WorldWideScience

Sample records for single cell so2

  1. Curvature dependence of single-walled carbon nanotubes for SO2 adsorption and oxidation

    Science.gov (United States)

    Chen, Yanqiu; Yin, Shi; Li, Yueli; Cen, Wanglai; Li, Jianjun; Yin, Huaqiang

    2017-05-01

    Porous carbon-based catalysts showing high catalytic activity for SO2 oxidation to SO3 is often used in flue gas desulfurization. Their catalytic activity has been ascribed in many publications to the microporous structure and the effect of its spatial confinement. First principles method was used to investigate the adsorption and oxidation of SO2 on the inner and outer surface of single-walled carbon nanotubes (SWCNTs) with different diameters. It is interesting to found that there is a direct correlation: the barrier for the oxidation O_SWCNT + SO2 → SO3 + SWCNT monotonically decreases with the increase of SWCNTs' curvature. The oxygen functional located at the inner wall of SWCNTs with small radius is of higher activity for SO2 oxidation, which is extra enhanced by the spatial confinement effects of SWCNTs. These findings can be useful for the development of carbon-based catalysts and provide clues for the optimization and design of porous carbon catalysts.

  2. Attenuated Mycobacterium tuberculosis SO2 vaccine candidate is unable to induce cell death.

    Directory of Open Access Journals (Sweden)

    Adriana Aporta

    Full Text Available It has been proposed that Mycobacterium tuberculosis virulent strains inhibit apoptosis and trigger cell death by necrosis of host macrophages to evade innate immunity, while non-virulent strains induce typical apoptosis activating a protective host response. As part of the characterization of a novel tuberculosis vaccine candidate, the M. tuberculosis phoP mutant SO2, we sought to evaluate its potential to induce host cell death. The parental M. tuberculosis MT103 strain and the current vaccine against tuberculosis Bacillus Calmette-Guérin (BCG were used as comparators in mouse models in vitro and in vivo. Our data reveal that attenuated SO2 was unable to induce apoptotic events neither in mouse macrophages in vitro nor during lung infection in vivo. In contrast, virulent MT103 triggers typical apoptotic events with phosphatidylserine exposure, caspase-3 activation and nuclear condensation and fragmentation. BCG strain behaved like SO2 and did not induce apoptosis. A clonogenic survival assay confirmed that viability of BCG- or SO2-infected macrophages was unaffected. Our results discard apoptosis as the protective mechanism induced by SO2 vaccine and provide evidence for positive correlation between classical apoptosis induction and virulent strains, suggesting apoptosis as a possible virulence determinant during M. tuberculosis infection.

  3. Heat generation in lithium-thionyl chloride and lithium-SO2 cells

    Science.gov (United States)

    Cohen, R.; Melman, A.; Livne, N.; Peled, E.

    1992-09-01

    The effects of current density, temperature, depth of discharge (DOD), and storage on the heat generation rate and faradaic efficiency of Li/Tc and Li/SO2 cells have been determined. Several C-size commercial cells from different manufacturers have been tested. The faradaic efficiency for both systems was found to be very high, typically 96-100 percent even at high current density and high temperatures (55 C). It does not change much with DOD and decreases only slightly with the increase of current density and high temperature (tested up to 4.5 mA/sq cm at 50 percent DOD and 55 C). A performance degradation problem was found for some Li/TC cells. The heat factor, the ratio between the useful electric power and the thermal power generated by the cell, is about the same for fresh Li/TC cells and Li/SO2 cells. However, some Li/TC cells stored for 3 years showed a poor heat factor. It was confirmed that the maximum thermoneutral voltage for the Li/TC and Li/SO2 cells is 3.80 and 3.22 V, respectively.

  4. Selective detection of SO2 at room temperature based on organoplatinum functionalized single-walled carbon nanotube field effect transistors

    NARCIS (Netherlands)

    Cid, C.C.; Jimenez-Cadena, G.; Riu, J.; Maroto, A.; Rius, F.X.; Batema, G.D.; van Koten, G.

    2009-01-01

    We report a field effect transistor (FET) based on a network of single-walled carbon nanotubes (SWCNTs) that for the first time can selectively detect a single gaseous molecule in air by chemically functionalizing the SWCNTs with a selective molecular receptor. As a target model we used SO2. The

  5. NO and H2O2 contribute to SO2 toxicity via Ca2+ signaling in Vicia faba guard cells.

    Science.gov (United States)

    Yi, Min; Bai, Heli; Xue, Meizhao; Yi, Huilan

    2017-04-01

    NO and H 2 O 2 have been implicated as important signals in biotic and abiotic stress responses of plants to the environment. Previously, we have shown that SO 2 exposure increased the levels of NO and H 2 O 2 in plant cells. We hypothesize that, as signaling molecules, NO and H 2 O 2 mediate SO 2 -caused toxicity. In this paper, we show that SO 2 hydrates caused guard cell death in a concentration-dependent manner in the concentration range of 0.25 to 6 mmol L -1 , which was associated with elevation of intracellular NO, H 2 O 2 , and Ca 2+ levels in Vicia faba guard cells. NO donor SNP enhanced SO 2 toxicity, while NO scavenger c-PTIO and NO synthesis inhibitors L-NAME and tungstate significantly prevented SO 2 toxicity. ROS scavenger ascorbic acid (AsA) and catalase (CAT), Ca 2+ chelating agent EGTA, and Ca 2+ channel inhibitor LaCl 3 also markedly blocked SO 2 toxicity. In addition, both c-PTIO and AsA could completely block SO 2 -induced elevation of intracellular Ca 2+ level. Moreover, c-PTIO efficiently blocked SO 2 -induced H 2 O 2 elevation, and AsA significantly blocked SO 2 -induced NO elevation. These results indicate that extra NO and H 2 O 2 are produced and accumulated in SO 2 -treated guard cells, which further activate Ca 2+ signaling to mediate SO 2 toxicity. Our findings suggest that both NO and H 2 O 2 contribute to SO 2 toxicity via Ca 2+ signaling.

  6. Promoting mechanism of N-doped single-walled carbon nanotubes for O2 dissociation and SO2 oxidation

    Science.gov (United States)

    Chen, Yanqiu; Yin, Shi; Chen, Yang; Cen, Wanglai; Li, Jianjun; Yin, Huaqiang

    2018-03-01

    Although heteroatom doping in carbon based catalysts have recently received intensive attentions, the role of the intrinsically porous structure of practical carbon materials and their potential synergy with doping atoms are still unclear. To investigate the complex effects, a range of N-doped single-walled carbon nanotubes (SWCNTs) were used to investigate their potential use for O2 dissociation and the subsequent SO2 oxidation using density functional theory. It is found that graphite N doping can synergize with the outer surface of SWCNTs to facilitate the dissociation of O2. The barrier for the dissociation on dual graphite N-doped SWCNT-(8, 8) is as low as 0.3 eV, and the subsequent SO2 oxidation is thermodynamically favorable and kinetically feasible. These results spotlight on developing promising carboncatalyst via utilization of porous gemometry and heteroatom-doping of carbon materials simultaneously.

  7. A DFT comparative study of single and double SO2 adsorption on Pt-doped and Au-doped single-walled carbon nanotube

    International Nuclear Information System (INIS)

    Yoosefian, Mehdi; Zahedi, Mansour; Mola, Adeleh; Naserian, Samira

    2015-01-01

    Highlights: • Investigation of the adsorption of SO 2 on Au/SWCNT and Pt/SWCNT. • SO 2 adsorbed on Au/SWCNT and Pt/SWCNT system demonstrate a strong chemisorption. • NBO analysis was done to reach more understanding about intermolecular interactions. - Abstract: Adsorption of single and double SO 2 gas molecule(s) on the surface of Pt-doped and Au-doped (5,5) single-walled carbon nanotubes (Pt/CNT-V and Au/CNT-V) were investigated by using density functional theory (DFT) at B3LYP/LANL2DZ level. The results showed the following: firstly, adsorption on Au/CNT-V is independent of special orientation, secondly, SO 2 adsorption on Pt/CNT-V in single case is stronger than Au/CNT-V, and finally, adsorption of the first molecule influences adsorption of the second one. Upon adsorption of SO 2 molecule(s), the energy gap of Pt/CNT-V were considerably reduced, resulting in enhanced electrical conductivity but in Au/CNT-V, despite of adsorption energy similar to Pt/CNT-V, E g slightly increased. In order to consider the effect of adsorption on electronic properties, DOS and PDOS calculations were performed. Moreover, NBO analysis was done to reach more understanding about intermolecular interactions. In conclusion, chemical reactivity was investigated in terms of chemical hardness, softness and work function (ϕ)

  8. Design of mitochondria-targeted colorimetric and ratiometric fluorescent probes for rapid detection of SO2 derivatives in living cells

    Science.gov (United States)

    Yang, Yutao; Zhou, Tingting; Bai, Bozan; Yin, Caixia; Xu, Wenzhi; Li, Wei

    2018-05-01

    Two mitochondria-targeted colorimetric and ratiometric fluorescent probes for SO2 derivatives were constructed based on the SO2 derivatives-triggered Michael addition reaction. The probes exhibit high specificity toward HSO3-/SO32- by interrupting their conjugation system resulting in a large ratiometric blue shift of 46-121 nm in their emission spectrum. The two well-resolved emission bands can ensure accurate detection of HSO3-. The detection limits were calculated to be 1.09 and 1.35 μM. Importantly, probe 1 and probe 2 were successfully used to fluorescence ratiometric imaging of endogenous HSO3- in BT-474 cells.

  9. Use of sulfate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases

    NARCIS (Netherlands)

    Lens, P.N.L.; Gastesi, R.; Lettinga, G.

    2003-01-01

    This paper describes a novel bioscrubber concept for biological flue gas desulfurization, based on the recycling of a cell suspension of sulfite/sulfate reducing bacteria between a scrubber and a sulfite/sulfate reducing hydrogen fed bioreactor. Hydrogen metabolism in sulfite/sulfate reducing cell

  10. Cell Proliferation on Polyethylene Terephthalate Treated in Plasma Created in SO2/O2 Mixtures

    Directory of Open Access Journals (Sweden)

    Nina Recek

    2017-02-01

    Full Text Available Samples of polymer polyethylene terephthalate were exposed to a weakly ionized gaseous plasma to modify the polymer surface properties for better cell cultivation. The gases used for treatment were sulfur dioxide and oxygen of various partial pressures. Plasma was created by an electrodeless radio frequency discharge at a total pressure of 60 Pa. X-ray photoelectron spectroscopy showed weak functionalization of the samples’ surfaces with the sulfur, with a concentration around 2.5 at %, whereas the oxygen concentration remained at the level of untreated samples, except when the gas mixture with oxygen concentration above 90% was used. Atomic force microscopy revealed highly altered morphology of plasma-treated samples; however, at high oxygen partial pressures this morphology vanished. The samples were then incubated with human umbilical vein endothelial cells. Biological tests to determine endothelialization and possible toxicity of the plasma-treated polyethylene terephthalate samples were performed. Cell metabolic activity (MTT and in vitro toxic effects of unknown compounds (TOX were assayed to determine the biocompatibility of the treated substrates. The biocompatibility demonstrated a well-pronounced maximum versus gas composition which correlated well with development of the surface morphology.

  11. A DFT study of SO2 and H2S gas adsorption on Au-doped single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang, Xiaoxing; Dai, Ziqiang; Chen, Qinchuan; Tang, Ju

    2014-01-01

    Intrinsic carbon nanotubes (CNTs) show limited toxic gas detection, thus, we need to develop a method to fabricate a novel CNT sensor that has good sensitivity. In this study, density functional theory (DFT) was applied to determine the adsorption behavior of Au-doped single-walled carbon nanotubes (Au-SWCNTs) to SO 2 and H 2 S. The calculated results show that Au-SWCNTs have a high sensitivity to SO 2 and H 2 S. When SO 2 adsorbs on the surface of the nanotube, a large number of electrons transfer from the Au-SWCNT to SO 2 , which results in a decrease in the frontier orbital energy gap and an increase in electrical conductivity. On the other hand, when H 2 S adsorbs on the surface of the nanotube, the electrons transfer from H 2 S to the Au-SWCNT, the frontier orbital energy gap increases, and the electrical conductivity decreases. Thus, SO 2 and H 2 S could be detected by Au-SWCNTs. This conclusion is useful for the development of CNT-based gas sensors and provides a theoretical basis to fabricate Au-SWCNT-based gas sensors. (papers)

  12. Insights on the SO2 Poisoning of Pt3Co/VC and Pt/VC Fuel Cell Catalysts

    Science.gov (United States)

    2010-01-01

    catalyst is performed at the cathode of proton exchange membrane fuel cells ( PEMFCs ) in order to link previously reported results at the elec- trode...stripping voltammetry and underpotential deposition (upd) of copper adatoms. Then the performance of PEMFC cathodes employing 30wt.% Pt3Co/VC and 50wt.% Pt/VC...proton exchange membrane fuel cells( PEMFCs )in order to link previously reported results at the elec- trode/solution interface to the FC environment. First

  13. A novel dual-ratiometric-response fluorescent probe for SO2/ClO- detection in cells and in vivo and its application in exploring the dichotomous role of SO2 under the ClO- induced oxidative stress.

    Science.gov (United States)

    Dou, Kun; Fu, Qiang; Chen, Guang; Yu, Fabiao; Liu, Yuxia; Cao, Ziping; Li, Guoliang; Zhao, Xianen; Xia, Lian; Chen, Lingxin; Wang, Hua; You, Jinmao

    2017-07-01

    Intracellular reactive sulfur species and reactive oxygen species play vital roles in immunologic mechanism. As an emerging signal transmitter, SO 2 can be generated as the anti-oxidant, while SO 2 is also a potential oxidative stress-inducer in organism. Aiming to elucidate in-depth the dichotomous role of SO 2 under oxidative stress, we designed a dual-response fluorescent probe that enabled the respective or successive detection of SO 2 and ClO - . The probe itself emits the red fluorescence (625 nm) which can largely switch to blue (410 nm) and green fluorescence (500 nm) respectively in response to SO 2 and ClO - , allowing the highly selective and accurate ratiometric quantification for both SO 2 and ClO - in cells. Moreover the ultrafast (SO 2 : <60 s; ClO - : within sec) and highly sensitive (detection limits: SO 2 : 3.5 nM; ClO - : 12.5 nM) detection were achieved. With the robust applicability, the developed probe was successfully used to quantify SO 2 and endogenous ClO - in respectively the HeLa cells and the RAW 264.7 cells, as well as to visualize the dynamic of SO 2 /ClO - in zebrafish. The fluorescent imaging studies and flow cytometry analysis confirmed the burst-and-depletion and meanwhile the oxidative-and-antioxidative effects of intracellular SO 2 under the NaClO induced oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. An new derivation of the Marshalek-Okubo realization of the shell-model algebra SO(2ν+1) for even and odd systems with ν single-particle levels

    International Nuclear Information System (INIS)

    Klein, A.; Marshalek, E.R.

    1988-01-01

    In recent years, the method for unitarizing nonunitary Dyson boson realizations of shell-model algebras has been both generalized and substantially simplified through the introduction of overtly group-theoretical methods. In this paper, these methods are applied to the boson-odd-particle realization of the algebra SO(2ν+1) for ν single-particle levels, adapted to the group chain SO(2ν+1) contains SO(2ν) contains U(ν), which Marshalek first derived by brute force summation of a Taylor expansion and later Okubo by a largely algebraic technique. (orig.)

  15. The US SO2 Auction

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard; Christensen, Jan Lien

    1998-01-01

    An annual discriminative and revenue-neutral auction is linked to the new Acid Rain Program which allows electric utilities all over the US to trade SO2 emission permits. This innovative SO2 auction distributes 2% of the permits in circulation and takes place at the Chicago Board of Trade. Early...

  16. SO2 emission scenarios of eastern China

    International Nuclear Information System (INIS)

    Qi, L.; Hao, J.; Lu, M.

    1995-01-01

    Under the National Key Project in Eighth Five-year Plan, a study was carried out on forecasting SO 2 emission from coal combustion in China, with a special emphasis on the eastern area. 3 scenarios, i.e. 'Optimistic', 'Pessimistic' and 'Business as Usual' scenarios were developed trying to cover changing scale of coal consumption and SO 2 emission from 1990 to 2020. A 'Top-down' approach was employed, and coal consumption elasticity was defined to project future economic growth and coal consumption. SO 2 emission scenarios were outlined, based on coal consumption, estimated sulfur content level and prospective SO 2 control situation. Emission level for each 1 degree longitude x 1 degree latitude grid cell within eastern China was also estimated to show geographical distribution of SO 2 sources. The results show that SO 2 emission in China will increase rapidly, if the current situation for energy saving and SO 2 control is maintained without improvement; measures enhanced reasonably with economic growth could stop further increase of emission by 2010. Realization of more encouraging objective to keep emission at even below 1990 level needs, however, more stringent options. The share of eastern China in the country's total emission would increase until 2000, while the general changing tendency would principally follow the scenarios of the whole country. 4 refs., 5 figs., 1 tab

  17. Anti-reflecting and passivating coatings for silicon solar cells on a basis of SO2 and TiO2 layers

    International Nuclear Information System (INIS)

    Taurbaev, T.I.; Nikulin, V.Eh.; Shorin, V.F.; Topanov, B.G.; Dikhanbaev, K.K.

    2002-01-01

    An analysis of influence of passivating layer on performance of anti-reflection coating of solar cells is carried out. The introduction of passivating SiO 2 layer between a frontal surface of the solar cell and TiO 2 +SiO 2 anti-reflection coating increase total reflection. If a thickness of a passivating layer no more than 20 Angstrom an increase of reflection does not exceed 0.5 %. However, for effective passivation the thickness of the passivating layer has to be within 100-1000 Angstrom region, thus the interference contribution of the passivating layer becomes essential and the AC is necessary to calculate as triple system SiO 2 -TiO 2 -SiO 2 . Such the three layers system ensuring average coefficient of reflection less of 3.5 % in a range 0.4-1.1 μm if the thickness of passivating SiO 2 layer no more 200 Angstrom. For solar cells with passivating SiO 2 layer thickness of 100 Angstrom and protective glass of non-interference thickness the single layer AC from TiO 2 allows to receive average value of reflection coefficient for a spectral range 0.4-1.1 μm no more than 9.5 %. The introduction of two additional layers SiO 2 and TiO 2 allows to reduce this value on 2.0-3.0 %. The comparison of calculation and experimental results is given. (author)

  18. Single Cell Oncogenesis

    Science.gov (United States)

    Lu, Xin

    It is believed that cancer originates from a single cell that has gone through generations of evolution of genetic and epigenetic changes that associate with the hallmarks of cancer. In some cancers such as various types of leukemia, cancer is clonal. Yet in other cancers like glioblastoma (GBM), there is tremendous tumor heterogeneity that is likely to be caused by simultaneous evolution of multiple subclones within the same tissue. It is obvious that understanding how a single cell develops into a clonal tumor upon genetic alterations, at molecular and cellular levels, holds the key to the real appreciation of tumor etiology and ultimate solution for therapeutics. Surprisingly very little is known about the process of spontaneous tumorigenesis from single cells in human or vertebrate animal models. The main reason is the lack of technology to track the natural process of single cell changes from a homeostatic state to a progressively cancerous state. Recently, we developed a patented compound, photoactivatable (''caged'') tamoxifen analogue 4-OHC and associated technique called optochemogenetic switch (OCG switch), which we believe opens the opportunity to address this urgent biological as well as clinical question about cancer. We propose to combine OCG switch with genetically engineered mouse models of head and neck squamous cell carcinoma and high grade astrocytoma (including GBM) to study how single cells, when transformed through acute loss of tumor suppressor genes PTEN and TP53 and gain of oncogenic KRAS, can develop into tumor colonies with cellular and molecular heterogeneity in these tissues. The abstract is for my invited talk in session ``Beyond Darwin: Evolution in Single Cells'' 3/18/2016 11:15 AM.

  19. Understanding SO2 Capture by Ionic Liquids.

    Science.gov (United States)

    Mondal, Anirban; Balasubramanian, Sundaram

    2016-05-19

    Ionic liquids have generated interest for efficient SO2 absorption due to their low vapor pressure and versatility. In this work, a systematic investigation of the structure, thermodynamics, and dynamics of SO2 absorption by ionic liquids has been carried out through quantum chemical calculations and molecular dynamics (MD) simulations. MP2 level calculations of several ion pairs complexed with SO2 reveal its preferential interaction with the anion. Results of condensed phase MD simulations of SO2-IL mixtures manifested the essential role of both cations and anions in the solvation of SO2, where the solute is surrounded by the "cage" formed by the cations (primarily its alkyl tail) through dispersion interactions. These structural effects of gas absorption are substantiated by calculated Gibbs free energy of solvation; the dissolution is demonstrated to be enthalpy driven. The entropic loss of SO2 absorption in ionic liquids with a larger anion such as [NTf2](-) has been quantified and has been attributed to the conformational restriction of the anion imposed by its interaction with SO2. SO2 loading IL decreases its shear viscosity and enhances the electrical conductivity. This systematic study provides a molecular level understanding which can aid the design of task-specific ILs as electrolytes for efficient SO2 absorption.

  20. A Balloon Sounding Technique for Measuring SO2 Plumes

    Science.gov (United States)

    Morris, Gary A.; Komhyr, Walter D.; Hirokawa, Jun; Lefer, Barry; Krotkov, Nicholay; Ngan, Fong

    2010-01-01

    This paper reports on the development of a new technique for inexpensive measurements of SO2 profiles using a modified dual-ozonesonde instrument payload. The presence of SO2 interferes with the standard electrochemical cell (ECC) ozonesonde measurement, resulting in -1 molecule of O3 reported for each molecule of SO2 present (provided [O3] > [SO2]). In laboratory tests, an SO2 filter made with Cr03 placed on the inlet side of the sonde removes nearly 100% of the SO2 present for concentrations up to 60 ppbv and remained effective after exposure to 2.8 X 10(exp 16) molecules of SO2 [equivalent to a column approximately 150 DU (1 DU = 2.69 X 10(exp 20) molecules m(exp -2))]. Flying two ECC instruments on the same payload with one filtered and the other unfiltered yields SO2 profiles, inferred by subtraction. Laboratory tests and field experience suggest an SO2 detection limit of approximately 3 pbb with profiles valid from the surface to the ozonopause [i.e., approximately (8-10 km)]. Two example profiles demonstrate the success of this technique for both volcanic and industrial plumes.

  1. Single cell metabolomics

    NARCIS (Netherlands)

    Heinemann, Matthias; Zenobi, Renato

    Recent discoveries suggest that cells of a clonal population often display multiple metabolic phenotypes at the same time. Motivated by the success of mass spectrometry (MS) in the investigation of population-level metabolomics, the analytical community has initiated efforts towards MS-based single

  2. Mechanism of SO2 removal by carbon

    Science.gov (United States)

    Lizzio, Anthony A.; DeBarr, Joseph A.

    1997-01-01

    The reaction of SO2 with carbon (C) in the presence of O2 and H2O involves a series of reactions that leads to the formation of sulfuric acid as the final product. The rate-determining step in the overall process is the oxidation of SO2 to SO3. Three SO2 oxidation reactions are possible. Adsorbed SO2 (C−SO2) can react either with gas phase O2 or with adsorbed oxygen (C−O complex) to form sulfur trioxide (SO3), or gas phase SO2 can react directly with the C−O complex. In optimizing the SO2 removal capabilities of carbon, most studies only assume a given mechanism for SO2 adsorption and conversion to H2SO4 to be operable. The appropriate SO2 oxidation step and role of the C−O complex in this mechanism remain to be determined. The ultimate goal of this study was to prepare activated char from Illinois coal with optimal properties for low-temperature (80−150°C) removal of sulfur dioxide from coal combustion flue gas. The SO2 adsorption capacity of activated char was found to be inversely proportional to the amount of oxygen adsorbed on its surface. A temperature-programmed desorption technique was developed to titrate those sites responsible for adsorption of SO2 and conversion to H2SO4. On the basis of these results, a mechanism for SO2 removal by carbon was proposed. The derived rate expression showed SO2 adsorption to be dependent only on the fundamental rate constant and concentration of carbon atoms designated as free sites. Recent studies indicate a similar relationship exists between the rate of carbon gasification (in CO2 or H2O) and the number of reactive sites as determined by transient kinetics experiments. Utilizing the concept of active or free sites, it was possible to produce a char from Illinois coal having an SO2 adsorption capacity surpassing that of a commercial catalytic activated carbon.

  3. Emission of SO2 from Cement Production

    DEFF Research Database (Denmark)

    Hu, Guilin

    2007-01-01

    Ph. D. afhandlingen omhandler problemstillinger af speciel relevans for cementproduktion med lave emissioner af svolvdioxid. Afhandlingen omfatter dels pyritoxidation – dvs. dannelse af SO2, dels direkte sulfatering af kalksten – dvs. absorptionen af SO2 på CaCO3 under oxiderende betingelser i...... temperaturområdet 723–973 K. De to parallelle reaktioner er tilsammen ansvarlige for hovedparten af SO2 emissionen fra cementproduktion. Et omfattende litteraturstudium viser at pyrit i en oxidativ atmosfære kan blive oxideret direkte eller via en to–trinsproces hvor der først dannes pyrrhotit. Den præcise...... for SO2 absorption på kalksten i en cyklonforvarmer. Initialkinetikken er således op til 100 gange hurtigere end tidligere målinger præsenteret i litteraturen. Sulfaterinshastigheden falder hurtigt med omsætningsgraden af kalkstenen sandsynligvis på grund af dækning af kalkstensoverfladen med...

  4. Mechanisms of radical removal by SO2

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Glarborg, Peter; Marshall, Paul

    2007-01-01

    It is well established from experiments in premixed, laminar flames, jet-stirred reactors, flow reactors, and batch reactors that SO2 acts to catalyze hydrogen atom removal at stoichiometric and reducing conditions. However, the commonly accepted mechanism for radical removal, SO2 + H......(+M) reversible arrow HOSO(+M), HOSO + H/OH reversible arrow SO2 + H-2/H2O, has been challenged by recent theoretical and experimental results. Based on ab initio calculations for key reactions, we update the kinetic model for this chemistry and re-examine the mechanism of fuel/SO2 interactions. We find...... that the interaction of SO, with the radical pool is more complex than previously assumed, involving HOSO and SO, as well as, at high temperatures also HSO, SH, and S. The revised mechanism with a high rate constant for H + SO2 recombination and with SO + H2O, rather than SO2 + H-2, as major products of the HOSO + H...

  5. Implementing SO2 Emissions in China

    International Nuclear Information System (INIS)

    Schreifels, J.; Yang, J.

    2003-01-01

    Over the past 10 years, the Chinese State Environmental Protection Administration (SEPA) has actively investigated the potential to use emission trading to reduce sulphur dioxide (SO2) emissions from electricity generators and industrial sources. In 1999, SEPA partnered with the U.S. Environmental Protection Agency (U.S. EPA) to cooperate on a study to assess the feasibility of implementing SO2 emission trading in China. SEPA has also pursued emission trading pilot projects in several cities and provinces. The authors, using information from the feasibility study and pilot projects, introduce the circumstances necessary for SO2 emission trading in China, outline the experience to date, and analyse implementation opportunities and barriers in China. The contents of the paper are: (1) SO2 emission control policies in China; (2) institutional requirements and the basis for introducing SO2 emission trading in China; (3) case studies of emission trading in China; (4) opportunities and barriers to implementing emission trading in China; (5) recommendations to transition from pilot projects to a nationwide SO2 emission trading program; and (6) conclusions and suggestions

  6. SO2 - An indirect source of energy

    DEFF Research Database (Denmark)

    Kriek, R.J.; Van Ravenswaay, J.P.; Potgieter, M.

    2013-01-01

    -related processes 12.8 Mt. As a well-known gaseous pollutant, SO2 is not per se known as a source of energy. However, in the presence of water SO2 can be electro-oxidized at the anode of an electrolyser to produce hydrogen ions, which in turn can be reduced at the cathode of the electrolyser to produce hydrogen gas......Global sulphur dioxide (SO2) emissions peaked around the mid- 1970s, after which they declined. However, with the growth of specifically China, emissions are on the rise again. In 2008, global anthropogenic SO2 emissions totalled 127 Mt, with energy production accounting for 63.2 Mt and metal....... Gaseous emissions of SO2 can therefore be cleaned up with the simultaneous production of hydrogen, an energy store or carrier, which provides an economic offset to the overall cost of this potential remediation process. This process forms part of the Hybrid Sulfur (HyS) cycle as well as the once...

  7. Imaging volcanic CO2 and SO2

    Science.gov (United States)

    Gabrieli, A.; Wright, R.; Lucey, P. G.; Porter, J. N.

    2017-12-01

    Detecting and quantifying volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions is of relevance to volcanologists. Changes in the amount and composition of gases that volcanoes emit are related to subsurface magma movements and the probability of eruptions. Volcanic gases and related acidic aerosols are also an important atmospheric pollution source that create environmental health hazards for people, animals, plants, and infrastructures. For these reasons, it is important to measure emissions from volcanic plumes during both day and night. We present image measurements of the volcanic plume at Kīlauea volcano, HI, and flux derivation, using a newly developed 8-14 um hyperspectral imaging spectrometer, the Thermal Hyperspectral Imager (THI). THI is capable of acquiring images of the scene it views from which spectra can be derived from each pixel. Each spectrum contains 50 wavelength samples between 8 and 14 um where CO2 and SO2 volcanic gases have diagnostic absorption/emission features respectively at 8.6 and 14 um. Plume radiance measurements were carried out both during the day and the night by using both the lava lake in the Halema'uma'u crater as a hot source and the sky as a cold background to detect respectively the spectral signatures of volcanic CO2 and SO2 gases. CO2 and SO2 path-concentrations were then obtained from the spectral radiance measurements using a new Partial Least Squares Regression (PLSR)-based inversion algorithm, which was developed as part of this project. Volcanic emission fluxes were determined by combining the path measurements with wind observations, derived directly from the images. Several hours long time-series of volcanic emission fluxes will be presented and the SO2 conversion rates into aerosols will be discussed. The new imaging and inversion technique, discussed here, are novel allowing for continuous CO2 and SO2 plume mapping during both day and night.

  8. Considerations on abatement of SO2 pollution

    International Nuclear Information System (INIS)

    Ataman, E.

    1992-01-01

    The paper brings into focus the problems related to the SO 2 environmental pollution, to the emission standards, stress being laid on the possibilities of SO 2 emissions reduction resulting from the man-made stationary sources. A comparative estimation is made concerning the necessary investments for the desulfurization plants in accordance with the process employed and with the size of the boiler, as well as, of the operating costs brought about by desulfurization. The paper concludes with the prospects of flue gas reduction in thermal power plants. (author). 5 tabs., 21 refs

  9. Microfluidics for single cell analysis

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant

    Isolation and manipulation of single cells have gained an increasing interest from researchers because of the heterogeneity of cells from the same cell culture. Single cell analysis can ensure a better understanding of differences between individual cells and potentially solve a variety of clinical...... problems. In this thesis lab on a chip systems for rare single cell analysis are investigated. The focus was to develop a commercial, disposable device for circulating tumour cell (CTC) analysis. Such a device must be able to separate rare cells from blood samples and subsequently capture the specific...... cells, and simultaneously be fabricated and operated at low costs and be user-friendly. These challenges were addressed through development of two microfluidic devices, one for rare cell isolation based on pinched flow fractionation (PFF) and one for single cell capture based on hydrodynamic trapping...

  10. Hard target LIDAR calibration for SO2

    CSIR Research Space (South Africa)

    Du Plessis, A

    2006-01-01

    Full Text Available calibration for SO2 A du Plessis, DE Roberts CSIR National Laser Centre, Pretoria Slide 2 © CSIR 2006 www.csir.co.za Project background • Las-R-MAP: Laser – Remote – Measurement of Atmospheric Pollutants • Mobile laser system....csir.co.za Hard target backscatter ∫ = − R dRRn p e R RcE RS 0 )(2 2 )()( λσ λ β S R Slide 10 © CSIR 2006 www.csir.co.za Las-R-MAP hardware: laser system Slide 11 © CSIR 2006 www.csir.co.za Las-R...

  11. NOx and SO2 emission factors for Serbian lignite Kolubara

    Directory of Open Access Journals (Sweden)

    Jovanović Vladimir V.

    2012-01-01

    Full Text Available Emission factors are widely accepted tool for estimation of various pollutants emissions in USA and EU. Validity of emission factors is strongly related to experimental data on which they are based. This paper is a result of an effort to establish reliable NOx and SO2 emission factors for Serbian coals. The results of NOx and SO2 emissions estimations based on USA and EU emission factors from thermal power plants Nikola Tesla Obrenovac A and B utilizing the Serbian lignite Kolubara are compared with experimental data obtained during almost one decade (2000-2008 of emissions measurements. Experimental data are provided from regular annual emissions measurement along with operational parameters of the boiler and coal (lignite Kolubara ultimate and proximate analysis. Significant deviations of estimated from experimental data were observed for NOx, while the results for SO2 were satisfactory. Afterwards, the estimated and experimental data were plotted and linear regression between them established. Single parameter optimization was performed targeting the ideal slope of the regression line. Results of this optimization provided original NOx and SO2 emission factors for Kolubara lignite.

  12. Single Cell Isolation and Analysis

    Directory of Open Access Journals (Sweden)

    Ping Hu

    2016-10-01

    Full Text Available Increasing evidence shows that the heterogeneity of individual cells within a genetically identical population can be critical to their peculiar function and fate. Conventional cell based assays mainly analysis the average responses from a population cells, while the difference within individual cells may often be masked. The cell size, RNA transcripts and protein expression level are quite different within individual cells and these variations are key point to answer the problems in cancer, neurobiology, stem cell biology, immunology and developmental biology. To better understand the cell-to-cell variations, the single cell analysis can provide much more detailed information which may be helpful for therapeutic decisions in an increasingly personalized medicine. In this review, we will focus on the recent development in single cell analysis, including methods used in single cell isolation, analysis and some application examples. The review provides the historical background to single cell analysis, discusses limitations, and current and future possibilities in this exciting field of research.

  13. Measuring single-cell density.

    Science.gov (United States)

    Grover, William H; Bryan, Andrea K; Diez-Silva, Monica; Suresh, Subra; Higgins, John M; Manalis, Scott R

    2011-07-05

    We have used a microfluidic mass sensor to measure the density of single living cells. By weighing each cell in two fluids of different densities, our technique measures the single-cell mass, volume, and density of approximately 500 cells per hour with a density precision of 0.001 g mL(-1). We observe that the intrinsic cell-to-cell variation in density is nearly 100-fold smaller than the mass or volume variation. As a result, we can measure changes in cell density indicative of cellular processes that would be otherwise undetectable by mass or volume measurements. Here, we demonstrate this with four examples: identifying Plasmodium falciparum malaria-infected erythrocytes in a culture, distinguishing transfused blood cells from a patient's own blood, identifying irreversibly sickled cells in a sickle cell patient, and identifying leukemia cells in the early stages of responding to a drug treatment. These demonstrations suggest that the ability to measure single-cell density will provide valuable insights into cell state for a wide range of biological processes.

  14. Single-cell photoacoustic thermometry

    Science.gov (United States)

    Gao, Liang; Wang, Lidai; Li, Chiye; Liu, Yan; Ke, Haixin; Zhang, Chi

    2013-01-01

    Abstract. A novel photoacoustic thermometric method is presented for simultaneously imaging cells and sensing their temperature. With three-seconds-per-frame imaging speed, a temperature resolution of 0.2°C was achieved in a photo-thermal cell heating experiment. Compared to other approaches, the photoacoustic thermometric method has the advantage of not requiring custom-developed temperature-sensitive biosensors. This feature should facilitate the conversion of single-cell thermometry into a routine lab tool and make it accessible to a much broader biological research community. PMID:23377004

  15. Validating the accuracy of SO2 gas retrievals in the thermal infrared (8-14 μm)

    Science.gov (United States)

    Gabrieli, Andrea; Porter, John N.; Wright, Robert; Lucey, Paul G.

    2017-11-01

    Quantifying sulfur dioxide (SO2) in volcanic plumes is important for eruption predictions and public health. Ground-based remote sensing of spectral radiance of plumes contains information on the path-concentration of SO2. However, reliable inversion algorithms are needed to convert plume spectral radiance measurements into SO2 path-concentrations. Various techniques have been used for this purpose. Recent approaches have employed thermal infrared (TIR) imaging between 8 μm and 14 μm to provide two-dimensional mapping of plume SO2 path-concentration, using what might be described as "dual-view" techniques. In this case, the radiance (or its surrogate brightness temperature) is computed for portions of the image that correspond to the plume and compared with spectral radiance obtained for adjacent regions of the image that do not (i.e., "clear sky"). In this way, the contribution that the plume makes to the measured radiance can be isolated from the background atmospheric contribution, this residual signal being converted to an estimate of gas path-concentration via radiative transfer modeling. These dual-view approaches suffer from several issues, mainly the assumption of clear sky background conditions. At this time, the various inversion algorithms remain poorly validated. This paper makes two contributions. Firstly, it validates the aforementioned dual-view approaches, using hyperspectral TIR imaging data. Secondly, it introduces a new method to derive SO2 path-concentrations, which allows for single point SO2 path-concentration retrievals, suitable for hyperspectral imaging with clear or cloudy background conditions. The SO2 amenable lookup table algorithm (SO2-ALTA) uses the MODTRAN5 radiative transfer model to compute radiance for a variety (millions) of plume and atmospheric conditions. Rather than searching this lookup table to find the best fit for each measured spectrum, the lookup table was used to train a partial least square regression (PLSR) model

  16. A Python Software Toolbox for the Analysis of SO2 Camera Data. Implications in Geosciences

    Directory of Open Access Journals (Sweden)

    Jonas Gliß

    2017-12-01

    Full Text Available Ultraviolet (UV SO2 cameras have become a common tool to measure and monitor SO2 emission rates, mostly from volcanoes but also from anthropogenic sources (e.g., power plants or ships. Over the past decade, the analysis of UV SO2 camera data has seen many improvements. As a result, for many of the required analysis steps, several alternatives exist today (e.g., cell vs. DOAS based camera calibration; optical flow vs. cross-correlation based gas-velocity retrieval. This inspired the development of Pyplis (Python plume imaging software, an open-source software toolbox written in Python 2.7, which unifies the most prevalent methods from literature within a single, cross-platform analysis framework. Pyplis comprises a vast collection of algorithms relevant for the analysis of UV SO2 camera data. These include several routines to retrieve plume background radiances as well as routines for cell and DOAS based camera calibration. The latter includes two independent methods to identify the DOAS field-of-view (FOV within the camera images (based on (1 Pearson correlation and (2 IFR inversion method. Plume velocities can be retrieved using an optical flow algorithm as well as signal cross-correlation. Furthermore, Pyplis includes a routine to perform a first order correction of the signal dilution effect (also referred to as light dilution. All required geometrical calculations are performed within a 3D model environment allowing for distance retrievals to plume and local terrain features on a pixel basis. SO2 emission rates can be retrieved simultaneously for an arbitrary number of plume intersections. Hence, Pyplis provides a state-of-the-art framework for more efficient and flexible analyses of UV SO2 camera data and, therefore, marks an important step forward towards more transparency, reliability and inter-comparability of the results. Pyplis has been extensively and successfully tested using data from several field campaigns. Here, the main features

  17. Physiological characteristics of Plantago major under SO2 exposure as affected by foliar iron spray.

    Science.gov (United States)

    Mohasseli, Vahid; Khoshgoftarmanesh, Amir Hossein; Shariatmadari, Hossein

    2017-08-01

    Sulfur dioxide (SO 2 ) is considered as a main air pollutant in industrialized areas that can damage vegetation. In the present study, we investigated how exposure to SO 2 and foliar application of iron (Fe) would affect certain physiological characteristics of Plantago major. The plant seedlings exposed or unexposed to SO 2 (3900 μg m -3 ) were non-supplemented or supplemented with Fe (3 g L -1 ) as foliar spray. Plants were exposed to SO 2 for 6 weeks in 100 × 70 × 70 cm chambers. Fumigation of plants with SO 2 was performed for 3 h daily for 3 days per week (alternate day). Lower leaf Fe concentration in the plants exposed to SO 2 at no added Fe treatment was accompanied with incidence of chlorosis symptoms and reduced chlorophyll concentration. No visible chlorotic symptoms were observed on the SO 2 -exposed plants supplied with Fe that accumulated higher Fe in their leaves. Both at with and without added Fe treatments, catalase (CAT) and peroxidase (POD) activity was higher in the plants fumigated with SO 2 in comparison with those non-fumigated with SO 2 . Foliar application of Fe was also effective in increasing activity of antioxidant enzymes CAT and POD. Exposure to SO 2 led to reduced cellulose but enhanced lignin content of plant leaf cell wall. The results obtained showed that foliar application of Fe was effective in reducing the effects of exposure to SO 2 on cell wall composition. In contrast to SO 2 , application of Fe increased cellulose while decreased lignin content of the leaf cell wall. This might be due to reduced oxidative stress induced by SO 2 in plants supplied with Fe compared with those unsupplied with Fe.

  18. Reversible physical absorption of SO2 by ionic liquids

    DEFF Research Database (Denmark)

    Huang, Jun; Riisager, Anders; Fehrmann, Rasmus

    2006-01-01

    Ionic liquids can reversibly absorb large amounts of molecular SO2 gas under ambient conditions with the gas captured in a restricted configuration, possibly allowing SO2 to probe the internal cavity structures in ionic liquids besides being useful for SO2 removal in pollution control....

  19. SO(2N) and SU(N) gauge theories

    OpenAIRE

    Lau, Richard; Teper, Michael

    2013-01-01

    We present our preliminary results of SO(2N) gauge theories, approaching the large-N limit. SO(2N) theories may help us to understand QCD at finite chemical potential since there is an orbifold equivalence between SO(2N) and SU(N) gauge theories at large-N and SO(2N) theories do not have the sign problem present in QCD. We consider the string tensions, mass spectra, and deconfinement temperatures in the SO(2N) pure gauge theories in 2+1 dimensions, comparing them to their corresponding SU(N) ...

  20. 40 CFR 97.288 - CAIR SO2 allowance allocations to CAIR SO2 opt-in units.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false CAIR SO2 allowance allocations to CAIR SO2 opt-in units. 97.288 Section 97.288 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS...

  1. 40 CFR 96.288 - CAIR SO2 allowance allocations to CAIR SO2 opt-in units.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false CAIR SO2 allowance allocations to CAIR SO2 opt-in units. 96.288 Section 96.288 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR...

  2. Future prices and market for SO2 allowances

    International Nuclear Information System (INIS)

    Sanghi, A.; Joseph, A.; Michael, K.; Munro, W.; Wang, J.

    1993-01-01

    The expected price of SO 2 emission allowances is an important issue in energy and integrated resource planning activities. For example, the expected price of SO 2 allowances in needed in order to evaluate alternative strategies for meeting SO 2 provisions of the Clean Air Act Amendments of 1990. In addition, the expected SO 2 allowance price is important to state public utility regulators who must provide guidance on rate-making issues regarding utility compliance plans which involve allowance trading and direct investment of SO 2 control technologies. Last but not the least, the expected SO 2 allowance price is an important determinant of the future market for natural gas and low sulfur coal. The paper develops estimates of SO 2 allowance prices over time by constructing national supply and demand curves for SO 2 reductions. Both the supply and demand for SO 2 reductions are based on an analysis of the sulfur content of fuels burned in 1990 by utilities throughout the United States; and on assumptions about plant retirements, the rate of new capacity growth, the types of new and replacement plants constructed, the costs of SO 2 reduction measures and legislation by midwest states to maintain the use of high sulfur coal to protect local jobs. The paper shows that SO 2 allowance prices will peak around the year 2000 at about $500 per ton, and will eventually fall to zero by about the year 2020. A sensitivity analysis indicates that the price of SO 2 allowances is relatively insensitive to assumptions regarding the availability of natural gas or energy demand growth. However, SO 2 allowance prices tend to be quite sensitive to assumptions regarding regulations which may force early retirement of existing power plants and possible legislation which may reduce CO 2 emissions

  3. Effects of SO2 and sulfite on stromal metabolism

    International Nuclear Information System (INIS)

    Anderson, L.E.; Muschinek, G.; Marques, I.

    1986-01-01

    SO 2 appears to have multiple effects on chloroplast stromal metabolism. What is unique about metabolism in the chloroplast is reductive modulation of enzyme activity. The evidence summarized here implicates both the components of the modulation process and the light modulated enzymes and ribulosebisphosphate carboxylase in SO 2 -sensitivity. Interference with electron transport, acidification of the stroma, and depletion of phosphates will further complicate metabolism in the photosynthesizing chloroplast when sensitive plants are exposed to SO 2 . 35 refs., 6 figs

  4. Mechanisms of Heightened Airway Sensitivity and Responses to Inhaled SO2 in Asthmatics.

    Science.gov (United States)

    Reno, Anita L; Brooks, Edward G; Ameredes, Bill T

    2015-01-01

    Sulfur dioxide (SO2) is a problematic inhalable air pollutant in areas of widespread industrialization, not only in the United States but also in countries undergoing rapid industrialization, such as China, and it can be a potential trigger factor for asthma exacerbations. It is known that asthmatics are sensitive to the effects of SO2; however, the basis of this enhanced sensitivity remains incompletely understood. A PubMed search was performed over the course of 2014, encompassing the following terms: asthma, airway inflammation, sulfur dioxide, IL-10, mouse studies, and human studies. This search indicated that biomarkers of SO2 exposure, SO2 effects on airway epithelial cell function, and animal model data are useful in our understanding of the body's response to SO2, as are SO2-associated amplification of allergic inflammation, and potential promotion of neurogenic inflammation due to chemical irritant properties. While definitive answers are still being sought, these areas comprise important foci of consideration regarding asthmatic responses to inhaled SO2. Furthermore, IL-10 deficiency associated with asthma may be another important factor associated with an inability to resolve inflammation and mitigate oxidative stress resulting from SO2 inhalation, supporting the idea that asthmatics are predisposed to SO2 sensitivity, leading to asthma exacerbations and airway dysfunction.

  5. Efficient SO2 capture by amine functionalized PEG.

    Science.gov (United States)

    Yang, Dezhong; Hou, Minqiang; Ning, Hui; Zhang, Jianling; Ma, Jun; Han, Buxing

    2013-11-07

    Polyethylene glycols (PEGs) are a class of non-toxic, non-volatile, biocompatible, and widely available polymers. In this work, we synthesized N-ethyl-N-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-2-aminoethanol (EE3AE) that combines the properties of PEG and amines, and N-decyl-N-ethyl-2-aminoethanol (DEAE). Their performances to capture SO2 were studied at different temperatures, pressures, and absorption times. The interaction between the absorbents and SO2 were characterized by NMR and FTIR techniques. It was demonstrated that both EE3AE and DEAE could absorb SO2 efficiently, and there existed chemical and physical interactions between the absorbents and SO2. In particular, the absorption capacity of EE3AE could be as high as 1.09 g SO2 per g EE3AE at 1 atm. The absorption capacity of EE3AE was much larger than that of DEAE because the ether group in the EE3AE interacted with SO2 more strongly than the alkyl group in the DEAE. The SO2 absorbed by EE3AE could be stripped out by bubbling N2 or by applying a vacuum and the EE3AE could be reused. Moreover, both absorbents exhibited a high SO2-CO2 selectivity.

  6. Observations of volcanic SO2 from MLS on Aura

    Directory of Open Access Journals (Sweden)

    H. C. Pumphrey

    2015-01-01

    Full Text Available Sulfur dioxide (SO2 is an important atmospheric constituent, particularly in the aftermath of volcanic eruptions. These events can inject large amounts of SO2 into the lower stratosphere, where it is oxidised to form sulfate aerosols; these in turn have a significant effect on the climate. The MLS instrument on the Aura satellite has observed the SO2 mixing ratio in the upper troposphere and lower stratosphere from August 2004 to the present, during which time a number of volcanic eruptions have significantly affected those regions of the atmosphere. We describe the MLS SO2 data and how various volcanic events appear in the data. As the MLS SO2 data are currently not validated we take some initial steps towards their validation. First we establish the level of internal consistency between the three spectral regions in which MLS is sensitive to SO2. We compare SO2 column values calculated from MLS data to total column values reported by the OMI instrument. The agreement is good (within about 1 DU in cases where the SO2 is clearly at altitudes above 147 hPa.

  7. Single Cell Assay for Analyzing Single Cell Exosome and Endocrine Secretion and Cancer Markers

    Science.gov (United States)

    Chiu, Yu-Jui

    To understand the inhomogeneity of cells in biological systems, there is a growing demand for the capability to characterize the properties of individual single cells. Since single cell studies require continuous monitoring of the cell behaviors instead of a snapshot test at a single time point, an effective single-cell assay that can support time lapsed studies in a high throughput manner is desired. Most currently available single-cell technologies cannot provide proper environments to sustain cell growth and cannot provide, for appropriate cell types, proliferation of single cells and convenient, non-invasive tests of single cell behaviors from molecular markers. In this dissertation, I present a highly versatile single-cell assay that can accommodate different cellular types, enable easy and efficient single cell loading and culturing, and be suitable for the study of effects of in-vitro environmental factors in combination with drug screening. The salient features of the assay are the non-invasive collection and surveying of single cell secretions at different time points and massively parallel translocation of single cells by user defined criteria, producing very high compatibility to the downstream process such as single cell qPCR and sequencing. Above all, the acquired information is quantitative -- for example, one of the studies is measured by the number of exosomes each single cell secretes for a given time period. Therefore, our single-cell assay provides a convenient, low-cost, and enabling tool for quantitative, time lapsed studies of single cell properties.

  8. Crown Ether Complexes of Alkali-Metal Chlorides from SO2.

    Science.gov (United States)

    Reuter, Kirsten; Rudel, Stefan S; Buchner, Magnus R; Kraus, Florian; von Hänisch, Carsten

    2017-07-18

    The structures of alkali-metal chloride SO 2 solvates (Li-Cs) in conjunction with 12-crown-4 or 1,2-disila-12-crown-4 show strong discrepancies, despite the structural similarity of the ligands. Both types of crown ethers form 1:1 complexes with LiCl to give [Li(1,2-disila-12-crown-4)(SO 2 Cl)] (1) and [Li(12-crown-4)Cl]⋅4 SO 2 (2). However, 1,2-disila-12-crown-4 proved unable to coordinate cations too large for the cavity diameter, for example, by the formation of sandwich-type complexes. As a result, 12-crown-4 reacts exclusively with the heavier alkali-metal chlorides NaCl, KCl and RbCl. Compounds [Na(12-crown-4) 2 ]Cl⋅4 SO 2 (3) and [M(12-crown-4) 2 (SO 2 )]Cl⋅4 SO 2 (4: M=K; 5: M=Rb) all showed S-coordination to the chloride ions through four SO 2 molecules. Compounds 4 and 5 additionally exhibit the first crystallographically confirmed non-bridging O,O'-coordination mode of SO 2 . Unexpectedly, the disila-crown ether supports the dissolution of RbCl and CsCl in the solvent and gives the homoleptic SO 2 -solvated alkali-metal chlorides [MCl⋅3 SO 2 ] (6: M=Rb; 7: M=Cs), which incorporate bridging μ-O,O'-coordinating moieties and the unprecedented side-on O,O'-coordination mode. All compounds were characterised by single-crystal X-ray diffraction. The crown ether complexes were additionally studied by using NMR spectroscopy, and the presence of SO 2 at ambient temperature was revealed by IR spectroscopy of the neat compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Measurements of SO2 in the Mount St. Helens debris

    International Nuclear Information System (INIS)

    Kerr, J.B.; Evans, F.J.; Mateer, C.L.

    1982-01-01

    Routine measurements of ozone and SO 2 are made with the Dobson and Brewer spectrophotometers at the Atmospheric Environment Service in Downsview Ontario. On May 20 and 21, 1980, large values of column SO 2 were observed with both spectrophotometers at the time of passage of the Mount St. Helens debris. Enhanced SO 2 values were first observed at 1800Z on May 20. The maximum column amount of SO 2 measured was 0.06 cm at 2200 Z. On May 21, SO 2 values slowly decreased from 0.03 cm at 1100 Z cm to 0.01 cm at 2000Z. Typical SO 2 amounts due to pollution at the Downsview site are approximately 0.003 to 0.005 cm. At the same time of maximum SO 2 enhancement, both Dobson and Brewer spectrophotometers measured a 0.040 cm decrease of total ozone. It is not clear whether the decrease of total ozone was caused by the volcanic cloud or natural ozone variability. Air mass trajectories indicate that the altitude of the debris cloud, which passed over Downsview at the time, was between 10 km and 12 km

  10. Surface Hydrophobicity Causes SO2 Tolerance in Lichens

    Science.gov (United States)

    Hauck, Markus; Jürgens, Sascha-René; Brinkmann, Martin; Herminghaus, Stephan

    2008-01-01

    Background and Aims The superhydrophobicity of the thallus surface in one of the most SO2-tolerant lichen species, Lecanora conizaeoides, suggests that surface hydrophobicity could be a general feature of lichen symbioses controlling their tolerance to SO2. The study described here tests this hypothesis. Methods Water droplets of the size of a raindrop were placed on the surface of air-dry thalli in 50 lichen species of known SO2 tolerance and contact angles were measured to quantify hydrophobicity. Key Results The wettability of lichen thalli ranges from strongly hydrophobic to strongly hydrophilic. SO2 tolerance of the studied lichen species increased with increasing hydrophobicity of the thallus surface. Extraction of extracellular lichen secondary metabolites with acetone reduced, but did not abolish the hydrophobicity of lichen thalli. Conclusions Surface hydrophobicity is the main factor controlling SO2 tolerance in lichens. It presumably originally evolved as an adaptation to wet habitats preventing the depression of net photosynthesis due to supersaturation of the thallus with water. Hydrophilicity of lichen thalli is an adaptation to dry or humid, but not directly rain-exposed habitats. The crucial role of surface hydrophobicity in SO2 also explains why many markedly SO2-tolerant species are additionally tolerant to other (chemically unrelated) toxic substances including heavy metals. PMID:18077467

  11. Single cell enzyme diagnosis on the chip

    DEFF Research Database (Denmark)

    Jensen, Sissel Juul; Harmsen, Charlotte; Nielsen, Mette Juul

    2013-01-01

    Conventional diagnosis based on ensemble measurements often overlooks the variation among cells. Here, we present a droplet-microfluidics based platform to investigate single cell activities. Adopting a previously developed isothermal rolling circle amplification-based assay, we demonstrate...... detection of enzymatic activities down to the single cell level with small quantities of biological samples, which outcompetes existing techniques. Such a system, capable of resolving single cell activities, will ultimately have clinical applications in diagnosis, prediction of drug response and treatment...

  12. Supported polytertiary amines: highly efficient and selective SO2 adsorbents.

    Science.gov (United States)

    Tailor, Ritesh; Abboud, Mohamed; Sayari, Abdelhamid

    2014-01-01

    Tertiary amine containing poly(propyleneimine) second (G2) and third (G3) generation dendrimers as well as polyethyleneimine (PEI) were developed for the selective removal of SO2. N-Alkylation of primary and secondary amines into tertiary amines was confirmed by FTIR and NMR analysis. Such modified polyamines were impregnated on two nanoporous supports, namely, SBA-15PL silica with platelet morphology and ethanol-extracted pore-expanded MCM-41 (PME) composite. In the presence of 0.1% SO2/N2 at 23 °C, the uptake of modified PEI, G2, and G3 supported on SBA-15PL was 2.07, 2.35, and 1.71 mmol/g, respectively; corresponding to SO2/N ratios of 0.22, 0.4, and 0.3. Under the same conditions, the SO2 adsorption capacity of PME-supported modified PEI and G3 was significantly higher, reaching 4.68 and 4.34 mmol/g, corresponding to SO2/N ratios of 0.41 and 0.82, respectively. The working SO2 adsorption capacity decreased with increasing temperature, reflecting the exothermic nature of the process. The adsorption capacity of these materials was enhanced dramatically in the presence of humidity in the gas mixture. FTIR data before SO2 adsorption and after adsorption and regeneration did not indicate any change in the materials. Nonetheless, the SO2 working capacity decreased in consecutive adsorption/regeneration cycles due to evaporation of impregnated polyamines, rather than actual deactivation. FTIR and (13)C and (15)N CP-MAS NMR of fresh and SO2 adsorbed modified G3 on PME confirmed the formation of a complexation adduct.

  13. The US SO2 Auction and Environmental Regulation

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard; Christensen, J.L.

    1999-01-01

    The US Acid Rain Program (ARP) is now well-established. The ARP relies on tradable permits and includes an annual revenue-neutral SO2 auction. Has this auction been an important factor in establishing low transaction costs and a successful market? In answering this question, we first compare...... the price signals from the SO2 auction to those found in the market. Second, we try to explain empirical outcomes by analyzing strategic incentives and the number of buyers and sellers in the auction. The policy recommendation is that the non-discriminative SO2 auction is a very useful tool for kick...

  14. Lessons Learned from OMI Observations of Point Source SO2 Pollution

    Science.gov (United States)

    Krotkov, N.; Fioletov, V.; McLinden, Chris

    2011-01-01

    The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. Although anthropogenic SO2 signals may not be detectable in a single OMI pixel, it is possible to see the source and determine its exact location by averaging a large number of individual measurements. We describe new techniques for spatial and temporal averaging that have been applied to the OMI SO2 data to determine the spatial distributions or "fingerprints" of SO2 burdens from top 100 pollution sources in North America. The technique requires averaging of several years of OMI daily measurements to observe SO2 pollution from typical anthropogenic sources. We found that the largest point sources of SO2 in the U.S. produce elevated SO2 values over a relatively small area - within 20-30 km radius. Therefore, one needs higher than OMI spatial resolution to monitor typical SO2 sources. TROPOMI instrument on the ESA Sentinel 5 precursor mission will have improved ground resolution (approximately 7 km at nadir), but is limited to once a day measurement. A pointable geostationary UVB spectrometer with variable spatial resolution and flexible sampling frequency could potentially achieve the goal of daily monitoring of SO2 point sources and resolve downwind plumes. This concept of taking the measurements at high frequency to enhance weak signals needs to be demonstrated with a GEOCAPE precursor mission before 2020, which will help formulating GEOCAPE measurement requirements.

  15. SO2 sorption on fresh and aged SOx traps

    International Nuclear Information System (INIS)

    Limousy, L.; Mahzoul, H.; Brilhac, J.F.; Gilot, P.; Garin, F.; Maire, G.

