Nuclear Information System (INIS)

    Aagaard, O.M.; Janssen, R.A.J.; de Waal, B.F.M.; Buck, H.M.

    1990-01-01

    ESR experiments on X-irradiated single crystals of the 2R,4S,5R and 2S,4S,5R diastereoisomers of 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide reveal that the yield of radiogenic electron-capture reactions in the solid state strongly depends on intermolecular interactions in the crystal. In the present case a high yield of P-Cl three-electron-bond phosphoranyl radical anions is found in crystals of the 2R,4S,5R isomer, whereas no radical formation can be detected for the 2S,4S,5R isomer. An analysis of nonbonded interactions with neighboring molecules reveals that the geometry relaxation necessary for the radical stabilization is easily accommodated in crystals of the 2R,4S,SR isomer but not in the 2S,4S,5R isomer, explaining the observed difference in electron-capture efficiency. Experiments on radical formation in a MeTHF host matrix give further insight into the importance of the environment on radiogenic radical formation. The possible concurrent effect of the matrix on the electronic configuration and spin density distribution of the resulting phosphoranyl radical is discussed

  15. Synthesis, XRD single crystal structure analysis, vibrational spectral analysis, molecular dynamics and molecular docking studies of 2-(3-methoxy-4-hydroxyphenyl) benzothiazole

    Science.gov (United States)

    Sarau Devi, A.; Aswathy, V. V.; Sheena Mary, Y.; Yohannan Panicker, C.; Armaković, Stevan; Armaković, Sanja J.; Ravindran, Reena; Van Alsenoy, C.

    2017-11-01

    The vibrational spectra and corresponding vibrational assignments of 2-(3-methoxy-4-hydroxyphenyl)benzothiazole is reported. Single crystal XRD data of the title compound is reported and the orientation of methoxy group is cis to nitrogen atom of the thiazole ring. The phenyl ring breathing modes of the title compound are assigned at 1042 and 731 cm-1 theoretically. The charge transfer within the molecule is studied using frontier molecular orbital analysis. The chemical reactivity descriptors are calculated theoretically. The NMR spectral data predicted theoretically are in good agreement with the experimental data. The strong negative region spread over the phenyl rings, nitrogen atom and oxygen atom of the hydroxyl group in the MEP plot is due to the immense conjugative and hyper conjugative resonance charge delocalization of π-electrons. Molecule sites prone to electrophilic attacks have been determined by analysis of ALIE surfaces, while Fukui functions provided further insight into the local reactivity properties of title molecule. Autoxidation properties have been investigated by calculation of bond dissociation energies (BDEs) of hydrogen abstraction, while BDEs of the rest of the single acyclic bonds were valuable for the further investigation of degradation properties. Calculation of radial distribution functions was performed in order to determine which atoms of the title molecule have pronounced interactions with water molecules. The title compound forms a stable complex with aryl hydrocarbon receptor and can be a lead compound for developing new anti-tumor drug. Antimicrobial properties of the title compound was screened against one bacterial culture Escherchia coli and four fungal cultures viz., Aspergillus niger, Pencillum chrysogenum, Saccharomyces cerevisiae and Rhyzopus stolonifer.

  16. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.; Salem, H. G.; Yavari, A.; El Sayed, Tamer S.

    2013-01-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano

  17. Ultrafast carrier dynamics in pentacene, functionalized pentacene, tetracene, and rubrene single crystals

    NARCIS (Netherlands)

    Ostroverkhova, O; Cooke, DG; Hegmann, FA; Anthony, JE; Podzorov, [No Value; Gershenson, ME; Jurchescu, OD; Palstra, TTM

    2006-01-01

    We measure the transient photoconductivity in pentacene, functionalized pentacene, tetracene, and rubrene single crystals using optical pump-terahertz probe techniques. In all of the samples studied, we observe subpicosecond charge photogeneration and a peak photoconductive response that increases

  18. Synchrotron X-ray topography studies of twinning and the phase transition at 145deg C in LaGaO sub 3 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yao, G.D.; Dudley, M. (Dept. of Materials Science and Engineering, State Univ. of New York, Stony Brook, NY (USA)); Wang, Y.; Liu, X.; Liebermann, R.C. (Dept. of Earth and Space Sciences, State Univ. of New York, Stony Brook, NY (USA))

    1991-02-01

    An investigation of (i) twinning in the room temperature orthorhombic phase, (ii) the orthorhombic-to-rhombohedral phase transformation occurring at 145deg C and (iii) twinning in the high temperature rhombohedral phase, all occurring in lanthanum gallate single crystals has been undertaken using white-beam synchrotron X-ray topography (WBSXRT). At room temperature, WBSXRT results obtained from the (110){sub orth} surface, orthorhombic crystals indicated the presence of ''mirror'' twinning on (1anti 12){sub orth}, (1anti 1anti 2){sub orth}, (anti 110){sub orth} and (112){sub orth} planes. Differential thermal analysis confirmed the existence of a first-order phase transformation at 145deg C. WBSXRT observations of the associated structural change (orthorhombic to rhombohedral) correlated well with the results of temperature-dependent powder diffraction results which are presented in the companion paper. WBSXRT also revealed the detailed spatial characteristics of the transition on the microstructural scale, as well as the nature of twinning in the rhombohedral phase, with the latter occurring on (110){sub rhomb} planes. In all three cases, results were consistent with the transmission electron microscopy results presented in the companion paper. The influence of both the twinning and the phase transition on the potential use of LaGaO{sub 3} single crystals as substrates for high Tc superconductor epilayers is discussed. (orig.).

  19. Synthesis, structural, X-ray photoelectron spectroscopy (XPS) studies and IR induced anisotropy of Tl{sub 4}HgI{sub 6} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Parasyuk, O.V. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, Voli Ave. 13, Lutsk, 43025 (Ukraine); Khyzhun, O.Y. [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky St., 03142, Kyiv (Ukraine); Piasecki, M. [Institute of Physics, J. Dlugosz University Częstochowa, Armii Krajowej 13/15, Częstochowa (Poland); Kityk, I.V., E-mail: iwank74@gmail.com [Electrical Engineering Department, Czestochowa University Technology, Armii Krajowej 17, PL-42-217, Czestochowa (Poland); Lakshminarayana, G. [Wireless and Photonic Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor (Malaysia); Luzhnyi, I. [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky St., 03142, Kyiv (Ukraine); Fochuk, P.M. [Yuriy Fed’kovych Chernivtsi National University, 2 Kotziubynskoho Str., 58012, Chernivtsi (Ukraine); Fedorchuk, A.O. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, Pekarska Street 50, 79010, Lviv (Ukraine); Levkovets, S.I.; Yurchenko, O.M.; Piskach, L.V. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, Voli Ave. 13, Lutsk, 43025 (Ukraine)

    2017-02-01

    In the present work, we report on the synthesis and structural properties including X-ray protoelectron spectroscopy (XPS) analysis of Tl{sub 4}HgI{sub 6} crystals that were grown by Bridgman-Stockbarger method up to 80 mm in length and 18 mm in diameter. The existence of the ternary compound Tl{sub 4}HgI{sub 6} that melts incongruently at 641 K was confirmed. Phase equilibria and structural properties for the TlI–HgI{sub 2} system were investigated by differential thermal analysis (DTA) and X-ray diffraction (XRD) methods. X-ray photoelectron spectra were measured for both pristine and Ar{sup +} ion-bombarded Tl{sub 4}HgI{sub 6} single crystal surfaces. The data reveal that the Tl{sub 4}HgI{sub 6} single crystal is sensitive with respect to Ar{sup +} ion-bombardment as 3.0 keV Ar{sup +} irradiation over 5 min at an ion current density 14 μA/cm{sup 2} induces changes to the elemental stoichiometry of the Tl{sub 4}HgI{sub 6} surface, leading to a decrease of the mercury content in the topmost surface layers. X-ray photoelectron spectroscopy (XPS) measurements indicate very low hygroscopic nature of the Tl{sub 4}HgI{sub 6} single crystal surface. The IR coherent bicolor laser treatment at wavelengths 10.6/5.3 μm has shown an occurrence of anisotropy at wavelengths 1540 nm of Er:glass laser. This may open the applications of Tl{sub 4}HgI{sub 6} as a material for IR laser triggering. - Highlights: • Phase diagram of the HgI{sub 2}–TlI system was built. • Tl{sub 4}HgI{sub 6} single crystals were grown by Bridgman Stockbarger method. • XRD, XPS analysis was done. • Ir induced anisotropy was established. • The compounds may be proposed as Ir laser operated polarizers.

  20. Crystal growth and characterization of a semiorganic nonlinear optical single crystal of gamma glycine

    International Nuclear Information System (INIS)

    Prakash, J. Thomas Joseph; Kumararaman, S.

    2008-01-01

    Gamma glycine has been successfully synthesized by taking glycine and potassium chloride and single crystals have been grown by solvent evaporation method for the first time. The grown single crystals have been analyzed with XRD, Fourier transform infrared (FTIR), and thermo gravimetric and differential thermal analyses (TG/DTA) measurements. Its mechanical behavior has been assessed by Vickers microhardness measurements. Its nonlinear optical property has been tested by Kurtz powder technique. Its optical behavior was examined by UV-vis., and found that the crystal is transparent in the region between 240 and 1200 nm. Hence, it may be very much useful for the second harmonic generation (SHG) applications

  1. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  2. Twinning behavior in the Ti-5at.% Al single crystals during cyclic loading along [0001

    International Nuclear Information System (INIS)

    Xiao Lin

    2005-01-01

    Cyclic deformation behavior of Ti-5at.% Al single crystals subjected to pull-push cyclic load along [0001] crystallographic orientation was studied. A higher cyclic stress response was displayed in the Ti-5Al single crystal oriented for [0001] than that oriented for single prism slip. Optical microscopy and transmission electron microscopy examinations show that twinning is a dominant plastic deformation mode in the single crystals during cycling. Trace analysis of prepolished surfaces was used to identify the twin systems primarily responsible for deformation. The major twin type observed was {101-bar 2}, {112-bar 2}, {101-bar 1} and {112-bar 1}. slip was observed in the neighboring region of twins in the fatigued specimens. The activation of multiple twinning systems contributed to the higher cyclic saturation stress in Ti-5Al single crystals oriented for [0001

  3. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    Science.gov (United States)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  4. Microscopic single-crystal refractometry as a function of wavelength

    International Nuclear Information System (INIS)

    DeLoach, L.D.

