WorldWideScience

Sample records for single bubble rising

  1. Shapes and rising velocities of single bubbles rising through an inner subchannel

    Tomiyama, Akio; Nakahara, Yusuke; Adachi, Yoshihiro; Hosokawa, Shigeo

    2003-01-01

    Shapes and velocities of single air bubbles rising through stagnant and flowing waters in an inner subchannel are measured by making use of fluorocarbon tubes. It is confirmed that (1) bubble shapes and motions in the subchannel are by far different from those in simple geometry, and they depend on the ratio λ of the bubble diameter to the subchannel hydraulic diameter, (2) when λ > 0.9, a part of a bubble intrudes into neighboring subchannels, and thereby a kind of void drift takes place even with a single bubble, (3) the terminal velocity V T of a small bubble (λ T for cell-Taylor bubbles (λ > 0.9) is presented, and (5) the rising velocity V B in laminar an turbulent flow conditions are well evaluated by substituting the proposed V T models and the ratio of the maximum liquid velocity to the mean liquid velocity into the Nicklin correlation. (author)

  2. Experimental researches on the single-bubble rising behavior in the water excited by oscillation

    Cai Jiejin; Zhong Minghuang; Wang Ke; Zeng Xixiang; Lin Yongcheng; WATANABE Tadashi

    2014-01-01

    This study try to carry out experiments to research the bubble rising behavior in the water excited by oscillation and focus on its dynamics characteristics under the oscillation condition with different oscillation frequencies and amplitudes, and get the relationship between bubble's characteristic parameter, such as the bubble shape, rising velocity, etc, and the influence parameters of time, oscillation frequencies, amplitudes, etc. The rising rule of the single bubble in the water excited by oscillation has been concluded. (authors)

  3. Electric fields effect on the rise of single bubbles during boiling

    Siedel, Samuel; Cioulachtjian, Serge; Bonjour, Jocelyn

    2009-01-01

    An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity. (author)

  4. Experimental study of single taylor bubbles rising in stagnant liquid mixtures inside of vertical tubes

    Azevedo, Marcos B. de; Faccini, Jose L.H.; Su, Jian

    2015-01-01

    The present work reports an experimental study of single Taylor bubbles rising in vertical tubes filled with water-glycerin mixtures by using the pulse-echo ultrasonic technique. A 2m long acrylic tube with inner diameter of 24 mm was used in the experiments. Initially, the tube was sealed at the ends and filled partially with the liquid mixtures to leave an air pocket of length L 0 at the top end. A Taylor bubble was formed by the inversion of the tube. The rising bubbles were detected by ultrasonic transducers located at the upper part of the tube. The velocity, the length and the pro le of the bubbles and the thickness of the liquid lm around them were obtained from the ultrasonic signals processing. The liquid lm thickness in the vertical tube was also determined by a graphic method that relates the bubble length L b with the initial length of the air pocket L 0 . It was observed that the bubble velocity decreased with increasing viscosity, while the lm thickness increased. It was shown that the liquid lm thickness determined by the graphic method fitted well the higher viscosities data, but overestimated the lower viscosities data. Additionally, the results indicated that some correlations developed to estimate the thickness of liquid films falling down inside/outside of tubes and down a plane surface could be applied to estimate the thickness of liquid films falling around Taylor bubbles in an Inverse Viscosity Number (N f ) range different to those considered in the literature. (author)

  5. Numerical simulation on single bubble rising behavior in liquid metal using moving particle semi-implicit method

    Zuo Juanli; Tian Wenxi; Qiu Suizheng; Chen Ronghua; Su Guanghui

    2011-01-01

    The gas-lift pump in liquid metal cooling fast reactor (LMFR) is an innovational conceptual design to enhance the natural circulation ability of reactor core. The two-phase flow character of gas-liquid metal makes significant improvement of the natural circulation capacity and reactor safety. In present basic study, the rising behavior of a single nitrogen bubble in five kinds of liquid metals (lead bismuth alloy, liquid kalium, sodium, potassium sodium alloy and lithium lead alloy) was numerically simulated using moving particle semi-implicit (MPS) method. The whole growing process of single nitrogen bubble in liquid metal was captured. The bubble shape and rising speed of single nitrogen bubble in each liquid metal were compared. The comparison between simulation results using MPS method and Grace graphical correlation shows a good agreement. (authors)

  6. The interaction between liquid motion and mass transfer induced by single rising bubble via PIV/LIE

    Yoshimoto, Kenjo; Yamamoto, Manabu; Sone, Daiji; Saito, Takayuki

    2009-01-01

    Deep understanding of gas-liquid two phase flows is essential for safe operation and high efficiency of nuclear reactors, chemical reactors and so on. In this study, we focus on the process of mass transfer induced by a single rising bubble. The mass transfer process of a zigzag ascending single bubble is investigated via LIF (Laser Induced Fluorescence) and PIV (Particle Image Velocimetry). From these results, we discuss the relationship between the mass transfer and the surrounding liquid motion of the single bubble. We examined single CO 2 -bubbles of 2-3 mm in equivalent diameter, which shows zigzagging motion in rest water. To directly visualize the dynamic mass transfer of CO 2 from the bubble surface to the surrounding liquid, HPTS (8-hydroxypyrene-1, 3, 6-trisulfonic acid) was used as a fluorescent substance for LIF. From LIF results, it was observed that the CO 2 -rich regions were spread by advective flow in the rest water as horseshoe-like vortices. From LIF results combined with the PIV results, it was observed that the horseshoe-like vortices were transported by the fast upward flow (buoyancy driven flow). Especially, in the case of a larger-diameter bubble with large shape oscillations, the high turbulence intensity (in a strict sense, fluctuation intensity of the liquid-phase velocity) was observed. The CO 2 -rich regions spread over a wide range by the strong flow. As a result, it is considered that the high turbulence intensity which was caused by the shape oscillations enhances the mass transportation from the bubble to the surrounding liquid. (author)

  7. Numerical simulation of single bubbles rising through subchannels with interface tracking method

    Hiroyuki Yoshida; Takuji Nagayoshi; Hidesada Tamai; Tazuyuki Takase; Hajime Akimoto

    2005-01-01

    Full text of publication follows: Although the sub-channel codes are used for the thermal-hydraulic analysis of fuel bundles in nuclear reactors from the former, many compositions and empirical equations based on experimental results are needed to predict the two-phase flow behavior in details. When there are no experimental data such as the reduced-moderation light water reactor (RMWR) which is studied by the Japan Atomic Energy Research Institute (JAERI), therefore, it is very difficult to obtain highly precise predictions. The RMWR core has remarkably narrow gap spacing between fuel rods (i.e., around 1 mm) which are arranged at a triangular tight-lattice configuration. To evaluate the feasibility and to optimize the thermal design of the RMWR core, a full-scale bundle test is required. However, several systematic full-scale tests are difficult to perform during an initial design phase from economic and temporal reason. Thus, we made a plan to develop a mechanistic BT model to evaluate the effects of the geometry configuration by a two-phase flow numerical simulation. In the plan of the mechanistic BT model development, three dimensional two-phase flow simulation codes with the interface tracking method, the moving particle semi-implicit method and the advanced two-fluid model are developed. In this study, as a part of this model development, detailed two-phase flow simulation code using interface tracking method (named TPFIT) is developed. In this paper, the results of TPFIT code with the advanced interface tracking method applied to single bubbles behavior through subchannels) to verify TPFIT code performance in complicated flow channel as rod bundles. In the simulation, the flow channel is composed of a square duct and four tubes with outside diameters D = 12 mm. The width and height of the duct are 27.2 mm and 192 mm, respectively. In the flow channel, the tubes are used to simulate fuel rods. One center subchannel and four periphery subchannels exist in the

  8. A review on rising bubble dynamics in viscosity-stratified fluids

    Kirti Chandra Sahu

    Multiphase flow; non-Newtonian; immiscible fluids; bubbles; numerical simulations. 1. Introduction. The fluid dynamics of a gas bubble rising due to buoyancy in a surrounding .... Figure 2. Behaviour of a single bubble rising in quiescent liquid.

  9. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  10. Single bubble sonoluminescence

    Brenner, Michael P.; Hilgenfeldt, Sascha; Lohse, Detlef

    2002-01-01

    Single-bubble sonoluminescence occurs when an acoustically trapped and periodically driven gas bubble collapses so strongly that the energy focusing at collapse leads to light emission. Detailed experiments have demonstrated the unique properties of this system: the spectrum of the emitted light

  11. Hydrodynamics in a swarm of rising bubbles

    Riboux, G.

    2007-04-01

    In many applications, bubbles are used to agitate a liquid in order to enhance mixing and transfer. This work is devoted to the study of the hydrodynamics in a stable bubble column. Experimentally, we have determined the properties of the velocity fluctuations inside and behind a homogeneous swarm of rising bubbles for different bubble sizes and gas volume fractions α: self-similarity in α 0,4 , spectrum in k -3 and integral length scale controlled by buoyancy. Numerically, we have reproduced these properties by means of large-scale simulations, the bubbles being modeled by volume-forces. This confirms that the dynamics is controlled by wake interactions. (author)

  12. Numerical analysis of bubble rising behavior in a liquid metal using MPS

    Chen Ronghua; Tian Wenxi; Zuo Juanli; Su Guanghui; Qiu Suizheng; Xu Jianhui

    2011-01-01

    Moving Particle Semi-Implicit (MPS) Method has advantages over the traditional mesh-based methods in the accurate capture of the vapor-liquid interface. In the present study, the numerical simulation of single bubble rising behavior in the liquid Pb-Bi alloy had been performed. The numerical results are provided for bubble shape deformation and rising velocity. Numerical simulation results indicate that as the bubble rises, the bubble exhibits in turn spherical, dimpled ellipsoidal, spherical-cap shapes. Terminal velocity of the bubble predicted by MPS agrees well with that predicted by Grace and increases with the initial bubble diameter. (authors)

  13. Numerical simulation of the electrohydrodynamic effects on bubble rising using the SPH method

    Rahmat, A.; Tofighi, N.; Yildiz, M.

    2016-01-01

    Highlights: • An oil-water bubble rising system is simulated under the electrohydrodynamic effects using ISPH method. • The bubble aspect ratio increases by incrementing electrical capillary and Reynolds numbers, and decrementing the Bond number. • The centroid velocity increases with increments of electric capillary and Reynolds number. • Negative values of the bottom velocity are observed due to the pulling effect of the bottom boundary. • The distance between the bubble centroids decreases in vertically in-line bubble pairs. - Abstract: In this paper, numerical simulations of two dimensional bubble rising in the presence of electrohydrodynamic forces are presented. The physical properties of the bubble and the background fluid are adjusted to resemble an oil-water system. The numerical technique utilized to discretize the governing equations is the Lagrangian Incompressible Smoothed Particle Hydrodynamics (ISPH) method. A single bubble is subjected to an electric field using a leaky dielectric model under different values of Reynolds, Bond and electrical Capillary numbers. The results show that the bubble elongates in the direction of the electric field forming a prolate shape. The increase in the values of Reynolds and electrical Capillary numbers enhances prolate deformation of the bubble, but raising the Bond number reduces the prolateness of the bubble. The interaction of a bubble pair is also investigated for various configurations. If the bubbles are placed such that their centroids are vertically in-line, they tend to merge due to the initial prolate deformation. However, the bubbles do not merge for off center-oriented cases.

  14. On Bubble Rising in Countercurrent Flow

    Večeř, M.; Leštinský, P.; Wichterle, K.; Růžička, Marek

    2012-01-01

    Roč. 10, č. 2012 (2012), A30 ISSN 1542-6580 R&D Projects: GA ČR GA104/09/0972; GA ČR GA104/07/1110 Grant - others:GA MŠMT(CZ) CZ.1.05/2.1.00/03.0069 Institutional support: RVO:67985858 Keywords : ellipsoidal bubble * bubble shape * bubble velocity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.790, year: 2011

  15. Development of the bubble rise model in RELAP-UK

    Holmes, J.A.

    1977-11-01

    Several improvements have been made to the 'bubble rise calculation' in the code RELAP-UK, which models the separation of the steam and water phases within specified volumes of the coolant circuit. The bubble rise velocity and the bubble density gradient parameter are no longer necessarily user-defined constants, as the code can calculate their values at each time step according to the local fluid conditions. In particular, the calculation of the bubble rise velocity is consistent with the RELAP-UK drift flux correlation. It is now possible to represent a vertical column by a stack of vertically-adjacent bubble-rise volumes. Any mixture level existing within the column can freely pass between the volumes in the stack. The facilities are demonstrated in this paper by a simple computational example. (author)

  16. Bubble Swarm Rise Velocity in Fluidized Beds.

    Punčochář, Miroslav; Růžička, Marek; Šimčík, Miroslav

    2016-01-01

    Roč. 152, OCT 2 (2016), s. 84-94 ISSN 0009-2509 R&D Projects: GA ČR(CZ) GA15-05534S Institutional support: RVO:67985858 Keywords : bubbling fluidized bed * gas-solid * bubble swarm velocity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.895, year: 2016

  17. From Rising Bubble to RNA/DNA and Bacteria

    Marks, Roman; Cieszyńska, Agata; Wereszka, Marzena; Borkowski, Wojciech

    2017-04-01

    In this study we have focused on the movement of rising bubbles in a salty water body. Experiments reviled that free buoyancy movement of bubbles forces displacement of ions, located on the outer side of the bubble wall curvatures. During the short moment of bubble passage, all ions in the vicinity of rising bubble, are separated into anions that are gathered on the bubble upper half sphere and cations that slip along the bottom concave half-sphere of a bubble and develop a sub-bubble vortex. The principle of ions separation bases on the differences in displacement resistance. In this way, relatively heavier and larger, thus more resistant to displacement anions are gathered on the rising bubble upper half sphere, while smaller and lighter cations are assembled on the bottom half sphere and within the sub-bubble vortex. The acceleration of motion generates antiparallel rotary of bi-ionic domains, what implies that anions rotate in clockwise (CW) and cationic in counter-clockwise (CCW) direction. Then, both rotational systems may undergo splicing and extreme condensing by bi-pirouette narrowing of rotary. It is suggested that such double helix motion of bi-ionic domains creates RNA/DNA molecules. Finally, when the bubble reaches the water surface it burst and the preprocessed RNA/DNA matter is ejected into the droplets. Since that stage, droplet is suspended in positively charged troposphere, thus the cationic domain is located in the droplet center, whilst negative ions are attracted to configure the outer areola. According to above, the present study implies that the rising bubbles in salty waters may incept synergistic processing of matter resulting in its rotational/spherical organization that led to assembly of RNA/DNA molecules and bacteria cells.

  18. Measuring the diameter of rising gas bubbles by means of the ultrasound transit time technique

    Richter, T., E-mail: Thomas.Richter6@tu-dresden.de; Eckert, K., E-mail: Kerstin.Eckert@tu-dresden.de; Yang, X.; Odenbach, S.

    2015-09-15

    Highlights: • Ultrasound transit time technique (UTTT) is applied to the zig-zag raise of gas bubble. • Comparison of bubble diameter and tilt, measured by UTTT, with high-speed imaging. • Uncertainty in the determination of the bubble diameter by UTTT is less than 7%. • UTTT is able to measure dynamic changes in bubble size in opaque liquids and vessels. • UTTT can be applied to liquid metal loops. - Abstract: This study presents ultrasound transit time technique (UTTT) measurements of the diameter variations of single argon bubbles rising in a zig-zag trajectory in water. Simultaneous size measurements with a high-speed camera show that UTTT resolves both the apparent diameter and the tilt of the bubble axis with an accuracy of better than 7%. This qualifies UTTT for the measurement of bubble sizes in opaque liquids, such as liquid metals, or vessels.

  19. A simple parameterization for the rising velocity of bubbles in a liquid pool

    Park, Sung Hoon [Dept. of Environmental Engineering, Sunchon National University, Suncheon (Korea, Republic of); Park, Chang Hwan; Lee, Jin Yong; Lee, Byung Chul [FNC Technology, Co., Ltd., Yongin (Korea, Republic of)

    2017-06-15

    The determination of the shape and rising velocity of gas bubbles in a liquid pool is of great importance in analyzing the radioactive aerosol emissions from nuclear power plant accidents in terms of the fission product release rate and the pool scrubbing efficiency of radioactive aerosols. This article suggests a simple parameterization for the gas bubble rising velocity as a function of the volume-equivalent bubble diameter; this parameterization does not require prior knowledge of bubble shape. This is more convenient than previously suggested parameterizations because it is given as a single explicit formula. It is also shown that a bubble shape diagram, which is very similar to the Grace's diagram, can be easily generated using the parameterization suggested in this article. Furthermore, the boundaries among the three bubble shape regimes in the E{sub o}–R{sub e} plane and the condition for the bypass of the spheroidal regime can be delineated directly from the parameterization formula. Therefore, the parameterization suggested in this article appears to be useful not only in easily determining the bubble rising velocity (e.g., in postulated severe accident analysis codes) but also in understanding the trend of bubble shape change due to bubble growth.

  20. A simple parameterization for the rising velocity of bubbles in a liquid pool

    Park, Sung Hoon; Park, Chang Hwan; Lee, Jin Yong; Lee, Byung Chul

    2017-01-01

    The determination of the shape and rising velocity of gas bubbles in a liquid pool is of great importance in analyzing the radioactive aerosol emissions from nuclear power plant accidents in terms of the fission product release rate and the pool scrubbing efficiency of radioactive aerosols. This article suggests a simple parameterization for the gas bubble rising velocity as a function of the volume-equivalent bubble diameter; this parameterization does not require prior knowledge of bubble shape. This is more convenient than previously suggested parameterizations because it is given as a single explicit formula. It is also shown that a bubble shape diagram, which is very similar to the Grace's diagram, can be easily generated using the parameterization suggested in this article. Furthermore, the boundaries among the three bubble shape regimes in the E_o–R_e plane and the condition for the bypass of the spheroidal regime can be delineated directly from the parameterization formula. Therefore, the parameterization suggested in this article appears to be useful not only in easily determining the bubble rising velocity (e.g., in postulated severe accident analysis codes) but also in understanding the trend of bubble shape change due to bubble growth

  1. Exploring the mechanisms of rising bubbles in marine biofouling prevention

    Menesses, Mark; Belden, Jesse; Dickenson, Natasha; Bird, James

    2015-11-01

    Fluid motion, such as flow past a ship, is known to inhibit the growth of marine biofouling. Bubbles rising along a submerged structure also exhibit this behavior, which is typically attributed to buoyancy induced flow. However, the bubble interface may also have a direct influence on inhibiting growth that is independent of the surrounding flow. Here we aim to decouple these two mechanisms through a combination of field and laboratory experiments. In this study, a wall jet and a stream of bubbles are used to create two flows near a submerged solid surface where biofouling occurs. The flow structure characteristics were recorded using PIV. This experimental analysis allows for us to compare the efficacy of each flow relative to its flow parameters. Exploration of the mechanisms at play in the prevention of biofouling by use of rising bubbles provides a foundation to predict and optimize this antifouling technique under various conditions.

  2. The terminal rise velocity of bubble in a liquid column

    Mario Ar Talaia

    2005-01-01

    Full text of publication follows: As it is know, buoyancy and drag forces govern bubble rising velocity in a liquid column. These forces strongly depend on fluid proprieties and gravity as well as bubble equivalent diameter. The present work reports about a set of experiments bubble rising velocity in a liquid column using liquid with different kinematics viscosity. Records of terminal velocity were obtained, over a wide range of dynamic viscosity. The results show that the terminal rise velocity of bubble is strongly influenced by the effect of kinematics viscosity. The interpretation of physical phenomenon is considered. The set data permit to have a game of terminal velocities of 7.96 - 32.86 cm.s -1 with Reynolds number of 0.8 - 7491. The bubble movement is recorded with a camera video, which will be presented. Our aim goal is to present an original set data and the results are discussed in light of theory of two-phase flow. Prediction of bubble terminal velocity is discussed, so as, the range of applicability. (author)

  3. Bubble levitation and translation under single-bubble sonoluminescence conditions.

    Matula, Thomas J

    2003-08-01

    Bubble levitation in an acoustic standing wave is re-examined for conditions relevant to single-bubble sonoluminescence. Unlike a previous examination [Matula et al., J. Acoust. Soc. Am. 102, 1522-1527 (1997)], the stable parameter space [Pa,R0] is accounted for in this realization. Forces such as the added mass force and drag are included, and the results are compared with a simple force balance that equates the Bjerknes force to the buoyancy force. Under normal sonoluminescence conditions, the comparison is quite favorable. A more complete accounting of the forces shows that a stably levitated bubble does undergo periodic translational motion. The asymmetries associated with translational motion are hypothesized to generate instabilities in the spherical shape of the bubble. A reduction in gravity results in reduced translational motion. It is hypothesized that such conditions may lead to increased light output from sonoluminescing bubbles.

  4. Dynamics of a bubble rising in gravitational field

    De Bernardis Enrico

    2016-03-01

    Full Text Available The rising motion in free space of a pulsating spherical bubble of gas and vapour driven by the gravitational force, in an isochoric, inviscid liquid is investigated. The liquid is at rest at the initial time, so that the subsequent flow is irrotational. For this reason, the velocity field due to the bubble motion is described by means of a potential, which is represented through an expansion based on Legendre polynomials. A system of two coupled, ordinary and nonlinear differential equations is derived for the vertical position of the bubble center of mass and for its radius. This latter equation is a modified form of the Rayleigh-Plesset equation, including a term proportional to the kinetic energy associated to the translational motion of the bubble.

  5. Single DNA denaturation and bubble dynamics

    Metzler, Ralf; Ambjoernsson, Tobias; Hanke, Andreas; Fogedby, Hans C

    2009-01-01

    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation bubbles and selectively single-stranded DNA binding proteins.

  6. Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field

    Jin, K.; Kumar, P.; Vanka, S. P., E-mail: spvanka@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Thomas, B. G. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Mechanical Engineering, Colorado School of Mines, Brown Hall W370-B, 1610 Illinois Street, Golden, Colorado 80401 (United States)

    2016-09-15

    The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong [“Deformation and oscillations of a single gas bubble rising in a narrow vertical tube,” Int. J. Therm. Sci. 47, 221–228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.

  7. Rise of an argon bubble in liquid steel in the presence of a transverse magnetic field

    Jin, K.; Kumar, P.; Vanka, S. P.; Thomas, B. G.

    2016-01-01

    The rise of gaseous bubbles in viscous liquids is a fundamental problem in fluid physics, and it is also a common phenomenon in many industrial applications such as materials processing, food processing, and fusion reactor cooling. In this work, the motion of a single argon gas bubble rising in quiescent liquid steel under an external magnetic field is studied numerically using a Volume-of-Fluid method. To mitigate spurious velocities normally generated during numerical simulation of multiphase flows with large density differences, an improved algorithm for surface tension modeling, originally proposed by Wang and Tong [“Deformation and oscillations of a single gas bubble rising in a narrow vertical tube,” Int. J. Therm. Sci. 47, 221–228 (2008)] is implemented, validated and used in the present computations. The governing equations are integrated by a second-order space and time accurate numerical scheme, and implemented on multiple Graphics Processing Units with high parallel efficiency. The motion and terminal velocities of the rising bubble under different magnetic fields are compared and a reduction in rise velocity is seen in cases with the magnetic field applied. The shape deformation and the path of the bubble are discussed. An elongation of the bubble along the field direction is seen, and the physics behind these phenomena is discussed. The wake structures behind the bubble are visualized and effects of the magnetic field on the wake structures are presented. A modified drag coefficient is obtained to include the additional resistance force caused by adding a transverse magnetic field.

  8. Bubble dynamics and bubble-induced turbulence of a single-bubble chain

    Lee, Joohyoung; Park, Hyungmin

    2016-11-01

    In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.