    2003-01-01

    This study has an important impact on gasoline engine-pollution control working under lean conditions. While NO x trap systems can remove NO x under an oxidative atmosphere, they are poisoned by SO x present in the exhaust gases. In order to protect NO x traps, an upstream SO x trap has to be used. SO 2 adsorption was studied in the presence of water and oxygen. Model and commercial catalysts were tested between 300 and 700C. In order to assign the TPD peaks, the decomposition of commercial sulphates was studied versus the temperature. Adsorption capacity is not sensitive to oxygen and SO 2 concentrations but is strongly related to barium content. Cerium content is not a key parameter for SO 2 adsorption capacity in the presence of oxygen. XPS analysis allowed us to differentiate between all the species formed during the adsorption process. When the catalysts are aged, specific surface area decreases as well as adsorption capacity

  16. Continuous SO2 flux measurements for Vulcano Island, Italy

    Directory of Open Access Journals (Sweden)

    Fabio Vita

    2012-06-01

    Full Text Available The La Fossa cone of Vulcano Island (Aeolian Archipelago, Italy is a closed conduit volcano. Today, Vulcano Island is characterized by sulfataric activity, with a large fumarolic field that is mainly located in the summit area. A scanning differential optical absorption spectroscopy instrument designed by the Optical Sensing Group of Chalmers University of Technology in Göteborg, Sweden, was installed in the framework of the European project "Network for Observation of Volcanic and Atmospheric Change", in March 2008. This study presents the first dataset of SO2 plume fluxes recorded for a closed volcanic system. Between 2008 and 2010, the SO2 fluxes recorded showed average values of 12 t.d–1 during the normal sulfataric activity of Vulcano Island, with one exceptional event of strong degassing that occurred between September and December, 2009, when the SO2 emissions reached up to 100 t.d–1.

  17. Emission control of SO2 and NOx by irradiation methods

    International Nuclear Information System (INIS)

    Radoiu, Marilena T.; Martin, Diana I.; Calinescu, Ioan

    2003-01-01

    Microwave discharges at 2.45 GHz frequency and accelerated electron beams operated at atmospheric pressure in synthetic gas mixtures containing N 2 , O 2 , CO 2 , SO 2 , and NO x are investigated experimentally for various gas mixture constituents and operating conditions, with respect to their ability to purify exhaust gases. An original experimental unit easily adaptable for both separate and simultaneous irradiation with microwaves and electron beams was set up. The simultaneous treatment with accelerated electron beams and microwaves was found to increase the removal efficiency of NO x and SO 2 and also helped to reduce the total required dose rate with ∼30%. Concomitant removal of NO x (∼80%) and SO 2 (>95%) by precipitation with ammonia was achieved

  18. SO2 oxidation catalyst model systems characterized by thermal methods

    DEFF Research Database (Denmark)

    Hatem, G; Eriksen, Kim Michael; Gaune-Escard, M

    2002-01-01

    The molten salts M2S2O7 and MHSO4, the binary molten salt Systems M2S2O7-MHSO4 and the molten salt-gas systems M2S2O7 V2O5 and M2S2O7-M2SO4 V2O5 (M = Na, K, Rb, Cs) in O-2, SO2 and At atmospheres have been investigated by thermal methods like calorimetry, Differential Enthalpic Analysis (DEA) and...... to the mechanism Of SO2 oxidation by V2O5 based industrial catalysts....

  19. η2-SO2 Linkage Photoisomer of an Osmium Coordination Complex.

    Science.gov (United States)

    Cole, Jacqueline M; Velazquez-Garcia, Jose de J; Gosztola, David J; Wang, SuYin Grass; Chen, Yu-Sheng

    2018-03-05

    We report the discovery of an η 2 -SO 2 linkage photoisomer in the osmium pentaammine coordination complex, [Os(NH 3 ) 5 (SO 2 )][Os(NH 3 ) 5 (HSO 3 )]Cl 4 (1). Its dark- and light-induced crystal structures are determined via synchrotron X-ray crystallography, at 100 K, where the photoinduced state is metastable in a single crystal that has been stimulated by 505 nm light for 2.5 h. The SO 2 photoisomer in the [Os(NH 3 ) 5 (SO 2 )] 2+ cation contrasts starkly with the photoinactivity of the HSO 3 ligand in its companion [Os(NH 3 ) 5 (HSO 3 )] + cation within the crystallographic asymmetric unit of this single crystal. Panchromatic optical absorption characteristics of this single crystal are revealed in both dark- and light-induced states, using concerted absorption spectroscopy and optical microscopy. Its absorption halves across most of its visible spectrum, upon exposure to 505 nm light. The SO 2 ligand seems to be responsible for this photoinduced bleaching effect, judging from a comparison of the dark- and light-induced crystal structures of 1. The SO 2 photoisomerism is found to be thermally reversible, and so 1 presents a rare example of an osmium-based solid-state optical switch. Such switching in an osmium complex is significant because bottom-row transition metals stand to offer linkage photoisomerism with the greatest photoconversion levels and thermal stability. The demonstration of η 2 -SO 2 bonding in this complex also represents a fundamental contribution to osmium coordination chemistry.

  20. Sulfation of Condensed Potassium Chloride by SO2

    DEFF Research Database (Denmark)

    Sengeløv, Louise With; Hansen, Troels Bruun; Bartolomé, Carmen

    2013-01-01

    The interaction between alkali chloride and sulfur oxides has important implications for deposition and corrosion in combustion of biomass. In the present study, the sulfation of particulate KCl (90–125 μm) by SO2 was studied in a fixed bed reactor in the temperature range 673–1023 K and with rea......The interaction between alkali chloride and sulfur oxides has important implications for deposition and corrosion in combustion of biomass. In the present study, the sulfation of particulate KCl (90–125 μm) by SO2 was studied in a fixed bed reactor in the temperature range 673–1023 K...... and with reactant concentrations of 500–3000 ppm SO2, 1–20% O2, and 4–15% H2O. The degree of sulfation was monitored by measuring the formation of HCl. Analysis of the solid residue confirmed that the reaction proceeds according to a shrinking core model and showed the formation of an eutectic at higher...... temperatures. On the basis of the experimental results, a rate expression for the sulfation reaction was derived. The model compared well with literature data for sulfation of KCl and NaCl, and the results indicate that it may be applied at even higher SO2 concentrations and temperatures than those...

  1. High-throughput technology for novel SO2 oxidation catalysts

    International Nuclear Information System (INIS)

    Loskyll, Jonas; Stoewe, Klaus; Maier, Wilhelm F

    2011-01-01

    We review the state of the art and explain the need for better SO 2 oxidation catalysts for the production of sulfuric acid. A high-throughput technology has been developed for the study of potential catalysts in the oxidation of SO 2 to SO 3 . High-throughput methods are reviewed and the problems encountered with their adaptation to the corrosive conditions of SO 2 oxidation are described. We show that while emissivity-corrected infrared thermography (ecIRT) can be used for primary screening, it is prone to errors because of the large variations in the emissivity of the catalyst surface. UV-visible (UV-Vis) spectrometry was selected instead as a reliable analysis method of monitoring the SO 2 conversion. Installing plain sugar absorbents at reactor outlets proved valuable for the detection and quantitative removal of SO 3 from the product gas before the UV-Vis analysis. We also overview some elements used for prescreening and those remaining after the screening of the first catalyst generations. (topical review)

  2. Cost-effective control of SO2 emissions in Asia

    NARCIS (Netherlands)

    Cofala, J.; Amann, M.; Gyarfas, F.; Schoepp, F.; Boudri, J.C.; Hordijk, L.; Kroeze, C.; Li Junfeng,; Dai Lin, D.; Panwar, T.S.; Gupta, S.

    2004-01-01

    Despite recent efforts to limit the growth of SO2 emissions in Asia, the negative environmental effects of sulphur emissions are likely to further increase in the future. This paper presents an extension of the RAINS-Asia integrated assessment model for acidification in Asia with an optimisation

  3. Historical analysis of SO2 pollution control policies in China.

    Science.gov (United States)

    Gao, Cailing; Yin, Huaqiang; Ai, Nanshan; Huang, Zhengwen

    2009-03-01

    Coal is not only an important energy source in China but also a major source of air pollution. Because of this, China's national sulfur dioxide (SO(2)) emissions have been the highest in the world for many years, and since the 1990s, the territory of China's south and southwest has become the third largest acid-rain-prone region in the world. In order to control SO(2) emissions, the Chinese government has formulated and promulgated a series of policies and regulations, but it faces great difficulties in putting them into practice. In this retrospective look at the history of SO(2) control in China, we found that Chinese SO(2) control policies have become increasingly strict and rigid. We also found that the environmental policies and regulations are more effective when central officials consistently give environmental protection top priority. Achieving China's environmental goals, however, has been made difficult by China's economic growth. Part of this is due to the practice of environmental protection appearing in the form of an ideological "campaign" or "storm" that lacks effective economic measures. More recently, better enforcement of environmental laws and regulations has been achieved by adding environmental quality to the performance assessment metrics for leaders at all levels. To continue making advances, China needs to reinforce the economic and environmental assessments for pollution control projects and work harder to integrate economic measures into environmental protection. Nonetheless, China has a long way to go before economic growth and environmental protection are balanced.

  4. Evaluation of SO2 compliance strategies at Virginia Power

    International Nuclear Information System (INIS)

    Presley, J.V.; Tomlinson, M.; Ulmer, R.H.

    1992-01-01

    This paper will address the process undertaken by Virginia Power to assess SO 2 control strategies available for complying with the Revised Clean Air Act. In April 1990, in anticipation of the passage of an amended Clean Air Act, Virginia Power assembled a task force of personnel from a wide cross section of the company. This task force was given the responsibility of providing an assessment of the requirements of the new legislation, evaluating compliance alternatives and providing recommendations for implementation of the least cost alternative. Twenty-four potential SO 2 compliance options were identified for evaluation for Phase I. These options included various levels of coal switching, gas co-firing and scrubbing. Each option was evaluated and compared to a base case which assumed no SO 2 control. As a result of our evaluations, the lowest cost and least risk approach to Phase I SO 2 compliance for Virginia Power appears to be to construct a scrubber for one unit (550 MW g ) at our Mt. Storm Power Station

  5. 76 FR 61098 - Guidance for 1-Hour SO2

    Science.gov (United States)

    2011-10-03

    ...Notice is hereby given that the EPA has posted its draft non- binding guidance titled, ``Guidance for 1-Hour SO2 NAAQS SIP Submissions'' on its Web site. The EPA invites public comments on this guidance document during the comment period specified below, and plans to issue an updated version of the guidance after reviewing timely submitted comments.

  6. Monitoring the dry deposition of SO2 in the Netherlands

    NARCIS (Netherlands)

    Erisman JW; Versluis AH; Verplanke TAJW; Haan D de; Anink D; Elzakker BG van; Aalst RM van

    1989-01-01

    A micrometeorological gradient method has been applied to monitor SO2 dry deposition fluxes on a routine basis. Results of a feasibility study during 1987 to 1989 at a rural site in the Netherlands demonstrated that this method can be used to measure dry deposition flux and deposition velocity

  7. SO2 : Nutrient or toxin for Chinese cabbage

    NARCIS (Netherlands)

    Yang, Liping

    2005-01-01

    Chinese cabbage (Brassica pekinensis) is one of the most important high-yield vegetable crops in China, and is often cultivated around big cities. Atmospheric SO2 pollution may affect Chinese cabbage, which is usually produced under intensive farming practice with low-sulfur or even sulfur-free

  8. Spatially resolved SO2 flux emissions from Mt Etna

    Science.gov (United States)

    Bitetto, M.; Delle Donne, D.; Tamburello, G.; Battaglia, A.; Coltelli, M.; Patanè, D.; Prestifilippo, M.; Sciotto, M.; Aiuppa, A.

    2016-01-01

    Abstract We report on a systematic record of SO2 flux emissions from individual vents of Etna volcano (Sicily), which we obtained using a permanent UV camera network. Observations were carried out in summer 2014, a period encompassing two eruptive episodes of the New South East Crater (NSEC) and a fissure‐fed eruption in the upper Valle del Bove. We demonstrate that our vent‐resolved SO2 flux time series allow capturing shifts in activity from one vent to another and contribute to our understanding of Etna's shallow plumbing system structure. We find that the fissure eruption contributed ~50,000 t of SO2 or ~30% of the SO2 emitted by the volcano during the 5 July to 10 August eruptive interval. Activity from this eruptive vent gradually vanished on 10 August, marking a switch of degassing toward the NSEC. Onset of degassing at the NSEC was a precursory to explosive paroxysmal activity on 11–15 August. PMID:27773952

  9. Molecular Dynamics Investigation of Efficient SO2 Absorption by ...

    Indian Academy of Sciences (India)

    ANIRBAN MONDAL

    J. Chem. Sci. Vol. 129, No. 7, July 2017, pp. 859–872. c Indian Academy of Sciences. ... Ionic liquids are appropriate candidates for the absorption of acid gases such as SO2. Six anion- ... nificant number of task-specific ILs were designed and used to ...... investigation of a pilot-scale jet bubbling reactor for wet flue gas ...

  10. Single-cell sequencing in stem cell biology.

    Science.gov (United States)

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  11. Epigenetics reloaded: the single-cell revolution.

    Science.gov (United States)

    Bheda, Poonam; Schneider, Robert

    2014-11-01

    Mechanistically, how epigenetic states are inherited through cellular divisions remains an important open question in the chromatin field and beyond. Defining the heritability of epigenetic states and the underlying chromatin-based mechanisms within a population of cells is complicated due to cell heterogeneity combined with varying levels of stability of these states; thus, efforts must be focused toward single-cell analyses. The approaches presented here constitute the forefront of epigenetics research at the single-cell level using classic and innovative methods to dissect epigenetics mechanisms from the limited material available in a single cell. This review further outlines exciting future avenues of research to address the significance of epigenetic heterogeneity and the contributions of microfluidics technologies to single-cell isolation and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Parallel single-cell analysis microfluidic platform

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus; Gool, Elmar; Frimat, Jean-Philippe; Bomer, Johan G.; van den Berg, Albert; le Gac, Severine

    2011-01-01

    We report a PDMS microfluidic platform for parallel single-cell analysis (PaSCAl) as a powerful tool to decipher the heterogeneity found in cell populations. Cells are trapped individually in dedicated pockets, and thereafter, a number of invasive or non-invasive analysis schemes are performed.

  13. Application of DBD and DBCD in SO2 removal

    International Nuclear Information System (INIS)

    Sun Yanzhou; Henan Polytechnic Univ., Jiaozuo; Qiu Yuchang; Yuan Xingcheng; Yu Fashan

    2004-01-01

    The dielectric barrier corona discharge (DBCD) in a wire-cylinder configuration and the dielectric barrier discharge (DBD) in a coaxial cylinder configuration are studied. The discharge current in DBD has a higher pulse amplitude than in DBCD. The dissipated power and the gas-gap voltage are calculated by analyzing the measured Lissajous figure. With the increasing applied voltage, the energy utilization factor for SO 2 removal increases in DBCD but decreases in DBD because of the difference in their electric field distribution. Experiments of SO 2 removal show that in the absence of NH 3 the energy utilization factor can reach 31 g/k Wh in DBCD and 39 g/kWh in DBD. (authors)

  14. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas; Gojobori, Takashi

    2015-01-01

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  15. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas

    2015-10-22

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  16. Automated Single Cell Data Decontamination Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Tennessen, Kristin [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Pati, Amrita [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2014-03-21

    Recent technological advancements in single-cell genomics have encouraged the classification and functional assessment of microorganisms from a wide span of the biospheres phylogeny.1,2 Environmental processes of interest to the DOE, such as bioremediation and carbon cycling, can be elucidated through the genomic lens of these unculturable microbes. However, contamination can occur at various stages of the single-cell sequencing process. Contaminated data can lead to wasted time and effort on meaningless analyses, inaccurate or erroneous conclusions, and pollution of public databases. A fully automated decontamination tool is necessary to prevent these instances and increase the throughput of the single-cell sequencing process

  17. 76 FR 66925 - Guidance for 1-Hour SO2

    Science.gov (United States)

    2011-10-28

    ...The EPA is announcing an extension of the public comment period for its draft non-binding guidance titled, ``Guidance for 1-Hour SO2 SIP Submissions.'' The draft of the guidance document is currently on the EPA's Web site. The EPA is extending the comment period for an additional 30-day period and invites public comments on this guidance during this period. The EPA plans to issue an updated version of the guidance after reviewing timely submitted comments.

  18. Coal sulfur-premium models for SO2 allowance valuation

    International Nuclear Information System (INIS)

    Henry, J.B. II; Radulski, D.R.; Ellingson, E.G.; Engels, J.P.

    1995-01-01

    Clean Air Capital Markets, an investment bank structuring SO 2 Allowance transactions, has designed two allowance value models. The first forecasts an equilibrium allowance value based on coal supply and demand. The second estimates the sulfur premium of all reported coal deliveries to utilities. Both models demonstrate that the fundamental allowance value is approximately double current spot market prices for small volumes of off-system allowances

  19. Soil acidification in China: is controlling SO2 emissions enough?

    Science.gov (United States)

    Zhao, Yu; Duan, Lei; Xing, Jia; Larssen, Thorjorn; Nielsen, Chris P; Hao, Jiming

    2009-11-01

    Facing challenges of increased energy consumption and related regional air pollution, China has been aggressively implementing flue gas desulfurization (FGD) and phasing out small inefficient units in the power sector in order to achieve the national goal of 10% reduction in sulfur dioxide (SO(2)) emissions from 2005 to 2010. In this paper, the effect of these measures on soil acidification is explored. An integrated methodology is used, combining emission inventory data, emission forecasts, air quality modeling, and ecological sensitivities indicated by critical load. National emissions of SO(2), oxides of nitrogen (NO(X)), particulate matter (PM), and ammonia (NH(3)) in 2005 were estimated to be 30.7, 19.6, 31.3, and 16.6 Mt, respectively. Implementation of existing policy will lead to reductions in SO(2) and PM emissions, while those of NO(X) and NH(3) will continue to rise, even under tentatively proposed control measures. In 2005, the critical load for soil acidification caused by sulfur (S) deposition was exceeded in 28% of the country's territory, mainly in eastern and south-central China. The area in exceedance will decrease to 26% and 20% in 2010 and 2020, respectively, given implementation of current plans for emission reductions. However, the exceedance of the critical load for nitrogen (N, combining effects of eutrophication and acidification) will double from 2005 to 2020 due to increased NO(X) and NH(3) emissions. Combining the acidification effects of S and N, the benefits of SO(2) reductions during 2005-2010 will almost be negated by increased N emissions. Therefore abatement of N emissions (NO(X) and NH(3)) and deposition will be a major challenge to China, requiring policy development and technology investments. To mitigate acidification in the future, China needs a multipollutant control strategy that integrates measures to reduce S, N, and PM.

  20. SO2 Spectroscopy with A Tunable UV Laser

    Science.gov (United States)

    Morey, W. W.; Penney, C. M.; Lapp, M.

    1973-01-01

    A portion of the fluorescence spectrum of SO2 has been studied using a narrow wavelength doubled dye laser as the exciting source. One purpose of this study is to evaluate the use of SO2 resonance re-emission as a probe of SO2 in the atmosphere. When the SO2 is excited by light at 300.2 nm, for example, a strong reemission peak is observed which is Stokes-shifted from the incident light wavelength by the usual Raman shift (the VI symmetric vibration frequency 1150.5/cm ). The intensity of this peak is sensitive to small changes (.01 nm) in the incident wavelength. Measurements of the N2 quenching and self quenching of this re-emission have been obtained. Preliminary analysis of this data indicates that the quenching is weak but not negligible. The dye laser in our system is pumped by a pulsed N2 laser. Tuning 'and spectral narrowing are accomplished using a telescope-echelle grating combination. In a high power configuration the resulting pulses have a spectral width of about 5 x 10(exp -3) nm and a time duration of about 6 nsec. The echelle grating is rotated by a digital stepping motor, such that each step shifts the wavelength by 6 x 10(exp -4) nm. In addition to the tunable, narrow wavelength uv source and spectral analysis of the consequent re-emission, the system also provides time resolution of the re-emitted light to 6 nsec resolution. This capability is being used to study the lifetime of low pressure S02 fluorescence at different wavelengths and pressures.

  1. Forecasting the market for SO2 emission allowances under uncertainty

    International Nuclear Information System (INIS)

    Hanson, D.; Molburg, J.; Fisher, R.; Boyd, G.; Pandola, G.; Lurie, G.; Taxon, T.

    1991-01-01

    This paper deals with the effects of uncertainty and risk aversion on market outcomes for SO 2 emission allowance prices and on electric utility compliance choices. The 1990 Clean Air Act Amendments (CAAA), which are briefly reviewed here, provide for about twice as many SO 2 allowances to be issued per year in Phase 1 (1995--1999) than in Phase 2. Considering the scrubber incentives in Phase 1, there is likely to be substantial emission banking for use in Phase 2. Allowance prices are expected to increase over time at a rate less than the return on alternative investments, so utilities which are risk neutral, or potential speculators in the allowance market, are not expected to bank allowances. The allowances will be banked by utilities that are risk averse. The Argonne Utility Simulation Model (ARGUS2) is being revised to incorporate the provisions of the CAAA acid rain title and to simulate SO 2 allowance prices, compliance choices, capacity expansion, system dispatch, fuel use, and emissions using a unit level data base and alternative scenario assumptions. 1 fig

  2. Low SO2 Emission Preheaters for Cement Production

    DEFF Research Database (Denmark)

    Rasmussen, Martin Hagsted

    in this thesis has been to produce CaO with a large surface area in order to increase the absorption of SO2. For this purpose flash calcination of CaCO3, calcination under vacuum, calcination in a fixed bed and a fluid bed has been tested between 650 °C and 850 °C. The results showed that flash calcination...... at low temperatures resulted in the largest surface area, about 140 m2/g CaO. The material produced from all of the methods was a mixture of CaO and CaCO3, meaning that the material was only partly calcined, but with the particle surface area being comprised by CaO. One focus in this thesis...... against SO2 data from five full-scale plants, showing satisfactory results in two cases. An investigation of the parameters showed that it was possible to obtain satisfactory results in four out of five cases by allowing the CaCO3 surface area available for SO2 absorption to be about 4 m2/g instead...

  3. Technologies for Single-Cell Isolation.

    Science.gov (United States)

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-07-24

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  4. Technologies for Single-Cell Isolation

    Science.gov (United States)

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-01-01

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field. PMID:26213926

  5. Technologies for Single-Cell Isolation

    Directory of Open Access Journals (Sweden)

    Andre Gross

    2015-07-01

    Full Text Available The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting respectively Flow cytometry (33% usage, laser microdissection (17%, manual cell picking (17%, random seeding/dilution (15%, and microfluidics/lab-on-a-chip devices (12% are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  6. Single-cell measurement of red blood cell oxygen affinity

    OpenAIRE

    Caprio, Di; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system....

  7. Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes

    Science.gov (United States)

    Kern, Christoph; Werner, Cynthia; Elias, Tamar; Sutton, A. Jeff; Lübcke, Peter

    2013-01-01

    Ultraviolet (UV) camera systems represent an exciting new technology for measuring two dimensional sulfur dioxide (SO2) distributions in volcanic plumes. The high frame rate of the cameras allows the retrieval of SO2 emission rates at time scales of 1 Hz or higher, thus allowing the investigation of high-frequency signals and making integrated and comparative studies with other high-data-rate volcano monitoring techniques possible. One drawback of the technique, however, is the limited spectral information recorded by the imaging systems. Here, a framework for simulating the sensitivity of UV cameras to various SO2 distributions is introduced. Both the wavelength-dependent transmittance of the optical imaging system and the radiative transfer in the atmosphere are modeled. The framework is then applied to study the behavior of different optical setups and used to simulate the response of these instruments to volcanic plumes containing varying SO2 and aerosol abundances located at various distances from the sensor. Results show that UV radiative transfer in and around distant and/or optically thick plumes typically leads to a lower sensitivity to SO2 than expected when assuming a standard Beer–Lambert absorption model. Furthermore, camera response is often non-linear in SO2 and dependent on distance to the plume and plume aerosol optical thickness and single scatter albedo. The model results are compared with camera measurements made at Kilauea Volcano (Hawaii) and a method for integrating moderate resolution differential optical absorption spectroscopy data with UV imagery to retrieve improved SO2 column densities is discussed.

  8. On the SO2 problem in power engineering

    International Nuclear Information System (INIS)

    Boyadjiev, C.

    2011-01-01

    The presented theoretical analysis shows, that the low SO2 concentration in the waste gases of the thermal power plants needs an irreversible chemical reactions of SO2 with alkaline reagents in the liquid phase in case of gas-liquid dispersion system. For the purification of huge amounts of waste gases must be used inexpensive reagents (CaCO 3 suspension). The presence of the active component in the absorbent as both a solution and solid phase leads to an increase of the absorption capacity of the absorbent, but the introduction of a new process (the dissolution of the solid phase) creates conditions for a variation of the absorption mechanism (interphase mass transfer through two interphase surfaces - gas/liquid and liquid/solid). At these conditions the mass transfer resistance is distributed in the both phases, i.e. the convection-diffusion equations of SO2 (in gas and liquid phases) and CaCO 3 (in liquid phase) must be solved together. The impossibility for the solution of the convection-diffusion equations in gas-liquid dispersion system leads to the necessity of using a diffusion type of models, where the velocity and concentration distributions in column apparatuses are replaced by the average values of the velocity and concentration over the cross-sectional area of the column. The parameters in these type of models replace the effects, the radial non-uniformities of the velocity and the concentration distributions at the cross-sectional area of the column. They can be obtained, using experimental data

  9. High-efficiency SO2 removal in utility FGD systems

    International Nuclear Information System (INIS)

    Phillips, J.L.; Gray, S.; Dekraker, D.

    1995-01-01

    The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) have contracted with Radian Corporation to conduct full-scale testing, process modeling, and economic evaluations of six existing utility flue gas desulfurization (FGD) systems. The project objective is to evaluate low capital cost upgrades for achieving up to 98% sulfur dioxide (SO 2 ) removal efficiency in a variety of FGD system types. The systems include dual-loop, packed absorbers at Tampa Electric Company's Big Bend Station; cocurrent, packed absorbers at Hoosier Energy's Merom Station; dual-loop absorbers with perforated-plate trays at Southwestern Electric Power Company's Pirkey Station; horizontal spray absorbers at PSI Energy's Gibson Station; venturi scrubbers at Duquesne Light's Elrama Station; and open stray absorbers at New york State Electric and Gas Corporations's (NYSEG's) Kintigh Station. All operate in an inhibited-oxidation mode except the system at Big Bend (forced oxidation), and all use limestone reagent except the Elrama system (Mg-lime). The program was conducted to demonstrate that upgrades such as performance additives and/or mechanical modifications can increase system SO 2 removal at low cost. The cost effectiveness of each upgrade has been evaluated on the basis of test results and/or process model predictions for upgraded performance and utility-specific operating and maintenance costs. Results from this upgraded performance and utility-specific operating and maintenance costs. Results from this program may lead some utilities to use SO 2 removal upgrades as an approach for compliance with phase 2 of Title IV of the Clean Air Act Amendments (CAAA) of 1990. This paper summarizes the results of testing, modeling, and economic evaluations that have been completed since July, 1994

  10. Impediments to markets for SO2 emission allowances

    International Nuclear Information System (INIS)

    Walsh, M.; Ramesh, V.C.; Ghosh, K.

    1996-01-01

    The Clean Air Act (CAA) of 1990 imposed tighter limits on allowed emissions from electric utilities. The CAA also introduced an innovative SO 2 market mechanism to help lower the cost of compliance. The annual Environmental Protection Agency (EPA) auctions of emission allowances intended to help usher in the market mechanisms for trading allowances. In that respect, the results have been mixed. A full fledged market for emission allowances has been slow to emerge. Starting with a detailed study of the EPA auctions to date, this paper analyzes and discusses some of the reasons for this slow development

  11. Effect of SO2 Dry Deposition on Porous Dolomitic Limestones

    Directory of Open Access Journals (Sweden)

    Florica Doroftei

    2010-01-01

    Full Text Available The present study is concerned with the assessment of the relative resistance of a monumental dolomitic limestone (Laspra – Spain used as building material in stone monuments and submitted to artificial ageing by SO2 dry deposition in the presence of humidity. To investigate the protection efficiency of different polymeric coatings, three commercially available siloxane-based oligomers (Lotexan-N, Silres BS 290 and Tegosivin HL 100 and a newly synthesized hybrid nanocomposite with silsesquioxane units (TMSPMA were used. A comparative assessment of the data obtained in this study underlines that a better limestone protection was obtained when treated with the hybrid nanocomposite with silsesquioxane units.

  12. Ultrastructural study of the effect of air pollution by SO2 on the ...

    African Journals Online (AJOL)

    changes in airways has been suggested by smog incidents, but has not been evaluated by experiments. So, this study was done to answer the following questions: (1) What morphologic changes are produced by repeated injury to airway epithelial cells by SO2? (2) What is the time course of these morphologic features?

  13. Theoretical model for optical oximetry at the capillary level: exploring hemoglobin oxygen saturation through backscattering of single red blood cells

    Science.gov (United States)

    Liu, Rongrong; Spicer, Graham; Chen, Siyu; Zhang, Hao F.; Yi, Ji; Backman, Vadim

    2017-02-01

    Oxygen saturation (sO2) of red blood cells (RBCs) in capillaries can indirectly assess local tissue oxygenation and metabolic function. For example, the altered retinal oxygenation in diabetic retinopathy and local hypoxia during tumor development in cancer are reflected by abnormal sO2 of local capillary networks. However, it is far from clear whether accurate label-free optical oximetry (i.e., measuring hemoglobin sO2) is feasible from dispersed RBCs at the single capillary level. The sO2-dependent hemoglobin absorption contrast present in optical scattering signal is complicated by geometry-dependent scattering from RBCs. We present a numerical study of backscattering spectra from single RBCs based on the first-order Born approximation, considering practical factors: RBC orientations, size variation, and deformations. We show that the oscillatory spectral behavior of RBC geometries is smoothed by variations in cell size and orientation, resulting in clear sO2-dependent spectral contrast. In addition, this spectral contrast persists with different mean cellular hemoglobin content and different deformations of RBCs. This study shows for the first time the feasibility of, and provides a theoretical model for, label-free optical oximetry at the single capillary level using backscattering-based imaging modalities, challenging the popular view that such measurements are impossible at the single capillary level.

  14. Single cell elemental analysis using nuclear microscopy

    International Nuclear Information System (INIS)

    Ren, M.Q.; Thong, P.S.P.; Kara, U.; Watt, F.

    1999-01-01

    The use of Particle Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM) to provide quantitative elemental analysis of single cells is an area which has high potential, particularly when the trace elements such as Ca, Fe, Zn and Cu can be monitored. We describe the methodology of sample preparation for two cell types, the procedures of cell imaging using STIM, and the quantitative elemental analysis of single cells using RBS and PIXE. Recent work on single cells at the Nuclear Microscopy Research Centre,National University of Singapore has centred around two research areas: (a) Apoptosis (programmed cell death), which has been recently implicated in a wide range of pathological conditions such as cancer, Parkinson's disease etc, and (b) Malaria (infection of red blood cells by the malaria parasite). Firstly we present results on the elemental analysis of human Chang liver cells (ATTCC CCL 13) where vanadium ions were used to trigger apoptosis, and demonstrate that nuclear microscopy has the capability of monitoring vanadium loading within individual cells. Secondly we present the results of elemental changes taking place in individual mouse red blood cells which have been infected with the malaria parasite and treated with the anti-malaria drug Qinghaosu (QHS)

  15. New frontiers in single-cell analysis

    OpenAIRE

    Templer, Richard H.; Ces, Oscar

    2008-01-01

    For this special issue of J. R. Soc. Interface we present an overview of the driving forces behind technological advances in the field of single-cell analysis. These range from increasing our understanding of cellular heterogeneity through to the study of rare cells, areas of research that cannot be tackled effectively using current high-throughput population-based averaging techniques.

  16. Oxidation behavior of molten magnesium in atmospheres containing SO2

    International Nuclear Information System (INIS)

    Wang Xianfei; Xiong Shoumei

    2011-01-01

    Graphical abstract: Highlights: → We found the film formed on molten magnesium had a two or three layers structure. → The formation mechanism of film was investigated and a growth model was proposed. → We found the formation of MgSO 4 was critical and promoted the growth of the film. - Abstract: The microchemistry and morphology of the oxide layer formed on molten magnesium in atmospheres containing SO 2 were examined. Based on the results and the thermodynamic and kinetic calculations of oxide-growth process, a schematic oxidation mechanism is presented. The results showed that the oxide scales with network structure were generally composed of MgO, MgS, and MgSO 4 with different layers, depending on the SO 2 content, the time and the temperature. The formation of MgSO 4 was important for the formation of the protective oxide scales. The growth of the oxide scales followed the parabolic law at 973 K and was controlled by diffusion.

  17. The SO2 pollution in Madrid: Pt. 2

    International Nuclear Information System (INIS)

    Finzi, G.; Garcia, R.; Hernandez, E.

    1983-01-01

    In this work, two different stochastic models will be considered, both oriented to the real-time forecast of daily SO 2 pollution in Madrid. The first one a ''black-box'' model, in which the input-output transfer function is identified by means of the methodology given by Box and Jenkins. The second one is a ''grey-box'' model with a simple reasonable structure in accordance with the physical laws of the phenomena. Moreover, its parameters can assume different values according to the different meteorological synoptic classes defined in part I. The comparison between the performance of the two models shows that the second one is more effective in predicting the critical pollution values

  18. Anthropogenic SO2/NOx committee--current status

    International Nuclear Information System (INIS)

    Benkovitz, C.M.

    1993-04-01

    Current activities of the Anthropogenic SO 2 /NO x Committee center around the compilation of Version 1 of the GEIA inventories. These inventories will be based on the GEIA-specified 1 degrees by 1 degrees grid (lower left corner at 180 degrees W/90 degrees S, west to east and south to north), reflect 1985 emissions and consist of two data sets: Version 1A inventories with annual emissions at one level and Version 1B inventories with seasonal emissions, two vertical levels (defined at 100 m) and sectoral split information. The basic information used for both versions of the GEIA inventories will be identical; i.e., emissions totals across both inventories will be the same. Work is being carried out in two complementary working groups; Carmen Benkovitz, Brookhaven National Laboratory, Upton, NY, USA heads the work on the annual inventory, Eva Voldner, Atmospheric Environment Services, Canada and Trevor Scholtz, ORTECH International, Canada, head the work on the seasonal inventory

  19. Experimental techniques for single cell and single molecule biomechanics

    International Nuclear Information System (INIS)

    Lim, C.T.; Zhou, E.H.; Li, A.; Vedula, S.R.K.; Fu, H.X.

    2006-01-01

    Stresses and strains that act on the human body can arise either from external physical forces or internal physiological environmental conditions. These biophysical interactions can occur not only at the musculoskeletal but also cellular and molecular levels and can determine the health and function of the human body. Here, we seek to investigate the structure-property-function relationship of cells and biomolecules so as to understand their important physiological functions as well as establish possible connections to human diseases. With the recent advancements in cell and molecular biology, biophysics and nanotechnology, several innovative and state-of-the-art experimental techniques and equipment have been developed to probe the structural and mechanical properties of biostructures from the micro- down to picoscale. Some of these experimental techniques include the optical or laser trap method, micropipette aspiration, step-pressure technique, atomic force microscopy and molecular force spectroscopy. In this article, we will review the basic principles and usage of these techniques to conduct single cell and single molecule biomechanics research

  20. Single Nanowire Probe for Single Cell Endoscopy and Sensing

    Science.gov (United States)

    Yan, Ruoxue

    The ability to manipulate light in subwavelength photonic and plasmonic structures has shown great potentials in revolutionizing how information is generated, transformed and processed. Chemically synthesized nanowires, in particular, offers a unique toolbox not only for highly compact and integrated photonic modules and devices, including coherent and incoherent light sources, waveguides, photodetectors and photovoltaics, but also for new types of nanoscopic bio-probes for spot cargo delivery and in-situ single cell endoscopy and sensing. Such nanowire probes would enable us to carry out intracellular imaging and probing with high spatial resolution, monitor in-vivo biological processes within single living cells and greatly improve our fundamental understanding of cell functions, intracellular physiological processes, and cellular signal pathways. My work is aimed at developing a material and instrumental platform for such single nanowire probe. Successful optical integration of Ag nanowire plasmonic waveguides, which offers deep subwavelength mode confinement, and conventional photonic waveguides was demonstrated on a single nanowire level. The highest plasmonic-photonic coupling efficiency coupling was found at small coupling angles and low input frequencies. The frequency dependent propagation loss was observed in Ag nanowire and was confirmed by quantitative measurement and in agreement with theoretical expectations. Rational integration of dielectric and Ag nanowire waveguide components into hybrid optical-plasmonic routing devices has been demonstrated. This capability is essential for incorporating sub-100nm Ag nanowire waveguides into optical fiber based nanoprobes for single cell endoscopy. The nanoprobe system based on single nanowire waveguides was demonstrated by optically coupling semiconductor or metal nanowire with an optical fiber with tapered tip. This nanoprobe design requires minimal instrumentation which makes it cost efficient and readily

  1. Single-cell measurement of red blood cell oxygen affinity.

    Science.gov (United States)

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan

    2015-08-11

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.

  2. Making a market for SO2 emissions trading

    International Nuclear Information System (INIS)

    Solomon, B.D.; Rose, K.

    1992-01-01

    Under the innovative, market-based approach to acid rain control included in the Clean Air Act amendments of 1990 (CAAA), sulfur dioxide emission allowances allocated to existing electric utility sources of these emissions can be used by utilities, banked for future use, or sold or traded to other users. Most power plants that burn fossil fuels will need to obtain an adequate supply of allowances from the market of EPA-sponsored auctions to cover their future emissions. This article addresses the respective roles of regulators and the private sector in facilitating a market for SO 2 emission allowances. In previous work, the authors have argued that state public utility commissions should seize the opportunity to encourage utilities to facilitate the allowance market. Yet it is the nature of new markets that many potential participants (including regulators) are risk-averse and wait for others to make the first move. Taken to the extreme, such behavior is a prescription for failure. The authors stated purpose is both to offer a perspective on how to make a market for what was previously considered an externality, as well as to stimulate debate among the various players and elicit better ideas. In fact, much more may be at stake. The success or failure of the emissions trading program could well set a benchmark for future environmental protection efforts in the US and globally

  3. SO2 policy and input substitution under spatial monopoly

    International Nuclear Information System (INIS)

    Gerking, Shelby; Hamilton, Stephen F.

    2010-01-01

    Following the U.S. Clean Air Act Amendments of 1990, electric utilities dramatically increased their utilization of low-sulfur coal from the Powder River Basin (PRB). Recent studies indicate that railroads hauling PRB coal exercise a substantial degree of market power and that relative price changes in the mining and transportation sectors were contributing factors to the observed pattern of input substitution. This paper asks the related question: To what extent does more stringent SO 2 policy stimulate input substitution from high-sulfur coal to low-sulfur coal when railroads hauling low-sulfur coal exercise spatial monopoly power? The question underpins the effectiveness of incentive-based environmental policies given the essential role of market performance in input, output, and abatement markets in determining the social cost of regulation. Our analysis indicates that environmental regulation leads to negligible input substitution effects when clean and dirty inputs are highly substitutable and the clean input market is mediated by a spatial monopolist. (author)

  4. Debunking the myths: Natural gas and SO2 allowance solutions

    International Nuclear Information System (INIS)

    Roberts, G.D. Jr.

    1993-01-01

    During the decade of the 1990's and beyond, natural gas is expected to be the fuel of choice for a significant portion of new generation capacity. Natural gas already enjoys a greater than 50% market share as a fuel source in the non-regulated cogeneration and Independent Power Producer market. With the new administration in Washington, increased environmental focus will likely increase the attractiveness of natural gas based capacity expansions. While these various issues may appear to contribute to making this decade, the decade for natural gas, there are a number of challenges that must be met if the natural gas and power generation industries are going to satisfy the ever increasing needs of the marketplace. These challenges include: (1) myths of natural gas supply availability, (2) transportation and operational coordination issues, (3) uncertainty of price and reliability, and (4) natural gas for NO x and SO 2 compliance. The author believes that these challenges are actively being met and that there are existing solutions already being offered and incorporated into contracts by natural gas suppliers. The focus of this paper is how electric utilities need to become comfortable with the new natural gas industry and how services can be structured to meet these challenges of serving the electric market requirements

  5. Capillary Electrophoretic Technologies for Single Cell Metabolomics

    Science.gov (United States)

    Lapainis, Theodore E.

    2009-01-01

    Understanding the functioning of the brain is hindered by a lack of knowledge of the full complement of neurotransmitters and neuromodulatory compounds. Single cell measurements aid in the discovery of neurotransmitters used by small subsets of neurons that would be diluted below detection limits or masked by ubiquitous compounds when working with…

  6. Observation of SO2 degassing at Stromboli volcano using a hyperspectral thermal infrared imager

    Science.gov (United States)

    Smekens, Jean-François; Gouhier, Mathieu

    2018-05-01

    Thermal infrared (TIR) imaging is a common tool for the monitoring of volcanic activity. Broadband cameras with increasing sampling frequency give great insight into the physical processes taking place during effusive and explosive event, while Fourier transform infrared (FTIR) methods provide high resolution spectral information used to assess the composition of volcanic gases but are often limited to a single point of interest. Continuing developments in detector technology have given rise to a new class of hyperspectral imagers combining the advantages of both approaches. In this work, we present the results of our observations of volcanic activity at Stromboli volcano with a ground-based imager, the Telops Hyper-Cam LW, when used to detect emissions of sulfur dioxide (SO2) produced at the vent, with data acquired at Stromboli volcano (Italy) in early October of 2015. We have developed an innovative technique based on a curve-fitting algorithm to quickly extract spectral information from high-resolution datasets, allowing fast and reliable identification of SO2. We show in particular that weak SO2 emissions, such as inter-eruptive gas puffing, can be easily detected using this technology, even with poor weather conditions during acquisition (e.g., high relative humidity, presence of fog and/or ash). Then, artificially reducing the spectral resolution of the instrument, we recreated a variety of commonly used multispectral configurations to examine the efficiency of four qualitative SO2 indicators based on simple Brightness Temperature Difference (BTD). Our results show that quickly changing conditions at the vent - including but not limited to the presence of summit fog - render the establishment of meaningful thresholds for BTD indicators difficult. Building on those results, we propose recommendations on the use of multispectral imaging for SO2 monitoring and routine measurements from ground-based instruments.

  7. Assessing T cell differentiation at the single-cell level

    NARCIS (Netherlands)

    Gerlach, Carmen

    2012-01-01

    This thesis describes the development and use of a novel technology for single-cell fate mapping, called cellular barcoding. With this technology, unique and heritable genetic tags (barcodes) are introduced into naïve T cells. Using cellular barcoding, we investigated I) how different

  8. Single-Cell RNA Sequencing of Glioblastoma Cells.

    Science.gov (United States)

    Sen, Rajeev; Dolgalev, Igor; Bayin, N Sumru; Heguy, Adriana; Tsirigos, Aris; Placantonakis, Dimitris G

    2018-01-01

    Single-cell RNA sequencing (sc-RNASeq) is a recently developed technique used to evaluate the transcriptome of individual cells. As opposed to conventional RNASeq in which entire populations are sequenced in bulk, sc-RNASeq can be beneficial when trying to better understand gene expression patterns in markedly heterogeneous populations of cells or when trying to identify transcriptional signatures of rare cells that may be underrepresented when using conventional bulk RNASeq. In this method, we describe the generation and analysis of cDNA libraries from single patient-derived glioblastoma cells using the C1 Fluidigm system. The protocol details the use of the C1 integrated fluidics circuit (IFC) for capturing, imaging and lysing cells; performing reverse transcription; and generating cDNA libraries that are ready for sequencing and analysis.

  9. Dissecting stem cell differentiation using single cell expression profiling

    OpenAIRE

    Moignard, Victoria Rachel; Göttgens, Berthold

    2016-01-01

    Many assumptions about the way cells behave are based on analyses of populations. However, it is now widely recognized that even apparently pure populations can display a remarkable level of heterogeneity. This is particularly true in stem cell biology where it hinders our understanding of normal development and the development of strategies for regenerative medicine. Over the past decade technologies facilitating gene expression analysis at the single cell level have become widespread, provi...

  10. Sulfur dioxide (SO2 from MIPAS in the upper troposphere and lower stratosphere 2002–2012

    Directory of Open Access Journals (Sweden)

    M. Höpfner

    2015-06-01

    Full Text Available Vertically resolved distributions of sulfur dioxide (SO2 with global coverage in the height region from the upper troposphere to ~20 km altitude have been derived from observations by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on Envisat for the period July 2002 to April 2012. Retrieved volume mixing ratio profiles representing single measurements are characterized by typical errors in the range of 70–100 pptv and by a vertical resolution ranging from 3 to 5 km. Comparison with observations by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS revealed a slightly varying bias with altitude of −20 to 50 pptv for the MIPAS data set in case of volcanically enhanced concentrations. For background concentrations the comparison showed a systematic difference between the two major MIPAS observation periods. After debiasing, the difference could be reduced to biases within −10 to 20 pptv in the altitude range of 10–20 km with respect to ACE-FTS. Further comparisons of the debiased MIPAS data set with in situ measurements from various aircraft campaigns showed no obvious inconsistencies within a range of around ±50 pptv. The SO2 emissions of more than 30 volcanic eruptions could be identified in the upper troposphere and lower stratosphere (UTLS. Emitted SO2 masses and lifetimes within different altitude ranges in the UTLS have been derived for a large part of these eruptions. Masses are in most cases within estimations derived from other instruments. From three of the major eruptions within the MIPAS measurement period – Kasatochi in August 2008, Sarychev in June 2009 and Nabro in June 2011 – derived lifetimes of SO2 for the altitude ranges 10–14, 14–18 and 18–22 km are 13.3 ± 2.1, 23.6 ± 1.2 and 32.3 ± 5.5 days respectively. By omitting periods with obvious volcanic influence we have derived background mixing ratio distributions of SO2. At 10 km altitude these indicate an annual

  11. Online analysis of H2S and SO2 via advanced mid-infrared gas sensors.

    Science.gov (United States)

    Petruci, João Flavio da Silveira; Wilk, Andreas; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2015-10-06

    Volatile sulfur compounds (VSCs) are among the most prevalent emitted pollutants in urban and rural atmospheres. Mainly because of the versatility of sulfur regarding its oxidation state (2- to 6+), VSCs are present in a wide variety of redox-environments, concentration levels, and molar ratios. Among the VSCs, hydrogen sulfide and sulfur dioxide are considered most relevant and have simultaneously been detected within naturally and anthropogenically caused emission events (e.g., volcano emissions, food production and industries, coal pyrolysis, and various biological activities). Next to their presence as pollutants, changes within their molar ratio may also indicate natural anomalies. Prior to analysis, H2S- and SO2-containing samples are usually preconcentrated via solid sorbents and are then detected by gas chromatographic techniques. However, such analytical strategies may be of limited selectivity, and the dimensions and operation modalities of the involved instruments prevent routine field usage. In this contribution, we therefore describe an innovative portable mid-infrared chemical sensor for simultaneously determining and quantifying gaseous H2S and SO2 via coupling a substrate-integrated hollow waveguides (iHWG) serving as a highly miniaturized mid-infrared photon conduit and gas cell with a custom-made preconcentration tube and an in-line UV-converter device. Both species were collected onto a solid sorbent within the preconcentrator and then released by thermal desorption into the UV-device. Hydrogen sulfide is detected by UV-assisted quantitative conversion of the rather weak IR-absorber H2S into SO2, which provides a significantly more pronounced and distinctively detectable rovibrational signature. Modulation of the UV-device system (i.e., UV-lamp on/off) enables discriminating between SO2 generated from H2S conversion and abundant SO2 signals. After optimization of the operational parameters, calibrations in the range of 0.75-10 ppmv with a limit

  12. 40 CFR 96.286 - Withdrawal from CAIR SO2 Trading Program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from CAIR SO2 Trading... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR SO2 Opt-in Units § 96.286 Withdrawal from CAIR SO2 Trading Program. Except as provided...

  13. 40 CFR 97.286 - Withdrawal from CAIR SO2 Trading Program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from CAIR SO2 Trading... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR SO2 Opt-in Units § 97.286 Withdrawal from CAIR SO2 Trading Program. Except as provided under paragraph (g) of...

  14. 40 CFR 96.253 - Recordation of CAIR SO2 allowances.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Recordation of CAIR SO2 allowances. 96... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR SO2 Allowance Tracking System § 96.253 Recordation of CAIR SO2 allowances. (a)(1) After a...

  15. Responses of plants to sulfur containing air pollutants (H2S and SO2)

    NARCIS (Netherlands)

    Maas, Franciscus Marie

    1987-01-01

    Effects of air pollution by hydrogen sulfide (H2S) and sulfur dioxide (SO2) were already reported more than half a century ago. The wider range of pollution by SO2 is reflected in the number of publications concerning effects of SO2 on plants. The major part of the reported studies effects of SO2

  16. 40 CFR 97.253 - Recordation of CAIR SO2 allowances.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Recordation of CAIR SO2 allowances. 97... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR SO2 Allowance Tracking System § 97.253 Recordation of CAIR SO2 allowances. (a)(1) After a compliance account is...

  17. Double C-H activation of ethane by metal-free SO2*+ radical cations.

    Science.gov (United States)

    de Petris, Giulia; Cartoni, Antonella; Troiani, Anna; Barone, Vincenzo; Cimino, Paola; Angelini, Giancarlo; Ursini, Ornella

    2010-06-01

    The room-temperature C-H activation of ethane by metal-free SO(2)(*+) radical cations has been investigated under different pressure regimes by mass spectrometric techniques. The major reaction channel is the conversion of ethane to ethylene accompanied by the formation of H(2)SO(2)(*+), the radical cation of sulfoxylic acid. The mechanism of the double C-H activation, in the absence of the single activation product HSO(2)(+), is elucidated by kinetic studies and quantum chemical calculations. Under near single-collision conditions the reaction occurs with rate constant k=1.0 x 10(-9) (+/-30%) cm(3) s(-1) molecule(-1), efficiency=90%, kinetic isotope effect k(H)/k(D)=1.1, and partial H/D scrambling. The theoretical analysis shows that the interaction of SO(2)(*+) with ethane through an oxygen atom directly leads to the C-H activation intermediate. The interaction through sulfur leads to an encounter complex that rapidly converts to the same intermediate. The double C-H activation occurs by a reaction path that lies below the reactants and involves intermediates separated by very low energy barriers, which include a complex of the ethyl cation suitable to undergo H/D scrambling. Key issues in the observed reactivity are electron-transfer processes, in which a crucial role is played by geometrical constraints. The work shows how mechanistic details disclosed by the reactions of metal-free electrophiles may contribute to the current understanding of the C-H activation of ethane.

  18. Effects of sulphur dioxide (SO2) on growth and flowering of SO2-tolerant and non-tolerant genotypes of Phleum pratense.

    Science.gov (United States)

    Clapperton, M J; Reid, D M

    1994-01-01

    The objective of this study was to compare the growth and interaction of clipping and sulphur dioxide (SO(2)) exposure on SO(2)-tolerant and non-tolerant genotypes of Phleum pratense at two field sites along an SO(2)-concentration gradient. Sulphur-dioxide-tolerant and non-tolerant genotypes of Phleum pratense were identified from indigenous populations that had been collected along the same SO(2)-concentration gradient in southern Alberta, Canada. Physiological differences between the two genotypes were confirmed by supplying leaves with (14)CO(2) and examining the assimilate partitioning between the genotypes. For the field experiment, clones of each genotype and seedlings grown from commercial seed were planted at two different field sites along an SO(2)-emission gradient. There were no differences in growth between the genotypes at the two field sites after the first year except that the SO(2)-tolerant clones had a greater percentage of root length colonised by vesicular-arbuscular (VA) mycorrhizal fungi. After the second growing season, there was a significant decrease in the number of inflorescences produced by plants exposed to SO(2), particularly by the non-tolerant genotype. The added stress of defoliation appeared to increase the sensitivity of flowering to SO(2), again particularly in the non-tolerant genotype. The results of the field study showed that flowering as opposed to vegetative plant growth was more sensitive to long-term low-concentration SO(2) exposure and that this sensitivity was compounded by the stress interaction of defoliation.

  19. Gravisensing in single-celled systems

    Science.gov (United States)

    Braun, M.; Limbach, C.

    Single-celled systems are favourable cell types for studying several aspects of gravisensing and gravitropic responses. Whether and how actin is involved in both processes in higher plant statocytes is still a matter of intensive debate. In single-celled and tip-growing characean rhizoids and protonemata, however, there is clear evidence that actin is a central keyplayer controlling polarized growth and the mechanisms of gravity sensing and growth reorientation. Both cell types exhibit a unique actin polymerization in the extending tip, strictly colocalized with the prominent ER-aggregate in the center of the Spitzenkoerper. The local accumulation of ADF and profilin in this central array suggest that actin polymerization is controlled by these actin-binding proteins, which can be regulated by calcium, pH and a variety of other parameters. Distinct actin filaments extend even into the outermost tip and form a dense meshwork in the apical and subapical region, before they become bundled by villin to form two populations of thick actin cables that generate rotational cytoplasmic streaming in the basal region. Actomyosin not only mediates the delivery of secretory vesicles to the growing tip and controls the incorporation pattern of cell wall material, but also coordinates the tip-focused distribution pattern of calcium channels in the apical membrane. They establish the tip-high calcium gradient, a prerequisite for exocytosis. Microgravity experiments have added much to our understanding that both cell types use an efficient actomyosin-based system to control and correct the position of their statoliths and to direct sedimenting statoliths to confined graviperception sites at the plasma membrane. Actin's involvement in the graviresponses is more indirect. The upward growth of negatively gravitropic protonemata was shown to be preceded by a statolith-induced relocalization the Ca2+-calcium gradient to the upper flank that does not occur in positively gravitropic

  20. Oxidation of SO2 and formation of water droplets under irradiation of 20MeV protons in N2/H2O/SO2

    DEFF Research Database (Denmark)

    Tomita, Shigeo; Nakai, Yoichi; Funada, Shuhei

    2015-01-01

    We have performed an experiment on charged droplet formation in a humidified N2 gas with trace SO2 concentration and induced by 20MeV proton irradiation. It is thought that SO2 reacts with the chemical species, such as OH radicals, generated through the reactions triggered by N2+ production. Both...

  1. Aerosol formation on the flash photolysis of SO2/gas mixtures

    International Nuclear Information System (INIS)

    Fogel, L.D.; Sutherland, J.W.

    1979-01-01

    A long-lived transient absorption observed on the flash photolysis of SO 2 /gas mixtures at lambda> or =190 nm has been identified as resulting from light scattering by H 2 SO 4 aerosols. No detectable signals were monitored on photolysis at lambda> or =270 nm, indicating that the aerosol precursors originated from the promotion of SO 2 into its second singlet level and into its dissociation continuum. The SO 3 that was formed was hydrated immediately to yield H 2 SO 4 vapor in a highly supersaturated state and heteromolecular homogeneous nucleation to produce H 2 SO 4 aerosols ensued. This nucleation was quenched rapidly as the acid vapor was consumed by further nucleation, by condensation, and by vapor diffusion to the cell walls. A model was formulated in which the condensations of the H 2 SO 4 and the H 2 O vapors on the growing droplets were considered kinetically negligible and the particles grew by coagulation; simultaneously, they were lost by tranquil gravitational settling and by diffusion to the cell walls. Computer simulations demonstrated that the observed time dependence of the absorbance data (measured at a fixed wavelength) could be accounted for by this scheme. The effects of temperature, pressure, and wavelength (of the analyzing light) were also described satisfactorily by this model

  2. Sulphur dioxide (SO2) electrotransfer in electric field generated by corona discharge

    International Nuclear Information System (INIS)

    Wang, Zu-wu; Guo, Jia; Zeng, Han-cai; Ge, Chun-liang; Yu, Jiang

    2007-01-01

    The mechanism of the forming SO 2 negative ions and their electrotransfer in the corona discharge electric field was investigated in this paper. The experimental results showed that SO 2 electrotransfer occurred in the electric field with corona discharge, which had potential applications in removal of SO 2 of the flue gas from coal-fired power plants by electrotransfer. SO 2 electrotransfer was enhanced by higher electric-field intensity or a larger discharging area. Assistant uniform electric field after the corona discharge electric field would improve SO 2 electrotransfer. The increment of the desulphurization efficiency by SO 2 electrotransfer might reach as high as 50%. (author)

  3. Biological Evaluation of Single Cell Protein

    International Nuclear Information System (INIS)

    Hasan, I.A.; Mohamed, N.E.; El-Sayed, E.A.; Younis, N.A.

    2011-01-01

    In this study, the nutritional value of single cell protein (SCP) was evaluated as a non conventional protein source produced by fermenting fungal local strains of Trichoderma longibrachiatum, Aspergillus niger, Aspergillus terreus and Penicillium funiculosum with alkali treated sugar cane bagasse. Amino acid analysis revealed that the produced SCP contains essential and non essential amino acids. Male mice were fed on normal (basal) diet which contains 18% conventional protein and served as control group. In the second (T1) and the third (T2) group, the animals were fed on a diet in which 15% and 30% of conventional protein source were replaced by SCP, respectively. At intervals of 15, 30, 45 and 60 days, mice were sacrificed and the blood samples were collected for the biochemical evaluation. The daily averages of body weight were significantly higher with group T2 than group T1. Where as, the kidney weights in groups (T1) and (T2) were significantly increased as compared with control. A non significant difference between the tested groups in the enzyme activities of AST, ALT and GSH content of liver tissue were recorded. While, cholesterol and triglycerides contents showed a significant decrease in both (T1) and (T2) groups as compared with control. The recorded values of the serum hormone (T4), ALP activities, albumin and A/G ratio did not changed by the previous treatments. Serum levels of total protein, urea, creatinine and uric acid were higher for groups (T1) and (T2) than the control group. In conclusion, partial substitution of soy bean protein in mice diet with single cell protein (15%) improved the mice growth without any adverse effects on some of the physiological functions tested

  4. Micro-PIXE for single cell analysis

    International Nuclear Information System (INIS)

    Ortega, Richard

    2012-01-01

    The knowledge of the intracellular distribution of biological relevant metals is important to understand their mechanisms of action in cells, either for physiological, toxicological or pathological processes. However, the direct detection of trace metals in single cells is a challenging task that requires sophisticated analytical developments. The combination of micro-PIXE with RBS and STIM (Scanning Transmission Ion Microscopy) allows the quantitative determination of trace metal content within sub-cellular compartments. The application of STIM analysis provides high spatial resolution imaging (< 200 nm) and excellent mass sensitivity (< 0.1 ng). Application of the STIM-PIXE-RBS methodology is absolutely needed when organic mass loss appears during PIXE-RBS irradiation. This combination of STIM-PIXE-RBS provides fully quantitative determination of trace element content, expressed in μg/g, which is a quite unique capability for micro-PIXE compared to other micro-analytical methods such as the electron and synchrotron x-ray fluorescence. Examples of micro-PIXE studies for sub-cellular imaging of trace elements in various fields of interest will be presented: in patho-physiology of trace elements involved in neurodegenerative diseases such as Parkinson's disease, and in toxicology of metals such as cobalt. (author)

  5. SO2 and NO removal from flue gas over V2O5/AC at lower temperatures - role of V2O5 on SO2 removal

    International Nuclear Information System (INIS)

    Ma, Jianrong; Liu, Zhenyu; Liu, Qingya; Guo, Shijie; Huang, Zhanggen; Xiao, Yong

    2008-01-01

    Supporting V 2 O 5 onto an activated coke (AC) has been reported to significantly increase the AC's activity in simultaneous SO 2 and NO removal from flue gas. To understand the role of V 2 O 5 on SO 2 removal, V 2 O 5 /AC is studied through SO 2 removal reaction, surface analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) techniques. It is found that the main role of V 2 O 5 in SO 2 removal over V 2 O 5 /AC is to catalyze SO 2 oxidation through a VOSO 4 -like intermediate species, which reacts with O 2 to form SO 3 and V 2 O 5 . The SO 3 formed transfers from the V sites to AC sites and then reacts with H 2 O to form H 2 SO 4 . At low V 2 O 5 loadings, a V atom is able to catalyze as many as 8 SO 2 molecules to SO 3 . At high V 2 O 5 loadings, however, the number of SO 2 molecules catalyzed by a V atom is much less, due possibly to excessive amounts of V 2 O 5 sites in comparison to the pores available for SO 3 and H 2 SO 4 storage. (author)

  6. Lyman Alpha Camera for Io's SO2 atmosphere and Europa's water plumes

    Science.gov (United States)

    McEwen, Alfred S.; Sandel, Bill; Schneider, Nick

    2014-05-01

    The Student Lyman-Alpha Mapper (SLAM) was conceived for the Io Volcano Observer (IVO) mission proposal (McEwen et al., 2014) to determine the spatial and temporal variations in Io's SO2 atmosphere by recording the H Ly-α reflection over the disk (Feldman et al., 2000; Feaga et al., 2009). SO2 absorbs at H Ly-α, thereby modulating the brightness of sunlight reflected by the surface, and measures the density of the SO2 atmosphere and its variability with volcanic activity and time of day. Recently, enhancements at the Ly-α wavelength (121.57 nm) were seen near the limb of Europa and interpreted as active water plumes ~200 km high (Roth et al., 2014). We have a preliminary design for a very simple camera to image in a single bandpass at Ly-α, analogous to a simplified version of IMAGE EUV (Sandel et al. 2000). Our goal is at least 50 resolution elements across Io and/or Europa (~75 km/pixel), ~3x better than HST STIS, to be acquired at a range where the radiation noise is below 1E-4 hits/pixel/s. This goal is achieved with a Cassegrain-like telescope with a 10-cm aperture. The wavelength selection is achieved using a simple self-filtering mirror in combination with a solar-blind photocathode. A photon-counting detector based on a sealed image intensifier preserves the poisson statistics of the incoming photon flux. The intensifier window is coated with a solar-blind photocathode material (CsI). The location of each photon event is recorded by a position-sensitive anode based on crossed delay-line or wedge-and-strip technology. The sensitivity is 0.01 counts/pixel/sec/R, sufficient to estimate SO2 column abundances ranging from 1E15 to 1E17 per cm2 in a 5 min (300 sec) exposure. Sensitivity requirements to search for and image Europa plumes may be similar. Io's Ly-α brightness of ~3 kR exceeds the 0.8 kR brightness of Europa's plume reported by Roth et al. (2014), but the plume brightness is a direct measurement rather than inferring column abundance from

  7. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    be considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...... cantilever coated with the commercial cell adhesive CellTakTM. We applied the method to study adhesion of living cells to abiotic surfaces at the single-cell level. Immobilisation of single bacterial cells to the cantilever was stable for several hours, and viability was confirmed by Live/Dead staining...... on the adhesion force, we explored the bond formation and adhesive strength of four different bacterial strains towards three abiotic substrates with variable hydrophobicity and surface roughness. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time...