    1994-01-01

    The refractive indices of crystal fragments 50--200 μm in size can be measured for light wavelengths between 365 and 1100 nm with a spindle-stage refractometer. Established methods from optical crystallograpy are used to orient a crystal on the microscope spindle stage and then to match its refractive index to an immersion fluid. The refractive index of the fluid for the wavelength of light and matching temperature is determined by comparison of a reference crystal on a second spindle axis with the fluid under the match conditions. Investigations of new nonlinear-optical crystals admirably demonstrate the advantages of measuring the refractive index to ± 0.0004 in small single crystals

  5. Stacking fault energy measurements in WSe2 single crystals using weak-beam techniques

    International Nuclear Information System (INIS)

    Agarwal, M.K.; Patel, J.V.; Patel, N.G.

    1981-01-01

    The weak-beam method of electron microscopy is used to observe threefold dislocations in WSe 2 single crystals grown by direct vapour transport method. The widths of the three fold ribbons are used to determine the stacking fault energy in these crystals. Variation of the width of the ribbons with temperature are also studied and discussed. (author)

  6. Steady-state crack growth in single crystals under Mode I loading

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2017-01-01

    The active plastic zone that surrounds the tip of a sharp crack growing under plane strain Mode I loading conditions at a constant velocity in a single crystal is studied. Both the characteristics of the plastic zone and its effect on the macroscopic toughness is investigated in terms of crack tip...... that the largest shielding effect develops in HCP crystals, while the lowest shielding exists for FCC crystals. Rate-sensitivity is found to affect the plastic zone size, but the characteristics overall remain similar for each individual crystal structure. An increasing rate-sensitivity at low crack velocities...... shielding due to plasticity (quantified by employing the Suo, Shih, and Varias set-up). Three single crystals (FCC, BCC, HCP) are modelled in a steady-state elastic visco-plastic framework, with emphasis on the influence of rate-sensitivity and crystal structures. Distinct velocity discontinuities...

  7. Twinning processes in Cu-Al-Ni martensite single crystals investigated by neutron single crystal diffraction method

    International Nuclear Information System (INIS)

    Molnar, P.; Sittner, P.; Novak, V.; Lukas, P.

    2008-01-01

    A neutron single crystal diffraction method for inspecting the quality of martensite single crystals is introduced. True interface-free martensite single crystals are indispensable for, e.g. measurement of elastic constants of phases by ultrasonic techniques. The neutron diffraction method was used to detect and distinguish the presence of individual lattice correspondence variants of the 2H orthorhombic martensite phase in Cu-Al-Ni as well as to follow the activity of twinning processes during the deformation test on the martensite variant single crystals. When preparing the martensite single variant prism-shaped crystals by compression deformation method, typically a small fraction of second unwanted martensitic variant (compound twin) remains in the prism samples. Due to the very low stress (∼1 MPa) for the compound twinning in many shape memory alloys, it is quite difficult not only to deplete the martensite prisms of all internal interfaces but mainly to keep them in the martensite single variant state for a long time needed for further investigations

  8. Raman spectroscopic studies of Nd{sub 0.75}Sm{sub 0.25}GaO{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nithya, R., E-mail: nithya@igcar.gov.in; Ravindran, T. R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102, TN (India); Daniel, D. J. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam-603110, TN (India)

    2015-06-24

    Single crystals of Nd{sub 1-x}Sm{sub x}GaO{sub 3} (x= 0 and 0.25) were grown by a four mirror IR image furnace using floating zone technique. The crystals are characterized by X-ray diffraction and Raman spectroscopic measurements. NGO adopts orthorhombic structure with Pbnm symmetry and samarium substituted compound also exhibited the same structure as that of the pristine compound without secondary phases. Polarized Raman spectra are measured at ambient temperature in a back scattering geometry. Spectra exhibit low intensity first-order Raman bands. In addition, several high intensity second-order Raman bands have been observed in the frequency range 2000 to 4000 cm{sup −1}.

  9. Photon emission by electrons and positrons traversing thin single crystal

    International Nuclear Information System (INIS)

    Ol'chak, A.S.

    1984-01-01

    Radiation emission by planar channeled particles (electrons, positrons) in a thin single crystal of thickness L is considered. It is shown that for L approximately πb/THETAsub(L) (b is the lattice constant, THETA sub(L) the Lindhard angle) besides the main spontaneous channeling maxima there exist auxiliary interference maxima, the positions of all the maxima depending on L. The dependence of the radiation spectral intensity on crystal thickness is discussed

  10. The Taylor relation in compression deformed Ge single crystals

    International Nuclear Information System (INIS)

    Nyilas, K; Ungar, T; Dupas, C; Martin, J L; Kruml, T

    2010-01-01

    Ge single crystals are deformed in compression at 850K and the same strain rate to various extents of strains. In each sample, the internal stress is measured through stress reduction tests and the dislocation densities by X-ray measurements. Data about these two parameters follow fairly well the Taylor-Saada relation, provided a correction term is added. It probably corresponds to dislocations which are seen by X-rays, though they do not contribute to crystal hardening.

  11. Characteristics of trapped electrons and electron traps in single crystals

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Potienko, G.; Box, H.C.

    1979-01-01

    Two additional carbohydrates are reported whose crystal structures trap electrons intermolecularly in single crystals x irradiated at low temperature, namely sucrose and rhamnose. Five carbohydrate and polyhydroxy compounds are now known which exhibit this phenomenon. The following characteristics of the phenomenon were investigated: (1) the hyperfine couplings of the electron with protons of the polarized hydroxy groups forming the trap; (2) the distances between these protons and the trapped electron; (3) the spin density of the electron at the protons and (4) the relative stabilities of the electron trapped in various crystal structures

  12. Parasitic neutron bragg reflections from large imperfect single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K.; Adib, M

    1998-12-01

    A formula is given which allows to calculate the contribution of the total Bragg scattering from different (hkl) planes to the neutron transmission through a large imperfect single crystals. The formula takes into account the crystal structure type, its mosaic spread value, the plane along which the crystal surface is cut along and its orientation with respect to the neutron beam direction. A computer program ISCANF-1 was developed to calculate the total parasitic scattering cross-section from different (hkl) planes as well as the nuclear and diffuse scattering cross-sections. The ISCANF-1 program was applied to calculate the neutron attenuation through Cu and Zn single crystals, each of them cut along (002) planes. The calculated values of the neutron transmission through Cu and Zn crystals were compared with the measured ones in the wavelength range 0.21-0.47 nm and 0.04-0.52 nm respectively. The measured and calculated values were found to be in reasonable agreement within the statistical accuracy. The computer program ISCANF-1 was also applied to investigate the effect of parasitic Bragg scattering on the neutron filtering characteristics of both Zn and Cu single crystals as a function of their physical parameters.

  13. Parasitic neutron bragg reflections from large imperfect single crystals

    International Nuclear Information System (INIS)

    Naguib, K.; Adib, M.

    1998-01-01

    A formula is given which allows to calculate the contribution of the total Bragg scattering from different (hkl) planes to the neutron transmission through a large imperfect single crystals. The formula takes into account the crystal structure type, its mosaic spread value, the plane along which the crystal surface is cut along and its orientation with respect to the neutron beam direction. A computer program ISCANF-1 was developed to calculate the total parasitic scattering cross-section from different (hkl) planes as well as the nuclear and diffuse scattering cross-sections. The ISCANF-1 program was applied to calculate the neutron attenuation through Cu and Zn single crystals, each of them cut along (002) planes. The calculated values of the neutron transmission through Cu and Zn crystals were compared with the measured ones in the wavelength range 0.21-0.47 nm and 0.04-0.52 nm respectively. The measured and calculated values were found to be in reasonable agreement within the statistical accuracy. The computer program ISCANF-1 was also applied to investigate the effect of parasitic Bragg scattering on the neutron filtering characteristics of both Zn and Cu single crystals as a function of their physical parameters

  14. Neutron transmission measurements of zinc and lead single crystals

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.

    1988-01-01

    Neutron transmission measurements of zinc and lead single crystals have been carried out in a neutron wavelength band from 0.03 to 0.55 nm at different orientations of the crystal with regard to the beam direction. The measurements were performed using both time-of-flight and fixed-angle scattering spectrometers installed in front of the ET-RR-1 reactor horizontal channels. It was found that the position of the observed dips in the neutron transmission measurements corresponded to the reflections from the (h k l) planes of the hexagonal zinc single crystal which was cut along the (0 0 2) plane, while in the case of lead, the single crystal was cut perpendicular to the (3 1 1) plane. The reflectivity from the (0 0 2) plane of zinc was determined using both transmission and reflection methods. The maximum reflectivity was found to be 55% when the zinc crystal was orientated at 45 0 to the beam direction. The wavelength spread of the observed reflectivity curve was found to be in agreement with the calculated one, taking into consideration the spectrometer's resolution and the crystal mosaic spread. (author)

  15. Hopping conduction in gamma-irradiated InSe and InSe:Sn single crystals

    International Nuclear Information System (INIS)

    MUSTAFAEVA, S.N.; ISMAILOV, A.A.; ASADOV, M.M.