  9. Single DNA denaturation and bubble dynamics

    Metzler, Ralf; Ambjörnsson, Tobias; Hanke, Andreas

    2009-01-01

    While the Watson-Crick double-strand is the thermodynamically stable state of DNA in a wide range of temperature and salt conditions, even at physiological conditions local denaturation bubbles may open up spontaneously due to thermal activation. By raising the ambient temperature, titration......, or by external forces in single molecule setups bubbles proliferate until full denaturation of the DNA occurs. Based on the Poland-Scheraga model we investigate both the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles with respect to recent single DNA chain experiments...... for situations below, at, and above the denaturation transition. We also propose a new single molecule setup based on DNA constructs with two bubble zones to measure the bubble coalescence and extract the physical parameters relevant to DNA breathing. Finally we consider the interplay between denaturation...

  10. Study of the rise of gas bubbles in a viscous liquid. Stability and speed. Bibliographical study

    Dahan, Gilbert

    1969-01-01

    This short thesis reports a bibliographical study on the movement of gas bubbles in viscous liquids. The author addresses the formation of gas bubbles in liquids of different viscosity (devices used for the formation of bubbles in viscous liquids, formation of bubbles at a hole), and the behaviour of bubbles rising in viscous liquids and more particularly the speed and shape of these bubbles [fr

  11. The hydrodynamics of bubble rise and impact with solid surfaces.

    Manica, Rogerio; Klaseboer, Evert; Chan, Derek Y C

    2016-09-01

    A bubble smaller than 1mm in radius rises along a straight path in water and attains a constant speed due to the balance between buoyancy and drag force. Depending on the purity of the system, within the two extreme limits of tangentially immobile or mobile boundary conditions at the air-water interface considerably different terminal speeds are possible. When such a bubble impacts on a horizontal solid surface and bounces, interesting physics can be observed. We study this physical phenomenon in terms of forces, which can be of colloidal, inertial, elastic, surface tension and viscous origins. Recent advances in high-speed photography allow for the observation of phenomena on the millisecond scale. Simultaneous use of such cameras to visualize both rise/deformation and the dynamics of the thin film drainage through interferometry are now possible. These experiments confirm that the drainage process obeys lubrication theory for the spectrum of micrometre to millimetre-sized bubbles that are covered in this review. We aim to bridge the colloidal perspective at low Reynolds numbers where surface forces are important to high Reynolds number fluid dynamics where the effect of the surrounding flow becomes important. A model that combines a force balance with lubrication theory allows for the quantitative comparison with experimental data under different conditions without any fitting parameter. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Numerical simulation of single bubble boiling behavior

    Junjie Liu

    2017-06-01

    Full Text Available The phenomena of a single bubble boiling process are studied with numerical modeling. The mass, momentum, energy and level set equations are solved using COMSOL multi-physics software. The bubble boiling dynamics, the transient pressure field, velocity field and temperature field in time are analyzed, and reasonable results are obtained. The numeral model is validated by the empirical equation of Fritz and could be used for various applications.

  13. Effects of gravity level on bubble formation and rise in low-viscosity liquids

    Suñol, Francesc; González-Cinca, Ricard

    2015-05-01

    We present an experimental analysis of the effects of gravity level on the formation and rise dynamics of bubbles. Experiments were carried out with millimeter-diameter bubbles in the hypergravity environment provided by the large-diameter centrifuge of the European Space Agency. Bubble detachment from a nozzle is determined by buoyancy and surface tension forces regardless of the gravity level. Immediately after detachment, bubble trajectory is deviated by the Coriolis force. Subsequent bubble rise is dominated by inertial forces and follows a zig-zag trajectory with amplitude and frequency dependent on the gravity level. Vorticity production is enhanced as gravity increases, which destabilizes the flow and therefore the bubble path.

  14. Resolving single bubble sonoluminescence flask width

    Arakeri, Vijay H

    1998-01-01

    Single bubble sonoluminescence (SBSL), first studied and observed by Gaitan et al., is the of light emission from a single gas bubble trapped at the pressure maximum of a resonant sound field in a liquid medium, generally water. One of the most striking aspects of SBSL was the estimated optical flash width being less than 50 picoseconds (ps)3; this upper estimate was based on the relative response of a SBSL flash in comparison to a 34 ps laser pulse using a microchannel platephotomultiplier ...

  15. Numerical Study on Mass Transfer of a Vapor Bubble Rising in Very High Viscous Fluid

    T. Kunugi

    2014-09-01

    Full Text Available This study focused on a bubble rising behavior in a molten glass because it is important to improve the efficiency of removal of bubbles from the molten glass. On the other hand, it is expected that some gas species which exists in a bubble are transferred into the molten glass through the bubble interface, i.e., the mass transfer, subsequently, it may cause a bubble contraction in the molten glass. In this paper, in order to understand the bubble rising behavior with its contraction caused by the mass transfer through the bubble interface in the very high viscous fluid such as the molten glass, a bubble contraction model has been developed. The direct numerical simulations based on the MARS (Multi-interface Advection and Reconstruction Solver coupled with the mass transfer equation and the bubble contraction model regarding the mass transfer from the rising bubble in very high viscous fluid have been performed. Here, the working fluids were water vapor as the gas species and the molten glass as the very high viscous fluid. Also, the jump conditions at the bubble interface for the mass transfer were examined. Furthermore, the influence of the bubble contraction for the bubble rising compared to that in the water as a normal viscous fluid was investigated. From the result of the numerical simulations, it was found that the bubble rising behavior was strongly affected not only by the viscosity of the working fluid but also by the bubble contraction due to the mass transfer through the bubble interface.

  16. Wall Shear Stress Induced by a Large Bubble Rising in an Inclined Rectangular Channel

    Tihon, Jaroslav; Pěnkavová, Věra; Vejražka, Jiří

    2014-01-01

    Roč. 67, DEC (2014), s. 76-87 ISSN 0301-9322 R&D Projects: GA ČR(CZ) GAP101/12/0585 Institutional support: RVO:67985858 Keywords : taylor bubble * bubble rise velocity * bubble shape Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.061, year: 2014

  17. Numerical investigation of interaction between rising bubbles in a viscous liquid

    Yoon, Ik Roh [Korea Institute of Marine Science and Technology Promotion, Seoul (Korea, Republic of); Shin Seung Won [Hongik University, Seoul (Korea, Republic of)

    2016-07-15

    The rising behavior of bubbles undergoing bubble-bubble interaction in a viscous liquid is studied using a two-dimensional direct numerical simulation. Level contour reconstruction method (LCRM), one of the connectivity-free front tracking methods, is applied to describe a moving interface accurately under highly deformable conditions. This work focuses on the effects of bubble size on the interaction of two bubbles rising side-by-side in a stagnant liquid. Several characteristics of bubble-bubble interaction are analyzed quantitatively as supported by energy analysis. The results showed clear differences between small and large bubbles with respect to their interaction behavior in terms of lateral movement, vortex intensity, suppression of surface deformation, and viscous dissipation rate. Distributions of vorticity and viscous dissipation rate near the bubble interfaces also differed depending on the size of the bubbles. Strong vortices from large bubbles triggered oscillation in bubble-bubble interaction and played a dominant role in the interaction process as the size of bubbles increases.

  18. Sono-chemiluminescence from a single cavitation bubble in water

    Brotchie, Adam; Shchukin, Dmitry; Moehwald, Helmuth; Schneider, Julia; Pflieger, Rachel

    2012-01-01

    In summary, this study has revealed the conditions required for a single bubble to be sono-chemically active. Evidence of radical-induced processes surrounding the bubble was only observed below the SL threshold, where the bubble was not spatially stable, and did not correlate with emission from excited molecular states inside the bubble. Moreover, this work substantiates recent progress that has been made in bridging the gap between single and multi-bubble cavitation. (authors)

  19. Combined effect of viscosity and vorticity on single mode Rayleigh-Taylor instability bubble growth

    Banerjee, Rahul; Mandal, Labakanta; Roy, S.; Khan, M.; Gupta, M. R.

    2011-01-01

    The combined effect of viscosity and vorticity on the growth rate of the bubble associated with single mode Rayleigh-Taylor instability is investigated. It is shown that the effect of viscosity on the motion of the lighter fluid associated with vorticity accumulated inside the bubble due to mass ablation may be such as to reduce the net viscous drag on the bubble exerted by the upper heavier fluid as the former rises through it.

  20. Modeling the dynamics of single-bubble sonoluminescence

    Vignoli, Lucas L; De Barros, Ana L F; Thomé, Roberto C A; Nogueira, A L M A; Paschoal, Ricardo C; Rodrigues, Hilário

    2013-01-01

    Sonoluminescence (SL) is the phenomenon in which acoustic energy is (partially) transformed into light. It may occur by means of one bubble or many bubbles of gas inside a liquid medium, giving rise to the terms single-bubble and multi-bubble sonoluminescence (SBSL and MBSL). In recent years some models have been proposed to explain this phenomenon, but there is still no complete theory for the light-emission mechanism (especially in the case of SBSL). In this paper, we do not address this more complicated specific issue, but only present a simple model describing the dynamical behavior of the sonoluminescent bubble in the SBSL case. Using simple numerical techniques within the Matlab software package, we discuss solutions that consider various possibilities for some of the parameters involved: liquid compressibility, surface tension, viscosity and type of gas. The model may be used for an introductory study of SL on undergraduate or graduate physics courses, and as a clarifying example of a physical system exhibiting large nonlinearity. (paper)

  1. Force acting on a spherical bubble rising through a quiescent liquid

    Takagi, Shu; Matsumoto, Yoichiro

    1996-01-01

    The direct numerical simulation is performed on the spherical bubble unsteadily rising through a quiescent liquid. The method is based on a finite-volume solution of the equations on an orthogonal curvilinear coordinate system. The calculations are performed for a bubble rising through a clean liquid and contaminated one. Following the former experimental results, the tangential stress free condition is given for a clean bubble, and no-slip condition for contaminated one. The numerical results are compared with those of the model equation of the translational motion of the bubble, which is often used in numerical models of a bubbly flow. The steady drag, added mass and history terms are checked up by the comparison. It is revealed that the history force effect is negligible for a bubble rising through the clean liquid beyond Re=O(50). From the numerical point of view, the fact that the history force is negligible is quite important, because it reduces the calculation time and memory for a bubbly flow model. For a contaminated bubble, history force effect is not negligible even though the Reynolds number is high enough. It is found that the expression of the history force by Basset kernel gives an over-estimation of the history force for the bubble rising at moderate Reynolds number. This error becomes larger with increasing Reynolds number and it reduces the accuracy to calculate the bubble motion by the model equation. (author)

  2. Improvement of the bubble rise velocity model in the pressurizer using ALMOD 3 computer code to calculate evaporation

    Madeira, A.A.

    1985-01-01

    It's studied the improvement for the calculation of bubble rise velocity, by adding two different ways to estimate this velocity, one of which more adequate to pressures normally found in the Reactor Cooling System. Additionally, a limitation in bubble rise velocity growth was imposed, to account for the actual behavior of bubble rise in two-phase mixtures. (Author) [pt

  3. Visualisation of gas-liquid mass transfer around a rising bubble in a quiescent liquid using an oxygen sensitive dye

    Dietrich, Nicolas; Hebrard, Gilles

    2018-02-01

    An approach for visualizing and measuring the mass transfer around a single bubble rising in a quiescent liquid is reported. A colorimetric technique, developed by (Dietrich et al. Chem Eng Sci 100:172-182, 2013) using an oxygen sensitive redox dye was implemented. It was based on the reduction of the colorimetric indicator in presence of oxygen, this reduction being catalysed by sodium hydroxide and glucose. In this study, resazurin was selected because it offered various reduced forms with colours ranging from transparent (without oxygen) to pink (in presence of oxygen). These advantages made it possible to visualize the spatio-temporal oxygen mass transfer around rising bubbles. Images were recorded by a CCD camera and, after post-processing, the shape, size, and velocity of the bubbles were measured and the colours around the bubbles mapped. A calibration, linking the level of colour with the dissolved oxygen concentration, enabled colour maps to be converted into oxygen concentration fields. A rheoscopic fluid was used to visualize the wake of the bubbles. A calculation method was also developed to determine the transferred oxygen fluxes around bubbles of two sizes (d = 0.82 mm and d = 2.12 mm) and the associated liquid-side mass transfer coefficients. The results compared satisfactorily with classical global measurements made by oxygen micro-sensors or from the classical models. This study thus constitutes a striking example of how this new colorimetric method could become a remarkable tool for exploring gas-liquid mass transfer in fluids.

  4. Single-bubble boiling under Earth's and low gravity

    Khusid, Boris; Elele, Ezinwa; Lei, Qian; Tang, John; Shen, Yueyang

    2017-11-01

    Miniaturization of electronic systems in terrestrial and space applications is challenged by a dramatic increase in the power dissipation per unit volume with the occurrence of localized hot spots where the heat flux is much higher than the average. Cooling by forced gas or liquid flow appears insufficient to remove high local heat fluxes. Boiling that involves evaporation of liquid in a hot spot and condensation of vapor in a cold region can remove a significantly larger amount of heat through the latent heat of vaporization than force-flow cooling can carry out. Traditional methods for enhancing boiling heat transfer in terrestrial and space applications focus on removal of bubbles from the heating surface. In contrast, we unexpectedly observed a new boiling regime of water under Earth's gravity and low gravity in which a bubble was pinned on a small heater up to 270°C and delivered a heat flux up to 1.2 MW/m2 that was as high as the critical heat flux in the classical boiling regime on Earth .Low gravity measurements conducted in parabolic flights in NASA Boeing 727. The heat flux in flight and Earth's experiments was found to rise linearly with increasing the heater temperature. We will discuss physical mechanisms underlying heat transfer in single-bubble boiling. The work supported by NASA Grants NNX12AM26G and NNX09AK06G.

  5. Cutting bubbles with a single wire

    Baltussen, M.W.; Segers, Q.I.E.; Kuipers, J.A.M.; Deen, N.G.

    2017-01-01

    Many gas-liquid-solid contactors, such as trickle bed and bubble slurry columns, suffer from heat and mass transfer limitations. To overcome these limitations, new micro-structured bubble column reactor is proposed. In this reactor, a catalyst coated wire mesh is introduced in a bubble column to cut

  6. Numerical simulation of single bubble dynamics under acoustic travelling waves.

    Ma, Xiaojian; Huang, Biao; Li, Yikai; Chang, Qing; Qiu, Sicong; Su, Zheng; Fu, Xiaoying; Wang, Guoyu

    2018-04-01

    The objective of this paper is to apply CLSVOF method to investigate the single bubble dynamics in acoustic travelling waves. The Naiver-Stokes equation considering the acoustic radiation force is proposed and validated to capture the bubble behaviors. And the CLSVOF method, which can capture the continuous geometric properties and satisfies mass conservation, is applied in present work. Firstly, the regime map, depending on the dimensionless acoustic pressure amplitude and acoustic wave number, is constructed to present different bubble behaviors. Then, the time evolution of the bubble oscillation is investigated and analyzed. Finally, the effect of the direction and the damping coefficient of acoustic wave propagation on the bubble behavior are also considered. The numerical results show that the bubble presents distinct oscillation types in acoustic travelling waves, namely, volume oscillation, shape oscillation, and splitting oscillation. For the splitting oscillation, the formation of jet, splitting of bubble, and the rebound of sub-bubbles may lead to substantial increase in pressure fluctuations on the boundary. For the shape oscillation, the nodes and antinodes of the acoustic pressure wave contribute to the formation of the "cross shape" of the bubble. It should be noted that the direction of the bubble translation and bubble jet are always towards the direction of wave propagation. In addition, the damping coefficient causes bubble in shape oscillation to be of asymmetry in shape and inequality in size, and delays the splitting process. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Level-set simulations of buoyancy-driven motion of single and multiple bubbles

    Balcázar, Néstor; Lehmkuhl, Oriol; Jofre, Lluís; Oliva, Assensi

    2015-01-01

    Highlights: • A conservative level-set method is validated and verified. • An extensive study of buoyancy-driven motion of single bubbles is performed. • The interactions of two spherical and ellipsoidal bubbles is studied. • The interaction of multiple bubbles is simulated in a vertical channel. - Abstract: This paper presents a numerical study of buoyancy-driven motion of single and multiple bubbles by means of the conservative level-set method. First, an extensive study of the hydrodynamics of single bubbles rising in a quiescent liquid is performed, including its shape, terminal velocity, drag coefficients and wake patterns. These results are validated against experimental and numerical data well established in the scientific literature. Then, a further study on the interaction of two spherical and ellipsoidal bubbles is performed for different orientation angles. Finally, the interaction of multiple bubbles is explored in a periodic vertical channel. The results show that the conservative level-set approach can be used for accurate modelling of bubble dynamics. Moreover, it is demonstrated that the present method is numerically stable for a wide range of Morton and Reynolds numbers.

  8. Optimization of the bubble radius in a moving single bubble sonoluminescence

    Mirheydari, Mona; Sadighi-Bonabi, Rasoul; Rezaee, Nastaran; Ebrahimi, Homa

    2011-01-01

    A complete study of the hydrodynamic force on a moving single bubble sonoluminescence in N-methylformamide is presented in this work. All forces exerted, trajectory, interior temperature and gas pressure are discussed. The maximum values of the calculated components of the hydrodynamic force for three different radii at the same driving pressure were compared, while the optimum bubble radius was determined. The maximum value of the buoyancy force appears at the start of bubble collapse, earlier than the other forces whose maximum values appear at the moment of bubble collapse. We verified that for radii larger than the optimum radius, the temperature peak value decreases.

  9. The "rising bubble" sign: a new aid in the diagnosis of unicameral bone cysts.

    Jordanov, Martin I

    2009-06-01

    The observation of a bubble of gas at the most non-dependent margin of a lytic bone lesion which has sustained a pathologic fracture implies that the lesion is hollow and can assist the radiologist in making the diagnosis of a unicameral bone cyst. The imaging studies of two patients who sustained pathologic fractures through unicameral bone cysts and exhibited the "rising bubble" sign are shown. The sign's basis, proper utilization, and potential pitfalls are discussed.

  10. The ''rising bubble'' sign: a new aid in the diagnosis of unicameral bone cysts

    Jordanov, Martin I.

    2009-01-01

    The observation of a bubble of gas at the most non-dependent margin of a lytic bone lesion which has sustained a pathologic fracture implies that the lesion is hollow and can assist the radiologist in making the diagnosis of a unicameral bone cyst. The imaging studies of two patients who sustained pathologic fractures through unicameral bone cysts and exhibited the ''rising bubble'' sign are shown. The sign's basis, proper utilization, and potential pitfalls are discussed. (orig.)

  11. Numerical modelling of inert gas bubble rising in liquid metal pool

    Pradeep, Arjun; Sharma, Anil Kumar; Ponraju, D.; Nashine, B K.

    2016-01-01

    Two-phase flow finds several applications in safe operation of Sodium-cooled Fast Reactor (SFR). Numerical modelling of bubble rise dynamics in liquid metal pool of SFR is essential for the evaluation of residence time and shape changes, which are of utmost importance for simulating associated heat and mass transfer processes involved in reactor safety. A numerical model has been developed based on OpenFOAM for the evaluation of two-dimensional inert gas bubble rise dynamics in stagnant liquid metal pool. The governing model equations are discretized and solved using the Volume of Fluid based solver available in OpenFOAM with appropriate initial and boundary conditions. The model has been validated with available numerical benchmark results for laminar transient two-phase flow. The model has been used to evaluate velocity and rise trajectory of argon gas bubble with different diameters through a pool of liquid sodium. (author)

  12. Stretching of material lines in pseudo-turbulence induced by small rising bubbles

    Tanaka, M; Tsujimura, Y; Kanatani, H

    2011-01-01

    Direct numerical simulations have been conducted for the stretching of material lines in pseudo-turbulence induced by small rising bubbles in order to understand the mixing characteristics of bubbly flows. Contaminated bubbles are considered and are treated as light solid particles. An immersed boundary method has been used for evaluating the coupling force between the bubbles and the surrounding fluid flows. Numerical results show that the total length of material lines increases exponentially in time as a result of stretching and folding due to the rising bubbles. The material lines tend to accumulate in the wake regions of the bubbles, and they are strongly stretched in the vertical direction there. It is also found that the stretching rate of material lines increases with the mean void fraction when it is normalized by the magnitude of the rate-of-strain tensor of liquid flow in pseudo-turbulence. In the case of high void fractions, material lines tend to align with the direction of maximum stretching, and are effectively stretched.

  13. Stretching of material lines in pseudo-turbulence induced by small rising bubbles

    Tanaka, M; Tsujimura, Y; Kanatani, H, E-mail: mtanaka@kit.ac.jp [Department of Mechanical and System Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2011-12-22

    Direct numerical simulations have been conducted for the stretching of material lines in pseudo-turbulence induced by small rising bubbles in order to understand the mixing characteristics of bubbly flows. Contaminated bubbles are considered and are treated as light solid particles. An immersed boundary method has been used for evaluating the coupling force between the bubbles and the surrounding fluid flows. Numerical results show that the total length of material lines increases exponentially in time as a result of stretching and folding due to the rising bubbles. The material lines tend to accumulate in the wake regions of the bubbles, and they are strongly stretched in the vertical direction there. It is also found that the stretching rate of material lines increases with the mean void fraction when it is normalized by the magnitude of the rate-of-strain tensor of liquid flow in pseudo-turbulence. In the case of high void fractions, material lines tend to align with the direction of maximum stretching, and are effectively stretched.

  14. Dynamics of the liquid film around elongated bubbles rising in vertical capillaries

    Magnini, Mirco; Khodaparast, Sepideh; Matar, Omar K.; Stone, Howard A.; Thome, John R.

    2017-11-01

    We performed a theoretical, numerical and experimental study on elongated bubbles rising in vertical tubes in co-current liquid flows. The flow conditions were characterized by capillary, Reynolds and Bond numbers within the range of Ca = 0.005 - 0.1 , Re = 1 - 2000 and Bo = 0 - 20 . Direct numerical simulations of the two-phase flows are run with a self-improved version of OpenFOAM, implementing a coupled Level Set and Volume of Fluid method. A theoretical model based on an extension of the traditional Bretherton theory, accounting for inertia and the gravity force, is developed to obtain predictions of the profiles of the front and rear menisci of the bubble, liquid film thickness and bubble velocity. Different from the traditional theory for bubbles rising in a stagnant liquid, the gravity force impacts the flow already when Bo < 4 . Gravity effects speed up the bubble compared to the Bo = 0 case, making the liquid film thicker and reducing the amplitude of the undulation on the surface of the bubble near its tail. Gravity effects are more apparent in the visco-capillary regime, i.e. when the Reynolds number is below 1.

  15. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  16. Effect of dissolved air content on single bubble sonoluminescence

    Arakeri, Vijay H

    1993-01-01

    It has been recently demonstrated that a single gas bubble in a liquid medium can be driven hard enough by an acoustic pressure field to make it emit light which is visible to the naked eye in a dark room. This phenomenon termed as single bubble sonoluminescence has shown some extraordinary physical properties. In the present investigation the author has shown that dissolved air content has a significant influence on this phenomenon.

  17. Vertical Rise Velocity of Equatorial Plasma Bubbles Estimated from Equatorial Atmosphere Radar Observations and High-Resolution Bubble Model Simulations

    Yokoyama, T.; Ajith, K. K.; Yamamoto, M.; Niranjan, K.