  8. In-Situ Detection of SO2 Plumes in Costa Rica from Turrialba Volcano using Balloon-borne Sondes

    Science.gov (United States)

    Diaz, J. A.; Selkirk, H. B.; Morris, G. A.; Krotkov, N. A.; Pieri, D. C.; Corrales, E.

    2012-12-01

    The Turrialba Volcano near San Jose, Costa Rica regularly emits plumes containing SO2. These plumes have been detected by the Ozone Monitoring Instrument (OMI), and evidence of these plumes has also appeared in the in-situ Ticosonde project record: a continuous balloon-borne ozonesonde launch experiment conducted in a weekly basis in Costa Rica. In the case of the latter, the interference reaction of SO2 in the cathode cell of the standard electrochemical concentration cell (ECC) ozonesonde results in apparent "notches" in the ozone profile at the altitudes of the plume. In this paper, we present an overview of the Ticosonde observations and correlate the appearance of the notches with air mass back trajectory calculations that link the profiles features to emissions from the volcano. In addition, during February 2012, we deployed the dual O3/SO2 sonde from the University of Costa Rica and detected a plume of SO2 linked by back trajectory calcluations to Turrialba as well as an urban plume resulting from diesel exhaust in the boundary layer. The integrated column SO2 from the sonde profile data agree well with the OMI overpass data for this event. Data from a tethersonde measurement two days prior to the dual sonde reveal concentrations at the ppm level at the volcanic source.

  9. 76 FR 79541 - Revisions to Final Response to Petition From New Jersey Regarding SO2

    Science.gov (United States)

    2011-12-22

    ... Revisions to Final Response to Petition From New Jersey Regarding SO2 Emissions From the Portland Generating... Jersey Regarding SO2 Emissions From the Portland Generating Station (Portland) published November 7, 2011... Final Response to Petition From New Jersey Regarding SO2 Emissions From the Portland Generating Station...

  10. 40 CFR 60.4330 - What emission limits must I meet for sulfur dioxide (SO2)?

    Science.gov (United States)

    2010-07-01

    ... sulfur dioxide (SO2)? 60.4330 Section 60.4330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sulfur dioxide (SO2)? (a) If your turbine is located in a continental area, you must comply with either... gases which contain SO2 in excess of 110 nanograms per Joule (ng/J) (0.90 pounds per megawatt-hour (lb...

  11. 40 CFR 73.19 - Certain units with declining SO2 rates.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Certain units with declining SO2 rates... declining SO2 rates. (a) Eligibility. A unit is eligible for allowance allocations under this section if it... generator with nameplate capacity equal to or greater than 75 MWe; (3) Its 1985 actual SO2 emissions rate...

  12. NO2-initiated multiphase oxidation of SO2 by O2 on CaCO3 particles

    Science.gov (United States)

    Yu, Ting; Zhao, Defeng; Song, Xiaojuan; Zhu, Tong

    2018-05-01

    The reaction of SO2 with NO2 on the surface of aerosol particles has been suggested to be important in sulfate formation during severe air pollution episodes in China. However, we found that the direct oxidation of SO2 by NO2 was slow and might not be the main reason for sulfate formation in ambient air. In this study, we investigated the multiphase reaction of SO2 with an O2 / NO2 mixture on single CaCO3 particles using Micro-Raman spectroscopy. The reaction converted the CaCO3 particle to a Ca(NO3)2 droplet, with CaSO4 ⚫ 2H2O solid particles embedded in it, which constituted a significant fraction of the droplet volume at the end of the reaction. The reactive uptake coefficient of SO2 for sulfate formation was on the order of 10-5, which was higher than that for the multiphase reaction of SO2 directly with NO2 by 2-3 orders of magnitude. According to our observations and the literature, we found that in the multiphase reaction of SO2 with the O2 / NO2 mixture, O2 was the main oxidant of SO2 and was necessary for radical chain propagation. NO2 acted as the initiator of radical formation, but not as the main oxidant. The synergy of NO2 and O2 resulted in much faster sulfate formation than the sum of the reaction rates with NO2 and with O2 alone. We estimated that the multiphase oxidation of SO2 by O2 initiated by NO2 could be an important source of sulfate and a sink of SO2, based on the calculated lifetime of SO2 regarding the loss through the multiphase reaction versus the loss through the gas-phase reaction with OH radicals. Parameterization of the reactive uptake coefficient of the reaction observed in our laboratory for further model simulation is needed, as well as an integrated assessment based on field observations, laboratory study results, and model simulations to evaluate the importance of the reaction in ambient air during severe air pollution episodes, especially in China.

  13. Top-down NOx and SO2 emissions simultaneously estimated from different OMI retrievals and inversion frameworks

    Science.gov (United States)

    Qu, Z.; Henze, D. K.; Wang, J.; Xu, X.; Wang, Y.

    2017-12-01

    Quantifying emissions trends of nitrogen oxides (NOx) and sulfur dioxide (SO2) is important for improving understanding of air pollution and the effectiveness of emission control strategies. We estimate long-term (2005-2016) global (2° x 2.5° resolution) and regional (North America and East Asia at 0.5° x 0.667° resolution) NOx emissions using a recently developed hybrid (mass-balance / 4D-Var) method with GEOS-Chem. NASA standard product and DOMINO retrievals of NO2 column are both used to constrain emissions; comparison of these results provides insight into regions where trends are most robust with respect to retrieval uncertainties, and highlights regions where seemingly significant trends are retrieval-specific. To incorporate chemical interactions among species, we extend our hybrid method to assimilate NO2 and SO2 observations and optimize NOx and SO2 emissions simultaneously. Due to chemical interactions, inclusion of SO2 observations leads to 30% grid-scale differences in posterior NOx emissions compared to those constrained only by NO2 observations. When assimilating and optimizing both species in pseudo observation tests, the sum of the normalized mean squared error (compared to the true emissions) of NOx and SO2 posterior emissions are 54-63% smaller than when observing/constraining a single species. NOx and SO2 emissions are also correlated through the amount of fuel combustion. To incorporate this correlation into the inversion, we optimize seven sector-specific emission scaling factors, including industry, energy, residential, aviation, transportation, shipping and agriculture. We compare posterior emissions from inversions optimizing only species' emissions, only sector-based emissions, and both species' and sector-based emissions. In situ measurements of NOx and SO2 are applied to evaluate the performance of these inversions. The impacts of the inversion on PM2.5 and O3 concentrations and premature deaths are also evaluated.

  14. Catalytic conversion of CO, NO and SO2 on supported sulfide catalysts. Part 2. Catalytic reduction of NO and SO2 by CO

    International Nuclear Information System (INIS)

    Zhuang, S.-X.; Yamazaki, M.; Omata, K.; Takahashi, Y.; Yamada, M.

    2001-01-01

    To investigate the possibility of simultaneous catalytic reduction of NO and SO 2 by CO, reactions of NO, NO-CO, and NO-SO 2 -CO were performed on γ-alumina-supported sulfides of transition metals including Co, Mo, CoMo and FeMo. NO was decomposed into N 2 O and N 2 accompanied with the formation of SO 2 ; this serious oxidation of lattice sulfur resulted in the deactivation of the catalysts. The addition of CO to the NO stream suppressed SO 2 formation and yielded COS instead. A stoichiometric conversion of NO and CO to N 2 and CO 2 was observed above 350C on the CoMo and the FeMo catalysts. Although the CO addition lengthened catalyst life, it was not enough to maintain activity. After the NO-CO reaction, an XPS analysis showed the growth of Mo 6+ and SO 4 2- peaks, especially for the sulfided FeMo/Al 2 O 3 ; the FeMo catalyst underwent strong oxidation in the NO-CO reaction. The NO and the NO-CO reactions proceeded non-catalytically, consuming catalyst lattice sulfur to yield SO 2 or COS. The addition of SO 2 in the NO-CO system enabled in situ regeneration of the catalysts; the catalysts oxidized through abstraction of lattice sulfur experienced anew reduction and sulfurization through the SO 2 -CO reaction at higher temperature. NO and SO 2 were completely and catalytically converted at 400C on the sulfided CoMo/Al 2 O 3 . By contrast, the sulfided FeMo/Al 2 O 3 was easily oxidized by NO and hardly re-sulfided under the test conditions. Oxidation states of the metals before and after the reactions were determined. Silica and titania-supported CoMo catalysts were also evaluated to study support effects

  15. A performance study of simultaneous microbial removal of no and SO2 in a biotrickling-filter under anaerobic condition

    Directory of Open Access Journals (Sweden)

    Yaqiong Han

    2011-06-01

    Full Text Available The behaviors of simultaneous removal of NO and SO2 using the coculture of anaerobic denitrifying bacteria and sulfate reducing bacteria was investigated in a bench-scale biotrickling-filter. When the combined NO/SO2 removal biotrickling-filter was operated at an empty bed residence time of 76 s with NO and SO2 feed concentrations of 2 and 2 g/m3, respectively, the SO2 removal efficiency was always above 95%, while NO removal exhibited an evident periodicity of 5-6 days for the initial 60 days after the attachment phase. A steady-state NO-removal efficiency of around 90% was obtained after 130 days of continuous operation. Experimental results indicated that the coculture in the combined NO/SO2 removal biotrickling-filter showed a higher resistance to shock NO-loadings and a better tolerance to starvation than the single denitrifying bacteria in the NO removal biotrickling-filter.

  16. Single cell protein from mandarin orange peel

    Energy Technology Data Exchange (ETDEWEB)

    Mishio, M.; Magai, J.

    1981-01-01

    As the hydrolysis of mandarin orange peel with macerating enzyme (40 degrees C, 24 h) produced 0.59 g g-1 reducing sugar per dry peel compared to 0.36 by acid-hydrolysis (15 min at 120 degrees C with 0.8 N H2S04), the production of single cell protein (SCP) from orange peel was studied mostly using enzymatically hydrolyzed orange peel. When the enzymatically hydrolyzed peel media were used, the utilization efficiency of reducing sugars (%) and the growth yield from reducing sugars (g g-1) were: 63 and 0.51 for Saccharomyces cerevisiae; 56 and 0.48 for Candida utilis; 74 and 0.69 for Debaryomyces hansenii and 64 and 0.70 for Rhodotorula glutinis. SCP production from orange peel by D. hansenii and R. glutinis were further studied. Batch cultures for 24 h at 30 degrees C using 100g dried orange peel produced 45 g of dried cultivated peel (protein content, 33%) with D. hansenii and 34 g (protein content, 50%) with R. glutinis, and 38 g (protein content, 44%) with a mixture of both yeasts. (Refs. 12).

  17. Impact of burning oil as auxiliary fuel in kraft recovery furnaces upon SO2 emissions

    International Nuclear Information System (INIS)

    Someshwar, A.V.; Caron, A.L.; Pinkerton, J.E.

    1990-01-01

    The relationship between burning medium sulfur oil as auxiliary fuel in kraft recovery furnaces and SO 2 emissions was examined. Analysis of long-term CEMS SO 2 data from four furnaces shows no increase in SO 2 emissions as a result of oil burning. The results of field tests conducted at four furnaces while co-firing oil with liquor (up to 34% of total heat input) show that (1) average SO 2 emissions during the oil firing period either decreased or remained unchanged; (2) the overall sulfur retention within the furnace remained consistently high (more than 90%) with increasing levels of oil burning; (3) apportioning stack SO 2 emissions between those derived from oil and black liquor was infeasible. The results indicate that the same alkali fume generation processes that lead to the efficient capture of SO 2 resulting from black liquor combustion may be responsible for the capture of SO 2 resulting from sulfur-containing oil combustion

  18. SO2 columns over China: Temporal and spatial variations using OMI and GOME-2 observations

    Science.gov (United States)

    Huanhuan, Yan; Liangfu, Chen; Lin, Su; Jinhua, Tao; Chao, Yu

    2014-03-01

    Enhancements of SO2 column amounts due to anthropogenic emission sources over China were shown in this paper by using OMI and GOME-2 observations. The temporal and spatial variations of SO2 columns over China were analyzed for the time period 2005-2010. Beijing and Chongqing showed a high concentration in the SO2 columns, attributable to the use of coal for power generation in China and the characteristic of terrain and meteorology. The reduction of SO2 columns over Beijing and surrounding provinces in 2008 was observed by OMI, which confirms the effectiveness of strict controls on pollutant emissions and motor vehicle traffic before and during 2008 Olympic and Paralympic Games. The SO2 columns over China from GOME-2 (0.2-0.5 DU) were lower than those from OMI (0.6-1 DU), but both showed a decrease in SO2 columns over northern China since 2008 (except an increase in OMI SO2 in 2010).

  19. Interaction of SO2 with the Surface of a Water Nanodroplet.

    Science.gov (United States)

    Zhong, Jie; Zhu, Chongqin; Li, Lei; Richmond, Geraldine L; Francisco, Joseph S; Zeng, Xiao Cheng

    2017-11-29

    We present a comprehensive computational study of interaction of a SO 2 with water molecules in the gas phase and with the surface of various sized water nanodroplets to investigate the solvation behavior of SO 2 in different atmospheric environments. Born-Oppenheimer molecular dynamics (BOMD) simulation shows that, in the gas phase and at a temperature of 300 K, the dominant interaction between SO 2 and H 2 O is (SO 2 ) S···O (H 2 O) , consistent with previous density-functional theory (DFT) computation at 0 K. However, at the surface of a water nanodroplet, BOMD simulation shows that the hydrogen-bonding interaction of (SO 2 ) O···H (H 2 O) becomes increasingly important with the increase of droplet size, reflecting a marked effect of the water surface on the SO 2 solvation. This conclusion is in good accordance with spectroscopy evidence obtained previously (J. Am. Chem. Soc. 2005, 127, 16806; J. Am. Chem. Soc. 2006, 128, 3256). The prevailing interaction (SO 2 ) O···H (H 2 O) on a large droplet is mainly due to favorable exposure of H atoms of H 2 O at the air-water interface. Indeed, the conversion of the dominant interaction in the gas phase (SO 2 ) S···O (H 2 O) to the dominant interaction on the water nanodroplet (SO 2 ) O···H (H 2 O) may incur effects on the SO 2 chemistry in atmospheric aerosols because the solvation of SO 2 at the water surface can affect the reactive sites and electrophilicity of SO 2 . Hence, the solvation of SO 2 on the aerosol surface may have new implications when studying SO 2 chemistry in the aerosol-containing troposphere.

  20. Silicon Dioxide Thin Film Mediated Single Cell Nucleic Acid Isolation

    Science.gov (United States)

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571

  1. High-dimensional single-cell cancer biology.

    Science.gov (United States)

    Irish, Jonathan M; Doxie, Deon B

    2014-01-01

    Cancer cells are distinguished from each other and from healthy cells by features that drive clonal evolution and therapy resistance. New advances in high-dimensional flow cytometry make it possible to systematically measure mechanisms of tumor initiation, progression, and therapy resistance on millions of cells from human tumors. Here we describe flow cytometry techniques that enable a "single-cell " view of cancer. High-dimensional techniques like mass cytometry enable multiplexed single-cell analysis of cell identity, clinical biomarkers, signaling network phospho-proteins, transcription factors, and functional readouts of proliferation, cell cycle status, and apoptosis. This capability pairs well with a signaling profiles approach that dissects mechanism by systematically perturbing and measuring many nodes in a signaling network. Single-cell approaches enable study of cellular heterogeneity of primary tissues and turn cell subsets into experimental controls or opportunities for new discovery. Rare populations of stem cells or therapy-resistant cancer cells can be identified and compared to other types of cells within the same sample. In the long term, these techniques will enable tracking of minimal residual disease (MRD) and disease progression. By better understanding biological systems that control development and cell-cell interactions in healthy and diseased contexts, we can learn to program cells to become therapeutic agents or target malignant signaling events to specifically kill cancer cells. Single-cell approaches that provide deep insight into cell signaling and fate decisions will be critical to optimizing the next generation of cancer treatments combining targeted approaches and immunotherapy.

  2. The vertical distribution of volcanic SO2 plumes measured by IASI

    Directory of Open Access Journals (Sweden)

    E. Carboni

    2016-04-01

    Full Text Available Sulfur dioxide (SO2 is an important atmospheric constituent that plays a crucial role in many atmospheric processes. Volcanic eruptions are a significant source of atmospheric SO2 and its effects and lifetime depend on the SO2 injection altitude. The Infrared Atmospheric Sounding Interferometer (IASI on the METOP satellite can be used to study volcanic emission of SO2 using high-spectral resolution measurements from 1000 to 1200 and from 1300 to 1410 cm−1 (the 7.3 and 8.7 µm SO2 bands returning both SO2 amount and altitude data. The scheme described in Carboni et al. (2012 has been applied to measure volcanic SO2 amount and altitude for 14 explosive eruptions from 2008 to 2012. The work includes a comparison with the following independent measurements: (i the SO2 column amounts from the 2010 Eyjafjallajökull plumes have been compared with Brewer ground measurements over Europe; (ii the SO2 plumes heights, for the 2010 Eyjafjallajökull and 2011 Grimsvötn eruptions, have been compared with CALIPSO backscatter profiles. The results of the comparisons show that IASI SO2 measurements are not affected by underlying cloud and are consistent (within the retrieved errors with the other measurements. The series of analysed eruptions (2008 to 2012 show that the biggest emitter of volcanic SO2 was Nabro, followed by Kasatochi and Grímsvötn. Our observations also show a tendency for volcanic SO2 to reach the level of the tropopause during many of the moderately explosive eruptions observed. For the eruptions observed, this tendency was independent of the maximum amount of SO2 (e.g. 0.2 Tg for Dalafilla compared with 1.6 Tg for Nabro and of the volcanic explosive index (between 3 and 5.

  3. Ultrahigh and Selective SO2 Uptake in Inorganic Anion-Pillared Hybrid Porous Materials.

    Science.gov (United States)

    Cui, Xili; Yang, Qiwei; Yang, Lifeng; Krishna, Rajamani; Zhang, Zhiguo; Bao, Zongbi; Wu, Hui; Ren, Qilong; Zhou, Wei; Chen, Banglin; Xing, Huabin

    2017-07-01

    The efficient capture of SO 2 is of great significance in gas-purification processes including flue-gas desulfurization and natural-gas purification, but the design of porous materials with high adsorption capacity and selectivity of SO 2 remains very challenging. Herein, the selective recognition and dense packing of SO 2 clusters through multiple synergistic host-guest and guest-guest interactions by controlling the pore chemistry and size in inorganic anion (SiF 6 2- , SIFSIX) pillared metal-organic frameworks is reported. The binding sites of anions and aromatic rings in SIFSIX materials grasp every atom of SO 2 firmly via S δ+ ···F δ- electrostatic interactions and O δ- ···H δ+ dipole-dipole interactions, while the guest-guest interactions between SO 2 molecules further promote gas trapping within the pore space, which is elucidated by first-principles density functional theory calculations and powder X-ray diffraction experiments. These interactions afford new benchmarks for the highly efficient removal of SO 2 from other gases, even if at a very low SO 2 concentration. Exceptionally high SO 2 capacity of 11.01 mmol g -1 is achieved at atmosphere pressure by SIFSIX-1-Cu, and unprecedented low-pressure SO 2 capacity is obtained in SIFSIX-2-Cu-i (4.16 mmol g -1 SO 2 at 0.01 bar and 2.31 mmol g -1 at 0.002 bar). More importantly, record SO 2 /CO 2 selectivity (86-89) and excellent SO 2 /N 2 selectivity (1285-3145) are also achieved. Experimental breakthrough curves further demonstrate the excellent performance of these hybrid porous materials in removing low-concentration SO 2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Re-Examining Embodied SO2 and CO2 Emissions in China

    Directory of Open Access Journals (Sweden)

    Rui Huang

    2018-05-01

    Full Text Available CO2 and SO2, while having different environmental impacts, are both linked to the burning of fossil fuels. Research on joint patterns of CO2 emissions and SO2 emissions may provide useful information for decision-makers to reduce these emissions effectively. This study analyzes both CO2 emissions and SO2 emissions embodied in interprovincial trade in 2007 and 2010 using multi-regional input–output analysis. Backward and forward linkage analysis shows that Production and Supply of Electric Power and Steam, Non-metal Mineral Products, and Metal Smelting and Pressing are key sectors for mitigating SO2 and CO2 emissions along the national supply chain. The total SO2 emissions and CO2 emissions of these sectors accounted for 81% and 76% of the total national SO2 emissions and CO2 emissions, respectively.

  5. Impact of SO2 and NO on CO Oxidation under Post-Flame Conditions

    DEFF Research Database (Denmark)

    Glarborg, Peter; Kubel, Dorte; Dam-Johansen, Kim

    1996-01-01

    An experimental and theoretical study of the effect of SO2 on moist CO oxidation with and without NO present was carried out under plug-flow conditions. The H/S/O thermochemistry and reaction subset was revised and a chemical kinetic model established that provide a good description of the effect...... of SO2 and NO on CO oxidation as well as the SO2/SO3 ratio in the products....

  6. 40 CFR 60.43Da - Standard for sulfur dioxide (SO2).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide (SO2). 60... for sulfur dioxide (SO2). (a) On and after the date on which the initial performance test is completed...) of this section, any gases that contain SO2 in excess of: (1) 520 ng/J (1.20 lb/MMBtu) heat input and...

  7. 40 CFR 60.43 - Standard for sulfur dioxide (SO2).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for sulfur dioxide (SO2). 60... sulfur dioxide (SO2). (a) Except as provided under paragraph (d) of this section, on and after the date... affected facility any gases that contain SO2 in excess of: (1) 340 ng/J heat input (0.80 lb/MMBtu) derived...

  8. Application of single-cell technology in cancer research.

    Science.gov (United States)

    Liang, Shao-Bo; Fu, Li-Wu

    2017-07-01

    In this review, we have outlined the application of single-cell technology in cancer research. Single-cell technology has made encouraging progress in recent years and now provides the means to detect rare cancer cells such as circulating tumor cells and cancer stem cells. We reveal how this technology has advanced the analysis of intratumor heterogeneity and tumor epigenetics, and guided individualized treatment strategies. The future prospects now are to bring single-cell technology into the clinical arena. We believe that the clinical application of single-cell technology will be beneficial in cancer diagnostics and treatment, and ultimately improve survival in cancer patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Gaseous signalling molecule SO2 via Hippo‑MST pathway to improve myocardial fibrosis of diabetic rats.

    Science.gov (United States)

    Liu, Maojun; Liu, Shengquan; Tan, Wenting; Tang, Fen; Long, Junrong; Li, Zining; Liang, Biao; Chu, Chun; Yang, Jun

    2017-12-01

    Recent studies have indicated the existence of an endogenous sulfur dioxide (SO2)‑generating system in the cardiovascular system. The present study aimed to discuss the function and regulatory mechanism of gaseous signal molecule SO2 in inhibiting apoptosis and endoplasmic reticulum stress (ERS) via the Hippo‑MST signaling pathway to improve myocardial fibrosis of diabetic rats. A total of 40 male Sprague‑Dawley rats were randomly divided into four groups (10 rats per group): Normal control group (control group), diabetic rats group [streptozotocin (STZ) group], SO2 intervention group (STZ+SO2 group) and diabetes mellitus rats treated with L‑Aspartic acid β‑hydroxamate (HDX) group (HDX group). Diabetic rats models were established by intra‑peritoneal injection of STZ (40 mg/kg) Following model establishment, intra‑peritoneal injection of Na2SO3/NaHSO3 solution (0.54 mmol/kg) was administered in the STZ+SO2 group, and HDX solution (25 mg/kg/week) was administered in the HDX group. A total of 4 weeks later, echocardiography was performed to evaluate rats' cardiac function; Masson staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining and transmission electron microscopy examinations were performed to observe myocardial morphological changes. ELISA was employed to determine the SO2 content. Western blot analysis was performed to detect the expression of proteins associated with apoptosis, ERS and the Hippo‑MST signalling pathway. Compared with the control group, the STZ group and HDX group had a disordered arrangement of myocardial cells with apparent myocardial fibrosis, and echocardiography indicated that the cardiac function was lowered, there was an obvious increase of apoptosis in myocardial tissue, the expression levels of apoptosis‑associated protein B‑cell lymphoma associated protein X, caspase‑3 and caspase‑9 were upregulated, and Bcl‑2 expression was downregulated. The expression of ERS and Hippo

  10. Biology at a single cell level

    CSIR Research Space (South Africa)

    Mthunzi, P

    2012-10-01

    Full Text Available ://www.regenexx.com/wp-content/uploads/2011/05/IPS-cell-problems.jpg Induced pluripotent stem cells differentiated in culture http://www.youtube.com/watch?v=ECllrIzTKbA&feature=related Transfecting neuroblastomas Neuroblastoma ? Brain cells ? 80 ? 120 billion neurons in human... brain ? Non- renewing cell type ? Neurons difficult to transfect with established protocols ? Susceptible to degenerative disorders: - Parkinson?s disease - Multiple sclerosis - Alzheimer's disease http...

  11. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    Science.gov (United States)

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  12. Adsorption of SO2 on bituminous coal char and activated carbon fiber

    Science.gov (United States)

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1997-01-01

    The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700−925°C to remove carbon−oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.

  13. Chemisorption of SO2 at the surface of In2O3 modified by zink

    International Nuclear Information System (INIS)

    Vinokurova, M.V.; Derlyukova, L.E.; Vinokurov, A.A.

    2005-01-01

    Chemisorption of SO 2 and O 2 at the surface of In 2 O 3 involving zink addition (0.4-2.7 at.%) are investigated in the temperature range 22-200 Deg C. No less than three forms of sorbed SO 2 are available at the surface of modified In 2 O 3 . Temperature effects on the ratio of forms of SO 2 sorption and, consequently, on varying the electric conductivity. Previous sorption of O 2 is favorable to the formation of donor form of chemisorbed SO 2 [ru

  14. Going single but not solo with podocytes: potentials, limitations, and pitfalls of single-cell analysis.

    Science.gov (United States)

    Schiffer, Mario

    2017-11-01

    Single-cell RNA-sequence (RNA-seq) is a widely used tool to study biological questions in single cells. The discussed study identified 92 genes being predominantly expressed in podocytes based on a 5-fold higher expression compared with endothelial and mesangial cells. In addition to technical pitfalls, the question that is discussed in this commentary is whether results of a single-cell RNAseq study are able to deliver expression data that truly characterize a podocyte. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  15. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics.

    Science.gov (United States)

    Leonhardt, Helmar; Gerhardt, Matthias; Höppner, Nadine; Krüger, Kirsten; Tarantola, Marco; Beta, Carsten

    2016-01-01

    We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.

  16. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics

    Science.gov (United States)

    Leonhardt, Helmar; Gerhardt, Matthias; Höppner, Nadine; Krüger, Kirsten; Tarantola, Marco; Beta, Carsten

    2016-01-01

    We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.

  17. Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells

    Directory of Open Access Journals (Sweden)

    Spyros Darmanis

    2016-01-01

    Full Text Available Significant advances have been made in methods to analyze genomes and transcriptomes of single cells, but to fully define cell states, proteins must also be accessed as central actors defining a cell’s phenotype. Methods currently used to analyze endogenous protein expression in single cells are limited in specificity, throughput, or multiplex capability. Here, we present an approach to simultaneously and specifically interrogate large sets of protein and RNA targets in lysates from individual cells, enabling investigations of cell functions and responses. We applied our method to investigate the effects of BMP4, an experimental therapeutic agent, on early-passage glioblastoma cell cultures. We uncovered significant heterogeneity in responses to treatment at levels of RNA and protein, with a subset of cells reacting in a distinct manner to BMP4. Moreover, we found overall poor correlation between protein and RNA at the level of single cells, with proteins more accurately defining responses to treatment.

  18. X-ray microanalysis of single and cultured cells

    International Nuclear Information System (INIS)

    Wroblewski, J.; Roomans, G.M.

    1984-01-01

    X-ray microanalysis of single or cultured cells is often a useful alternative or complement to the analysis of the corresponding tissue. It also allows the analysis of individual cells in a cell population. Preparation for X-ray microanalysis poses a number of typical problems. Suspensions of single cells can be prepared by either of two pathways: (1) washing - mounting - drying, or (2) centrifugation - freezing or fixation - sectioning. The washing step in the preparation of single or cultured cells presents the most severe problems. Cultured cells are generally grown on a substrate that is compatible with both the analysis and the culture, washed and dried. In some cases, sectioning of cultured cell monolayers has been performed. Special problems in quantitative analysis occur in those cases where the cells are analyzed on a thick substrate, since the substrate contributes to the spectral background

  19. Single-cell technologies to study the immune system.

    Science.gov (United States)

    Proserpio, Valentina; Mahata, Bidesh

    2016-02-01

    The immune system is composed of a variety of cells that act in a coordinated fashion to protect the organism against a multitude of different pathogens. The great variability of existing pathogens corresponds to a similar high heterogeneity of the immune cells. The study of individual immune cells, the fundamental unit of immunity, has recently transformed from a qualitative microscopic imaging to a nearly complete quantitative transcriptomic analysis. This shift has been driven by the rapid development of multiple single-cell technologies. These new advances are expected to boost the detection of less frequent cell types and transient or intermediate cell states. They will highlight the individuality of each single cell and greatly expand the resolution of current available classifications and differentiation trajectories. In this review we discuss the recent advancement and application of single-cell technologies, their limitations and future applications to study the immune system. © 2015 The Authors. Immunology Published by John Wiley & Sons Ltd.

  20. Single Cell Genomics: Approaches and Utility in Immunology

    Science.gov (United States)

    Neu, Karlynn E; Tang, Qingming; Wilson, Patrick C; Khan, Aly A

    2017-01-01

    Single cell genomics offers powerful tools for studying lymphocytes, which make it possible to observe rare and intermediate cell states that cannot be resolved at the population-level. Advances in computer science and single cell sequencing technology have created a data-driven revolution in immunology. The challenge for immunologists is to harness computing and turn an avalanche of quantitative data into meaningful discovery of immunological principles, predictive models, and strategies for therapeutics. Here, we review the current literature on computational analysis of single cell RNA-seq data and discuss underlying assumptions, methods, and applications in immunology, and highlight important directions for future research. PMID:28094102

  1. OMI measurements of SO2 pollution over Eastern China in 2005-2008

    Science.gov (United States)

    Krotkov, N.; Pickering, K.; Witte, J.; Carn, S.; Yang, K.; Carmichael, G.; Streets, D.; Zhang, Q.; Wei, C.

    2009-05-01

    The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. OMI seasonal to multi-year average images clearly show the world-highest consistent SO2 pollution in northeast China. China is the world's largest SO2 emitter, mostly due to the burning of high-sulfur coal in its many coal-fired power plants, which lack the technology used in many other countries to remove sulfur from smoke stack emissions. China's government has instituted nationwide measures to control SO2 emissions through the adoption of flue-gas desulfurization technology on new power plants; and even greater measures were adopted in the Beijing area in anticipation of the Olympic Games. To study the environmental effects of the emission controls we compared OMI SO2 time series over eastern China for 2005 through 2008. The time series have been done as 7-day running means of the cloud-free daily observations. By mid-March we started to see substantial periods of lower SO2 values in 2008 compared to 2007, and by mid June the 2008 values were consistently lower than 2007 and prior years. The decline is widespread with highest SO2 typically located to the south and southwest of Beijing in regions with large clusters of power plants and also around Shanghai. The decline also lasted beyond the Olympic season. We do not yet know to what extent the economic downturn in China (and reduced industrial production) contributed to lower SO2 levels in the fall of 2008. We have also compared the observed and modeled fields using University of Iowa STEM model for the period June - September 2008. The model provided SO2 vertical distributions as well as aerosol vertical profiles that were used to correct OMI operational SO2 retrievals and improve the comparisons. The OMI SO2 changes in 2008 have also been compared with the estimated changes in SO2 emissions

  2. Reaction behavior of SO2 in the sintering process with flue gas recirculation.

    Science.gov (United States)

    Yu, Zhi-Yuan; Fan, Xiao-Hui; Gan, Min; Chen, Xu-Ling; Chen, Qiang; Huang, Yun-Song

    2016-07-01

    The primary goal of this paper is to reveal the reaction behavior of SO2 in the sinter zone, combustion zone, drying-preheating zone, and over-wet zone during flue gas recirculation (FGR) technique. The results showed that SO2 retention in the sinter zone was associated with free-CaO in the form of CaSO3/CaSO4, and the SO2 adsorption reached a maximum under 900ºC. SO2 in the flue gas came almost from the combustion zone. One reaction behavior was the oxidation of sulfur in the sintering mix when the temperature was between 800 and 1000ºC; the other behavior was the decomposition of sulfite/sulfate when the temperature was over 1000ºC. However, the SO2 adsorption in the sintering bed mainly occurred in the drying-preheating zone, adsorbed by CaCO3, Ca(OH)2, and CaO. When the SO2 adsorption reaction in the drying-preheating zone reached equilibrium, the excess SO2 gas continued to migrate to the over-wet zone and was then absorbed by Ca(OH)2 and H2O. The emission rising point of SO2 moved forward in combustion zone, and the concentration of SO2 emissions significantly increased in the case of flue gas recirculation (FGR) technique. Aiming for the reuse of the sensible heat and a reduction in exhaust gas emission, the FGR technique is proposed in the iron ore sintering process. When using the FGR technique, SO2 emission in exhaust gas gets changed. In practice, the application of the FGR technique in a sinter plant should be cooperative with the flue gas desulfurization (FGD) technique. Thus, it is necessary to study the influence of the FGR technique on SO2 emissions because it will directly influence the demand and design of the FGD system.

  3. Single-cell nanotoxicity assays of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Eustaquio, Trisha; Leary, James F

    2012-01-01

    Properly evaluating the nanotoxicity of nanoparticles involves much more than bulk-cell assays of cell death by necrosis. Cells exposed to nanoparticles may undergo repairable oxidative stress and DNA damage or be induced into apoptosis. Exposure to nanoparticles may cause the cells to alter their proliferation or differentiation or their cell-cell signaling with neighboring cells in a tissue. Nanoparticles are usually more toxic to some cell subpopulations than others, and toxicity often varies with cell cycle. All of these facts dictate that any nanotoxicity assay must be at the single-cell level and must try whenever feasible and reasonable to include many of these other factors. Focusing on one type of quantitative measure of nanotoxicity, we describe flow and scanning image cytometry approaches to measuring nanotoxicity at the single-cell level by using a commonly used assay for distinguishing between necrotic and apoptotic causes of cell death by one type of nanoparticle. Flow cytometry is fast and quantitative, provided that the cells can be prepared into a single-cell suspension for analysis. But when cells cannot be put into suspension without altering nanotoxicity results, or if morphology, attachment, and stain location are important, a scanning image cytometry approach must be used. Both methods are described with application to a particular type of nanoparticle, a superparamagnetic iron oxide nanoparticle (SPION), as an example of how these assays may be applied to the more general problem of determining the effects of nanomaterial exposure to living cells.

  4. Anthropogenic SO2/NOx committee summary of current status--annual inventory

    International Nuclear Information System (INIS)

    Benkovitz, C.M.

    1992-06-01

    At the First GEIA Workshop on Global Emissions Inventories, held in Baltimore, MD on December 1--2, 1991, data on anthropogenic emissions of sulfur and nitrogen developed by Dignon (1992) were selected to form the basis for the GEIA SO 2 and NO x annual inventories. The Dignon data include emissions from fuel combustion only and currently extend to 1980. The methodology used was detailed in Dignon and Hameed (1985) and consists of statistical regression models based on available emissions data from the U.S and some other member countries of the Organization of Economic Cooperation and Development (OECD), which includes Australia, Canada, Japan and western European countries. Control regulations are incorporated via the use of different statistical parameter The grid definition from these inventories was also adopted for the GEIA grid: origin at 180 degree W, 90 degree S, 1 degree x 1 degree resolution (i.e., 360 cells in the longitude direction, 180 cells in the latitude direction). To upgrade the basic GEIA inventories, data for the different geographic regions being solicited from researchers located within these areas. This paper contains the upgrades which have been accomplished to date

  5. Multispectral optical tweezers for molecular diagnostics of single biological cells

    Science.gov (United States)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  6. Using Single-Protein Tracking to Study Cell Migration.

    Science.gov (United States)

    Orré, Thomas; Mehidi, Amine; Massou, Sophie; Rossier, Olivier; Giannone, Grégory

    2018-01-01

    To get a complete understanding of cell migration, it is critical to study its orchestration at the molecular level. Since the recent developments in single-molecule imaging, it is now possible to study molecular phenomena at the single-molecule level inside living cells. In this chapter, we describe how such approaches have been and can be used to decipher molecular mechanisms involved in cell migration.

  7. Mechanical control of mitotic progression in single animal cells

    OpenAIRE

    Cattin, Cedric J.; Düggelin, Marcel; Martinez-Martin, David; Gerber, Christoph; Müller, Daniel J.; Stewart, Martin P.

    2015-01-01

    Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback-controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, i...

  8. Effect of SO 2 on CO 2 Capture Using Liquid-like Nanoparticle Organic Hybrid Materials

    KAUST Repository

    Lin, Kun-Yi Andrew

    2013-08-15

    Liquid-like nanoparticle organic hybrid materials (NOHMs), consisting of silica nanoparticles with a grafted polymeric canopy, were synthesized. Previous work on NOHMs has revealed that CO2 capture behaviors in these hybrid materials can be tuned by modifying the structure of the polymeric canopy. Because SO2, which is another acidic gas found in flue gas, would also interact with NOHMs, this study was designed to investigate its effect on CO2 capture in NOHMs. In particular, CO2 capture capacities as well as swelling and CO2 packing behaviors of NOHMs were analyzed using thermogravimetric analyses and Raman and attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopies before and after exposure of NOHMs to SO2. It was found that the SO2 absorption in NOHMs was only prominent at high SO2 levels (i.e., 3010 ppm; Ptot = 0.4 MPa) far exceeding the typical SO2 concentration in flue gas. As expected, the competitive absorption between SO2 and CO2 for the same absorption sites (i.e., ether and amine groups) resulted in a decreased CO2 capture capacity of NOHMs. The swelling of NOHMs was not notably affected by the presence of SO 2 within the given concentration range (Ptot = 0-0.68 MPa). On the other hand, SO2, owing to its Lewis acidic nature, interacted with the ether groups of the polymeric canopy and, thus, changed the CO2 packing behaviors in NOHMs. © 2013 American Chemical Society.

  9. Effect of SO 2 on CO 2 Capture Using Liquid-like Nanoparticle Organic Hybrid Materials

    KAUST Repository

    Lin, Kun-Yi Andrew; Petit, Camille; Park, Ah-Hyung Alissa

    2013-01-01

    Liquid-like nanoparticle organic hybrid materials (NOHMs), consisting of silica nanoparticles with a grafted polymeric canopy, were synthesized. Previous work on NOHMs has revealed that CO2 capture behaviors in these hybrid materials can be tuned by modifying the structure of the polymeric canopy. Because SO2, which is another acidic gas found in flue gas, would also interact with NOHMs, this study was designed to investigate its effect on CO2 capture in NOHMs. In particular, CO2 capture capacities as well as swelling and CO2 packing behaviors of NOHMs were analyzed using thermogravimetric analyses and Raman and attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopies before and after exposure of NOHMs to SO2. It was found that the SO2 absorption in NOHMs was only prominent at high SO2 levels (i.e., 3010 ppm; Ptot = 0.4 MPa) far exceeding the typical SO2 concentration in flue gas. As expected, the competitive absorption between SO2 and CO2 for the same absorption sites (i.e., ether and amine groups) resulted in a decreased CO2 capture capacity of NOHMs. The swelling of NOHMs was not notably affected by the presence of SO 2 within the given concentration range (Ptot = 0-0.68 MPa). On the other hand, SO2, owing to its Lewis acidic nature, interacted with the ether groups of the polymeric canopy and, thus, changed the CO2 packing behaviors in NOHMs. © 2013 American Chemical Society.

  10. Interactive effects of high CO2 and SO2 on growth and antioxidant levels in wheat

    NARCIS (Netherlands)

    Rao, M.V.; De Kok, L.J.

    1994-01-01

    The impact of elevated CO2 and/or SO2 on the growth and antioxidant levels of wheat {Triticum aestivum L. cv. Urban) plants has been studied. High CO2 (0.7 ml I-1) significantly enhanced shoot biomass and photosynthetic capacity, while exposure to SO2 (0.14 ul I-1) resulted in a decreased shoot

  11. Co-adsorption of NH3 and SO2 on quartz : Formation of a stabilized complex

    NARCIS (Netherlands)

    Grecea, M.L.; Gleeson, M.A.; van Schaik, W.; Kleyn, A.W.; Bijkerk, Frederik

    2011-01-01

    We have investigated the co-adsorption of NH3 and SO2 on the quartz(0 0 0 1) surface by TPD and RAIRS. A surface complex is formed as a result of various relative exposures of NH3 and SO2, irrespective of dosage order. However, the relative molecular composition of the complex is dependent on the

  12. 40 CFR 60.4385 - How are excess emissions and monitoring downtime defined for SO2?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How are excess emissions and monitoring downtime defined for SO2? 60.4385 Section 60.4385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... downtime defined for SO2? If you choose the option to monitor the sulfur content of the fuel, excess...

  13. Next Generation Aura-OMI SO2 Retrieval Algorithm: Introduction and Implementation Status

    Science.gov (United States)

    Li, Can; Joiner, Joanna; Krotkov, Nickolay A.; Bhartia, Pawan K.

    2014-01-01

    We introduce our next generation algorithm to retrieve SO2 using radiance measurements from the Aura Ozone Monitoring Instrument (OMI). We employ a principal component analysis technique to analyze OMI radiance spectral in 310.5-340 nm acquired over regions with no significant SO2. The resulting principal components (PCs) capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering, and ozone absorption) and measurement artifacts, enabling us to account for these various interferences in SO2 retrievals. By fitting these PCs along with SO2 Jacobians calculated with a radiative transfer model to OMI-measured radiance spectra, we directly estimate SO2 vertical column density in one step. As compared with the previous generation operational OMSO2 PBL (Planetary Boundary Layer) SO2 product, our new algorithm greatly reduces unphysical biases and decreases the noise by a factor of two, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing long-term, consistent SO2 records for air quality and climate research. We have operationally implemented this new algorithm on OMI SIPS for producing the new generation standard OMI SO2 products.

  14. Impact of SO2 emissions cap on Phase I compliance decisions

    International Nuclear Information System (INIS)

    Bissell, P.E.; Fink, C.E.; Koch, B.J.; Chomka, P.A.

    1990-01-01

    The SO 2 emissions cap provisions of impending clean air legislation will dramatically affect Phase I and Phase II compliance decisions by electric utilities. Technology-based SO 2 reduction alternatives could become the keystone of most compliance strategies as utilities attempt to achieve lower and lower SO 2 emission rates. Compliance with the Phase II emissions cap will require technological solutions for many utilities which must meet system-wide SO 2 emission rates well below those achievable with low-sulfur eastern coals and, in many instances, western coals. The emissions cap provision, however, will also induce more scrubbing during the Phase I compliance period. The power generation dispatch capability of a hypothetical utility system was simulated to study the impacts of an SO 2 emission cap on compliance strategies in Phase I. The effects of the cap were quantified for generation costs, total SO 2 emissions, and effective emission rates. The results show that achieving compliance by installing state-of-the-art high SO 2 removal scrubbers becomes increasingly attractive as utilities become constrained under the SO 2 cap, even in Phase I

  15. Ultrastructural study of the effect of air pollution by SO2 on the ...

    African Journals Online (AJOL)

    kemrilib

    Sulfur dioxide (SO2) has been associated with excessive mortality during air pollution disasters such as ... epithelium. It is suggested that this synergistic effect is due to the carbon particles adsorbing. SO2 ... in refrigeration plants, fruit processing, manufacturing .... concentration range was absorbed on the nasal mucosa [29 ...

  16. System for recovery of CO2 from flue gases containing SO2

    International Nuclear Information System (INIS)

    Sears, J. T.; Anada, H. R.

    1985-01-01

    An improved system for recovering CO 2 from flue gases containing SO 2 at low CO 2 partial pressure. The system includes the use of K 2 CO 3 as the solvent, regeneration of the solvent, and removal of SO 2 and SO 4

  17. Single cell analysis of normal and leukemic hematopoiesis.

    Science.gov (United States)

    Povinelli, Benjamin J; Rodriguez-Meira, Alba; Mead, Adam J

    2018-02-01

    The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application. Copyright © 2017. Published by Elsevier Ltd.

  18. Standard practice for monitoring atmospheric SO2 using the sulfation plate technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This practice covers a weighted average effective SO2 level for a 30-day interval through the use of the sulfation plate method, a technique for estimating the effective SO2 content of the atmosphere, and especially with regard to the atmospheric corrosion of stationary structures or panels. This practice is aimed at determining SO2 levels rather than sulfuric acid aerosol or acid precipitation. 1.2 The results of this practice correlate approximately with volumetric SO2 concentrations, although the presence of dew or condensed moisture tends to enhance the capture of SO2 into the plate. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. SO2 frost - UV-visible reflectivity and Io surface coverage

    Science.gov (United States)

    Nash, D. B.; Fanale, F. P.; Nelson, R. M.

    1980-01-01

    The reflectance spectrum in the range 0.24-0.85 microns of SO2 frost is measured in light of the discovery of SO2 gas in the atmosphere of Io and the possible discovery of the frost on its surface. Frost deposits up to 1.5 mm thick were grown in vacuum at 130 K and bi-directional reflectance spectra were obtained. Typical SO2 frost is found to exhibit very low reflectivity (2-5%) at 0.30 microns, rising steeply at 0.32 microns to attain a maximum reflectivity (75-80%) at 4.0 microns and uniformly high reflectivity throughout the visible and near infrared. Comparison with the full disk spectrum of Io reveals that no more than 20% of the surface can be covered with optically thick SO2 frost. Combinations of surface materials including SO2 frost which can produce the observed spectrum are indicated.

  20. Monitoring so2 emission at the Soufriere Hills volcano: Implications for changes in eruptive conditions

    Science.gov (United States)

    Young, S.R.; Francis, P.W.; Barclay, J.; Casadevall, T.J.; Gardner, C.A.; Darroux, B.; Davies, M.A.; Delmelle, P.; Norton, G.E.; Maciejewski, A.J.H.; Oppenheimer, C.M.M.; Stix, J.; Watson, I.M.

    1998-01-01

    Correlation spectrometer measurements of sulfur dioxide (SO2) emission rates during the current eruption of the Soufriere Hills volcano, Montserrat, have contributed towards identifying different phases of volcanic activity. SO2 emission rate has increased from 550 td-1 (>6.4 kgs-1) after July 1996, with the uncertainty associated with any individual measurement ca. 30%. Significantly enhanced SO2 emission rates have been identified in association with early phreatic eruptions (800 td-1 (9.3 kgs-1)) and episodes of vigorous dome collapse and pyroclastic flow generation (900 to 1500 td-1 (10.4 to 17.4 kgs-1)). SO2 emission rate has proved a useful proxy measurement for magma production rate. Observed SO2 emission rates are significantly higher than those inferred from analyses of glass inclusions in phenocrysts, implying the existence of a S-rich magmatic vapour phase.

  1. Are there SO2 externality costs beyond the Clean Air Act Amendments of 1990?

    International Nuclear Information System (INIS)

    Sanghi, A.; Joseph, A.L.

    1992-01-01

    Inclusion of environmental externality costs in the selection of utility resources has become a reality in New York, Massachusetts, Nevada and California. Soon several other jurisdictions are likely to join these states in using environmental externality costs in decision-making. The consideration of environmental externalities are bound to profoundly affect utility decision-making in the future. So far attention has focused largely on air emission externalities of SO 2 , NO x and CO 2 . However, the recent Clean Air Act Amendments (CAAA) will reduce SO 2 emissions from utilities by about 50 percent. With such a large reduction in SO 2 loading, the question has been raised as to the need to further consider SO 2 externality costs in decision-making. This paper comments on this issue. By using generation and emission data from New York utilities, the paper shows that SO 2 emission externalities exist even after complying with requirements of the CAAA

  2. The determinants of atmospheric SO2 concentrations. Reconsidering the environmental Kuznets curve

    International Nuclear Information System (INIS)

    Kaufmann, Robert K.; Davidsdottir, Brynhildur; Garnham, Sophie; Pauly, Peter

    1998-01-01

    This analysis explores the effects of income and the spatial intensity of economic activity on the atmospheric concentration of sulfur dioxide. The results indicate that there is a U-shaped relation between income and atmospheric concentration of SO 2 and an inverted U-shaped relation between the spatial intensity of economic activity and SO 2 concentrations. These results suggest that the spatial intensity of economic activity, rather than income, provides the impetus for policies and technologies that reduce SO 2 emissions. Based on this result, the atmospheric concentration of SO 2 in developing nations may decline faster than indicated by previous analyses. The potential for this decline depends on the rate at which income grows relative to population. The trade-off between the effects of income gains and the spatial intensity of economic activity on the atmospheric concentration of SO 2 is consistent with the notion that environmental problems can be ameliorated by slowing population growth and increasing income levels

  3. New discoveries enabled by OMI SO2 measurements and future missions

    Science.gov (United States)

    Krotkov, Nickolay

    2010-05-01

    The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. This talk highlights most recent science results enabled by using OMI SO2 data. OMI daily contiguous volcanic SO2 data continue 25+ climatic record by its predecessors (Total Ozone mapping Spectrometers 1978-2005), but higher SO2 sensitivity allows measuring volcanic plumes for a longer time as well as measuring passive volcanic degassing from space. New algorithm development allows direct estimating of SO2 plume heights to refine SO2 tonnages in largest volcanic plumes important for climate applications. Quantitatively, anthropogenic SO2 is more difficult to measure from space, since ozone absorption and Rayleigh scattering reduce sensitivity to pollutants in the lower troposphere. OMI data first enabled daily detection of SO2 burdens from individual smelters as well as observed SO2 pollution lofting from boundary layer and long-range transport in free troposphere. Interplay between volcanic and anthropogenic SO2 emissions resulted in highly variable SO2 pollution levels in Peru and Mexico City. We have updated our copper smelter analysis, which showed interesting new trends. Combining OMI data with trajectory models and aerosol/cloud measurements by A-train sensors (MODIS, CALIPSO) allowed tracking long-range transport of volcanic and anthropogenic aerosol/SO2 plumes. These studies placed new constraints on conversion rates of SO2 to sulfate at different heights from free troposphere to the lower stratosphere. We describe new techniques for spatial and time averaging that have been used to determine the global distribution of anthropogenic SO2 burdens, and the efficacy of abatement strategies. OMI seasonal to multi-year average images clearly show the world-highest consistent SO2 pollution in eastern China, mostly due to the burning of high

  4. Simplified model of SO2 removal from industrial gas in e-beam process

    International Nuclear Information System (INIS)

    Bouzyk, J.; Sowinski, M.

    1997-01-01

    The analysis of SO 2 and, on the part, NO x removal mechanism by e-beam process has been discussed. It is estimated that radiation contribution to SO 2 removal amounts to 40% while in the case of NO x it appears to reach about 70%. Taking into account the main reactions responsible for SO 2 oxidation as well as the assumption presented in our previous paper an algorithm has been developed to describe linear kinetics of the process. The principal assumption referred to depends on OH radical concentration to be nearly stable. The concept of an extended model of NO x /SO 2 removal has been presented and the literature data have been used to check the suggested model. On that basis the general idea has been proposed for controlling SO 2 /NO x removal which comprises both the simplified and extended pathway. (author)

  5. The uptake of SO2 on Saharan dust: a flow tube study

    Directory of Open Access Journals (Sweden)

    J. W. Adams

    2005-01-01

    Full Text Available The uptake of SO2 onto Saharan mineral dust from the Cape Verde Islands was investigated using a coated wall flow tube coupled to a mass spectrometer. The rate of loss of SO2 to the dust coating was measured and uptake coefficients were determined using the measured BET surface area of the sample. The uptake of SO2, with an initial concentration between (2-40x1010molecule cm-3 (0.62-12 µTorr, was found to be strongly time dependent over the first few hundred seconds of an experiment, with an initial uptake γ0,BET of (6.6±0.8x10-5 (298 K, declining at longer times. The amount of SO2 adsorbed on the dust samples was measured over a range of SO2 concentrations and mineral dust loadings. The uptake of SO2 was found to be up to 98% irreversible over the timescale of these investigations. Experiments were also performed at 258 K, at a relative humidity of 27% and at 298 K in the presence of ozone. The initial uptake and the amount of SO2 taken up per unit area of BET dust surface was the same within error, irrespective of the conditions used; however the presence of ozone reduced the amount of SO2 released back into the gas-phase per unit area once exposure of the surface ended. Multiple uptakes to the same surface revealed a loss of surface reactivity, which did not return if the samples were exposed to gas-phase water, or left under vacuum overnight. A mechanism which accounts for the observed uptake behaviour is proposed and numerically modelled, allowing quantitative estimates of the rate and amount of SO2 removal in the atmosphere to be estimated. Removal of SO2 by mineral dust is predicted to be significant at high dust loadings.

  6. Intercomparison of SO2 camera systems for imaging volcanic gas plumes

    Science.gov (United States)

    Kern, Christoph; Lübcke, Peter; Bobrowski, Nicole; Campion, Robin; Mori, Toshiya; Smekens, Jean-François; Stebel, Kerstin; Tamburello, Giancarlo; Burton, Mike; Platt, Ulrich; Prata, Fred

    2015-07-01

    SO2 camera systems are increasingly being used to image volcanic gas plumes. The ability to derive SO2 emission rates directly from the acquired imagery at high time resolution allows volcanic process studies that incorporate other high time-resolution datasets. Though the general principles behind the SO2 camera have remained the same for a number of years, recent advances in CCD technology and an improved understanding of the physics behind the measurements have driven a continuous evolution of the camera systems. Here we present an intercomparison of seven different SO2 cameras. In the first part of the experiment, the various technical designs are compared and the advantages and drawbacks of individual design options are considered. Though the ideal design was found to be dependent on the specific application, a number of general recommendations are made. Next, a time series of images recorded by all instruments at Stromboli Volcano (Italy) is compared. All instruments were easily able to capture SO2 clouds emitted from the summit vents. Quantitative comparison of the SO2 load in an individual cloud yielded an intra-instrument precision of about 12%. From the imagery, emission rates were then derived according to each group's standard retrieval process. A daily average SO2 emission rate of 61 ± 10 t/d was calculated. Due to differences in spatial integration methods and plume velocity determination, the time-dependent progression of SO2 emissions varied significantly among the individual systems. However, integration over distinct degassing events yielded comparable SO2 masses. Based on the intercomparison data, we find an approximate 1-sigma precision of 20% for the emission rates derived from the various SO2 cameras. Though it may still be improved in the future, this is currently within the typical accuracy of the measurement and is considered sufficient for most applications.

  7. SO2 plume height retrieval from direct fitting of GOME-2 backscattered radiance measurements

    Science.gov (United States)

    van Gent, J.; Spurr, R.; Theys, N.; Lerot, C.; Brenot, H.; Van Roozendael, M.

    2012-04-01

    The use of satellite measurements for SO2 monitoring has become an important aspect in the support of aviation control. Satellite measurements are sometimes the only information available on SO2 concentrations from volcanic eruption events. The detection of SO2 can furthermore serve as a proxy for the presence of volcanic ash that poses a possible hazard to air traffic. In that respect, knowledge of both the total vertical column amount and the effective altitude of the volcanic SO2 plume is valuable information to air traffic control. The Belgian Institute for Space Aeronomy (BIRA-IASB) hosts the ESA-funded Support to Aviation Control Service (SACS). This system provides Volcanic Ash Advisory Centers (VAACs) worldwide with near real-time SO2 and volcanic ash data, derived from measurements from space. We present results from our algorithm for the simultaneous retrieval of total vertical columns of O3 and SO2 and effective SO2 plume height from GOME-2 backscattered radiance measurements. The algorithm is an extension to the GODFIT direct fitting algorithm, initially developed at BIRA-IASB for the derivation of improved total ozone columns from satellite data. The algorithm uses parameterized vertical SO2 profiles which allow for the derivation of the peak height of the SO2 plume, along with the trace gas total column amounts. To illustrate the applicability of the method, we present three case studies on recent volcanic eruptions: Merapi (2010), Grímsvotn (2011), and Nabro (2011). The derived SO2 plume altitude values are validated with the trajectory model FLEXPART and with aerosol altitude estimations from the CALIOP instrument on-board the NASA A-train CALIPSO platform. We find that the effective plume height can be obtained with a precision as fine as 1 km for moderate and strong volcanic events. Since this is valuable information for air traffic, we aim at incorporating the plume height information in the SACS system.