    2010-01-01

    Full text : The semiconductive InSe layer compound is characterized by a strong covalent bond inside the layers and a weak Van der Waals bonding between them. It was shown that across the layers of InSe single crystals at low temperatures (T ≤ 200 K) at direct current (dc) hopping conduction through localized states near the Fermi level takes place. The results of dc-conductivity of gamma-irradiated p-InSe and n-InSe : Sn layer single crystals have been presented in this work. ρ-InSe single crystal specimens grown by the Bridgman method were used in the experiments. Plates of the crystals under study were obtained by cleaving along the layers of single crystal ingots. The single-crystal InSe samples for electric measurements had the form of planar capacitors normal to the C axis of the crystals, with silver-paste electrodes. The thickness of the InSe samples was 300 mkm. Co 60 serves as the source of irradiation with energy of gamma-quantum equal to 1.3 MeV. The electric properties of non-irradiated and gamma-irradiated InSe crystals were measured under the same conditions. It is revealed that InSe and InSe : Sn (0.2 and 0.4 mole percent Sn) single crystals exhibit a variable range hopping conduction along a normal to their natural layers at temperatures T≤200 K in a dc electric field. From experimental data the parameters of localized states of p-InSe and n-InSe : Sn were calculated before and after gamma-irradiation. It is revealed that gamma-irradiation of p-InSe and n-InSe : Sn (0.2 and 0.4 mole percent Sn) single crystals leads to significant change of localized states parameters. After gamma-irradiation the density of states near the Fermi level increased, but their energy spread and the average jump distance decreased. The concentrations of radiated defects were estimated in p-InSe (5.18*10 1 7 sm - 3) and n-InSe : Sn (2.5*10 1 7 - 2.7*10 1 8 sm - 3) single crystals. The present results demonstrate that gamma-irradiation offers the possibility of tuning

  16. Reactive Stresses in Ni49Fe18Ga27Co6 Shape-Memory-Alloy Single Crystals

    Science.gov (United States)

    Averkin, A. I.; Krymov, V. M.; Guzilova, L. I.; Timashov, R. B.; Soldatov, A. V.; Nikolaev, V. I.

    2018-03-01

    The reactive stresses induced in Ni49Fe18Ga27Co6-alloy single crystals during martensitic transformations with a limited possibility of shape-memory-strain recovery have been experimentally studied. The data on these crystals are compared with the results obtained previously for Cu-Al-Ni, Ni-Ti, and Ni‒Fe-Ga crystals. The potential of application of the Ni49Fe18Ga27Co6 single crystals in designing drives and power motors is demonstrated.

  17. Mechanical properties of hydroxyapatite single crystals from nanoindentation data

    Science.gov (United States)

    Zamiri, A.; De, S.

    2011-01-01

    In this paper we compute elasto-plastic properties of hydroxyapatite single crystals from nanindentation data using a two-step algorithm. In the first step the yield stress is obtained using hardness and Young’s modulus data, followed by the computation of the flow parameters. The computational approach is first validated with data from existing literature. It is observed that hydroxyapatite single crystals exhibit anisotropic mechanical response with a lower yield stress along the [1010] crystallographic direction compared to the [0001] direction. Both work hardening rate and work hardening exponent are found to be higher for indentation along the [0001] crystallographic direction. The stress-strain curves extracted here could be used for developing constitutive models for hydroxyapatite single crystals. PMID:21262492

  18. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.

    Science.gov (United States)

    Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo

    2017-02-01

    Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of indium and antimony doping in SnS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chaki, Sunil H., E-mail: sunilchaki@yahoo.co.in; Chaudhary, Mahesh D.; Deshpande, M.P.

    2015-03-15

    Highlights: • Single crystals growth of pure SnS, indium doped SnS and antimony doped SnS by direct vapour transport (DVT) technique. • Doping of In and Sb occurred in SnS single crystals by cation replacement. • The replacement mechanism ascertained by EDAX, XRD and substantiated by Raman spectra analysis. • Dopants concentration affects the optical energy bandgap. • Doping influences electrical transport properties. - Abstract: Single crystals of pure SnS, indium (In) doped SnS and antimony (Sb) doped SnS were grown by direct vapour transport (DVT) technique. Two doping concentrations of 5% and 15% each were employed for both In and Sb dopants. Thus in total five samples were studied viz., pure SnS (S1), 5% In doped SnS (S2), 15% In doped SnS (S3), 5% Sb doped SnS (S4) and 15% Sb doped SnS (S5). The grown single crystal samples were characterized by evaluating their surface microstructure, stoichiometric composition, crystal structure, Raman spectroscopy, optical and electrical transport properties using appropriate techniques. The d.c. electrical resistivity and thermoelectric power variations with temperature showed semiconducting and p-type nature of the as-grown single crystal samples. The room temperature Hall Effect measurements further substantiated the semiconducting and p-type nature of the as-grown single crystal samples. The obtained results are deliberated in detail.

  20. High Field Magnetization of Tb Single Crystals

    DEFF Research Database (Denmark)

    Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker

    1975-01-01

    Hamiltonian including isotropic exchange interactions, effective single-ion anisotropy and magnetoelastic contributions. The parameters of this Hamiltonian were determined by fitting the theoretical results for the spin wave dispersion and energy gap as a function of temperature and magnetic field to existing...... data on Tb. The conduction-electron polarization at zero field and temperature is (0.33+or-0.05) mu B/ion, and the susceptibility is greater than the Pauli susceptibility calculated from the band-structure....

  1. Investigation on the growth, spectral, lifetime, mechanical analysis and third-order nonlinear optical studies of L-methionine admixtured D-mandelic acid single crystal: A promising material for nonlinear optical applications

    Science.gov (United States)

    Jayaprakash, P.; Sangeetha, P.; Kumari, C. Rathika Thaya; Caroline, M. Lydia

    2017-08-01

    A nonlinear optical bulk single crystal of L-methionine admixtured D-mandelic acid (LMDMA) has been grown by slow solvent evaporation technique using water as solvent at ambient temperature. The crystallized LMDMA single crystal subjected to single crystal X-ray diffraction study confirmed monoclinic system with the acentric space group P21. The FTIR analysis gives information about the modes of vibration in the various functional groups present in LMDMA. The UV-visible spectral analysis assessed the optical quality and linear optical properties such as extinction coefficient, reflectance, refractive index and from which optical conductivity and electric susceptibility were also evaluated. The frequency doubling efficiency was observed using Kurtz Perry powder technique. A multiple shot laser was utilized to evaluate the laser damage threshold energy of the crystal. Discrete thermodynamic properties were carried out by TG-DTA studies. The hardness, Meyer's index, yield strength, elastic stiffness constant, Knoop hardness, fracture toughness and brittleness index were analyzed using Vickers microhardness tester. Layer growth pattern and the surface defect were examined by chemical etching studies using optical microscope. Fluorescence emission spectrum was recorded and lifetime was also studied. The electric field response of crystal was investigated from the dielectric studies at various temperatures at different frequencies. The third-order nonlinear optical response in LMDMA has been investigated using Z-scan technique with He-Ne laser at 632.8 nm and nonlinear parameters such as refractive index (n2), absorption coefficient (β) and susceptibility (χ3) investigated extensively for they are in optical phase conjucation, high-speed optical switches and optical dielectric devices.

  2. Two gap superconductivity in Ba0.55K0.45Fe2As2 single crystals studied by the directional point-contact Andreev reflection spectroscopy

    International Nuclear Information System (INIS)

    Szabo, P.; Pribulova, Z.; Pristas, G.; Bud'ko, S.L.; Canfield, P.C.; Samuely, P.

    2009-01-01

    First directional point-contact Andreev reflection spectroscopy on the Ba 0.55 K 0.45 Fe 2 As 2 single crystals is presented. The spectra show significant differences when measured in the ab plane in comparison with those measured in the c direction. In the latter case no traces of superconducting energy gap could be found, just a reduced point-contact conductance persisting up to about 100 K and indicating reduced density of states. On the other hand within the ab plane two nodeless superconducting energy gaps Δ S ∼2-5 meV and Δ L ∼9-11 meV are detected.

  3. Fishtail effect in twinned and detwinned YBCO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Boudissa, M. [Universite Ferhat Abbas, Faculte des Sciences de l' Ingenieur, Setif (Algeria); Halimi, R. [Universite Mentouri, Unite de Recherche de Physique des Materiaux, Constantine (Algeria); Frikach, K.; Senoussi, S. [Universite Paris-Sud, Laboratoire de Physique des Solides, Orsay (France)

    2006-09-15

    We have studied the magnetization hysteresis loops of a twinned and detwinned single crystals in a temperature range between 4.2 and 100 K and a magnetic field (H) range between 0 and 6 T. We carried out relaxation measurements on the samples at different temperatures and magnetic fields. We investigated the twin pinning as a function of temperature (T) and the fishtail anomaly in the critical current density of the two samples. We tried in this study to confirm or infirm the different models which explain the fishtail effect by confronting them to our experimental results We found that the collective creep theory is consistent with the results of our experiment in the field region where the magnetization is at its minimum. This field marks a crossover between the small and large bundle pinning regimes. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Fishtail effect in twinned and detwinned YBCO single crystals

    International Nuclear Information System (INIS)

    Boudissa, M.; Halimi, R.; Frikach, K.; Senoussi, S.

    2006-01-01

    We have studied the magnetization hysteresis loops of a twinned and detwinned single crystals in a temperature range between 4.2 and 100 K and a magnetic field (H) range between 0 and 6 T. We carried out relaxation measurements on the samples at different temperatures and magnetic fields. We investigated the twin pinning as a function of temperature (T) and the fishtail anomaly in the critical current density of the two samples. We tried in this study to confirm or infirm the different models which explain the fishtail effect by confronting them to our experimental results We found that the collective creep theory is consistent with the results of our experiment in the field region where the magnetization is at its minimum. This field marks a crossover between the small and large bundle pinning regimes. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Spent-fuel special-studies progress report: probable mechanisms for oxidation and dissolution of single-crystal UO2 surfaces

    International Nuclear Information System (INIS)

    Wang, R.