    2017-12-01

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPBs from a space weather point of view. The development of EPBs is presently believed as an evolution of the generalized Rayleigh-Taylor instability. We have already developed a 3D high-resolution bubble (HIRB) model with a grid spacing of as small as 1 km and presented nonlinear growth of EPBs which shows very turbulent internal structures such as bifurcation and pinching. As EPBs have field-aligned structures, the latitude range that is affected by EPBs depends on the apex altitude of EPBs over the dip equator. However, it was not easy to observe the apex altitude and vertical rise velocity of EPBs. Equatorial Atmosphere Radar (EAR) in Indonesia is capable of steering radar beams quickly so that the growth phase of EPBs can be captured clearly. The vertical rise velocities of the EPBs observed around the midnight hours are significantly smaller compared to those observed in postsunset hours. Further, the vertical growth of the EPBs around midnight hours ceases at relatively lower altitudes, whereas the majority of EPBs at postsunset hours found to have grown beyond the maximum detectable altitude of the EAR. The HIRB model with varying background conditions are employed to investigate the possible factors that control the vertical rise velocity and maximum attainable altitudes of EPBs. The estimated rise velocities from EAR observations at both postsunset and midnight hours are, in general, consistent with the nonlinear evolution of EPBs from the HIRB model.

  18. A comparative study of the lattice Boltzmann and volume of fluid method for the rising bubble flows

    Ryu, Seung Yeob; Park, Cheon Tae; Choi, Suhn [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Recently, the lattice Boltzmann method (LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over a conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with the way multiphase flows, complex geometries and interfacial dynamics may be treated. Nevertheless, the LBM is considered as a mere alternative CFD tools, not a promising approach. The motion of the bubbles in a liquid has been the focus of both academic and practical interest. The central problem is the relationship between the rise velocity, bubble shape due to the interface deformation and flow field. The buoyancy effect due to density difference in the two phase flows is characterized with Eotvos and Morton numbers. In this study, a single bubble rising under a buoyancy is simulated with LBM and VOF based on conventional CFD method. The two simulation results are compared with the previous experiments. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of multiphase or multi-component flows

  19. A comparative study of the lattice Boltzmann and volume of fluid method for the rising bubble flows

    Ryu, Seung Yeob; Park, Cheon Tae; Choi, Suhn

    2010-01-01

    Recently, the lattice Boltzmann method (LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over a conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with the way multiphase flows, complex geometries and interfacial dynamics may be treated. Nevertheless, the LBM is considered as a mere alternative CFD tools, not a promising approach. The motion of the bubbles in a liquid has been the focus of both academic and practical interest. The central problem is the relationship between the rise velocity, bubble shape due to the interface deformation and flow field. The buoyancy effect due to density difference in the two phase flows is characterized with Eotvos and Morton numbers. In this study, a single bubble rising under a buoyancy is simulated with LBM and VOF based on conventional CFD method. The two simulation results are compared with the previous experiments. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of multiphase or multi-component flows

  20. Effervescence in champagne and sparkling wines: From grape harvest to bubble rise

    Liger-Belair, Gérard

    2017-01-01

    Bubbles in a glass of champagne may seem like the acme of frivolity to most of people, but in fact they may rather be considered as a fantastic playground for any fluid physicist. Under standard tasting conditions, about a million bubbles will nucleate and rise if you resist drinking from your flute. The so-called effervescence process, which enlivens champagne and sparkling wines tasting, is the result of the complex interplay between carbon dioxide (CO2) dissolved in the liquid phase, tiny air pockets trapped within microscopic particles during the pouring process, and some both glass and liquid properties. In this tutorial review, the journey of yeast-fermented CO2 is reviewed (from its progressive dissolution in the liquid phase during the fermentation process, to its progressive release in the headspace above glasses). The most recent advances about the physicochemical processes behind the nucleation, and rise of gaseous CO2 bubbles, under standard tasting conditions, have been gathered hereafter. Let's hope that your enjoyment of champagne will be enhanced after reading this tutorial review dedicated to the unsuspected physics hidden right under your nose each time you enjoy a glass of bubbly.

  1. A Study of Heat Transfer and Flow Characteristics of Rising Taylor Bubbles

    Scammell, Alexander David

    2016-01-01

    Practical application of flow boiling to ground- and space-based thermal management systems hinges on the ability to predict the systems heat removal capabilities under expected operating conditions. Research in this field has shown that the heat transfer coefficient within two-phase heat exchangers can be largely dependent on the experienced flow regime. This finding has inspired an effort to develop mechanistic heat transfer models for each flow pattern which are likely to outperform traditional empirical correlations. As a contribution to the effort, this work aimed to identify the heat transfer mechanisms for the slug flow regime through analysis of individual Taylor bubbles.An experimental apparatus was developed to inject single vapor Taylor bubbles into co-currently flowing liquid HFE 7100. The heat transfer was measured as the bubble rose through a 6 mm inner diameter heated tube using an infrared thermography technique. High-speed flow visualization was obtained and the bubble film thickness measured in an adiabatic section. Experiments were conducted at various liquid mass fluxes (43-200 kgm2s) and gravity levels (0.01g-1.8g) to characterize the effect of bubble drift velocityon the heat transfer mechanisms. Variable gravity testing was conducted during a NASA parabolic flight campaign.Results from the experiments showed that the drift velocity strongly affects the hydrodynamics and heat transfer of single elongated bubbles. At low gravity levels, bubbles exhibited shapes characteristic of capillary flows and the heat transfer enhancement due to the bubble was dominated by conduction through the thin film. At moderate to high gravity, traditional Taylor bubbles provided small values of enhancement within the film, but large peaks in the wake heat transfer occurred due to turbulent vortices induced by the film plunging into the trailing liquid slug. Characteristics of the wake heat transfer profiles were analyzed and related to the predicted velocity field

  2. Ensemble correlation PIV applied to bubble plumes rising in a bubble column.

    Delnoij, E.; Westerweel, J.; Deen, N.G.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1999-01-01

    This paper discusses an ensemble correlation, double-exposure single-frame, particle image velocimetry (PIV) technique that can be applied to study dispersed gas¿liquid two-phase flows. The essentials of this technique will be reviewed and several important issues concerning the implementation of

  3. Numerical simulation of a bubble rising in an environment consisting of Xanthan gum

    Aguirre, Víctor A.; Castillo, Byron A.; Narvaez, Christian P.

    2017-09-01

    An improved numerical algorithm for front tracking method is developed to simulate a bubble rising in viscous liquid. In the new numerical algorithm, volume correction is introduced to conserve the bubble volume while tracking the bubble's rising and deforming. Volume flux conservation is adopted to solve the Navier-Stokes equation for fluid flow using finite volume method. Non-Newtonian fluids are widely used in industry such as feed and energy industries. In this research we used Xanthan gum which is a microbiological polysaccharide. In order to obtain the properties of the Xanthan gum, such as viscosity, storage and loss modulus, shear rate, etc., it was necessary to do an amplitude sweep and steady flow test in a rheometer with a concentric cylinder as geometry. Based on the data given and using a numerical regression, the coefficients required by Giesekus model are obtained. With these coefficients, it is possible to simulate the comportment of the fluid by the use of the developed algorithm. Once the data given by OpenFOAM is acquired, it is compared with the experimental data.

  4. Bubbles

    Dholakia, Nikhilesh; Turcan, Romeo V.

    2013-01-01

    A goal of our ongoing research stream is to develop a multidisciplinary metatheory of bubbles. In this viewpoint paper we put forward a typology of bubbles by comparing four types of assets – entertainment, commodities, financial securities (stocks), and housing properties – where bubbles could...... and do form occasionally. Cutting across and comparing such varied asset types provides some rich insights into the nature of bubbles – and offers an inductive way to arrive at the typology of bubbles....

  5. Modelling of glass refining kinetics-Part 1. Single bubbles

    Němec, Lubomír; Kloužek, Jaroslav

    2003-01-01

    Roč. 47, č. 3 (2003), s. 81-87 ISSN 0862-5468 R&D Projects: GA AV ČR IBS4032103 Institutional research plan: CEZ:AV0Z4032918 Keywords : glass melt * refining * single bubble Subject RIV: CA - Inorganic Chemistry Impact factor: 0.449, year: 2003

  6. Introduction of the bubble rise dynamic model into the ALMOD 3 code pressurizer

    Madeira, A.A.; Camargo, C.T.M.

    1985-01-01

    A new evaporation model for the ALMOD 3 code pressurizer is implemented in order to estimate more accurately the water level behaviour and its influence in the pressure transient for very fast depressurization cases. For the inclusion of the bubble rise dynamic model it was necessary to consider a two-phase mixture in the water volume. The modifications don't require additional input data and virtually had not modified the processing time. The results and processing time for the original and the new models are presented. (F.E.) [pt

  7. The effect of surfactants on path instability of a rising bubble

    Tagawa, Yoshiyuki; Takagi, Shu; Matsumoto, Yoichiro

    2013-11-01

    We experimentally investigate the surfactant effect on path instability of an air bubble rising in quiescent water. An addition of surfactant varies the gas-water boundary condition from zero shear stress to non-zero shear stress. We report three main findings: firstly, while the drag force acting on the bubble increases with the surfactant concentration as expected, the lift force shows a non-monotonic behavior; secondly, the transient trajectory starting from helical to zigzag is observed, which has never been reported in the case of purified water; lastly, a bubble with the intermediate slip conditions between free-slip and no-slip show a helical motion for a broad range of the Reynolds number. Aforementioned results are rationalized by considering the adsorption-desorption kinetics of the surfactants on gas-water interface and the wake dynamics. Y.T. thanks for financial support from Grant-in-Aid for JSPS Fellows (20-10701). We also thank for Grant-in-Aid for Scientific Research (B) (21360079).

  8. Study of stream flow effects on bubble motion

    Sami, S.S.

    1983-01-01

    The formation of air bubbles at constant-pressure by submerged orifices was investigated in both quiescent and moving streams inside a vertical tube. Parameters affecting the bubble rise velocity, such as bubble generating frequency and diameter, were studied and analyzed for bubbles rising in a chain and homogeneous mixture. A special technique for measuring bubble motion parameters has been developed, tested, and employed throughout the experimental investigation. The method is based on a water-air impedance variation. Results obtained in stagnant liquid show that increasing the bubble diameter serves to increase bubble rise velocity, while an opposite trend has been observed for stream liquid where the bubble diameter increase reduces the bubble rise velocity. The increase of bubble generation frequency generally increases the bubble rise velocity. Experimental data covered with bubble radial distribution showed symmetrical profiles of bubble velocity and frequency, and the radial distribution of the velocity profiles sometimes has two maxima and one minimum depending on the liquid velocity. Finally, in stagnant liquid, a normalized correlation has been developed to predict the terminal rise velocity in terms of bubble generating frequency, bubble diameter, single bubble rise velocity, and conduit dimensions. Another correlation is presented for forced bubbly flow, where the bubble rise velocity is expressed as a function of bubble generating frequency, bubble diameter, and water superficial velocity

  9. A numerical simulation of the water vapor bubble rising in ferrofluid by volume of fluid model in the presence of a magnetic field

    Shafiei Dizaji, A.; Mohammadpourfard, M.; Aminfar, H.

    2018-03-01

    Multiphase flow is one of the most complicated problems, considering the multiplicity of the related parameters, especially the external factors influences. Thus, despite the recent developments more investigations are still required. The effect of a uniform magnetic field on the hydrodynamics behavior of a two-phase flow with different magnetic permeability is presented in this article. A single water vapor bubble which is rising inside a channel filled with ferrofluid has been simulated numerically. To capture the phases interface, the Volume of Fluid (VOF) model, and to solve the governing equations, the finite volume method has been employed. Contrary to the prior anticipations, while the consisting fluids of the flow are dielectric, uniform magnetic field causes a force acting normal to the interface toward to the inside of the bubble. With respect to the applied magnetic field direction, the bubble deformation due to the magnetic force increases the bubble rising velocity. Moreover, the higher values of applied magnetic field strength and magnetic permeability ratio resulted in the further increase of the bubble rising velocity. Also it is indicated that the flow mixing and the heat transfer rate is increased by a bubble injection and applying a magnetic field. The obtained results have been concluded that the presented phenomenon with applying a magnetic field can be used to control the related characteristics of the multiphase flows. Compared to the previous studies, implementing the applicable cases using the common and actual materials and a significant reduction of the CPU time are the most remarkable advantages of the current study.

  10. Hydrodynamics in a swarm of rising bubbles; Hydrodynamique d'un essaim de bulles en ascension

    Riboux, G

    2007-04-15

    In many applications, bubbles are used to agitate a liquid in order to enhance mixing and transfer. This work is devoted to the study of the hydrodynamics in a stable bubble column. Experimentally, we have determined the properties of the velocity fluctuations inside and behind a homogeneous swarm of rising bubbles for different bubble sizes and gas volume fractions {alpha}: self-similarity in {alpha}{sup 0,4}, spectrum in k{sup -3} and integral length scale controlled by buoyancy. Numerically, we have reproduced these properties by means of large-scale simulations, the bubbles being modeled by volume-forces. This confirms that the dynamics is controlled by wake interactions. (author)

  11. Localized Tissue Surrogate Deformation due to Controlled Single Bubble Cavitation

    2014-08-27

    studies using ultrasound shock waves also support cavitation induced damage, e.g. hemorrhage and cellular membrane poration 26-28. In addition...SECURITY CLASSIFICATION OF: Cavitation -induced shock wave, as might occur in the head during exposure to blast waves, was investigated as a possible...damage mechanism for soft brain tissues. A novel experimental scheme was developed to visualize and control single bubble cavitation and its

  12. Estimation of structural film viscosity based on the bubble rise method in a nanofluid.

    Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T

    2018-04-15

    When a single bubble moves at a very low capillary number (10 -7 ) through a liquid with dispersed nanoparticles (nanofluid) inside a vertical tube/capillary, a film is formed between the bubble surface and the tube wall and the nanoparticles self-layer inside the confined film. We measured the film thickness using reflected light interferometry. We calculated the film structural energy isotherm vs. the film thickness from the film-meniscus contact angle measurements using the reflected light interferometric method. Based on the experimental measurement of the film thickness and the calculated values of the film structural energy barrier, we estimated the structural film viscosity vs. the film thickness using the Frenkel approach. Because of the nanoparticle film self-layering phenomenon, we observed a gradual increase in the film viscosity with the decreasing film thickness. However, we observed a significant increase in the film viscosity accompanied by a step-wise decrease in the bubble velocity when the film thickness decreased from 3 to 2 particle layers due to the structural transition in the film. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Optimal Portfolio Selection in Ex Ante Stock Price Bubble and Furthermore Bubble Burst Scenario from Dhaka Stock Exchange with Relevance to Sharpe’s Single Index Model

    Javed Bin Kamal

    2012-09-01

    Full Text Available The paper aims at constructing an optimal portfolio by applying Sharpe’s single index model of capital asset pricing in different scenarios, one is ex ante stock price bubble scenario and stock price bubble and bubble burst is second scenario. Here we considered beginning of year 2010 as rise of stock price bubble in Dhaka Stock Exchange. Hence period from 2005 -2009 is considered as ex ante stock price bubble period. Using DSI (All share price index in Dhaka Stock Exchange as market index and considering daily indices for the March 2005 to December 2009 period, the proposed method formulates a unique cut off point (cut off rate of return and selects stocks having excess of their expected return over risk-free rate of return surpassing this cut-off point. Here, risk free rate considered to be 8.5% per annum (Treasury bill rate in 2009. Percentage of an investment in each of the selected stocks is then decided on the basis of respective weights assigned to each stock depending on respective ‘β’ value, stock movement variance representing unsystematic risk, return on stock and risk free return vis-à-vis the cut off rate of return. Interestingly, most of the stocks selected turned out to be bank stocks. Again we went for single index model applied to same stocks those made to the optimum portfolio in ex ante stock price bubble scenario considering data for the period of January 2010 to June 2012. We found that all stocks failed to make the pass Single Index Model criteria i.e. excess return over beta must be higher than the risk free rate. Here for the period of 2010 to 2012, the risk free rate considered to be 11.5 % per annum (Treasury bill rate during 2012.

  14. The ''rising bubble'' sign: a new aid in the diagnosis of unicameral bone cysts

    Jordanov, Martin I. [Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN (United States)

    2009-06-15

    The observation of a bubble of gas at the most non-dependent margin of a lytic bone lesion which has sustained a pathologic fracture implies that the lesion is hollow and can assist the radiologist in making the diagnosis of a unicameral bone cyst. The imaging studies of two patients who sustained pathologic fractures through unicameral bone cysts and exhibited the ''rising bubble'' sign are shown. The sign's basis, proper utilization, and potential pitfalls are discussed. (orig.)

  15. A three-dimensional numerical study on dynamics behavior of a rising vapor bubble in uniformly superheated liquid by lattice Boltzmann method

    Sun, Tao; Sun, Jiangang; Ang, Xueye; Li, Shanshan; Su, Xin

    2016-01-01

    Highlights: • Dynamics of vapor bubble in uniformly superheated liquid is studied by a 3D LBM. • The growth rate reaches a maximum value and then decrease until a certain value. • The vapor bubble will take place a larger deformation at high ratio of Re/Eo. • The bubble wake has a great influence on motion and deformation of vapor bubble. • Ratio of Re/Eo has an important influence on evolution of temperature field. - Abstract: In this paper, dynamics behaviors of a rising vapor bubble in uniformly superheated liquid are firstly studied by a hybrid three-dimensional lattice Boltzmann model. In order to validate this model, two test cases regarding bubble rising in an isothermal system and vapor bubble growth in a superheated liquid are performed, respectively. The test results are consistent with existing results and indicate the feasibility of the hybrid model. The hybrid model is further applied to simulate growth and deformation of a rising vapor bubble in different physical conditions. Some physical parameters of vapor bubble such as equivalent diameter and growth rate are evaluated accurately by three-dimensional simulations. It is found that the growth rate of vapor bubble changes with time and temperature gradient. It reaches a maximum value at the initial stage and then decrease until a certain value. The growth and deformation of vapor bubble at different ratios of Re/Eo are discussed. The numerical results show the vapor bubble will take place a larger deformation at high ratio of Re/Eo at the middle and final stages. In addition, the hybrid model is also applied to predict the evolution of flow and temperature fields. The bubble wake has a great influence on the motion and deformation of vapor bubble during rising process. As far as the temperature field is concerned, a ratio of Re/Eo has an important influence on heat transfer and evolution of temperature field.

  16. Methane rising from the Deep: Hydrates, Bubbles, Oil Spills, and Global Warming

    Leifer, I.; Rehder, G. J.; Solomon, E. A.; Kastner, M.; Asper, V. L.; Joye, S. B.

    2011-12-01

    Elevated methane concentrations in near-surface waters and the atmosphere have been reported for seepage from depths of nearly 1 km at the Gulf of Mexico hydrate observatory (MC118), suggesting that for some methane sources, deepsea methane is not trapped and can contribute to atmospheric greenhouse gas budgets. Ebullition is key with important sensitivity to the formation of hydrate skins and oil coatings, high-pressure solubility, bubble size and bubble plume processes. Bubble ROV tracking studies showed survival to near thermocline depths. Studies with a numerical bubble propagation model demonstrated that consideration of structure I hydrate skins transported most methane only to mid-water column depths. Instead, consideration of structure II hydrates, which are stable to far shallower depths and appropriate for natural gas mixtures, allows bubbles to survive to far shallower depths. Moreover, model predictions of vertical methane and alkane profiles and bubble size evolution were in better agreement with observations after consideration of structure II hydrate properties as well as an improved implementation of plume properties, such as currents. These results demonstrate the importance of correctly incorporating bubble hydrate processes in efforts to predict the impact of deepsea seepage as well as to understand the fate of bubble-transported oil and methane from deepsea pipeline leaks and well blowouts. Application to the DWH spill demonstrated the importance of deepsea processes to the fate of spilled subsurface oil. Because several of these parameters vary temporally (bubble flux, currents, temperature), sensitivity studies indicate the importance of real-time monitoring data.

  17. On the interaction of Taylor bubbles rising in two-phase co-current slug flow in vertical columns: turbulent wakes

    Pinto, A.M.F.R.; Campos, J.B.L. [Centro de Estudos de Fenomenos de Transporte, Universidade do Porto Rua (Portugal); Coelho Pinheiro, M.N. [Dept. de Engenharia Quimica, Politecnico de Coimbra (Portugal)

    2001-12-01

    An experimental study on the interaction between Taylor bubbles rising through a co-current flowing liquid in a vertical tube with 32 mm of internal diameter is reported. The flow pattern in the bubble's wake was turbulent and the flow regime in the liquid slug was either turbulent or laminar. When the flow regime in the liquid slug is turbulent (i) the minimum distance between bubbles above which there is no interaction is 5D-6D; (ii) the bubble's rising velocity is in excellent agreement with the Nicklin relation; (iii) the experimental values of the bubble length compare well with theoretical predictions (Barnea 1990); (iv) the distance between consecutive bubbles varied from 13D to 16D and is insensitive to the liquid Reynolds number. When the flow regime in the liquid slug is laminar (i) the wake length is about 5D-6D; (ii) the minimum distance between bubbles above which there is no interaction is higher than 25D; (iii) the bubble's rising velocity is significantly smaller than theoretical predictions. These results were explained in the light of the findings of Pinto et al. (1998) on coalescence of two Taylor bubbles rising through a co-current liquid. (orig.)

  18. Spectra of single-bubble sonoluminescence in water and glycerin-water mixtures

    Gaitan, D.F.; Atchley, A.A.; Lewia, S.D.; Carlson, J.T.; Maruyama, X.K.; Moran, M.; Sweider, D.

    1996-01-01

    A single gas bubble, acoustically levitated in a standing-wave field and oscillating under the action of that field, can emit pulses of blue-white light with duration less than 50 ps. Measurements of the spectrum of this picosecond sonoluminescence with a scanning monochrometer are reported for air bubbles levitated in water and in glycerin-water mixtures. While the spectrum has been reported previously by others for air bubbles in water, the spectrum for air bubbles in water-glycerin mixtures has not. Expected emission lines from glycerin were conspicuously absent, suggesting a different mechanism for light production in single-bubble sonoluminescence. Other conclusions are the spectrum for air bubbles in water is consistent with that previously reported, the radiated energy decreases as the glycerin concentration increases, and the peak of the spectrum appears to shift to longer wavelengths for the water-glycerin mixtures. copyright 1996 The American Physical Society

  19. Front‐tracking simulations of bubbles rising in non‐Newtonian fluids

    Battistella, Alessandro; Van Schijndel, J.G.; Baltussen, Maike W.

    2017-01-01

    In the wide and complex field of multiphase flows, bubbly flows with non-Newtonian liquids are encountered in several important applications, such as in polymer solutions or fermentation broths. Despite the widespread application of non-Newtonian liquids, most of the models and closures used in industry are valid for Newtonian fluids only, if not even restricted to air-water systems. However, it is well known that the non-Newtonian rheology significantly influences the liquid and bubble behav...