  8. Integrated assessment of CO2 and SO2 policies in North East Asia

    International Nuclear Information System (INIS)

    Chae, Yeora; Hope, Chris

    2003-01-01

    This study quantifies the costs and impacts of six scenarios for carbon dioxide (CO 2 ) and sulphur dioxide (SO 2 ) emissions in North East Asia (NEA) within an integrated probabilistic analysis. The inclusion of the cooling effect of sulphates means that CO 2 control in China would be likely to increase the regional temperature in NEA in the short-term. This is because CO 2 control measures would also automatically control SO 2 emissions, and so reduce their cooling effect. The scenario that involves no control for CO 2 and SO 2 emissions has the lowest mean total cumulative net present cost (NPC) as compared to scenarios with various SO 2 controls or with CO 2 reduced to 5% below year 1990 levels (in China and Japan), or any combination of SO 2 + CO 2 controls at these levels. The mean value of the total cumulative NPC of climate change damage, acid rain damage, CO 2 and SO 2 control cost in China for no CO 2 or SO 2 control is about US$ 0.1 trillion, compared, for instance, to about US$ 1.1 trillion for CO 2 emission stabilisation at 1990 levels and no SO 2 control. SO 2 control also brings more disadvantages than advantages in China and Japan. The higher mean climate change impacts and control costs outweigh the benefit of lower acid rain damage. However, strict SO 2 control brings more benefits than costs in South Korea where there is a large urban population and the sensitivity to acid rain is high. However, the impacts of emissions and valuation of these effects are very uncertain. Uncertainty analysis shows that the key determinants of the total NPC of costs and damages are exported climate change damages, followed by domestic climate change damages, and acid rain damages. The use of other valuation methods would make health damage bigger than this study's estimation and acid rain damage could be a major concern in the future

  9. Hydrophobic task-specific ionic liquids: synthesis, properties and application for the capture of SO2.

    Science.gov (United States)

    Tian, Shidong; Hou, Yucui; Wu, Weize; Ren, Shuhang; Qian, Jianguo

    2014-08-15

    The capture of SO2 by ionic liquids (ILs) has drawn much attention all over the world. However, ILs can absorb not only SO2 but also water from flue gas. The removal of water from ILs is necessary for reusing the absorbent. In order to reduce the energy costs of removing water, it would be helpful to weaken the interactions between ILs and water. In this work, two kinds of hydrophobic task-specific ILs, 1-(2-diethyl-aminoethyl)-3-methylimidazolium hexafluorophosphate ([Et2NEmim] [PF6]) and 1-(2-diethyl-aminoethyl)-1-methylpyrrolidinium hexafluorophosphate ([Et2NEmpyr][PF6]), were designed and synthesized. Thermal stability and physical properties of the ILs were studied. Furthermore, the application of the ILs for the capture of SO2 and the absorption mechanism were systematically investigated. It has been found that both of the ILs are immiscible with water, and [Et2NEmim][PF6] has much lower viscosity, much higher thermal stability and much higher SO2 absorption rate than [Et2NEmpyr][PF6]. [Et2NEmim][PF6] shows high SO2 absorption capacities up to 2.11 mol SO2 per mole IL (pure SO2) and 0.94 mol SO2 per mole IL (3% SO2) under hydrous conditions at 30 °C. The result suggests that [Et2NEmim][PF6] is a promising recyclable absorbent for the capture of SO2. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. SO2 over Central China: Measurements, Numerical Simulations and the Tropospheric Sulfur Budget

    Science.gov (United States)

    He, Hao; Li, Can; Loughner, Christopher P.; Li, Zhangqing; Krotkov, Nickolay A.; Yang, Kai; Wang, Lei; Zheng, Youfei; Bao, Xiangdong; Zhao, Guoqiang; hide

    2012-01-01

    SO2 in central China was measured in situ from an aircraft and remotely using the Ozone Monitoring Instrument (OMI) from the Aura satellite; results were used to develop a numerical tool for evaluating the tropospheric sulfur budget - sources, sinks, transformation and transport. In April 2008, measured ambient SO2 concentrations decreased from approx.7 ppbv near the surface to approx. 1 ppbv at 1800 m altitude (an effective scale height of approx.800 m), but distinct SO2 plumes were observed between 1800 and 4500 m, the aircraft's ceiling. These free tropospheric plumes play a major role in the export of SO2 and in the accuracy of OMI retrievals. The mean SO2 column contents from aircraft measurements (0.73 DU, Dobson Units) and operational OMI SO2 products (0.63+/-0.26 DU) were close. The OMI retrievals were well correlated with in situ measurements (r = 0.84), but showed low bias (slope = 0.54). A new OMI retrieval algorithm was tested and showed improved agreement and bias (r = 0.87, slope = 0.86). The Community Multiscale Air Quality (CMAQ) model was used to simulate sulfur chemistry, exhibiting reasonable agreement (r = 0.62, slope = 1.33) with in situ SO2 columns. The mean CMAQ SO2 loading over central and eastern China was 54 kT, approx.30% more than the estimate from OMI SO2 products, 42 kT. These numerical simulations, constrained by observations, indicate that ",50% (35 to 61 %) of the anthropogenic sulfur emissions were transported downwind, and the overall lifetime of tropospheric SO2 was 38+/-7 h.

  11. Intra-dialytic blood oxygen saturation (SO2): association with dialysis hypotension (the SOGLIA Study).

    Science.gov (United States)

    Mancini, E; Perazzini, C; Gesualdo, L; Aucella, F; Limido, A; Scolari, F; Savoldi, S; Tramonti, M; Corazza, L; Atti, M; Severi, S; Bolasco, P; Santoro, A

    2017-12-01

    Intradialytic hypotension (IDH) has a dramatic impact on the main outcomes of dialysis patients. Early warning of hemodynamic worsening during dialysis would enable preventive measures to be taken. Blood oxygen saturation (SO 2 ) is used for hemodynamic monitoring in the critical care setting and may provide useful information about IDH onset. To evaluate whether short- and medium-term variations in the SO 2 signal (ST-SO 2var , MT-SO 2var ,) during dialysis are a predictor of IDH. In this 3-month observational cohort study, 51 hypotension-prone chronic hemodialysis (HD) patients, with vascular access by arteriovenous fistula (AVF) or central venous catheter (CVC), were enrolled. Continuous non-invasive blood SO 2 was monitored (fc = 0.2 Hz) by an optical sensor on the arterial line of the extracorporeal circulation; blood pressure (every 30 min), symptoms and their time of appearance were noted. Predictive power of IDH was expressed by the area under curve (AUC) sensitivity and specificity based on intradialytic variations in SO 2 . A total of 1290 HD sessions were analyzed. Overall, off-line ST-SO 2var analysis proved able to correctly predict IDH in 67 % of the sessions where IDH occurred. The best predictive performance was found in the presence of highly arterialized AVF (SO 2  > 95 %) (75 % sensitivity; AUC 0.825; p < 0.05). On the contrary, in sessions with CVC, IDH prediction proved more efficient by MT-SO 2var (AUC 0.575; p = 0.01). Intradialytic SO 2 variability could be a valid parameter to detect in advance the hemodynamic worsening that precedes IDH. Appropriate timely intervention could help prevent IDH onset.

  12. Intercomparison of SO2 camera systems for imaging volcanic gas plumes

    Science.gov (United States)

    Kern, Christoph; Lübcke, Peter; Bobrowski, Nicole; Campion, Robin; Mori, Toshiya; Smekens, Jean-Francois; Stebel, Kerstin; Tamburello, Giancarlo; Burton, Mike; Platt, Ulrich; Prata, Fred

    2015-01-01

    SO2 camera systems are increasingly being used to image volcanic gas plumes. The ability to derive SO2 emission rates directly from the acquired imagery at high time resolution allows volcanic process studies that incorporate other high time-resolution datasets. Though the general principles behind the SO2 camera have remained the same for a number of years, recent advances in CCD technology and an improved understanding of the physics behind the measurements have driven a continuous evolution of the camera systems. Here we present an intercomparison of seven different SO2 cameras. In the first part of the experiment, the various technical designs are compared and the advantages and drawbacks of individual design options are considered. Though the ideal design was found to be dependent on the specific application, a number of general recommendations are made. Next, a time series of images recorded by all instruments at Stromboli Volcano (Italy) is compared. All instruments were easily able to capture SO2 clouds emitted from the summit vents. Quantitative comparison of the SO2 load in an individual cloud yielded an intra-instrument precision of about 12%. From the imagery, emission rates were then derived according to each group's standard retrieval process. A daily average SO2 emission rate of 61 ± 10 t/d was calculated. Due to differences in spatial integration methods and plume velocity determination, the time-dependent progression of SO2 emissions varied significantly among the individual systems. However, integration over distinct degassing events yielded comparable SO2 masses. Based on the intercomparison data, we find an approximate 1-sigma precision of 20% for the emission rates derived from the various SO2 cameras. Though it may still be improved in the future, this is currently within the typical accuracy of the measurement and is considered sufficient for most applications.

  13. Bioinformatics approaches to single-cell analysis in developmental biology.

    Science.gov (United States)

    Yalcin, Dicle; Hakguder, Zeynep M; Otu, Hasan H

    2016-03-01

    Individual cells within the same population show various degrees of heterogeneity, which may be better handled with single-cell analysis to address biological and clinical questions. Single-cell analysis is especially important in developmental biology as subtle spatial and temporal differences in cells have significant associations with cell fate decisions during differentiation and with the description of a particular state of a cell exhibiting an aberrant phenotype. Biotechnological advances, especially in the area of microfluidics, have led to a robust, massively parallel and multi-dimensional capturing, sorting, and lysis of single-cells and amplification of related macromolecules, which have enabled the use of imaging and omics techniques on single cells. There have been improvements in computational single-cell image analysis in developmental biology regarding feature extraction, segmentation, image enhancement and machine learning, handling limitations of optical resolution to gain new perspectives from the raw microscopy images. Omics approaches, such as transcriptomics, genomics and epigenomics, targeting gene and small RNA expression, single nucleotide and structural variations and methylation and histone modifications, rely heavily on high-throughput sequencing technologies. Although there are well-established bioinformatics methods for analysis of sequence data, there are limited bioinformatics approaches which address experimental design, sample size considerations, amplification bias, normalization, differential expression, coverage, clustering and classification issues, specifically applied at the single-cell level. In this review, we summarize biological and technological advancements, discuss challenges faced in the aforementioned data acquisition and analysis issues and present future prospects for application of single-cell analyses to developmental biology. © The Author 2015. Published by Oxford University Press on behalf of the European

  14. Single-cell Analysis of Lambda Immunity Regulation

    DEFF Research Database (Denmark)

    Bæk, Kristoffer Torbjørn; Svenningsen, Sine Lo; Eisen, Harvey

    2003-01-01

    We have examined expression of the ¿cI operon in single cells via a rexgfp substitution. Although average fluorescence agreed with expectations for expression of ¿-repressor, fluorescence fluctuated greatly from cell-to-cell. Fluctuations in repressor concentration are not predicted by previous m...

  15. Tip chip : Subcellular sampling from single cancer cells

    NARCIS (Netherlands)

    Quist, Jos; Sarajlic, Edin; Lai, Stanley C.S.; Lemay, Serge G.

    2016-01-01

    To analyze the molecular content of single cells, cell lysis is typically required, yielding a snapshot of cell behavior only. To follow complex molecular profiles over time, subcellular sampling methods potentially can be used, but to date these methods involve laborious offline analysis. Here we

  16. Impact of SO(2) on Arabidopsis thaliana transcriptome in wildtype and sulfite oxidase knockout plants analyzed by RNA deep sequencing.

    Science.gov (United States)

    Hamisch, Domenica; Randewig, Dörte; Schliesky, Simon; Bräutigam, Andrea; Weber, Andreas P M; Geffers, Robert; Herschbach, Cornelia; Rennenberg, Heinz; Mendel, Ralf R; Hänsch, Robert

    2012-12-01

    High concentrations of sulfur dioxide (SO(2) ) as an air pollutant, and its derivative sulfite, cause abiotic stress that can lead to cell death. It is currently unknown to what extent plant fumigation triggers specific transcriptional responses. To address this question, and to test the hypothesis that sulfite oxidase (SO) is acting in SO(2) detoxification, we compared Arabidopsis wildtype (WT) and SO knockout lines (SO-KO) facing the impact of 600 nl l(-1) SO(2) , using RNAseq to quantify absolute transcript abundances. These transcriptome data were correlated to sulfur metabolism-related enzyme activities and metabolites obtained from identical samples in a previous study. SO-KO plants exhibited remarkable and broad regulative responses at the mRNA level, especially in transcripts related to sulfur metabolism enzymes, but also in those related to stress response and senescence. Focusing on SO regulation, no alterations were detectable in the WT, whereas in SO-KO plants we found up-regulation of two splice variants of the SO gene, although this gene is not functional in this line. Our data provide evidence for the highly specific coregulation between SO and sulfur-related enzymes like APS reductase, and suggest two novel candidates for involvement in SO(2) detoxification: an apoplastic peroxidase, and defensins as putative cysteine mass storages. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  17. Dielectrophoretic capture and genetic analysis of single neuroblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Erica L Carpenter

    2014-07-01

    Full Text Available Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells. Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control white blood cells. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples from patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients.

  18. Single-hit mechanism of tumour cell killing by radiation.

    Science.gov (United States)

    Chapman, J D

    2003-02-01

    To review the relative importance of the single-hit mechanism of radiation killing for tumour response to 1.8-2.0 Gy day(-1) fractions and to low dose-rate brachytherapy. Tumour cell killing by ionizing radiation is well described by the linear-quadratic equation that contains two independent components distinguished by dose kinetics. Analyses of tumour cell survival curves that contain six or more dose points usually provide good estimates of the alpha- and beta-inactivation coefficients. Superior estimates of tumour cell intrinsic radiosensitivity are obtained when synchronized populations are employed. The characteristics of single-hit inactivation of tumour cells are reviewed and compared with the characteristics of beta-inactivation. Potential molecular targets associated with single-hit inactivation are discussed along with strategies for potentiating cell killing by this mechanism. The single-hit mechanism of tumour cell killing shows no dependence on dose-rate and, consequently, no evidence of sublethal damage repair. It is uniquely potentiated by high linear-energy-transfer radiation, exhibits a smaller oxygen enhancement ratio and exhibits a larger indirect effect by hydroxyl radicals than the beta-mechanism. alpha-inactivation coefficients vary slightly throughout interphase but mitotic cells exhibit extremely high alpha-coefficients in the range of those observed for lymphocytes and some repair-deficient cells. Evidence is accumulating to suggest that chromatin in compacted form could be a radiation-hypersensitive target associated with single-hit radiation killing. Analyses of tumour cell survival curves demonstrate that it is the single-hit mechanism (alpha) that determines the majority of cell killing after doses of 2Gy and that this mechanism is highly variable between tumour cell lines. The characteristics of single-hit inactivation are qualitatively and quantitatively distinct from those of beta-inactivation. Compacted chromatin in tumour cells

  19. Quantitative high-resolution genomic analysis of single cancer cells.

    Science.gov (United States)

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  20. Quantitative high-resolution genomic analysis of single cancer cells.

    Directory of Open Access Journals (Sweden)

    Juliane Hannemann

    Full Text Available During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  1. Genomic Sequencing of Single Microbial Cells from Environmental Samples

    Energy Technology Data Exchange (ETDEWEB)

    Ishoey, Thomas; Woyke, Tanja; Stepanauskas, Ramunas; Novotny, Mark; Lasken, Roger S.

    2008-02-01

    Recently developed techniques allow genomic DNA sequencing from single microbial cells [Lasken RS: Single-cell genomic sequencing using multiple displacement amplification, Curr Opin Microbiol 2007, 10:510-516]. Here, we focus on research strategies for putting these methods into practice in the laboratory setting. An immediate consequence of single-cell sequencing is that it provides an alternative to culturing organisms as a prerequisite for genomic sequencing. The microgram amounts of DNA required as template are amplified from a single bacterium by a method called multiple displacement amplification (MDA) avoiding the need to grow cells. The ability to sequence DNA from individual cells will likely have an immense impact on microbiology considering the vast numbers of novel organisms, which have been inaccessible unless culture-independent methods could be used. However, special approaches have been necessary to work with amplified DNA. MDA may not recover the entire genome from the single copy present in most bacteria. Also, some sequence rearrangements can occur during the DNA amplification reaction. Over the past two years many research groups have begun to use MDA, and some practical approaches to single-cell sequencing have been developed. We review the consensus that is emerging on optimum methods, reliability of amplified template, and the proper interpretation of 'composite' genomes which result from the necessity of combining data from several single-cell MDA reactions in order to complete the assembly. Preferred laboratory methods are considered on the basis of experience at several large sequencing centers where >70% of genomes are now often recovered from single cells. Methods are reviewed for preparation of bacterial fractions from environmental samples, single-cell isolation, DNA amplification by MDA, and DNA sequencing.

  2. Impacts of Four SO2 Oxidation Pathways on Wintertime Sulfate Concentrations

    Science.gov (United States)

    Sarwar, G.; Fahey, K.; Zhang, Y.; Kang, D.; Mathur, R.; Xing, J.; Wei, C.; Cheng, Y.

    2017-12-01

    Air quality models tend to under-estimate winter-time sulfate concentrations compared to observed data. Such under-estimations are particularly acute in China where very high concentrations of sulfate have been measured. Sulfate is produced by oxidation of sulfur dioxide (SO2) in gas-phase by hydroxyl radical and in aqueous-phase by hydrogen peroxide, ozone, etc. and most air quality models employ such typical reactions. Several additional SO2 oxidation pathways have recently been proposed. Heterogeneous reaction on dust has been suggested to be an important sink for SO2. Oxidation of SO2 on fine particles in presence of nitrogen dioxide (NO2) and ammonia (NH3) at high relative humidity has been implicated for sulfate formation in Chinese haze and London fog. Reactive nitrogen chemistry in aerosol water has also been suggested to produce winter-time sulfate in China. Specifically, high aerosol water can trap SO2 which can be subsequently oxidized by NO2 to form sulfate. Aqueous-phase (in-cloud) oxidation of SO2 by NO2 can also produce sulfate. Here, we use the hemispheric Community Multiscale Air Quality (CMAQ) modeling system to examine the potential impacts of these SO2 oxidation pathways on sulfate formation. We use anthropogenic emissions from the Emissions Database for Global Atmospheric Research and biogenic emissions from Global Emissions InitiAtive. We performed simulations without and with these SO2 oxidation pathways for October-December of 2014 using meteorological fields obtained from the Weather Research and Forecasting model. The standard CMAQ model contains one gas-phase chemical reaction and five aqueous-phase chemical reactions for SO2 oxidation. We implement four additional SO2 oxidation pathways into the CMAQ model. Our preliminary results suggest that the dust chemistry enhances mean sulfate over parts of China and Middle-East, the in-cloud SO2 oxidation by NO2 enhances sulfate over parts of western Europe, oxidation of SO2 by NO2 and NH3 on

  3. Simultaneous adsorption of SO2 and NO from flue gas over mesoporous alumina.

    Science.gov (United States)

    Sun, Xin; Tang, Xiaolong; Yi, Honghong; Li, Kai; Ning, Ping; Huang, Bin; Wang, Fang; Yuan, Qin

    2015-01-01

    Mesoporous alumina (MA) with a higher ability to simultaneously remove SO2 and NO was prepared by the evaporation-induced self-assembly process. The adsorption capacities of MA are 1.79 and 0.702 mmol/g for SO2 and NO, respectively. The Brunauer-Emmett-Teller method was used to characterize the adsorbent. Simultaneous adsorption of SO2 and NO from flue gas over MA in different operating conditions had been studied in a fixed bed reactor. The effects of temperature, oxygen concentration and water vapour were investigated. The experimental results showed that the optimum temperature for MA to simultaneously remove SO2 and NO was 90°C. The simultaneous adsorption capacities of SO2 and NO could be enhanced by increasing O2 when its concentration was below 5%. The changes of simultaneous adsorption capacities were not obvious when O2 concentration was above 5%. The increase in relative humidity results in an increase after dropping of SO2 adsorption capacity, whereas the adsorption capacity of NO showed an opposite trend. The results suggest that MA is a great adsorbent for simultaneous removal of SO2 and NO from flue gas.

  4. Acute myocardial infarction and COPD attributed to ambient SO2 in Iran.

    Science.gov (United States)

    Khaniabadi, Yusef Omidi; Daryanoosh, Seyed Mohammad; Hopke, Philip K; Ferrante, Margherita; De Marco, Alessandra; Sicard, Pierre; Oliveri Conti, Gea; Goudarzi, Gholamreza; Basiri, Hassan; Mohammadi, Mohammad Javad; Keishams, Fariba

    2017-07-01

    Acute myocardial infarction (MI) and chronic obstructive pulmonary disease (COPD) are important diseases worldwide. Inhalation is the major route of short-term exposure to air sulfur dioxide (SO 2 ) that negatively affect human health. The objective of this study was to estimate the health effects of short-term exposure to SO 2 in Khorramabad, Iran using the AirQ software developed by the World Health Organization (WHO). Daily mean SO 2 concentrations were used as the estimates of human short-term exposure and allow calculation of the attributable excess relative risk of an acute MI and hospital admissions due to COPD (HACOPD). The annual mean SO 2 concentration in Khorramabad was 51.33µg/m 3 . Based on the relative risk (RR) and baseline incidence (BI) approach of WHO, an increased risk of 2.7% (95% CI: 1.1-4.2%) of acute MI and 2.0% (95% CI: 0-4.6%) of HACOPD, respectively, were attributed to a 10µg/m 3 SO 2 increase. Since the geographic, demographic, and climatic characteristics are different from the areas in which the risk relationships were developed and not evaluated here, further investigations will be needed to fully quantify other health impacts of SO 2 . A decreased risk for MIs and COPD attributable to SO 2 could be achieved if mitigation strategies and measures are implemented to reduce the exposure. Copyright © 2017. Published by Elsevier Inc.

  5. Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury.

    Science.gov (United States)

    Li, Guangke; Sang, Nan

    2009-01-01

    Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.

  6. SO2 columns over China: Temporal and spatial variations using OMI and GOME-2 observations

    International Nuclear Information System (INIS)

    Huanhuan, Yan; Liangfu, Chen; Lin, Su; Jinhua, Tao; Chao, Yu

    2014-01-01

    Enhancements of SO 2 column amounts due to anthropogenic emission sources over China were shown in this paper by using OMI and GOME-2 observations. The temporal and spatial variations of SO 2 columns over China were analyzed for the time period 2005–2010. Beijing and Chongqing showed a high concentration in the SO 2 columns, attributable to the use of coal for power generation in China and the characteristic of terrain and meteorology. The reduction of SO 2 columns over Beijing and surrounding provinces in 2008 was observed by OMI, which confirms the effectiveness of strict controls on pollutant emissions and motor vehicle traffic before and during 2008 Olympic and Paralympic Games. The SO 2 columns over China from GOME-2 (0.2–0.5 DU) were lower than those from OMI (0.6–1 DU), but both showed a decrease in SO 2 columns over northern China since 2008 (except an increase in OMI SO 2 in 2010)

  7. A decade of global volcanic SO2 emissions measured from space

    Science.gov (United States)

    Carn, S. A.; Fioletov, V. E.; McLinden, C. A.; Li, C.; Krotkov, N. A.

    2017-03-01

    The global flux of sulfur dioxide (SO2) emitted by passive volcanic degassing is a key parameter that constrains the fluxes of other volcanic gases (including carbon dioxide, CO2) and toxic trace metals (e.g., mercury). It is also a required input for atmospheric chemistry and climate models, since it impacts the tropospheric burden of sulfate aerosol, a major climate-forcing species. Despite its significance, an inventory of passive volcanic degassing is very difficult to produce, due largely to the patchy spatial and temporal coverage of ground-based SO2 measurements. We report here the first volcanic SO2 emissions inventory derived from global, coincident satellite measurements, made by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite in 2005-2015. The OMI measurements permit estimation of SO2 emissions from over 90 volcanoes, including new constraints on fluxes from Indonesia, Papua New Guinea, the Aleutian Islands, the Kuril Islands and Kamchatka. On average over the past decade, the volcanic SO2 sources consistently detected from space have discharged a total of ~63 kt/day SO2 during passive degassing, or ~23 ± 2 Tg/yr. We find that ~30% of the sources show significant decadal trends in SO2 emissions, with positive trends observed at multiple volcanoes in some regions including Vanuatu, southern Japan, Peru and Chile.

  8. Single-cell regulome data analysis by SCRAT.

    Science.gov (United States)

    Ji, Zhicheng; Zhou, Weiqiang; Ji, Hongkai

    2017-09-15

    Emerging single-cell technologies (e.g. single-cell ATAC-seq, DNase-seq or ChIP-seq) have made it possible to assay regulome of individual cells. Single-cell regulome data are highly sparse and discrete. Analyzing such data is challenging. User-friendly software tools are still lacking. We present SCRAT, a Single-Cell Regulome Analysis Toolbox with a graphical user interface, for studying cell heterogeneity using single-cell regulome data. SCRAT can be used to conveniently summarize regulatory activities according to different features (e.g. gene sets, transcription factor binding motif sites, etc.). Using these features, users can identify cell subpopulations in a heterogeneous biological sample, infer cell identities of each subpopulation, and discover distinguishing features such as gene sets and transcription factors that show different activities among subpopulations. SCRAT is freely available at https://zhiji.shinyapps.io/scrat as an online web service and at https://github.com/zji90/SCRAT as an R package. hji@jhu.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  9. Platforms for Single-Cell Collection and Analysis

    Directory of Open Access Journals (Sweden)

    Lukas Valihrach

    2018-03-01

    Full Text Available Single-cell analysis has become an established method to study cell heterogeneity and for rare cell characterization. Despite the high cost and technical constraints, applications are increasing every year in all fields of biology. Following the trend, there is a tremendous development of tools for single-cell analysis, especially in the RNA sequencing field. Every improvement increases sensitivity and throughput. Collecting a large amount of data also stimulates the development of new approaches for bioinformatic analysis and interpretation. However, the essential requirement for any analysis is the collection of single cells of high quality. The single-cell isolation must be fast, effective, and gentle to maintain the native expression profiles. Classical methods for single-cell isolation are micromanipulation, microdissection, and fluorescence-activated cell sorting (FACS. In the last decade several new and highly efficient approaches have been developed, which not just supplement but may fully replace the traditional ones. These new techniques are based on microfluidic chips, droplets, micro-well plates, and automatic collection of cells using capillaries, magnets, an electric field, or a punching probe. In this review we summarize the current methods and developments in this field. We discuss the advantages of the different commercially available platforms and their applicability, and also provide remarks on future developments.

  10. Platforms for Single-Cell Collection and Analysis.

    Science.gov (United States)

    Valihrach, Lukas; Androvic, Peter; Kubista, Mikael

    2018-03-11

    Single-cell analysis has become an established method to study cell heterogeneity and for rare cell characterization. Despite the high cost and technical constraints, applications are increasing every year in all fields of biology. Following the trend, there is a tremendous development of tools for single-cell analysis, especially in the RNA sequencing field. Every improvement increases sensitivity and throughput. Collecting a large amount of data also stimulates the development of new approaches for bioinformatic analysis and interpretation. However, the essential requirement for any analysis is the collection of single cells of high quality. The single-cell isolation must be fast, effective, and gentle to maintain the native expression profiles. Classical methods for single-cell isolation are micromanipulation, microdissection, and fluorescence-activated cell sorting (FACS). In the last decade several new and highly efficient approaches have been developed, which not just supplement but may fully replace the traditional ones. These new techniques are based on microfluidic chips, droplets, micro-well plates, and automatic collection of cells using capillaries, magnets, an electric field, or a punching probe. In this review we summarize the current methods and developments in this field. We discuss the advantages of the different commercially available platforms and their applicability, and also provide remarks on future developments.

  11. Micropillar arrays enabling single microbial cell encapsulation in hydrogels.

    Science.gov (United States)

    Park, Kyun Joo; Lee, Kyoung G; Seok, Seunghwan; Choi, Bong Gill; Lee, Moon-Keun; Park, Tae Jung; Park, Jung Youn; Kim, Do Hyun; Lee, Seok Jae

    2014-06-07

    Single microbial cell encapsulation in hydrogels is an important task to find valuable biological resources for human welfare. The conventional microfluidic designs are mainly targeted only for highly dispersed spherical bioparticles. Advanced structures should be taken into consideration for handling such aggregated and non-spherical microorganisms. Here, to address the challenge, we propose a new type of cylindrical-shaped micropillar array in a microfluidic device for enhancing the dispersion of cell clusters and the isolation of individual cells into individual micro-hydrogels for potential practical applications. The incorporated micropillars act as a sieve for the breaking of Escherichia coli (E. coli) clusters into single cells in a polymer mixture. Furthermore, the combination of hydrodynamic forces and a flow-focusing technique will improve the probability of encapsulation of a single cell into each hydrogel with a broad range of cell concentrations. This proposed strategy and device would be a useful platform for genetically modified microorganisms for practical applications.

  12. Changes in SO2 and NO2 Pollution over the Past Decade Observed by Aura OMI

    Science.gov (United States)

    Krotkov, N. A.; Li, C.; Lamsal, L. N.; Celarier, E. A.; Marchenko, S. V.; Swartz, W.; Bucsela, E. J.; Fioletov, V.; McLinden, C. A.; Joiner, J.; Bhartia, P. K.; Duncan, B. N.; Dickerson, R. R.

    2014-12-01

    The Ozone Monitoring Instrument (OMI), a NASA partnership with the Netherlands and Finland, flies on the EOS Aura satellite and uses reflected sunlight to measure two critical atmospheric trace gases, nitrogen dioxide (NO2) and sulfur dioxide (SO2), characterizing daily air quality. Both gases and the secondary pollutants they produce (particulate matter, PM2.5, and tropospheric ozone) are among USEPA designated criteria pollutants, posing serious threats to human health and the environment (e.g., acid rain, plant damage, and reduced visibility). A new generation of the OMI standard SO2 and NO2 products (based on critically improved DOAS spectral fitting for NO2 and innovative Principal Component Analysis method for SO2) provides a valuable dataset for studying anthropogenic pollution on local to global scales. Here we highlight some of the OMI observed long-term changes in air quality over several regions. Over the US, average NO2 and SO2 pollution levels have decreased dramatically as a result of both technological improvements (e.g., catalytic converters on cars) and stricter regulations of emissions. We see continued decline in NO2 and SO2 pollution over Europe. Over China OMI observed a ~ 60% increase in NO2 pollution between 2005 and 2013, despite a temporary reversal of the growing trend due to both 2008 Olympic Games and the economic recession in 2009. Chinese SO2 pollution seems to have stabilized since peaking in 2007, probably due to government efforts to curb SO2 emissions from the power sector. We have also observed large increases in both SO2 and NO2 pollution particularly in Eastern India where a number of new large coal power plants have been built in recent years. We expect that further improvements in the OMI NO2 and SO2 products will allow more robust quantification of long-term trends in local to global air quality.

  13. Sulfate cooling effects on climate through in-cloud oxidation of anthropogenic SO2

    International Nuclear Information System (INIS)

    Lelieveld, J.; Heintzenberg, J.

    1992-01-01

    Anthropogenic SO 2 emissions may exert a significant cooling effect on climate in the Northern Hemisphere through backscattering of solar radiation by sulfate particles. Earlier estimates of the sulfate climate forcing were based on a limited number of sulfate-scattering correlation measurements from which a high sulfate-scattering efficiency was derived. Model results suggest that cloud processing of air is the underlying mechanism. aqueous phase oxidation of SO 2 into sulfate and the subsequent release of the dry aerosol by cloud evaporation render sulfate a much more efficient scatterer than through gas-phase SO 2 oxidation

  14. Single cell Hi-C reveals cell-to-cell variability in chromosome structure

    Science.gov (United States)

    Schoenfelder, Stefan; Yaffe, Eitan; Dean, Wendy; Laue, Ernest D.; Tanay, Amos; Fraser, Peter

    2013-01-01

    Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single cell Hi-C, combined with genome-wide statistical analysis and structural modeling of single copy X chromosomes, to show that individual chromosomes maintain domain organisation at the megabase scale, but show variable cell-to-cell chromosome territory structures at larger scales. Despite this structural stochasticity, localisation of active gene domains to boundaries of territories is a hallmark of chromosomal conformation. Single cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organisation underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns. PMID:24067610

  15. Single-cell intracellular nano-pH probes†

    OpenAIRE

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular p...

  16. Single-cell magnetic imaging using a quantum diamond microscope.

    Science.gov (United States)

    Glenn, D R; Lee, K; Park, H; Weissleder, R; Yacoby, A; Lukin, M D; Lee, H; Walsworth, R L; Connolly, C B

    2015-08-01

    We apply a quantum diamond microscope for detection and imaging of immunomagnetically labeled cells. This instrument uses nitrogen-vacancy (NV) centers in diamond for correlated magnetic and fluorescence imaging. Our device provides single-cell resolution and a field of view (∼1 mm(2)) two orders of magnitude larger than that of previous NV imaging technologies, enabling practical applications. To illustrate, we quantified cancer biomarkers expressed by rare tumor cells in a large population of healthy cells.

  17. Multi-decadal satellite measurements of passive and eruptive volcanic SO2 emissions

    Science.gov (United States)

    Carn, Simon; Yang, Kai; Krotkov, Nickolay; Prata, Fred; Telling, Jennifer

    2015-04-01

    Periodic injections of sulfur gas species (SO2, H2S) into the stratosphere by volcanic eruptions are among the most important, and yet unpredictable, drivers of natural climate variability. However, passive (lower tropospheric) volcanic degassing is the major component of total volcanic emissions to the atmosphere on a time-averaged basis, but is poorly constrained, impacting estimates of global emissions of other volcanic gases (e.g., CO2). Stratospheric volcanic emissions are very well quantified by satellite remote sensing techniques, and we report ongoing efforts to catalog all significant volcanic SO2 emissions into the stratosphere and troposphere since 1978 using measurements from the ultraviolet (UV) Total Ozone Mapping Spectrometer (TOMS; 1978-2005), Ozone Monitoring Instrument (OMI; 2004 - present) and Ozone Mapping and Profiler Suite (OMPS; 2012 - present) instruments, supplemented by infrared (IR) data from HIRS, MODIS and AIRS. The database, intended for use as a volcanic forcing dataset in climate models, currently includes over 600 eruptions releasing a total of ~100 Tg SO2, with a mean eruption discharge of ~0.2 Tg SO2. Sensitivity to SO2 emissions from smaller eruptions greatly increased following the launch of OMI in 2004, but uncertainties remain on the volcanic flux of other sulfur species other than SO2 (H2S, OCS) due to difficulty of measurement. Although the post-Pinatubo 1991 era is often classified as volcanically quiescent, many smaller eruptions (Volcanic Explosivity Index [VEI] 3-4) since 2000 have injected significant amounts of SO2 into the upper troposphere - lower stratosphere (UTLS), peaking in 2008-2011. We also show how even smaller (VEI 2) tropical eruptions can impact the UTLS and sustain above-background stratospheric aerosol optical depth, thus playing a role in climate forcing on short timescales. To better quantify tropospheric volcanic degassing, we use ~10 years of operational SO2 measurements by OMI to identify the

  18. Solar cell structure incorporating a novel single crystal silicon material

    Science.gov (United States)

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  19. Plant Systems Biology at the Single-Cell Level.

    Science.gov (United States)

    Libault, Marc; Pingault, Lise; Zogli, Prince; Schiefelbein, John

    2017-11-01

    Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Functional Insights into Sponge Microbiology by Single Cell Genomics

    KAUST Repository

    Hentschel, Ute

    2011-04-09

    Marine Sponges (Porifera) are known to harbor enormous amounts of microorganisms with members belonging to at least 30 different bacterial phyla including several candidate phyla and both archaeal lineages. Here, we applied single cell genomics to the mic

  1. Sampling strategies to capture single-cell heterogeneity

    OpenAIRE

    Satwik Rajaram; Louise E. Heinrich; John D. Gordan; Jayant Avva; Kathy M. Bonness; Agnieszka K. Witkiewicz; James S. Malter; Chloe E. Atreya; Robert S. Warren; Lani F. Wu; Steven J. Altschuler

    2017-01-01

    Advances in single-cell technologies have highlighted the prevalence and biological significance of cellular heterogeneity. A critical question is how to design experiments that faithfully capture the true range of heterogeneity from samples of cellular populations. Here, we develop a data-driven approach, illustrated in the context of image data, that estimates the sampling depth required for prospective investigations of single-cell heterogeneity from an existing collection of samples. ...

  2. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors.

    Science.gov (United States)

    Mitra, A K; Mukherjee, U K; Harding, T; Jang, J S; Stessman, H; Li, Y; Abyzov, A; Jen, J; Kumar, S; Rajkumar, V; Van Ness, B

    2016-05-01

    Multiple myeloma (MM) is characterized by significant genetic diversity at subclonal levels that have a defining role in the heterogeneity of tumor progression, clinical aggressiveness and drug sensitivity. Although genome profiling studies have demonstrated heterogeneity in subclonal architecture that may ultimately lead to relapse, a gene expression-based prediction program that can identify, distinguish and quantify drug response in sub-populations within a bulk population of myeloma cells is lacking. In this study, we performed targeted transcriptome analysis on 528 pre-treatment single cells from 11 myeloma cell lines and 418 single cells from 8 drug-naïve MM patients, followed by intensive bioinformatics and statistical analysis for prediction of proteasome inhibitor sensitivity in individual cells. Using our previously reported drug response gene expression profile signature at the single-cell level, we developed an R Statistical analysis package available at https://github.com/bvnlabSCATTome, SCATTome (single-cell analysis of targeted transcriptome), that restructures the data obtained from Fluidigm single-cell quantitative real-time-PCR analysis run, filters missing data, performs scaling of filtered data, builds classification models and predicts drug response of individual cells based on targeted transcriptome using an assortment of machine learning methods. Application of SCATT should contribute to clinically relevant analysis of intratumor heterogeneity, and better inform drug choices based on subclonal cellular responses.

  3. Effect of SO2 concentration on polyphenol development during red wine micro-oxygenation.

    Science.gov (United States)

    Tao, Jianxiong; Dykes, Stuart I; Kilmartin, Paul A

    2007-07-25

    A Merlot wine in 15 L research tanks was subjected to micro-oxygenation at 10 mL O2 per liter of wine per month over a 16 week period with additions of 0, 50, 100, and 200 mg/L SO2. A large decrease in monomeric anthocyanins and flavan-3-ols was seen in wines with a lower concentration of SO2, coupled with an increase in nonbleachable pigments; an increase in tannin, measured using precipitation with methyl cellulose; and a greater size and red coloration of a proanthocyanidin extract obtained using Sephadex LH-20. These changes were largely suppressed in wines initially treated with 200 mg/L SO2 and occurred more slowly in wines stored in bottles in the absence of O2. The concentration of SO2 is shown to regulate the polyphenol chemistry involved in the formation of polymeric pigments and changes in tannin structure affecting wine astringency.

  4. Combined treatment of SO2 and high resistivity fly ash using a pulse energized electron reactor

    International Nuclear Information System (INIS)

    Mizuno, A.; Clements, J.S.; Davis, R.H.

    1984-01-01

    The combined removal of SO 2 and high resistivity fly ash has been demonstrated in a pulse energized electron reactor (PEER). The PEER system which was originally developed for the removal of SO 2 utilizes a positive pulse streamer corona discharge in a non-uniform field geometry. In performance tests on SO 2 , more than 90% was removed with an advantageously small power requirement. Combined treatment performance was demonstrated by introducing high resistivity fly ash into the test gas and the PEER is significantly more efficient than a conventional electrostatic precipitator operated with a dc voltage. Observations show that the PEER agglomerates the fly ash and further that the SO 2 removal efficiency is improved by the presence of fly ash. The electrode configuration and performance results make retrofit consideration attractive

  5. A radiation-electric-field combination principle for SO2-oxidation in Ar-mixtures

    International Nuclear Information System (INIS)

    Leonhardt, J.; Krueger, H.; Popp, P.; Boes, J.

    1981-01-01

    A simple model for a radiation-induced SO 2 -oxidation in Ar using SO 2 /O 2 /Ar-mixtures has been described by Leonhardt a.o. It is possible to improve the efficiency of the radiation-induced SO 2 -oxidation in such mixtures if the electrons produced by the ionizing radiation are accelerated by means of an electric field. The energy of the field-accelerated electrons must be high enough to form reactive SO 2 radicals but not high enough to ionize the gas mixture. Such an arrangement is described. The connection between the rate of SO 3 -formation and the electric field and the connection between SO 3 -formation and decreasing of the O 2 -concentration in the reaction chaimber were experimentally determined. Further the G-values attained by means of the radiation-electric-field combination are discussed. (author)

  6. US EPA Nonattainment Areas and Designations-SO2 (2010 NAAQS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web service contains the following layer: SO2 2010 NAAQS State Level. Full FGDC metadata records for each layer may be found by clicking the layer name at the...

  7. NOx, N2O and SO2 emissions from pressurized fluidized bed combustion

    International Nuclear Information System (INIS)

    Korpela, T.; Lu, Y.

    1996-01-01

    This project continues the analysis of available data from the experimental work at the Otaniemi PFBC test rig using various solid fuels. The study concentrates on the emission and control of NO x N 2 O, and SO 2 under pressurized conditions. The aim of the study is to prepare the database from the available data and make empirical correlations for estimating nitrogen oxide emissions and sulfur capture from PFBC as a function of significant operating parameters and fuel properties. As the first generation of an empirical model, multiple linear regression was developed for predicting NO x , N 2 O and SO 2 emissions from PFBC. These correlations may facilitate preliminary FBC design by estimating NO x , N 2 O and SO 2 emissions. On the basis of statistical inference, the operating conditions employed and the fuel properties selected in the correlations may lend insight into the mechanisms of the formation and destruction of NO x , N 2 O and SO 2 . (author)

  8. Next-Generation Aura/OMI NO2 and SO2 Products

    Science.gov (United States)

    Krotkov, Nickolay; Yang, Kai; Bucsela, Eric; Lamsal, Lok; Celarier, Edward; Swartz, William; Carn, Simon; Bhartia, Pawan; Gleason, James; Pickering, Ken; hide

    2011-01-01

    The measurement of both SO2 and NO2 gases are recognized as an essential component of atmospheric composition missions. We describe current capabilities and limitations of the operational Aura/OMI NO2 and SO2 data that have been used by a large number of researchers. Analyses of the data and validation studies have brought to light a number of areas in which these products can be expanded and improved. Major improvements for new NASA standard (SP) NO2 product include more accurate tropospheric and stratospheric column amounts, along with much improved error estimates and diagnostics. Our approach uses a monthly NO2 climatology based on the NASA Global Modeling Initiative (GMI) chemistry-transport model and takes advantage of OMI data from cloudy scenes to find clean areas where the contribution from the trap NO2 column is relatively small. We then use a new filtering, interpolation and smoothing techniques for separating the stratospheric and tropospheric components of NO2, minimizing the influence of a priori information. The new algorithm greatly improves the structure of stratospheric features relative to the original SP. For the next-generation OMI SO2 product we plan to implement operationally the offline iterative spectral fitting (ISF) algorithm and re-process the OMI Level-2 SO2 dataset using a priori SO2 and aerosol profiles, clouds, and surface reflectivity appropriate for observation conditions. This will improve the ability to detect and quantify weak tropospheric SO2 loadings. The new algorithm is validated using aircraft in-situ data during field campaigns in China (2005 and 2008) and in Maryland (Frostburg, 2010 and DISCOVER-AQ in July 2011). The height of the SO2 plumes will also be estimated for high SO2 loading cases (e.g., volcanic eruptions). The same SO2 algorithm will be applied to the data from OMPS sensor to be launched on NPP satellite later this year. The next-generation NO2 and SO2 products will provide critical information (e

  9. Validation Studies of the Accuracy of Various SO2 Gas Retrievals in the Thermal InfraRed (8-14 μm)

    Science.gov (United States)

    Gabrieli, A.; Wright, R.; Lucey, P. G.; Porter, J. N.; Honniball, C.; Garbeil, H.; Wood, M.

    2016-12-01

    Quantifying hazardous SO2 in the atmosphere and in volcanic plumes is important for public health and volcanic eruption prediction. Remote sensing measurements of spectral radiance of plumes contain information on the abundance of SO2. However, in order to convert such measurements into SO2 path-concentrations, reliable inversion algorithms are needed. Various techniques can be employed to derive SO2 path-concentrations. The first approach employs a Partial Least Square Regression model trained using MODTRAN5 simulations for a variety of plume and atmospheric conditions. Radiances at many spectral wavelengths (8-14 μm) were used in the algorithm. The second algorithm uses measurements inside and outside the SO2 plume. Measurements in the plume-free region (background sky) make it possible to remove background atmospheric conditions and any instrumental effects. After atmospheric and instrumental effects are removed, MODTRAN5 is used to fit the SO2 spectral feature and obtain SO2 path-concentrations. The two inversion algorithms described above can be compared with the inversion algorithm for SO2 retrievals developed by Prata and Bernardo (2014). Their approach employs three wavelengths to characterize the plume temperature, the atmospheric background, and the SO2 path-concentration. The accuracy of these various techniques requires further investigation in terms of the effects of different atmospheric background conditions. Validating these inversion algorithms is challenging because ground truth measurements are very difficult. However, if the three separate inversion algorithms provide similar SO2 path-concentrations for actual measurements with various background conditions, then this increases confidence in the results. Measurements of sky radiance when looking through SO2 filled gas cells were collected with a Thermal Hyperspectral Imager (THI) under various atmospheric background conditions. These data were processed using the three inversion approaches

  10. Impact of coal combustion from thermal power plant: estimates on ambient SO2 levels

    International Nuclear Information System (INIS)

    Joshi, P.V.

    1991-01-01

    Using a Gaussian dispersion model, ambient Ground Levels Concentrations (GLC) of SO 2 due to Nashik Thermal Power Plant have been computed. Annual GLC in 16 cardinal sectors and concentration levels in 6 atmospheric stability classes have been estimated as a function of down wind distance. The values are compared with national ambient air quality standard and risk involved due to the release of SO 2 from power plant has been assessed. (author). 8 refs., 2 appendixes

  11. Physiological responses of Norway spruce trees to elevated CO2 and SO2

    NARCIS (Netherlands)

    Tausz, M.; De Kok, L.J.; Stulen, I.

    Young Norway spruce (Picea abies (L.) Karst.) trees were exposed to elevated CO2 (0.8 mL L(-1)), SO2 (0.06 mu L L(-1)), and elevated CO2 and SO2 (0.8 mL L(-1) and 0.06 mu L L(-1), respectively) for three months. Exposure to elevated CO2 resulted in an increased biomass production of the needles,

  12. Single-Cell Genomics: Approaches and Utility in Immunology.

    Science.gov (United States)

    Neu, Karlynn E; Tang, Qingming; Wilson, Patrick C; Khan, Aly A

    2017-02-01

    Single-cell genomics offers powerful tools for studying immune cells, which make it possible to observe rare and intermediate cell states that cannot be resolved at the population level. Advances in computer science and single-cell sequencing technology have created a data-driven revolution in immunology. The challenge for immunologists is to harness computing and turn an avalanche of quantitative data into meaningful discovery of immunological principles, predictive models, and strategies for therapeutics. Here, we review the current literature on computational analysis of single-cell RNA-sequencing data and discuss underlying assumptions, methods, and applications in immunology, and highlight important directions for future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Study on in-situ electrochemical impedance spectroscopy measurement of anodic reaction in SO_2 depolarized electrolysis process

    International Nuclear Information System (INIS)

    Xue Lulu; Zhang Ping; Chen Songzhe; Wang Laijun

    2014-01-01

    SO_2 depolarized electrolysis (SDE) is the pivotal reaction in hybrid sulfur process, one of the most promising approaches for mass hydrogen production without CO_2 emission. The net result of hybrid sulfur process is to split water into hydrogen and oxygen at a relatively low voltage, which will dramatically decrease the energy consumption for the production of hydrogen. The potential loss of SDE process could be separated into four components, i.e. reversible cell potential, anode overpotential, cathode overpotential and ohmic loss. So far, it has been identified that the total cell potential for the SO_2 depolarized electrolyzer is dominantly controlled by sulfuric acid concentration of the anolyte and electrolysis temperature of the electrolysis process. In this work, an in-situ Electrochemical Impedance Spectroscopy (EIS) measurement of the anodic SDE reaction was conducted. Results show that anodic overpotential is mainly resulted from the SO_2 oxidation reaction other than ohmic resistance or mass transfer limitation. This study extends the understanding to SDE process and gives suggestions for the further improvement of the SDE performance. (author)

  14. Clustering Single-Cell Expression Data Using Random Forest Graphs.

    Science.gov (United States)

    Pouyan, Maziyar Baran; Nourani, Mehrdad

    2017-07-01

    Complex tissues such as brain and bone marrow are made up of multiple cell types. As the study of biological tissue structure progresses, the role of cell-type-specific research becomes increasingly important. Novel sequencing technology such as single-cell cytometry provides researchers access to valuable biological data. Applying machine-learning techniques to these high-throughput datasets provides deep insights into the cellular landscape of the tissue where those cells are a part of. In this paper, we propose the use of random-forest-based single-cell profiling, a new machine-learning-based technique, to profile different cell types of intricate tissues using single-cell cytometry data. Our technique utilizes random forests to capture cell marker dependences and model the cellular populations using the cell network concept. This cellular network helps us discover what cell types are in the tissue. Our experimental results on public-domain datasets indicate promising performance and accuracy of our technique in extracting cell populations of complex tissues.

  15. Carbon-enriched coal fly ash as a precursor of activated carbons for SO2 removal.

    Science.gov (United States)

    Izquierdo, M T; Rubio, B

    2008-06-30

    Carbon-enriched coal fly ash was evaluated in this work as a low-cost adsorbent for SO2 removal from stack gases. The unburned carbon in coal fly ash was concentrated by mechanical sieving and vegetal oil agglomeration. The carbon concentrates were activated with steam at 900 degrees C in order to develop porosity onto the samples. The performance of these samples in the SO2 abatement was tested in the following conditions: 100 degrees C, 1000 ppmv SO2, 5% O2, 6% water vapor. A good SO2 removal capacity was shown by some of the studied samples that can be related to their textural properties. Cycles of SO2 adsorption/regeneration were carried out in order to evaluate the possibility of thermal regeneration and re-use of these carbons. Regeneration of the exhausted carbons was carried out at 400 degrees C of temperature and a flow of 25 ml/min of Ar. After each cycle, the SO2 removal capacity of the sample decreases.

  16. Optimization of alternative options for SO2 emissions control in the Mexican electrical sector

    International Nuclear Information System (INIS)

    Islas, Jorge; Grande, Genice

    2007-01-01

    This article develops a least-cost optimization model in terms of the projected SO 2 abatement costs of nine selected options for SO 2 emissions control in the 10 most polluting power plants of the Mexican electrical sector (MES)-including SO 2 scrubbing technologies, fuel oil hydrotreating desulphurization and fuel substitutions. The model not only finds the optimal combination of SO 2 control options and generating units at 10% reduction intervals referred to the total SO 2 emissions but also meets the restriction imposed in the NOM-085-ECOL-1994 (Mexican Official Norm) for allowable emission levels within critical zones. Similarly, two schemes are studied and analysed in this model: the first case considers the economical benefits derived from the substitution of fuel oil by imported low sulphur content coal in the Petacalco power plant and; the second case does not considered such economical benefits. Finally, results are obtained for these two cases in terms of the corresponding costs-investment, O and M, fuel-, abatement costs and the SO 2 emissions reduction

  17. Experimental studies on the simultaneous reduction of NO and SO2 emissions by re burning

    International Nuclear Information System (INIS)

    Sun, Rui; Yu, Leibo; Fei, Jun; Mu, Yangyang; Zhang, Xin; Sun, Shaozeng; Wu, Shaohua

    2010-01-01

    The simultaneous reduction of NO and SO 2 by pulverized coal re burning was studied in a drop tube furnace (DTF). A bituminous pulverized coal was chosen as the re burning fuel, and calcium oxide was added as desulfurizer. The influences of stoichiometric ratio (SR), re burning temperature, calcium to sulfur ratio (Ca/ S), and residence time on efficiency of removing NO and SO 2 were studied by DTF hot experiments. The experiment results showed that, at the condition of the re burning temperature 1200 degree Celsius, Ca/ S=1.5, NO reduction efficiency decreased with the increase of re burning fuels stoichiometric ratio, but SO 2 reduction efficiency increased. When the re burning temperature increased from 1000 degree Celsius to 1200 degree Celsius, NO and SO 2 reduction efficiencies initially increased, but then decreased as temperature higher than 1100 degree Celsius. NO reduction efficiency decreased when Ca/ S changed from 1.0 to 2.5, and SO 2 reduction efficiency increased at all times, in spite of the increasing trend became flat when Ca/ S was higher than 2.0. Among all tests, high SO 2 and NO reduction ratios were obtained at SR of 0.8∼0.9 and Ca/ S of 1.5. The mechanisms of desulfurization and denitrification are also discussed and presented to explain the reactions routine in the DTF. (author)

  18. Nitrile-functionalized tertiary amines as highly efficient and reversible SO2 absorbents

    International Nuclear Information System (INIS)

    Hong, Sung Yun; Kim, Heehwan; Kim, Young Jin; Jeong, Junkyo; Cheong, Minserk; Lee, Hyunjoo; Kim, Hoon Sik; Lee, Je Seung

    2014-01-01

    Highlights: • Nitrile-functionalized tertiary amines physically and reversibly absorb SO 2 . • Tertiary alkanolamines chemically and irreversibly absorb SO 2 through OH group. • SO 2 absorption modes were studied by spectroscopy and computational calculations. -- Abstract: Three different types of nitrile-functionalized amines, including 3-(N,N-diethylamino)propionitrile (DEAPN), 3-(N,N-dibutylamino)propionitrile (DBAPN), and N-methyl-N,N-dipropionitrile amine (MADPN) were synthesized, and their SO 2 absorption performances were evaluated and compared with those of hydroxy-functionalized amines such as N,N-diethyl-N-ethanol amine (DEEA), N,N-dibutyl-N-ethanol amine (DBEA), and N-methyl-N,N-diethanol amine (MDEA). Absorption–desorption cycle experiments clearly demonstrate that the nitrile-functionalized amines are more efficient than the hydroxy-functionalized amines in terms of absorption rate and regenerability. Computational calculations with DBEA and DBAPN revealed that DBEA bearing a hydroxyethyl group chemically interacts with SO 2 through oxygen atom, forming an ionic compound with a covalently bound -OSO 2 − group. On the contrary, DBAPN bearing a nitrile group physically interacts with SO 2 through the nitrogen and the hydrogen atoms of the two methylene groups adjacent to the amino and nitrile functionalities

  19. Simultaneous removal of SO2 and NOX with ammonia absorbent in a packed column

    International Nuclear Information System (INIS)

    Jia, Yong; Du, Daqian; Zhang, Xinxi; Ding, Xilou; Zhong, Oin

    2013-01-01

    Catalytic oxidation of NO followed by simultaneous removal of SO 2 and NO X with ammonia is a promising method for control of coal-fired flue gas pollutants. We investigated simultaneous absorption of SO 2 and NO X in a packed column with ammonia, and found that SO 2 and NO X could promote absorption with each other in the process of simultaneous removal SO 2 and NO X . The removal efficiency of SO 2 and NO X was, respectively, about 98% and 70.9% at pH 5.5, temperature 323.15 K, SO 2 concentration 1,800x10 −6 , NO X concentration 400x10 −6 and m NO2 /m NO 1 in our experimental system. The experimental results also show that the formation of sulfite oxidized by reacting with dissolved NO 2 and the molar ratio of sulfite to total sulfur is more than 0.8 in the solution. Accordingly, the energy consumption for sulfite oxidation would be greatly reduced in the process of simultaneous desulfurization and denitrification with ammonia

  20. Heterogeneous oxidation of SO2 by O3-aged black carbon and its dithiothreitol oxidative potential.

    Science.gov (United States)

    Xu, Weiwei; Li, Qian; Shang, Jing; Liu, Jia; Feng, Xiang; Zhu, Tong

    2015-10-01

    Ozone (O3) is an important atmospheric oxidant. Black carbon (BC) particles released into the atmosphere undergo an aging process via O3 oxidation. O3-aged BC particles may change their uptake ability toward trace reducing gases such as SO2 in the atmosphere, leading to different environmental and health effects. In this paper, the heterogeneous reaction process between O3-aged BC and SO2 was explored via in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Combined with ion chromatography (IC), DRIFTS was used to qualitatively and quantitatively analyze the sulfate product. The results showed that O3-aged BC had stronger SO2 oxidation ability than fresh BC, and the reactive species/sites generated on the surface had an important role in the oxidation of SO2. Relative humidity or 254nm UV (ultraviolet) light illumination enhanced the oxidation uptake of SO2 on O3-aged BC. The oxidation potentials of the BC particles were detected via dithiothreitol (DTT) assay. The DTT activity over BC was decreased in the process of SO2 reduction, with the consumption of oxidative active sites. Copyright © 2015. Published by Elsevier B.V.

  1. Simultaneous removal of SO2, NO and Hg0 from flue gas by ferrate (VI) solution

    International Nuclear Information System (INIS)

    Zhao, Yi; Han, Yinghui; Guo, Tianxiang; Ma, Tianzhong

    2014-01-01

    Simultaneously removing SO 2 , NO and Hg 0 from flue gas was examined by ferrate (VI) solution at a bubbling reactor. The removal efficiencies of 100% for SO 2 , 64.8% for NO and 81.4% for Hg 0 were achieved respectively, under the optimum experimental conditions, in which concentration of ferrate (VI) solution was 0.25 mmol/L, solution pH was 8.0, flue gas flow rate was 1 L/min and reaction temperature was 320 K. Based on the discussions of the ferrate (VI) solution characteristics, the comparisons of the standard electrode potential (E 0 ) of ferrate (VI) solution with E 0 values of reactant, and the analysis of the reaction products, a mechanism of simultaneous removal was proposed. In the process of simultaneous removal, FeO 4 2− and HFeO 4 − as the dominant species of ferrate (VI), could rapidly oxidize SO 2 , NO, and Hg 0 into SO 4 2− , NO 3 − and Hg 2+ . - Highlights: • Prepared ferrate (VI) absorbent has excellent property of removing SO 2 , NO and Hg 0 . • 100% of SO 2 , 63.8% of NO and 83.6% of Hg 0 were simultaneously removed. • The simultaneous removal mechanism of SO 2 , NO and Hg 0 was proposed

  2. Simultaneous absorption of NO and SO2 into hexamminecobalt(II)/iodide solution.

    Science.gov (United States)

    Long, Xiang-Li; Xiao, Wen-De; Yuan, Wei-kang

    2005-05-01

    An innovative catalyst system has been developed to simultaneously remove NO and SO2 from combustion flue gas. Such catalyst system may be introduced to the scrubbing solution using ammonia solution to accomplish sequential absorption and catalytic oxidation of both NO and SO2 in the same reactor. When the catalyst system is utilized for removing NO and SO2 from the flue gas, Co(NH3)(6)2+ ions act as the catalyst and I- as the co-catalyst. Dissolved oxygen, in equilibrium with the residual oxygen in the flue gas, is the oxidant. The overall removal process is further enhanced by UV irradiation at 365 nm. More than 95% of NO is removed at a feed concentration of 250-900 ppm, and nearly 100% of SO2 is removed at a feed concentration of 800-2500 ppm. The sulfur dioxide co-existing in the flue gas is beneficial to NO absorption into hexamminecobalt(II)/iodide solution. NO and SO2 can be converted to ammonium sulfate and ammonium nitrate that can be used as fertilizer materials. The process described here demonstrates the feasibility of removing SO2 and NO simultaneously only by retrofitting the existing wet ammonia flue-gas-desulfurization (FGD) scrubbers.