    1981-03-01

    Due to the complexity of the structural, microstructural and compositional characteristics of spent fuel, basic leaching and dissolution mechanisms were studied with UO 2 matrix material, specifically with single-crystal UO 2 , to isolate individual contributory factors. The effects of oxidation and oxidation-dissolution were investigated in different oxidation conditions, such as in air, oxygenated solutions and deionized water containing H 2 O 2 . In addition, the effects of temperature on dissolution of UO 2 were studied in autoclaves at 75 and 150 0 C. Also, oxidation and dissolution measurements were investigated via electrochemical methods to determine if those techniques could be applied to the characterization of leaching and dissolution of spent fuel in a hot cell. Finally, the effects of radiation were explored since the radiolysis of water may create a localized oxidizing condition at or near the spent fuel-solution interface, even in neutral or reducing conditions as commonly found in deep geological environments. The oxidation and oxidation-dissolution mechanisms for UO 2 are proposed as follows: The UO 2 surface is first oxidized in solution to form a UO/sub 2+x/ surface layer several angstroms thick. This oxidized surface has a high dissolution rate since the UO/sub 2+x/ reacts with the dissolved O 2 , or H 2 O 2 , to form uranyl complex ions in a U(VI) state. As the uranyl ions exceed the solubility limits in solution, they become hydrolyzed to form solid deposits and suspended particles of UO 3 hydrates. The thickness and porosity of the deposited UO 3 hydrate surface-film is dependent on temperature, pH and deposition time. A long-term dissolution rate is then determined by the nature of the surface film, such as porosity, solubility and mechanical properties

  6. Welding and joining of single crystals of BCC refractory metals

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Fujii, Tadayuki

    1989-01-01

    Welding and joining is one of key technologies for the wider utilizations of a material. In the present work, the applicability of welding and joining for a single crystal of BCC refractory metal was investigated. Electron-beam welding and tungsten-inert-gas welding by a melt-run technique, and high-temperature brazing by using brazing metals such as Mo-40%Ru alloy, vanadium or platinum were conducted for molybdenum single crystal which had been prepared by means of secondary recrystallization. 12 refs.,12 figs., 2 tabs. (Author)

  7. Preparation of single-crystal copper ferrite nanorods and nanodisks

    International Nuclear Information System (INIS)

    Du Jimin; Liu Zhimin; Wu Weize; Li Zhonghao; Han Buxing; Huang Ying

    2005-01-01

    This article, for the first time, reports the preparation of single-crystal copper ferrite nanorods and nanodisks. Using amorphous copper ferrite nanoparticles synthesized by reverse micelle as reaction precursor, single-crystal copper ferrite nanorods were synthesized via hydrothermal method in the presence of surfactant polyethylene glycol (PEG), however, copper ferrite nanodisks were prepared through the same procedures except the surfactant PEG. The resulting nanomaterials have been characterized by powder X-ray diffraction (XRD), selected electron area diffraction (SEAD), and transmission electron microscopy (TEM). The bulk composition of the samples was determined by means of X-ray photoelectron spectroscopy (XPS)

  8. Laser induced single-crystal transition in polycrystalline silicon

    International Nuclear Information System (INIS)

    Vitali, G.; Bertolotti, M.; Foti, G.; Rimini, E.

    1978-01-01

    Transition to single crystal of polycrystalline Si material underlying a Si crystal substrate of 100 orientation was obtained via laser irradiation. The changes in the structure were analyzed by reflection high energy electron diffraction and by channeling effect technique using 2.0 MeV He Rutherford scattering. The power density required to induce the transition in a 4500 A thick polycrystalline layer is about 70 MW/cm 2 (50ns). The corresponding amorphous to single transition has a threshold of about 45 MW/cm 2 . (orig.) 891 HPOE [de

  9. Thermal expansion behavior of empressite, AgTe: A structural study by means of in situ high-temperature single-crystal X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bindi, Luca [Museo di Storia Naturale, sez. di Mineralogia, Universita di Firenze, Via La Pira 4, I-50121 Firenze (Italy)], E-mail: luca.bindi@unifi.it

    2009-04-03

    The crystal structure of empressite, AgTe, a rare silver telluride, has been investigated by in situ X-ray single-crystal diffraction methods within the temperature range 298-463 K. AgTe remains orthorhombic, space group Pmnb (Pnma as standard), and shows only normal thermal expansion over the entire temperature range. The unit-cell parameters show a gradual increase with the increase of temperature. Slight adjustments in the geometry of Ag-tetrahedra and in the crystal-chemical environment of tellurium atoms occur in a continuous way without abrupt structural changes. The coefficients of thermal expansion along various axes are: {alpha}{sub a} = 1.5 x 10{sup -5} K{sup -1}, {alpha}{sub b} = 3.0 x 10{sup -5} K{sup -1}, {alpha}{sub c} = 2.2 x 10{sup -5} K{sup -1}, and the bulk thermal expansion coefficient {alpha}{sub V} is 5.4 x 10{sup -5} K{sup -1} for the temperature range 298-463 K.

  10. Basic study of single crystal fibers of Pr:Lu{sub 3}Al{sub 5}O{sub 12} scintillator for gamma-ray imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: t_yanagi@tagen.tohoku.ac.jp [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kamada, Kei [Materials Research Laboratory, Furukawa Co., Ltd., 1-25-13 Kannondai, Tukuba Ibaragi 305-0856 (Japan); Kawaguchi, Noriaki [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fujimoto, Yutaka [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Fukuda, Kentaro [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yokota, Yuui; Chani, Valery; Yoshikawa, Akira [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2011-10-01

    Single-crystalline fibers were grown from 0.25, 0.70, and 1.50 mol% Pr-doped Lu{sub 3}Al{sub 5}O{sub 12} (LuAG) melts by the micro-pulling down ({mu}-PD) method with a diameter of 0.3-0.5 mm and a length of about 200 mm. They were cut to 10 mm long specimens, and their scintillation properties, including light yield and decay time profile, were examined. These results were compared with corresponding properties of the specimens (0.8x0.8x10 mm{sup 3}) cut from the bulk crystals produced by conventional Czochralski (CZ) growth. The {mu}-PD-grown fibers demonstrated relatively low light yield and had the same decay time constant when compared with those of the samples cut from the CZ-grown crystals. The fiber crystals were used to assemble scintillating arrays with dimensions of O 0.5x10 mm{sup 2}x20 pixels and O 0.3x10 mm{sup 2}x30 pixels coated by a BaSO{sub 4} reflector. After optical coupling with a position sensitive photomultiplier tube, the fiber-based arrays demonstrated acceptable imaging capability with a spatial resolution of about 0.5 mm.

  11. Comparative study of optical and scintillation properties of YVO4, (Lu0.5Y0.5)VO4, and LuVO4 single crystals

    International Nuclear Information System (INIS)

    Fujimoto, Yutaka; Yanagida, Takayuki; Yokota, Yuui; Chani, Valery; Kochurikhin, Vladimir V.; Yoshikawa, Akira

    2011-01-01

    Optical and scintillation properties of YVO 4 , (Lu 0.5 Y 0.5 )VO 4 , and LuVO 4 single crystals grown by the Czochralski (CZ) method with RF heating system are compared. All vanadate crystals show high transmittance (∼80%) in the 400-900 nm wavelength range. In both photo- and radio-luminescence spectra, intense peak around 400-500 nm, which was ascribed to the transition from triplet state of VO 4 3- , was clearly observed. The main decay time component was about 38 μs (YVO 4 ), 18 μs ((Lu 0.5 Y 0.5 )VO 4 ), and 17 μs (LuVO 4 ) under 340 nm excitation. The scintillation light yields of YVO 4 , (Lu 0.5 Y 0.5 )VO 4 , and LuVO 4 crystals (obtained from the 137 Cs excited pulse height spectra) were evaluated to be about 11,200, 10,700, and 10,300 ph/MeV, respectively.

  12. Basic study of single crystal fibers of Pr:Lu3Al5O12 scintillator for gamma-ray imaging applications

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kamada, Kei; Kawaguchi, Noriaki; Fujimoto, Yutaka; Fukuda, Kentaro; Yokota, Yuui; Chani, Valery; Yoshikawa, Akira

    2011-01-01

    Single-crystalline fibers were grown from 0.25, 0.70, and 1.50 mol% Pr-doped Lu 3 Al 5 O 12 (LuAG) melts by the micro-pulling down (μ-PD) method with a diameter of 0.3-0.5 mm and a length of about 200 mm. They were cut to 10 mm long specimens, and their scintillation properties, including light yield and decay time profile, were examined. These results were compared with corresponding properties of the specimens (0.8x0.8x10 mm 3 ) cut from the bulk crystals produced by conventional Czochralski (CZ) growth. The μ-PD-grown fibers demonstrated relatively low light yield and had the same decay time constant when compared with those of the samples cut from the CZ-grown crystals. The fiber crystals were used to assemble scintillating arrays with dimensions of O 0.5x10 mm 2 x20 pixels and O 0.3x10 mm 2 x30 pixels coated by a BaSO 4 reflector. After optical coupling with a position sensitive photomultiplier tube, the fiber-based arrays demonstrated acceptable imaging capability with a spatial resolution of about 0.5 mm.

  13. Growth and characterization of 2-Methylimidazolium D-tartrate single crystal

    Science.gov (United States)

    Srinivasan, T. P.; Anandhi, S.; Gopalakrishnan, R.

    2011-03-01

    Single crystal of 2-Methylimidazolium D-tartrate (2MImdT; C8N2O6H12) has been grown by slow evaporation solution growth technique at room temperature using mixed solvents of ethanol and deionized water. Single crystal X-ray diffraction study confirms that 2-Methylimidazolium D-tartrate belongs to monoclinic crystal system with non-centrosymmetric space group P21. The Fourier transform infrared spectrum of 2-Methylimidazolium D-tartrate reveals the presence of methyl and carboxyl functional groups in the compound. The mechanical properties of 2MImdT crystal were studied. The theoretical factor group analysis predicts 168 optical modes in the title compound. The dielectric behavior of 2MImdT crystals was studied at different frequencies and temperatures. Decomposition and melting point of 2MImdT were found using thermal measurements. SHG behavior of the title compound was demonstrated using Q-switched Nd:YAG laser.