  20. Numerical investigation of the deformation mechanism of a bubble or a drop rising or falling in another fluid

    Wang Han; Yang Yongming; Hu Yüe; Zhang Huisheng; Zhang Zhenyu

    2008-01-01

    A numerical method for simulating the motion and deformation of an axisymmetric bubble or drop rising or falling in another infinite and initially stationary fluid is developed based on the volume of fluid (VOF) method in the frame of two incompressible and immiscible viscous fluids under the action of gravity, taking into consideration of surface tension effects. A comparison of the numerical results by this method with those by other works indicates the validity of the method. In the frame of inviscid and incompressible fluids without taking into consideration of surface tension effects, the mechanisms of the generation of the liquid jet and the transition from spherical shape to toroidal shape during the bubble or drop deformation, the increase of the ring diameter of the toroidal bubble or drop and the decrease of its cross-section area during its motion, and the effects of the density ratio of the two fluids on the deformation of the bubble or drop are analysed both theoretically and numerically. (condensed matter: structure, thermal and mechanical properties)

  1. Single-bubble dynamics in pool boiling of one-component fluids

    Xu, Xinpeng; Qian, Tiezheng

    2014-01-01

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  2. Single-bubble dynamics in pool boiling of one-component fluids

    Xu, Xinpeng

    2014-06-04

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  3. A unique circular path of moving single bubble sonoluminescence in water

    Sadighi-Bonabi, Rasoul; Mirheydari, Mona; Ebrahimi, Homa; Rezaee, Nastaran; Nikzad, Lida

    2011-01-01

    Based on a quasi-adiabatic model, the parameters of the bubble interior for a moving single bubble sonoluminescence (m-SBSL) in water are calculated. By using a complete form of the hydrodynamic force, a unique circular path for the m-SBSL in water is obtained. The effect of the ambient pressure variation on the bubble trajectory is also investigated. It is concluded that as the ambient pressure increases, the bubble moves along a circular path with a larger radius and all bubble parameters, such as gas pressure, interior temperature and light intensity, increase. A comparison is made between the parameters of the moving bubble in water and those in N-methylformamide. With fluid viscosity increasing, the circular path changes into an elliptic form and the light intensity increases. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Bubble parameters analysis of gas-liquid two-phase sparse bubbly flow based on image method

    Zhou Yunlong; Zhou Hongjuan; Song Lianzhuang; Liu Qian

    2012-01-01

    The sparse rising bubbles of gas-liquid two-phase flow in vertical pipe were measured and studied based on image method. The bubble images were acquired by high-speed video camera systems, the characteristic parameters of bubbles were extracted by using image processing techniques. Then velocity variation of rising bubbles were drawn. Area and centroid variation of single bubble were also drawn. And then parameters and movement law of bubbles were analyzed and studied. The test results showed that parameters of bubbles had been analyzed well by using image method. (authors)

  5. Controlled vesicle deformation and lysis by single oscillating bubbles

    Marmottant, Philippe; Hilgenfeldt, Sascha

    2003-05-01

    The ability of collapsing (cavitating) bubbles to focus and concentrate energy, forces and stresses is at the root of phenomena such as cavitation damage, sonochemistry or sonoluminescence. In a biomedical context, ultrasound-driven microbubbles have been used to enhance contrast in ultrasonic images. The observation of bubble-enhanced sonoporation-acoustically induced rupture of membranes-has also opened up intriguing possibilities for the therapeutic application of sonoporation as an alternative to cell-wall permeation techniques such as electroporation and particle guns. However, these pioneering experiments have not been able to pinpoint the mechanism by which the violently collapsing bubble opens pores or larger holes in membranes. Here we present an experiment in which gentle (linear) bubble oscillations are sufficient to achieve rupture of lipid membranes. In this regime, the bubble dynamics and the ensuing sonoporation can be accurately controlled. The use of microbubbles as focusing agents makes acoustics on the micrometre scale (microacoustics) a viable tool, with possible applications in cell manipulation and cell-wall permeation as well as in microfluidic devices.

  6. Collision of a Small Rising Bubble with a Large Falling Particle

    Hubička, M.; Basařová, P.; Vejražka, Jiří

    2013-01-01

    Roč. 121, JUN 10 (2013), s. 21-30 ISSN 0301-7516 R&D Projects: GA ČR GAP101/11/0806 Grant - others:GA MŠk(CZ) 21/2011 Institutional support: RVO:67985858 Keywords : bubble-particle interaction * collision process * collision efficiency Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.461, year: 2013

  7. How sea level rise and storm climate impact the looming morpho-economic bubble in coastal property value.

    McNamara, D.; Keeler, A.; Smith, M.; Gopalakrishnan, S.; Murray, A.

    2012-12-01

    In the United States, the coastal region is now the most densely populated zone in the country and as a result has become a significant source of tax revenue and has some of the highest property values in the country. The loss of land at the coastline from erosion and damage to property from storms has always been a source of vulnerability to coastal economies. To manage this vulnerability, humans have long engaged in the act of nourishing the coastline - placing sand, typically from offshore sources, onto the beach to widen the beach and increase the height of dunes. As humans alter natural coastal dynamics by nourishing, the altered natural dynamics then influence future beach management decisions. In this way human-occupied coastlines are a strongly coupled dynamical system and because of this coupling, the act of nourishment has become an intrinsic part of the economic value of a coastline. Predictions of increased rates of sea level rise and changing storminess suggest that coastal vulnerability is likely to increase. The evolving vulnerability of the coast has already caused changes to occur in the way humans manage the coastline. For example, the federal government has recently reduced subsidies to help coastal communities nourish their beaches. With a future of changing environmental forcing from sea level and storms, the prospect of changes in nourishment cost could have profound consequences on coastal value and sustainability. We utilize two modeling approaches to investigate how disappearing nourishment subsidies reduce coastal property value and to explore the potential for a bubble and subsequent crash in coastal property value as subsidies dwindle and vulnerability rises. The first model is an optimal control model that couples a cost benefit analysis to coastline dynamics. In the second model, we couple a numerical coastline model with an agent-based model for real estate markets. Results from both models suggest the total present value of coastal

  8. Growth and detachment of single hydrogen bubbles in a magnetohydrodynamic shear flow

    Baczyzmalski, Dominik; Karnbach, Franziska; Mutschke, Gerd; Yang, Xuegeng; Eckert, Kerstin; Uhlemann, Margitta; Cierpka, Christian

    2017-09-01

    This study investigates the effect of a magnetohydrodynamic (MHD) shear flow on the growth and detachment of single sub-millimeter-sized hydrogen gas bubbles. These bubbles were electrolytically generated at a horizontal Pt microelectrode (100 μ m in diameter) in an acidic environment (1 M H2SO4 ). The inherent electric field was superimposed by a homogeneous electrode-parallel magnetic field of up to 700 mT to generate Lorentz forces in the electrolyte, which drive the MHD flow. The growth and motion of the hydrogen bubble was analyzed by microscopic high-speed imaging and measurements of the electric current, while particle tracking velocimetry (μ PTV ) and particle image velocimetry (μ PIV ) were applied to measure the surrounding electrolyte flow. In addition, numerical flow simulations were performed based on the experimental conditions. The results show a significant reduction of the bubble growth time and detachment diameter with increasing magnetic induction, which is known to improve the efficiency of water electrolysis. In order to gain further insight into the bubble detachment mechanism, an analysis of the forces acting on the bubble was performed. The strong MHD-induced drag force causes the bubble to slowly slide away from the center of the microelectrode before its detachment. This motion increases the active electrode area and enhances the bubble growth rate. The results further indicate that at large current densities the coalescence of tiny bubbles formed at the foot of the main bubble might play an important role for the bubble detachment. Moreover, the occurrence of Marangoni stresses at the gas-liquid interface is discussed.

  9. Controlled vesicle deformation and lysis by single oscillating bubbles

    Marmottant, P.G.M.; Hilgenfeldt, Sascha

    2003-01-01

    The ability of collapsing (cavitating) bubbles to focus and concentrate energy, forces and stresses is at the root of phenomena such as cavitation damage, sonochemistry or sonoluminescence1, 2. In a biomedical context, ultrasound-driven microbubbles have been used to enhance contrast in ultrasonic

  10. Dependence on liquid temperature and purity of light emission characteristics in single cavitation bubble luminescence

    Barbaglia, Mario O; Bonetto, Fabian J [Consejo Nacional de Investigaciones Cientificas y Tecnicas and Instituto Balseiro, Centro Atomico Bariloche, Av. Bustillo 9500, CP8400, Rio Negro (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Instituto Balseiro, and Comision Nacional de Energia Atomica, Laboratorio de Cavitacion y Biotecnologia, Centro Atomico Bariloche, Av. Bustillo 9500, CP8400, Rio Negro (Argentina)

    2004-02-15

    We produced single bubbles in water using a visible pulsed laser and studied the characteristics of the light emitted during the bubble collapse time as a function of the water temperature for different water purity values. The water temperature ranged from freezing point (0 deg. C) to near boiling. We measured the luminescence pulse for the mentioned temperature range at various purity values. We also obtained the average bubble lifetime and the average luminescence pulse emitted as a function of water temperature. The main conclusion was that the luminescence can be modified by the water quality and by the water temperature. Maximum luminescence was obtained near the water freezing point.

  11. Dependence on liquid temperature and purity of light emission characteristics in single cavitation bubble luminescence

    Barbaglia, Mario O.; Bonetto, Fabian J.

    2004-01-01

    We produced single bubbles in water using a visible pulsed laser and studied the characteristics of the light emitted during the bubble collapse time as a function of the water temperature for different water purity values. The water temperature ranged from freezing point (0 deg. C) to near boiling. We measured the luminescence pulse for the mentioned temperature range at various purity values. We also obtained the average bubble lifetime and the average luminescence pulse emitted as a function of water temperature. The main conclusion was that the luminescence can be modified by the water quality and by the water temperature. Maximum luminescence was obtained near the water freezing point

  12. Interaction between shock wave and single inertial bubbles near an elastic boundary.

    Sankin, G N; Zhong, P

    2006-10-01

    The interaction of laser-generated single inertial bubbles (collapse time = 121 mus) near a silicon rubber membrane with a shock wave (55 MPa in peak pressure and 1.7 mus in compressive pulse duration) is investigated. The interaction leads to directional, forced asymmetric collapse of the bubble with microjet formation toward the surface. Maximum jet penetration into the membrane is produced during the bubble collapse phase with optimal shock wave arrival time and stand-off distance. Such interaction may provide a unique acoustic means for in vivo microinjection, applicable to targeted delivery of macromolecules and gene vectors to biological tissues.

  13. Characteristics of a single bubble in subcooled boiling region of a narrow rectangular channel under natural circulation

    Zhou, Tao; Duan, Jun; Hong, Dexun; Liu, Ping; Sheng, Cheng; Huang, Yanping

    2013-01-01

    Highlights: ► We observe the behavior of single bubbles in a narrow vertical rectangular channel. ► We analyze the force characteristics of the single bubble. ► Small bubbles in highly subcooled boiling region stick on the wall or slip slowly. ► The bubbles jumping from the wall are affected by drag force. ► The thermophoretic force makes bubbles jump from the wall strongly. - Abstract: The behavior of bubbles has an important influence on heat transfer during subcooled boiling. By observing the behavior of a single bubble in a narrow vertical rectangular channel, and analyzing the force characteristics of the single bubble, it turns out that small bubbles in the highly subcooled boiling region stick on the wall or slip slowly. The bubbles jumping from the wall are affected by drag force, and move with high speed. Maintaining a certain heating power, at the onset of boiling (ONB) point, the bubbles remain in a stable state. Furthermore, the thermophoretic force is considered in this paper. With increasing the temperature gradient in the fluid, the thermophoretic force causes the bubbles to jump from the wall easier

  14. Comparison of Xe single bubble sonoluminescence in water and sulfuric acid

    An Yu

    2008-01-01

    Using the equations of fluid mechanics with proper boundary conditions and taking account of the gas properties, we can numerically simulate the process of single bubble sonoluminescence, in which electron–neutral atom bremsstrahlung, electron—ion bremsstrahlung and recombination radiation, and the radiative attachment of electrons to atoms and molecules contribute to the light emission. The calculation can quantitatively or qualitatively interpret the experimental results. We find that the accumulated heat energy inside the compressed gas bubble is mostly consumed by the chemical reaction, therefore, the maximum degree of ionization inside Xe bubble in water is much lower than that in sulfuric acid, of which the vapour pressure is very low. In addition, in sulfuric acid much larger p a and R 0 are allowed which makes the bubbles in it much brighter than that in water. (classical areas of phenomenology)

  15. Time-scales for quenching single-bubble sonoluminescence in the presence of alcohols

    Guan, Jingfeng; Matula, Thomas

    2002-11-01

    A small amount of alcohol added to water dramatically decreases the light intensity from single-bubble sonoluminescence [Weninger et al., J. Phys. Chem. 99, 14195-14197 (1995)]. From an excess accumulation at the bubble surface [Ashokkumar et al., J. Phys. Chem. 104, 8462-8465 (2000)], the molecules evaporate into the bubble interior, reducing the effective adiabatic exponent of the gas, and decreasing the bubble temperature and light output [Toegel et al., Phys. Rev. Lett. 84, 2509-2512 (2000)]. There is a debate as to the rate at which alcohol is injected into the bubble interior. One camp favors the notion that molecules must be repetitively injected over many acoustic cycles. Another camp favors the notion that most quenching occurs during a single collapse. An experiment has been conducted in order to resolve the debate. Quenching rates were measured by recording the instantaneous bubble response and corresponding light emission during a sudden increase in pressure. It was found that complete quenching in the presence of methanol requires over 8000 acoustic cycles, while quenching with butanol occurs in about 20 acoustic cycles. These observations are consistent with the view that quenching requires the repetitive injection of alcohol molecules over repetitive acoustic cycles.

  16. Numerical investigations of single bubble oscillations generated by a dual frequency excitation

    Guédra, Matthieu; Inserra, Claude; Gilles, Bruno; Béra, Jean-Christophe

    2015-01-01

    The oscillations of a single bubble excited with a dual frequency acoustic field are numerically investigated. Computations are made for an air bubble in water exposed to an acoustic field with a linearly varying amplitude. The bubble response to an excitation containing two frequencies f 1 = 500 kHz and f 2 = 400 kHz at the same amplitude is compared to the monofrequency case where only f 1 is present. Time-frequency representations show a sharp transition in the bifrequency case, for which the low frequency component f 2 becomes resonant while the high frequency component f 1 is strongly attenuated. The temporal evolution of the power spectra reveals that the resonance of the low frequency component is correlated with the time varying mean radius of the bubble. It is also observed that the total power of the bubble response in the bifrequency case can reach almost twice the power obtained in the monofrequency case, which indicates a strong enhancement of the cavitating behavior of the bubble for this specific frequency combination. (paper)

  17. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound.

    Kreider, Wayne; Crum, Lawrence A; Bailey, Michael R; Sapozhnikov, Oleg A

    2011-11-01

    Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound.

  18. Interaction mechanism of double bubbles in hydrodynamic cavitation

    Li, Fengchao; Cai, Jun; Huai, Xiulan; Liu, Bin

    2013-06-01

    Bubble-bubble interaction is an important factor in cavitation bubble dynamics. In this paper, the dynamic behaviors of double cavitation bubbles driven by varying pressure field downstream of an orifice plate in hydrodynamic cavitation reactor are examined. The bubble-bubble interaction between two bubbles with different radii is considered. We have shown the different dynamic behaviors between double cavitation bubbles and a single bubble by solving two coupling nonlinear equations using the Runge-Kutta fourth order method with adaptive step size control. The simulation results indicate that, when considering the role of the neighbor smaller bubble, the oscillation of the bigger bubble gradually exhibits a lag in comparison with the single-bubble case, and the extent of the lag becomes much more obvious as time goes by. This phenomenon is more easily observed with the increase of the initial radius of the smaller bubble. In comparison with the single-bubble case, the oscillation of the bigger bubble is enhanced by the neighbor smaller bubble. Especially, the pressure pulse of the bigger bubble rises intensely when the sizes of two bubbles approach, and a series of peak values for different initial radii are acquired when the initial radius ratio of two bubbles is in the range of 0.9˜1.0. Although the increase of the center distance between two bubbles can weaken the mutual interaction, it has no significant influence on the enhancement trend. On the one hand, the interaction between two bubbles with different radii can suppress the growth of the smaller bubble; on the other hand, it also can enhance the growth of the bigger one at the same time. The significant enhancement effect due to the interaction of multi-bubbles should be paid more attention because it can be used to reinforce the cavitation intensity for various potential applications in future.

  19. A comparison of single knock-on and complete bubble destruction models of the fission induced re-solution of gas atoms from bubbles

    Wood, M.H.

    1978-03-01

    In previous theoretical studies of the behaviour of the fission gases in nuclear fuel, the Nelson single knock-on model of the fission induced re-solution of gas atoms from fission gas bubbles has been employed. In the present investigation, predictions from this model are compared with those from a complete bubble destruction model of the re-solution process. The main conclusions of the study are that the complete bubble destruction model predicts more gas release after a particular irradiation time than the single knock-on model, for the same choice of the model parameters, and that parameter sets chosen to give the same gas release predict significantly different bubble size distribution functions. (author)

  20. The microjetting behavior from single laser-induced bubbles generated above a solid boundary with a through hole

    Abboud, Jack E.; Oweis, Ghanem F.

    2013-01-01

    An inertial bubble collapsing near a solid boundary generates a fast impulsive microjet directed toward the boundary. The jet impacts the solid boundary at a high velocity, and this effect has been taken advantage of in industrial cleaning such as when tiny bubbles are driven ultrasonically to cavitate around machined parts to produce jets that are believed to induce the cleaning effect. In this experimental investigation, we are interested in the jetting from single cavities near a boundary. By introducing a through hole in the boundary beneath a laser-induced bubble, it is hypothesized that the forming jet, upon bubble implosion, will proceed to penetrate through the hole to the other side and that it may be utilized in useful applications such as precise surgeries. It was found that the growth of the bubble induced a fast flow through the hole and lead to the formation of secondary hydrodynamic cavitation. The experiments also showed the formation of a counter jet directed away from the hole and into the bubble. During the growth phase of the bubble, and near the point of maximum expansion, the bubble wall bulged out toward the hole in a `bulb' like formation, which sometimes resulted in the pinching-off of a secondary small bubble. This was ensued by the inward recoiling of the primary bubble wall near the pinch-off spot, which developed into a counter jet seen to move away from the hole and inward into the bubble.

  1. Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena

    Akchurin, Garif; Khlebtsov, Boris; Akchurin, Georgy; Tuchin, Valery; Zharov, Vladimir; Khlebtsov, Nikolai

    2008-01-01

    Laser-nanoparticle interaction is crucial for biomedical applications of lasers and nanotechnology to the treatment of cancer or pathogenic microorganisms. We report on the first observation of laser-induced coloring of gold nanoshell solution after a one nanosecond pulse and an unprecedentedly low bubble formation (as the main mechanism of cancer cell killing) threshold at a laser fluence of about 4 mJ cm -2 , which is safe for normal tissue. Specifically, silica/gold nanoshell (140/15 nm) suspensions were irradiated with a single 4 ns (1064 nm) or 8 ns (900 nm) laser pulse at fluences ranging from 0.1 mJ cm -2 to 50 J cm -2 . Solution red coloring was observed by the naked eye confirmed by blue-shifting of the absorption spectrum maximum from the initial 900 nm for nanoshells to 530 nm for conventional colloidal gold nanospheres. TEM images revealed significant photomodification of nanoparticles including complete fragmentation of gold shells, changes in silica core structure, formation of small 20-30 nm isolated spherical gold nanoparticles, gold nanoshells with central holes, and large and small spherical gold particles attached to a silica core. The time-resolved monitoring of bubble formation phenomena with the photothermal (PT) thermolens technique demonstrated that after application of a single 8 ns pulse at fluences 5-10 mJ cm -2 and higher the next pulse did not produce any PT response, indicating a dramatic decrease in absorption because of gold shell modification. We also observed a dependence of the bubble expansion time on the laser energy with unusually very fast PT signal rising (∼3.5 ns scale at 0.2 J cm -2 ). Application of the observed phenomena to medical applications is discussed, including a simple visual color test for laser-nanoparticle interaction

  2. Bubble Jet agent release cartridge for chemical single cell stimulation.

    Wangler, N; Welsche, M; Blazek, M; Blessing, M; Vervliet-Scheebaum, M; Reski, R; Müller, C; Reinecke, H; Steigert, J; Roth, G; Zengerle, R; Paust, N

    2013-02-01

    We present a new method for the distinct specific chemical stimulation of single cells and small cell clusters within their natural environment. By single-drop release of chemical agents with droplets in size of typical cell diameters (d agent release cartridge with integrated fluidic structures and integrated agent reservoirs are shown, tested, and compared in this publication. The single channel setup features a fluidic structure fabricated by anisotropic etching of silicon. To allow for simultaneous release of different agents even though maintaining the same device size, the second type comprises a double channel fluidic structure, fabricated by photolithographic patterning of TMMF. Dispensed droplet volumes are V = 15 pl and V = 10 pl for the silicon and the TMMF based setups, respectively. Utilizing the agent release cartridges, the application in biological assays was demonstrated by hormone-stimulated premature bud formation in Physcomitrella patens and the individual staining of one single L 929 cell within a confluent grown cell culture.

  3. Bubble systems

    Avdeev, Alexander A

    2016-01-01

    This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...

  4. Lander based hydroacoustic monitoring of marine single bubble releases in Eckernförde Bay utilizing the multibeam based GasQuant II system.

    Urban, Peter; Schneider von Deimling, Jens; Greinert, Jens

    2015-04-01

    The GEOMAR Helmholtz Centre for Ocean Research Kiel is currently developing a Imagenex Delta T based lander system for monitoring and quantifying marine gas release (bubbles). The GasQuant II is built as the successor of the GasQuant I system (Greinert, 2008), that has been successfully used for monitoring tempo-spatial variability of gas release in the past (Schneider von Deimling et al., 2010). The new system is lightweight (40 kg), energy efficient, flexible to use and built for ROV deployment with autonomous operation of up to three days. A prototype has been successfully deployed in Eckernförde Bay during the R/V ALKOR cruise AL447 in October/November 2014 to monitor the tempo-spatial variability of gas bubble seepage and to detect a possible correlation with tidal variations. Two deployments, one in forward- and one in upward looking mode, reveal extensive but scattered single bubble releases rather than distinct and more continuous sources. While these releases are difficult to detect in forward looking mode, they can unambiguously be detected in the upward looking mode even for minor gas releases, bubble rising speeds can be determined. Greinert, J., 2008. Monitoring temporal variability of bubble release at seeps: The hydroacoustic swath system GasQuant. J. Geophys. Res. Oceans Vol. 113 Issue C7 CiteID C07048 113, 7048. doi:10.1029/2007JC004704 Schneider von Deimling, J., Greinert, J., Chapman, N.R., Rabbel, W., Linke, P., 2010. Acoustic imaging of natural gas seepage in the North Sea: Sensing bubbles controlled by variable currents. Limnol. Oceanogr. Methods 8, 155. doi:10.4319/lom.2010.8.155

  5. Freezing Bubbles

    Kingett, Christian; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan

    2017-11-01

    The two-stage freezing process of a liquid droplet on a substrate is well known; however, how bubbles freeze has not yet been studied. We first deposited bubbles on a silicon substrate that was chilled at temperatures ranging from -10 °C to -40 °C, while the air was at room temperature. We observed that the freeze front moved very slowly up the bubble, and in some cases, even came to a complete halt at a critical height. This slow freezing front propagation can be explained by the low thermal conductivity of the thin soap film, and can be observed more clearly when the bubble size or the surface temperature is increased. This delayed freezing allows the frozen portion of the bubble to cool the air within the bubble while the top part is still liquid, which induces a vapor pressure mismatch that either collapses the top or causes the top to pop. In cases where the freeze front reaches the top of the bubble, a portion of the top may melt and slowly refreeze; this can happen more than just once for a single bubble. We also investigated freezing bubbles inside of a freezer where the air was held at -20 °C. In this case, the bubbles freeze quickly and the ice grows radially from nucleation sites instead of perpendicular to the surface, which provides a clear contrast with the conduction limited room temperature bubbles.

  6. Impact of bubble wakes on a developing bubble flow in a vertical pipe

    Tomiyama, A.; Makino, Y.; Miyoshi, K.; Tamai, H.; Serizawa, A.; Zun, I.