  3. Single cell transcriptome profiling of developing chick retinal cells.

    Science.gov (United States)

    Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M

    2017-08-15

    The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.

  4. Single-cell intracellular nano-pH probes†

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2016-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution. PMID:27708772

  5. Single-cell intracellular nano-pH probes.

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.

  6. Parameter Screening in Microfluidics Based Hydrodynamic Single-Cell Trapping

    Directory of Open Access Journals (Sweden)

    B. Deng

    2014-01-01

    Full Text Available Microfluidic cell-based arraying technology is widely used in the field of single-cell analysis. However, among developed devices, there is a compromise between cellular loading efficiencies and trapped cell densities, which deserves further analysis and optimization. To address this issue, the cell trapping efficiency of a microfluidic device with two parallel micro channels interconnected with cellular trapping sites was studied in this paper. By regulating channel inlet and outlet status, the microfluidic trapping structure can mimic key functioning units of previously reported devices. Numerical simulations were used to model this cellular trapping structure, quantifying the effects of channel on/off status and trapping structure geometries on the cellular trapping efficiency. Furthermore, the microfluidic device was fabricated based on conventional microfabrication and the cellular trapping efficiency was quantified in experiments. Experimental results showed that, besides geometry parameters, cellular travelling velocities and sizes also affected the single-cell trapping efficiency. By fine tuning parameters, more than 95% of trapping sites were taken by individual cells. This study may lay foundation in further studies of single-cell positioning in microfluidics and push forward the study of single-cell analysis.

  7. The single-cell gel electrophoresis assay to determine apoptosis ...

    African Journals Online (AJOL)

    When the frequency of appearance of apoptotic cells following was observed over a period of time, there was a significant increase in appearance of apoptosis when using single cell gel electrophoresis assay. The present report demonstrates that the characteristic pattern of apoptotic comets detected by the comet assay ...

  8. Single cell adhesion assay using computer controlled micropipette.

    Directory of Open Access Journals (Sweden)

    Rita Salánki

    Full Text Available Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day. Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min. We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a

  9. Mapping Cellular Hierarchy by Single-Cell Analysis of the Cell Surface Repertoire

    OpenAIRE

    Guo, Guoji; Luc, Sidinh; Marco, Eugenio; Lin, Ta-Wei; Peng, Cong; Kerenyi, Marc A.; Beyaz, Semir; Kim, Woojin; Xu, Jian; Das, Partha Pratim; Neff, Tobias; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H.

    2013-01-01

    Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method we analyzed over 1500 single cells throughout the mouse hematopoietic system, and illustrate its utility for revealing important biological insi...

  10. A new method research of monitoring low concentration NO and SO2 mixed gas

    Science.gov (United States)

    Bo, Peng; Gao, Chao; Guo, Yongcai; Chen, Fang

    2018-01-01

    In order to reduce the pollution of the environment, China has implemented a new ultra-low emission control regulations for polluting gas, requiring new coal-fired power plant emissions SO2 less than 30ppm, NO less than 75ppm, NO2 less than 50ppm, Monitoring low concentration of NO and SO2 mixed gases , DOAS technology facing new challenges, SO2 absorb significantly weaken at the original absorption peak, what more the SNR is very low, it is difficult to extract the characteristic signal, and thus cannot obtain its concentration. So it cannot separate the signal of NO from the mixed gas at the wavelength of 200 230nm through the law of spectral superposition, it cannot calculate the concentration of NO. The classical DOAS technology cannot meet the needs of monitoring. In this paper, we found another absorption spectrum segment of SO2, the SNR is 10 times higher than before, Will not be affected by NO, can calculate the concentration of SO2 accurately, A new method of segmentation and demagnetization separation technology of spectral signals is proposed, which achieves the monitoring the low concentration mixed gas accurately. This function cannot be achieved by the classical DOAS. Detection limit of this method is 0.1ppm per meter which is higher than before, The relative error below 5% when the concentration between 0 5ppm, the concentration of NO between 6 75ppm and SO2 between 6 30ppm the relative error below 1.5%, it has made a great breakthrough In the low concentration of NO and SO2 monitoring. It has great scientific significance and reference value for the development of coal-fired power plant emission control, atmospheric environmental monitoring and high-precision on-line instrumentation.

  11. Impact of Manufacturing Transfer on SO2 Emissions in Jiangsu Province, China

    Directory of Open Access Journals (Sweden)

    Ying Peng

    2016-05-01

    Full Text Available The impact of manufacturing transfer in Jiangsu province, China, on the spatial-temporal variations of SO2 emissions is investigated using estimated sector-specific SO2 emissions, and emissions in the different transfer-in and transfer-out regions were quantified during 2000–2011. Our results show that SO2 emissions had undergone three phases: an increase in the period of 2000–2005, a rapid decline in 2005–2008 and a slow decline in 2008–2011. Emissions from the south dominated the total emissions in the province. Cleaner production generally contributed to the reduced emissions, but rather, at the industrial scale. Pollution abatement was occasional and industrial structure was negligible in some years. The three phases also coincided with the three periods of the manufacturing transfer: transferred to the south from outside the province during 2000–2005, to the central from the south within the province during 2005–2008 and to the north from the south or partly from the inner central within the province during 2008–2011. With the manufacturing transfer, SO2 emission magnitudes and distributions were also changed. In the south, −12.36 and −5.62 Mt of SO2 emissions were transferred out during 2005–2008 and 2008–2011, respectively. Forty-three-point-four percent and 56.4% of the SO2 emissions in the south were transferred to the central and north during 2005–2008, respectively. The north region received 77.7% and 22.1% of SO2 emissions from the south and the central region during 2008–2011, respectively. The paper reveals that structure adjustments should be executed in a timely manner in the manufacturing transfer-in process so that the transfer-in regions can benefit from the economic boom without bearing a deteriorated environment.

  12. Scientist, Single Cell Analysis Facility | Center for Cancer Research

    Science.gov (United States)

    The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives.  The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR).  The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and nextGen sequencing. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR).  CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES AND RESPONSIBILITIES We are seeking a highly motivated Scientist II to join the newly established Single Cell Analysis Facility (SCAF) of the Center for Cancer Research (CCR) at NCI. The SCAF will house state of the art single cell sequencing technologies including 10xGenomics Chromium, BD Genomics Rhapsody, DEPPArray, and other emerging single cell technologies. The Scientist: Will interact with close to 200 laboratories within the CCR to design and carry out single cell experiments for cancer research Will work on single cell isolation/preparation from various tissues and cells and related NexGen sequencing library preparation Is expected to author publications in peer reviewed scientific journals

  13. Addressable droplet microarrays for single cell protein analysis.

    Science.gov (United States)

    Salehi-Reyhani, Ali; Burgin, Edward; Ces, Oscar; Willison, Keith R; Klug, David R

    2014-11-07

    Addressable droplet microarrays are potentially attractive as a way to achieve miniaturised, reduced volume, high sensitivity analyses without the need to fabricate microfluidic devices or small volume chambers. We report a practical method for producing oil-encapsulated addressable droplet microarrays which can be used for such analyses. To demonstrate their utility, we undertake a series of single cell analyses, to determine the variation in copy number of p53 proteins in cells of a human cancer cell line.

  14. Optical and hydrodynamic stretching of single cells from blood

    DEFF Research Database (Denmark)

    Thirstrup, Henrik; Rungling, Tony B.; Khalil Al-Hamdani, Mustafa Zyad

    2017-01-01

    Mechanical properties, like deformability or elasticity, of cells can in some cases be indicative of the health of the organism they originate from. In this work, we explore the potential of deformability and other mechanical parameters of individual red blood cells (RBCs) from humans as a marker...... but does so far not allow for subsequent investigations of single "interesting" cells. The paper is a progress report with preliminary results based on the different strategies, we have pursued....

  15. Single-cell proteomics: potential implications for cancer diagnostics.

    Science.gov (United States)

    Gavasso, Sonia; Gullaksen, Stein-Erik; Skavland, Jørn; Gjertsen, Bjørn T

    2016-01-01

    Single-cell proteomics in cancer is evolving and promises to provide more accurate diagnoses based on detailed molecular features of cells within tumors. This review focuses on technologies that allow for collection of complex data from single cells, but also highlights methods that are adaptable to routine cancer diagnostics. Current diagnostics rely on histopathological analysis, complemented by mutational detection and clinical imaging. Though crucial, the information gained is often not directly transferable to defined therapeutic strategies, and predicting therapy response in a patient is difficult. In cancer, cellular states revealed through perturbed intracellular signaling pathways can identify functional mutations recurrent in cancer subsets. Single-cell proteomics remains to be validated in clinical trials where serial samples before and during treatment can reveal excessive clonal evolution and therapy failure; its use in clinical trials is anticipated to ignite a diagnostic revolution that will better align diagnostics with the current biological understanding of cancer.

  16. Spatial reconstruction of single-cell gene expression data.

    Science.gov (United States)

    Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv

    2015-05-01

    Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.

  17. Spatial reconstruction of single-cell gene expression

    Science.gov (United States)

    Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv

    2015-01-01

    Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923

  18. Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells.

    Science.gov (United States)

    Darmanis, Spyros; Gallant, Caroline Julie; Marinescu, Voichita Dana; Niklasson, Mia; Segerman, Anna; Flamourakis, Georgios; Fredriksson, Simon; Assarsson, Erika; Lundberg, Martin; Nelander, Sven; Westermark, Bengt; Landegren, Ulf

    2016-01-12

    Significant advances have been made in methods to analyze genomes and transcriptomes of single cells, but to fully define cell states, proteins must also be accessed as central actors defining a cell's phenotype. Methods currently used to analyze endogenous protein expression in single cells are limited in specificity, throughput, or multiplex capability. Here, we present an approach to simultaneously and specifically interrogate large sets of protein and RNA targets in lysates from individual cells, enabling investigations of cell functions and responses. We applied our method to investigate the effects of BMP4, an experimental therapeutic agent, on early-passage glioblastoma cell cultures. We uncovered significant heterogeneity in responses to treatment at levels of RNA and protein, with a subset of cells reacting in a distinct manner to BMP4. Moreover, we found overall poor correlation between protein and RNA at the level of single cells, with proteins more accurately defining responses to treatment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Distribution of inorganic elements in single cells of Chara corallina

    International Nuclear Information System (INIS)

    Li Zijie; Zhang Zhiyong; Chai Zhifang; Yu Ming; Zhou Yunlong

    2005-01-01

    There are actually 20 chemical elements necessary or beneficial for plant growth. Carbon, hydrogen, and oxygen are supplied by air and water. The six macronutrients, nitrogen, phosphorus, potassium., calcium, magnesium, and sulfur are required by plants in large amounts. The rest of the elements are required in trace amounts (micronutrients). Essential trace elements include boron, chlorine, copper, iron, manganese, sodium, zinc, molybdenum, and nickel. Beneficial mineral elements include silicon and cobalt. The functions of the inorganic elements closely related to their destinations in plant cells. Plant cells have unique structures, including a central vacuole, plastids, and a thick cell wall that surrounds the cell membrane. Generally, it is very difficult to determine concentrations of inorganic elements in a single plant cell. Chara corallina is a freshwater plant that inhabits temperate zone ponds and lakes. It consists of alternating nodes and internodes. Each internodal segment is a single large cell, up to 10 cm in length, and 1 mm in diameter. With this species it was possible to isolate subcellular fractions with surgical methods with minimal risk of cross contamination. In this study, concentrations of magnesium, calcium, manganese, iron, copper, zinc, and molybdenum in the cell wall, cytoplasm, and vacuole of single cells of Chara corallina were determined by inductively coupled plasma mass spectrometry (ICP-MS). The distribution characteristics of these elements in the cell components were discussed.

  20. Bridging the Timescales of Single-Cell and Population Dynamics

    Science.gov (United States)

    Jafarpour, Farshid; Wright, Charles S.; Gudjonson, Herman; Riebling, Jedidiah; Dawson, Emma; Lo, Klevin; Fiebig, Aretha; Crosson, Sean; Dinner, Aaron R.; Iyer-Biswas, Srividya

    2018-04-01

    How are granular details of stochastic growth and division of individual cells reflected in smooth deterministic growth of population numbers? We provide an integrated, multiscale perspective of microbial growth dynamics by formulating a data-validated theoretical framework that accounts for observables at both single-cell and population scales. We derive exact analytical complete time-dependent solutions to cell-age distributions and population growth rates as functionals of the underlying interdivision time distributions, for symmetric and asymmetric cell division. These results provide insights into the surprising implications of stochastic single-cell dynamics for population growth. Using our results for asymmetric division, we deduce the time to transition from the reproductively quiescent (swarmer) to the replication-competent (stalked) stage of the Caulobacter crescentus life cycle. Remarkably, population numbers can spontaneously oscillate with time. We elucidate the physics leading to these population oscillations. For C. crescentus cells, we show that a simple measurement of the population growth rate, for a given growth condition, is sufficient to characterize the condition-specific cellular unit of time and, thus, yields the mean (single-cell) growth and division timescales, fluctuations in cell division times, the cell-age distribution, and the quiescence timescale.

  1. Lessons from single-cell transcriptome analysis of oxygen-sensing cells.

    Science.gov (United States)

    Zhou, Ting; Matsunami, Hiroaki

    2018-05-01

    The advent of single-cell RNA-sequencing (RNA-Seq) technology has enabled transcriptome profiling of individual cells. Comprehensive gene expression analysis at the single-cell level has proven to be effective in characterizing the most fundamental aspects of cellular function and identity. This unbiased approach is revolutionary for small and/or heterogeneous tissues like oxygen-sensing cells in identifying key molecules. Here, we review the major methods of current single-cell RNA-Seq technology. We discuss how this technology has advanced the understanding of oxygen-sensing glomus cells in the carotid body and helped uncover novel oxygen-sensing cells and mechanisms in the mice olfactory system. We conclude by providing our perspective on future single-cell RNA-Seq research directed at oxygen-sensing cells.

  2. Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO2

    Directory of Open Access Journals (Sweden)

    T. Liu

    2016-01-01

    Full Text Available Sulfur dioxide (SO2 can enhance the formation of secondary aerosols from biogenic volatile organic compounds (VOCs, but its influence on secondary aerosol formation from anthropogenic VOCs, particularly complex mixtures like vehicle exhaust, remains uncertain. Gasoline vehicle exhaust (GVE and SO2, a typical pollutant from coal burning, are directly co-introduced into a smog chamber, in this study, to investigate the formation of secondary organic aerosols (SOA and sulfate aerosols through photooxidation. New particle formation was enhanced, while substantial sulfate was formed through the oxidation of SO2 in the presence of high concentration of SO2. Homogenous oxidation by OH radicals contributed a negligible fraction to the conversion of SO2 to sulfate, and instead the oxidation by stabilized Criegee intermediates (sCIs, formed from alkenes in the exhaust reacting with ozone, dominated the conversion of SO2. After 5 h of photochemical aging, GVE's SOA production factor revealed an increase by 60–200 % in the presence of high concentration of SO2. The increase could principally be attributed to acid-catalyzed SOA formation as evidenced by the strong positive linear correlation (R2 = 0.97 between the SOA production factor and in situ particle acidity calculated by the AIM-II model. A high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS resolved OA's relatively lower oxygen-to-carbon (O : C (0.44 ± 0.02 and higher hydrogen-to-carbon (H : C (1.40 ± 0.03 molar ratios for the GVE / SO2 mixture, with a significantly lower estimated average carbon oxidation state (OSc of −0.51 ± 0.06 than −0.19 ± 0.08 for GVE alone. The relative higher mass loading of OA in the experiments with SO2 might be a significant explanation for the lower SOA oxidation degree.

  3. Partial discharge early-warning through ultraviolet spectroscopic detection of SO2

    International Nuclear Information System (INIS)

    Zhao, Yu; Wang, Xianpei; Dai, Dangdang; Dong, Zhengcheng; Huang, Yunguang

    2014-01-01

    Surveillance of SF 6  decomposition products is significant for detection of partial discharge (PD) in gas insulation switchgear (GIS). As a basis in on-site detection and diagnosis, PD early-warning aims to quickly find the abnormalities using a simple and cheap device. In this paper, SO 2  is chosen as a feature product and detected through ultraviolet spectroscopy. The derivative method is employed for baseline correction and spectral enhancement. The standard gases of the main decomposition products are qualitatively and quantitatively detected. Then decomposition experiments with different defects are designed to further verify the feasibility. As a stable decomposition product under PD, SO 2  is proved to be applicable for PD early-warning in the field. By selecting the appropriate wavelength range, namely 290–310 nm, ultraviolet derivative spectroscopy is sensitive enough to the trace SO 2  in the decomposed gas and the interference of other products can be avoided. Fast Fourier transform could be used for feature extraction in qualitative detection. Concentrations of SO 2  and other by-products increase with increasing discharge time and could be affected by the discharge energy and PD type. Ultraviolet detection based on SO 2  is effective for PD early-warning but the threshold should still be carefully selected in practice. (paper)

  4. A density functional theory insight towards the rational design of ionic liquids for SO2 capture.

    Science.gov (United States)

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2015-05-28

    A systematic density functional theory (DFT) analysis has been carried out to obtain information at the molecular level on the key parameters related to efficient SO2 capture by ionic liquids (ILs). A set of 55 ILs, for which high gas solubility is expected, has been selected. SO2 solubility of ILs was firstly predicted based on the COSMO-RS (Conductor-like Screening Model for Real Solvents) method, which provides a good prediction of gas solubility data in ILs without prior experimental knowledge of the compounds' features. Then, interactions between SO2 and ILs were deeply analyzed through DFT simulations. This work provides valuable information about required factors at the molecular level to provide high SO2 solubility in ILs, which is crucial for further implementation of these materials in the future. In our opinion, systematic research on ILs for SO2 capture increases our knowledge about those factors which could be controlled at the molecular level, providing an approach for the rational design of task-specific ILs.

  5. Preliminary performance and operating results from the integrated dry NOx/SO2 emissions control system

    International Nuclear Information System (INIS)

    Hunt, T.; Schott, G.; Smith, R.; Muzio, L.; Jones, D.; Mali E.; Arrigoni, T.

    1993-01-01

    The Integrated Dry NO x /SO 2 Emissions Control System was installed at Public Service Company of Colorado's Arapaho 4 generating station in 1992 in cooperation with the U.S. Department of Energy (DOE) and and the Electric Power Research Institute (EPRI). This full scale 100 MWe demonstration combines low-NO x burners, overfire air, and selective noncatalytic reduction (SNCR) for NO x control and dry sorbent injection with humidification for SO 2 control. Operation and testing of the Integrated Dry NO x /SO 2 Emissions Control System began in August 1992 and will continue through mid 1994. Preliminary results of the NO x control technologies show that the original system goal of 70% NO x removal has been easily met and that NO x removals of up to 80% are possible at full load with the combustion and SNCR systems. Testing of the dry sorbent injection system with low sulfur coal began in April 1993 using a calcium-based reagent. A maximum SO 2 removal of 40% has been achieved with duct injection of commercial calcium hydroxide and humidification to a 25 degrees F approach to saturation. Sodium-based dry sorbent injection is expected to achieved up to a 70% SO 2 reduction

  6. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway

    Science.gov (United States)

    Liu, Jia; Yu, Wen; Liu, Yan; Chen, Selena; Huang, Yaqian; Li, Xiaohui; Liu, Cuiping; Zhang, Yanqiu; Li, Zhenzhen; Du, Jie; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    The aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, transforming growth factor-β1 (TGF- β1) expression and phosphorylation of Smad2/3 induced by stretch, but AAT1 knockdown mimicked the increase in collagen I and III expression, TGF- β1 expression and phosphorylation of Smad2/3 induced by stretch. Mechanistically, SB431542, a TGF-β1/Smad2/3 inhibitor, eliminated excessive collagen I and III accumulation induced by AAT1 knockdown, stretch or stretch plus AAT1 knockdown. In a rat model of high pulmonary blood flow-induced pulmonary vascular collagen accumulation, AAT1 expression and SO2 content in lung tissues of rat were reduced in shunt rats with high pulmonary blood flow. Supplement of SO2 derivatives inhibited activation of TGF- β1/Smad2/3 pathway and alleviated the excessive collagen accumulation in lung tissues of shunt rats. The results suggested that deficiency of endogenous SO2/AAT1 pathway mediated mechanical stretch-stimulated abnormal collagen accumulation via TGF-β1/Smad2/3 pathway. PMID:26880260

  7. Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors.

    Science.gov (United States)

    Bendinger, Alina L; Glowa, Christin; Peter, Jörg; Karger, Christian P

    2018-03-01

    A protocol for photoacoustic imaging (PAI) has been developed to assess pixel-based oxygen saturation (sO2) distributions of experimental tumor models. The protocol was applied to evaluate the dependence of PAI results on measurement settings, reproducibility of PAI, and for the characterization of the oxygenation status of experimental prostate tumor sublines (Dunning R3327-H, -HI, -AT1) implanted subcutaneously in male Copenhagen rats. The three-dimensional (3-D) PA data employing two wavelengths were used to estimate sO2 distributions. If the PA signal was sufficiently strong, the distributions were independent from signal gain, threshold, and positioning of animals. Reproducibility of sO2 distributions with respect to shape and median values was demonstrated over several days. The three tumor sublines were characterized by the shapes of their sO2 distributions and their temporal response after external changes of the oxygen supply (100% O2 or air breathing and clamping of tumor-supplying artery). The established protocol showed to be suitable for detecting temporal changes in tumor oxygenation as well as differences in oxygenation between tumor sublines. PA results were in accordance with histology for hypoxia, perfusion, and vasculature. The presented protocol for the assessment of pixel-based sO2 distributions provides more detailed information as compared to conventional region-of-interest-based analysis of PAI, especially with respect to the detection of temporal changes and tumor heterogeneity. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  8. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS).

    Science.gov (United States)

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Jun

    2018-01-01

    Simultaneous removal process of SO 2 and NO from flue gas using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) in a VUV spraying reactor was proposed. The key influencing factors, active species, reaction products and mechanism of SO 2 and NO simultaneous removal were investigated. The results show that vacuum ultraviolet light (185 nm) achieves the highest NO removal efficiency and yield of and under the same test conditions. NO removal is enhanced at higher PMS concentration, light intensity and oxygen concentration, and is inhibited at higher NO concentration, SO 2 concentration and solution pH. Solution temperature has a double impact on NO removal. CO 2 concentration has no obvious effect on NO removal. and produced from VUV-activation of PMS play a leading role in NO removal. O 3 and ·O produced from VUV-activation of O 2 also play an important role in NO removal. SO 2 achieves complete removal under all experimental conditions due to its very high solubility in water and good reactivity. The highest simultaneous removal efficiency of SO 2 and NO reaches 100% and 91.3%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. SO2 absorption in EmimCl-TEG deep eutectic solvents.

    Science.gov (United States)

    Yang, Dezhong; Zhang, Shaoze; Jiang, De-En; Dai, Sheng

    2018-05-23

    Deep eutectic solvents (DESs) based on 1-ethyl-3-methylimidazolium chloride (EmimCl) and triethylene glycol (TEG) with different molar ratios (from 6 : 1 to 1 : 1) were prepared. FTIR and theoretical calculation indicated that the C2-H on the imidazolium ring form hydrogen bonds with the hydroxyl group rather than the ether O atom of the TEG. The EmimCl-TEG DESs can efficiently capture SO2; in particular, EmimCl-TEG (6 : 1) can capture 0.54 g SO2 per gram of solvent at 0.10 atm and 20 °C, the highest absorption amount for DESs under the same conditions. Theoretical calculation showed that the high SO2 absorption capacity was mainly due to the strong charge-transfer interaction between SO2 and the anion Cl-. Moreover, SO2 desorption in the DESs can be controlled by tuning the interaction between EmimCl and TEG, and the DESs can be cycled many times.

  10. Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors

    Science.gov (United States)

    Bendinger, Alina L.; Glowa, Christin; Peter, Jörg; Karger, Christian P.

    2018-03-01

    A protocol for photoacoustic imaging (PAI) has been developed to assess pixel-based oxygen saturation (sO2) distributions of experimental tumor models. The protocol was applied to evaluate the dependence of PAI results on measurement settings, reproducibility of PAI, and for the characterization of the oxygenation status of experimental prostate tumor sublines (Dunning R3327-H, -HI, -AT1) implanted subcutaneously in male Copenhagen rats. The three-dimensional (3-D) PA data employing two wavelengths were used to estimate sO2 distributions. If the PA signal was sufficiently strong, the distributions were independent from signal gain, threshold, and positioning of animals. Reproducibility of sO2 distributions with respect to shape and median values was demonstrated over several days. The three tumor sublines were characterized by the shapes of their sO2 distributions and their temporal response after external changes of the oxygen supply (100% O2 or air breathing and clamping of tumor-supplying artery). The established protocol showed to be suitable for detecting temporal changes in tumor oxygenation as well as differences in oxygenation between tumor sublines. PA results were in accordance with histology for hypoxia, perfusion, and vasculature. The presented protocol for the assessment of pixel-based sO2 distributions provides more detailed information as compared to conventional region-of-interest-based analysis of PAI, especially with respect to the detection of temporal changes and tumor heterogeneity.

  11. The thermochromic behavior of aromatic amine-SO2 charge transfer complexes

    Science.gov (United States)

    Monezi, Natália M.; Borin, Antonio C.; Santos, Paulo S.; Ando, Rômulo A.

    2017-02-01

    The distinct thermochromism observed in solutions containing N,N-dimethylaniline (DMA) and N,N-diethylaniline (DEA) and SO2 was investigated by resonance Raman spectroscopy in a wide range of temperatures. The results indicate in addition to the charge transfer (CT) complexes DMA-SO2 and DEA-SO2, the presence of collision complexes involving the CT complexes and excess DMA and DEA molecules. The latter in fact is the chromophore responsible for the long wavelength absorption originating the color. The Raman signature of the collision complex was attributed to the distinct enhancement of a band at 1140 cm- 1 assigned to νs(SO2), in contrast to the same mode in the 1:1 complex at 1115 cm- 1. The intensity of such band, assigned to the collision complex is favored at high temperatures and depends on the steric hindrance associated to amines, as well as the SO2 molar fraction. Quantum chemical calculations based on time-dependent density functional theory (TDDFT) support the proposed interpretation.

  12. Energy consumption of SO2 removal from humid air under electron beam and electric field influence

    International Nuclear Information System (INIS)

    Nichipor, H.; Radjuk, E.; Chmielewski, A.G.; Zimek, Z.

    1998-01-01

    The kinetic of SO 2 oxidation in humid air under influence of electron beam and electrical field was investigated by computer simulation method in steady state and pulse mode. SO 2 oxidation process was stimulated by radical and ion reactions. The calculation model has included 46 different particles and 160 chemical reactions. Gas mixture containing 1000 ppm of SO 2 concentration was investigated at temperature T=67 deg. C and pressure p=1 at. Water content was within the range 2-12%. Electron beam parameters were as follows: average beam current density 0.0032-3,2 mA/cm 2 , pulse duration 400 μs, repetition rate 50 Hz. Electrical field density was E/n =10 -15 Vcm 2 . Electrical pulse duration was changed within the range 5 x10 -7 -10 -5 s. The influence of the parameters of synchronized electron beam and electrical field pulses on energy deposition was under consideration. Energy cost of SO 2 removal on 90% level was estimated in steady state and pulse modes. It was found that total electron beam and electrical field energy losses in pulse mode are 6 times lower to compare with steady state conditions. The optimum of electrical field pulse duration from point of view minimum energy cost of SO 2 removal was found for different electron beam pulse current levels

  13. Temperature impact on SO2 removal efficiency by ammonia gas scrubbing

    International Nuclear Information System (INIS)

    He Boshu; Zheng Xianyu; Wen Yan; Tong Huiling; Chen Meiqian; Chen Changhe

    2003-01-01

    Emissions reduction in industrial processes, i.e. clean production, is an essential requirement for sustainable development. Fossil fuel combustion is the main emission source for gas pollutants, such as NO X , SO 2 and CO 2 , and coal is now a primary energy source used worldwide with coal combustion being the greatest atmospheric pollution source in China. This paper analyzes flue gas cleaning by ammonia scrubbing (FGCAS) for power plants to remove gaseous pollutants, such as NO X , SO 2 and CO 2 , and presents the conceptual zero emission design for power plants. The byproducts from the FGCAS process can be used in agriculture or for gas recovery. Experimental results presented for SO 2 removal from the simulated flue gas in a continuous flow experiment, which was similar to an actual flue gas system, showed that the effectiveness of the ammonia injection or scrubbing depends on the temperature. The FGCAS process can effectively remove SO 2 , but the process temperature should be below 60 deg. C or above 80 deg. C for SO 2 reduction by NH 3 scrubbing

  14. SO2 pollution of heavy oil-fired steam power plants in Iran

    International Nuclear Information System (INIS)

    Nazari, S.; Shahhoseini, O.; Sohrabi-Kashani, A.; Davari, S.; Sahabi, H.; Rezaeian, A.

    2012-01-01

    Steam power plants using heavy oil provided about 17.4%, equivalent to 35.49 TWh, of electricity in Iran in 2007. However, having 1.55–3.5 weight percentage of sulfur, heavy oil produces SO 2 pollutant. Utilization of Flue Gas Desulfurization systems (FGD) in Iran's steam power plants is not common and thereby, this pollutant is dispersed in the atmosphere easily. In 2007, the average emission factor of SO 2 pollutant for steam power plants was 15.27 g/kWh, which means regarding the amount of electricity generated by steam power plants using heavy oil, 541,000 Mg of this pollutant was produced. In this study, mass distribution of SO 2 in terms of Mg/yr is considered and dispersion of this pollutant in each of the 16 steam power plants under study is modeled using Atmospheric Dispersion Modeling System (ADMS). Details of this study are demonstrated using Geographical Information System (GIS) software, ArcGIS. Finally, the average emission factor of SO 2 and the emission of it in Iran's steam power plants as well as SO 2 emission reduction programs of this country are compared with their alternatives in Turkey and China.

  15. Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles.

    Science.gov (United States)

    Arcibar-Orozco, Javier A; Rangel-Mendez, J Rene; Bandosz, Teresa J

    2013-02-15

    The effect of iron particle size anchored on the surface of commercial activated carbon on the removal of SO(2) from a gas phase was studied. Nanosize iron particles were deposited using forced hydrolysis of FeCl(3) with or without H(3)PO(4) as a capping agent. Dynamic adsorption experiments were carried out on either dry or pre-humidified materials and the adsorption capacities were calculated. The surface of the initial and exhausted materials was extensively characterized by microscopic, porosity, thermogravimetric and surface chemistry. The results indicate that the SO(2) adsorption capacity increased two and half times after the prehumidification process owing to the formation of H(2)SO(4) in the porous system. Iron species enhance the SO(2) adsorption capacity only when very small nanoparticles are deposited on the pore walls as a thin layer. Large iron nanoparticles block the ultramicropores decreasing the accessibility of the active sites and consuming oxygen that rest adsorption centers for SO(2) molecules. Iron nanoparticles of about 3-4 nm provide highly dispersed adsorption sites for SO(2) molecules and thus increase the adsorption capacity of about 80%. Fe(2)(SO(4))(3) was detected on the surface of exhausted samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Reliable single cell array CGH for clinical samples.

    Directory of Open Access Journals (Sweden)

    Zbigniew T Czyż

    Full Text Available BACKGROUND: Disseminated cancer cells (DCCs and circulating tumor cells (CTCs are extremely rare, but comprise the precursors cells of distant metastases or therapy resistant cells. The detailed molecular analysis of these cells may help to identify key events of cancer cell dissemination, metastatic colony formation and systemic therapy escape. METHODOLOGY/PRINCIPAL FINDINGS: Using the Ampli1™ whole genome amplification (WGA technology and high-resolution oligonucleotide aCGH microarrays we optimized conditions for the analysis of structural copy number changes. The protocol presented here enables reliable detection of numerical genomic alterations as small as 0.1 Mb in a single cell. Analysis of single cells from well-characterized cell lines and single normal cells confirmed the stringent quantitative nature of the amplification and hybridization protocol. Importantly, fixation and staining procedures used to detect DCCs showed no significant impact on the outcome of the analysis, proving the clinical usability of our method. In a proof-of-principle study we tracked the chromosomal changes of single DCCs over a full course of high-dose chemotherapy treatment by isolating and analyzing DCCs of an individual breast cancer patient at four different time points. CONCLUSIONS/SIGNIFICANCE: The protocol enables detailed genome analysis of DCCs and thereby assessment of the clonal evolution during the natural course of the disease and under selection pressures. The results from an exemplary patient provide evidence that DCCs surviving selective therapeutic conditions may be recruited from a pool of genomically less advanced cells, which display a stable subset of specific genomic alterations.

  17. Counting Legionella cells within single amoeba host cells

    Science.gov (United States)

    Here we present the first attempt to quantify L. pneumophila cell numbers within individual amoebae hosts that may be released into engineered water systems. The maximum numbers of culturable L. pneumophila cells grown within Acanthamoeba polyphaga and Naegleria fowleri were 134...

  18. Cloning of Plasmodium falciparum by single-cell sorting.

    Science.gov (United States)

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-10-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Cloning of Plasmodium falciparum by single-cell sorting

    Science.gov (United States)

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-01-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038

  20. Single and multi-frequency impedance characterization of symmetric activated carbon single capacitor cells

    Directory of Open Access Journals (Sweden)

    Suzana Sopčić

    2018-05-01

    Full Text Available Electrochemical impedance spectroscopy (EIS technique is used for characterization of single cell symmetric capacitors having different mass loadings of activated carbon (AC. Relevant values of charge storage capacitance (CT and internal resistance (ESR were evaluated by the single frequency and multi-frequency analyses of measured impedance spectra. Curve fittings were based on the non-ideal R-C model that takes into account the parasitic inductance, contributions from electrode materials/contacts and the effects of AC porosity. Higher CT and lower ESR values were obtained not only for the cell with higher mass of AC, but also using the single vs. multi-frequency approach. Lower CT and higher values of ESR that are generally obtained using the multi-frequency method and curve fittings should be related to the not ideal capacitive response of porous AC material and too high frequency chosen in applying the single frequency analysis.

  1. RF Breakdown in Normal Conducting Single-cell Structures

    CERN Document Server

    Dolgashev, Valery A; Higo, Toshiyasu; Nantista, Christopher D; Tantawi, Sami G

    2005-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials an...

  2. Quantification of DNA damage by single-cell electrophoresis

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1990-01-01

    A simple technique of micro-agarose gel electrophoresis has been developed to quantify DNA damage in individual cells. Cells are embedded in agarose gel on microscope slides, lysed by detergents and then electrophoresed for a short time under neutral or alkaline condition. In irradiated cells, DNA migrates from the nucleus toward the anode, displaying commet-like pattern by staining with DNA-specific fluorescence dye. DNA damage is evaluated by measuring the distance of DNA migration. The technique was applied for measuring DNA damage in single cells exposed to 60 Co γ-rays, or to KUR radiation in the presence or absence of 10 B-enriched boric acid. The enhanced production of double-stranded DNA breaks by 10 B(n,α) 7 Li reaction was demonstrated here. The significant increase in the length of DNA migration was observed in single cells exposed to such a low dose as 20 cGy after alkaline micro electrophoresis. (author)

  3. Irradiation of single cells with individual high-LET particles

    International Nuclear Information System (INIS)

    Nelson, J.M.; Braby, L.A.

    1993-01-01

    The dose-limiting normal tissue of concern when irradiating head and neck lesions is often the vascular endothelium within the treatment field. Consequently, the response of capillary endothelial cells exposed to moderate doses of high LET particles is essential for establishing exposure limits for neutron-capture therapy. In an effort to characterize the high-LET radiation biology of cultured endothelial cells, the authors are attempting to measure cellular response to single particles. The single-particle irradiation apparatus, described below, allows them to expose individual cells to known numbers of high-LET particles and follow these cells for extended periods, in order to assess the impact of individual particles on cell growth kinetics. Preliminary cell irradiation experiments have revealed complications related to the smooth and efficient operation of the equipment; these are being resolved. Therefore, the following paragraphs deal primarily with the manner by which high LET particles deposit energy, the requirements for single-cell irradiation, construction and assembly of such apparatus, and testing of experimental procedures, rather than with the radiation biology of endothelial cells

  4. Dissociative phototionization cross sections of H2, SO2 and H2O

    International Nuclear Information System (INIS)

    Chung, Y.

    1989-01-01

    The partial photoionization cross sections of H 2 , SO 2 , and H 2 O were calculated from the measured photoionization branching ratios and the known total photoionization cross sections. The branching ratios were measured with a time-of-flight mass spectrometer and synchrotron radiation. The branching ratios Of H 2 , SO 2 , and H 2 O were measured for 100 ∼ 410, 150 ∼ 380 and 120 ∼ 720 angstrom. The author also measured the photoionization yield Of SO 2 from 520 to 665 angstrom using a double ion chamber and a glow discharge light source. The principle of a time-of-flight mass spectrometer is explained. New calculations were made to see how the design of the mass spectrometer, applied voltage, and kinetic energy of the ions affect the overall performance of the mass spectrometer. Several useful techniques that we used at the synchrotron for wavelength calibration and higher order suppression are also discussed

  5. Removal of NO and SO2 in Corona Discharge Plasma Reactor with Water Film

    Institute of Scientific and Technical Information of China (English)

    贺元吉; 董丽敏; 杨嘉祥

    2004-01-01

    In this paper, a novel type of a corona discharge plasma reactor was designed, which consists of needle-plate-combined electrodes, in which a series of needle electrodes are placed in a glass container filled with flue gas, and a plate electrode is immersed in the water. Based on this model, the removal of NO and SO2 was tested experimentally. In addition, the effect of streamer polarity on the reduction of SO2 and NO was investigated in detail. The experimental results show that the corona wind formed between the high-voltage needle electrode and the water by corona discharge enhances the cleaning efficiency of the flue gas because of the presence of water,and the cleaning efficiency will increase with the increase of applied dc voltage within a definite range. The removal efficiency of SO2 up to 98%, and about 85% of NOx removal under suitable conditions is obtained in our experiments.

  6. Heterogeneous Reaction of SO2 on Manganese Oxides: the Effect of Crystal Structure and Relative Humidity.

    Science.gov (United States)

    Yang, Weiwei; Zhang, Jianghao; Ma, Qingxin; Zhao, Yan; Liu, Yongchun; He, Hong

    2017-07-03

    Manganese oxides from anthropogenic sources can promote the formation of sulfate through catalytic oxidation of SO 2 . In this study, the kinetics of SO 2 reactions on MnO 2 with different morphologies (α, β, γ and δ) was investigated using flow tube reactor and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Under dry conditions, the reactivity towards SO 2 uptake was highest on δ-MnO 2 but lowest on β-MnO 2 , with a geometric uptake coefficient (γ obs ) of (2.42 ± 0.13) ×10 -2 and a corrected uptake coefficient (γ c ) of (1.48 ± 0.21) ×10 -6 for the former while γ obs of (3.35 ± 0.43) ×10 -3 and γ c of (7.46 ± 2.97) ×10 -7 for the latter. Under wet conditions, the presence of water altered the chemical form of sulfate and was in favor for the heterogeneous oxidation of SO 2 . The maximum sulfate formation rate was reached at 25% RH and 45% for δ-MnO 2 and γ-MnO 2 , respectively, possibly due to their different crystal structures. The results suggest that morphologies and RH are important factors influencing the heterogeneous reaction of SO 2 on mineral aerosols, and that aqueous oxidation process involving transition metals of Mn might be a potential important pathway for SO 2 oxidation in the atmosphere.

  7. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.

    Science.gov (United States)

    Huang, Hao-Li; Chao, Wen; Lin, Jim Jr-Min

    2015-09-01

    Criegee intermediates are thought to play a role in atmospheric chemistry, in particular, the oxidation of SO2, which produces SO3 and subsequently H2SO4, an important constituent of aerosols and acid rain. However, the impact of such oxidation reactions is affected by the reactions of Criegee intermediates with water vapor, because of high water concentrations in the troposphere. In this work, the kinetics of the reactions of dimethyl substituted Criegee intermediate (CH3)2COO with water vapor and with SO2 were directly measured via UV absorption of (CH3)2COO under near-atmospheric conditions. The results indicate that (i) the water reaction with (CH3)2COO is not fast enough (kH2O SO2 at a near-gas-kinetic-limit rate (kSO2 = 1.3 × 10(-10) cm(3) s(-1)). These observations imply a significant fraction of atmospheric (CH3)2COO may survive under humid conditions and react with SO2, very different from the case of the simplest Criegee intermediate CH2OO, in which the reaction with water dimer predominates in the CH2OO decay under typical tropospheric conditions. In addition, a significant pressure dependence was observed for the reaction of (CH3)2COO with SO2, suggesting the use of low pressure rate may underestimate the impact of this reaction. This work demonstrates that the reactivity of a Criegee intermediate toward water vapor strongly depends on its structure, which will influence the main decay pathways and steady-state concentrations for various Criegee intermediates in the atmosphere.

  8. Energy efficient SO2 removal from flue gases using the method Wellman-Lord

    International Nuclear Information System (INIS)

    Dzhonova-Atanasova, D.; Razkazova-Velkova, E.; Ljutzkanov, L.; Kolev, N.; Kolev, D.

    2013-01-01

    Full text: Investigations on development of energy efficient technology for SO 2 removal from flue gases of combustion systems by using the method Wellman-Lord are presented. It is characterized by absorption of sulfur dioxide with sodium sulfite solution, which reacts to form sodium bisulfite. The absorber is a packed column with multiple stages. After evaporation of the solution, SO 2 and sodium sulfite are obtained. The latter is dissolved in water from condensation of the steam carrying SO 2 from the evaporator. The regenerated solution returns in the absorber. The SO 2 removed from the flue gases is obtained as a pure product for use in chemical, food or wine production. The data discussed in the literature sources on flue gas desulfurization demonstrate the predominance of the methods with lime or limestone as absorbent, due to higher capital investments associated with the method of Wellman-Lord. A technological and economical evaluation of this regenerative method is presented in comparison to the non-regenerative gypsum method, using data from the existing sources and our own experience from the development of an innovative gypsum technology. Three solutions are discussed for significant enhancement of the method efficiency on the basis of a considerable increasing of the SO 2 concentration in the saturated absorbent. The improved method uses about 40% less heat for absorbent regeneration, in comparison to the existing applications of the method Wellman-Lord, and gives in addition the possibility to regenerate 95% of the consumed heat for heating water streams to about 90°C. Moreover, the incorporation in the installation of our system with contact economizers of second generation, already in industrial application, enables utilization of the waste heat of the flue gases for district heating. The employment of this system also leads to significant decreasing of the NO x emissions. key words: SO 2 removal, flue gases, absorption

  9. Single molecule microscopy in 3D cell cultures and tissues.

    Science.gov (United States)

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A photoacoustic technique to measure the properties of single cells

    Science.gov (United States)

    Strohm, Eric M.; Berndl, Elizabeth S. L.; Kolios, Michael C.

    2013-03-01

    We demonstrate a new technique to non-invasively determine the diameter and sound speed of single cells using a combined ultrasonic and photoacoustic technique. Two cell lines, B16-F1 melanoma cells and MCF7 breast cancer cells were examined using this technique. Using a 200 MHz transducer, the ultrasound backscatter from a single cell in suspension was recorded. Immediately following, the cell was irradiated with a 532 nm laser and the resulting photoacoustic wave recorded by the same transducer. The melanoma cells contain optically absorbing melanin particles, which facilitated photoacoustic wave generation. MCF7 cells have negligible optical absorption at 532 nm; the cells were permeabilized and stained with trypan blue prior to measurements. The measured ultrasound and photoacoustic power spectra were compared to theoretical equations with the cell diameter and sound speed as variables (Anderson scattering model for ultrasound, and a thermoelastic expansion model for photoacoustics). The diameter and sound speed were extracted from the models where the spectral shape matched the measured signals. However the photoacoustic spectrum for the melanoma cell did not match theory, which is likely because melanin particles are located around the cytoplasm, and not within the nucleus. Therefore a photoacoustic finite element model of a cell was developed where the central region was not used to generate a photoacoustic wave. The resulting power spectrum was in better agreement with the measured signal than the thermoelastic expansion model. The MCF7 cell diameter obtained using the spectral matching method was 17.5 μm, similar to the optical measurement of 16 μm, while the melanoma cell diameter obtained was 22 μm, similar to the optical measurement of 21 μm. The sound speed measured from the MCF7 and melanoma cell was 1573 and 1560 m/s, respectively, which is within acceptable values that have been published in literature.

  11. Experimental Study of SO2 Removal by Pulsed DBD Along with the Application of Magnetic Field

    International Nuclear Information System (INIS)

    Rong Mingzhe; Liu Dingxin; Wang Xiaohua; Wang Junhua

    2007-01-01

    Dielectric barrier discharge (DBD) for SO 2 removal from indoor air is investigated. In order to improve the removal efficiency, two novel methods are combined in this paper, namely by applying a pulsed driving voltage with nanosecond rising time and applying a magnetic field. For SO 2 removal efficiency, different matches of electric field and magnetic field are discussed. And nanosecond rising edge pulsed power supply and microsecond rising edge pulsed power supply are compared. It can be concluded that a pulsed DBD with nanosecond rising edge should be adopted, and electrical field and magnetic field should be applied in an appropriate match

  12. SO2 Release as a Consequence of Alternative Fuel Combustion in Cement Rotary Kiln Inlets

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Glarborg, Peter

    2015-01-01

    The combustion of alternative fuels in direct contact with the bed material of the rotary kiln may cause local reducing conditions and, subsequently, decomposition of sulfates from cement raw materials, increasing the SO2 concentration in the gas phase. The decomposition of sulfates increases...... the sulfur circulation and may be problematic because high sulfur circulation can cause sticky material buildup, affecting the process operation of the cement kiln system. The SO2 release from cement raw materials during combustion of pine wood and tire rubber has been studied experimentally in a high...

  13. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015

    Directory of Open Access Journals (Sweden)

    N. A. Krotkov

    2016-04-01

    Full Text Available The Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite has been providing global observations of the ozone layer and key atmospheric pollutant gases, such as nitrogen dioxide (NO2 and sulfur dioxide (SO2, since October 2004. The data products from the same instrument provide consistent spatial and temporal coverage and permit the study of anthropogenic and natural emissions on local-to-global scales. In this paper, we examine changes in SO2 and NO2 over some of the world's most polluted industrialized regions during the first decade of OMI observations. In terms of regional pollution changes, we see both upward and downward trends, sometimes in opposite directions for NO2 and SO2, for different study areas. The trends are, for the most part, associated with economic and/or technological changes in energy use, as well as regional regulatory policies. Over the eastern US, both NO2 and SO2 levels decreased dramatically from 2005 to 2015, by more than 40 and 80 %, respectively, as a result of both technological improvements and stricter regulations of emissions. OMI confirmed large reductions in SO2 over eastern Europe's largest coal-fired power plants after installation of flue gas desulfurization devices. The North China Plain has the world's most severe SO2 pollution, but a decreasing trend has been observed since 2011, with about a 50 % reduction in 2012–2015, due to an economic slowdown and government efforts to restrain emissions from the power and industrial sectors. In contrast, India's SO2 and NO2 levels from coal power plants and smelters are growing at a fast pace, increasing by more than 100 and 50 %, respectively, from 2005 to 2015. Several SO2 hot spots observed over the Persian Gulf are probably related to oil and gas operations and indicate a possible underestimation of emissions from these sources in bottom-up emission inventories. Overall, OMI observations have proved valuable in documenting rapid changes in air

  14. Retrieve of atmospheric SO2 and O3 columns in the UV region using mobile DOAS

    International Nuclear Information System (INIS)

    Galicia, R.; La Rosa, J. de la; Stolik, S.

    2012-01-01

    We present the use of a passive DOAS system to retrieve SO2 and O3 columns emitted by industrial chimneys. It works with software built in LabVIEW and running with a PC linked to mini spectrometer and GPS. The system uses the sun light as light source, a telescope a fiber optic, a mini-spectrometer and a GPS. The spectrometer and the GPS are linked to a PC where the system is controlled and where all data are processed to retrieve the SO2 and O3 slant columns. (Author)

  15. Retrieval columns of SO2 in industrial chimneys using DOAS passive in traverse

    Science.gov (United States)

    Galicia Mejía, Rubén; de la Rosa Vázquez, José Manuel; Sosa Iglesias, Gustavo

    2011-10-01

    The optical Differential Optical Absorption Spectroscopy (DOAS) is a technique to measure pollutant emissions like SO2, from point sources and total fluxes in the atmosphere. Passive DOAS systems use sunlight like source. Measurements with such systems can be made in situ and in real time. The goal of this work is to report the implementation of hardware and software of a portable system to evaluate the pollutants emitted in the atmosphere by industrial chimneys. We show SO2 measurements obtained around PEMEX refinerys in Tula Hidalgo that enables the identification of their pollution degree with the knowledge of speed wind.

  16. Updated SO2 emission estimates over China using OMI/Aura observations

    Science.gov (United States)

    Elissavet Koukouli, Maria; Theys, Nicolas; Ding, Jieying; Zyrichidou, Irene; Mijling, Bas; Balis, Dimitrios; van der A, Ronald Johannes

    2018-03-01

    The main aim of this paper is to update existing sulfur dioxide (SO2) emission inventories over China using modern inversion techniques, state-of-the-art chemistry transport modelling (CTM) and satellite observations of SO2. Within the framework of the EU Seventh Framework Programme (FP7) MarcoPolo (Monitoring and Assessment of Regional air quality in China using space Observations) project, a new SO2 emission inventory over China was calculated using the CHIMERE v2013b CTM simulations, 10 years of Ozone Monitoring Instrument (OMI)/Aura total SO2 columns and the pre-existing Multi-resolution Emission Inventory for China (MEIC v1.2). It is shown that including satellite observations in the calculations increases the current bottom-up MEIC inventory emissions for the entire domain studied (15-55° N, 102-132° E) from 26.30 to 32.60 Tg annum-1, with positive updates which are stronger in winter ( ˜ 36 % increase). New source areas were identified in the southwest (25-35° N, 100-110° E) as well as in the northeast (40-50° N, 120-130° E) of the domain studied as high SO2 levels were observed by OMI, resulting in increased emissions in the a posteriori inventory that do not appear in the original MEIC v1.2 dataset. Comparisons with the independent Emissions Database for Global Atmospheric Research, EDGAR v4.3.1, show a satisfying agreement since the EDGAR 2010 bottom-up database provides 33.30 Tg annum-1 of SO2 emissions. When studying the entire OMI/Aura time period (2005 to 2015), it was shown that the SO2 emissions remain nearly constant before the year 2010, with a drift of -0.51 ± 0.38 Tg annum-1, and show a statistically significant decline after the year 2010 of -1.64 ± 0.37 Tg annum-1 for the entire domain. Similar findings were obtained when focusing on the greater Beijing area (30-40° N, 110-120° E) with pre-2010 drifts of -0.17 ± 0.14 and post-2010 drifts of -0.47 ± 0.12 Tg annum-1. The new SO2 emission inventory is publicly available and forms

  17. Novel Guanidinium-Based Ionic Liquids for Highly Efficient SO2 Capture.

    Science.gov (United States)

    Lu, Xiaoxing; Yu, Jing; Wu, Jianzhou; Guo, Yongsheng; Xie, Hujun; Fang, Wenjun

    2015-06-25

    The application of ionic liquids (ILs) for acidic gas absorption has long been an interesting and challenging issue. In this work, the ethyl sulfate ([C2OSO3](-)) anion has been introduced into the structure of guanidinium-based ILs to form two novel low-cost ethyl sulfate ILs, namely 2-ethyl-1,1,3,3-tetramethylguanidinium ethyl sulfate ([C2(2)(C1)2(C1)2(3)gu][C2OSO3]) and 2,2-diethyl-1,1,3,3-tetramethylguanidinium ethyl sulfate ([(C2)2(2)(C1)2(C1)2(3)gu][C2OSO3]). The ethyl sulfate ILs, together with 2-ethyl-1,1,3,3-tetramethylguanidinium bis(trifluoromethylsulfonyl)imide ([C2(2)(C1)2(C1)2(3)gu][NTf2]) and 2,2-diethyl-1,1,3,3-tetramethylguanidinium bis(trifluoromethylsulfonyl)imide ([(C2)2(2)(C1)2(C1)2(3)gu][NTf2]), are employed to evaluate the SO2 absorption and desorption performance. The recyclable ethyl sulfate ILs demonstrate high absorption capacities of SO2. At a low pressure of 0.1 bar and at 20 °C, 0.71 and 1.08 mol SO2 per mole of IL can be captured by [C2(2)(C1)2(C1)2(3)gu][C2OSO3] and [(C2)2(2)(C1)2(C1)2(3)gu][C2OSO3], respectively. The absorption enthalpy for SO2 absorption with [C2(2)(C1)2(C1)2(3)gu][C2OSO3] and [(C2)2(2)(C1)2(C1)2(3)gu][C2OSO3] are -3.98 and -3.43 kcal mol(-1), respectively. While those by [C2(2)(C1)2(C1)2(3)gu][NTf2] and [(C2)2(2)(C1)2(C1)2(3)gu][NTf2] turn out to be only 0.17 and 0.24 mol SO2 per mole of IL under the same conditions. It can be concluded that the guanidinium ethyl sulfate ILs show good performance for SO2 capture. Quantum chemistry calculations reveal nonbonded weak interactions between the ILs and SO2. The anionic moieties of the ILs play an important role in SO2 capture on the basis of the consistently experimental and computational results.

  18. Catalytic Activity and Deactivation of SO2 Oxidation Catalysts in Simulated Power Plant Flue Gases

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Chrissanthopoulos, Asthanassios; Eriksen, Kim Michael

    1997-01-01

    The catalyst deactivation and the simultaneious formation of compounds in commercial SO2 oxidation catalysts have been studied by combined activity measurements and in situ EPR spectroscopy in the temperature range 350-480 C in wet and dry simulated power plant flue gas.......The catalyst deactivation and the simultaneious formation of compounds in commercial SO2 oxidation catalysts have been studied by combined activity measurements and in situ EPR spectroscopy in the temperature range 350-480 C in wet and dry simulated power plant flue gas....

  19. Aura OMI Observations of Global SO2 and NO2 Pollution from 2005 to 2013

    Science.gov (United States)

    Krotkov, Nickolay; Li, Can; Lamsal, Lok; Celarier, Edward; Marchenko, Sergey; Swartz, William H.; Bucsela, Eric; Fioletov, Vitali; McLinden, Chris; Joiner, Joanna; hide

    2014-01-01

    The Ozone Monitoring Instrument (OMI), a NASA partnership with the Netherlands and Finland, flies on the NASA Aura satellite and uses reflected sunlight to measure the two critical atmospheric trace gases: nitrogen dioxide (NO2) and sulfur dioxide (SO2) characterizing daily air quality. Both gases and the secondary pollutants they produce (particulate matter, PM2.5, and tropospheric ozone) are USEPA designated criteria pollutants, posing serious threats to human health and the environment (e.g., acid rain, plant damage and reduced visibility). Our group at NASA GSFC has developed and maintained OMI standard SO2 and NO2 data products. We have recently released an updated version of the standard NO2 L2 and L3 products (SP v2.1) and continue improving the algorithm. We are currently in the process of releasing next generation pollution SO2 product, based on an innovative Principal Component Analysis (PCA) algorithm, which greatly reduces the noise and biases. These new standard products provide valuable datasets for studying anthropogenic pollution on local to global scales. Here we highlight some of the OMI observed changes in air quality over several regions. Over the US average NO2 and SO2 pollution levels had decreased dramatically as a result of both technological improvements (e.g., catalytic converters on cars) and stricter regulations of emissions. We see continued decline in pollution over Europe. Over China OMI observed an increase of about 60 percent in NO2 pollution between 2005 and 2013, despite a temporal reversal of the growing trend due to both 2008 Olympic Games and the economic recession in 2009. Chinese SO2 pollution seems to have stabilized since peaking in 2007, probably due to government efforts to curb SO2 emissions from the power sector. We have also observed large increases in both SO2 and NO2 pollution particularly in Eastern India where a number of large new coal power plants had been built in recent years. We expect that further

  20. Infrasound and SO2 Observations of the 2011 Explosive Eruption of Nabro Volcano, Eritrea

    Science.gov (United States)

    Fee, D.; Carn, S. A.; Prata, F.

    2011-12-01

    Nabro volcano, Eritrea erupted explosively on 12 June 2011 and produced near continuous emissions and infrasound until mid-July. The eruption disrupted air traffic and severely affected communities in the region. Although the eruption was relatively ash-poor, it produced significant SO2 emissions, including: 1) the highest SO2 column ever retrieved from space (3700 DU), 2) >1.3 Tg SO2 mass on 13 June, and 3) >2 Tg of SO2 for the entire eruption, one of the largest eruptive SO2 masses produced since the 1991 eruption of Mt. Pinatubo. Peak emissions reached well into the stratosphere (~19 km). Although the 12 June eruption was preceded by significant seismicity and clearly detected by satellite sensors, Nabro volcano is an understudied volcano that lies in a remote region with little ground-based monitoring. The Nabro eruption also produced significant infrasound signals that were recorded by two infrasound arrays: I19DJ (Djibouti, 264 km) and I32KE (Kenya, 1708 km). The I19DJ infrasound array detected the eruption with high signal-noise and provides the most detailed eruption chronology available, including eruption onset, duration, changes in intensity, etc. As seen in numerous other studies, sustained low frequency infrasound from Nabro is coincident with high-altitude emissions. Unexpectedly, the eruption also produced hundreds of short-duration, impulsive explosion signals, in addition to the sustained infrasonic jetting signals more typical of subplinian-plinian eruptions. These explosions are variable in amplitude, duration, and often cluster in groups. Here we present: 1) additional analyses, classification, and source estimation of the explosions, 2) infrasound propagation modeling to determine acoustic travel times and propagation paths, 3) detection and characterization of the SO2 emissions using the Ozone Monitoring Instrument (OMI) and Spin Enhanced Visible and Infra-Red Instrument (SEVIRI), and 4) a comparison between the relative infrasound energy and

  1. DSCOVR/EPIC observations of SO2 reveal dynamics of young volcanic eruption clouds

    Science.gov (United States)

    Carn, S. A.; Krotkov, N. A.; Taylor, S.; Fisher, B. L.; Li, C.; Bhartia, P. K.; Prata, F. J.