  14. Simulations of surface stress effects in nanoscale single crystals

    Science.gov (United States)

    Zadin, V.; Veske, M.; Vigonski, S.; Jansson, V.; Muszinsky, J.; Parviainen, S.; Aabloo, A.; Djurabekova, F.

    2018-04-01

    Onset of vacuum arcing near a metal surface is often associated with nanoscale asperities, which may dynamically appear due to different processes ongoing in the surface and subsurface layers in the presence of high electric fields. Thermally activated processes, as well as plastic deformation caused by tensile stress due to an applied electric field, are usually not accessible by atomistic simulations because of the long time needed for these processes to occur. On the other hand, finite element methods, able to describe the process of plastic deformations in materials at realistic stresses, do not include surface properties. The latter are particularly important for the problems where the surface plays crucial role in the studied process, as for instance, in the case of plastic deformations at a nanovoid. In the current study by means of molecular dynamics (MD) and finite element simulations we analyse the stress distribution in single crystal copper containing a nanovoid buried deep under the surface. We have developed a methodology to incorporate the surface effects into the solid mechanics framework by utilizing elastic properties of crystals, pre-calculated using MD simulations. The method leads to computationally efficient stress calculations and can be easily implemented in commercially available finite element software, making it an attractive analysis tool.

  15. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    Science.gov (United States)

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-11-01

    A framework for dislocation-based viscoplasticity and dynamic ductile failure has been developed to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. An averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Additionally, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in (Wilkerson and Ramesh, 2014), which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.

  16. Thermal behaviour of strontium tartrate single crystals grown in gel

    Indian Academy of Sciences (India)

    Thermal behaviour of strontium tartrate crystals grown with the aid of sodium metasilicate gel is investigated using thermogravimetry (TG) and differential thermal analysis (DTA). Effect of magnetic field and dopant (Pb)2+ on the crystal stability is also studied using thermal analysis. This study reveals that water molecules are ...

  17. Ion backscattering, channeling and nuclear reaction analysis study of passive films formed on FeCrNi and FeCrNiMo (100) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, C; Schmaus, D [Paris-7 Univ., 75 (France). Groupe de Physique des Solides de l' ENS; Elbiache, A; Marcus, P [Ecole Nationale Superieure de Chimie, 75 - Paris (France)

    1990-01-01

    The compositions of passive films formed on Fe-17Fr-13Ni (at. %) and Fe-18.5Cr-14Ni-1.5Mo (100) single crystals have been determined and the structure of the alloy under the film has been investigated. The alloys were passivated in 0.05M H{sub 2}SO{sub 4} at 250 mV/SHE for 30 min. The oxygen content was measured by nuclear microanalysis using the {sup 16}O(d,p) {sup 17}O* reaction. The oxygen content in the passive film is similar for the two alloys and equal to (12{plus minus}2) 10{sup 15} O/cm{sup 2}. The cationic compositions of the passive films have been determined by {sup 4}He channeling at two incident beam energies: 0.8 and 2.0 MeV. For the two alloys studied, a total cation content of (5{plus minus}2)10{sup 15} at/cm{sup 2} is found in the passive films. The corresponding thickness is about 12 A. There is an excess of oxygen, which can be attributed to the presence of hydroxyls and sulfate. A strong chromium enrichment is found in the passive film formed on both alloys: chromium represents about 50% of the cations. There is no evidence of molybdenum enrichment in the passive film formed on the Mo-alloyed stainless steel. The comparison of the results obtained at the two different incident beam energies (0.8MeV and 2MeV) reveals the existence of defects at the alloy/passive film interface. (author).

  18. High-pressure behavior of synthetic mordenite-Na. An in situ single-crystal synchrotron X-ray diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Lotti, Paolo; Merlini, Marco [Univ. degli Studi di Milano, (Italy). Dipt. di Scienze della Terra; Gatta, G. Diego [Univ. degli Studi di Milano, (Italy). Dipt. di Scienze della Terra; CNR, Bari (Italy). Int. di Cristallografia; Liermann, Hanns-Peter [DESY, Hamburg (Germany). Photon Sciences

    2015-05-01

    The high-pressure behavior of a synthetic mordenite-Na (space group: Cmcm or Cmc2{sub 1}) was studied by in situ single-crystal synchrotron X-ray diffraction with a diamond anvil cell up to 9.22(7) GPa. A phase transition, likely displacive in character, occurred between 1.68(7) and 2.70(8) GPa, from a C-centered to a primitive space group: possibly Pbnm, Pbnn or Pbn2{sub 1}. Fitting of the experimental data with III-BM equations of state allowed to describe the elastic behavior of the high-pressure polymorph with a primitive lattice. A very high volume compressibility [K{sub V0} = 25(2) GPa, β{sub V0} = 1/K{sub V0} = 0.040(3) GPa{sup -1}; K{sub V}' = (∂K{sub V}/∂P){sub T} = 2.0(3)], coupled with a remarkable elastic anisotropy (β{sub b}>>β{sub c}>β{sub a}), was found. Interestingly, the low-P and high-P polymorphs show the same anisotropic compressional scheme. A structure collapse was not observed up to 9.22(7) GPa, even though a strong decrease of the number of observed reflections at the highest pressures suggests an impending amorphization. The structure refinements performed at room-P, 0.98(2) and 1.68(7) GPa allowed to describe, at a first approximation, the mechanisms that govern the framework deformation in the low-P regime: the bulk compression is strongly accommodated by the increase of the ellipticity of the large 12-membered ring channels running along [001].

  19. Molecular orbital study of the primary electron donor P700 of photosystem I based on a recent X-ray single crystal structure analysis

    International Nuclear Information System (INIS)

    Plato, Martin; Krauss, Norbert; Fromme, Petra; Lubitz, Wolfgang

    2003-01-01

    The X-ray structure analysis of photosystem (PS) I single crystals showed that the primary electron donor P700 is a heterodimer formed by one chlorophyll (Chl) a and one Chl a ' [Nature 411 (2001) 909]. The electronic structure of the cation radical P700 +· of the primary donor, which is created in the charge separation process, has been probed by semiempirical molecular orbital calculations including spin polarization effects (RHF-INDO/SP). The calculations, which were based on the X-ray structure, clearly show that P700 is a supermolecule formed by two chlorophyll species. They furthermore predict an asymmetrical charge and spin density distribution in favor of the monomeric Chl a half of this dimer in accordance with results from earlier EPR and ENDOR studies [J. Phys. Chem. B 105 (2000) 1225]. The stepwise inclusion of various electrostatic interactions of the dimer with its nearest surrounding (one threonine forming a hydrogen bond to the keto group of Chl a ' and two histidines liganding the Mg atoms of the two chlorophylls) leads to a systematic enhancement of this electronic asymmetry yielding a spin density ratio of almost 5:1 as also found experimentally. A large part of this value is caused by spin polarization effects. This result is only weakly affected by the electrostatic field of more remote amino acid residues and other pigment molecules ('accessory' Chl a molecules) present in PS I. A separate group of calculations involving local geometry optimizations by energy minimization techniques yields a further enhancement of the spin density asymmetry. A particularly strong effect is obtained by allowing for variations of the geometry of the vinyl groups on both chlorophylls of the P700 dimer. Theoretical results for individual isotropic proton and nitrogen hyperfine coupling constants, showing a satisfactory agreement with experimental findings, are also presented

  20. Anion binding in the C3v-symmetric cavity of a protonated tripodal amine receptor: potentiometric and single crystal X-ray studies.

    Science.gov (United States)

    Bose, Purnandhu; Ravikumar, I; Ghosh, Pradyut

    2011-11-07

    Tris(2-aminoethyl)amine (tren) based pentafluorophenyl-substituted tripodal L, tris[[(2,3,4,5,6-pentafluorobenzyl)amino]ethyl]amine receptor is synthesized in good yield and characterized by single crystal X-ray diffraction analysis. Detailed structural aspects of binding of different anionic guests toward L in its triprotonated form are examined thoroughly. Crystallographic results show binding of fluoride in the C(3v)-symmetric cavity of [H(3)L](3+) where spherical anion fluoride is in tricoordinated geometry via (N-H)(+)···F interaction in the complex [H(3)L(F)]·[F](2)·2H(2)O, (3). In the case of complexes [H(3)L(OTs)]·[OTs](2), (4) and [H(3)L(OTs)]·[NO(3)]·[OTs], (5), tetrahedral p-toluenesulphonate ion is engulfed in the cavity of [H(3)L](3+) via (N-H)(+)···O interactions. Interestingly, complex [(H(3)L)(2)(SiF(6))]·[BF(4)](4)·CH(3)OH·H(2)O, (6) shows encapsulation of octahedral hexafluorosilicate in the dimeric capsular assembly of two [H(3)L](3+) units, via a number of (N-H)(+)···F interactions. The kinetic parameters of L upon binding with different anions are evaluated using a potentiometric study in solution state. The potentiometric titration experiments in a polar protic methanol/water (1:1 v/v) binary solvent system show high affinity of the receptor toward more basic fluoride and acetate anions, with a lesser affinity for other inorganic anions (e.g., chloride, bromide, nitrate, sulfate, dihydrogenphosphate, and p-toluenesulphonate). © 2011 American Chemical Society

  1. A study of the magnetic resonance in a single-crystal Ni50.47Mn28.17Ga21.36 alloy

    International Nuclear Information System (INIS)