    1998-01-01

    Three-dimensional two-way bubble tracking simulation of single large air bubbles rising through a stagnant water filled in a vertical pipe was conducted to investigate the structures of bubble wakes. Spatial distributions of time-averaged liquid velocity field, turbulent intensity and Reynolds stress caused by bubble wakes were deduced from the calculated local instantaneous liquid velocities. It was confirmed that wake structures are completely different from the ones estimated by a conventional wake model. Then, we developed a simple wake model based on the predicted time-averaged wake velocity fields, and implemented it into a 3D one-way bubble tracking method to examine the impact of bubble wake structures on time-spatial evolution of a developing air-water bubble flow in a vertical pipe. As a results, we confirmed that the developed wake model can give better prediction for flow pattern evolution than a conventional wake model

  7. Single-phase and two phase bubbly flow in a T connection: theoretical and experimental study

    Hervieu, Eric

    1988-01-01

    The objective of this research thesis is to highlight the driving factors of the separation of phases of a bubbly flow in a T junction, and to develop a prediction model. In a first part, the author reports the rigorous formulation of equations averaged on the T volume. He shows that it's not possible to solve globally the problem with these equations. Then, he reports a bibliographical study on the modelling of a bubbly flow, and, based upon this study, highlights intrinsic characteristics of the flow, and explains its dynamic mechanisms. He reports the development of the theoretical model, and describes the experimental installation used to validate it. In the third part, he reports the study of the liquid-gas interaction, and presents the adopted approach: study of the behaviour of an isolated bubble within a single-phase flow. Experimentation is used to check theoretical predictions. Results are used to compute phase separation. The obtained results are again compared with experimental results to validate the global relevance of the model [fr

  8. Experimental investigation of single small bubble motion in linear shear flow in water

    Li, Zhongchun; Zhao, Yang; Song, Xiaoming; Yu, Hongxing; Jiang, Shengyao; Ishii, Mamoru

    2016-01-01

    Highlights: • The bubble motion in simple linear shear flow was experimentally investigated. • The bubble trajectories, bubble velocity and drag and lift force were obtained using image process routine. • The bubble trajectory was coupled with a zigzag motion and incline path. • The lift force was kept negative and it decreased when bubble diameter and shear flow magnitude increased. - Abstract: The motion of small bubble in a simple shear flow in water was experimental studied. Stable shear flow with low turbulence level was achieved with curved screen and measured using LDV. The bubbles were captured by high speed camera and the captured images were processed with digital image routine. The bubble was released from a capillary tube. The instantaneous bubble position, bubble velocity and forces were obtained based on the captured parameters. The quasi-steady lift coefficient was determined by the linear fitting of the bubble trajectory of several cycles. The results indicated that the lateral migration was coupled with the zigzag motion of bubble in the present experiment. The bubble migrated to the left side and its quasi-steady lift coefficient was negative. Good repeatable results were observed by measurements of 18 bubbles. The bubble motion in shear flow in water was first experimental studied and negative lift force was observed in the present study condition. The lift coefficient decreased when shear stress magnitude or bubble diameter increased in the present experiment condition.

  9. CFD simulation on use of polyethylene single bubble to reduce radiant heat on lecture hall

    Muhieldeen, M.W.; Adam, N.M.; Elias Salleh; Tang, S.H.; Ghezavati, H.

    2009-01-01

    Full text: In recent years, Malaysia energy consumption has increased and become comparable to larger consumers worldwide. The increased demand for artificial cooling through the use of air conditioning units in other to provide comfort would also mean increased energy usage and increased electricity cost to the occupants. This paper reviews the results from a field survey of saving energy within one type of buildings lecture theater, in Universiti Putra Malaysia. The thermal insulation material established (polyethylene single bubble) and putting on the wall which separate between the lecture theater and the exterior. The survey was undertaken at January until April in 2008. In a 3D occupant Lecture hall (L: 15 m, W: 12 m, and H: 6.6 m). In addition the environmental parameters were measured in class room to calculate the boundary condition for using CFD to compare saving energy. The results show that by using polyethylene single bubble insulation in each condition, a reduction of 2.2 degree Celsius was achieved. (author)

  10. Anti-Bubbles

    Tufaile, Alberto; Sartorelli, José Carlos

    2003-08-01

    An anti-bubble is a striking kind of bubble in liquid that seemingly does not comply the buoyancy, and after few minutes it disappears suddenly inside the liquid. Different from a simple air bubble that rises directly to the liquid surface, an anti-bubble wanders around in the fluid due to its slightly lesser density than the surrounding liquid. In spite of this odd behavior, an anti-bubble can be understood as the opposite of a conventional soap bubble in air, which is a shell of liquid surrounding air, and an anti-bubble is a shell of air surrounding a drop of the liquid inside the liquid. Two-phase flow has been a subject of interest due to its relevance to process equipment for contacting gases and liquids applied in industry. A chain of bubbles rising in a liquid formed from a nozzle is a two-phase flow, and there are certain conditions in which spherical air shells, called anti-bubbles, are produced. The purpose of this work is mainly to note the existence of anti-bubbling regime as a sequel of a bubbling system. We initially have presented the experimental apparatus. After this we have described the evolution of the bubbling regimes, and emulated the effect of bubbling coalescence with simple maps. Then is shown the inverted dripping as a consequence of the bubble coalescence, and finally the conditions for anti-bubble formation.

  11. Real-time extraction of bubble chamber tracks using a single vidicon

    Roos, C.E.

    1978-01-01

    Bubble Chamber pictures show many undesired tracks and background in addition to the tracks of the desired significant event. Settles et al. have described a technique for optical tagging of an event by adding a darkfield photograph taken before significant bubble growth to a later brightfield photograph. The authors describe a system to cancel out all picture detail except for the wanted tracks by using a single vidicon tube as the storage device. In the first exposure, polarized light is imaged on the vidicon after passing through a Ronchi grating placed at a focal plane. Thus half of the target is exposed in a series of vertical stripes. The second exposure uses light polarized orthogonally to the first exposure and is deflected after passing through the Ronchi grating so as to expose the previously occluded stripes on the target. The target is then scanned orthogonally to the stripes; by subtracting the picture contained in one set of stripes from that contained in the other set, only the differences between the two images remains. A simulation was conducted using continuously presented background of one polarization and background plus tracks of the other polarization. The test showed that the added tracks were easily resolved, even though they were not readily discernible by visual inspection prior to subtraction. (Auth.)

  12. Measurements of natural frequency and damping constant of single steam bubble oscillating in water

    Morioka, Mikio

    1983-01-01

    The natural frequency fsub(n) and damping constant delta of a bubble in liquid have been determined by observing the resonance of the bubble to forced oscillation. The bubble was retained under a rigid plate horizontal disk, and the oscillation was applied by underwater speaker. The applied frequency f was kept constant while letting the bubble increase its volume and vary its radius R. Bubble resonance was detected by observing wrinkles appearing on the bubble due to surface waves. Resonance curves relating the amplitude of bubble radius variation to the intensity of applied oscillation is derived theoretically. Good agreement was seen between the data obtained from experiment and the theoretically derived resonance curves at test to the validity of the method proposed of determining fsub(n) and delta from bubble resonance. The values of delta and of the resonant bubble radius R 0 of large steam bubbles (8.5mm< R<11.5mm) in water were determined at f=270, 290 and 358 Hz. The results support the assumption that for large bubbles the value of fsub(n) is little influenced by the exchange of mass between liquid and gaseous phases through evaporation and condensation accompanying bubble pressure oscillation. On the other hand, delta is found to be one order of magnitude higher than calculated for steam bubbles without taking into evaporation and condensation the interphase exchange of mass. The effect brought on delta by the interphase mass exchange can be taken into account by adding a new constant deltasub(ph) to the terms constituting the total damping constant. (author)

  13. Bubbling away

    Anon.

    1993-10-15

    Bubble chambers may have almost vanished from the front line of physics research, but the vivid memory of their intricate and sometimes beautiful patterns of particle tracks lives on, and has greatly influenced the computer graphics of track reconstruction in today's big experiments. 'Seeing' an interaction makes it more understandable. Bubble chambers, with their big collaborations of physicists from many widely scattered research institutes, started another ball rolling. The groups formed are even now only surpassed in size by the big collaborations working on today's major detectors at colliding beam machines. From 14-16 July, about 130 physicists gathered at CERN to commemorate the 40th anniversary of the invention of the bubble chamber by Donald Glaser. The meeting, organized by Derek C. Colley from Birmingham, gave a comprehensive overview of bubble chamber contributions to physics, their challenging technology, and the usefulness of bubble chamber photographs in education, both for physics and the public at large. After opening remarks by CERN Director Carlo Rubbia, Donald Glaser began with a brief review of the work which led to his invention - there was much more to it than idly watching beer bubbles rise up the wall of the glass - before turning to his present line of research, biophysics, also very visually oriented.

  14. Bubbling away

    Anon.

    1993-01-01

    Bubble chambers may have almost vanished from the front line of physics research, but the vivid memory of their intricate and sometimes beautiful patterns of particle tracks lives on, and has greatly influenced the computer graphics of track reconstruction in today's big experiments. 'Seeing' an interaction makes it more understandable. Bubble chambers, with their big collaborations of physicists from many widely scattered research institutes, started another ball rolling. The groups formed are even now only surpassed in size by the big collaborations working on today's major detectors at colliding beam machines. From 14-16 July, about 130 physicists gathered at CERN to commemorate the 40th anniversary of the invention of the bubble chamber by Donald Glaser. The meeting, organized by Derek C. Colley from Birmingham, gave a comprehensive overview of bubble chamber contributions to physics, their challenging technology, and the usefulness of bubble chamber photographs in education, both for physics and the public at large. After opening remarks by CERN Director Carlo Rubbia, Donald Glaser began with a brief review of the work which led to his invention - there was much more to it than idly watching beer bubbles rise up the wall of the glass - before turning to his present line of research, biophysics, also very visually oriented

  15. Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-high Temperature Stability in a Geometrically Confined Nanostripe

    Hou, Zhipeng; Zhang, Qiang; Xu, Guizhou; Gong, Chen; Ding, Bei; Wang, Yue; Li, Hang; Liu, Enke; Xu, Feng; Zhang, Hongwei; Yao, Yuan; Wu, Guangheng; Zhang, Xixiang; Wang, Wenhong

    2018-01-01

    Nanoscale topologically nontrivial spin textures, such as magnetic skyrmions, have been identified as promising candidates for the transport and storage of information for spintronic applications, notably magnetic racetrack memory devices. The design and realization of a single skyrmion chain at room temperature (RT) and above in the low-dimensional nanostructures are of great importance for future practical applications. Here, we report the creation of a single skyrmion bubble chain in a geometrically confined Fe3Sn2 nanostripe with a width comparable to the featured size of a skyrmion bubble. Systematic investigations on the thermal stability have revealed that the single chain of skyrmion bubbles can keep stable at temperatures varying from RT up to a record-high temperature of 630 K. This extreme stability can be ascribed to the weak temperature-dependent magnetic anisotropy and the formation of edge states at the boundaries of the nanostripes. The realization of the highly stable skyrmion bubble chain in a geometrically confined nanostructure is a very important step toward the application of skyrmion-based spintronic devices.

  16. Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-high Temperature Stability in a Geometrically Confined Nanostripe

    Hou, Zhipeng

    2018-01-04

    Nanoscale topologically nontrivial spin textures, such as magnetic skyrmions, have been identified as promising candidates for the transport and storage of information for spintronic applications, notably magnetic racetrack memory devices. The design and realization of a single skyrmion chain at room temperature (RT) and above in the low-dimensional nanostructures are of great importance for future practical applications. Here, we report the creation of a single skyrmion bubble chain in a geometrically confined Fe3Sn2 nanostripe with a width comparable to the featured size of a skyrmion bubble. Systematic investigations on the thermal stability have revealed that the single chain of skyrmion bubbles can keep stable at temperatures varying from RT up to a record-high temperature of 630 K. This extreme stability can be ascribed to the weak temperature-dependent magnetic anisotropy and the formation of edge states at the boundaries of the nanostripes. The realization of the highly stable skyrmion bubble chain in a geometrically confined nanostructure is a very important step toward the application of skyrmion-based spintronic devices.

  17. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions.

    German, Sean R; Edwards, Martin A; Chen, Qianjin; Liu, Yuwen; Luo, Long; White, Henry S

    2016-12-12

    In this article, we address the fundamental question: "What is the critical size of a single cluster of gas molecules that grows and becomes a stable (or continuously growing) gas bubble during gas evolving reactions?" Electrochemical reactions that produce dissolved gas molecules are ubiquitous in electrochemical technologies, e.g., water electrolysis, photoelectrochemistry, chlorine production, corrosion, and often lead to the formation of gaseous bubbles. Herein, we demonstrate that electrochemical measurements of the dissolved gas concentration, at the instant prior to nucleation of an individual nanobubble of H 2 , N 2 , or O 2 at a Pt nanodisk electrode, can be analyzed using classical thermodynamic relationships (Henry's law and the Young-Laplace equation - including non-ideal corrections) to provide an estimate of the size of the gas bubble nucleus that grows into a stable bubble. We further demonstrate that this critical nucleus size is independent of the radius of the Pt nanodisk employed (gas. For example, the measured critical surface concentration of H 2 of ∼0.23 M at the instant of bubble formation corresponds to a critical H 2 nucleus that has a radius of ∼3.6 nm, an internal pressure of ∼350 atm, and contains ∼1700 H 2 molecules. The data are consistent with stochastic fluctuations in the density of dissolved gas, at or near the Pt/solution interface, controlling the rate of bubble nucleation. We discuss the growth of the nucleus as a diffusion-limited process and how that process is affected by proximity to an electrode producing ∼10 11 gas molecules per second. Our study demonstrates the advantages of studying a single-entity, i.e., an individual nanobubble, in understanding and quantifying complex physicochemical phenomena.

  18. Removal of volatile iodine from gas bubbles rising in water pools: review and assessment of pool scrubbing codes

    Polo, J; Herranz, L E; Peyres, V; Escudero, M [CIEMAT, Nuclear Technology Institute, Madrid (Spain)

    1996-12-01

    During a hypothetical nuclear reactor accident with core damage the fission products released from the degrading fuel bundles often pass through aqueous beds before entering the containment, mitigating in part the source term. Several computer codes have been developed for predicting the fission product and aerosols removal in pool scrubbing scenarios. In addition to particle removal, these codes simulate the retention of some volatile iodine compounds. In this work a review of volatile iodine removal models included in SPARC and BUSCA codes is presented. Besides, the results and discussions of a validation of both codes against the available experimental data are summarized. SPARC and BUSCA codes model the diffusion of iodine toward the bubble interface by using the film penetration theory, which assumes a double layer gas-liquid at the interface. However, there are some differences between the two models, mainly related to the boundary conditions in the aqueous volume for the diffusion of molecular iodine. In SPARC, a set of fast reactions in the liquid phase control both the molecular iodine concentration in the pool and the partition coefficient of iodine at the interface. Thus, the aqueous chemistry plays an important role in the boundary conditions for the diffusion process. On the contrary, the BUSCA model has no chemical considerations at all, and assumes a null iodine concentration in the water bulk. Several sensitivity studies have been made in order to weight the effect of these differences. The variables examined in these studies were the pool temperature and the incoming iodine concentration in the pool. Additionally, sensitivity studies focused on the steam mass fraction of the injected gas were performed to study the effect of the different approach of both models for the condensation process. The results showed a different sensitivity of SPARC and BUSCA to the incoming concentration. (author) 5 tabs., 26 refs.

  19. Removal of volatile iodine from gas bubbles rising in water pools: review and assessment of pool scrubbing codes

    Polo, J.; Herranz, L.E.; Peyres, V.; Escudero, M.

    1996-01-01

    During a hypothetical nuclear reactor accident with core damage the fission products released from the degrading fuel bundles often pass through aqueous beds before entering the containment, mitigating in part the source term. Several computer codes have been developed for predicting the fission product and aerosols removal in pool scrubbing scenarios. In addition to particle removal, these codes simulate the retention of some volatile iodine compounds. Nonetheless, experimental data on the matter are rather scarce and further validation remains to be done. In this work a review of volatile iodine removal models included in SPARC and BUSCA codes is presented. Besides, the results and discussions of a validation of both codes against the available experimental data are summarized. SPARC and BUSCA codes model the diffusion of iodine toward the bubble interface by using the film penetration theory, which assumes a double layer gas-liquid at the interface. However, there are some differences between the two models, mainly related to the boundary conditions in the aqueous volume for the diffusion of molecular iodine. In SPARC, a set of fast reactions in the liquid phase control both the molecular iodine concentration in the pool and the partition coefficient of iodine at the interface. Thus, the aqueous chemistry plays an important role in the boundary conditions for the diffusion process. On the contrary, the BUSCA model has no chemical considerations at all, and assumes a null iodine concentration in the water bulk. Several sensitivity studies have been made in order to weight the effect of these differences. The variables examined in these studies were the pool temperature and the incoming iodine concentration in the pool. Additionally, sensitivity studies focused on the steam mass fraction of the injected gas were performed to study the effect of the different approach of both models for the condensation process. The results showed a different sensitivity of SPARC

  20. On the Physics of Fizziness: How liquid properties control bursting bubble aerosol production?

    Ghabache, Elisabeth; Antkowiak, Arnaud; Josserand, Christophe; Seon, Thomas

    2014-11-01

    Either in a champagne glass or at the oceanic scales, the tiny capillary bubbles rising at the surface burst in ejecting myriads of droplets. Focusing on the ejected droplets produced by a single bubble, we investigate experimentally how liquid properties and bubble size affect their characteristics: number, ejection velocities, sizes and ejection heights. These results allow us to finely tune the bursting bubble aerosol production. In the context of champagne industry, aerosols play a major role by spreading wine aroma above the glass. We demonstrate that this champagne fizz can be enhanced by selecting the wine viscosity and the bubble size, thanks to specially designed glass.

  1. Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions

    Janani Murallidharan

    2016-08-01

    Full Text Available Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI model and, within this model, the bubble is characterized using three main parameters: departure diameter (D, nucleation site density (N, and departure frequency (f. Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.

  2. A method for bubble volume calculating in vertical two-phase flow

    Wang, H Y; Dong, F

    2009-01-01

    The movement of bubble is a basic subject in gas-liquid two-phase flow research. A method for calculating bubble volume which is one of the most important characters in bubble motion research was proposed. A suit of visualized experimental device was designed and set up. Single bubble rising in stagnant liquid in a rectangular tank was studied using the high-speed video system. Bubbles generated by four orifice with different diameter (1mm, 2mm, 3mm, 4mm) were recorded respectively. Sequences of recorded high-speed images were processed by digital image processing method, such as image noise remove, binary image transform, bubble filling, and so on. then, Several parameters could be obtained from the processed image. Bubble area, equivalent diameter, bubble velocity, bubble acceleration are all indispensable in bubble volume calculating. In order to get the force balance equation, forces that work on bubble along vertical direction, including drag force, virtual mass force, buoyancy, gravity and liquid thrust, were analyzed. Finally, the bubble volume formula could be derived from the force balance equation and bubble parameters. Examples were given to shown the computing process and results. Comparison of the bubble volume calculated by geomettic method and the present method have shown the superiority of the proposed method in this paper.

  3. Bubbles in graphene

    Settnes, Mikkel; Power, Stephen; Lin, Jun

    2015-01-01

    Strain-induced deformations in graphene are predicted to give rise to large pseudomagnetic fields. We examine theoretically the case of gas-inflated bubbles to determine whether signatures of such fields are present in the local density of states. Sharp-edged bubbles are found to induce Friedel...

  4. A fire risk assessment model for residential high-rises with a single stairwell

    Hansen, N. D.; Steffensen, F.B.; Valkvist, M.B.

    2018-01-01

    As few or none prescriptive guidelines for fire risk assessment of residential high-rise buildings exist, it has been unclear which fire safety design features constitute an acceptable (adequate) safety level. In order to fill this gap a simplified risk-based decision-support tool, the Fire Risk...... Model (FRM), was developed. The FRM evaluates both the risk level to the occupants and the property risk level as a function of the building characteristics, height and fire safety features for single stairwell residential high-rise buildings. The acceptability of a high-rise design is then defined......, and the associated performance of the FRM evaluated. It was found that compartmentation and the door configurations in the egress path play an important role, along with sprinklers, in order for the design to successfully keep the stairwell free from smoke. Specifically, modern curtain wall facades were found...

  5. Experimental Determination of the Possible Deuterium - Deuterium Fusion Reaction Originated in a Single Cavitation Bubble Luminescence System Using CDCL3 and D2 O

    Barbaglia, Mario; Florido, Pablo; Mayer, Roberto; Bonetto, Fabian

    2003-01-01

    We focus this work on the measurement of the possible Deuterium - Deuterium reaction in a SCBL (Single Cavitation Bubble Luminescence) system.We measure the possible reaction at the bubble generation time and at the bubble collapse time. We use a Nd:YAG laser and CDCl 3 and D 2 O as a medium to generate the bubble. Since CDCl 3 accommodation coefficient is best than that of D 2 O, it is expected a greater collapse force than using D 2 O.To benefit the bubble collapse violence, we diminish the temperature of the liquids.To avoid false neutron detection, we developed a measuring system with high background reject using the characteristic experiment times.No neutrons attributable to Deuterium - Deuterium fusion reaction were measured

  6. Numerical investigation on lateral migration and lift force of single bubble in simple shear flow in low viscosity fluid using volume of fluid method

    Zhongchun, Li; Xiaoming, Song; Shengyao, Jiang; Jiyang, Yu

    2014-01-01

    Highlights: • A VOF simulation of bubble in low viscosity fluid was conducted. • Lift force in different viscosity fluid had different lateral migration characteristics. • Bubble with different size migrated to different direction. • Shear stress triggered the bubble deformation process and the bubble deformation came along with the oscillation behaviors. - Abstract: Two phase flow systems have been widely used in industrial engineering. Phase distribution characteristics are vital to the safety operation and optimization design of two phase flow systems. Lift force has been known as perpendicular to the bubbles’ moving direction, which is one of the mechanisms of interfacial momentum transfer. While most widely used lift force correlations, such as the correlation of Tomiyama et al. (2002), were obtained by experimentally tracking single bubble trajectories in high viscosity glycerol–water mixture, the applicability of these models into low viscosity fluid, such as water in nuclear engineering system, needs to be further evaluated. In the present paper, bubble in low viscosity fluid in shear flow was investigated in a full 3D numerical simulation and the volume of fluid (VOF) method was applied to capture the interface. The fluid parameter: fluid viscosity, bubble parameter: diameter and external flow parameters: shear stress magnitude and liquid velocity were examined. Comparing with bubble in high viscosity shear flow and bubble in low viscosity still flow, relative large bubble in low viscosity shear flow keep an oscillation way towards the moving wall and experienced a shape deformation process. The oscillation amplitude increased as the viscosity of fluid decreased. Small bubble migrated to the static wall in a line with larger migration velocity than that in high viscosity fluid and no deformation occurred. The shear stress triggered the oscillation behaviors while it had no direct influence with the behavior. The liquid velocity had no effect on

  7. Smart and green interfaces: From single bubbles/drops to industrial environmental and biomedical applications

    Dutschk, Victoria; Karapantsios, T.; Liggieri, L.; McMillan, N.; Miller, R.; Starov, V.M.