    2017-12-01

    Volcanic emissions of sulfur dioxide (SO2) and ash have been measured by ultraviolet (UV) and infrared (IR) sensors on US and European polar-orbiting satellites since the late 1970s. Although successful, the main limitation of these observations from low Earth orbit (LEO) is poor temporal resolution (once per day at low latitudes). Furthermore, most currently operational geostationary satellites cannot detect SO2, a key tracer of volcanic plumes, limiting our ability to elucidate processes in fresh, rapidly evolving volcanic eruption clouds. In 2015, the launch of the Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) provided the first opportunity to observe volcanic clouds from the L1 Lagrange point. EPIC is a 10-band spectroradiometer spanning UV to near-IR wavelengths with two UV channels sensitive to SO2, and a ground resolution of 25 km. The unique L1 vantage point provides continuous observations of the sunlit Earth disk, from sunrise to sunset, offering multiple daily observations of volcanic SO2 and ash clouds in the EPIC field of view. When coupled with complementary retrievals from polar-orbiting UV and IR sensors such as the Ozone Monitoring Instrument (OMI), the Ozone Mapping and Profiler Suite (OMPS), and the Atmospheric Infrared Sounder (AIRS), we demonstrate how the increased observation frequency afforded by DSCOVR/EPIC permits more timely volcanic eruption detection and novel analyses of the temporal evolution of volcanic clouds. Although EPIC has detected several mid- to high-latitude volcanic eruptions since launch, we focus on recent eruptions of Bogoslof volcano (Aleutian Islands, AK, USA). A series of EPIC exposures from May 28-29, 2017, uniquely captures the evolution of SO2 mass in a young Bogoslof eruption cloud, showing separation of SO2- and ice-rich regions of the cloud. We show how analyses of these sequences of EPIC SO2 data can elucidate poorly understood processes in transient eruption

  2. Single cell transcriptomics of neighboring hyphae of Aspergillus niger

    Science.gov (United States)

    2011-01-01

    Single cell profiling was performed to assess differences in RNA accumulation in neighboring hyphae of the fungus Aspergillus niger. A protocol was developed to isolate and amplify RNA from single hyphae or parts thereof. Microarray analysis resulted in a present call for 4 to 7% of the A. niger genes, of which 12% showed heterogeneous RNA levels. These genes belonged to a wide range of gene categories. PMID:21816052

  3. RoboSCell: An automated single cell arraying and analysis instrument

    KAUST Repository

    Sakaki, Kelly; Foulds, Ian G.; Liu, William; Dechev, Nikolai; Burke, Robert Douglas; Park, Edward

    2009-01-01

    Single cell research has the potential to revolutionize experimental methods in biomedical sciences and contribute to clinical practices. Recent studies suggest analysis of single cells reveals novel features of intracellular processes, cell-to-cell

  4. Bubble Jet agent release cartridge for chemical single cell stimulation.

    Science.gov (United States)

    Wangler, N; Welsche, M; Blazek, M; Blessing, M; Vervliet-Scheebaum, M; Reski, R; Müller, C; Reinecke, H; Steigert, J; Roth, G; Zengerle, R; Paust, N

    2013-02-01

    We present a new method for the distinct specific chemical stimulation of single cells and small cell clusters within their natural environment. By single-drop release of chemical agents with droplets in size of typical cell diameters (d agent release cartridge with integrated fluidic structures and integrated agent reservoirs are shown, tested, and compared in this publication. The single channel setup features a fluidic structure fabricated by anisotropic etching of silicon. To allow for simultaneous release of different agents even though maintaining the same device size, the second type comprises a double channel fluidic structure, fabricated by photolithographic patterning of TMMF. Dispensed droplet volumes are V = 15 pl and V = 10 pl for the silicon and the TMMF based setups, respectively. Utilizing the agent release cartridges, the application in biological assays was demonstrated by hormone-stimulated premature bud formation in Physcomitrella patens and the individual staining of one single L 929 cell within a confluent grown cell culture.

  5. Toward single cell traction microscopy within 3D collagen matrices

    International Nuclear Information System (INIS)

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-01-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels

  6. Toward single cell traction microscopy within 3D collagen matrices

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  7. What is Eating Ozone? Thermal Reactions between SO2 And O3: Implications for Icy Environments

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2016-01-01

    Laboratory studies are presented, showing for the first time that thermally driven reactions in solid H2O+SO2+O3 mixtures can occur below 150 K, with the main sulfur-containing product being bisulfate (HSO4(-)). Using a technique not previously applied to the low-temperature kinetics of either interstellar or solar system ice analogs, we estimate an activation energy of 32 kJ per mol for HSO4(-) formation. These results show that at the temperatures of the Jovian satellites, SO2 and O3 will efficiently react making detection of these molecules in the same vicinity unlikely. Our results also explain why O3 has not been detected on Callisto and why the SO2 concentration on Callisto appears to be highest on that world's leading hemisphere. Furthermore, our results predict that the SO2 concentration on Ganymede will be lowest in the trailing hemisphere, where the concentration of O3 is the highest. Our work suggests that thermal reactions in ices play a much more important role in surface and sub-surface chemistry than generally appreciated, possibly explaining the low abundance of sulfur-containing molecules and the lack of ozone observed in comets and interstellar ices.

  8. SORBENT/UREA SLURRY INJECTION FOR SIMULTANEOUS SO2/NOX REMOVAL

    Science.gov (United States)

    The combination of sorbent injection and selective noncatalytic reduction (SNCR) technologies has been investigated for simulataneous SO2/NOx removal. A slurry composed of a urea-based solution and various Ca-based sorbents was injected at a range of tempera...

  9. Projection of SO2, NOx, NMVOC, particulate matter and black carbon emissions - 2015-2030

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Hjelgaard, Katja Hossy

    This report contains a description of models and background data for projection of SO2, NOX, NMVOC, PM2.5 and black carbon for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts...

  10. ACTIVATION AND REACTIVITY OF NOVEL CALCIUM-BASED SORBENTS FOR DRY SO2 CONTROL IN BOILERS

    Science.gov (United States)

    Chemically modified calcium hydroxide (Ca(OH)2) sorbents developed in the U.S. Environmental Protection Agency's Air and Energy Engineering Research Laboratory (AEERL) for sulfur dioxide (SO2) control in utility boilers were tested in an electrically heated, bench-scale isotherma...

  11. UV Fourier transform measurements of tropospheric O3, NO2, SO2, benzene, and toluene

    International Nuclear Information System (INIS)

    Vandaele, A.C.; Tsouli, A.; Carleer, M.; Colin, R.

    2002-01-01

    Using the differential optical absorption spectroscopy (DOAS) technique and a Fourier transform spectrometer, NO 2 , SO 2 , O 3 , benzene, and toluene were measured during three measurement campaigns held in Brussels in 1995, 1996, and 1997. The O 3 concentrations could be explained as the results of the local photochemistry and the dynamical properties of the mixing layer. NO 2 concentrations were anti-correlated to the O 3 concentrations, is expected. SO 2 also showed a pronounced dependence on car traffic. Average benzene and toluene concentrations were, respectively 1.7 ppb and between 4.4 and 6.6 pbb, but high values of toluene up to 98.8 ppb were observed. SO 2 concentrations and to a lesser extent, those of NO 2 and O 3 , were dependent on the wind direction. Ozone in Brussels has been found to be influenced by the meteorological conditions prevailing in central Europe. Comparisons with other measurements have shown that O 3 and SO 2 data are in general in good agreement, but our NO 2 concentrations seem to be generally higher. (author)

  12. A Method for the Simultaneous Cleansing of H2S and SO2

    Directory of Open Access Journals (Sweden)

    Dzhamal R. Uzun

    2016-01-01

    Full Text Available A method for the simultaneous electrochemical purification of hydrogen sulfide and sulfur dioxide from sea water or industrial wastes is proposed. Fundamentally the method is based on the electrochemical affinity of the pair H2S and SO2. The reactions (oxidation of H2S and reduction of SO2 proceed on а proper catalyst in a flow reactor, without an external power by electrochemical means. The partial curves of oxidation of H2S and reduction of SO2 have been studied electrochemically on different catalysts. Following the additive principle the rate of the process has been found by intersection of the curves. The overall process rate has been studied in a flow type reactor. Similar values of the process rate have been found and these prove the electrochemical mechanism of the reactions. As a result the electrochemical method at adequate conditions is developed. The process is able to completely convert the initial reagents (concentrations CH2S, SO2=0, which is difficult given the chemical kinetics.

  13. Vulcamera: a program for measuring volcanic SO2 using UV cameras

    Directory of Open Access Journals (Sweden)

    Alessandro Aiuppa

    2011-06-01

    Full Text Available We report here on Vulcamera, a stand-alone program for the determination of volcanic SO2  fluxes using ultraviolet cameras. The code enables field image acquisition and all the required post-processing operations.

  14. Effects and Mechanism of SO2 Inhalation on Rat Myocardial Collagen Fibers.

    Science.gov (United States)

    Chen, Ping; Qiao, Decai; Liu, Xiaoli

    2018-03-21

    BACKGROUND This study investigates the effects and mechanism of sulfur dioxide (SO2) inhalation and exercise on rat myocardial collagen fiber. MATERIAL AND METHODS The rats were randomly divided into 4 groups: a control group (RG), an exercise group (EG), an SO2 pollution group (SRG), and an SO2 pollution and exercise group (SEG). Body weight, cardiac index, and left ventricular index in each group were compared. The myocardial hydroxyproline (Hyp) concentration was determined by pepsin acid hydrolysis. The interstitial myocardial collagen expression was measured by Sirius Red F3B in saturated carbazotic acid. The local myocardial angiotensin II type 1 receptor (AT1R) and connective tissue growth factor (CTGF) expression was tested by immunohistochemistry SABC method. RESULTS Compared with RG, the weight growth rate of EG, SRG, and SEG decreased significantly (PSO2 inhalation and exercise will not only offset beneficial health effects of movement on the cardiovascular system, but also produce more unfavorable influences. People should pay attention to their environment when exercising, and try to avoid exercising in environments with SO2 pollution.

  15. Modelling the spatial distribution of SO2 and NO(x) emissions in Ireland

    NARCIS (Netherlands)

    Kluizenaar, Y.de; Aherne, J.; Farrell, E.P.

    2001-01-01

    The spatial distributions of sulphur dioxide (SO2) and nitrogen oxides (NO(x)) emissions are essential inputs to models of atmospheric transport and deposition. Information of this type is required for international negotiations on emission reduction through the critical load approach.

  16. 76 FR 30602 - Response To Petition From New Jersey Regarding SO2

    Science.gov (United States)

    2011-05-26

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-HQ-OAR-2011-0081; FRL-9312-1] RIN 2060-AQ69 Response To Petition From New Jersey Regarding SO2 Emissions From the Portland Generating Station AGENCY: Environmental Protection Agency (EPA). [[Page 30603

  17. Sulfur Dioxide (SO2) Primary NAAQS Review: Integrated Review Plan - Advisory with CASAC

    Science.gov (United States)

    The SO2 Integrated Review Plan is the first document generated as part of the National Ambient Air Quality Standards (NAAQS) review process. The Plan presents background information, the schedule for the review, the process to be used in conducting the review, and the key policy-...

  18. Physico-Chemical and Structural Properties of DeNOx and SO2 Oxidation Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen Grenville; Oehlers, Cord; Nielsen, Kurt

    1996-01-01

    Commercial catalysts for NOx removal and SO2 oxidation and their model systems have been investigated by spectroscopic, thermal, electrochemical and X-ray methods. Structural information on the vanadium complexes and compounds as well as physico-chemical properties for catalyst model systems have...

  19. 78 FR 69337 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio SO2

    Science.gov (United States)

    2013-11-19

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R05-OAR-2011-0672; FRL-9902-02-Region 5] Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio SO2 Air Quality Rule Revisions AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: On June 24, 2011, Ohio...

  20. Emissioner af SO2 og NOX fra kraftværker

    DEFF Research Database (Denmark)

    Illerup, J. B.; Bruun, H. G.

    Rapporten indeholder beregninger af SO2- og NOx- emissioner fra kraftværker, der er reguleret af kvoteloven. Emissionerne er for tre forskellige produktionsscenarier beregnet ud fra emissionsfaktorer baseret på EU-direktivet om store forbrændingsanlæg og emissionsfaktorer beregnet ud fra en...

  1. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015

    NARCIS (Netherlands)

    Krotkov, Nickolay A.; McLinden, Chris A.; Li, Can; Lamsal, Lok N.; Celarier, Edward A.; Marchenko, Sergey V.; Swartz, William H.; Bucsela, Eric J.; Joiner, Joanna; Duncan, Bryan N.; Boersma, Folkert; Veefkind, J.P.; Levelt, Pieternel F.; Fioletov, Vitali E.; Dickerson, Russell R.; He, Hao; Lu, Zifeng; Streets, David G.

    2016-01-01

    The Ozone Monitoring Instrument (OMI) onboard NASA's Aura satellite has been providing global observations of the ozone layer and key atmospheric pollutant gases, such as nitrogen dioxide (NO2) and sulfur dioxide (SO2), since October 2004. The data products from the same instrument provide

  2. Sulfur Dioxide (SO2) Primary Standards Documents from Current Review - Federal Register Notices

    Science.gov (United States)

    EPA develops and publishes a notice of proposed rulemaking regarding the review of the SO2 national ambient air quality standards (NAAQS). A public comment period follows. Taking into account comments received on the proposed rule, EPA issues a final rule.

  3. 77 FR 26444 - Revisions to Final Response To Petition From New Jersey Regarding SO2

    Science.gov (United States)

    2012-05-04

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-HQ-OAR-2011-0081; FRL-9660-5] RIN 2060-AR42 Revisions to Final Response To Petition From New Jersey Regarding SO2 Emissions From the Portland Generating Station AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This action amends the...

  4. 78 FR 69299 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio SO2

    Science.gov (United States)

    2013-11-19

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R05-OAR-2011-0672; FRL-9902-03-Region 5] Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio SO2 Air Quality Rule Revisions AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule. SUMMARY: On June 24, 2011, Ohio...

  5. Analysis on concentration variety characteristics of SO2/NO2 in Chengdu city, southwest China

    Science.gov (United States)

    Wang, C.; Xiao, T.; Luo, Q.; WU, L.

    2017-12-01

    SO2 and NO2, the important gaseous precursors of atmospheric fine particles, are closely related to urban air quality. Chengdu located in the western China, is the capital city of Sichuan province. Though Sichuan province is one of four heavily polluted areas in China, the air pollution research in Chengdu is in a relative lack, when compared to developed cities as Beijing, Guangzhou, etc. This paper, based on characteristics of SO2 and NO2 in Chengdu, shows that: the average concentration of SO2, NO2 was 25.29 (mainly in the rage 10-40 ), 64.41 (mainly in the range 30-80 ), respectively. There is a similar annual and seasonal variation for them, yet significant differences in diurnal variation. Except summer, the air condition in Chengdu is seriously affected by SO2 and NO2, while the latter plays a more significant role. Multiple regression has good fitting performance to the diurnal variation in Chengdu. The purification efficiency of precipitation in different magnitude is also discussed. Key words: Chengdu; Pollution gas; Variety characteristics Acknowledgements: This study was supported by Pollution program in Wenjiang District, National Natural Science Foundation of China Fund Project (91337215,41575066), National Science and Technology Support Program(2015BAC03B05),Special Fund for Meteorological Re-search in the Public Interest (GYHY201406015),National Key Basic Research Program (2013CB733206), and Risk Assessment System of Significant Climate Events in Tibet (14H046), Scientific Research Foundation of CUIT (CRF201606)

  6. Model simulations of the competing climatic effects of SO2 and CO2

    Science.gov (United States)

    Kaufman, Yoram J.; Chou, Ming-Dah

    1993-01-01

    Sulfur dioxide-derived cloud condensation nuclei are expected to enhance the planetary albedo, thereby cooling the planet. This effect might counteract the global warming expected from enhanced greenhouse gases. A detailed treatment of the relationship between fossil fuel burning and the SO2 effect on cloud albedo is implemented in a two-dimensional model for assessing the climate impact. Using a conservative approach, results show that the cooling induced by the SO2 emission can presently counteract 50 percent of the CO2 greenhouse warming. Since 1980, a strong warming trend has been predicted by the model: 0.15 C during the 1980-1990 period alone. The model predicts that by the year 2060 the SO2 cooling reduces climate warming by 0.5 C or 25 percent for the Intergovernmental Panel on Climate Change (IPCC) business as usual (BAU) scenario and 0.2 C or 20 percent for scenario D (for a slow pace of fossil fuel burning). The hypothesis is examined that the different responses between the Northern Hemisphere and the Southern Hemisphere can be used to validate the presence of the SO2-induced cooling.

  7. Extended observations of volcanic SO2 and sulfate aerosol in the stratosphere

    NARCIS (Netherlands)

    Carn, S.A.; Krotkov, N.A.; Yang, Kai; Hoff, R.M.; Prata, A.J.; Krueger, A.J.; Loughlin, S.C.; Levelt, P.F.

    2007-01-01

    Sulfate aerosol produced after injection of sulfur dioxide (SO2) into the stratosphere by volcanic eruptions can trigger climate change. We present new satellite data from the Ozone Monitoring Instrument (OMI) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) missions

  8. Evaluation of the Mycobacterium tuberculosis SO2 vaccine using a natural tuberculosis infection model in goats.

    Science.gov (United States)

    Bezos, J; Casal, C; Álvarez, J; Roy, A; Romero, B; Rodríguez-Bertos, A; Bárcena, C; Díez, A; Juste, R; Gortázar, C; Puentes, E; Aguiló, N; Martín, C; de Juan, L; Domínguez, L

    2017-05-01

    The development of new vaccines against animal tuberculosis (TB) is a priority for improving the control and eradication of this disease, particularly in those species not subjected to compulsory eradication programmes. In this study, the protection conferred by the Mycobacterium tuberculosis SO 2 experimental vaccine was evaluated using a natural infection model in goats. Twenty-six goats were distributed in three groups: (1) 10 goats served as a control group; (2) six goats were subcutaneously vaccinated with BCG; and (3) 10 goats were subcutaneously vaccinated with SO 2 . Four months after vaccination, all groups were merged with goats infected with Mycobacterium bovis or Mycobacterium caprae, and tested over a 40 week period using a tuberculin intradermal test and an interferon-γ assay for mycobacterial reactivity. The severity of lesions was determined at post-mortem examination and the bacterial load in tissues were evaluated by culture. The two vaccinated groups had significantly lower lesion and bacterial culture scores than the control group (P<0.05); at the end of the study, the SO 2 vaccinated goats had the lowest lesion and culture scores. These results suggest that the SO 2 vaccine provides some protection against TB infection acquired from natural exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Coal fly ash based carbons for SO2 removal from flue gases.

    Science.gov (United States)

    Rubio, B; Izquierdo, M T

    2010-07-01

    Two different coal fly ashes coming from the burning of two coals of different rank have been used as a precursor for the preparation of steam activated carbons. The performance of these activated carbons in the SO(2) removal was evaluated at flue gas conditions (100 degrees C, 1000 ppmv SO(2), 5% O(2), 6% H(2)O). Different techniques were used to determine the physical and chemical characteristics of the samples in order to explain the differences found in their behaviour. A superior SO(2) removal capacity was shown by the activated carbon obtained using the fly ash coming from a sub-bituminous-lignite blend. Experimental results indicated that the presence of higher amount of certain metallic oxides (Ca, Fe) in the carbon-rich fraction of this fly ash probably has promoted a deeper gasification in the activation with steam. A more suitable surface chemistry and textural properties have been obtained in this case which explains the higher efficiency shown by this sample in the SO(2) removal. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation

    Science.gov (United States)

    Donaldson, D. James; Kroll, Jay A.; Vaida, Veronica

    2016-07-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 (3B1), which may be accessed by near-UV solar excitation of SO2 to its excited 1B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF).

  11. A microfluidic galvanic cell on a single layer of paper

    Science.gov (United States)

    Purohit, Krutarth H.; Emrani, Saina; Rodriguez, Sandra; Liaw, Shi-Shen; Pham, Linda; Galvan, Vicente; Domalaon, Kryls; Gomez, Frank A.; Haan, John L.

    2016-06-01

    Paper microfluidics is used to produce single layer galvanic and hybrid cells to produce energy that could power paper-based analytical sensors. When two aqueous streams are absorbed onto paper to establish co-laminar flow, the streams stay in contact with each other with limited mixing. The interface at which mixing occurs acts as a charge-transfer region, eliminating the need for a salt bridge. We designed a Cusbnd Zn galvanic cell that powers an LED when two are placed in series. We also used more powerful redox couples (formate and silver, formate and permanganate) to produce higher power density (18 and 3.1 mW mg-1 Pd). These power densities are greater than previously reported paper microfluidic fuel cells using formate or methanol. The single layer design is much more simplified than previous reports of multi-layer galvanic cells on paper.

  12. Rotational manipulation of single cells and organisms using acoustic waves.

    Science.gov (United States)

    Ahmed, Daniel; Ozcelik, Adem; Bojanala, Nagagireesh; Nama, Nitesh; Upadhyay, Awani; Chen, Yuchao; Hanna-Rose, Wendy; Huang, Tony Jun

    2016-03-23

    The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation.

  13. A Method for Correlation of Gravestone Weathering and Air Quality (SO2), West Amidlands, UK

    Science.gov (United States)

    Carlson, Michael John

    From the beginning of the Industrial Revolution through the environmental revolution of the 1970s Britain suffered the effects of poor air quality primarily from particulate matter and acid in the form of NOx and SO x compounds. Air quality stations across the region recorded SO 2 beginning in the 1960s however the direct measurement of air quality prior to 1960 is lacking and only anecdotal notations exist. Proxy records including lung tissue samples, particulates in sediments cores, lake acidification studies and gravestone weathering have all been used to reconstruct the history of air quality. A 120-year record of acid deposition reconstructed from lead-lettered marble gravestone weathering combined with SO2 measurements from the air monitoring network across the West Midlands, UK region beginning in the 1960s form the framework for this study. The study seeks to create a spatial and temporal correlation between the gravestone weathering and measured SO 2. Successful correlation of the dataset from 1960s to the 2000s would allow a paleo-air quality record to be generated from the 120-year record of gravestone weathering. Decadal gravestone weathering rates can be estimated by non-linear regression analysis of stone loss at individual cemeteries. Gravestone weathering rates are interpolated across the region through Empirical Bayesian Kriging (EBK) methods performed through ArcGISRTM and through a land use based approach based on digitized maps of land use. Both methods of interpolation allow for the direct correlation of gravestone weathering and measured SO2 to be made. Decadal scale correlations of gravestone weathering rates and measured SO2 are very weak and non-existent for both EBK and the land use based approach. Decadal results combined together on a larger scale for each respective method display a better visual correlation. However, the relative clustering of data at lower SO2 concentrations and the lack of data at higher SO2 concentrations make the

  14. Changes in polyphenol profile of dried apricots containing SO2 at various concentrations during storage.

    Science.gov (United States)

    Altındağ, Melek; Türkyılmaz, Meltem; Özkan, Mehmet

    2018-05-01

    Changes in polyphenols have important effects on the quality (especially color) and health benefits of dried apricots. SO 2 concentration, storage and the activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were factors which had significant effects on polyphenols. Polyphenol profile and activities of PPO and PAL in sulfured dried apricots (SDAs, 0, 451, 832, 2112 and 3241 mg SO 2 kg -1 ) were monitored during storage at 4, 20 and 30 °C for 379 days for the first time. Even the lowest SO 2 concentration (451 mg kg -1 ) was sufficient to inactivate PPO during the entire storage period. However, while SO 2 led to the increase in PAL activity of the samples (r = 0.767) before storage, PAL activities of SDAs decreased during storage. After 90 days of storage, PAL activity was determined in only non-sulfured dried apricots (NSDAs) and dried apricots containing 451 mg SO 2 kg -1 . Although the major polyphenol in NSDAs was epicatechin (611.4 mg kg -1 ), that in SDAs was chlorogenic acid (455-1508 mg kg -1 ), followed by epicatechin (0-426.8 mg kg -1 ), rutin (148.9-477.3 mg kg -1 ), ferulic acid (23.3-55.3 mg kg -1 ) and gallic acid (2.4-43.6 mg kg -1 ). After storage at 30 °C for 379 days, the major polyphenol in SDAs was gallic acid (706-2324 mg kg -1 ). However, the major polyphenol in NSDAs did not change after storage. The highest total polyphenol content was detected in SDAs containing 2112 mg SO 2 kg -1 and stored at 30 °C. To produce dried apricots having high polyphenol content, ∼2000 mg SO 2 kg -1 should be used. Low storage temperature (<30 °C) was not necessary for the protection of polyphenols. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Micromechanical and surface adhesive properties of single saccharomyces cerevisiae cells

    Science.gov (United States)

    Farzi, Bahman; Cetinkaya, Cetin

    2017-09-01

    The adhesion and mechanical properties of a biological cell (e.g. cell membrane elasticity and adhesiveness) are often strong indicators for the state of its health. Many existing techniques for determining mechanical properties of cells require direct physical contact with a single cell or a group of cells. Physical contact with the cell can trigger complex mechanotransduction mechanisms, leading to cellular responses, and consequently interfering with measurement accuracy. In the current work, based on ultrasonic excitation and interferometric (optical) motion detection, a non-contact method for characterizing the adhesion and mechanical properties of single cells is presented. It is experimentally demonstrated that the rocking (rigid body) motion and internal vibrational resonance frequencies of a single saccharomyces cerevisiae (SC) (baker’s yeast) cell can be acquired with the current approach, and the Young’s modulus and surface tension of the cell membrane as well as surface adhesion energy can be extracted from the values of these acquired resonance frequencies. The detected resonance frequency ranges for single SC cells include a rocking (rigid body) frequency of 330  ±  70 kHz and two breathing resonance frequencies of 1.53  ±  0.12 and 2.02  ±  0.31 MHz. Based on these values, the average work-of-adhesion of SC cells on a silicon substrate in aqueous medium is extracted, for the first time, as WASC-Si=16.2+/- 3.8 mJ {{m}-2} . Similarly, the surface tension and the Young’s modulus of the SC cell wall are predicted as {{σ }SC}=0.16+/- 0.02 N {{m}-1} and {{E}SC}= 9.20  ±  2.80 MPa, respectively. These results are compared to those reported in the literature by utilizing various methods, and good agreements are found. The current approach eliminates the measurement inaccuracies associated with the physical contact. Exciting and detecting cell dynamics at micro-second time-scales is significantly faster than the

  16. CO2, SO2, and H2S Degassing Related to the 2009 Redoubt Eruption, Alaska

    Science.gov (United States)

    Werner, C. A.; Kelly, P. J.; Evans, W.; Doukas, M. P.; McGimsey, R. G.; Neal, C. A.

    2012-12-01

    The 2009 eruption of Redoubt Volcano, Alaska was particularly well monitored for volcanic gas emissions with 35 airborne measurements of CO2, SO2, and H2S that span from October 2008 to August 2010. Increases in CO2 degassing were detected up to 5 months prior to the eruption and varied between 3630 and 9020 tonnes per day (t/d) in the 6 weeks prior to the eruption. Increased pre-eruptive CO2 degassing was accompanied by comparatively low S emission, resulting in molar C/S ratios that ranged between 30-60. However, the C/S ratio dropped to 2.4 coincident with the first phreatic explosion on March 15, 2009, and remained steady during the explosive (March 22 - April 4, 2009), effusive dome-building (April 5 - July 1, 2009), and waning phases (August 2009 onward) of the eruption. Observations of ice-melt rates, melt water discharge, and water chemistry in the months leading up to the eruption suggested that surface waters represented drainage from surficial, perched reservoirs of condensed magmatic steam and glacial meltwater. While the surface waters were capable of scrubbing many thousands of t/d of SO2, sampling of these fluids revealed that only a few hundred tonnes of SO2 was reacting to a dissolved component each day. This is also much less than the ~ 2100 t/d SO2 expected from degassing of magma in the upper crust (3-6.5 km), where petrologic analysis shows the final magma equilibration occurred. Thus, the high pre-eruptive C/S ratios observed could reflect bulk degassing of upper-crustal magma followed by nearly complete loss of SO2 in a magmatic-hydrothermal system. Alternatively, high C/S ratios could be attributed to degassing of low silica andesitic magma that intruded into the mid-crust in the 5 months prior to eruption; modeling suggests that mixing of this magma with pre-existing high silica andesite magma or mush would have caused a reduction of the C/S ratio to a value consistent with that measured during the eruption. Monitoring emissions regularly

  17. A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument

    Directory of Open Access Journals (Sweden)

    V. E. Fioletov

    2016-09-01

    Full Text Available Sulfur dioxide (SO2 measurements from the Ozone Monitoring Instrument (OMI satellite sensor processed with the new principal component analysis (PCA algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr−1 to more than 4000 kt yr−1 of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources; power plants (297; smelters (53; and sources related to the oil and gas industry (65. The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005–2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30 % of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80 % over the 2005–2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr−1 and not detected by OMI.

  18. A Global Catalogue of Large SO2 Sources and Emissions Derived from the Ozone Monitoring Instrument

    Science.gov (United States)

    Fioletov, Vitali E.; McLinden, Chris A.; Krotkov, Nickolay; Li, Can; Joiner, Joanna; Theys, Nicolas; Carn, Simon; Moran, Mike D.

    2016-01-01

    Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor processed with the new principal component analysis (PCA) algorithm were used to detect large point emission sources or clusters of sources. The total of 491 continuously emitting point sources releasing from about 30 kt yr(exp -1) to more than 4000 kt yr(exp -1) of SO2 per year have been identified and grouped by country and by primary source origin: volcanoes (76 sources); power plants (297); smelters (53); and sources related to the oil and gas industry (65). The sources were identified using different methods, including through OMI measurements themselves applied to a new emission detection algorithm, and their evolution during the 2005- 2014 period was traced by estimating annual emissions from each source. For volcanic sources, the study focused on continuous degassing, and emissions from explosive eruptions were excluded. Emissions from degassing volcanic sources were measured, many for the first time, and collectively they account for about 30% of total SO2 emissions estimated from OMI measurements, but that fraction has increased in recent years given that cumulative global emissions from power plants and smelters are declining while emissions from oil and gas industry remained nearly constant. Anthropogenic emissions from the USA declined by 80% over the 2005-2014 period as did emissions from western and central Europe, whereas emissions from India nearly doubled, and emissions from other large SO2-emitting regions (South Africa, Russia, Mexico, and the Middle East) remained fairly constant. In total, OMI-based estimates account for about a half of total reported anthropogenic SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr(exp -1) and not detected by OMI.

  19. Field test of available methods to measure remotely SO2 and NOx emissions from ships

    Science.gov (United States)

    Balzani Lööv, J. M.; Alfoldy, B.; Beecken, J.; Berg, N.; Berkhout, A. J. C.; Duyzer, J.; Gast, L. F. L.; Hjorth, J.; Jalkanen, J.-P.; Lagler, F.; Mellqvist, J.; Prata, F.; van der Hoff, G. R.; Westrate, H.; Swart, D. P. J.; Borowiak, A.

    2013-11-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors from remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, DOAS, UV camera), combined with model based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat, and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the landbased ones because they allow to optimize the sampling conditions and to sample from ships on the open sea. Although optical methods can provide reliable results, it was found that at the state of the art, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  20. Health risks of NO 2, SPM and SO 2 in Delhi (India)

    Science.gov (United States)

    Pandey, Jai Shanker; Kumar, Rakesh; Devotta, Sukumar

    There is increasingly growing evidence linking urban air pollution to acute and chronic illnesses amongst all age groups. Therefore, monitoring of ambient concentrations of various air pollutants as well as quantification of the dose inhaled becomes quite important, specially in view of the fact that in many countries, policy decisions for reducing pollutant concentrations are mainly taken on the basis of their health impacts. The dose when gets combined with the likely responses, indicates the ultimate health risk (HR). Thus, as an extension of our earlier studies, HR has been estimated for three pollutants, namely, suspended particulate matter (SPM), nitrogen dioxide (NO 2) and sulfur dioxide (SO 2) for Delhi City in India. For estimation and analyses, three zones have been considered, namely, residential, industrial and commercial. The total population has been divided into three age classes (infants, children and adults) with different body weights and breathing rates. The exercise takes into account age-specific breathing rates, body weights for different age categories and occupancy factors for different zones. Results indicate that health risks due to air pollution in Delhi are highest for children. For all age categories, health risks due to SO 2 (HR_SO 2) are the lowest. Hence, HR_SO 2 has been taken as the reference with respect to which HR values due to SPM and NO 2 have been compared. Taking into account all the age categories and their occupancy in different zones, average HR values for NO 2 and SPM turn out to be respectively 22.11 and 16.13 times more than that for SO 2. The present study can be useful in generating public awareness as well as in averting and mitigating the health risks.

  1. Deconstructing stem cell population heterogeneity: Single-cell analysis and modeling approaches

    Science.gov (United States)

    Wu, Jincheng; Tzanakakis, Emmanuel S.

    2014-01-01

    Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including gene or protein expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent questions will require the employment of single-cell analysis methods as traditional cell biochemical and biomolecular assays yield mostly population-average data. In addition to time-lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic profiling are reviewed. The application of multiple displacement amplification, next generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting pluripotency or commitment. Establishing connections between single-cell analysis information and the observed phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning multiple time scales. Here, we discuss different modeling approaches and challenges arising from their application to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the rational design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of clinically valuable stem cell derivatives. PMID:24035899

  2. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough

    Directory of Open Access Journals (Sweden)

    Anouchka eFievet

    2015-12-01

    Full Text Available Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle.In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH. This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

  3. A Miniature Probe for Ultrasonic Penetration of a Single Cell

    Directory of Open Access Journals (Sweden)

    Mingfei Xiao

    2009-05-01

    Full Text Available Although ultrasound cavitation must be avoided for safe diagnostic applications, the ability of ultrasound to disrupt cell membranes has taken on increasing significance as a method to facilitate drug and gene delivery. A new ultrasonic resonance driving method is introduced to penetrate rigid wall plant cells or oocytes with springy cell membranes. When a reasonable design is created, ultrasound can gather energy and increase the amplitude factor. Ultrasonic penetration enables exogenous materials to enter cells without damaging them by utilizing instant acceleration. This paper seeks to develop a miniature ultrasonic probe experiment system for cell penetration. A miniature ultrasonic probe is designed and optimized using the Precise Four Terminal Network Method and Finite Element Method (FEM and an ultrasonic generator to drive the probe is designed. The system was able to successfully puncture a single fish cell.

  4. Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx.

    Science.gov (United States)

    Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min

    2014-07-24

    Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.

  5. Droplet Microfluidics for Compartmentalized Cell Lysis and Extension of DNA from Single-Cells

    Science.gov (United States)

    Zimny, Philip; Juncker, David; Reisner, Walter

    Current single cell DNA analysis methods suffer from (i) bias introduced by the need for molecular amplification and (ii) limited ability to sequence repetitive elements, resulting in (iii) an inability to obtain information regarding long range genomic features. Recent efforts to circumvent these limitations rely on techniques for sensing single molecules of DNA extracted from single-cells. Here we demonstrate a droplet microfluidic approach for encapsulation and biochemical processing of single-cells inside alginate microparticles. In our approach, single-cells are first packaged inside the alginate microparticles followed by cell lysis, DNA purification, and labeling steps performed off-chip inside this microparticle system. The alginate microparticles are then introduced inside a micro/nanofluidic system where the alginate is broken down via a chelating buffer, releasing long DNA molecules which are then extended inside nanofluidic channels for analysis via standard mapping protocols.

  6. Conversion of Food waste to Single Cell Protein using Aspergillus ...

    African Journals Online (AJOL)

    The utilization of food waste into products like single cell protein is an alternative solution to global protein shortage and to alleviate pollution problems. This investigation was carried out with food wastes such as orange, pineapple, banana, watermelon and cucumber waste as growth media for A. niger using standard ...

  7. PRODt;CTION OF SINGLE CELL PROTEIN FROM BREWERY ...

    African Journals Online (AJOL)

    BSN

    customary food and feed sources of protein (agriculnrre and fishery) to ocher sources like single cell protein (SCP); whose production from hydrocarbons is one ... origin is unicellular or simple multicellular organism such as bacteria, yeasts, fungi, algae. protozoa, mid even bacterinphagcs generally cultivated on substrates ...

  8. Modeling single cell antibody excretion on a biosensor

    NARCIS (Netherlands)

    Stojanovic, Ivan; Baumgartner, W.; van der Velden, T.J.G.; Terstappen, Leonardus Wendelinus Mathias Marie; Schasfoort, Richardus B.M.

    2016-01-01

    We simulated, using Comsol Multiphysics, the excretion of antibodies by single hybridoma cells and their subsequent binding on a surface plasmon resonance imaging (SPRi) sensor. The purpose was to confirm that SPRi is suitable to accurately quantify antibody (anti-EpCAM) excretion. The model showed

  9. Direct chromosome-length haplotyping by single-cell sequencing

    NARCIS (Netherlands)

    Porubský, David; Sanders, Ashley D; van Wietmarschen, Niek; Falconer, Ester; Hills, Mark; Spierings, Diana C J; Bevova, Marianna R; Guryev, Victor; Lansdorp, Peter Michael

    Haplotypes are fundamental to fully characterize the diploid genome of an individual, yet methods to directly chart the unique genetic makeup of each parental chromosome are lacking. Here we introduce single-cell DNA template strand sequencing (Strand-seq) as a novel approach to phasing diploid

  10. Preimplantation genetic diagnosis guided by single-cell genomics

    Science.gov (United States)

    2013-01-01

    Preimplantation genetic diagnosis (PGD) aims to help couples with heritable genetic disorders to avoid the birth of diseased offspring or the recurrence of loss of conception. Following in vitro fertilization, one or a few cells are biopsied from each human preimplantation embryo for genetic testing, allowing diagnosis and selection of healthy embryos for uterine transfer. Although classical methods, including single-cell PCR and fluorescent in situ hybridization, enable PGD for many genetic disorders, they have limitations. They often require family-specific designs and can be labor intensive, resulting in long waiting lists. Furthermore, certain types of genetic anomalies are not easy to diagnose using these classical approaches, and healthy offspring carrying the parental mutant allele(s) can result. Recently, state-of-the-art methods for single-cell genomics have flourished, which may overcome the limitations associated with classical PGD, and these underpin the development of generic assays for PGD that enable selection of embryos not only for the familial genetic disorder in question, but also for various other genetic aberrations and traits at once. Here, we discuss the latest single-cell genomics methodologies based on DNA microarrays, single-nucleotide polymorphism arrays or next-generation sequence analysis. We focus on their strengths, their validation status, their weaknesses and the challenges for implementing them in PGD. PMID:23998893

  11. PRODt;CTION OF SINGLE CELL PROTEIN FROM BREWERY ...

    African Journals Online (AJOL)

    BSN

    origin is unicellular or simple multicellular organism such as bacteria, yeasts, fungi, ... Pilot plant produe1io11 of single cell proteins now take place in several centre.ii in ... animal feed but little or no information has been documented as per its ...

  12. Signatures of nonlinearity in single cell noise-induced oscillations

    NARCIS (Netherlands)

    Thomas, P.; Straube, A.V.; Timmer, J.; Fleck, C.; Grima, R.

    2013-01-01

    A class of theoretical models seeks to explain rhythmic single cell data by postulating that they are generated by intrinsic noise in biochemical systems whose deterministic models exhibit only damped oscillations. The main features of such noise-induced oscillations are quantified by the power

  13. Single-cell LEP-type cavity on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    A single-cell cavity, made of copper, with tapered connectors for impedance measurements. It was used as a model of LEP-type superconducting cavities, to investigate impedance and higher-order modes and operated at around 600 MHz (the LEP acceleration frequency was 352.2 MHz). See 8202500.

  14. Microbeam evolution: From single cell irradiation to preclinical studies

    DEFF Research Database (Denmark)

    Ghita, Mihaela; Fernandez-Palomo, Cristian; Fukunaga, Hisanori

    2018-01-01

    Purpose: This review follows the development of microbeam technology from the early days of single cell irradiations, to investigations of specific cellular mechanisms and to the development of new treatment modalities in vivo. A number of microbeam applications are discussed with a focus on prec...... to deliver radiotherapy using plane parallel microbeams, in Microbeam Radiotherapy (MRT)....

  15. Mutation dynamics and fitness effects followed in single cells.

    Science.gov (United States)

    Robert, Lydia; Ollion, Jean; Robert, Jerome; Song, Xiaohu; Matic, Ivan; Elez, Marina

    2018-03-16

    Mutations have been investigated for more than a century but remain difficult to observe directly in single cells, which limits the characterization of their dynamics and fitness effects. By combining microfluidics, time-lapse imaging, and a fluorescent tag of the mismatch repair system in Escherichia coli , we visualized the emergence of mutations in single cells, revealing Poissonian dynamics. Concomitantly, we tracked the growth and life span of single cells, accumulating ~20,000 mutations genome-wide over hundreds of generations. This analysis revealed that 1% of mutations were lethal; nonlethal mutations displayed a heavy-tailed distribution of fitness effects and were dominated by quasi-neutral mutations with an average cost of 0.3%. Our approach has enabled the investigation of single-cell individuality in mutation rate, mutation fitness costs, and mutation interactions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Evaluation of yeast single cell protein (SCP) diets on growth ...

    African Journals Online (AJOL)

    An investigation was carried out on the possibility of replacing fishmeal with graded levels of yeast single cell protein (SCP; 10, 20, 30, 40 and 50%) in isonitrogenous feed formulations (30% protein) in the diet of Oreochromis niloticus fingerlings for a period of 12 weeks. The control diet had fishmeal as the primary protein ...

  17. Single-cell sequencing to quantify genomic integrity in cancer

    NARCIS (Netherlands)

    van den Bos, Hilda; Bakker, Bjorn; Spierings, Diana C J; Lansdorp, Peter M; Foijer, Floris

    The use of single-cell DNA sequencing (sc-seq) techniques for the diagnosis, prognosis and treatment of cancer is a rapidly developing field. Sc-seq research is gaining momentum by decreased sequencing costs and continuous improvements in techniques. In this review, we provide an overview of recent

  18. Magnetic domain wall conduits for single cell applications

    DEFF Research Database (Denmark)

    Donolato, Marco; Torti, A.; Kostesha, Natalie

    2011-01-01

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls...... walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain...... walls technology in lab-on-chip systems devoted to accurate individual cell trapping and manipulation....

  19. East Asian SO2 pollution plume over Europe – Part 2: Evolution and potential impact

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2009-07-01

    Full Text Available We report on the first observation-based case study of an aged East Asian anthropogenic SO2 pollution plume over Europe. Our airborne measurements in that plume detected highly elevated SO2 mole fractions (up to 900 pmol/mol between about 5000 and 7000 m altitude. Here, we focus on investigations of the origin, dispersion, evolution, conversion, and potential impact of the observed excess SO2. In particular, we investigate SO2 conversion to gas-phase sulfuric acid and sulfuric acid aerosols. Our FLEXPART and LAGRANTO model simulations, along with additional trace gas measurements, suggest that the plume originated from East Asian fossil fuel combustion sources and, 8–7 days prior to its arrival over Europe, ascended over the coast region of central East Asia to 9000 m altitude, probably in a cyclonic system with an associated warm conveyor belt. During this initial plume ascent a substantial fraction of the initially available SO2 must have escaped from removal by cloud processes. Hereafter, while mostly descending slowly, the plume experienced advection across the North Pacific, North America and the North Atlantic. During its upper troposphere travel, clouds were absent in and above the plume and OH-induced gas-phase conversion of SO2 to gas-phase sulfuric acid (GSA was operative, followed by GSA nucleation and condensation leading to sulfuric acid aerosol formation and growth. Our AEROFOR model simulations indicate that numerous large sulfuric acid aerosol particles were formed, which at least tempora-rily, caused substantial horizontal visibility degradation, and which have the potential to act as water vapor condensation nuclei in liquid water cloud formation, already at water vapor supersaturations as low as about 0.1%. Our AEROFOR model simulations also indicate that those fossil fuel combustion generated soot particles, which have survived cloud induced removal during the initial plume ascent, have experienced extensive H2SO4/H2O

  20. Retrieval of volcanic SO2 from HIRS/2 using optimal estimation

    Science.gov (United States)

    Miles, Georgina M.; Siddans, Richard; Grainger, Roy G.; Prata, Alfred J.; Fisher, Bradford; Krotkov, Nickolay

    2017-07-01

    We present an optimal-estimation (OE) retrieval scheme for stratospheric sulfur dioxide from the High-Resolution Infrared Radiation Sounder 2 (HIRS/2) instruments on the NOAA and MetOp platforms, an infrared radiometer that has been operational since 1979. This algorithm is an improvement upon a previous method based on channel brightness temperature differences, which demonstrated the potential for monitoring volcanic SO2 using HIRS/2. The Prata method is fast but of limited accuracy. This algorithm uses an optimal-estimation retrieval approach yielding increased accuracy for only moderate computational cost. This is principally achieved by fitting the column water vapour and accounting for its interference in the retrieval of SO2. A cloud and aerosol model is used to evaluate the sensitivity of the scheme to the presence of ash and water/ice cloud. This identifies that cloud or ash above 6 km limits the accuracy of the water vapour fit, increasing the error in the SO2 estimate. Cloud top height is also retrieved. The scheme is applied to a case study event, the 1991 eruption of Cerro Hudson in Chile. The total erupted mass of SO2 is estimated to be 2300 kT ± 600 kT. This confirms it as one of the largest events since the 1991 eruption of Pinatubo, and of comparable scale to the Northern Hemisphere eruption of Kasatochi in 2008. This retrieval method yields a minimum mass per unit area detection limit of 3 DU, which is slightly less than that for the Total Ozone Mapping Spectrometer (TOMS), the only other instrument capable of monitoring SO2 from 1979 to 1996. We show an initial comparison to TOMS for part of this eruption, with broadly consistent results. Operating in the infrared (IR), HIRS has the advantage of being able to measure both during the day and at night, and there have frequently been multiple HIRS instruments operated simultaneously for better than daily sampling. If applied to all data from the series of past and future HIRS instruments, this

  1. Interactive effects between total SO2 , ethanol and storage temperature against Brettanomyces bruxellensis.

    Science.gov (United States)

    Edwards, C G; Oswald, T A

    2018-01-01

    Although Brettanomyces bruxellensis continues to be a problem during red winemaking due to formation of off-odours and flavours, few interactions between intrinsic and extrinsic conditions that would limit spoilage have been identified. Using a commercially prepared Merlot wine, a 3 × 2 × 2 complete factorial design was implemented with total SO 2 (0, 60 or 100 mg l -1 ), ethanol (13% or 14·5% v v -1 ) and storage temperature (15° or 18°C) as variables. Populations of two strains of B. bruxellensis isolated from Washington wines (I1a and F3) were monitored for 100 days before concentrations of 4-ethylphenol, 4-ethylguaiacol and volatile acidity were measured. In wines with 13% v v -1 ethanol and stored at 15°C, addition of 100 mg l -1 total SO 2 resulted in much longer lag phases (>40 days) compared with wines without sulphites. At 14·5% v v -1 ethanol, culturability did not recover from wines with 100 mg l -1 total SO 2 regardless of the storage temperature (15° or 18°C). A few significant interactions were noted between these parameters which also affected synthesis of metabolites. Thus, SO 2 , ethanol concentration and storage temperature should be together used as means to reduce infections by B. bruxellensis. The potential for utilizing SO 2 along with the ethanol and storage temperature was studied to inhibit the spoilage yeast, Brettanomyces bruxellensis, during cellar ageing of red wines. This report is the first to identify the existence of interactions between these parameters that affect growth and/or metabolism of the yeast (i.e., synthesis of 4-ethylphenol, 4-ethylguaiacol and volatile acidity). Based on current and past findings, recommendations are presented related to the use of potential antimicrobial synergies between SO 2 , ethanol concentration and storage temperatures. © 2017 The Society for Applied Microbiology.

  2. Vertical profiles for SO2 and SO on Venus from different one-dimensional simulations

    Science.gov (United States)

    Mills, Franklin P.; Jessup, Kandis-Lea; Yung, Yuk

    2017-10-01

    Sulfur dioxide (SO2) plays many roles in Venus’ atmosphere. It is a precursor for the sulfuric acid that condenses to form the global cloud layers and is likely a precursor for the unidentified UV absorber, which, along with CO2 near the tops of the clouds, appears to be responsible for absorbing about half of the energy deposited in Venus’ atmosphere [1]. Most published simulations of Venus’ mesospheric chemistry have used one-dimensional numerical models intended to represent global-average or diurnal-average conditions [eg, 2, 3, 4]. Observations, however, have found significant variations of SO and SO2 with latitude and local time throughout the mesosphere [eg, 5, 6]. Some recent simulations have examined local time variations of SO and SO2 using analytical models [5], one-dimensional steady-state solar-zenith-angle-dependent numerical models [6], and three-dimensional general circulation models (GCMs) [7]. As an initial step towards a quantitative comparison among these different types of models, this poster compares simulated SO, SO2, and SO/SO2 from global-average, diurnal-average, and solar-zenith-angle (SZA) dependent steady-state models for the mesosphere.The Caltech/JPL photochemical model [8] was used with vertical transport via eddy diffusion set based on observations and observationally-defined lower boundary conditions for HCl, CO, and OCS. Solar fluxes are based on SORCE SOLSTICE and SORCE SIM measurements from 26 December 2010 [9, 10]. The results indicate global-average and diurnal-average models may have significant limitations when used to interpret latitude- and local-time-dependent observations of SO2 and SO.[1] Titov D et al (2007) in Exploring Venus as a Terrestrial Planet, 121-138. [2] Zhang X et al (2012) Icarus, 217, 714-739. [3] Krasnopolsky V A (2012) Icarus, 218, 230-246. [4] Parkinson C D et al (2015) Planet Space Sci, 113-114, 226-236. [5] Sandor B J et al (2010) Icarus, 208, 49-60. [6] Jessup K-L et al (2015) Icarus, 258, 309

  3. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation.

    Science.gov (United States)

    Nestorowa, Sonia; Hamey, Fiona K; Pijuan Sala, Blanca; Diamanti, Evangelia; Shepherd, Mairi; Laurenti, Elisa; Wilson, Nicola K; Kent, David G; Göttgens, Berthold

    2016-08-25

    Maintenance of the blood system requires balanced cell fate decisions by hematopoietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the individual cell level, new single-cell profiling technologies offer exciting possibilities for mapping the dynamic molecular changes underlying HSPC differentiation. Here, we have used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep sequencing has enabled detection of an average of 6558 protein-coding genes per cell. Index sorting, in combination with broad sorting gates, allowed us to retrospectively assign cells to 12 commonly sorted HSPC phenotypes while also capturing intermediate cells typically excluded by conventional gating. We further show that independently generated single-cell data sets can be projected onto the single-cell resolution expression map to directly compare data from multiple groups and to build and refine new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active maintenance of the stem-cell state. Finally, we report the development of an intuitive Web interface as a new community resource to permit visualization of gene expression in HSPCs at single-cell resolution for any gene of choice. © 2016 by The American Society of Hematology.

  4. Single-cell qPCR on dispersed primary pituitary cells -an optimized protocol

    Directory of Open Access Journals (Sweden)

    Haug Trude M

    2010-11-01

    Full Text Available Abstract Background The incidence of false positives is a potential problem in single-cell PCR experiments. This paper describes an optimized protocol for single-cell qPCR measurements in primary pituitary cell cultures following patch-clamp recordings. Two different cell harvesting methods were assessed using both the GH4 prolactin producing cell line from rat, and primary cell culture from fish pituitaries. Results Harvesting whole cells followed by cell lysis and qPCR performed satisfactory on the GH4 cell line. However, harvesting of whole cells from primary pituitary cultures regularly produced false positives, probably due to RNA leakage from cells ruptured during the dispersion of the pituitary cells. To reduce RNA contamination affecting the results, we optimized the conditions by harvesting only the cytosol through a patch pipette, subsequent to electrophysiological experiments. Two important factors proved crucial for reliable harvesting. First, silanizing the patch pipette glass prevented foreign extracellular RNA from attaching to charged residues on the glass surface. Second, substituting the commonly used perforating antibiotic amphotericin B with β-escin allowed efficient cytosol harvest without loosing the giga seal. Importantly, the two harvesting protocols revealed no difference in RNA isolation efficiency. Conclusion Depending on the cell type and preparation, validation of the harvesting technique is extremely important as contaminations may give false positives. Here we present an optimized protocol allowing secure harvesting of RNA from single cells in primary pituitary cell culture following perforated whole cell patch clamp experiments.

  5. Preparation of Single Cells for Imaging Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Berman, E S; Fortson, S L; Kulp, K S; Checchi, K D; Wu, L; Felton, J S; Wu, K J

    2007-10-24

    Characterizing chemical changes within single cells is important for determining fundamental mechanisms of biological processes that will lead to new biological insights and improved disease understanding. Imaging biological systems with mass spectrometry (MS) has gained popularity in recent years as a method for creating precise chemical maps of biological samples. In order to obtain high-quality mass spectral images that provide relevant molecular information about individual cells, samples must be prepared so that salts and other cell-culture components are removed from the cell surface and the cell contents are rendered accessible to the desorption beam. We have designed a cellular preparation protocol for imaging MS that preserves the cellular contents for investigation and removes the majority of the interfering species from the extracellular matrix. Using this method, we obtain excellent imaging results and reproducibility in three diverse cell types: MCF7 human breast cancer cells, Madin-Darby canine kidney (MDCK) cells, and NIH/3T3 mouse fibroblasts. This preparation technique allows routine imaging MS analysis of cultured cells, allowing for any number of experiments aimed at furthering scientific understanding of molecular processes within individual cells.

  6. Correlated receptor transport processes buffer single-cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    2017-09-01

    Full Text Available Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  7. Advances of Single-Cell Sequencing Technique in Tumors

    Directory of Open Access Journals (Sweden)

    Ji-feng FENG

    2017-03-01

    Full Text Available With the completion of human genome project (HGP and the international HapMap project as well as rapid development of high-throughput biochip technology, whole genomic sequencing-targeted analysis of genomic structures has been primarily finished. Application of single cell for the analysis of the whole genomics is not only economical in material collection, but more importantly, the cell will be more purified, and the laboratory results will be more accurate and reliable. Therefore, exploration and analysis of hereditary information of single tumor cells has become the dream of all researchers in the field of basic research of tumors. At present, single-cell sequencing (SCS on malignancies has been widely used in the studies of pathogeneses of multiple malignancies, such as glioma, renal cancer and hematologic neoplasms, and in the studies of the metastatic mechanism of breast cancer by some researchers. This study mainly reviewed the SCS, the mechanisms and the methods of SCS in isolating tumor cells, and application of SCS technique in tumor-related basic research and clinical treatment.

  8. Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.

    Science.gov (United States)

    Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P

    2012-01-01

    Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  9. Capturing Three-Dimensional Genome Organization in Individual Cells by Single-Cell Hi-C.

    Science.gov (United States)

    Nagano, Takashi; Wingett, Steven W; Fraser, Peter

    2017-01-01

    Hi-C is a powerful method to investigate genome-wide, higher-order chromatin and chromosome conformations averaged from a population of cells. To expand the potential of Hi-C for single-cell analysis, we developed single-cell Hi-C. Similar to the existing "ensemble" Hi-C method, single-cell Hi-C detects proximity-dependent ligation events between cross-linked and restriction-digested chromatin fragments in cells. A major difference between the single-cell Hi-C and ensemble Hi-C protocol is that the proximity-dependent ligation is carried out in the nucleus. This allows the isolation of individual cells in which nearly the entire Hi-C procedure has been carried out, enabling the production of a Hi-C library and data from individual cells. With this new method, we studied genome conformations and found evidence for conserved topological domain organization from cell to cell, but highly variable interdomain contacts and chromosome folding genome wide. In addition, we found that the single-cell Hi-C protocol provided cleaner results with less technical noise suggesting it could be used to improve the ensemble Hi-C technique.

  10. Optimization of magnetic switches for single particle and cell transport

    Energy Technology Data Exchange (ETDEWEB)

    Abedini-Nassab, Roozbeh; Yellen, Benjamin B., E-mail: yellen@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, North Carolina 27708 (United States); Joint Institute, University of Michigan—Shanghai Jiao Tong University, Shanghai Jiao Tong University, Shanghai 200240 (China); Murdoch, David M. [Department of Medicine, Duke University, Durham, North Carolina 27708 (United States); Kim, CheolGi [Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of)

    2014-06-28

    The ability to manipulate an ensemble of single particles and cells is a key aim of lab-on-a-chip research; however, the control mechanisms must be optimized for minimal power consumption to enable future large-scale implementation. Recently, we demonstrated a matter transport platform, which uses overlaid patterns of magnetic films and metallic current lines to control magnetic particles and magnetic-nanoparticle-labeled cells; however, we have made no prior attempts to optimize the device geometry and power consumption. Here, we provide an optimization analysis of particle-switching devices based on stochastic variation in the particle's size and magnetic content. These results are immediately applicable to the design of robust, multiplexed platforms capable of transporting, sorting, and storing single cells in large arrays with low power and high efficiency.

  11. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  12. Protein Expression Analyses at the Single Cell Level

    Directory of Open Access Journals (Sweden)

    Masae Ohno

    2014-09-01

    Full Text Available The central dogma of molecular biology explains how genetic information is converted into its end product, proteins, which are responsible for the phenotypic state of the cell. Along with the protein type, the phenotypic state depends on the protein copy number. Therefore, quantification of the protein expression in a single cell is critical for quantitative characterization of the phenotypic states. Protein expression is typically a dynamic and stochastic phenomenon that cannot be well described by standard experimental methods. As an alternative, fluorescence imaging is being explored for the study of protein expression, because of its high sensitivity and high throughput. Here we review key recent progresses in fluorescence imaging-based methods and discuss their application to proteome analysis at the single cell level.

  13. High resolution imaging of surface patterns of single bacterial cells

    International Nuclear Information System (INIS)

    Greif, Dominik; Wesner, Daniel; Regtmeier, Jan; Anselmetti, Dario

    2010-01-01

    We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.

  14. Advancing haematopoietic stem and progenitor cell biology through single-cell profiling

    OpenAIRE

    Hamey, Fiona; Nestorowa, Sonia; Wilson, Nicola Kaye; Göttgens, Berthold

    2016-01-01

    Haematopoietic stem and progenitor cells (HSPCs) sit at the top of the haematopoietic hierarchy, and their fate choices need to be carefully controlled to ensure balanced production of all mature blood cell types. As cell fate decisions are made at the level of the individual cells, recent technological advances in measuring gene and protein expression in increasingly large numbers of single cells have been rapidly adopted to study both normal and pathological HSPC function. In this review we...

  15. High Throughput Single-cell and Multiple-cell Micro-encapsulation

    OpenAIRE

    Lagus, Todd P.; Edd, Jon F.

    2012-01-01

    Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of ...

  16. Single-Cell Quantitative PCR: Advances and Potential in Cancer Diagnostics.

    Science.gov (United States)

    Ok, Chi Young; Singh, Rajesh R; Salim, Alaa A

    2016-01-01

    Tissues are heterogeneous in their components. If cells of interest are a minor population of collected tissue, it would be difficult to obtain genetic or genomic information of the interested cell population with conventional genomic DNA extraction from the collected tissue. Single-cell DNA analysis is important in the analysis of genetics of cell clonality, genetic anticipation, and single-cell DNA polymorphisms. Single-cell PCR using Single Cell Ampligrid/GeXP platform is described in this chapter.