    Gavriljuk, V G; Dobrinsky, A; Shanina, B D; Kolesnik, S P

    2006-01-01

    The single-crystal non-stoichiometric magnetic shape memory alloy Ni 1-x-y Mn x Ga y with x = 0.2817, y = 0.2136 is studied using magnetic resonance spectroscopy: ferromagnetic resonance (FMR) and conduction electron spin resonance (CESR). The temperature dependence of the integral intensity, the resonance field and the line-width are measured across the wide temperature interval from 4.2 to 570 K. Three phase transformations are found in this alloy: paramagnetic ↔ ferromagnetic with a Curie temperature of 360 K, austenite-to-martensite (direct with T ms = 312 K and reverse with T as = 313 K), and a transformation at T = 45 K, suggestive of the spin-glass state. The angular dependence of the FMR signals is measured in the martensitic and austenitic states before and after the martensite-to-austenite transition. The experimental data are used for determination of the magnetization M m and anisotropy parameters K 1 and K 2 in the martensitic state. The obtained coefficient K 2 is determined to be not small and, moreover, it is comparable with K 1 . The temperature dependence of the resonance signals is also investigated at temperatures significantly higher than T C , where FMR was transformed to CESR. In the paramagnetic austenitic state (above T C ) the alloy reveals an extremely intensive signal of CESR, which suggests a high concentration of conduction electrons and correlates with the large value of the magnetic-field-induced strain observed in the alloys of such composition. The temperature dependence of the skin layer depth is found from the sharp decay of the CESR signal with temperature, which is related to the disappearing large magnetic resistance after transformation to the paramagnetic state

  2. Paramagnetic resonance of LaGaO3: Mn single crystals grown by floating zone melting

    Science.gov (United States)

    Vazhenin, V. A.; Potapov, A. P.; Artyomov, M. Yu.; Salosin, M. A.; Fokin, A. V.; Gil'mutdinov, I. F.; Mukhamedshin, I. R.

    2016-02-01

    The EPR spectrum of Mn-doped lanthanum gallate single crystals grown by floating zone melting with optical heating has been studied. In contrast to the crystals grown according to the Czochralski method, no manganese is found in these crystals even after high-temperature annealing in air. The spectral characteristics of Fe3+ and Gd3+ centers in crystals prepared by various methods have been compared in the rhombohedral phase, and the fourth-rank nondiagonal parameters of the Fe3+ trigonal centers have been determined, as well.

  3. Crystal growth, spectral and laser properties of Nd:LSAT single crystal

    Science.gov (United States)

    Hu, P. C.; Yin, J. G.; Zhao, C. C.; Gong, J.; He, X. M.; Zhang, L. H.; Liang, X. Y.; Hang, Y.

    2011-10-01

    Nd:(La, Sr)(Al, Ta)O3 (Nd:LSAT) crystal was grown by the Czochralski method. The absorption and fluorescence spectra of Nd:LSAT crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LSAT crystal was demonstrated. The result of diode-pumped laser operation of Nd:LSAT crystal single crystal is reported for what is to our knowledge the first time. The maximum output power at 1064 nm was obtained to be 165 mW under the incident pump power of 3 W, with the slope efficiency 10.9%.

  4. IPNS time-of-flight single crystal diffractometer

    International Nuclear Information System (INIS)

    Schultz, A.J.; Teller, R.G.; Williams, J.M.

    1983-01-01

    The single crystal diffractometer (SCD) at the Argonne Intense Pulsed Neutron Source (IPNS) utilizes the time-of-flight (TOF) Laue technique to provide a three-dimensional sampling of reciprocal space during each pulse. The instrument contains a unique neutron position-sensitive 6 Li-glass scintillation detector with an active area of 30 x 30 cm. The three-dimensional nature of the data is very useful for fast, efficient measurement of Bragg intensities and for the studies of superlattice and diffuse scattering. The instrument was designed to achieve a resolution of 2% or better (R = δQ/Q) with 2 THETA > 60 0 and lambda > 0.7A

  5. Shock compression experiments on Lithium Deuteride single crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Knudson, Marcus D.; Desjarlais, Michael Paul; Lemke, Raymond W.

    2014-10-01

    S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between %7E200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to %7E900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

  6. Trapped electrons in irradiated single crystals of polyhydroxy compounds

    International Nuclear Information System (INIS)

    Box, H.C.; Budzinski, E.E.; Freund, H.G.; Potter, W.R.

    1979-01-01

    The intermolecular trapping of electrons has been observed in single crystals of dulcitol and L(+) arabinose x-irradiated at 4.2 0 K. Attribution of a major component of the ESR absorption to trapped electrons is based upon the character of the hyperfine pattern, which arises from multiple anisotropic hyperfine interactions with exchangeable protons, and on the g value of the absorption, which is always less than the free spin value. The removal of the trapped electron absorption upon irradiation with visible light has also been demonstrated. In these experiments all of the electrons are trapped in identical sites. This circumstance provides some important advantages in the study of the factors affecting the stabilization of charge in an environment of polarizable molecules

  7. Platinum single crystal electrodes for the electrocatalysis of methane oxidation

    Directory of Open Access Journals (Sweden)

    Mayara Munaretto

    2011-03-01

    Full Text Available The main objective of this paper is to characterize the voltammetric profiles of platinum single crystals of low Miller indexes Pt(100 and Pt(110 and study their catalytic activities on the oxidation of methane. In this way, it was developed a metallic surface modified by presence of other metal oxide, which presents catalytic activity for this reaction. It is well known that the electrooxidation of methane (CH4 leads mainly to the formation of CO2 and H2O, however, the oxidation can also lead to the formation of CO, a reaction intermediate that has strong interaction with metal surfaces, such as platinum. This molecule tends to accumulate on the platinum surface and to passive it, due to the self-poisoning, decreasing its catalytic activity. Therefore, the main aim of this work was the development of a platinum electrode modified by deposition of titanium oxide, which presented electrocatalytic properties for the oxidation of methane.

  8. Phonon interactions with methyl radicals in single crystals

    Directory of Open Access Journals (Sweden)

    James W. Wells

    2017-04-01

    Full Text Available The high temperature ESR spectra’s anomalous appearance at very low temperatures for the methyl radical created in single crystals is explained by magnetic dipole interactions with neighboring protons. These protons acting via phonon vibrations induce resonant oscillations with the methyl group to establish a very temperature sensitive ‘‘relaxation’’ mode that allows the higher energy ‘‘E’’ state electrons with spin 12 to ‘‘decay’’ into ‘‘A’’ spin 12 states. Because of the amplitude amplification with temperature, the ‘‘E’’ state population is depleted and the ‘‘A’’ state population augmented to produce the high temperature ESR spectrum. This phenomenon is found to be valid for all but the very highest barriers to methyl group tunneling. In support, a time dependent spin population study shows this temperature evolution in the state populations under this perturbation.

  9. Neutron radiation damage in NbO single crystals

    International Nuclear Information System (INIS)

    Onozuka, T.; Koiwa, M.; Ishikawa, Y.; Yamaguchi, S.; Hirabayashi, M.

    1977-01-01

    The effect of neutron irradiation and subsequent recovery has been studied for Nb0 single crystals of a defective NaCl structure containing 25% vacancies of niobium and oxygen. A very large increase (about 1%) in the lattice constant is observed after irradiation of 1.5 x 10 19 and 1 x 10 20 nvt (> 1 MeV). From the intensity measurements of x-ray and neutron diffraction, it is revealed that the knock-on atoms fill preferentially their respective vacant sites; Nb atoms occupy Nb-vacancies, and 0 atoms occupy 0-vacancies with nearly the same probabilities; 0.53 for 1.5 x 10 19 nvt. The mean threshold energy for displacement is estimated to be about 3 eV. (author)

  10. Single-crystal X-ray diffraction study of Cs2Er[Si6O14]F and Cs2Er[Si4O10]F

    International Nuclear Information System (INIS)

    Dabic, Predrag; Kremenovic, Aleksandar; Vulic, Predag; Kahlenberg, Volker; Schmidmair, Daniela

    2016-01-01

    Single-crystal growth experiments in the system CsF-Er 2 O 3 -SiO 2 resulted in the simultaneous crystallization of two chemically related compounds within the same run: Cs 2 Er[Si 6 O 14 ]F (phase I) and Cs 2 Er[Si 4 O 10 ]F (phase II). They represent the first examples for cesium erbium silicates containing fluorine. Basic crystallographic data are - phase I: space group Cmca, a=17.2556(6) Aa, b=24.6565(7) Aa, c=14.4735(5) Aa, V=6157.9(3) Aa 3 , Z=16; phase II: space group Pnma, a=22.3748(7) Aa, b=8.8390(2) Aa, c=11.9710(4) Aa, V=2367.5(1) Aa 3 , Z=8. The structures were determined by direct methods and refined to residuals of R(vertical stroke F vertical stroke)=0.0229 for 2920 (phase I) and 0.0231 for 2314 (phase II) independent observed reflections with I>2σ(I). The structure of phase I represents a previously unknown structure type with a three dimensional tetrahedral framework consisting of Q 3 and Q 4 groups in the ratio 2:1. Basic building units of the network are unbranched sechser single-chains running parallel to [001]. The network can be conveniently built up from the condensation of tetrahedral layers parallel to (010) or (100), respectively. The crystal structure of phase II can be classified as a tubular or columnar chain silicate indicating that the backbones of the structure are multiple chains of silicate tetrahedra. This structure is isotypic to a Cs 2 Y[Si 4 O 10 ]F, a compound that has been characterized previously. Alternatively, both compounds can be described as mixed octahedral-tetrahedral frameworks, which can be classified according to their polyhedral microensembles. A topological analysis of both nets is presented.

  11. Induced defects in neutron irradiated GaN single crystals

    International Nuclear Information System (INIS)

    Park, I. W.; Koh, E. K.; Kim, Y. M.; Choh, S. H.; Park, S. S.; Kim, B. G.; Sohn, J. M.