    2014-01-01

    Interfaces can be called Smart and Green (S&G) when tailored such that the required technologies can be implemented with high efficiency, adaptability and selectivity. At the same time they also have to be eco-friendly, i.e. products must be biodegradable, reusable or simply more durable. Bubble and

  8. Rise time of voltage pulses in NbN superconducting single photon detectors

    Smirnov, K. V. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics, 34 Tallinskaya St., 109028 Moscow (Russian Federation); Divochiy, A. V.; Karpova, U. V.; Morozov, P. V. [CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); Vakhtomin, Yu. B.; Seleznev, V. A. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); CJSC “Superconducting Nanotechnology” (Scontel), 5/22-1 Rossolimo St., 119021 Moscow (Russian Federation); Sidorova, M. V. [Moscow State Pedagogical University, 1 Malaya Pirogovskaya St., 119435 Moscow (Russian Federation); Zotova, A. N.; Vodolazov, D. Yu. [Institute for Physics of Microstructure, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod (Russian Federation)

    2016-08-01

    We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector R{sub n}, which appears after photon absorption, on its kinetic inductance L{sub k} and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.

  9. On Bubbles Rising in Line

    Růžička, Marek

    2000-01-01

    Roč. 26, - (2000), s. 1141-1841 ISSN 0301-9322 R&D Projects: GA ČR GA104/98/1435 Grant - others:INCO-COPERNICUS(XE) ERB IC15-CT98-0904 Institutional research plan: CEZ:AV0Z4072921 Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.606, year: 2000

  10. Measurement of the Rise-Time in a Single Sided Ladder Detector

    Gerber, C.E.

    1997-01-01

    In this note we report on the measurement of the preamplifier output rise time for a SVXII chip mounted on a D0 single sided ladder. The measurements were performed on the ladder 001-883-L, using the laser test stand of Lab D. The rise time was measured for different values of the response (or bandwidth) of the preamplifier. As a bigger bandwidth results in longer rise times and therefore in less noise, the largest possible bandwidth consistent with the time between bunch crossings should be chosen to operate the detectors. The rise time is defined as the time elapsed between 10% and 90% of the charge is collected. It is also interesting to measure the time for full charge collection and the percentage of charge collected in 132 ns and 396 ns. The results are shown in table 1, for bandwidths between 2 and 63 (binary numbers). The uncertainty on the time measurement is considered to be ∼ 10 ns. Figure 1 schematically defines the four quantities measured: rise time, time of full charge collection, and percentage of charge collected in 132 ns and 396 ns. Figures 2 to 8 are the actual measurements for bandwidths of 2, 4, 8, 12, 24, 32 and 63. Figure 9 is a second measurement for BW=24, used as a consistency check of the system and the time measurement performed on the plots. The data indicate that the single sided ladders can be operated at BW=63 for 396 ns and BW=12 for 132 ns, achieving full charge collection. This will result in smaller noise than originally anticipated.

  11. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum.

    Gao, Libo; Ren, Wencai; Xu, Huilong; Jin, Li; Wang, Zhenxing; Ma, Teng; Ma, Lai-Peng; Zhang, Zhiyong; Fu, Qiang; Peng, Lian-Mao; Bao, Xinhe; Cheng, Hui-Ming

    2012-02-28

    Large single-crystal graphene is highly desired and important for the applications of graphene in electronics, as grain boundaries between graphene grains markedly degrade its quality and properties. Here we report the growth of millimetre-sized hexagonal single-crystal graphene and graphene films joined from such grains on Pt by ambient-pressure chemical vapour deposition. We report a bubbling method to transfer these single graphene grains and graphene films to arbitrary substrate, which is nondestructive not only to graphene, but also to the Pt substrates. The Pt substrates can be repeatedly used for graphene growth. The graphene shows high crystal quality with the reported lowest wrinkle height of 0.8 nm and a carrier mobility of greater than 7,100 cm(2) V(-1) s(-1) under ambient conditions. The repeatable growth of graphene with large single-crystal grains on Pt and its nondestructive transfer may enable various applications.

  12. Interfacial Bubble Deformations

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  13. Dynamics of single-bubble sonoluminescence. An alternative approach to the Rayleigh-Plesset equation

    de Barros, Ana L. F.; Nogueira, Álvaro L. M. A.; Paschoal, Ricardo C.; Portes, Dirceu, Jr.; Rodrigues, Hilario

    2018-03-01

    Sonoluminescence is the phenomenon in which acoustic energy is (partially) transformed into light as a bubble of gas collapses inside a liquid medium. One particular model used to explain the motion of the bubble’s wall forced by acoustic pressure is expressed by the Rayleigh-Plesset equation, which can be obtained from the Navier-Stokes equation. In this article, we describe an alternative approach to derive the Rayleigh-Plesset equation based on Lagrangian mechanics. This work is addressed mainly to undergraduate students and teachers. It requires knowledge of calculus and of many concepts from various fields of physics at the intermediate level.

  14. Numerical Study of Single Bubble Growth on and Departure from a Horizontal Superheated Wall by Three-dimensional Lattice Boltzmann Method

    Feng, Yuan; Li, Hui-Xiong; Guo, Kai-Kai; Zhao, Jian-Fu; Wang, Tai

    2018-05-01

    A three-dimensional hybrid lattice Boltzmann method was used to simulate the progress of a single bubble's growth and departure from a horizontal superheated wall. The evolutionary process of the bubble shapes and also the temperature fields during pool nucleate boiling were obtained and the influence of the gravitational acceleration on the bubble departure diameter (BDD), the bubble release frequency (BRF) and the heat flux on the superheated wall was analyzed. The simulation results obtained by the present three-dimensional numerical studies demonstrate that the BDD is proportional to g^{-0.301}, the BRF is proportional to g^{-0.58}, and the averaged wall heat flux is proportional to g^{0.201}, where g is the gravitational acceleration. These results are in good agreement with the common-used experimental correlations, indicating the rationality of the present numerical model and results.

  15. Hollow Mesoporous Carbon Microparticles and Micromotors with Single Holes Templated by Colloidal Silica-Assisted Gas Bubbles.

    Huang, Xiaoxi; Zhang, Tao; Asefa, Tewodros

    2017-07-01

    A simple, new synthetic method that produces hollow, mesoporous carbon microparticles, each with a single hole on its surface, is reported. The synthesis involves unique templates, which are composed of gaseous bubbles and colloidal silica, and poly(furfuryl alcohol) as a carbon precursor. The conditions that give these morphologically unique carbon microparticles are investigated, and the mechanisms that result in their unique structures are proposed. Notably, the amount of colloidal silica and the type of polymer are found to hugely dictate whether or not the synthesis results in hollow asymmetrical microparticles, each with a single hole. The potential application of the particles as self-propelled micromotors is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fluid Mechanics of Taylor Bubbles and Slug Flows in Vertical Channels

    Anglart, Henryk; Podowski, Michael Z.

    2002-01-01

    Fluid mechanics of Taylor bubbles and slug flows is investigated in vertical, circular channels using detailed, three-dimensional computational fluid dynamics simulations. The Volume of Fluid model with the interface-sharpening algorithm, implemented in the commercial CFX4 code, is used to predict the shape and velocity of Taylor bubbles moving along a vertical channel. Several cases are investigated, including both a single Taylor bubble and a train of bubbles rising in water. It is shown that the potential flow solution underpredicts the water film thickness around Taylor bubbles. Furthermore, the computer simulations that are performed reveal the importance of properly modeling the three-dimensional nature of phenomena governing the motion of Taylor bubbles. Based on the present results, a new formula for the evaluation of bubble shape is derived. Both the shape of Taylor bubbles and the bubble rise velocity predicted by the proposed model agree well with experimental observations. Furthermore, the present model shows good promise in predicting the coalescence of Taylor bubbles

  17. Taylor bubbles at high viscosity ratios: experiments and numerical simulations

    Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar

    2015-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  18. Rise and fall of ferromagnetism in O-irradiated Al2O3 single crystals

    Li, Qiang; Xu, Juping; Liu, Jiandang; Du, Huaijiang; Ye, Bangjiao

    2015-01-01

    In dilute magnetic semiconductors studies, sapphire was usually used as non-magnetic substrate for films. We observed weak ferromagnetic component in Al 2 O 3 single crystal substrate, and excluded the possibility of ferromagnetic contaminations carefully by inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The ferromagnetism rise and fall during the process of annealing-oxygen irradiation-annealing of the sapphire. The ferromagnetic changes are consistent with Al-vacancy related defects detected by positron annihilation spectroscopy. With first-principle calculations, we confirm that Al-vacancy can introduce magnetic moment for 3 μB in Al 2 O 3 crystal and form stable V Al -V Al ferromagnetic coupling at room temperature

  19. Bubbly flows around a two-dimensional circular cylinder

    Lee, Jubeom; Park, Hyungmin

    2016-11-01

    Two-phase cross flows around a bluff body occur in many thermal-fluid systems like steam generators, heat exchangers and nuclear reactors. However, our current knowledge on the interactions among bubbles, bubble-induced flows and the bluff body are limited. In the present study, the gas-liquid bubbly flows around a solid circular cylinder are experimentally investigated while varying the mean void fraction from 5 to 27%. The surrounding liquid (water) is initially static and the liquid flow is only induced by the air bubbles. For the measurements, we use the high-speed two-phase particle image velocimetry techniques. First, depending on the mean void fraction, two regimes are classified with different preferential concentration of bubbles in the cylinder wake, which are explained in terms of hydrodynamic force balances acting on rising bubbles. Second, the differences between the two-phase and single-phase flows (while matching their Reynolds numbers) around a circular cylinder will be discussed in relation to effects of bubble dynamics and the bubble-induced turbulence on the cylinder wake. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  20. HCDA bubble experiment, (2)

    Sakata, Kaoru; Mashiko, Hiroyuki; Oka, Yoshiaki; An, Shigehiro; Isozaki, Tadashi.

    1981-06-01

    An experiment simulating the behavior of the very large steam bubbles generated at the time of an accident of core collapse was carried out with a warm water tank, and the applicability of the theory of very small bubble disappearance known at present was examined. The bubbles generated in HCDA (hypothetical core disruptive accident) are expected to be very large, containing sodium, fuel, FP gas and so on, and play important role in the mechanism of emitting radioactive substances in the safety analysis of LMFBRs. In this experiment, the degree of subcool of the warm water pool, the initial radii of steam bubbles and the blowoff pressure of steam were taken as the parameters. The radius of the steam bubbles generated in the experiment was about 6.5 cm, and the state of disappearance was different above and below the degree of unsaturation of 10 deg C. Comparing the disappearance curve obtained by the experiment with the theory of disappearance of small bubbles, the experimental values were between inertia-controlled disappearance and heat transfer-controlled disappearance, and this result was able to be explained generally with the model taking the pressure change within steam bubbles into account. The rise of bubbles was also observed. (Kako, I.)

  1. Science Bubbles

    Hendricks, Vincent Fella; Pedersen, David Budtz

    2013-01-01

    Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy....

  2. Single pion production by high energy neutrinos in a hydrogen bubble chamber

    French, H.T.

    1977-01-01

    The reaction νp → μ - pπ + was observed in the Fermilab 15 foot bubble chamber. The wide band horn focused neutrino beam provided neutrinos with energies from less than 5 GeV to more than 100 GeV. Of 51 νp → μ - pπ + events seen 33 are consistent with the pπ + coming from the Δ ++ (1232) resonance, corresponding to a cross section for νp → μ - Δ ++ 0.65 +- 20 x 10 -38 cm 2 . The data are consistent with the hypothesis that the cross section is independent of neutrino energy above 1 GeV. No evidence is seen for production of higher mass Δ resonances. More events are seen at high Q 2 (four momentum transfer squared to the hadron system) than are expected for presently accepted axial vector form factors. The values of M/sub A/ in the axial vector form factors were found which maximize likelihood that Adler's model fits the cross section and kinematic distribution of the Δ ++ events. For dipole form factors M/sub A/ = 1.6 +- 3 GeV. For monopole form factors M/sub A/ = 0.9 +- 3 GeV. No preference is shown between the monopole and the dipole pages

  3. Numerical study of Taylor bubbles with adaptive unstructured meshes

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry

    2014-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  4. Sticky bubbles

    Antoniuk, O.; Bos, van der A.; Driessen, T.W.; Es, van B.; Jeurissen, R.J.M.; Michler, D.; Reinten, H.; Schenker, M.; Snoeijer, J.H.; Srivastava, S.; Toschi, F.; Wijshoff, H.M.A.

    2011-01-01

    We discuss the physical forces that are required to remove an air bubble immersed in a liquid from a corner. This is relevant for inkjet printing technology, as the presence of air bubbles in the channels of a printhead perturbs the jetting of droplets. A simple strategy to remove the bubble is to

  5. The Bubble Box: Towards an Automated Visual Sensor for 3D Analysis and Characterization of Marine Gas Release Sites

    Anne Jordt

    2015-12-01

    Full Text Available Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information.

  6. Air bubbles induce a critical continuous stress to prevent marine biofouling accumulation

    Belden, Jesse; Menesses, Mark; Dickenson, Natasha; Bird, James

    2017-11-01

    Significant shear stresses are needed to remove established hard fouling organisms from a ship hull. Given that there is a link between the amount of time that fouling accumulates and the stress required to remove it, it is not surprising that more frequent grooming requires less shear stress. One approach to mitigate marine biofouling is to continuously introduce a curtain of air bubbles under a submerged surface; it is believed that this aeration exploits the small stresses induced by rising bubbles to continuously prevent accumulation. Although curtains of rising bubbles have successfully prevented biofouling accumulation, it is unclear if a single stream of bubbles could maintain a clean surface. In this talk, we show that single bubble stream aeration can prevent biofouling accumulation in regions for which the average wall stress exceeds approximately 0.01 Pa. This value is arrived at by comparing observations of biofouling growth and prevention from field studies with laboratory measurements that probe the associated flow fields. We also relate the spatial and temporal characteristics of the flow to the size and frequency of the rising bubbles, which informs the basic operating conditions required for aeration to continuously prevent biofouling accumulation.

  7. Negative wake behind bubbles in non-newtonian liquids

    Hassager, Ole

    1979-01-01

    Gas bubbles rising by gravity in non-Newtonian elastic liquids are different to gas bubbles in viscous Newtonian fluids in at least two ways. First, the bubbles in the non-Newtonian liquids often have a peculiar tip at the rear pole, and second, the terminal rise velocity versus volume curve ofte...

  8. Single-point reactive power control method on voltage rise mitigation in residential networks with high PV penetration

    Hasheminamin, Maryam; Agelidis, Vassilios; Ahmadi, Abdollah

    2018-01-01

    Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise by ...... system with high r/x ratio. Efficacy, effectiveness and cost study of SPRPC is compared to droop control to evaluate its advantages.......Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise...... by absorbing adequate reactive power from one selected point. The proposed index utilizes short circuit analysis to select the best point to apply this Volt/Var control method. SPRPC is supported technically and financially by distribution network operator that makes it cost effective, simple and efficient...

  9. Interface tracking computations of bubble dynamics in nucleate flow boiling

    Giustini, G.

    2015-01-01

    The boiling process is of utter importance for the design and operation of water-cooled nuclear reactors. Despite continuous effort over the past decades, a fully mechanistic model of boiling in the presence of a solid surface has not yet been achieved. Uncertainties exist at fundamental level, since the microscopic phenomena governing nucleate boiling are still not understood, and as regards 'component scale' modelling, which relies heavily on empirical representations of wall boiling. Accurate models of these phenomena at sub-milli-metric scale are capable of elucidating the various processes and to produce quantitative data needed for up-scaling. Within this context, Direct Numerical Simulation (DNS) represents a powerful tool for CFD analysis of boiling flows. In this contribution, DNS coupled with an Interface Tracking method (Y. Sato, B. Niceno, Journal of Computational Physics, Volume 249, 15 September 2013, Pages 127-161) are used to analyse the hydrodynamics and heat transfer associated with heat diffusion controlled bubble growth at a solid substrate during nucleate flow boiling. The growth of successive bubbles from a single nucleation site is simulated with a computational model that includes heat conduction in the solid substrate and evaporation from the liquid film (micro-layer) present beneath the bubble. Bubble evolution is investigated and the additional (with respect to single phase convection) heat transfer mechanisms due to the ebullition cycle are quantified. The simulations show that latent heat exchange due to evaporation in the micro-layer and sensible heat exchange during the waiting time after bubble departure are the main heat transfer mechanisms. It is found that the presence of an imposed flow normal to the bubble rising path determines a complex velocity and temperature distribution near the nucleation site. This conditions can result in bubble sliding, and influence bubble shape, departure diameter and departure frequency

  10. Bubbles & Squat

    Højbjerre Larsen, Signe

    , a new concept called ‘Bubbles & Squat’, where fitness training is combined with Champagne and a live DJ. One of the invitations for this event describes how “we spice up your friday training with live DJ and lots of refreshing bubbles, to make sure that you are ready for the weekend (...).” Before New...

  11. Characterization of Bubble Size Distributions within a Bubble Column

    Shahrouz Mohagheghian; Brian R. Elbing

    2018-01-01

    The current study experimentally examines bubble size distribution (BSD) within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm), injection tube diameter (0.8–1.6 mm) and superficial gas velocity (1.4–55 mm/s) were varied. Large samples (up to 54,000 bubbles) of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs). The PDFs were used to...

  12. Influence of reactions heats on variation of radius, temperature, pressure and chemical species amounts within a single acoustic cavitation bubble.

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-03-01

    The scientific interest toward the study of acoustic bubble is mainly explained by its practical benefit in providing a reactional media favorable to the rapid evolution of chemical mechanism. The evolution of this mechanism is related to the simultaneous and dependent variation of the volume, temperature and pressure within the bubble, retrieved by the resolution of a differential equations system, including among others the thermal balance. This last one is subject to different assumptions, some authors deem simply that the temperature varies adiabatically during the collapsing phase, without considering the reactions heat of the studied mechanism. This paper aims to evaluate the pertinence of neglecting reactions heats in the thermal balance, by analyzing their effect on the variation of radius, temperature, pressure and chemical species amounts. The results show that the introduction of reactions heats conducts to a decrease of the temperature, an increase of the pressure and a reduction of the bubble volume. As a consequence, this leads to a drop of the quantities of free radicals produced by the chemical mechanism evolving within the bubble. This paper also proved that the impact of the consideration of reactions heats is dependent of the frequency and the acoustic amplitude of the ultrasonic wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Sonoluminescing Air Bubbles Rectify Argon

    Lohse, Detlef; Brenner, Michael P.; Dupont, Todd F.; Hilgenfeldt, Sascha; Johnston, Blaine

    1997-01-01

    The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the percentage of inert gas within the bubble. We propose a theory for this dependence, based on a combination of principles from sonochemistry and hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent

  14. Measurement of two-dimensional bubble velocity by Using tri-fiber-optical Probe

    Yang Ruichang; Zheng Rongchuan; Zhou Fanling; Liu Ruolei

    2009-01-01

    In this study, an advanced measuring system with a tri-single-fiber-optical-probe has been developed to measure two-dimensional vapor/gas bubble velocity. The use of beam splitting devices instead of beam splitting lens simplifies the optical system, so the system becomes more compact and economic, and more easy to adjust. Corresponding to using triple-optical probe for measuring two-dimensional bubble velocity, a data processing method has been developed, including processing of bubble signals, cancelling of unrelated signals, determining of bubble velocity with cross correlation technique and so on. Using the developed two-dimensional bubble velocity measuring method, the rising velocity of air bubbles in gravitational field was measured. The measured bubble velocities were compared with the empirical correlation available. Deviation was in the range of ±30%. The bubble diameter obtained by data processing is in good accordance with that observed with a synchro-scope and a camera. This shows that the method developed here is reliable.

  15. Effervescence in champagne and sparkling wines: From bubble bursting to droplet evaporation

    Séon, T.; Liger-Belair, G.

    2017-01-01

    When a bubble reaches an air-liquid interface, it ruptures, projecting a multitude of tiny droplets in the air. Across the oceans, an estimated 1018 to 1020 bubbles burst every second, and form the so called sea spray, a major player in earth's climate system. At a smaller scale, in a glass of champagne about a million bubbles nucleate on the wall, rise towards the surface and burst, giving birth to a particular aerosol that holds a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in simple liquids, we depict each step of this effervescence, from bubble bursting to drop evaporation. In particular, we propose simple scaling laws for the jet velocity and the top drop size. We unravel experimentally the intricate roles of bubble shape, capillary waves, gravity, and liquid properties in the jet dynamics and the drop detachment. We demonstrate how damping action of viscosity produces faster and smaller droplets and more generally how liquid properties enable to control the bubble bursting aerosol characteristics. In this context, the particular case of Champagne wine aerosol is studied in details and the key features of this aerosol are identified. We demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. Conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of aerosol characteristics and flavor release during sparkling wine tasting, a major issue of the sparkling wine industry.

  16. Lattice Boltzmann Simulation of Multiple Bubbles Motion under Gravity

    Deming Nie

    2015-01-01

    Full Text Available The motion of multiple bubbles under gravity in two dimensions is numerically studied through the lattice Boltzmann method for the Eotvos number ranging from 1 to 12. Two kinds of initial arrangement are taken into account: vertical and horizontal arrangement. In both cases the effects of Eotvos number on the bubble coalescence and rising velocity are investigated. For the vertical arrangement, it has been found that the coalescence pattern is similar. The first coalescence always takes place between the two uppermost bubbles. And the last coalescence always takes place between the coalesced bubble and the bottommost bubble. For four bubbles in a horizontal arrangement, the outermost bubbles travel into the wake of the middle bubbles in all cases, which allows the bubbles to coalesce. The coalescence pattern is more complex for the case of eight bubbles, which strongly depends on the Eotvos number.

  17. Nuttier bubbles

    Astefanesei, Dumitru; Mann, Robert B.; Stelea, Cristian

    2006-01-01

    We construct new explicit solutions of general relativity from double analytic continuations of Taub-NUT spacetimes. This generalizes previous studies of 4-dimensional nutty bubbles. One 5-dimensional locally asymptotically AdS solution in particular has a special conformal boundary structure of AdS 3 x S 1 . We compute its boundary stress tensor and relate it to the properties of the dual field theory. Interestingly enough, we also find consistent 6-dimensional bubble solutions that have only one timelike direction. The existence of such spacetimes with non-trivial topology is closely related to the existence of the Taub-NUT(-AdS) solutions with more than one NUT charge. Finally, we begin an investigation of generating new solutions from Taub-NUT spacetimes and nuttier bubbles. Using the so-called Hopf duality, we provide new explicit time-dependent backgrounds in six dimensions

  18. Transient local heat fluxes during the entire vapor bubble life time

    Stephan, P.; Fuchs, T; Wagner, E.; Schweizer, N. [Technische Universitaet Darmstadt (Germany). Technical Thermodynamics], e-mail: pstephan@ttd.tu-darmstadt.de

    2009-07-01

    Recent experimental and numerical investigations of the nucleate boiling heat transfer process at a single active nucleation site are presented and used for an evaluation of the local heat fluxes during the entire life time of a vapor bubble from its nucleation to the rise through the thermal boundary layer. In a special boiling cell, vapor bubbles are generated at a single nucleation site on a 20 {mu}m thin stainless steel heating foil. An infrared camera captures the temperature distribution at the wall with high temporal and spatial resolution. The bubble shape is recorded with a high-speed camera. Measurements were conducted with the pure fluids FC-84 and FC-3284 and with its binary mixtures. For pure fluids, up to 50-60% of the latent heat flows through the three-phase-contact line region. For mixtures, this ratio is clearly reduced. These observations are in agreement with the numerical model of the author's group. The fully transient model contains a multi scale approach ranging from the nanometer to the millimeter scale for the detailed description of the relevant local and global phenomena. It describes the transient heat and fluid flow during the entire periodic cycle of a growing, detaching and rising bubble including the waiting time between two successive bubbles from a single nucleation site. The detailed analysis of the computed transient temperature profiles in wall and fluid give accurate information about the heat supply, temporal energy storage and local evaporation rates. (author)

  19. Transient local heat fluxes during the entire vapor bubble life time

    Stephan, P.; Fuchs, T; Wagner, E.; Schweizer, N.