  17. Updated SO2 emission estimates over China using OMI/Aura observations

    Directory of Open Access Journals (Sweden)

    M. E. Koukouli

    2018-03-01

    Full Text Available The main aim of this paper is to update existing sulfur dioxide (SO2 emission inventories over China using modern inversion techniques, state-of-the-art chemistry transport modelling (CTM and satellite observations of SO2. Within the framework of the EU Seventh Framework Programme (FP7 MarcoPolo (Monitoring and Assessment of Regional air quality in China using space Observations project, a new SO2 emission inventory over China was calculated using the CHIMERE v2013b CTM simulations, 10 years of Ozone Monitoring Instrument (OMI/Aura total SO2 columns and the pre-existing Multi-resolution Emission Inventory for China (MEIC v1.2. It is shown that including satellite observations in the calculations increases the current bottom-up MEIC inventory emissions for the entire domain studied (15–55° N, 102–132° E from 26.30 to 32.60 Tg annum−1, with positive updates which are stronger in winter ( ∼  36 % increase. New source areas were identified in the southwest (25–35° N, 100–110° E as well as in the northeast (40–50° N, 120–130° E of the domain studied as high SO2 levels were observed by OMI, resulting in increased emissions in the a posteriori inventory that do not appear in the original MEIC v1.2 dataset. Comparisons with the independent Emissions Database for Global Atmospheric Research, EDGAR v4.3.1, show a satisfying agreement since the EDGAR 2010 bottom-up database provides 33.30 Tg annum−1 of SO2 emissions. When studying the entire OMI/Aura time period (2005 to 2015, it was shown that the SO2 emissions remain nearly constant before the year 2010, with a drift of −0.51 ± 0.38 Tg annum−1, and show a statistically significant decline after the year 2010 of −1.64 ± 0.37 Tg annum−1 for the entire domain. Similar findings were obtained when focusing on the greater Beijing area (30–40° N, 110–120° E with pre-2010 drifts of −0.17 ± 0.14 and post-2010

  18. The US SO2 AUCTION: A policy recommendation for future auctions

    International Nuclear Information System (INIS)

    Christensen, J.L.; Thinggaard Svendsen, G.

    1998-01-01

    An annual discriminative and revenue-neutral auction is linked to the new Acid Rain Program which allows electric utilities all over the US to trade SO2 emission permits. This innovative SO2 auction distributes 2% of the permits in circulation and takes place at the Chicago Board of Trade. Early results showed that the auction generated a clearing price signal lower than the market price. Now the auction price seems to be determined by the outside market price. Still, in the important starting phase, a non-discriminative auction design would probably have generated better price signals since potentially severe downward biases in both seller price offers and buyer bids are due to the discriminative feature of the EPA auction. (au) 30 refs

  19. Numerical Model of SO2 Scrubbing with Seawater Applied to Marine Engines

    Directory of Open Access Journals (Sweden)

    Lamas M. I.

    2016-04-01

    Full Text Available The present paper proposes a CFD model to study sulphur dioxide (SO2 absorption in seawater. The focus is on the treatment of marine diesel engine exhaust gas. Both seawater and distilled water were compared to analyze the effect of seawater alkalinity. The results indicate that seawater is more appropriate than distilled water due to its alkalinity, obtaining almost 100% cleaning efficiency for the conditions analyzed. This SO2 reduction meets the limits of SOx emission control areas (SECA when operating on heavy fuel oil. These numerical simulations were satisfactory validated with experimental tests. Such data are essential in designing seawater scrubbers and judging the operating cost of seawater scrubbing compared to alternative fuels.

  20. Land use patterns and SO2 and NO2 pollution in Ulaanbaatar, Mongolia.

    Science.gov (United States)

    Huang, Yu-Kai; Luvsan, Munkh-Erdene; Gombojav, Enkhjargal; Ochir, Chimedsuren; Bulgan, Jargal; Chan, Chang-Chuan

    2013-07-01

    We proposed to study spatial distribution and source contribution of SO2 and NO2 pollution in Ulaanbaatar, Mongolia. We collected 2-week ambient SO2 and NO2 concentration samples at 38 sites, which were classified by major sources of air pollution such as ger areas and/or major roads, in three seasons as warm (September, 2011), cold (November-December, 2011), and moderate (March, 2012) in Ulaanbaatar. The SO2 and NO2 concentrations were collected by Ogawa ambient air passive samplers and analyzed by ion chromatography and spectrophotometry methods, respectively. Stepwise regression models were used to estimate the contribution of emission proxies, such as the distance to major roads, ger areas, power plants, and city center, to the ambient concentrations of SO2 and NO2. We found that the SO2 and NO2 concentrations were significantly higher in the cold season than in the warm and moderate seasons at all 38 ambient sampling sites. The SO2 concentrations in 20 ger sites (46.60 ppb in the cold season and 17.82 ppb in the moderate season) were significantly higher than in 18 non-ger sites (23.35 ppb in the cold season and 12.53 ppb in the moderate season). The NO2 concentrations at 19 traffic/road sites (12.85 ppb in the warm season and 20.48 ppb in the moderate season) were significantly higher than those at 19 urban sites (7.60 ppb and 14.39 ppb in the moderate season). Multiple regression models show that SO2 concentrations decreased by 23% in the cold and 17% in the moderate seasons at 0.70 km from the ger areas, an average of all sampling sites, and by 29% in the moderate season at 4.83 km from the city center, an average of all sampling sites. Multiple regression models show that the NO2 concentrations at 4.83 km from the city center decreased by 38% in the warm and 29% in the moderate seasons. Our models also report that NO2 concentrations at 0.16 km from the main roads decreased by 15% and 9% in the warm and the moderate seasons, respectively, and by 16% in the

  1. SO2 influence on the K/La2O3 soot combustion catalyst deactivation

    International Nuclear Information System (INIS)

    Peralta, M.A.; Ulla, M.A.; Querini, C.A.

    2008-01-01

    In the present work, K/La 2 O 3 was prepared and tested as a potential catalyst to be used in a diesel engine exhaust. The soot combustion activity was evaluated by temperature-programmed-oxidation (TPO), and the NO x -catalyst interaction was studied using a microbalance experiment. The SO 2 poisoning process and the regeneration of a poisoned K/La 2 O 3 catalyst were analyzed. The fresh catalyst presented a good soot combustion activity. After being treated with a 1000 ppm SO 2 stream, the catalyst was poisoned due to lanthanum sulfate and potassium sulfate formation. The NO x treatment contributed to the K 2 (SO 4 ) decomposition at the expense of extra La 2 (SO 4 ) 3 formation and the H 2 treatment contributed to the La 2 (SO 4 ) 3 decomposition. (author)

  2. Treatment of reduced sulphur compounds and SO2 by Gas Phase Advanced Oxidation

    DEFF Research Database (Denmark)

    Meusinger, Carl; Bluhme, Anders Brostrøm; Ingemar, Jonas L.

    2017-01-01

    Reduced sulphur compounds (RSCs) emitted from pig farms are a major problem for agriculture, due to their health and environmental impacts and foul odour. This study investigates the removal of RSCs, including H2S, and their oxidation product SO2 using Gas Phase Advanced Oxidation (GPAO). GPAO...... is a novel air cleaning technique which utilises accelerated atmospheric chemistry to oxidise pollutants before removing their oxidation products as particles. Removal efficiencies of 24.5% and 3.9% were found for 461 ppb of H2S and 714 ppb of SO2 in a laboratory system (volumetric flow Q = 75 m3/h......). A numerical model of the reactor system was developed to explore the basic features of the system; its output was in fair agreement with the experiment. The model verified the role of OH radicals in initiating the oxidation chemistry. All sulphur removed from the gas phase was detected as particulate matter...

  3. Consequence assessment for Airborne Releases of SO2 from the Y-12 Pilot Dechlorination Facility

    International Nuclear Information System (INIS)

    Pendergrass, W.R.

    1992-06-01

    The Atmospheric Turbulence and Diffusion Division was requested by the Department of Energy's Oak Ridge Operations Office to conduct a consequence assessment for potential atmospheric releases of SO 2 from the Y-12 Pilot Dechlorination Facility. The focus of the assessment was to identify ''worst'' case meteorology which posed the highest concentration exposure potential for both on-site as well as off-site populations. A series of plausible SO 2 release scenarios were provided by Y-12 for the consequence assessment. Each scenario was evaluated for predictions of downwind concentration, estimates of a five-minute time weighted average, and estimate of the dimension of the puff. The highest hazard potential was associated with Scenario 1, in which a total of eight SO 2 cylinders are released internally to the Pilot Facility and exhausted through the emergency venting system. A companion effort was also conducted to evaluate the potential for impact of releases of SO 2 from the Pilot Facility on the population of Oak Ridge. While specific transport trajectory data is not available for the Pilot Facility, extrapolations based on the Oak Ridge Site Survey and climatological records from the Y-12 meteorological program does not indicate the potential for impact on the city of Oak Ridge. Steering by the local topographical features severely limits the potential impact ares. Due to the lack of specific observational data, both tracer and meteorological, only inferences can be made concerning impact zones. It is recommended tat the Department of Energy Oak Ridge Operations examine the potential for off-site impact and develop the background data to prepare impact zones for releases of hazardous materials from the Y-12 facility

  4. Sorting of cells of the same size, shape, and cell cycle stage for a single cell level assay without staining

    Directory of Open Access Journals (Sweden)

    Yomo Tetsuya

    2006-06-01

    Full Text Available Abstract Background Single-cell level studies are being used increasingly to measure cell properties not directly observable in a cell population. High-performance data acquisition systems for such studies have, by necessity, developed in synchrony. However, improvements in sample purification techniques are also required to reveal new phenomena. Here we assessed a cell sorter as a sample-pretreatment tool for a single-cell level assay. A cell sorter is routinely used for selecting one type of cells from a heterogeneous mixture of cells using specific fluorescence labels. In this case, we wanted to select cells of exactly the same size, shape, and cell-cycle stage from a population, without using a specific fluorescence label. Results We used four light scatter parameters: the peak height and area of the forward scatter (FSheight and FSarea and side scatter (SSheight and SSarea. The rat pheochromocytoma PC12 cell line, a neuronal cell line, was used for all experiments. The living cells concentrated in the high FSarea and middle SSheight/SSarea fractions. Single cells without cell clumps were concentrated in the low SS and middle FS fractions, and in the higher FSheight/FSarea and SSheight/SSarea fractions. The cell populations from these viable, single-cell-rich fractions were divided into twelve subfractions based on their FSarea-SSarea profiles, for more detailed analysis. We found that SSarea was proportional to the cell volume and the FSarea correlated with cell roundness and elongation, as well as with the level of DNA in the cell. To test the method and to characterize the basic properties of the isolated single cells, sorted cells were cultured in separate wells. The cells in all subfractions survived, proliferated and differentiated normally, suggesting that there was no serious damage. The smallest, roundest, and smoothest cells had the highest viability. There was no correlation between proliferation and differentiation. NGF increases

  5. Rate constant for the reaction SO + BrO yields SO2 + Br

    Science.gov (United States)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  6. Nitrile-functionalized tertiary amines as highly efficient and reversible SO2 absorbents.

    Science.gov (United States)

    Hong, Sung Yun; Kim, Heehwan; Kim, Young Jin; Jeong, Junkyo; Cheong, Minserk; Lee, Hyunjoo; Kim, Hoon Sik; Lee, Je Seung

    2014-01-15

    Three different types of nitrile-functionalized amines, including 3-(N,N-diethylamino)propionitrile (DEAPN), 3-(N,N-dibutylamino)propionitrile (DBAPN), and N-methyl-N,N-dipropionitrile amine (MADPN) were synthesized, and their SO2 absorption performances were evaluated and compared with those of hydroxy-functionalized amines such as N,N-diethyl-N-ethanol amine (DEEA), N,N-dibutyl-N-ethanol amine (DBEA), and N-methyl-N,N-diethanol amine (MDEA). Absorption-desorption cycle experiments clearly demonstrate that the nitrile-functionalized amines are more efficient than the hydroxy-functionalized amines in terms of absorption rate and regenerability. Computational calculations with DBEA and DBAPN revealed that DBEA bearing a hydroxyethyl group chemically interacts with SO2 through oxygen atom, forming an ionic compound with a covalently bound OSO2(-) group. On the contrary, DBAPN bearing a nitrile group physically interacts with SO2 through the nitrogen and the hydrogen atoms of the two methylene groups adjacent to the amino and nitrile functionalities. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Model study of initial adsorption of SO2 on calcite and dolomite

    International Nuclear Information System (INIS)

    Malaga-Starzec, Katarina; Panas, Itai; Lindqvist, Oliver

    2004-01-01

    The rate of calcareous stone degradation is to a significant extent controlled by their surface chemistry with SO 2 . Initial surface sulphite is converted to a harmful gypsum upon, e.g. NO 2 catalysed oxidation. However, it has been observed by scanning electron microscopy that the lateral distributions of gypsum crystals differ between calcitic and dolomitic marbles. The first-principles density functional theory is employed to understand the origin of these fundamentally different morphologies. Here, the stability differences of surface sulphite at calcite CaCO 3 (s) and dolomite Ca x Mg 1-x CO 3 (s) are determined. A qualitative difference in surface sulphite stability, favouring the former, is reported. This is taken to imply that calcitic micro-crystals embedded in a dolomitic matrix act as sinks in the surface sulphation process, controlled by SO 2 diffusion. The subsequent formation of gypsum under such conditions will not require SO 4 2- (aq) ion transport. This explains the homogeneous distribution of gypsum observed on the calcitic micro-crystals in dolomite. In contrast, sulphation on purely calcitic marbles never reaches such high SO 2 coverage. Rather, upon oxidation, SO 4 2- (aq) transport to nucleation centres, such as grain boundaries, is required for the growth of gypsum crystals

  8. Numerical Study of the Simultaneous Oxidation of NO and SO2 by Ozone

    Science.gov (United States)

    Li, Bo; Zhao, Jinyang; Lu, Junfu

    2015-01-01

    This study used two kinetic mechanisms to evaluate the oxidation processes of NO and SO2 by ozone. The performance of the two models was assessed by comparisons with experimental results from previous studies. The first kinetic mechanism was a combined model developed by the author that consisted of 50 species and 172 reactions. The second mechanism consisted of 23 species and 63 reactions. Simulation results of both of the two models show under predictions compared with experimental data. The results showed that the optimized reaction temperature for NO with O3 ranged from 100~200 °C. At higher temperatures, O3 decomposed to O2 and O, which resulted in a decrease of the NO conversion rate. When the mole ratio of O3/NO was greater than 1, products with a higher oxidation state (such as NO3, N2O5) were formed. The reactions between O3 and SO2 were weak; as such, it was difficult for O3 to oxidize SO2. PMID:25642689

  9. 76 FR 19661 - Response to Petition From New Jersey Regarding SO2

    Science.gov (United States)

    2011-04-07

    ...In this action, EPA proposes to make a finding that the coal- fired Portland Generating Station (Portland Plant) in Upper Mount Bethel Township, Northampton County, Pennsylvania, is emitting air pollutants in violation of the interstate transport provisions of the Clean Air Act (CAA or Act). Specifically, EPA is proposing to find that emissions of sulfur dioxide (SO2) from the Portland Plant significantly contribute to nonattainment and interfere with maintenance of the 1-hour SO2 national ambient air quality standard (NAAQS) in New Jersey. This finding is proposed in response to a petition submitted by the State of New Jersey Department of Environmental Protection (NJDEP) on September 17, 2010. In this action, EPA is also proposing emission limitations and compliance schedules to ensure that the Portland Plant will no longer significantly contribute to nonattainment, and no longer interfere with maintenance of the 1- hour SO2 NAAQS, thereby permitting continued operation of the Portland Plant beyond the 3-month limit established by the CAA for sources subject to such a finding.

  10. Airborne emission measurements of SO2, NOx and particles from individual ships using sniffer technique

    Science.gov (United States)

    Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P.

    2013-12-01

    A dedicated system for airborne ship emission measurements of SO2, NOx and particles has been developed and used from several small aircrafts. The system has been adapted for fast response measurements at 1 Hz and the use of several of the instruments is unique. The uncertainty of the given data is about 20.3% for SO2 and 23.8% for NOx emission factors. Multiple measurements of 158 ships measured from the air on the Baltic and North Sea during 2011 and 2012 show emission factors of 18.8 ± 6.5 g kgfuel-1, 66.6 ± 23.4 g kgfuel-1, and 1.8 ± 1.3 × 1016 particles kgfuel-1 for SO2, NOx and particle number respectively. The particle size distributions were measured for particle diameters between 15 and 560 nm. The mean sizes of the particles are between 50 and 62 nm dependent on the distance to the source and the number size distribution is mono-modal. Concerning the sulfur fuel content 85% of the ships comply with the IMO limits. The sulfur emission has decreased compared to earlier measurements from 2007 to 2009. The presented method can be implemented for regular ship compliance monitoring.

  11. Airborne emission measurements of SO2 , NOx and particles from individual ships using a sniffer technique

    Science.gov (United States)

    Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P.

    2014-07-01

    A dedicated system for airborne ship emission measurements of SO2, NOx and particles has been developed and used from several small aircraft. The system has been adapted for fast response measurements at 1 Hz, and the use of several of the instruments is unique. The uncertainty of the given data is about 20% for SO2 and 24% for NOx emission factors. The mean values with one standard deviation for multiple measurements of 158 ships measured from the air on the Baltic and North Sea during 2011 and 2012 show emission factors of 18.8 ± 6.5 g kg-1 fuel , 66.6 ± 23.4 g kg-1 fuel and 1.8 ± 1.3 1016 particles kg-1 fuel for SO2, NOx and particle number, respectively. The particle size distributions were measured for particle diameters between 15 and 560 nm. The mean sizes of the particles are between 45 and 54 nm dependent on the distance to the source, and the number size distribution is monomodal. Concerning the sulfur fuel content, around 85% of the monitored ships comply with the International Maritime Organization (IMO) limits. The reduction of the sulfur emission control area (SECA) limit from 1.5 to 1% in 2010 appears to have contributed to reduction of sulfur emissions that were measured in earlier studies from 2007 to 2009. The presented method can be implemented for regular ship compliance monitoring.

  12. Decision-making for complying with SO2 provisions of the Clean Air Act

    International Nuclear Information System (INIS)

    Metzler, A.R.; Gallardy, P.B.; Sebesta, J.J.; Mc Laughlin, B.R.; Ireland, P.A.

    1992-01-01

    Prior to the Clean Air Act of 1990 (CAA), SO 2 removal options were based on a command and control approach for each plant. This approach usually resulted in the addition of an FGD system. However, the CAA offers a market based emission allowance program which offers considerable flexibility for compliance with the new regulations. The flexibility for compliance introduces more available options into the evaluation and increases the complexity of the decision-making process. This paper discusses the methodology of a recent analysis which evaluated various strategies for meeting SO 2 compliance. The importance of evaluating options based on certain goals is discussed. An overall goal was established to develop a flexible and least cost compliance plan. However, these goals need to be balanced against constraints for the utility which may include: minimizing SO 2 allowance market risk; optimizing the availability, cost and timing of capital expenditures into the analysis; minimizing site impacts and construction lead time; and coordinating strategies from various units and stations into a cohesive plan

  13. Acidic gases (CO_2, NO_2 and SO_2) capture and dissociation on metal decorated phosphorene

    International Nuclear Information System (INIS)

    Kuang, Anlong; Kuang, Minquan; Yuan, Hongkuan; Wang, Guangzhao; Chen, Hong; Yang, Xiaolan

    2017-01-01

    Highlights: • The light metal decorated phosphorene sheets are very effective for capture of CO_2, NO_2 and SO_2 because of large adsorption energies. • The adsorption energy is obviously dependent on the amount of electrons transferred between acidic gases and metal decorated phosphorene. • Pt-decorated phosphorene can effectively catalyze the dissociation of acidic gas. - Abstract: Density functional theory is employed to investigate the adsorption and dissociation of several acidic gases (CO_2, NO_2 and SO_2) on metal (Li, Al, Ni and Pt) decorated phosphorene. The results show that light metal (Li, Al) decorated phosphorene exhibits a strong adsorption of acidic gases, i.e., the adsorption energy of CO_2 on Li decorated phosphorene is 0.376 eV which is the largest in all adsorption of CO_2 on metal decorated phosphorene and Al decorated phosphorene is most effective for capture of NO_2 and SO_2 due to large adsorption energies of 3.951 and 3.608 eV, respectively. Moreover, Li and Al light metals have stronger economic effectiveness and more friendly environment compared with the transition metals, the strong adsorption ability of acidic gases and low price suggest that Li, Al decorated phosphorene may be useful and promising for collection and filtration of exhaust gases. The reaction energy barriers of acidic gases dissociated process on Pt decorated phosphorene are relatively low and the reaction processes are significantly exothermic, indicating that the dissociation process is favorable.

  14. Continuation of Global NO2 and SO2 Monitoring with Suomi NPP OMPS

    Science.gov (United States)

    Yang, K.; Zhang, H.; Wang, J.; Ge, C.; Wang, Y.

    2017-12-01

    We have produced high-quality NO2 and SO2 standard products (named NMNO2 and NMSO2 respectively) from the SNPP OMPS-NM daily global observations. These OMPS standard products have been archived and publicly released at NASA Goddard Earth Sciences Data and Information Services Center (https://daac.gsfc.nasa.gov/information/news/595e9675624016d1af392c73/omps-nm-no- 2-and-so-2-l-2-data-products-released). Analyses and comparisons have demonstrated that the qualities of these OMPS standard products match or surpass those of the corresponding OMI products, enabling the continuity and extension of these two key standard Earth System Data Records (ESDRs) that begun with NASA's EOS Aura mission using the SNPP observations. In this presentation, we summarize the new techniques and algorithm advances that improve the accuracy and consistency of these ESDRs from satellite observations, and highlight the regional changes in NO2 and SO2 detected from half a decade of SNPP OMPS observations.

  15. NOx, N2O and SO2 emissions from pressurized fluidized bed combustion

    International Nuclear Information System (INIS)

    Korpela, T.; Lu Yong

    1995-01-01

    This project continues the analysis of available data from the experimental work at the Otaniemi PFBC test rig, including LIEKKI project 4-1a and 4- 4 during the past years. The study concentrates on the effects of the operating parameters on gas emissions, such as NO x , N 2 O and SO 2 , under pressurized conditions. The aim of the study is to prepare the database from the available data and make empirical correlations for estimating nitrogen oxides and sulphur dioxide emissions from PFBC as a function of significant operating parameters and fuel properties. The major aspect in this work is that the correlations, in general, are also available for existing data in the literature. These correlations may facilitate preliminary FBC design by estimating NO x , N 2 O and SO 2 emissions based on the fuel selected and the operating conditions employed. In addition, the fuel properties selected in the correlations on the basis of statistical inference may lend insight into the mechanisms of the formation and destruction of NO x , N 2 O and SO 2 Therefore, the results are expected to be valuable for energy producers, FBC boiler manufacturers. (author)

  16. Sodium bicarbonate in-duct injection with sodium sulfate recovery for SO2/NOx control

    International Nuclear Information System (INIS)

    Bennett, R.; Darmstaedter, E.

    1991-01-01

    Dry sodium injection with sodium bicarbonate has been used commercially at industrial sites since the mid 1980's. In the past three years, five full scale commercial demonstrations have been completed on electric utility coal fired units. Up to 75% SO 2 removal with 0-40% NO x removal has been achieved on units equipped with ESPs. Recent slip stream studies have proven up to 90% SO 2 removal and 25% NO x removal when injection is ahead of a baghouse. If dry sodium bicarbonate sorbent injection technology is used prior to a retrofitted baghouse, but after an existing ESP the sodium sulfate by-product/flyash mixture in the baghouse is over 90% Na 2 SO 4 . Simple filtration and crystallization will yield a high value 99% + pure Na 2 SO 4 for sale. In this application, no liquid discharge occurs and potentially no solids discharge, since flyash recovered from the filter is either recycled to the boiler with the coal stream or reinjected into the boiler. EPA IAPCS model Version 4 is modified to project costs for this SO 2 /NO x removal technology when couples with Na 2 SO 4 recovery. In this paper an example is used to show hardware requirements, consumables accountability, by-product recovery rates, capital costs and levelized costs

  17. Opto-acoustic microscopy reveals adhesion mechanics of single cells

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Zc, as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZc reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, Km, that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, Sr/St. We show that Km can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while Sr/St is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  18. Seeding of single hemopoietic stem cells and self renewal of committed stem cells

    International Nuclear Information System (INIS)

    Brecher, G.

    1986-01-01

    Single cells and two to five proliferating cells were transfused into mice whose own stem cells had been killed by irradiation. When a small inoculum of 50,000 AB marrow cells was given only 4 of 20 recipients survived, but all 4 had only PGK A enzyme in their peripheral blood cells. The results indicate that the survivors received a single pluripotential stem cell capable of proliferating. Survivors showed no deterioration in their blood picture after many months. It was concluded that there is no clonal succession in the marrow cells. Further studies with transfusions of 100,000 and 10,000,000 marrow cells after lethal irradiation suggest that there is production of committed stem cells with significant self-renewal

  19. Ciliary heterogeneity within a single cell: the Paramecium model.

    Science.gov (United States)

    Aubusson-Fleury, Anne; Cohen, Jean; Lemullois, Michel

    2015-01-01

    Paramecium is a single cell able to divide in its morphologically differentiated stage that has many cilia anchored at its cell surface. Many thousands of cilia are thus assembled in a short period of time during division to duplicate the cell pattern while the cell continues swimming. Most, but not all, of these sensory cilia are motile and involved in two main functions: prey capture and cell locomotion. These cilia display heterogeneity, both in their length and their biochemical properties. Thanks to these properties, as well as to the availability of many postgenomic tools and the possibility to follow the regrowth of cilia after deciliation, Paramecium offers a nice opportunity to study the assembly of the cilia, as well as the genesis of their diversity within a single cell. In this paper, after a brief survey of Paramecium morphology and cilia properties, we describe the tools and the protocols currently used for immunofluorescence, transmission electron microscopy, and ultrastructural immunocytochemistry to analyze cilia, with special recommendations to overcome the problem raised by cilium diversity. Copyright © 2015. Published by Elsevier Inc.

  20. Single-cell force spectroscopy of pili-mediated adhesion

    Science.gov (United States)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  1. Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome

    Science.gov (United States)

    Teschendorff, Andrew E.; Enver, Tariq

    2017-01-01

    The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes. PMID:28569836

  2. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device

    NARCIS (Netherlands)

    Schoeman, R.M.; Kemna, Evelien; Wolbers, F.; van den Berg, Albert

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped

  3. OMPS/NPP PCA SO2 Total Column 1-Orbit L2 Swath 50x50km NRT

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMPS-NPP L2 NM Sulfur Dioxide (SO2) Total and Tropospheric Column swath orbital collection 2 version 2.0 product contains the retrieved sulfur dioxide (SO2)...

  4. Micro-magnet arrays for specific single bacterial cell positioning

    Energy Technology Data Exchange (ETDEWEB)

    Pivetal, Jérémy, E-mail: jeremy.piv@netcmail.com [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Royet, David [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Ciuta, Georgeta [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Frenea-Robin, Marie [Université de Lyon, Université Lyon 1, CNRS UMR 5005, Laboratoire Ampère, F-69622 Villeurbanne (France); Haddour, Naoufel [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Dempsey, Nora M. [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Dumas-Bouchiat, Frédéric [Univ Limoges, CNRS, SPCTS UMR 7513, 12 Rue Atlantis, F-87068 Limoges (France); Simonet, Pascal [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France)

    2015-04-15

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications. - Highlights: 1.We report a new approach to selectively micropattern bacterial cells individually upon micro-magnet arrays. 2.Permanent micro-magnets of a size approaching that of bacteria could be fabricated using a Thermo-Magnetic Patterning process. 3.Bacterial cells were labeled using two different magnetic labeling strategies providing flexible approach adaptable to several applications in the field of microbiology.

  5. Cell biochemistry studied by single-molecule imaging.

    Science.gov (United States)

    Mashanov, G I; Nenasheva, T A; Peckham, M; Molloy, J E

    2006-11-01

    Over the last decade, there have been remarkable developments in live-cell imaging. We can now readily observe individual protein molecules within living cells and this should contribute to a systems level understanding of biological pathways. Direct observation of single fluorophores enables several types of molecular information to be gathered. Temporal and spatial trajectories enable diffusion constants and binding kinetics to be deduced, while analyses of fluorescence lifetime, intensity, polarization or spectra give chemical and conformational information about molecules in their cellular context. By recording the spatial trajectories of pairs of interacting molecules, formation of larger molecular complexes can be studied. In the future, multicolour and multiparameter imaging of single molecules in live cells will be a powerful analytical tool for systems biology. Here, we discuss measurements of single-molecule mobility and residency at the plasma membrane of live cells. Analysis of diffusional paths at the plasma membrane gives information about its physical properties and measurement of temporal trajectories enables rates of binding and dissociation to be derived. Meanwhile, close scrutiny of individual fluorophore trajectories enables ideas about molecular dimerization and oligomerization related to function to be tested directly.

  6. Condensing Raman spectrum for single-cell phenotype analysis

    KAUST Repository

    Sun, Shiwei

    2015-12-09

    Background In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. Results In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  7. Affinity of antibody secreted by a single cell

    International Nuclear Information System (INIS)

    Doran, D.M.

    1978-01-01

    It was the intention of this research to measure the affinity of antibody secreted by a single cell, and to describe the spectrum of affinities displayed in response to antigenic stimulation. The single cell secreting specific antibody was isolated by means of the hemolytic plaque assay. The amount of antibody secreted by the cell was to be measured through the use of a solid phase radioimmunoassay. The affinity of the antibody would be estimated by comparing the diameter of the plaque, and the amount of antibody secreted, with a mathematical theory of the formation of a plaque in agar. As a test system, a solid phase radioimmunoassay was developed for human serum albumin using antibody coupled to Sephadex. A sensitivity of 1 nanogram was attained with this assay. A solid phase radioimmunoassay for mouse immunoglobulin M was developed, using antibody coupled to Sepharose. The sensitivity attained with this assay was only on the order of 10 micrograms. The mouse immunoglobulin M radioimmunoassay was not sensitive enough to measure the amount of antibody secreted by a single cell. From a theoretical equation, the relationship between antibody affinity, plaque diameter and antibody secretion rate was calculated for the experimental conditions used in this research. By assuming a constant antibody secretion rate, an effective binding constant for the antibody was estimated from the average plaque diameters. This effective binding constant was observed to increase during the immune response

  8. 40 CFR 75.16 - Special provisions for monitoring emissions from common, bypass, and multiple stacks for SO2...

    Science.gov (United States)

    2010-07-01

    ... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. 75.16... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. (a... maintain an SO2 continuous emission monitoring system and flow monitoring system in the duct to the common...

  9. 40 CFR 75.19 - Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Optional SO2, NOX, and CO2 emissions... § 75.19 Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units. (a... input, NOX, SO2, and CO2 mass emissions, and NOX emission rate under this part. If the owner or operator...

  10. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, Hg, and flow rate.

    Science.gov (United States)

    2010-07-01

    ... SO2, NOX, Hg, and flow rate. 75.33 Section 75.33 Protection of Environment ENVIRONMENTAL PROTECTION... Procedures § 75.33 Standard missing data procedures for SO2, NOX, Hg, and flow rate. (a) Following initial...—Missing Data Procedure for SO2 CEMS, CO2 CEMS, Moisture CEMS, Hg CEMS, and Diluent (CO2 or O2) Monitors...

  11. Potentials of single-cell biology in identification and validation of disease biomarkers.

    Science.gov (United States)

    Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong

    2016-09-01

    Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. Current Developments in Prokaryotic Single Cell Whole Genome Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, Danielle; Nath, Nandita; Ciobanu, Doina; Cheng, Jan-Fang; Malmstrom, Rex

    2014-03-14

    Our approach to prokaryotic single-cell Whole Genome Amplification at the JGI continues to evolve. To increase both the quality and number of single-cell genomes produced, we explore all aspects of the process from cell sorting to sequencing. For example, we now utilize specialized reagents, acoustic liquid handling, and reduced reaction volumes eliminate non-target DNA contamination in WGA reactions. More specifically, we use a cleaner commercial WGA kit from Qiagen that employs a UV decontamination procedure initially developed at the JGI, and we use the Labcyte Echo for tip-less liquid transfer to set up 2uL reactions. Acoustic liquid handling also dramatically reduces reagent costs. In addition, we are exploring new cell lysis methods including treatment with Proteinase K, lysozyme, and other detergents, in order to complement standard alkaline lysis and allow for more efficient disruption of a wider range of cells. Incomplete lysis represents a major hurdle for WGA on some environmental samples, especially rhizosphere, peatland, and other soils. Finding effective lysis strategies that are also compatible with WGA is challenging, and we are currently assessing the impact of various strategies on genome recovery.

  13. RF Breakdown in Normal Conducting Single-Cell Structures

    International Nuclear Information System (INIS)

    Dolgashev, V.A.; Nantista, C.D.; Tantawi, S.G.; Higashi, Y.; Higo, T.

    2006-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM 01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials and preparation techniques with short turn-around time. Simple 2D geometry of the test structures simplifies modeling of the breakdown currents and their thermal effects

  14. Single cell detection using a magnetic zigzag nanowire biosensor.

    Science.gov (United States)

    Huang, Hao-Ting; Ger, Tzong-Rong; Lin, Ya-Hui; Wei, Zung-Hang

    2013-08-07

    A magnetic zigzag nanowire device was designed for single cell biosensing. Nanowires with widths of 150, 300, 500, and 800 nm were fabricated on silicon trenches by electron beam lithography, electron beam evaporation, and lift-off processes. Magnetoresistance measurements were performed before and after the attachment of a single magnetic cell to the nanowires to characterize the magnetic signal change due to the influence of the magnetic cell. Magnetoresistance responses were measured in different magnetic field directions, and the results showed that this nanowire device can be used for multi-directional detection. It was observed that the highest switching field variation occurred in a 150 nm wide nanowire when the field was perpendicular to the substrate plane. On the other hand, the highest magnetoresistance ratio variation occurred in a 800 nm wide nanowire also when the field was perpendicular to the substrate plane. Besides, the trench-structured substrate proposed in this study can fix the magnetic cell to the sensor in a fluid environment, and the stray field generated by the corners of the magnetic zigzag nanowires has the function of actively attracting the magnetic cells for detection.

  15. Implementation of stimulated Raman scattering microscopy for single cell analysis

    Science.gov (United States)

    D'Arco, Annalisa; Ferrara, Maria Antonietta; Indolfi, Maurizio; Tufano, Vitaliano; Sirleto, Luigi

    2017-05-01

    In this work, we present successfully realization of a nonlinear microscope, not purchasable in commerce, based on stimulated Raman scattering. It is obtained by the integration of a femtosecond SRS spectroscopic setup with an inverted research microscope equipped with a scanning unit. Taking account of strength of vibrational contrast of SRS, it provides label-free imaging of single cell analysis. Validation tests on images of polystyrene beads are reported to demonstrate the feasibility of the approach. In order to test the microscope on biological structures, we report and discuss the label-free images of lipid droplets inside fixed adipocyte cells.

  16. Single cell analysis contemporary research and clinical applications

    CERN Document Server

    Cossarizza, Andrea

    2017-01-01

    This book highlights the current state of the art in single cell analysis, an area that involves many fields of science – from clinical hematology, functional analysis and drug screening, to platelet and microparticle analysis, marine biology and fundamental cancer research. This book brings together an eclectic group of current applications, all of which have a significant impact on our current state of knowledge. The authors of these chapters are all pioneering researchers in the field of single cell analysis. The book will not only appeal to those readers more focused on clinical applications, but also those interested in highly technical aspects of the technologies. All of the technologies identified utilize unique applications of photon detection systems.

  17. Adsorption behavior of Co anchored on graphene sheets toward NO, SO2, NH3, CO and HCN molecules

    International Nuclear Information System (INIS)

    Tang, Yanan; Chen, Weiguang; Li, Chenggang; Pan, Lijun; Dai, Xianqi; Ma, Dongwei

    2015-01-01

    Graphical abstract: - Highlights: • In contrast to the pristine graphene, a vacancy defect in graphene strongly stabilizes the Co atom. • The positively charged of Co atom on graphene can regulate the stability of gas molecules. • Different gas molecules can modulate the electronic structure of Co–graphene systems. • The adsorbed NO on Co–graphene can effectively regulate the magnetic properties of systems. - Abstract: Based on the first-principles of density-functional theory (DFT), the effects of gas adsorption on the change in geometric stability, electronic structure and magnetic properties of graphene with anchored Co (Co–graphene) systems were investigated. A single Co adatom interacts much weaker with pristine graphene (Co/pri–graphene) than with the graphene containing a single vacancy (Co/SV–graphene). The Co dopant provides more electrons to the dangling bonds of carbon atom at defective site and exhibits more positive charges, which makes Co/SV–graphene less prone to be adsorbed by gas molecules in comparison to Co/pri–graphene. It is found that the electronic structure and magnetic properties of Co–graphene systems can be modulated by adsorbing gas molecules. Except the NH 3 molecule, the adsorbed NO, SO 2 , CO or HCN as electron acceptors on the Co/pri–graphene can exhibit semiconducting properties. Among the gas molecules, the strong adsorption of NO molecule can effectively regulate the magnetic properties of Co–graphene systems. Moreover, the stable configuration of Co/SV–graphene is more likely to be the gas sensor for detecting NO and SO 2 . The results validate that the reactivity of atomic-scale catalyst is supported on graphene sheets, which is expected to be potentially efficient in the gas sensors and electronic device

  18. A method of combined single-cell electrophysiology and electroporation.

    Science.gov (United States)

    Graham, Lyle J; Del Abajo, Ricardo; Gener, Thomas; Fernandez, Eduardo

    2007-02-15

    This paper describes a method of extracellular recording and subsequent electroporation with the same electrode in single retinal ganglion cells in vitro. We demonstrate anatomical identification of neurons whose receptive fields were measured quantitatively. We discuss how this simple method should also be applicable for the delivery of a variety of intracellular agents, including gene delivery, to physiologically characterized neurons, both in vitro and in vivo.

  19. Identification of innate lymphoid cells in single-cell RNA-Seq data.

    Science.gov (United States)

    Suffiotti, Madeleine; Carmona, Santiago J; Jandus, Camilla; Gfeller, David

    2017-07-01

    Innate lymphoid cells (ILCs) consist of natural killer (NK) cells and non-cytotoxic ILCs that are broadly classified into ILC1, ILC2, and ILC3 subtypes. These cells recently emerged as important early effectors of innate immunity for their roles in tissue homeostasis and inflammation. Over the last few years, ILCs have been extensively studied in mouse and human at the functional and molecular level, including gene expression profiling. However, sorting ILCs with flow cytometry for gene expression analysis is a delicate and time-consuming process. Here we propose and validate a novel framework for studying ILCs at the transcriptomic level using single-cell RNA-Seq data. Our approach combines unsupervised clustering and a new cell type classifier trained on mouse ILC gene expression data. We show that this approach can accurately identify different ILCs, especially ILC2 cells, in human lymphocyte single-cell RNA-Seq data. Our new model relies only on genes conserved across vertebrates, thereby making it in principle applicable in any vertebrate species. Considering the rapid increase in throughput of single-cell RNA-Seq technology, our work provides a computational framework for studying ILC2 cells in single-cell transcriptomic data and may help exploring their conservation in distant vertebrate species.

  20. Reuse of Partially Sulphated CFBC Ash as an SO2 Sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yinghai; Jia, Lufei; Anthony, E.J. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario, K1A1M1 (Canada); Nobili, M.; Telesca, A. [Department of Environmental Engineering and Physics, University of Basilicata, Viale dell' Ateneo, Lucano 10, 85100 Potenza (Italy); Montagnaro, F. [Department of Chemistry, University of Naples ' Federico II' , Monte Sant' Angelo, 80126 Naples (Italy)

    2010-06-15

    Ashes produced from fluidized bed combustors (FBC) burning high-sulphur fuels often contain 20-30 % unreacted CaO because of the limestone added to remove SO2 in situ. This paper presents the results from experiments into reactivating partially sulphated FBC ash (both bed ash and fly ash) with liquid water, steam and sodium carbonate. The water- or steam-hydrated ashes were subsequently re-sulphated in a thermogravimetric analyzer (TGA) with simulated flue gas. The TGA results show that, while liquid water and steam successfully hydrate and reactivate the unreacted CaO in the bed ash, the treated ashes sulphated to widely different extents. Attempts to reactivate fly ash with hydration failed, although fly ash by itself is extremely reactive. A pilot-scale mini-circulating FBC (CFBC) was also used to evaluate the results of reactivation on the bed ash by hydrating with liquid water and admixtures of inorganic salt (Na2CO3) in the form of either powder or solution. When the treated ash was re-injected into the combustor with the fuel, the effect on SO2 removal efficiency was negligible if Na2CO3 was added as powder. Doping with aqueous solution resulted in enhanced SO2 removal; however, the extent was lower than the level achieved if only water hydration was employed. Increasing the amount of water (from 10% to 30%) to reactivate the ash did not improve the sulphur capture capacity in the mini-CFBC. Overall, this study suggests that the most practical way for re-use of the partially sulphated bed ash as a sulphur sorbent is reactivation by water. A proposal for utilization of the fly ash in an economically reasonable way is also discussed.

  1. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    Science.gov (United States)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  2. Compressive Force Spectroscopy: From Living Cells to Single Proteins.

    Science.gov (United States)

    Wang, Jiabin; Liu, Meijun; Shen, Yi; Sun, Jielin; Shao, Zhifeng; Czajkowsky, Daniel Mark

    2018-03-23

    One of the most successful applications of atomic force microscopy (AFM) in biology involves monitoring the effect of force on single biological molecules, often referred to as force spectroscopy. Such studies generally entail the application of pulling forces of different magnitudes and velocities upon individual molecules to resolve individualistic unfolding/separation pathways and the quantification of the force-dependent rate constants. However, a less recognized variation of this method, the application of compressive force, actually pre-dates many of these "tensile" force spectroscopic studies. Further, beyond being limited to the study of single molecules, these compressive force spectroscopic investigations have spanned samples as large as living cells to smaller, multi-molecular complexes such as viruses down to single protein molecules. Correspondingly, these studies have enabled the detailed characterization of individual cell states, subtle differences between seemingly identical viral structures, as well as the quantification of rate constants of functionally important, structural transitions in single proteins. Here, we briefly review some of the recent achievements that have been obtained with compressive force spectroscopy using AFM and highlight exciting areas of its future development.

  3. Single-Walled Carbon Nanotubes in Solar Cells.

    Science.gov (United States)

    Jeon, Il; Matsuo, Yutaka; Maruyama, Shigeo

    2018-01-22

    Photovoltaics, more generally known as solar cells, are made from semiconducting materials that convert light into electricity. Solar cells have received much attention in recent years due to their promise as clean and efficient light-harvesting devices. Single-walled carbon nanotubes (SWNTs) could play a crucial role in these devices and have been the subject of much research, which continues to this day. SWNTs are known to outperform multi-walled carbon nanotubes (MWNTs) at low densities, because of the difference in their optical transmittance for the same current density, which is the most important parameter in comparing SWNTs and MWNTs. SWNT films show semiconducting features, which make SWNTs function as active or charge-transporting materials. This chapter, consisting of two sections, focuses on the use of SWNTs in solar cells. In the first section, we discuss SWNTs as a light harvester and charge transporter in the photoactive layer, which are reviewed chronologically to show the history of the research progress. In the second section, we discuss SWNTs as a transparent conductive layer outside of the photoactive layer, which is relatively more actively researched. This section introduces SWNT applications in silicon solar cells, organic solar cells, and perovskite solar cells each, from their prototypes to recent results. As we go along, the science and prospects of the application of solar cells will be discussed.

  4. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  5. The Relationship Between Emissions and Economic Growth for SO2, CO2, and BC

    Science.gov (United States)

    Ru, M.; Shindell, D. T.; Tao, S.; Zhong, Q.; Seltzer, K.

    2017-12-01

    We characterize the relationship between per person emissions of SO2, CO2, and black carbon (BC) and income using a global country-level emission inventory. Pollutant emissions of SO2 and BC from the power, industry, and transportation sectors largely follow an Environmental Kuznets Curve (EKC) pattern with peak emissions at income levels between 10,000 and 100,000 USD per capita. However, for CO2, any estimated turnover income is extremely high and unlikely to be reached in the near future in power, industry, and transportation. Residential emissions show a negatively sloped linear relationship for BC, a small positive slope for CO2, and a fairly flat trajectory for SO2. For the EKC-like trajectories, "turning point" incomes for each sector and pollutant are related to technological advances and the effectiveness of emission controls. These results suggest that policy targeting technological advances and emission controls could change future pathways by affecting the "turning point" incomes. For the linear trajectories in the residential sector, we show that transitions from biomass fuel to coal in low-income countries and from coal to natural gas in middle and high-income countries, in concert with electrification levels, are the main factors governing slopes. Thus, the three pollutants show different income-emission trajectories based on the sum of the four major sectors, and the residential sector in particular has a unique relationship with income growth. As one of the first studies to analyze historical emission trajectories of BC, we find that BC differs from SO2 and CO2 because of its significantly earlier turnover in the power and industry sectors due to control policies. Total BC emissions trajectories follow a unique shape due to the combination of linearly decreasing residential emissions with EKC-like patterns in industry and transportation. We compare these trajectories to those in three Integrated Assessment Models (IAMs), GCAM, AIM, and MESSAGE

  6. Modelling of limestone injection for SO2 capture in a coal fired utility boiler

    International Nuclear Information System (INIS)

    Kovacik, G.J.; Reid, K.; McDonald, M.M.; Knill, K.

    1997-01-01

    A computer model was developed for simulating furnace sorbent injection for SO 2 capture in a full scale utility boiler using TASCFlow TM computational fluid dynamics (CFD) software. The model makes use of a computational grid of the superheater section of a tangentially fired utility boiler. The computer simulations are three dimensional so that the temperature and residence time distribution in the boiler could be realistically represented. Results of calculations of simulated sulphur capture performance of limestone injection in a typical utility boiler operation were presented

  7. A novel CO>2- and SO>2-tolerant dual phase composite membrane for oxygen separation

    DEFF Research Database (Denmark)

    Cheng, Shiyang; Søgaard, Martin; Han, Li

    2015-01-01

    A novel dual phase composite oxygen membrane (Al0.02Ga0.02Zn0.96O1.02 – Gd0.1Ce0.9O1.95-δ) was successfully prepared and tested. The membrane shows chemical stability against CO2 and SO2, and a stable oxygen permeation over 300 hours in CO2 was demonstrated. ZnO is cheap and non-toxic...... and is therefore highly advantageous compared to other common materials used for the purpose....

  8. Removal of NOsub(x) and SO2 by the electron beam process

    International Nuclear Information System (INIS)

    Fuchs, P.; Roth, B.; Schwing, U.; Angele, H.; Gottstein, J.

    1988-01-01

    The electron beam process (EBP) is a dry method of flue gas purification for the simultaneous removal of NOsub(x) and SO 2 . The process has the potential to be used as a retrofit for existing coal fired power plants. Since the beginning of last year Badenwerk AG, in an association with other partners, has run a pilot plant incorporating this process in the new Unit No. 7 of the Rheinhafen-Dampfkraftwerk in Karlsruhe. The design and the operation as well as an account of test results and the experience accumulated during the operation of the facility are presented. (author)

  9. Sulfur isotope fractionation during heterogeneous oxidation of SO2 on mineral dust

    Directory of Open Access Journals (Sweden)

    P. Hoppe

    2012-06-01

    Full Text Available Mineral dust is a major fraction of global atmospheric aerosol, and the oxidation of SO2 on mineral dust has implications for cloud formation, climate and the sulfur cycle. Stable sulfur isotopes can be used to understand the different oxidation processes occurring on mineral dust. This study presents measurements of the 34S/32S fractionation factor α34 for oxidation of SO2 on mineral dust surfaces and in the aqueous phase in mineral dust leachate. Sahara dust, which accounts for ~60% of global dust emissions and loading, was used for the experiments. The fractionation factor for aqueous oxidation in dust leachate is αleachate = 0.9917±0.0046, which is in agreement with previous measurements of aqueous SO2 oxidation by iron solutions. This fractionation factor is representative of a radical chain reaction oxidation pathway initiated by transition metal ions. Oxidation on the dust surface at subsaturated relative humidity (RH had an overall fractionation factor of αhet = 1.0096±0.0036 and was found to be almost an order of magnitude faster when the dust was simultaneously exposed to ozone, light and RH of ~40%. However, the presence of ozone, light and humidity did not influence isotope fractionation during oxidation on dust surfaces at subsaturated relative humidity. All the investigated reactions showed mass-dependent fractionation of 33S relative to 34S. A positive matrix factorization model was used to investigate surface oxidation on the different components of dust. Ilmenite, rutile and iron oxide were found to be the most reactive components, accounting for 85% of sulfate production with a fractionation factor of α34 = 1.012±0.010. This overlaps within the analytical uncertainty with the fractionation of other major atmospheric oxidation pathways such as the oxidation of SO2 by H2O2 and O3 in the aqueous phase and OH in the gas phase. Clay minerals accounted for roughly 12% of the sulfate production, and oxidation on clay minerals

  10. Theoretical and experimental investigation for SO3 production in SO2-rich astrophysical environments

    International Nuclear Information System (INIS)

    Bonfim, Víctor de Souza; Pilling, Sergio; Castilho, Roberto B; Baptista, Leonardo

    2015-01-01

    This work presents the results for the irradiation of pure SO 2 sample that was condensed in a preevacuated chamber, from Laboratório de Astroquímica e Astrobiologia (LASA/UNIVAP), at low temperature (12 K) and irradiated by ionizing photons which simulate Solar photons in the vacuum ultraviolet (VUV) and soft X-rays range. The infrared spectra of irradiated sample have presented the formation of SO 3 . Experimental formation cross section was determined. Theoretical investigations were performed at Second-order Moller- Plesset perturbation theory (MP2) level and indicate the most likely SO 3 formation channels vary with the reaction supporting medium. (paper)

  11. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia.

    Science.gov (United States)

    Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J

    2017-06-01

    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.

  12. Novel pathway of SO2 oxidation in the atmosphere: reactions with monoterpene ozonolysis intermediates and secondary organic aerosol

    Science.gov (United States)

    Ye, Jianhuai; Abbatt, Jonathan P. D.; Chan, Arthur W. H.

    2018-04-01

    Ozonolysis of monoterpenes is an important source of atmospheric biogenic secondary organic aerosol (BSOA). While enhanced BSOA formation has been associated with sulfate-rich conditions, the underlying mechanisms remain poorly understood. In this work, the interactions between SO2 and reactive intermediates from monoterpene ozonolysis were investigated under different humidity conditions (10 % vs. 50 %). Chamber experiments were conducted with ozonolysis of α-pinene or limonene in the presence of SO2. Limonene SOA formation was enhanced in the presence of SO2, while no significant changes in SOA yields were observed during α-pinene ozonolysis. Under dry conditions, SO2 primarily reacted with stabilized Criegee intermediates (sCIs) produced from ozonolysis, but at 50 % RH heterogeneous uptake of SO2 onto organic aerosol was found to be the dominant sink of SO2, likely owing to reactions between SO2 and organic peroxides. This SO2 loss mechanism to organic peroxides in SOA has not previously been identified in experimental chamber studies. Organosulfates were detected and identified using an electrospray ionization-ion mobility spectrometry-high-resolution time-of-flight mass spectrometer (ESI-IMS-TOF) when SO2 was present in the experiments. Our results demonstrate the synergistic effects between BSOA formation and SO2 oxidation through sCI chemistry and SO2 uptake onto organic aerosol and illustrate the importance of considering the chemistry of organic and sulfur-containing compounds holistically to properly account for their reactive sinks.

  13. Enhancement of removal of SO2 and NOx by powdery materials in radiation treatment of exhaust gases

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Namba, Hideki; Suzuki, Nobutake

    1985-01-01

    We studied the effect of powdery silica on radiation removal of SO 2 and NOx from mixtures of SO 2 , NOx, water vapour, oxygen and nitrogen under irradiation by electron beams of 1.5 MeV at 120 0 C. The SO 2 and NOx concentrations decreased when powdery silica was fed without irradiation. Decrements of SO 2 and NOx concentrations were markedly enhanced when powdery silica was fed together with the irradiation. The enhancement of SO 2 - and NOx-removal is attributed to the adsorption of SO 2 and NO on the water-covered surface of powdery silica, and the effective removal of NO 2 due to the reaction with water adsorbed on the surface of powdery silica. The results obtained show that the addition of powdery silica under irradiation is an effective method of enhancing the removal of SO 2 and NOx. (author)

  14. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Iain C. Macaulay

    2016-02-01

    Full Text Available The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment.

  15. Single-cell protein secretomic signatures as potential correlates to tumor cell lineage evolution and cell-cell interaction

    Directory of Open Access Journals (Sweden)

    Minsuk eKwak

    2013-02-01

    Full Text Available Secreted proteins including cytokines, chemokines and growth factors represent important functional regulators mediating a range of cellular behavior and cell-cell paracrine/autocrine signaling, e.g. in the immunological system, tumor microenvironment or stem cell niche. Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically-identical cell population can give rise to diverse phenotypic differences. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this Perspective Article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer.

  16. Chip based single cell analysis for nanotoxicity assessment.

    Science.gov (United States)

    Shah, Pratikkumar; Kaushik, Ajeet; Zhu, Xuena; Zhang, Chengxiao; Li, Chen-Zhong

    2014-05-07

    Nanomaterials, because of their tunable properties and performances, have been utilized extensively in everyday life related consumable products and technology. On exposure, beyond the physiological range, nanomaterials cause health risks via affecting the function of organisms, genomic systems, and even the central nervous system. Thus, new analytical approaches for nanotoxicity assessment to verify the feasibility of nanomaterials for future use are in demand. The conventional analytical techniques, such as spectrophotometric assay-based techniques, usually require a lengthy and time-consuming process and often produce false positives, and often cannot be implemented at a single cell level measurement for studying cell behavior without interference from its surrounding environment. Hence, there is a demand for a precise, accurate, sensitive assessment for toxicity using single cells. Recently, due to the advantages of automation of fluids and minimization of human errors, the integration of a cell-on-a-chip (CoC) with a microfluidic system is in practice for nanotoxicity assessments. This review explains nanotoxicity and its assessment approaches with advantages/limitations and new approaches to overcome the confines of traditional techniques. Recent advances in nanotoxicity assessment using a CoC integrated with a microfluidic system are also discussed in this review, which may be of use for nanotoxicity assessment and diagnostics.

  17. Analyzing cell fate control by cytokines through continuous single cell biochemistry.

    Science.gov (United States)

    Rieger, Michael A; Schroeder, Timm

    2009-10-01

    Cytokines are important regulators of cell fates with high clinical and commercial relevance. However, despite decades of intense academic and industrial research, it proved surprisingly difficult to describe the biological functions of cytokines in a precise and comprehensive manner. The exact analysis of cytokine biology is complicated by the fact that individual cytokines control many different cell fates and activate a multitude of intracellular signaling pathways. Moreover, although activating different molecular programs, different cytokines can be redundant in their biological effects. In addition, cytokines with different biological effects can activate overlapping signaling pathways. This prospect article will outline the necessity of continuous single cell biochemistry to unravel the biological functions of molecular cytokine signaling. It focuses on potentials and limitations of recent technical developments in fluorescent time-lapse imaging and single cell tracking allowing constant long-term observation of molecules and behavior of single cells. (c) 2009 Wiley-Liss, Inc.

  18. Dissecting Transcriptional Heterogeneity in Pluripotency: Single Cell Analysis of Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Guedes, Ana M V; Henrique, Domingos; Abranches, Elsa

    2016-01-01

    Mouse Embryonic Stem cells (mESCs) show heterogeneous and dynamic expression of important pluripotency regulatory factors. Single-cell analysis has revealed the existence of cell-to-cell variability in the expression of individual genes in mESCs. Understanding how these heterogeneities are regulated and what their functional consequences are is crucial to obtain a more comprehensive view of the pluripotent state.In this chapter we describe how to analyze transcriptional heterogeneity by monitoring gene expression of Nanog, Oct4, and Sox2, using single-molecule RNA FISH in single mESCs grown in different cell culture medium. We describe in detail all the steps involved in the protocol, from RNA detection to image acquisition and processing, as well as exploratory data analysis.

  19. Cell type discovery using single-cell transcriptomics: implications for ontological representation.

    Science.gov (United States)

    Aevermann, Brian D; Novotny, Mark; Bakken, Trygve; Miller, Jeremy A; Diehl, Alexander D; Osumi-Sutherland, David; Lasken, Roger S; Lein, Ed S; Scheuermann, Richard H

    2018-05-01

    Cells are fundamental function units of multicellular organisms, with different cell types playing distinct physiological roles in the body. The recent advent of single-cell transcriptional profiling using RNA sequencing is producing 'big data', enabling the identification of novel human cell types at an unprecedented rate. In this review, we summarize recent work characterizing cell types in the human central nervous and immune systems using single-cell and single-nuclei RNA sequencing, and discuss the implications that these discoveries are having on the representation of cell types in the reference Cell Ontology (CL). We propose a method, based on random forest machine learning, for identifying sets of necessary and sufficient marker genes, which can be used to assemble consistent and reproducible cell type definitions for incorporation into the CL. The representation of defined cell type classes and their relationships in the CL using this strategy will make the cell type classes being identified by high-throughput/high-content technologies findable, accessible, interoperable and reusable (FAIR), allowing the CL to serve as a reference knowledgebase of information about the role that distinct cellular phenotypes play in human health and disease.

  20. Green's functions through so(2,1) lie algebra in nonrelativistic quantum mechanics

    International Nuclear Information System (INIS)

    Boschi-Filho, H.; Vaidya, A.N.

    1991-01-01

    The authors discuss an algebraic technique to construct the Green's function for systems described by the noncompact so(2,1) Lie algebra. They show that this technique solves the one-dimensional linear oscillator and Coulomb potentials and also generates particular solutions for other one-dimensional potentials. Then they construct explicitly the Green's function for the three-dimensional oscillator and the three-dimensional Coulomb potential, which are generalizations of the one-dimensional cases, and the Coulomb plus an Aharanov-Bohm, potential. They discuss the dynamical algebra involved in each case and also find their wave functions and bound state spectra. Finally they introduce in each case and also find their wave functions and bound state spectra. Finally they introduce a point canonical transformation in the generators of so(2,10) Lie algebra, show that this procedure permits us to solve the one-dimensional Morse potential in addition to the previous cases, and construct its Green's function and find its energy spectrum and wave functions

  1. Modelling and experimentation of the SO2 remotion through a plasma out of thermal equilibrium

    International Nuclear Information System (INIS)

    Moreno S, H.; Pacheco P, M.; Pacheco S, J.; Cruz A, A.

    2005-01-01

    In spite of the measures that have taken for the decrease of the emitted pollution by mobile sources ( T oday it doesn't Circulate , implementation of catalysts in those exhaust pipes,...), the pollution in the Valley of Mexico area overcomes the limits fixed by Mexican standards several days each year. It is foreseen that for 2020 those emissions of pollutants will be increase considerably, as example we can mention to the sulfur oxides which will be increase a 48% with regard to 1998. The purpose of this work is of proposing a technique for the degradation of the sulfur dioxide (SO 2 ) that consists in introducing this gas to a plasma out of thermal equilibrium where its were formed key radicals (O, OH) for its degradation. The proposed reactor has the advantage of combining the kindness of the dielectric barrier discharge and of corona discharge, besides working to atmospheric pressure and having small dimensions. The first obtained results of the modelling of the degradation of the SO 2 in plasma as well as those experimentally obtained are presented. (Author)

  2. Volcanic Ash and SO2 Monitoring Using Suomi NPP Direct Broadcast OMPS Data

    Science.gov (United States)

    Seftor, C. J.; Krotkov, N. A.; McPeters, R. D.; Li, J. Y.; Brentzel, K. W.; Habib, S.; Hassinen, S.; Heinrichs, T. A.; Schneider, D. J.