    2005-01-01

    The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of 2 x 10 17 neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, A 1 (TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much more broadened than that for the unirradiated one. The experimental results reveal the generation of defects with locally deformed structure in the wurtzite Si-doped GaN single crystal

  12. Structure of cleaved (001) USb2 single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shao-ping [Los Alamos National Laboratory; Hawley, Marilyn [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Stockum, Phil B [STANFORD UNIV.; Manoharan, Hari C [STANFORD UNIV

    2009-01-01

    We have achieved what we believe to be the first atomic resolution STM images for a uranium compound taken at room temperature. The a, b, and c lattice parameters in the images confirm that the USb{sub 2} crystals cleave on the (001) basal plane as expected. The a and b dimensions were equal, with the atoms arranged in a cubic pattern. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the DOS measured by STM. Some strange features observed in the STM will be discussed in conjunction with ab initio calculations. The purpose of this work is to demonstrate the power of scanning tunneling microscopy (STM) techniques combined with a theoretical underpinning to determine the surface atomic structure and properties of actinide materials, such as the quasi 2-dimensional uranium dipnictide USb{sub 2} single crystal, thereby contributing to the understanding of their surface structural and electronic properties. The members of this interesting UX{sub 2} (X=P, As, Sb, Bi) series of compounds display dual localized and itinerant 5f electron behavior within the same compound due to the hybridization of the 5f orbitals with the conduction band. With the exception of UO{sub 2}, which has to be studied at elevated temperature to generate enough carriers for STM imaging, STM techniques have not been applied successfully to the characterization of the surface atomic structure of any other single crystal actinide compound, to the best of our knowledge. However, STM has been used to a limited extent for the study of some cerium compounds. STM probes electronic properties at the atomic level and can directly provide information about the local density of filled and empty states (LDOS) states simultaneously. A STM topograph provides the local atomic arrangement and spacing of the atoms on the surface, local defect structures (e.g. steps, vacancies, and kink sites) and the presence of contaminants

  13. Ordered macro-microporous metal-organic framework single crystals

    Science.gov (United States)

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  14. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui

    2018-01-16

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  15. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  16. Neutron transmission of single-crystal sapphire filters

    International Nuclear Information System (INIS)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2005-01-01

    An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula fits and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum crystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons. (author)

  17. Single-crystal diffraction instrument TriCS at SINQ

    Science.gov (United States)

    Schefer, J.; Könnecke, M.; Murasik, A.; Czopnik, A.; Strässle, Th; Keller, P.; Schlumpf, N.

    2000-03-01

    The single-crystal diffractometer TriCS at the Swiss Continuous Spallation Source (SINQ) is presently in the commissioning phase. A two-dimensional wire detector produced by EMBL was delivered in March 1999. The instrument is presently tested with a single detector. First measurements on magnetic structures have been performed. The instrument is remotely controlled using JAVA-based software and a UNIX DEC-α host computer.

  18. Deformation twinning in zinc-aluminium single crystals after slip

    International Nuclear Information System (INIS)

    Lukac, P.; Kral, F.; Trojanova, Z.; Kral, R.

    1993-01-01

    Deformation twinning in Zn-Al single crystals deformed by slip in the basal system is examined. The influence of temperature and the content of aluminium in zinc on the twinning stress is investigated in the temperature range from 198 to 373 K. It is shown that the twinning stress rises with increasing temperature and increases with the concentration of Al atoms. (orig.)

  19. Structural science using single crystal and pulse neutron scattering

    International Nuclear Information System (INIS)

    Noda, Yukio; Kimura, Hiroyuki; Watanabe, Masashi; Ishikawa, Yoshihisa; Tamura, Itaru; Arai, Masatoshi; Takahashi, Miwako; Ohshima, Ken-ichi; Abe, Hiroshi; Kamiyama, Takashi

    2008-01-01

    The application to single crystal neutron structural analysis is overviewed. Special attention is paid to the pulse neutron method, which will be available soon under J-PARC project in Japan. New proposal and preliminary experiment using Sirius at KENS are described. (author)

  20. Corelli: Efficient single crystal diffraction with elastic discrimination

    Indian Academy of Sciences (India)

    Here, we discuss the potential of the cross-correlation technique for efficient measurement of single crystal diffuse scattering with energy discrimination, as will be implemented in a novel instrument, Corelli. Utilizing full experiment simulations, we show that this technique readily leads up to a fifty-fold gain in efficiency, ...

  1. Magnetic structure of URhSi single crystal

    Czech Academy of Sciences Publication Activity Database

    Prokeš, K.; Andreev, Alexander V.; Honda, F.; Sechovský, V.

    2003-01-01

    Roč. 261, - (2003), s. 131-138 ISSN 0304-8853 R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914 Keywords : URhSi single crystal * magnetization * neutron diffraction * magnetic structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.910, year: 2003

  2. Chromium and molybdenum diffusion in tungsten single crystals

    International Nuclear Information System (INIS)

    Klotsman, S.M.; Koloskov, V.M.; Osetrov, S.V.; Polikarpova, I.P.; Tatarinova, G.N.; Timofeev, A.N.

    1989-01-01

    Consideration is given to results of measuring temperature dependences of diffusion coefficients of homovalent impurities of chromium and molybdenum in tungsten single crystals. It is concluded that the difference of activation energies of selfdiffusion and impurity diffusion in the system 'tungsten-homovalent impurity' is conditioned by interaction of screened potentials of impurity and vacancy with Lazarus-Le Claire model

  3. High definition TV projection via single crystal faceplate technology

    Science.gov (United States)

    Kindl, H. J.; St. John, Thomas

    1993-03-01

    Single crystal phosphor faceplates are epitaxial phosphors grown on crystalline substrates with the advantages of high light output, resolution, and extended operational life. Single crystal phosphor faceplate industrial technology in the United States is capable of providing a faceplate appropriate to the projection industry of up to four (4) inches in diameter. Projection systems incorporating cathode ray tubes utilizing single crystal phosphor faceplates will produce 1500 lumens of white light with 1000 lines of resolution, non-interlaced. This 1500 lumen projection system will meet all of the currently specified luminance and resolution requirements of Visual Display systems for flight simulators. Significant logistic advantages accrue from the introduction of single crystal phosphor faceplate CRT's. Specifically, the full performance life of a CRT is expected to increase by a factor of five (5); ie, from 2000 to 10,000 hours of operation. There will be attendant reductions in maintenance time, spare CRT requirements, system down time, etc. The increased brightness of the projection system will allow use of lower gain, lower cost simulator screen material. Further, picture performance characteristics will be more balanced across the full simulator.

  4. Lattice location of helium in uranium dioxide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, F.; Nowicki, L. E-mail: lech.nowicki@fuw.edu.pl; Sattonnay, G.; Sauvage, T.; Thome, L

    2004-06-01

    Lattice location of {sup 3}He atoms implanted into UO{sub 2} single crystals was performed by means of the channeling technique combined with nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). The {sup 3}He(d,p){sup 4}He reaction was used. The experimental angular scans show that helium atoms occupy octahedral interstitial positions.

  5. Multiscale modelling of single crystal superalloys for gas turbine blades

    NARCIS (Netherlands)

    Tinga, T.

    2009-01-01

    Gas turbines are extensively used for power generation and for the propulsion of aircraft and vessels. Their most severely loaded parts, the turbine rotor blades, are manufactured from single crystal nickel-base superalloys. The superior high temperature behaviour of these materials is attributed to

  6. Discrete dislocation plasticity modeling of short cracks in single crystals

    NARCIS (Netherlands)

    Deshpande, VS; Needleman, A; Van der Giessen, E

    2003-01-01

    The mode-I crack growth behavior of geometrically similar edge-cracked single crystal specimens of varying size subject to both monotonic and cyclic axial loading is analyzed using discrete dislocation dynamics. Plastic deformation is modeled through the motion of edge dislocations in an elastic

  7. Double minimum creep of single crystal Ni-base superalloys

    Czech Academy of Sciences Publication Activity Database

    WU, X.; Wollgramm, P.; Somsen, C.; Dlouhý, Antonín; Kostka, A.; Eggeler, G.

    2016-01-01

    Roč. 112, JUN (2016), s. 242-260 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 Keywords : Single crystal Ni-base superalloys * Primary creep * Transmission electron microscopy * Dislocations * Stacking faults Subject RIV: JG - Metallurgy Impact factor: 5.301, year: 2016

  8. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2012-01-01

    A method for manufacturing a single crystal nano-structure includes providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing parts of the stress layer to

  9. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE.

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2011-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  10. Growth Aspects, Structural and Optical Properties of 2-aminopyridinium 2,4 Dinitrophenolate Single Crystal

    Directory of Open Access Journals (Sweden)

    S. Reena Devi

    2017-06-01

    Full Text Available Organic single crystal of 2-aminopyridinium 2,4-dinitrophenolate single crystal was grown by slow evaporation technique. The cell parameters and space group (P were determined from single X-ray diffraction analysis. HRXRD studies ascertained the crystalline quality. UV-Visible and PL spectral studies revealed the emission in red region, transparency (75% cutoff wavelength around 440 nm respectively. The laser damage threshold of grown crystal was estimated by using Nd:YAG laser beam and these results were mutually related with specific heat capacity of the grown crystal. The third-order nonlinear optical parameters were estimated by Z-scan technique which is useful for optical applications.

  11. The role of crystal orientation and surface proximity in the self-similar behavior of deformed Cu single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Judy W.L., E-mail: pangj@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Ice, Gene E. [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Liu Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-11-25

    We report on novel 3D spatially resolved X-ray diffraction microscopy studies of self-affine behavior in deformed single crystals. This study extends surface profile measurements of self-affined morphology changes in single crystals during deformation to include local lattice rotations and sub-surface behavior. Investigations were made on the spatial correlation of the local lattice rotations in 8% tensile deformed Cu single crystals oriented with [1 2 3], [1 1 1] and [0 0 1] axes parallel to the tensile axis. The nondestructive depth-resolved measurements were made over a length scale of one to hundreds of micrometers. Self-affined correlation was found both at the surface and below the surface of the samples. A universal exponent for the power-law similar to that observed with surface profile methods is found at the surface of all samples but crystallographically sensitive changes are observed as a function of depth. Correlation lengths of the self-affine behavior vary with the [1 2 3] crystal exhibiting the longest self-affine length scale of 70 {mu}m with only 18 {mu}m for the [1 1 1] and [0 0 1] crystals. These measurements illuminate the transition from surface-like to bulk-like deformation behavior and provide new quantitative information to guide emerging models of self-organized structures in plasticity.