    2009-01-01

    Recent experimental and numerical investigations of the nucleate boiling heat transfer process at a single active nucleation site are presented and used for an evaluation of the local heat fluxes during the entire life time of a vapor bubble from its nucleation to the rise through the thermal boundary layer. In a special boiling cell, vapor bubbles are generated at a single nucleation site on a 20 μm thin stainless steel heating foil. An infrared camera captures the temperature distribution at the wall with high temporal and spatial resolution. The bubble shape is recorded with a high-speed camera. Measurements were conducted with the pure fluids FC-84 and FC-3284 and with its binary mixtures. For pure fluids, up to 50-60% of the latent heat flows through the three-phase-contact line region. For mixtures, this ratio is clearly reduced. These observations are in agreement with the numerical model of the author's group. The fully transient model contains a multi scale approach ranging from the nanometer to the millimeter scale for the detailed description of the relevant local and global phenomena. It describes the transient heat and fluid flow during the entire periodic cycle of a growing, detaching and rising bubble including the waiting time between two successive bubbles from a single nucleation site. The detailed analysis of the computed transient temperature profiles in wall and fluid give accurate information about the heat supply, temporal energy storage and local evaporation rates. (author)

  20. Leverage bubble

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  1. Rise and fall of ferromagnetism in O-irradiated Al{sub 2}O{sub 3} single crystals

    Li, Qiang [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026 (China); China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803 (China); Xu, Juping; Liu, Jiandang; Du, Huaijiang; Ye, Bangjiao, E-mail: bjye@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026 (China)

    2015-06-21

    In dilute magnetic semiconductors studies, sapphire was usually used as non-magnetic substrate for films. We observed weak ferromagnetic component in Al{sub 2}O{sub 3} single crystal substrate, and excluded the possibility of ferromagnetic contaminations carefully by inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The ferromagnetism rise and fall during the process of annealing-oxygen irradiation-annealing of the sapphire. The ferromagnetic changes are consistent with Al-vacancy related defects detected by positron annihilation spectroscopy. With first-principle calculations, we confirm that Al-vacancy can introduce magnetic moment for 3 μB in Al{sub 2}O{sub 3} crystal and form stable V{sub Al}-V{sub Al} ferromagnetic coupling at room temperature.

  2. Rapid detection of atrazine and metolachlor in farm soils: gas chromatography-mass spectrometry-based analysis using the bubble-in-drop single drop microextraction enrichment method.

    Williams, D Bradley G; George, Mosotho J; Marjanovic, Ljiljana

    2014-08-06

    Tracking of metolachlor and atrazine herbicides in agricultural soils, from spraying through to harvest, was conducted using our recently reported "bubble-in-drop single-drop microextraction" method. The method showed good linearity (R(2) = 0.999 and 0.999) in the concentration range of 0.01-1.0 ng/mL with LOD values of 0.01 and 0.02 ng/mL for atrazine and metolachlor, respectively. Sonication methods were poor at releasing these herbicides from the soil matrixes, while hot water extraction readily liberated them, providing an efficient accessible alternative to sonication techniques. Good recoveries of 97% and 105% were shown for atrazine and metolachlor, respectively, from the soil. The spiking protocol was also investigated, resulting in a traceless spiking method. We demonstrate a very sensitive technique by which to assess, for example, the length of residence of pesticides in given soils and thus risk of exposure.

  3. Direct numerical simulation of circular-cap bubbles in low viscous liquids using counter diffusion lattice Boltzmann method

    Ryu, Seungyeob, E-mail: syryu@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI), 1045 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Youngin; Yoon, Juhyeon [Korea Atomic Energy Research Institute (KAERI), 1045 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ko, Sungho, E-mail: sunghoko@cnu.ac.kr [Department of Mechanical Design Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2014-01-15

    Highlights: • We directly simulate circular-cap bubbles in low viscous liquids. • The counter diffusion multiphase lattice Boltzmann method is proposed. • The present method is validated through benchmark tests and experimental results. • The high-Reynolds-number bubbles can be simulated without any turbulence models. • The present method is feasible for the direct simulation of bubbly flows. -- Abstract: The counter diffusion lattice Boltzmann method (LBM) is used to directly simulate rising circular-cap bubbles in low viscous liquids. A counter diffusion model for single phase flows has been extended to multiphase flows, and the implicit formulation is converted into an explicit one for easy calculation. Bubbles at high Reynolds numbers ranging from O(10{sup 2}) to O(10{sup 4}) are simulated successfully without any turbulence models, which cannot be done for the existing LBM versions. The characteristics of the circular-cap bubbles are studied for a wide range of Morton numbers and compared with the previous literature. Calculated results agree with the theoretical and experimental data. Consequently, the wake phenomena of circular-cap bubbles and bubble induced turbulence are presented.

  4. Slowing down bubbles with sound

    Poulain, Cedric; Dangla, Remie; Guinard, Marion

    2009-11-01

    We present experimental evidence that a bubble moving in a fluid in which a well-chosen acoustic noise is superimposed can be significantly slowed down even for moderate acoustic pressure. Through mean velocity measurements, we show that a condition for this effect to occur is for the acoustic noise spectrum to match or overlap the bubble's fundamental resonant mode. We render the bubble's oscillations and translational movements using high speed video. We show that radial oscillations (Rayleigh-Plesset type) have no effect on the mean velocity, while above a critical pressure, a parametric type instability (Faraday waves) is triggered and gives rise to nonlinear surface oscillations. We evidence that these surface waves are subharmonic and responsible for the bubble's drag increase. When the acoustic intensity is increased, Faraday modes interact and the strongly nonlinear oscillations behave randomly, leading to a random behavior of the bubble's trajectory and consequently to a higher slow down. Our observations may suggest new strategies for bubbly flow control, or two-phase microfluidic devices. It might also be applicable to other elastic objects, such as globules, cells or vesicles, for medical applications such as elasticity-based sorting.

  5. Bubble bursting at an interface

    Kulkarni, Varun; Sajjad, Kumayl; Anand, Sushant; Fezzaa, Kamel

    2017-11-01

    Bubble bursting is crucial to understanding the life span of bubbles at an interface and more importantly the nature of interaction between the bulk liquid and the outside environment from the point of view of chemical and biological material transport. The dynamics of the bubble as it rises from inside the liquid bulk to its disappearance on the interface after bursting is an intriguing process, many aspects of which are still being explored. In our study, we make detailed high speed imaging measurements to examine carefully the hole initiation and growth in bursting bubbles that unearth some interesting features of the process. Previous analyses available in literature are revisited based on our novel experimental visualizations. Using a combination of experiments and theory we investigate the role of various forces during the rupturing process. This work aims to further our current knowledge of bubble dynamics at an interface with an aim of predicting better the bubble evolution from its growth to its eventual integration with the liquid bulk.

  6. Bidirectional cinematography of steam-bubble growth

    Deason, V.A.; Reynolds, L.D.

    1982-01-01

    Single steam bubbles were generated in superheated water in an optical cell. The growth process of the bubbles was recorded with a high-speed motion picture camera at 5000 and 10,000 frames per second. A technique was developed to simultaneously image two orthogonal views of the bubbles on each frame of film. The vertical and horizontal diameters of the bubbles were measured on a frame-by-frame basis, and the data analyzed to determine oscillatory frequencies. The analysis also attempted to determine whether the bubbles were undergoing volumetric oscillations during early growth or whether simple surface wave/rotational behavior caused the observed periodic variations in bubble dimensions. For the bubbles studied, typical oscillation frequencies for the diameters were in the range of 100 to 500 Hz

  7. Bidirectional cinematography of steam-bubble growth

    Deason, V.A.; Reynolds, L.D.

    1982-01-01

    Single steam bubbles were generated in superheated water in an optical cell. The growth process of the bubbles was recorded with a high-speed motion picture camera at 5000 and 10,000 frames per second. A technique was developed to simultaneously image two orthogonal views of the bubbles on each frame of film. The vertical and horizontal diameters of the bubbles were measured on a frame-by-frame basis, and the data analyzed to determine oscillatory frequencies. The analysis also attempted to determine whether the bubbles were undergoing volumetric oscillations during early growth or whether simple surface wave/rotational behavior caused the observed periodic variations in bubble dimensions. For the bubbles studied, typical oscillation frequencies for the diameters were in the range of 100 to 500 Hz.

  8. Numerical simulation of bubbles motion in lifting pipe of bubble pump for lithium bromide absorption chillers

    Gao, Hongtao; Liu, Bingbing; Yan, Yuying

    2017-01-01

    A bubble pump is proposed to replace the traditional mechanical solution pump in lithium bromide absorption chillers, for its advantageous feature that can be driven by industrial waste heat or solar energy or other low-grade energy. In two-stage bubble pump driven lithium bromide absorption refrigeration system, flow patterns in lifting pipe have significant effects on the performance of bubble pump. In this paper, the single bubble motion and the double bubbles coalescence in vertical ascending pipe are simulated by an improved free energy model of lattice Boltzmann method, in which the two-phase liquid to gas density ratio is 2778. The details of bubbles coalescence process are studied. Density and velocity of bubbles have been obtained. The computational results show that the initial radius of each bubble has a great influence on the coalescence time. The larger the initial bubble radius, the shorter the coalescence time. The pipe diameter has a little effect on the two bubbles coalescence time while it has a significant effect on the bubble velocity. As the pipe diameter increases, the bubble velocity increases. The obtained results are helpful for studying the transition mechanisms of two-phase flow patterns and useful for improving the bubble pump performance by controlling the flow patterns in lifting pipe.

  9. Effect of supercritical water shell on cavitation bubble dynamics

    Shao Wei-Hang; Chen Wei-Zhong

    2015-01-01

    Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh–Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. (paper)

  10. Bubble bath soap poisoning

    ... medlineplus.gov/ency/article/002762.htm Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...

  11. Non-intuitive bubble effects in reactor and containment technology

    Moody, F.J.

    1991-01-01

    Most people know a lot about bubbles, including how they rise in liquids and the way they appear when the cap is removed from a bottle of carbonated beverage. A lot of bubble knowledge is obtained from bubbling air through water in aquariums to keep the fish alive and happy, or watching scuba divers feed the sharks in large glass tanks at the local zoo. But innocent bubbles can be sources of structural loadings and sometimes destructive fluid behavior. In fact, there are many non-intuitive effects associated with bubbles which have been discovered by experiments and analyses. It has been necessary to design various reactor and containment components in the nuclear energy industry to accommodate the fact that bubbles can expand like compressed springs, or oscillate, or collapse abruptly, and create structural loads. This paper describes several important phenomena associated with bubble action in nuclear reactor and containment systems and the associated loads exerted. An awareness of these effects can help to avoid unwelcome surprises in general thermal-hydraulic applications when a system is disturbed by bubble behavior. Major topics discussed include expanding and collapsing submerged bubbles, steam chugging and ringout, bubble shattering, surprising hot bubble action in a saturated pool, bubble effects on fluid-structure-interaction, waterhammer from collapsing bubble in pipes, and vapor bubble effects on sound speed in saturated mixtures

  12. Interaction of a bubble and a bubble cluster in an ultrasonic field

    Wang Cheng-Hui; Cheng Jian-Chun

    2013-01-01

    Using an appropriate approximation, we have formulated the interacting equation of multi-bubble motion for a system of a single bubble and a spherical bubble cluster. The behavior of the bubbles is observed in coupled and uncoupled states. The oscillation of bubbles inside the cluster is in a coupled state. The numerical simulation demonstrates that the secondary Bjerknes force can be influenced by the number density, initial radius, distance, driving frequency, and amplitude of ultrasound. However, if a bubble approaches a bubble cluster of the same initial radii, coupled oscillation would be induced and a repulsive force is evoked, which may be the reason why the bubble cluster can exist steadily. With the increment of the number density of the bubble cluster, a secondary Bjerknes force acting on the bubbles inside the cluster decreases due to the strong suppression of the coupled bubbles. It is shown that there may be an optimal number density for a bubble cluster which can generate an optimal cavitation effect in liquid for a stable driving ultrasound. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Characterization of Bubble Size Distributions within a Bubble Column

    Shahrouz Mohagheghian

    2018-02-01

    Full Text Available The current study experimentally examines bubble size distribution (BSD within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm, injection tube diameter (0.8–1.6 mm and superficial gas velocity (1.4–55 mm/s were varied. Large samples (up to 54,000 bubbles of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs. The PDFs were used to identify an alternative length scale termed the most frequent bubble size (dmf and defined as the peak in the PDF. This length scale as well as the traditional Sauter mean diameter were used to assess the sensitivity of the BSD to gas injection rate, injector tube diameter, injection tube angle and column diameter. The dmf was relatively insensitive to most variation, which indicates these bubbles are produced by the turbulent wakes. In addition, the current work examines higher order statistics (standard deviation, skewness and kurtosis and notes that there is evidence in support of using these statistics to quantify the influence of specific parameters on the flow-field as well as a potential indicator of regime transitions.

  14. Cap Bubble Drift Velocity in a Confined Test Section

    Xiaodong Sun; Seungjin Kim; Mamoru Ishii; Lincoln, Frank W.; Beus, Stephen G.

    2002-01-01

    In the two-group interfacial area transport equation, bubbles are categorized into two groups, i.e., spherical/distorted bubbles as group 1 and cap/slug/churn-turbulent bubbles as group 2. The bubble rise velocities for both groups of bubbles may be estimated by the drift flux model by applying different distribution parameters and drift velocities for both groups. However, the drift velocity for group 2 bubbles is not always applicable (when the wall effect becomes important) as in the current test loop of interest where the flow channel is confined by two parallel flat walls, with a dimension of 200-mm in width and 10-mm in gap. The previous experiments indicated that no stable slug flow existed in this test section, which was designed to permit visualization of the flow patterns and bubble characteristics without the distortion associated with curved surfaces. In fact, distorted cap bubbly and churn-turbulent flow was observed. Therefore, it is essential to developed a correlation for cap bubble drift velocity in this confined flow channel. Since the rise velocity of a cap bubble depends on its size, a high-speed movie camera is used to capture images of cap bubbles to obtain the bubble size information. Meanwhile, the rise velocity of cap and elongated bubbles (called cap bubbles hereafter) is investigated by examining the captured images frame by frame. As a result, the conventional correlation of drift velocity for slug bubbles is modified and acceptable agreements between the measurements and correlation estimation are achieved

  15. Shock formation within sonoluminescence bubbles

    Vuong, V.Q.; Szeri, A.J.; Young, D.A.

    1999-01-01

    A strong case has been made by several authors that sharp, spherically symmetric shocks converging on the center of a spherical bubble driven by a strong acoustic field give rise to rapid compression and heating that produces the brief flash of light known as sonoluminescence. The formation of such shocks is considered. It is found that, although at the main collapse the bubble wall does indeed launch an inwardly-traveling compression wave, and although the subsequent reflection of the wave at the bubble center produces a very rapid temperature peak, the wave is prevented from steepening into a sharp shock by an adverse gradient in the sound speed caused by heat transfer. It is shown that the mathematical characteristics of the flow can be prevented from accumulating into a shock front by this adverse sound speed gradient. A range of results is presented for a variety of bubble ambient radii and sound field amplitudes suggested by experiments. The time scale of the peak temperature in the bubble is set by the dynamics of the compression wave: this is typically in the range 100 - 300 ps (FWHM) in concert with recent measurements of the sonoluminescence pulse width. copyright 1999 American Institute of Physics

  16. FEASTING BLACK HOLE BLOWS BUBBLES

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  17. Approaching behavior of a pair of spherical bubbles in quiescent liquids

    Sanada, Toshiyuki; Kusuno, Hiroaki

    2015-11-01

    Some unique motions related bubble-bubble interaction, such as equilibrium distance, wake induced lift force, have been proposed by theoretical analysis or numerical simulations. These motions are different from the solid spheres like DKT model (Drafting, Kissing and Tumbling). However, there is a lack of the experimental verification. In this study, we experimentally investigated the motion of a pair of bubbles initially positioned in-line configuration in ultrapure water or an aqueous surfactant solution. The bubble motion were observed by two high speed video cameras. The bubbles Reynolds number was ranged from 50 to 300 and bubbles hold the spherical shape in this range. In ultrapure water, initially the trailing bubble deviated from the vertical line on the leading bubble owing to the wake of the leading bubble. And then, the slight difference of the bubble radius changed the relative motion. When the trailing bubble slightly larger than the leading bubble, the trailing bubble approached to the leading bubble due to it's buoyancy difference. The bubbles attracted and collided only when the bubbles rising approximately side by side configuration. In addition, we will also discuss the motion of bubbles rising in an aqueous surfactant solution.

  18. Champagne experiences various rhythmical bubbling regimes in a flute.

    Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos

    2006-09-20

    Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.

  19. The use of microholography in bubble chambers

    Royer, H

    1981-01-01

    In-line holography has been used for the first time in a bubble chamber for the account of the CERN (Geneva, CH). The holograms were recorded with the help of a single-mode pulse laser. Bubble tracks of 25 microns in diameter have been reconstructed with a resolution of 2 microns. (12 refs).

  20. Rational equity bubbles

    Zhou, Ge

    2012-01-01

    This paper discusses the existence of a bubble in the pricing of an asset that pays positive dividends. I show that rational bubbles can exist in a growing economy. The existence of bubbles depends on the relative magnitudes of risk aversion to consumption and to wealth. Furthermore, I examine how an exogenous shock in technology might trigger bubbles.

  1. Effects of additional inertia force on bubble breakup

    Pan Liangming; Zhang Wenzhi; Chen Deqi; Xu Jianhui; Xu Jianjun; Huang Yanping

    2011-01-01

    Through VOF two-phase flow model, the single bubble deformation and breakup in a vertical narrow channel is numerically investigated in the study based on the force balance at the process of bubble breakup. The effect of surface tension force, the additional inertia force and bubble initial shape on bubble breakup are analyzed according to the velocity variation at the break-up point and the minimum necking size when the bubble is breaking up. It is found that the surface tension force, the additional inertia force and the bubble initial shape have significant effects on the bubble breakup through the fluid injection toward to the bubble, which finally induces the onset of bubble breakup. (authors)

  2. Fama on Bubbles

    Engsted, Tom

    2016-01-01

    While Eugene Fama has repeatedly expressed his discontent with the notion of an “irrational bubble,” he has never publicly expressed his opinion on “rational bubbles.” On empirical grounds Fama rejects bubbles by referring to the lack of reliable evidence that price declines are predictable....... However, this argument cannot be used to rule out rational bubbles because such bubbles do not necessarily imply return predictability, and return predictability of the kind documented by Fama does not rule out rational bubbles. On data samples that include the 1990s, there is evidence of an explosive...... component in stock market valuation ratios, consistent with a rational bubble....

  3. An experimental study of particle-bubble interaction and attachment in flotation

    Sanchez Yanez, Aaron

    2017-01-01

    bubbles were observed using two high speed cameras. The cameras were placed perpendicular to each other allowing to reconstruct the three-dimensional position of the particle, the bubble and the particle-bubble aggregate. A single size of particle was used varying the size for the bubbles. It was found that the attachment of a particle to a bubble depends on its degree of hydrophobicity and on the relative position of the particle and the bubble before they encounter.

  4. Emphasis of spatial cues in the temporal fine structure during the rising segments of amplitude-modulated sounds II: single-neuron recordings

    Marquardt, Torsten; Stange, Annette; Pecka, Michael; Grothe, Benedikt; McAlpine, David

    2014-01-01

    Recently, with the use of an amplitude-modulated binaural beat (AMBB), in which sound amplitude and interaural-phase difference (IPD) were modulated with a fixed mutual relationship (Dietz et al. 2013b), we demonstrated that the human auditory system uses interaural timing differences in the temporal fine structure of modulated sounds only during the rising portion of each modulation cycle. However, the degree to which peripheral or central mechanisms contribute to the observed strong dominance of the rising slope remains to be determined. Here, by recording responses of single neurons in the medial superior olive (MSO) of anesthetized gerbils and in the inferior colliculus (IC) of anesthetized guinea pigs to AMBBs, we report a correlation between the position within the amplitude-modulation (AM) cycle generating the maximum response rate and the position at which the instantaneous IPD dominates the total neural response. The IPD during the rising segment dominates the total response in 78% of MSO neurons and 69% of IC neurons, with responses of the remaining neurons predominantly coding the IPD around the modulation maximum. The observed diversity of dominance regions within the AM cycle, especially in the IC, and its comparison with the human behavioral data suggest that only the subpopulation of neurons with rising slope dominance codes the sound-source location in complex listening conditions. A comparison of two models to account for the data suggests that emphasis on IPDs during the rising slope of the AM cycle depends on adaptation processes occurring before binaural interaction. PMID:24554782

  5. Balance of liquid-phase turbulence kinetic energy equation for bubble-train flow

    Ilic, Milica; Woerner, Martin; Cacuci, Dan Gabriel

    2004-01-01

    In this paper the investigation of bubble-induced turbulence using direct numerical simulation (DNS) of bubbly two-phase flow is reported. DNS computations are performed for a bubble-driven liquid motion induced by a regular train of ellipsoidal bubbles rising through an initially stagnant liquid within a plane vertical channel. DNS data are used to evaluate balance terms in the balance equation for the liquid phase turbulence kinetic energy. The evaluation comprises single-phase-like terms (diffusion, dissipation and production) as well as the interfacial term. Special emphasis is placed on the procedure for evaluation of interfacial quantities. Quantitative analysis of the balance equation for the liquid phase turbulence kinetic energy shows the importance of the interfacial term which is the only source term. The DNS results are further used to validate closure assumptions employed in modelling of the liquid phase turbulence kinetic energy transport in gas-liquid bubbly flows. In this context, the performance of respective closure relations in the transport equation for liquid turbulence kinetic energy within the two-phase k-ε and the two-phase k-l model is evaluated. (author)

  6. Motion of air bubbles in stagnant water condition

    Bezdegumeli, U.; Ozdemir, S.; Yesin, O.

    2004-01-01

    Full text: In this study, air bubble motion in stagnant water condition in a vertical pipe is investigated experimentally. For this purpose, a test set-up was designed and constructed. Motions of single bubbles, having different diameters in the range of 3.0-4.8 mm, were recorded by using a monochrome camera, an image capture card and a PC. Recorded video images were processed to analyse bubble motion and to obtain the necessary data. The purpose of the study is to determine the variation of bubble axial velocity and bubble drag coefficient as a function of equivalent bubble diameter and bubble Reynolds number, Re b . Therefore, detailed information for this range of bubble diameters was obtained. The results have shown good consistency with the previous studies found in the literature

  7. Motion of air bubbles in stagnant water condition

    Bezdegumeli, U.; Ozdemir, S.; Yesin, O.

    2004-01-01

    In this study, air bubble motion in stagnant water condition in a vertical pipe of 4.6 cm diameter is investigated experimentally. For this purpose, a test set-up was designed and constructed. Motions of single bubbles, having different diameters in the range of 3.0-4.8 mm, were recorded by using a monochrome camera, an image capture card and a PC. Recorded video images were processed to analyse bubble motion and to obtain the necessary data. The purpose of the study is to determine the variation of bubble axial velocity and bubble drag coefficient as a function of equivalent bubble diameter and bubble Reynolds number, Re b . Therefore, detailed information for this range of bubble diameters was obtained. The results have shown good consistency with the previous studies found in the literature. (author)

  8. The 2008 oil bubble. Causes and consequences

    Tokic, Damir

    2010-01-01

    We argue that 'the 2008 Oil Bubble' was directly and indirectly created by the Federal Reserve in response to deflationary risks that resurfaced after the housing bubble burst and the resulting credit crisis of 2008. Deflationary risks first appeared after the dot.com bubble burst in 2000 and after the terrorist attacks on September 11, 2001. Manipulation of the US dollar value has been one of the key emergency tools in the Fed's arsenal. During the entire period from 2000 to 2008, the US dollar has been falling, while the price of crude oil has been rising, with the culmination in July 2008. If other global central banks embrace the Fed's anti-deflationary strategies, the consequences could be dire for the global economy, potentially resulting in an ultimate gold bubble. (author)

  9. Structure and kinematics of bubble flow

    Lackme, C.