    2014-12-01

    NASA's Suomi NPP Ozone Science Team, in conjunction with Goddard Space Flight Center's (GSFC's) Direct Readout Laboratory, developed the capability of processing, in real-time, direct readout (DR) data from the Ozone Mapping and Profiler Suite (OMPS) to perform SO2 and Aerosol Index (AI) retrievals. The ability to retrieve this information from real-time processing of DR data was originally developed for the Ozone Monitoring Instrument (OMI) onboard the Aura spacecraft and is used by Volcano Observatories and Volcanic Ash Advisory Centers (VAACs) charged with mapping ash clouds from volcanic eruptions and providing predictions/forecasts about where the ash will go. The resulting real-time SO2 and AI products help to mitigate the effects of eruptions such as the ones from Eyjafjallajokull in Iceland and Puyehue-Cordón Caulle in Chile, which cause massive disruptions to airline flight routes for weeks as airlines struggle to avoid ash clouds that could cause engine failure, deeply pitted windshields impossible to see through, and other catastrophic events. We will discuss the implementation of real-time processing of OMPS DR data by both the Geographic Information Network of Alaska (GINA) and the Finnish Meteorological Institute (FMI), which provide real-time coverage over some of the most congested airspace and over many of the most active volcanoes in the world, and show examples of OMPS DR processing results from recent volcanic eruptions.

  3. Radiation processes for the control of NOx/SO2 emissions

    International Nuclear Information System (INIS)

    Dickson, L.W.; Singh, A.

    1988-01-01

    This report provides a brief review of the use of radiation for the treatment of flue gases and identifies areas for additional research. Two different radiation-based processes have been developed for the removal of nitrogen oxides and sulphur dioxide from the flue gases of coal-fired boilers. In the technique developed by the Ebara Corporation and Japan Atomic Energy Research Institute, ammonia is injected prior to the irradiation step to enhance the process efficiency and to yield a solid ammonium sulphate - ammonium nitrate product that may be used as a fertilizer. The process developed by the Research-Cottrell Corporation uses electron-beam irradiation downstream of a lime spray dryer to remove nitrogen oxides and to enhance the sulphur dioxide removal efficiency. Both of these processes require large quantities of electron-beam power and are currently expected to be more expensive than other available sulphur dioxide emission control technologies. Present emission control regulations in North America do not require the high degree of nitrogen oxide removal provided by the radiation-based processes. Research into the radiolytic oxidation of nitrogen oxides and sulphur dioxide, the radiolytic oxidation of NO x /SO 2 on solid sorbents, and the radiolytic oxidation of NO x /SO 2 in electric fields may lead to the development of more economical radiation treatment processes for flue gases. 44 refs

  4. Improvement of the tetrachloromercurate absorption technique for measuring low atmospheric SO2 mixing ratios

    Science.gov (United States)

    Jaeschke, W.; Beltz, N.; Haunold, W.; Krischke, U.

    1997-07-01

    During the Gas-Phase Sulfur Intercomparison Experiment (GASIE) in 1994 an analytical system for measuring sulfur dioxide mixing ratios at low parts per trillion (pptv) levels was employed. It is based on the absorption of SO2 on a tetrachloromercurate(II)-impregnated filter. The subsequent analysis uses a chemiluminescence reaction by treating the resulting disulfitomercurate(II) complex with an acidic cerium sulfate solution. An improved sampling device has been introduced that increases the maximum sampling volume from 200 L to 500 L. It is also possible to determine the blank value accurately for each sample. The absorption efficiency of the sampling system is 98.7±6.4% at a nominal flow rate of 10 L/min. The calculated (3σ) detection limit is 3±1 pptv SO2. The sample solution is stable for up to 30 days, which allows the samples to be safely stored or shipped before analysis. This permits the use of a sensitive, compact, and reliable sampling system in the field with subsequent analysis under optimal conditions in the laboratory. A continuous flow chemiluminescence (CFCL) analyzer for on-line measurements is also presented. The system is based on the same chemical principles as the described filter technique.

  5. Photochemical Formation of Aerosol in Planetary Atmospheres: Photon and Water Mediated Chemistry of SO_2

    Science.gov (United States)

    Kroll, Jay A.; Donaldson, D. J.; Vaida, Veronica

    2016-06-01

    Sulfur compounds have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere. However, several discrepancies between modeling and observations of the Venusian atmosphere show there are still problems in our fundamental understanding of sulfur chemistry. This is of particular concern due to the important role sulfur compounds play in the formation of aerosols, which have a direct impact on planetary climates, including Earth's. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and will present spectroscopic studies to document such effects. I will present recent work investigating mixtures of SO_2 and water that generate large quantities of aerosol when irradiated with solar UV light, even in the absence of traditional OH chemistry. I will discuss a proposed mechanism for the formation of sulfurous acid (H_2SO_3) and present recent experimental work that supports this proposed mechanism. Additionally, the implications that photon-induced hydration of SO_2 has for aerosol formation in the atmosphere of earth as well as other planetary atmospheres will be discussed.

  6. Nano-imaging of single cells using STIM

    Energy Technology Data Exchange (ETDEWEB)

    Ren Minqin [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Department of Biochemistry, National University of Singapore (Singapore); Kan, J.A. van [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Bettiol, A.A. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Daina, Lim [Department of Anatomy, National University of Singapore (Singapore); Gek, Chan Yee [Department of Anatomy, National University of Singapore (Singapore); Huat, Bay Boon [Department of Anatomy, National University of Singapore (Singapore); Whitlow, H.J. [Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), FIN-40014 (Finland); Osipowicz, T. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Watt, F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore)]. E-mail: phywattf@nus.edu.sg

    2007-07-15

    Scanning transmission ion microscopy (STIM) is a technique which utilizes the energy loss of high energy (MeV) ions passing through a sample to provide structural images. In this paper, we have successfully demonstrated STIM imaging of single cells at the nano-level using the high resolution capability of the proton beam writing facility at the Centre for Ion Beam Applications, National University of Singapore. MCF-7 breast cancer cells (American Type Culture Collection [ATCC]) were seeded on to silicon nitride windows, backed by a Hamamatsu pin diode acting as a particle detector. A reasonable contrast was obtained using 1 MeV protons and excellent contrast obtained using 1 MeV alpha particles. In a further experiment, nano-STIM was also demonstrated using cells seeded on to the pin diode directly, and high quality nano-STIM images showing the nucleus and multiple nucleoli were extracted before the detector was significantly damaged.

  7. Recent Advances in Microbial Single Cell Genomics Technology and Applications

    Science.gov (United States)

    Stepanauskas, R.

    2016-02-01

    Single cell genomics is increasingly utilized as a powerful tool to decipher the metabolic potential, evolutionary histories and in situ interactions of environmental microorganisms. This transformative technology recovers extensive information from cultivation-unbiased samples of individual, unicellular organisms. Thus, it does not require data binning into arbitrary phylogenetic or functional groups and therefore is highly compatible with agent-based modeling approaches. I will present several technological advances in this field, which significantly improve genomic data recovery from individual cells and provide direct linkages between cell's genomic and phenotypic properties. I will also demonstrate how these new technical capabilities help understanding the metabolic potential and viral infections of the "microbial dark matter" inhabiting aquatic and subsurface environments.

  8. Opto-acoustic microscopy reveals adhesion mechanics of single cells.

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Z c , as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZ c reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, K m , that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, S r /S t . We show that K m can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while S r /S t is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  9. Whey utilization for single-cell protein production

    Energy Technology Data Exchange (ETDEWEB)

    Barraquio, V; Silverio, L G; Revilleza, R P; Fernadez, W L

    1980-01-01

    The production of single-cell protein by yeast assimilation of lactose in soft cheese whey was studied using Candida pseudotropicalis as a test organism. Under shake-flask cultivation conditions with deproteinized whey as the medium, lactose (initially 4.20%) was completely assimilated in 48h; cell mass was 5.56 mg/mL after 72h; and average protein content of the dried mass was approximately 11.8%. Batch cultivation using undeproteinized whey resulted in a faster lactose utilization rate from an initial 3.93% to a residual 0.56% in 12 h; cell mass was 8.41 mg/mL in 10 h; and average protein was approximately 37.7%. In a semicontinuous culture with 10 to the power of 7 viable cells/mL as initial cell concentration, 15.69 mg/mL cell mass with a mean protein content of approximately 21.4% could be produced and lactose could be considerably consumed (from an initial 4.75% to a residual 0.42%) within 13-14 h. Supplementation with (NH/sub 4/)/sub 2/S0/sub 4/ and KH/sub 2/P0/sub 4/ did not increase cell mass (12.47 mg/mL in 12 h) and hasten lactose assimulation (from initial 4.49% to residual 0.3% in 12 h). Average protein content was approximately 31%. Cell mass yield was established as 0.29 mg yeast cell/mg lactose consumed. Factors that might have affected protein content are also discussed.

  10. Direct Visualization of De novo Lipogenesis in Single Living Cells

    Science.gov (United States)

    Li, Junjie; Cheng, Ji-Xin

    2014-10-01

    Increased de novo lipogenesis is being increasingly recognized as a hallmark of cancer. Despite recent advances in fluorescence microscopy, autoradiography and mass spectrometry, direct observation of de novo lipogenesis in living systems remains to be challenging. Here, by coupling stimulated Raman scattering (SRS) microscopy with isotope labeled glucose, we were able to trace the dynamic metabolism of glucose in single living cells with high spatial-temporal resolution. As the first direct visualization, we observed that glucose was largely utilized for lipid synthesis in pancreatic cancer cells, which occurs at a much lower rate in immortalized normal pancreatic epithelial cells. By inhibition of glycolysis and fatty acid synthase (FAS), the key enzyme for fatty acid synthesis, we confirmed the deuterium labeled lipids in cancer cells were from de novo lipid synthesis. Interestingly, we also found that prostate cancer cells exhibit relatively lower level of de novo lipogenesis, but higher fatty acid uptake compared to pancreatic cancer cells. Together, our results demonstrate a valuable tool to study dynamic lipid metabolism in cancer and other disorders.

  11. Limited angle STIM and PIXE tomography of single cells

    International Nuclear Information System (INIS)

    Andrea, T.; Rothermel, M.; Werner, R.; Butz, T.; Reinert, T.

    2010-01-01

    STIM (scanning transmission ion microscopy) tomography has been shown to be a valuable method for the three-dimensional characterization of microsamples. It has, however, rarely been employed for the study of single cells, since a free-standing sample is needed for an ordinary tomography experiment. This requirement places high demands on sample preparation techniques. In this study cells fixated on a substrate rather than free-standing were used for tomography. Since the substrate prevented a full rotation of the sample an algorithm for limited-angle tomography was devised. STIM projections covering only a limited angular range of ca. 120 o were supplemented with simulated projections generated from a back and forth iteration between real space and Radon space. The energy loss caused by the substrate was subtracted from each projection. The cells were reconstructed using filtered backprojection. The surface of the cells as well as some interior structures could be reconstructed. Following the STIM projections a lesser number of PIXE (particle induced X-ray emission) projections were taken in order to obtain information about the elemental distribution of the sample. From the PIXE projections the three-dimensional phosphorus distribution within the cell was reconstructed using limited-angle tomography. Superimposition of the STIM and PIXE tomograms revealed the location of intracellular structures. Whereas STIM tomography is sensitive to density contrast, which are greatest at the surface, PIXE tomography is sensitive to changes in elemental concentration. Hence, the combination of the two methods can be very fruitful, while the limited angle approach can compensate some of the difficulties associated with tomography of single cells, namely preparation difficulties and excessive sample damage.

  12. Sulfur dioxide (SO2 as observed by MIPAS/Envisat: temporal development and spatial distribution at 15–45 km altitude

    Directory of Open Access Journals (Sweden)

    M. Höpfner

    2013-10-01

    Full Text Available We present a climatology of monthly and 10° zonal mean profiles of sulfur dioxide (SO2 volume mixing ratios (vmr derived from MIPAS/Envisat measurements in the altitude range 15–45 km from July 2002 until April 2012. The vertical resolution varies from 3.5–4 km in the lower stratosphere up to 6–10 km at the upper end of the profiles, with estimated total errors of 5–20 pptv for single profiles of SO2. Comparisons with the few available observations of SO2 up to high altitudes from ATMOS for a volcanically perturbed situation from ACE-FTS and, at the lowest altitudes, with stratospheric in situ observations reveal general consistency of the datasets. The observations are the first empirical confirmation of features of the stratospheric SO2 distribution, which have only been shown by models up to now: (1 the local maximum of SO2 at around 25–30 km altitude, which is explained by the conversion of carbonyl sulfide (COS as the precursor of the Junge layer; and (2 the downwelling of SO2-rich air to altitudes of 25–30 km at high latitudes during winter and its subsequent depletion on availability of sunlight. This has been proposed as the reason for the sudden appearance of enhanced concentrations of condensation nuclei during Arctic and Antarctic spring. Further, the strong increase of SO2 to values of 80–100 unit{pptv} in the upper stratosphere through photolysis of H2SO4 has been confirmed. Lower stratospheric variability of SO2 could mainly be explained by volcanic activity, and no hints of a strong anthropogenic influence have been found. Regression analysis revealed a QBO (quasi-biennial oscillation signal of the SO2 time series in the tropics at about 30–35 km, an SAO (semi-annual oscillation signal at tropical and subtropical latitudes above 32 km and annual periodics predominantly at high latitudes. Further, the analysis indicates a correlation with the solar cycle in the tropics and southern subtropics above 30 km

  13. Single-cell analysis reveals early manifestation of cancerous phenotype in pre-malignant esophageal cells.

    Directory of Open Access Journals (Sweden)

    Jiangxin Wang

    Full Text Available Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the single-cell level. We present a study on changes in cellular heterogeneity in the context of pre-malignant progression in response to hypoxic stress. Utilizing pre-malignant progression of Barrett's esophagus (BE as a disease model system we studied molecular mechanisms underlying the progression from metaplastic to dysplastic (pre-cancerous stage. We used newly developed methods enabling measurements of cell-to-cell differences in copy numbers of mitochondrial DNA, expression levels of a set of mitochondrial and nuclear genes involved in hypoxia response pathways, and mitochondrial membrane potential. In contrast to bulk cell studies reported earlier, our study shows significant differences between metaplastic and dysplastic BE cells in both average values and single-cell parameter distributions of mtDNA copy numbers, mitochondrial function, and mRNA expression levels of studied genes. Based on single-cell data analysis, we propose that mitochondria may be one of the key factors in pre-malignant progression in BE.

  14. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells

    NARCIS (Netherlands)

    Semrau, Stefan; Goldmann, Johanna E; Soumillon, Magali; Mikkelsen, Tarjei S; Jaenisch, Rudolf; van Oudenaarden, Alexander

    2017-01-01

    Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measure the gene expression

  15. The impact of metabolism on aging and cell size in single yeast cells

    NARCIS (Netherlands)

    Huberts, Daphne

    2015-01-01

    The aim of this thesis was to determine how metabolism affects yeast aging in single yeast cells using a novel microfluidic device. We first review how cells are able to sense nutrients in their environment and then describe the use of the microfluidic dissection platform that greatly improves our

  16. Concurrent removal of elemental mercury and SO2 from flue gas using a thiol-impregnated CaCO3-based adsorbent: a full factorial design study.

    Science.gov (United States)

    Balasundaram, Karthik; Sharma, Mukesh

    2018-03-22

    Mercury (Hg) emitted from coal-based thermal power plants (CTPPs) can accumulate and bio-magnify in the food chain, thereby posing a risk to humans and wildlife. The central idea of this study was to develop an adsorbent which can concurrently remove elemental mercury (Hg 0 ) and SO 2 emitted from coal-based thermal power plants (CTPPs) in a single unit operation. Specifically, a composite adsorbent of CaCO 3 impregnated with 2-mercaptobenimidazole (2-MBI) (referred to as modified calcium carbonate (MCC)) was developed. While 2-MBI having sulfur functional group could selectively adsorb Hg 0 , CaCO 3 could remove SO 2 . Performance of the adsorbent was evaluated in terms of (i) removal (%) of Hg 0 and SO 2 , (ii) adsorption mechanism, (iii) adsorption kinetics, and (iv) leaching potential of mercury from spent adsorbent. The adsorption studies were performed using a 2 2 full factorial design of experiments with 15 ppbV of Hg 0 and 600 ppmV of SO 2 . Two factors, (i) reaction temperature (80 and 120 °C; temperature range in flue gas) and (ii) mass of 2-MBI (10 and 15 wt%), were investigated for the removal of Hg 0 and SO 2 (as %). The maximum Hg 0 and SO 2 removal was 86 and 93%, respectively. The results of XPS characterization showed that chemisorption is the predominant mechanism of Hg 0 and SO 2 adsorption on MCC. The Hg 0 adsorption on MCC followed Elovich kinetic model which is also indicative of chemisorption on heterogeneous surface. The toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) leached mercury from the spent adsorbent were within the acceptable levels defined in these tests. The engineering significance of this study is that the 2-MBI-modified CaCO 3 -based adsorbent has potential for concurrent removal of Hg 0 and SO 2 in a single unit operation. With only minor process modifications, the newly developed adsorbent can replace CaCO 3 in the flue-gas desulfurization (FGD) system.

  17. How much territory can a single E. coli cell control?

    Directory of Open Access Journals (Sweden)

    Ziad W. El-Hajj

    2015-04-01

    Full Text Available Bacteria have been traditionally classified in terms of size and shape and are best known for their very small size. E. coli cells in particular are small rods, each 1-2 microns. However the size varies with the medium, and faster growing cells are larger because they must have more ribosomes to make more protoplasm per unit time, and ribosomes take up space. Indeed, Maaloe's experiments on how E. coli establishes its size began with shifts between rich and poor media.Recently much larger bacteria have been described, including Epulopiscium fishelsoni at 700 μm and Thiomargarita namibiensisis at 750 μm. These are not only much longer than E. coli cells but also much wider, necessitating considerable intracellular organization. Epulopiscium cells for instance, at 80 μm wide, enclose a large enough volume of cytoplasm to present it with major transport problems.This review surveys E. coli cells much longer than those which grow in nature and in usual lab cultures. These include cells mutated in a single gene (metK which are 2-4x longer than their nonmutated parent. This metK mutant stops dividing when slowly starved of S-adenosylmethionine but continues to elongate to 50 μm and more. FtsZ mutants have been routinely isolated as long cells which form during growth at 42°C. The SOS response is a well-characterized regulatory network that is activated in response to DNA damage and also results in cell elongation. Our champion elongated E. coli is a metK strain with a further, as yet unidentified mutation, which reaches 750 μm with no internal divisions and no increase in width.

  18. Response of SO2 and Particulate Air Pollution to Local and Regional Emission Controls: A Case Study in Maryland

    Science.gov (United States)

    He, Hao; Vinnikov, Konstantin Y.; Li, Can; Krotkov, Nickolay Anatoly; Jongeward, Andrew R.; Li, Zhanqing; Stehr, Jeffrey W.; Hains, Jennifer; Dickerson, RUssell R.

    2016-01-01

    This paper addresses the questions of what effect local regulations can have on pollutants with different lifetimes and how surface observations and remotely sensed data can be used to determine the impacts. We investigated the decadal trends of tropospheric sulfur dioxide (SO2) and aerosol pollution over Maryland and its surrounding states, using surface, aircraft, and satellite measurements. Aircraft measurements indicated fewer isolated SO2 plumes observed in summers, a 40 decrease of column SO2, and a 20 decrease of atmospheric optical depth (AOD) over Maryland after the implementation of local regulations on sulfur emissions from power plants (90 reduction from 2010). Surface observations of SO2 and particulate matter (PM) concentrations in Maryland show similar trends. OMI SO2 and MODIS AOD observations were used to investigate the column contents of air pollutants over the eastern U.S.; these indicate decreasing trends in column SO2 (60 decrease) and AOD (20 decrease). The decrease of upwind SO2 emissions also reduced aerosol loadings over the downwind Atlantic Ocean near the coast by 20, while indiscernible changes of the SO2 column were observed. A step change of SO2 emissions in Maryland starting in 20092010 had an immediate and profound benefit in terms of local surface SO2 concentrations but a modest impact on aerosol pollution, indicating that short-lived pollutants are effectively controlled locally, while long-lived pollutants require regional measures.

  19. Comparison and evaluation of anthropogenic emissions of SO2 and NOx over China

    Directory of Open Access Journals (Sweden)

    M. Li

    2018-03-01

    Full Text Available Bottom-up emission inventories provide primary understanding of sources of air pollution and essential input of chemical transport models. Focusing on SO2 and NOx, we conducted a comprehensive evaluation of two widely used anthropogenic emission inventories over China, ECLIPSE and MIX, to explore the potential sources of uncertainties and find clues to improve emission inventories. We first compared the activity rates and emission factors used in two inventories and investigated the reasons of differences and the impacts on emission estimates. We found that SO2 emission estimates are consistent between two inventories (with 1 % differences, while NOx emissions in ECLIPSE's estimates are 16 % lower than those of MIX. The FGD (flue-gas desulfurization device penetration rate and removal efficiency, LNB (low-NOx burner application rate and abatement efficiency in power plants, emission factors of industrial boilers and various vehicle types, and vehicle fleet need further verification. Diesel consumptions are quite uncertain in current inventories. Discrepancies at the sectorial and provincial levels are much higher than those of the national total. We then examined the impacts of different inventories on model performance by using the nested GEOS-Chem model. We finally derived top-down emissions by using the retrieved columns from the Ozone Monitoring Instrument (OMI compared with the bottom-up estimates. High correlations were observed for SO2 between model results and OMI columns. For NOx, negative biases in bottom-up gridded emission inventories (−21 % for MIX, −39 % for ECLIPSE were found compared to the satellite-based emissions. The emission trends from 2005 to 2010 estimated by two inventories were both consistent with satellite observations. The inventories appear to be fit for evaluation of the policies at an aggregated or national level; more work is needed in specific areas in order to improve the accuracy and robustness of

  20. Comparison and evaluation of anthropogenic emissions of SO2 and NOx over China

    Science.gov (United States)

    Li, Meng; Klimont, Zbigniew; Zhang, Qiang; Martin, Randall V.; Zheng, Bo; Heyes, Chris; Cofala, Janusz; Zhang, Yuxuan; He, Kebin

    2018-03-01

    Bottom-up emission inventories provide primary understanding of sources of air pollution and essential input of chemical transport models. Focusing on SO2 and NOx, we conducted a comprehensive evaluation of two widely used anthropogenic emission inventories over China, ECLIPSE and MIX, to explore the potential sources of uncertainties and find clues to improve emission inventories. We first compared the activity rates and emission factors used in two inventories and investigated the reasons of differences and the impacts on emission estimates. We found that SO2 emission estimates are consistent between two inventories (with 1 % differences), while NOx emissions in ECLIPSE's estimates are 16 % lower than those of MIX. The FGD (flue-gas desulfurization) device penetration rate and removal efficiency, LNB (low-NOx burner) application rate and abatement efficiency in power plants, emission factors of industrial boilers and various vehicle types, and vehicle fleet need further verification. Diesel consumptions are quite uncertain in current inventories. Discrepancies at the sectorial and provincial levels are much higher than those of the national total. We then examined the impacts of different inventories on model performance by using the nested GEOS-Chem model. We finally derived top-down emissions by using the retrieved columns from the Ozone Monitoring Instrument (OMI) compared with the bottom-up estimates. High correlations were observed for SO2 between model results and OMI columns. For NOx, negative biases in bottom-up gridded emission inventories (-21 % for MIX, -39 % for ECLIPSE) were found compared to the satellite-based emissions. The emission trends from 2005 to 2010 estimated by two inventories were both consistent with satellite observations. The inventories appear to be fit for evaluation of the policies at an aggregated or national level; more work is needed in specific areas in order to improve the accuracy and robustness of outcomes at finer spatial

  1. Intercomparison of Metop-A SO2 measure- ments during the 2010- 2011 Icelandic eruptions

    Directory of Open Access Journals (Sweden)

    Maria Elissavet Koukouli

    2015-03-01

    Full Text Available The European Space Agency project Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Avi­ ation Hazards, was introduced after the eruption of the Icelandic volcano Eyjafjallajökull in the spring of 2010 to facilitate the development of an optimal End­to­End System for Volcanic Ash Plume Monitoring and Predic­ tion. The Eyjafjallajökull plume drifted towards Europe and caused major disruptions of European air traffic for several weeks affecting the everyday life of millions of people. The limitations in volcanic plume monitoring and prediction capabilities gave birth to this observational system which is based on comprehensive satellite­derived ash plume and sulphur dioxide [SO2] level estimates, as well as a widespread validation using supplementary satellite, aircraft and ground­based measurements. Inter­comparison of the volcanic total SO2 column and plume height observed by GOME­2/Metop­A and IASI/Metop­A are shown before, during and after the Eyjaf­ jallajökull 2010 eruptions as well as for the 2011 Grímsvötn eruption. Co­located ground­based Brewer Spectro­ photometer data extracted from the World Ozone and Ultraviolet Radiation Data Centre for de Bilt, the Nether­ lands, are also compared to the different satellite estimates. Promising agreement is found for the two different types of instrument for the SO2 columns with linear regression coefficients ranging around from 0.64 when comparing the different instruments and 0.85 when comparing the two different IASI algorithms. The agree­ ment for the plume height is lower, possibly due to the major differences between the height retrieval part of the GOME2 and IASI algorithms. The comparisons with the Brewer ground­based station in de Bilt, The Nether­ lands show good qualitative agreement for the peak of the event however stronger eruptive signals are required for a longer quantitative comparison. 

  2. Growth of single T cells and single thymocytes in a high cloning efficiency filler-cell free microculture system.

    Science.gov (United States)

    Chen, W F; Ewing, T; Scollay, R; Shortman, K

    1988-01-01

    A high cloning-efficiency microculture system is described in which single T cells, stimulated to divide by phorbol ester and calcium ionophore, grow rapidly under the influence of purified growth factors in the absence of other cells. The kinetics of clonal growth has been monitored over a five day period by phase-contrast microscopy. Mature peripheral T cells, and mature subpopulations from the thymus, responded with a cloning efficiency over 80%; they required IL-2 as a minimum but several other factors enhanced growth. Ly2+L3T4- thymocytes (mean doubling time 10.4 hr) grew more rapidly than Ly2-L3T4+ thymocytes (mean doubling time 15.2 hr). Early (Ly2-L3T4-) thymocytes responded with a cloning efficiency of 60%; their efficient growth was dependent on both IL-1 and IL-2. The typical Ly2+L3T4+ cortical thymocyte did not grow under these conditions.

  3. Matrix elements of a hyperbolic vector operator under SO(2,1)

    International Nuclear Information System (INIS)

    Zettili, N.; Boukahil, A.

    2003-01-01

    We deal here with the use of Wigner–Eckart type arguments to calculate the matrix elements of a hyperbolic vector operator V-vector by expressing them in terms of reduced matrix elements. In particular, we focus on calculating the matrix elements of this vector operator within the basis of the hyperbolic angular momentum T-vector whose components T-vector 1 , T-vector 2 , T-vector 3 satisfy an SO(2,1) Lie algebra. We show that the commutation rules between the components of V-vector and T-vector can be inferred from the algebra of ordinary angular momentum. We then show that, by analogy to the Wigner–Eckart theorem, we can calculate the matrix elements of V-vector within a representation where T-vector 2 and T-vector 3 are jointly diagonal. (author)

  4. High-Temperature Release of SO2 from Calcined Cement Raw Materials

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Larsen, Morten B.; Glarborg, Peter

    2011-01-01

    During combustion of alternative fuels in the material inlet end of cement rotary kilns, local reducing conditions may occur and cause reductive decomposition of sulfates from calcined cement raw materials. Decomposition of sulfates is problematic because it increases the gas-phase SO2...... concentration, which may cause deposit formation in the kiln system. In this study, the release of sulfur from calcined cement raw materials under both oxidizing and reducing conditions is investigated. The investigations include thermodynamic equilibrium calculations in the temperature interval of 800–1500 °C...... and experiments in a tube furnace reactor in the temperature interval of 900–1100 °C. The investigated conditions resemble actual conditions in the material inlet end of cement rotary kilns. It was found that the sulfates CaSO4, K2SO4, and Na2SO4 were all stable under oxidizing conditions but began to decompose...

  5. Research progress of SO2 removal from flue gas by functionalized ionic liquids

    Directory of Open Access Journals (Sweden)

    Xinle SHI

    2017-02-01

    Full Text Available Functionalized ionic liquids are receiving increasing attention in the field of flue gas desulfurization due to its unique physical and chemical properties. Research progress on the field of SO2 removal by ionic liquids (ILs including guanidinium-based, amines-based and ether-based ILs is summarized. Industrial application of polymerization ILs and loaded ILs to desulfurization is reviewed. Relevant suggestions on industrial application of ionic liquids based on fundamental research are put forward. The first thing is to develop functional ionic liquid for desulfurization,and thus investigate and propose its desulfurization mechanism and model; the second is to carry out the research work on immobilized ionic liquid, and explore its recycling properties, thus prolonging its service life.

  6. Success of lime additives for controlling SO2 releases from fluidized bed combustion units

    International Nuclear Information System (INIS)

    Muezzinoglu, A.; Bayram, A.; Odabasi, M.

    1995-01-01

    Purpose of this work was to study the desulfurization efficiencies of dry additives on the fluidized bed reactors fired with low quality lignites. In these tests selected initial SO 2 levels were in the order of 1000 ppm or less in the flue gases. Lime addition for desulfurization may either be made by mixing with the fuel or by injection into the combustion reactor. In fluidized bed combustion systems both methods are physically possible. In the fluidized combustion systems a third method of addition is also possible this, is by mixing dry additives with fluidizer sand. In this third method additives create a fluidizer effect as well as reacting with the sulfur oxides being formed during the combustion of fuel

  7. Kinematic study of O--ion formation from dissociative electron attachment to SO2

    Science.gov (United States)

    Jana, Irina; Nandi, Dhananjay

    2018-04-01

    We report a complete kinematic study of O--ion formation due to dissociative electron attachment to SO2 using the velocity slice imaging technique in the incident electron energy range over the resonances. Two resonances are observed at 5.2 and 7.5 eV, respectively. From the kinetic energy distribution, the two resonances are observed to have the same threshold energy, pointing to the fact that the two processes, giving rise to the two resonant peaks, have the same dissociation limit. From the angular distribution results we identified the involvement of an A1 and a combination of A1+B2 temporary negative-ion state(s) for the first and second resonances, respectively.

  8. Recent advances in ground-based ultraviolet remote sensing of volcanic SO2 fluxes

    Directory of Open Access Journals (Sweden)

    Euripides P. Kantzas

    2011-06-01

    Full Text Available Measurements of volcanic SO2 emission rates have been the mainstay of remote-sensing volcanic gas geochemistry for almost four decades, and they have contributed significantly to our understanding of volcanic systems and their impact upon the atmosphere. The last ten years have brought step-change improvements in the instrumentation applied to these observations, which began with the application of miniature ultraviolet spectrometers that were deployed in scanning and traverse configurations, with differential optical absorption spectroscopy evaluation routines. This study catalogs the more recent empirical developments, including: ultraviolet cameras; wide-angle field-of-view differential optical absorption spectroscopy systems; advances in scanning operations, including tomography; and improved understanding of errors, in particular concerning radiative transfer. Furthermore, the outcomes of field deployments of sensors during the last decade are documented, with respect to improving our understanding of volcanic dynamics and degassing into the atmosphere.

  9. Potential impacts of NOx and SO2 constraints on CIPS operations

    International Nuclear Information System (INIS)

    Almasque, J.; Montgomery, D.; Le, K.; Boyle, R.; Nguyen, M.; Orndoff, D.

    1994-01-01

    To meet the Clean Air Act requirements, CIPS will need to spend around $30 million to curtail its SO 2 and NO x emissions by 40 percent. A key challenge facing CIPS management is to determine an emission compliance strategy that minimizes the total system production costs while maintaining a reasonable safety margin and back-up plan. CIPS is currently testing tools to perform emission-constrained unit commitment and economic dispatch. This ''soft'' option provides a back-up measure, should unforeseen occurrences take place or newly installed NO x reduction equipment fail to perform as expected. Algorithm development, software modification, procedural changes, and data collection required to implement emission-constrained dispatch will need to be in place by January, 1995. By taking advantage of ''soft'' methods, such as emission-constrained dispatch, emission trading, and operator training, CIPS hopes to reduce its emission-related capital expenditures by 5--20 percent

  10. Persistent explosive activity at Stromboli investigated with OP-FTIR and SO2 cameras

    Science.gov (United States)

    Burton, M. R.; La Spina, A.; Sawyer, G. M.; Harris, A. J.

    2012-12-01

    Stromboli volcano in Italy exhibits what is perhaps one of the most well-known examples of cyclic activity, in the form of its regular explosions, which send a few m3 of material 100-200 m into the air every 10-20 minutes. Recent developments in measurements of volatile release from Stromboli using a series of novel approaches have allowed this cyclic behaviour to be examined in detail. In particular, the use of an automated OP-FTIR has revealed unprecedented detail in the dynamics of degassing from individual craters at the summit of Stromboli. Furthermore, the variations in composition of explosive degassing from Stromboli demonstrate a deep source ~2 km for the gas slugs which produce explosions at this volcano, in contrast to the commonly-held view that gas coalescence at shallow depth is responsible for the behaviour. The SO2 camera has revealed fascinating new details on the dynamics of degassing at Stromboli, and has allowed direct quantification of the amount of gas released during explosions and through quiescent degassing. The remarkable observation that 99% of degassing takes place quiescently, and that the explosions, whilst apparently more significant, are in fact a secondary process compared with the mass and energy involved in background, quiet processes. The new insight that the explosions are actually only a relatively minor aspect of the activity (in terms of mass and energy) actually makes the regularity of the cyclic explosive activity still more remarkable. In this paper we present a detailed overview of the state of the art of our understanding of cyclic explosive activity at Stromboli volcano from the perspective of recent advances in geochemical monitoring of the gas emissions. We also report initial results from a multidisciplinary campaign on Stromboli which utilised both OP-FTIR and SO2 camera techniques.

  11. Automated assembling of single fuel cell units for use in a fuel cell stack

    Science.gov (United States)

    Jalba, C. K.; Muminovic, A.; Barz, C.; Nasui, V.

    2017-05-01

    The manufacturing of PEMFC stacks (POLYMER ELEKTROLYT MEMBRAN Fuel Cell) is nowadays still done by hand. Over hundreds of identical single components have to be placed accurate together for the construction of a fuel cell stack. Beside logistic problems, higher total costs and disadvantages in weight the high number of components produce a higher statistic interference because of faulty erection or material defects and summation of manufacturing tolerances. The saving of costs is about 20 - 25 %. Furthermore, the total weight of the fuel cells will be reduced because of a new sealing technology. Overall a one minute cycle time has to be aimed per cell at the manufacturing of these single components. The change of the existing sealing concept to a bonded sealing is one of the important requisites to get an automated manufacturing of single cell units. One of the important steps for an automated gluing process is the checking of the glue application by using of an image processing system. After bonding the single fuel cell the sealing and electrical function can be checked, so that only functional and high qualitative cells can get into further manufacturing processes.

  12. Signatures of nonlinearity in single cell noise-induced oscillations.

    Science.gov (United States)

    Thomas, Philipp; Straube, Arthur V; Timmer, Jens; Fleck, Christian; Grima, Ramon

    2013-10-21

    A class of theoretical models seeks to explain rhythmic single cell data by postulating that they are generated by intrinsic noise in biochemical systems whose deterministic models exhibit only damped oscillations. The main features of such noise-induced oscillations are quantified by the power spectrum which measures the dependence of the oscillatory signal's power with frequency. In this paper we derive an approximate closed-form expression for the power spectrum of any monostable biochemical system close to a Hopf bifurcation, where noise-induced oscillations are most pronounced. Unlike the commonly used linear noise approximation which is valid in the macroscopic limit of large volumes, our theory is valid over a wide range of volumes and hence affords a more suitable description of single cell noise-induced oscillations. Our theory predicts that the spectra have three universal features: (i) a dominant peak at some frequency, (ii) a smaller peak at twice the frequency of the dominant peak and (iii) a peak at zero frequency. Of these, the linear noise approximation predicts only the first feature while the remaining two stem from the combination of intrinsic noise and nonlinearity in the law of mass action. The theoretical expressions are shown to accurately match the power spectra determined from stochastic simulations of mitotic and circadian oscillators. Furthermore it is shown how recently acquired single cell rhythmic fibroblast data displays all the features predicted by our theory and that the experimental spectrum is well described by our theory but not by the conventional linear noise approximation. © 2013 Elsevier Ltd. All rights reserved.

  13. Optofluidics for handling and analysis of single living cells

    KAUST Repository

    Perozziello, Gerardo

    2017-12-07

    Optofluidics is a field with important applications in areas such as biotechnology, chemical synthesis and analytical chemistry. Optofluidic devices combine optical elements into microfluidic devices in ways that increase portability and sensitivity of analysis for diagnostic or screening purposes .In fact in these devices fluids give fine adaptability, mobility and accessibility to nanoscale photonic devices which otherwise could not be realized using conventional devices. This review describes several cases inwhich optical or microfluidic approaches are used to trap single cells in proximity of integrated optical sensor for being analysed.

  14. Single-cell atomic quantum memory for light

    International Nuclear Information System (INIS)

    Opatrny, Tomas

    2006-01-01

    Recent experiments demonstrating atomic quantum memory for light [B. Julsgaard et al., Nature 432, 482 (2004)] involve two macroscopic samples of atoms, each with opposite spin polarization. It is shown here that a single atomic cell is enough for the memory function if the atoms are optically pumped with suitable linearly polarized light, and quadratic Zeeman shift and/or ac Stark shift are used to manipulate rotations of the quadratures. This should enhance the performance of our quantum memory devices since less resources are needed and losses of light in crossing different media boundaries are avoided

  15. Optofluidics for handling and analysis of single living cells

    KAUST Repository

    Perozziello, Gerardo; Candeloro, Patrizio; Coluccio, Maria Laura; Di Fabrizio, Enzo M.

    2017-01-01

    Optofluidics is a field with important applications in areas such as biotechnology, chemical synthesis and analytical chemistry. Optofluidic devices combine optical elements into microfluidic devices in ways that increase portability and sensitivity of analysis for diagnostic or screening purposes .In fact in these devices fluids give fine adaptability, mobility and accessibility to nanoscale photonic devices which otherwise could not be realized using conventional devices. This review describes several cases inwhich optical or microfluidic approaches are used to trap single cells in proximity of integrated optical sensor for being analysed.

  16. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq.

    Science.gov (United States)

    Reinius, Björn; Mold, Jeff E; Ramsköld, Daniel; Deng, Qiaolin; Johnsson, Per; Michaëlsson, Jakob; Frisén, Jonas; Sandberg, Rickard

    2016-11-01

    Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and freshly isolated human CD8 + T cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells' transcriptomes, with levels dependent on the cells' transcriptional activity. Notably, clonal aRME was detected, but it was surprisingly scarce (aRME occurs transiently within individual cells, and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells.

  17. 40 CFR 51.125 - Emissions reporting requirements for SIP revisions relating to budgets for SO2 and NOX emissions.

    Science.gov (United States)

    2010-07-01

    ... SIP revisions relating to budgets for SO2 and NOX emissions. 51.125 Section 51.125 Protection of... SIP revisions relating to budgets for SO2 and NOX emissions. (a) For its transport SIP revision under § 51.123 and/or 51.124, each State must submit to EPA SO2 and/or NOX emissions data as described in...

  18. MicroBioRobots for single cell manipulation

    Science.gov (United States)

    Sakar, Mahmut Selman

    One of the great challenges in nano and micro scale science and engineering is the independent manipulation of biological cells and small man-made objects with active sensing. For such biomedical applications as single cell manipulation, telemetry, and localized targeted delivery of chemicals, it is important to fabricate microstructures that can be powered and controlled without a tether in fluidic environments. These microstructures can be used to develop microrobots that have the potential to make existing therapeutic and diagnostic procedures less invasive. Actuation can be realized using various different organic and inorganic methods. Previous studies explored different forms of actuation and control with microorganisms. Bacteria, in particular, offer several advantages as controllable microactuators: they draw chemical energy directly from their environment, they are genetically modifiable, and they are scalable and configurable in the sense that any number of bacteria can be selectively patterned. Additionally, the study of bacteria inspires inorganic schemes of actuation and control. For these reasons, we chose to employ bacteria while controlling their motility using optical and electrical stimuli. In the first part of the thesis, we demonstrate a biointegrated approach by introducing MicroBioRobots (MBRs). MBRs are negative photosensitive epoxy (SU8) microfabricated structures with typical feature sizes ranging from 1-100 mum coated with a monolayer of the swarming Serratia marcescens . The adherent bacterial cells naturally coordinate to propel the microstructures in fluidic environments which we call Self-Actuation. First, we demonstrate the control of MBRs using self-actuation, DC electric fields and ultra-violet radiation and develop an experimentally-validated mathematical model for the MBRs. This model allows us to to steer the MBR to any position and orientation in a planar micro channel using visual feedback and an inverted microscope. Examples

  19. Single-Cell Transcriptomics Bioinformatics and Computational Challenges

    Directory of Open Access Journals (Sweden)

    Lana Garmire

    2016-09-01

    Full Text Available The emerging single-cell RNA-Seq (scRNA-Seq technology holds the promise to revolutionize our understanding of diseases and associated biological processes at an unprecedented resolution. It opens the door to reveal the intercellular heterogeneity and has been employed to a variety of applications, ranging from characterizing cancer cells subpopulations to elucidating tumor resistance mechanisms. Parallel to improving experimental protocols to deal with technological issues, deriving new analytical methods to reveal the complexity in scRNA-Seq data is just as challenging. Here we review the current state-of-the-art bioinformatics tools and methods for scRNA-Seq analysis, as well as addressing some critical analytical challenges that the field faces.

  20. Claustral single cell reactions to tooth pulp stimulation in cats.

    Science.gov (United States)

    Jastreboff, P; Sikora, M; Frydrychowski, A; Słoniewski, P

    1983-01-01

    Single unit activity in the central region of the claustrum, evoked by electrical stimulation of tooth pulp or paws was studied on cats under chloralose anesthesia. The majority of cells responded in similar manner to stimulation of tooth pulp or paws, but there were cells with clear preference to a given type of stimulation. Latencies of reactions evoked by tooth pulp stimulation were significantly shorter than those for limb stimulation. In the former case latencies as short as 8 rns were observed. It is postulated that the central region of the claustrum receives a projection from the tooth pulp, and that in those cases with very short latency the projection is direct and does not involve the cerebral cortex.

  1. Single cell time-lapse analysis reveals that podoplanin enhances cell survival and colony formation capacity of squamous cell carcinoma cells.

    Science.gov (United States)

    Miyashita, Tomoyuki; Higuchi, Youichi; Kojima, Motohiro; Ochiai, Atsushi; Ishii, Genichiro

    2017-01-06

    Tumor initiating cells (TICs) are characterized by high clonal expansion capacity. We previously reported that podoplanin is a TIC-specific marker for the human squamous cell carcinoma cell line A431. The aim of this study is to explore the molecular mechanism underlying the high clonal expansion potential of podoplanin-positive A431cells using Fucci imaging. Single podoplanin-positive cells created large colonies at a significantly higher frequency than single podoplanin-negative cells, whereas no difference was observed between the two types of cells with respect to cell cycle status. Conversely, the cell death ratio of progenies derived from podoplanin-positive single cell was significantly lower than that of cells derived from podoplanin-negative cells. Single A431 cells, whose podoplanin expression was suppressed by RNA interference, exhibited increased cell death ratios and decreased frequency of large colony forming. Moreover, the frequency of large colony forming decreased significantly when podoplanin-positive single cells was treated with a ROCK (Rho-associated coiled-coil kinase) inhibitor, whereas no difference was observed in single podoplanin-negative cells. Our current study cleared that high clonal expansion capacity of podoplanin-positive TICs populations was the result of reduced cell death by podoplanin-mediated signaling. Therefore, podoplanin activity may be a therapeutic target in the treatment of squamous cell carcinomas.

  2. Responses of single germinal-center B cells in T-cell-dependent microculture.

    Science.gov (United States)

    George, A; Cebra, J J

    1991-01-01

    B cells purified from the germinal centers (GCs) of murine Peyer's patches can be stimulated in a clonal microculture containing helper T cells and dendritic cells to divide and secrete immunoglobulin. Intraclonal isotype switching occurs, and a variety of immunoglobulin isotypes, including IgA, is secreted. Memory cells, which generate clones secreting IgA exclusively, are only rarely identified in the GC B-cell subset. Such memory cells can, however, be readily identified among unfractionated Peyer's patch B cells, and in non-GC subsets of B cells. The results suggest that the GC does not contain IgA memory cells that can be restimulated in vitro to secrete only IgA. When division of GC B cells is prevented by irradiation or aphidicholin treatment, a large subset that secretes IgA as the sole immunoglobulin isotype is seen, and the output of presumably single B cells is large enough to be scored by RIA. Both helper T cells and dendritic cells are required for the phenomenon. The data indicate that commitment to IgA secretion occurs in Peyer's patch GCs and suggest that the prolific cell division known to be supported in GCs may forestall terminal differentiation of preplasmablasts to immunoglobulin secretion.

  3. Each cell counts: Hematopoiesis and immunity research in the era of single cell genomics.

    Science.gov (United States)

    Jaitin, Diego Adhemar; Keren-Shaul, Hadas; Elefant, Naama; Amit, Ido

    2015-02-01

    Hematopoiesis and immunity are mediated through complex interactions between multiple cell types and states. This complexity is currently addressed following a reductionist approach of characterizing cell types by a small number of cell surface molecular features and gross functions. While the introduction of global transcriptional profiling technologies enabled a more comprehensive view, heterogeneity within sampled populations remained unaddressed, obscuring the true picture of hematopoiesis and immune system function. A critical mass of technological advances in molecular biology and genomics has enabled genome-wide measurements of single cells - the fundamental unit of immunity. These new advances are expected to boost detection of less frequent cell types and fuzzy intermediate cell states, greatly expanding the resolution of current available classifications. This new era of single-cell genomics in immunology research holds great promise for further understanding of the mechanisms and circuits regulating hematopoiesis and immunity in both health and disease. In the near future, the accuracy of single-cell genomics will ultimately enable precise diagnostics and treatment of multiple hematopoietic and immune related diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Single-cell analyses identify bioengineered niches for enhanced maintenance of hematopoietic stem cells.

    Science.gov (United States)

    Roch, Aline; Giger, Sonja; Girotra, Mukul; Campos, Vasco; Vannini, Nicola; Naveiras, Olaia; Gobaa, Samy; Lutolf, Matthias P

    2017-08-09

    The in vitro expansion of long-term hematopoietic stem cells (HSCs) remains a substantial challenge, largely because of our limited understanding of the mechanisms that control HSC fate choices. Using single-cell multigene expression analysis and time-lapse microscopy, here we define gene expression signatures and cell cycle hallmarks of murine HSCs and the earliest multipotent progenitors (MPPs), and analyze systematically single HSC fate choices in culture. Our analysis revealed twelve differentially expressed genes marking the quiescent HSC state, including four genes encoding cell-cell interaction signals in the niche. Under basal culture conditions, most HSCs rapidly commit to become early MPPs. In contrast, when we present ligands of the identified niche components such as JamC or Esam within artificial niches, HSC cycling is reduced and long-term multipotency in vivo is maintained. Our approach to bioengineer artificial niches should be useful in other stem cell systems.Haematopoietic stem cell (HSC) self-renewal is not sufficiently understood to recapitulate in vitro. Here, the authors generate gene signature and cell cycle hallmarks of single murine HSCs, and use identified endothelial receptors Esam and JamC as substrates to enhance HSC growth in engineered niches.

  5. Influence of cathode on the electro-generation of peroxydisulfuric acid oxidant and its application for effective removal of SO_2 by room temperature electro-scrubbing process

    International Nuclear Information System (INIS)

    Balaji, Subramanian; Muthuraman, Govindan; Moon, Il Shik

    2015-01-01

    Highlights: • Electrolytic production of peroxydisulfuric acid (PDSA) with BDD anode. • PDSA yield enhanced by proper selection of cathode material. • Electro-scrubbing of SO_2 in presence of PDSA monitored by online FTIR analyzer. • 100% SO_2 removal was achieved for 25 ppm and 50 ppm in less than 10 min. - Abstract: Peroxydisulfuric acid oxidant (H_2S_2O_8) was electro-generated using boron doped diamond (BDD) anode in an undivided electrolytic cell under the optimized conditions and used for the oxidative removal of gaseous SO_2. The influence of the nature of cathode material on the formation yield of H_2S_2O_8 was investigated with Ti, Pt, Zr and DSA electrodes in a flow type electrolytic cell under batch recirculation mode. Among the various cathodes employed Ti exhibited a good performance and the formation yield was nearly doubled (0.19 M) compared to the reported value of 0.07 M. The optimization of electrode area ratio between the anode and cathode brought out the fact that for nearly 8 times smaller Ti cathode (8.75:1) the achieved yield was ∼65% higher than the 1:1 ratio of anode and cathode. The highest concentration of 6.8% (0.48 M) H_2S_2O_8 was seen for 35 cm"2 BDD anode with 4 cm"2 Ti at 20 °C with the measured redox potential value of +1200 mV. The oxidative removal of SO_2 in an electro-scrubbing column attached to the online production of peroxydisulfuric acid under the optimized conditions of cell parameters shows that SO_2 removal efficiency was nearly 100% for 25 and 50 ppm inlet concentrations and 96% for 100 ppm at the room temperature of 25 °C.

  6. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.

    Science.gov (United States)

    Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert

    2014-02-01

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quantum Dot Platform for Single-Cell Molecular Profiling

    Science.gov (United States)

    Zrazhevskiy, Pavel S.

    In-depth understanding of the nature of cell physiology and ability to diagnose and control the progression of pathological processes heavily rely on untangling the complexity of intracellular molecular mechanisms and pathways. Therefore, comprehensive molecular profiling of individual cells within the context of their natural tissue or cell culture microenvironment is essential. In principle, this goal can be achieved by tagging each molecular target with a unique reporter probe and detecting its localization with high sensitivity at sub-cellular resolution, primarily via microscopy-based imaging. Yet, neither widely used conventional methods nor more advanced nanoparticle-based techniques have been able to address this task up to date. High multiplexing potential of fluorescent probes is heavily restrained by the inability to uniquely match probes with corresponding molecular targets. This issue is especially relevant for quantum dot probes---while simultaneous spectral imaging of up to 10 different probes is possible, only few can be used concurrently for staining with existing methods. To fully utilize multiplexing potential of quantum dots, it is necessary to design a new staining platform featuring unique assignment of each target to a corresponding quantum dot probe. This dissertation presents two complementary versatile approaches towards achieving comprehensive single-cell molecular profiling and describes engineering of quantum dot probes specifically tailored for each staining method. Analysis of expanded molecular profiles is achieved through augmenting parallel multiplexing capacity with performing several staining cycles on the same specimen in sequential manner. In contrast to other methods utilizing quantum dots or other nanoparticles, which often involve sophisticated probe synthesis, the platform technology presented here takes advantage of simple covalent bioconjugation and non-covalent self-assembly mechanisms for straightforward probe

  8. Numerical simulation of flue gas purification from NOx, SO2 by electron beam

    International Nuclear Information System (INIS)

    Morgunov, V.V.; Shkilko, A.M.; Fainchtein, O.L.

    2011-01-01

    received: NO - 99.97%, NO 2 - -17.53% (the concentration growth was observed), SO 2 - 77.32% (without taking into consideration direct reaction SO 2 and NH 3 ); amount of selected species - 111; amount of selected reactions - 941. Elaborated computer code can be used for optimization of the EB flue gases purification technology, modeling kinetic mechanism of radiation-chemical processes in the flue gases, carry out numerical experiments.

  9. Efficient absorption of SO_2 with low-partial pressures by environmentally benign functional deep eutectic solvents

    International Nuclear Information System (INIS)

    Zhang, Kai; Ren, Shuhang; Hou, Yucui; Wu, Weize

    2017-01-01

    Graphical abstract: Environmentally benign deep eutectic solvents (DESs) based on betaine or L-carnitine with ethylene glycol were designed with a function and used to efficiently capture SO_2 with low partial pressures. - Highlights: • Deep eutectic solvents (DESs) were designed with a function to absorb low-conc. SO_2. • Betaine(Bet) and L-carnitine(L-car) with a functional group were used as H-bond acceptor. • Bet + ethylene glycol (EG) DES and L-car + EG DES are environmentally benign. • L-car + EG DES can absorb 0.644 mol SO_2 per mole L-car (0.37% SO_2). • L-car + EG DES is a promising absorbent for SO_2 capture. - Abstract: Sulfur dioxide (SO_2) emitted from the burning of fossil fuels is one of the main air contaminants. In this work, we found that environmentally benign solvents, deep eutectic solvents (DESs) could be designed with a function to absorb low-partial pressure SO_2 from simulated flue gas. Two kinds of biodegradable functional DESs based on betaine (Bet) and L-carnitine (L-car) as hydrogen bond accepters (HBA) and ethylene glycol (EG) as a hydrogen bond donor (HBD) were prepared with mole ratios of HBA to HBD from 1:3 to 1:5, and they were investigated to absorb SO_2 with different partial pressures at various temperatures. The results showed that the two DESs could absorb low-partial pressure SO_2 efficiently. SO_2 absorption capacities of the DESs with HBA/HBD mole ratio of 1:3 were 0.332 mol SO_2/mol HBA for Bet + EG DES and 0.820 mol SO_2/mol HBA for L-car + EG DES at 40 °C with a SO_2 partial pressure of 0.02 atm. In addition, the regeneration experiments demonstrated that the absorption capacities of DESs did not change after five absorption and desorption cycles. Furthermore, the absorption mechanism of SO_2 by DESs was studied by FT-IR, "1H NMR and "1"3C NMR spectra. It was found that there are strong acid–base interactions between SO_2 and −COO"− on HBA.

  10. Volcanogenic SO2, a natural pollutant: Measurements, modeling and hazard assessment at Vulcano Island (Aeolian Archipelago, Italy).

    Science.gov (United States)

    Granieri, Domenico; Vita, Fabio; Inguaggiato, Salvatore

    2017-12-01

    Sulfur dioxide (SO 2 ) is a major component of magmatic gas discharges. Once emitted in the atmosphere it can affect the air and land environment at different spatial and temporal scales, with harmful effects on human health and plant communities. We used a dense dataset of continuous SO 2 flux and meteorological measurements collected at Vulcano over an 8-year period spanning from May 2008 to February 2016 to model air SO 2 concentrations over the island. To this end, we adopted the DISGAS (DISpersion of GAS) numerical code coupled with the Diagnostic Wind Model (DWM). SO 2 concentrations in air were determined for three different SO 2 emission rates: a reference SO 2 flux of ∼18 t/d (the median of more than 800 measurements), an enhanced SO 2 flux of 40 t/d (average of all measurements plus 1 σ), and a maximum SO 2 flux of 106 t/d (maximum value measured in the investigated period). Maximum SO 2 concentrations in air were estimated at the crater, near the high-T fumarole field that is the source of the gas, and ranged from 2000 ppb to ∼24,000 ppb for the reference flux, from 2000 ppb to 51,000 ppb for the enhanced flux and from 5000 ppb to 136,000 ppb for the maximum flux, with peak values in limited areas at the bottom of the crater. These concentrations pose a hazard for people visiting the crater, for sensitive individuals in particular. Based on estimated SO 2 concentrations in air, we also consider the phytotoxic effects of SO 2 on local vegetation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Connecting single cell to collective cell behavior in a unified theoretical framework

    Science.gov (United States)

    George, Mishel; Bullo, Francesco; Campàs, Otger

    Collective cell behavior is an essential part of tissue and organ morphogenesis during embryonic development, as well as of various disease processes, such as cancer. In contrast to many in vitro studies of collective cell migration, most cases of in vivo collective cell migration involve rather small groups of cells, with large sheets of migrating cells being less common. The vast majority of theoretical descriptions of collective cell behavior focus on large numbers of cells, but fail to accurately capture the dynamics of small groups of cells. Here we introduce a low-dimensional theoretical description that successfully captures single cell migration, cell collisions, collective dynamics in small groups of cells, and force propagation during sheet expansion, all within a common theoretical framework. Our description is derived from first principles and also includes key phenomenological aspects of cell migration that control the dynamics of traction forces. Among other results, we explain the counter-intuitive observations that pairs of cells repel each other upon collision while they behave in a coordinated manner within larger clusters.

  12. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution.

    Science.gov (United States)

    Hu, Wen-Yang; Hu, Dan-Ping; Xie, Lishi; Li, Ye; Majumdar, Shyama; Nonn, Larisa; Hu, Hong; Shioda, Toshi; Prins, Gail S

    2017-08-01

    Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution

    Directory of Open Access Journals (Sweden)

    Wen-Yang Hu

    2017-08-01

    Full Text Available Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland.

  14. New tools to study biophysical properties of single molecules and single cells

    Directory of Open Access Journals (Sweden)

    Márcio S. Rocha

    2007-03-01

    Full Text Available We present a review on two new tools to study biophysical properties of single molecules and single cells. A laser incident through a high numerical aperture microscope objective can trap small dielectric particles near the focus. This arrangement is named optical tweezers. This technique has the advantage to permit manipulation of a single individual object. We use optical tweezers to measure the entropic elasticity of a single DNA molecule and its interaction with the drug Psoralen. Optical tweezers are also used to hold a kidney cell MDCK away from the substrate to allow precise volume measurements of this single cell during an osmotic shock. This procedure allows us to obtain information about membrane water permeability and regulatory volume increase. Defocusing microscopy is a recent technique invented in our laboratory, which allows the observation of transparent objects, by simply defocusing the microscope in a controlled way. Our physical model of a defocused microscope shows that the image contrast observed in this case is proportional to the defocus distance and to the curvature of the transparent object. Defocusing microscopy is very useful to study motility and mechanical properties of cells. We show here the application of defocusing microscopy to measurements of macrophage surface fluctuations and their influence on phagocytosis.Apresentamos uma revisão de duas novas técnicas para estudar propriedades biofísicas de moléculas únicas e células únicas. Um laser incidindo em uma objetiva de microscópio de grande abertura numérica é capaz de aprisionar pequenas partículas dielétricas na região próxima ao foco. Este aparato é chamado de pinça óptica. Esta técnica tem a grande vantagem de permitir a manipulação de um objeto individual. Usamos a pinça óptica para medir a elasticidade entrópica de uma molécula única de DNA em sua interação com o fármaco Psoralen. A pinça óptica também é usada para segurar

  15. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire.

    Science.gov (United States)

    Guo, Guoji; Luc, Sidinh; Marco, Eugenio; Lin, Ta-Wei; Peng, Cong; Kere