  12. Perovskite single crystals and thin films for optoelectronic devices (Conference Presentation)

    Science.gov (United States)

    Li, Gang; Han, Qifeng; Yang, Yang; Bae, Sang-Hoon; Sun, Pengyu

    2016-09-01

    Hybrid organolead trihalide perovskite (OTP) solar cells have developed as a promising candidate in photovoltaics due to their excellent properties including a direct bandgap, strong absorption coefficient, long carrier lifetime, and high mobility. Most recently, formamidinium (NH2CH=NH2+ or FA) lead iodide (FAPbI3) has attracted significant attention due to several advantages: (1) the larger organic FA cation can replace the MA cation and form a more symmetric crystal structure, (2) the smaller bandgap of FAPbI3 allows for near infrared (NIR) absorption, and (3) FAPbI3 has an elevated decomposition temperature and thus potential to improve stability. Single crystals provide an excellent model system to study the intrinsic electrical and optical properties of these materials due to their high purity, which is particularly important to understand the limits of these materials. In this work, we report the growth of large ( 5 millimeter size) single crystal FAPbI3 using a novel liquid based crystallization method. The single crystal FAPbI3 demonstrated a δ-phase to α-phase transition with a color change from yellow to black when heated to 185°C within approximately two minutes. The crystal structures of the two phases were identified and the PL emission peak of the α-phase FAPbI3 (820 nm) shows clear red-shift compared to the FAPbI3 thin film (805 nm). The FAPbI3 single crystal shows a long carrier lifetime of 484 ns, a high carrier mobility of 4.4 cm2·V-1·s-1, and even more interestingly a conductivity of 1.1 × 10-7(ohm·cm)-1, which is approximately one order of magnitude higher than that of the MAPbI3 single crystal. Finally, high performance photoconductivity type photodetectors were successfully demonstrated using the single crystal FAPbI3.

  13. Growth and characterization of unidirectional benzil single crystal for photonic applications

    Science.gov (United States)

    Saranraj, A.; Thirupathy, J.; Dhas, S. Sahaya Jude; Jose, M.; Vinitha, G.; Dhas, S. A. Martin Britto

    2018-06-01

    Organic nonlinear optical benzil single crystal of fine quality with the dimensions of 168 × 14 mm2 was successfully grown in (100) plane from saturated solution by unidirectional SR method. The structural identity of the grown crystal was confirmed by powder XRD. High-resolution X-ray diffraction analysis indicates the crystalline perfection of the grown benzil crystal. The optical analysis was carried out by UV-visible spectroscopy which shows that the benzil crystal's cut off wavelength is 437 nm. The dielectric constant and dielectric loss of benzil crystal are found to be very much depending upon temperature and frequency. Ferroelectric nature of grown crystal was identified by P- E hysteresis analysis and to find the values of spontaneous polarization and coercive field. The laser damage threshold energy was studied with the help of Nd:YAG laser. The presence of third harmonic generation was identified by z-scan techniques.

  14. Solid-state molecular organometallic chemistry. Single-crystal to single-crystal reactivity and catalysis with light hydrocarbon substrates.

    Science.gov (United States)

    Chadwick, F Mark; McKay, Alasdair I; Martinez-Martinez, Antonio J; Rees, Nicholas H; Krämer, Tobias; Macgregor, Stuart A; Weller, Andrew S

    2017-08-01

    Single-crystal to single-crystal solid/gas reactivity and catalysis starting from the precursor sigma-alkane complex [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] (NBA = norbornane; Ar F = 3,5-(CF 3 ) 2 C 6 H 3 ) is reported. By adding ethene, propene and 1-butene to this precursor in solid/gas reactions the resulting alkene complexes [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(alkene) x ][BAr F 4 ] are formed. The ethene ( x = 2) complex, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Oct , has been characterized in the solid-state (single-crystal X-ray diffraction) and by solution and solid-state NMR spectroscopy. Rapid, low temperature recrystallization using solution methods results in a different crystalline modification, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Hex , that has a hexagonal microporous structure ( P 6 3 22). The propene complex ( x = 1) [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(propene)][BAr F 4 ] is characterized as having a π-bound alkene with a supporting γ-agostic Rh···H 3 C interaction at low temperature by single-crystal X-ray diffraction, variable temperature solution and solid-state NMR spectroscopy, as well as periodic density functional theory (DFT) calculations. A fluxional process occurs in both the solid-state and solution that is proposed to proceed via a tautomeric allyl-hydride. Gas/solid catalytic isomerization of d 3 -propene, H 2 C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111

  15. Irradiation softening in pure iron single crystals

    International Nuclear Information System (INIS)

    Meshii, M.

    1975-01-01

    The characteristics of irradiation softening in Fe were studied. Results show that irradiation softening effect can be explained by the intrinsic mechanism, namely, the interaction of screw dislocations with randomly dispersed interstitials. At least some of the solid solution softening phenomena observed in alloys can be explained by the same mechanism. However, the alloying may be accompanied by an additional effect such as solute segregation to dislocations which may also strongly affect the yield stress. This effect may mask the softening effect partially or totally. Changes in the dislocation structure of deformed specimens caused by alloying, which are often reported in electron microscopic investigations, support this contention. The alloying, therefore, may not be as good as the low temperature irradiation in studying the effect of random solutes on dislocation motion and yield stress

  16. Optical properties of Sulfur doped InP single crystals

    Science.gov (United States)

    El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.

    2014-05-01

    Optical properties of InP:S single crystals were investigated using spectrophotometric measurements in the spectral range of 200-2500 nm. The absorption coefficient and refractive index were calculated. It was found that InP:S crystals exhibit allowed and forbidden direct transitions with energy gaps of 1.578 and 1.528 eV, respectively. Analysis of the refractive index in the normal dispersion region was discussed in terms of the single oscillator model. Some optical dispersion parameters namely: the dispersion energy (Ed), single oscillator energy (Eo), high frequency dielectric constant (ɛ∞), and lattice dielectric constant (ɛL) were determined. The volume and the surface energy loss functions (VELF & SELF) were estimated. Also, the real and imaginary parts of the complex conductivity were calculated.

  17. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Katagiri, Mitsuhiko; Shironita, Sayoko [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nagayama, Norio [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Ricoh Company, Ltd., Nishisawada, Numazu, Shizuoka 410-0007 (Japan)

    2016-12-01

    Highlights: • A hole transport molecule was investigated based on its electrochemical redox characteristics. • The solubility and supersolubility curves of the molecule were measured in order to prepare a large crystal. • The polarization micrograph and XRD results revealed that a single crystal was obtained. • An anisotropic surface conduction, in which the long-axis direction exceeds that of the amorphous layer, was observed. • The anisotropic surface conduction was well explained by the molecular stacked structure. - Abstract: This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor’s technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  18. Twinning processes in Cu-Al-Ni martensite single crystals investigated by neutron single crystal diffraction method

    Czech Academy of Sciences Publication Activity Database

    Molnar, P.; Šittner, P.; Novák, V.; Lukáš, Petr

    2008-01-01

    Roč. 481, Sp.Iss.SI (2008), s. 513-517 ISSN 0921-5093 R&D Projects: GA AV ČR IAA100480704 Institutional research plan: CEZ:AV0Z10480505 Keywords : Cu-Al-Ni * single crystals * neutron diffraction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.806, year: 2008

  19. Investigations on the nucleation kinetics of γ-glycine single crystal

    International Nuclear Information System (INIS)

    Yogambal, C.; Rajan Babu, D.; Ezhil Vizhi, R.

    2014-01-01

    Single crystals of γ-glycine were grown by slow evaporation technique. The crystalline system was confirmed by single crystal X-ray diffraction analysis. The optical absorption study has shown that the grown crystal possesses lower cut-off wavelength. Solubility and metastable zone width were estimated for different temperatures. The induction period of title compound was determined by varying the temperature and concentration. Nucleation parameters such as Gibbs volume free energy change (ΔG v ), interfacial tension (γ), critical free energy change of the nucleus (ΔG ⁎ ), nucleation rate (J), number of molecules in the critical nucleus (i ⁎ ) have been calculated for the aqueous solution grown γ-glycine single crystals. The second harmonic generation (SHG) of γ-glycine was confirmed by Q-switched Nd:YAG laser technique

  20. A Single-Crystal Neutron Diffraction Study on Magnetic Structure of the Quasi-One-Dimensional Antiferromagnet SrCo_2V_2O_8

    International Nuclear Information System (INIS)

    Liu Juan-Juan; Wang Jin-Chen; Luo Wei; Sheng Jie-Ming; Bao Wei; He Zhang-Zhen; Danilkin, S. A.

    2016-01-01

    The magnetic structure of the spin-chain antiferromagnet SrCo_2V2O_8 is determined by single-crystal neutron diffraction experiment. The system undergoes a long-range magnetic order below the critical temperature T_N = 4.96 K. The moment of 2.16μ_B per Co at 1.6 K in the screw chain running along the c axis alternates in the c axis. The moments of neighboring screw chains are arranged antiferromagnetically along one in-plane axis and ferromagnetically along the other in-plane axis. This magnetic configuration breaks the four-fold symmetry of the tetragonal crystal structure and leads to two equally populated magnetic twins with the antiferromagnetic vector in the a or b axis. The very similar magnetic state to the isostructural BaCo_2V_2O_8 warrants SrCo_2V_2O_8 as another interesting half-integer spin-chain antiferromagnet for investigation on quantum antiferromagnetism. (paper)