    1967-01-01

    This report deals with the components and use of resistivity probes in bubble flow. With a single probe, we have studied the longitudinal and radial structure of the flow. The very complicated evolution of the radial structure is shown by the measurement of the mean bubble flux at several points in the tube. A double probe associated with a device the principle of which is given in this report, permits the measure of the local velocity of bubbles. Unlike the mean bubble flux profile, the change in the velocity profile along the tube is not significant. We have achieved the synthesis of these two pieces of information, mean local bubble flux and local velocity, by computing the mean weighed velocity in the tube. This weighed velocity compares remarkably with the velocity computed from the volumetric gas flow rate and the mean void fraction. (author) [fr

  10. Fama on bubbles

    Engsted, Tom

    Eugene Fama has repeatedly expressed his discontent with the notion of an irrational bubble. However, he has never publicly expressed his opinion on rational bubbles. This is peculiar since such bubbles build naturally from the rational efficient markets paradigm that Fama strongly adheres to...

  11. Single bubble dynamic behavior in AL{sub 2}O{sub 3}/H{sub 2}O nanofluid on downward-facing heating surface

    Wang, Yun; Wu, Junmei [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an (China)

    2016-08-15

    After a severe accident to the nuclear reactor, the in-vessel retention strategy is a key way to prevent the leakage of radioactive material. Nanofluid is a steady suspension used to improve heat-transfer characteristics of working fluids, formed by adding solid particles with diameters below 100 nm to the base fluids, and its thermal physical properties and heat-transfer characteristics are much different from the conventional working fluids. Thus, nanofluids with appropriate nanoparticle type and volume concentration can enhance the heat-transfer process. In this study, the moving particle semi-implicit method-meshless advection using flow-directional local grid method is used to simulate the bubble growth, departure, and sliding on the downward-facing heating surface in pure water and nanofluid (1.0 vol.% Al2O3/H2O) flow boiling processes; additionally, the bubble critical departure angle and sliding characteristics and their influence are also investigated. The results indicate that the bubble in nanofluid departs from the heating surface more easily and the critical departure inclined angle of nanofluid is greater than that of pure water. In addition, the influence of nanofluid on bubble sliding is not significant compared with pure water.

  12. Blistering and bubble formation

    Roth, J.

    1976-01-01

    Blister formation in metals has been observed during bombardment with inert-gas ions in the energy range between 1 and 2000 keV at doses of about 10 17 to 10 19 cm -2 . The changes in surface topography and the erosion yields were mainly studied in the scanning electron microscope (SEM). Additionally the release of the implanted gas during blister formation was observed. Recently measurements on single crystals were performed determining simultaneously the implantation profile, the total amount of trapped ions, the depth distribution of the induced lattice damage and the thickness of the covers of the blisters. In several stages of the formation process of blisters the implanted layer was observed in the transmission electron microscope (TEM) showing the formation of gas bubbles. Using the results of all these measurements in this review an attempt is made to develop a model of blister formation combining the effects of hydrostatic pressure in the gas bubbles and lateral stress due to volume swelling. (author)

  13. Ignition modes of nanosecond discharge with bubbles in distilled water

    Hamdan, Ahmad; Cha, Min Suk

    2015-01-01

    Here, we present the microscopic physical characteristics of nanosecond discharges with an array of bubbles in distilled water. In particular, applying a single high-voltage pulse, four delayed intensified charge-coupled device cameras successfully visualized four successive images during a single discharge event. We identified three distinctive modes of ignition inside a bubble, depending on the relative location of the bubble with respect to pin-to-hollow needle electrodes when a single bubble was located in an inter-electrode gap of 1 mm: anode-driven ignition, cathode-driven ignition, and co-ignition near both electrodes. Anode- and cathode-driven ignitions evolved into either a complete propagation of the streamer or an incomplete propagation, which were limited in location by proximity to an ignition location, while co-ignitions consistently showed complete propagation. When we increased the gap to 2 mm to accommodate multiple bubbles in the gap, an ignited bubble near the cathode was able to cause the ignition of an upper adjacent bubble. Bubble–bubble interface zones can also be spots of ignition, such that we observed simultaneous co-ignitions in the zones of bubble–bubble interfaces and near electrodes with triple bubbles. We compared the experimental results of discharge propagation with different ignition modes between Ar, He, and N 2 bubbles. In addition, numerical simulations for static electric fields reasonably supported observed ignition behavior such that field intensity was locally enhanced. (paper)

  14. Bubble behavior characteristics based on virtual binocular stereo vision

    Xue, Ting; Xu, Ling-shuang; Zhang, Shang-zhen

    2018-01-01

    The three-dimensional (3D) behavior characteristics of bubble rising in gas-liquid two-phase flow are of great importance to study bubbly flow mechanism and guide engineering practice. Based on the dual-perspective imaging of virtual binocular stereo vision, the 3D behavior characteristics of bubbles in gas-liquid two-phase flow are studied in detail, which effectively increases the projection information of bubbles to acquire more accurate behavior features. In this paper, the variations of bubble equivalent diameter, volume, velocity and trajectory in the rising process are estimated, and the factors affecting bubble behavior characteristics are analyzed. It is shown that the method is real-time and valid, the equivalent diameter of the rising bubble in the stagnant water is periodically changed, and the crests and troughs in the equivalent diameter curve appear alternately. The bubble behavior characteristics as well as the spiral amplitude are affected by the orifice diameter and the gas volume flow.

  15. Two-dimensional simulation of intermediate-sized bubbles in low viscous liquids using counter diffusion lattice Boltzmann method

    Ryu, Seungyeob, E-mail: syryu@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI), 1045 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Youngin; Kang, Hanok; Kim, Keung Koo [Korea Atomic Energy Research Institute (KAERI), 1045 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ko, Sungho, E-mail: sunghoko@cnu.ac.kr [Department of Mechanical Design Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2016-08-15

    Highlights: • We directly simulate intermediate-sized bubbles in low viscous liquids. • The path instability and shape oscillation can be successfully simulated. • The motion of a pair bubble and bubble swarm is presented. • Bubbles with high-Reynolds-number can be simulated with under-resolved grids. • The counter diffusion multiphase method is feasible for the direct simulation of bubbly flows. - Abstract: The counter diffusion lattice Boltzmann method (LBM) is used to simulate intermediate-sized bubbles in low viscous liquids. Bubbles at high Reynolds numbers ranging from hundreds to thousands are simulated successfully, which cannot be done for the existing LBM versions. The characteristics of the path instability of two rising bubbles are studied for a wide range of Eotvos and Morton numbers. Finally, the study presented how bubble swarms move within the flow and how the flow surrounding the bubbles is affected by the bubble motions.

  16. Air bubble migration is a random event post embryo transfer.

    Confino, E; Zhang, J; Risquez, F

    2007-06-01

    Air bubble location following embryo transfer (ET) is the presumable placement spot of embryos. The purpose of this study was to document endometrial air bubble position and migration following embryo transfer. Multicenter prospective case study. Eighty-eight embryo transfers were performed under abdominal ultrasound guidance in two countries by two authors. A single or double air bubble was loaded with the embryos using a soft, coaxial, end opened catheters. The embryos were slowly injected 10-20 mm from the fundus. Air bubble position was recorded immediately, 30 minutes later and when the patient stood up. Bubble marker location analysis revealed a random distribution without visible gravity effect when the patients stood up. The bubble markers demonstrated splitting, moving in all directions and dispersion. Air bubbles move and split frequently post ET with the patient in the horizontal position, suggestive of active uterine contractions. Bubble migration analysis supports a rather random movement of the bubbles and possibly the embryos. Standing up changed somewhat bubble configuration and distribution in the uterine cavity. Gravity related bubble motion was uncommon, suggesting that horizontal rest post ET may not be necessary. This report challenges the common belief that a very accurate ultrasound guided embryo placement is mandatory. The very random bubble movement observed in this two-center study suggests that a large "window" of embryo placement maybe present.

  17. Bubbles with shock waves and ultrasound: a review.

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-06

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.

  18. Fluid dynamics of bubbly flows

    Ziegenhein, Thomas

    2016-01-01

    transient simulations can reproduce many experimental setups without fitting any model. Nevertheless, shortcomings are identified that need to be further investigated to improve the baseline model. For a validation of models, experiments that describe as far as possible all relevant phenomena of bubbly flows are needed. Since such data are rare in the literature, CFD-grade experiments in an airlift reactor were conducted in the present work. Concepts to measure the bubble size distribution and liquid velocities are developed for this purpose. In particular, the liquid velocity measurements are difficult; a sampling bias that was not yet described in the literature is identified. To overcome this error, a hold processor is developed. The closure models are usually formulated based on single bubble experiments in simplified conditions. In particular, the lift force was not yet measured in low Morton number systems under turbulent conditions. A new experimental method is developed in the present work to determine the lift force coefficient in such flow conditions without the aid of moving parts so that the lift force can be measured in any chemical system easily.

  19. Fluid dynamics of bubbly flows

    Ziegenhein, Thomas

    2016-07-08

    transient simulations can reproduce many experimental setups without fitting any model. Nevertheless, shortcomings are identified that need to be further investigated to improve the baseline model. For a validation of models, experiments that describe as far as possible all relevant phenomena of bubbly flows are needed. Since such data are rare in the literature, CFD-grade experiments in an airlift reactor were conducted in the present work. Concepts to measure the bubble size distribution and liquid velocities are developed for this purpose. In particular, the liquid velocity measurements are difficult; a sampling bias that was not yet described in the literature is identified. To overcome this error, a hold processor is developed. The closure models are usually formulated based on single bubble experiments in simplified conditions. In particular, the lift force was not yet measured in low Morton number systems under turbulent conditions. A new experimental method is developed in the present work to determine the lift force coefficient in such flow conditions without the aid of moving parts so that the lift force can be measured in any chemical system easily.

  20. Numerical simulation of high Reynolds number bubble motion

    McLaughlin, J.B. [Clarkson Univ., Potsdam, NY (United States)

    1995-12-31

    This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface, one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.

  1. Comparison of cavitation bubbles evolution in viscous media

    Jasikova Darina

    2018-01-01

    Full Text Available There have been tried many types of liquids with different ranges of viscosity values that have been tested to form a single cavitation bubble. The purpose of these experiments was to observe the behaviour of cavitation bubbles in media with different ranges of absorbance. The most of the method was based on spark to induced superheat limit of liquid. Here we used arrangement of the laser-induced breakdown (LIB method. There were described the set cavitation setting that affects the size bubble in media with different absorbance. We visualized the cavitation bubble with a 60 kHz high speed camera. We used here shadowgraphy setup for the bubble visualization. There were observed time development and bubble extinction in various media, where the size of the bubble in the silicone oil was extremely small, due to the absorbance size of silicon oil.

  2. Experimental investigation of shock wave - bubble interaction

    Alizadeh, Mohsen

    2010-04-09

    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  3. Chaotic bubbling and nonstagnant foams.

    Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard

    2007-06-01

    We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.

  4. On the maximum drawdown during speculative bubbles

    Rotundo, Giulia; Navarra, Mauro

    2007-08-01

    A taxonomy of large financial crashes proposed in the literature locates the burst of speculative bubbles due to endogenous causes in the framework of extreme stock market crashes, defined as falls of market prices that are outlier with respect to the bulk of drawdown price movement distribution. This paper goes on deeper in the analysis providing a further characterization of the rising part of such selected bubbles through the examination of drawdown and maximum drawdown movement of indices prices. The analysis of drawdown duration is also performed and it is the core of the risk measure estimated here.

  5. Sonoluminescence and bubble fusion

    Arakeri, Vijay H

    2003-01-01

    Sonoluminescence (SL), the phenomenon of light emission from nonlinear motion of a gas bubble, involves an extreme degree of energy focusing. The conditions within the bubble during the last stages of the nearly catastrophic implosion are thought to parallel the efforts aimed at developing inertial confinement fusion. A limited review on the topic of SL and its possible connection to bubble nuclear fusion is presented here. The emphasis is on looking for a link between the various forms o...

  6. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh

    Sokka, S D; King, R; Hynynen, K

    2003-01-01

    In this study, we propose a focused ultrasound surgery protocol that induces and then uses gas bubbles at the focus to enhance the ultrasound absorption and ultimately create larger lesions in vivo. MRI and ultrasound visualization and monitoring methods for this heating method are also investigated. Larger lesions created with a carefully monitored single ultrasound exposure could greatly improve the speed of tumour coagulation with focused ultrasound. All experiments were performed under MRI (clinical, 1.5 T) guidance with one of two eight-sector, spherically curved piezoelectric transducers. The transducer, either a 1.1 or 1.7 MHz array, was driven by a multi-channel RF driving system. The transducer was mounted in an MRI-compatible manual positioning system and the rabbit was situated on top of the system. An ultrasound detector ring was fixed with the therapy transducer to monitor gas bubble activity during treatment. Focused ultrasound surgery exposures were delivered to the thighs of seven New Zealand white rabbits. The experimental, gas-bubble-enhanced heating exposures consisted of a high amplitude 300 acoustic watt, half second pulse followed by a 7 W, 14 W or 21 W continuous wave exposure for 19.5 s. The respective control sonications were 20 s exposures of 14 W, 21 W and 28 W. During the exposures, MR thermometry was obtained from the temperature dependency of the proton resonance frequency shift. MR T2-enhanced imaging was used to evaluate the resulting lesions. Specific metrics were used to evaluate the differences between the gas-bubble-enhanced exposures and their respective control sonications: temperatures with respect to time and space, lesion size and shape, and their agreement with thermal dose predictions. The bubble-enhanced exposures showed a faster temperature rise within the first 4 s and higher overall temperatures than the sonications without bubble formation. The spatial temperature maps and the thermal dose maps derived from the MRI

  7. Response of single bacterial cells to stress gives rise to complex history dependence at the population level

    Mathis, Roland; Ackermann, Martin

    2016-01-01

    Most bacteria live in ever-changing environments where periods of stress are common. One fundamental question is whether individual bacterial cells have an increased tolerance to stress if they recently have been exposed to lower levels of the same stressor. To address this question, we worked with the bacterium Caulobacter crescentus and asked whether exposure to a moderate concentration of sodium chloride would affect survival during later exposure to a higher concentration. We found that the effects measured at the population level depended in a surprising and complex way on the time interval between the two exposure events: The effect of the first exposure on survival of the second exposure was positive for some time intervals but negative for others. We hypothesized that the complex pattern of history dependence at the population level was a consequence of the responses of individual cells to sodium chloride that we observed: (i) exposure to moderate concentrations of sodium chloride caused delays in cell division and led to cell-cycle synchronization, and (ii) whether a bacterium would survive subsequent exposure to higher concentrations was dependent on the cell-cycle state. Using computational modeling, we demonstrated that indeed the combination of these two effects could explain the complex patterns of history dependence observed at the population level. Our insight into how the behavior of single cells scales up to processes at the population level provides a perspective on how organisms operate in dynamic environments with fluctuating stress exposure. PMID:26960998

  8. Biochemical Analysis of Two Single Mutants that Give Rise to a Polymorphic G6PD A-Double Mutant

    Edson Jiovany Ramírez-Nava

    2017-10-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a key regulatory enzyme that plays a crucial role in the regulation of cellular energy and redox balance. Mutations in the gene encoding G6PD cause the most common enzymopathy that drives hereditary nonspherocytic hemolytic anemia. To gain insights into the effects of mutations in G6PD enzyme efficiency, we have investigated the biochemical, kinetic, and structural changes of three clinical G6PD variants, the single mutations G6PD A+ (Asn126AspD and G6PD Nefza (Leu323Pro, and the double mutant G6PD A− (Asn126Asp + Leu323Pro. The mutants showed lower residual activity (≤50% of WT G6PD and displayed important kinetic changes. Although all Class III mutants were located in different regions of the three-dimensional structure of the enzyme and were not close to the active site, these mutants had a deleterious effect over catalytic activity and structural stability. The results indicated that the G6PD Nefza mutation was mainly responsible for the functional and structural alterations observed in the double mutant G6PD A−. Moreover, our study suggests that the G6PD Nefza and G6PD A− mutations affect enzyme functions in a similar fashion to those reported for Class I mutations.

  9. Measurement of micro Bubbles generated by a pressurized dissolution method

    Hosokawa, S; Tanaka, K; Tomiyama, A [Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Maeda, Y; Yamaguchi, S; Ito, Y, E-mail: hosokawa@mech.kobe-u.ac.j [Panasonic Electric Works Co., Ltd., 1048 Kadoma, Osaka 571-8686 (Japan)

    2009-02-01

    Diameters of micro-bubbles are apt to range from about one mm to several-hundred mm, and therefore, it is difficult to measure a correct diameter distribution using a single measurement method. In this study, diameters of bubbles generated by a pressurized dissolution method are measured by using phase Doppler anemometry (PDA) and an image processing method, which is based on the Sobel filter and Hough transform. The diameter distribution and the Sauter mean diameter of micro bubbles are evaluated based on the diameters measured by both methods. Experiments are conducted for several mass flow rates of dissolved gas and of air bubbles entrained in the upstream of the decompression nozzle to examine effects of the entrained bubbles on bubble diameter. As a result, the following conclusions are obtained: (1) Diameter distribution of micro bubbles can be accurately measured for a wide range of diameter by using PDA and the image processing method. (2) The mean diameter of micro-bubbles generated by gasification of dissolved gas is smaller than that generated by breakup of air bubbles entrained in the upstream of the decompression nozzle. (3) The mean bubble diameter increases with the entrainment of air bubbles in the upstream of the decompression nozzle at a constant mass flow rate of dissolved gas.

  10. Measurement of micro Bubbles generated by a pressurized dissolution method

    Hosokawa, S; Tanaka, K; Tomiyama, A; Maeda, Y; Yamaguchi, S; Ito, Y

    2009-01-01

    Diameters of micro-bubbles are apt to range from about one mm to several-hundred mm, and therefore, it is difficult to measure a correct diameter distribution using a single measurement method. In this study, diameters of bubbles generated by a pressurized dissolution method are measured by using phase Doppler anemometry (PDA) and an image processing method, which is based on the Sobel filter and Hough transform. The diameter distribution and the Sauter mean diameter of micro bubbles are evaluated based on the diameters measured by both methods. Experiments are conducted for several mass flow rates of dissolved gas and of air bubbles entrained in the upstream of the decompression nozzle to examine effects of the entrained bubbles on bubble diameter. As a result, the following conclusions are obtained: (1) Diameter distribution of micro bubbles can be accurately measured for a wide range of diameter by using PDA and the image processing method. (2) The mean diameter of micro-bubbles generated by gasification of dissolved gas is smaller than that generated by breakup of air bubbles entrained in the upstream of the decompression nozzle. (3) The mean bubble diameter increases with the entrainment of air bubbles in the upstream of the decompression nozzle at a constant mass flow rate of dissolved gas.

  11. Inertial collapse of bubble pairs near a solid surface

    Alahyari Beig, Shahaboddin; Johnsen, Eric

    2017-11-01

    Cavitation occurs in a variety of applications ranging from naval structures to biomedical ultrasound. One important consequence is structural damage to neighboring surfaces following repeated inertial collapse of vapor bubbles. Although the mechanical loading produced by the collapse of a single bubble has been widely investigated, less is known about the detailed dynamics of the collapse of multiple bubbles. In such a problem, the bubble-bubble interactions typically affect the dynamics, e.g., by increasing the non-sphericity of the bubbles and amplifying/hindering the collapse intensity depending on the flow parameters. Here, we quantify the effects of bubble-bubble interactions on the bubble dynamics, as well as the pressures/temperatures produced by the collapse of a pair of gas bubbles near a rigid surface. We perform high-resolution simulations of this problem by solving the three-dimensional compressible Navier-Stokes equations for gas/liquid flows. The results are used to investigate the non-spherical bubble dynamics and characterize the pressure and temperature fields based on the relevant parameters entering the problem: stand-off distance, geometrical configuration (angle, relative size, distance), collapse strength. This research was supported in part by ONR Grant N00014-12-1-0751 and NSF Grant CBET 1253157.

  12. Formation and evolution of bubbly screens in confined oscillating bubbly liquids

    Shklyaev, Sergey; Straube, Arthur V.

    2010-01-01

    We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.

  13. Prospects for bubble fusion

    Nigmatulin, R.I. [Tyumen Institute of Mechanics of Multiphase Systems (TIMMS), Marx (Russian Federation); Lahey, R.T. Jr. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  14. Investigation of the condensing vapor bubble behavior through CFD simulation

    Sablania, Sidharth; Verma, Akash; Goyal, P.; Dutta, Anu; Singh, R.K.

    2013-09-01

    In nuclear systems the sub-cooled boiling flow is an important problem due to the behavior of condensing vapor bubble which has a large effect on the heat transfer characteristics as well as pressure drops and flow instability. The sub-cooled boiling flows become very complex and dynamic phenomena by the vapor bubble-water interaction. This happens due to the boiling/condensation, break-up, and coalescence of the bubble and needs to be addressed for characterizing the above mentioned flow parameters. There have been many researches to analyze the behavior of bubble experimentally and analytically. However, it is very difficult to get complete information about the behavior of bubble because of ever changing interface between vapor and water phase due to bubble condensation/evaporation Therefore, it is necessary to carry out a CFD simulation for better understanding the complex phenomenon of the bubble behavior. The present work focuses on the simulation of condensing bubble in subcooled boiling flow using (Volume of Fluid) VOF method in the CFD code CFD-ACE+. In order to simulate the heat and mass transfer through the bubble interface, CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using the User-Defined Function (UDF) in CFD-ACE+ code. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. It was observed that the behavior of condensing bubble was different from that of non condensing bubble in respect of bubble shape, diameter, velocity etc. The results obtained from the present simulation in terms of various parameters such as bubble velocity, interfacial area and bubble volume agreed well with the reported experimental results verified with FLUENT code in available literature. Hence, this CFD-ACE+ simulation of single bubble condensation will be a useful computational fluid dynamics tool for analyzing the

  15. Tests of Bubble Damage Detectors in a Heavy Ion Beam from the SPS

    2002-01-01

    This experiment is designed to investigate the properties of a bubble damage polymer (BDP) using ion beams from the SPS. These polymers are already used commercially for making neutron and gamma-ray dosimeters. \\\\ \\\\ An attractive feature of BDP detectors is the ability to ``design'' a material to have a particular dE/dx threshold which can be used to detect such objects as monopoles and heavy ions as well as relativistic, singly charged tracks originating f particle interactions. \\\\ \\\\ The BDP detector is a polymer which holds droplets of super-heated liquid in suspension. The droplet size is typically a few microns and the droplet density is normally between 10|5 and 10|7 droplets/cm|3. The passage of a particle with a dE/dx exceeding the threshold of the material will cause the droplets with a sufficiently s parameter to change state, giving rise to bubbles. The dE/dx threshold of the BDP varies with pressure and temperature. The growth of bubbles in the bubble trail is limited by the polymer matrix and th...

  16. Velocity of a single gas plug rising through a particle-gas-liquid three-phase flow (In the case that particles updrift in a stagnant liquid column)

    Koizumi, Yasuo; Shimada, Jun; Ohtake, Hiroyasu

    1999-01-01

    The velocity of a single air plug rising through a stagnant water column in a pipe with updrifting particles has been examined at atmospheric pressure and room temperature. The particles used were polymer balls with a diameter of 3.18 mm and a density of 0.835 x 10 -3 kg/m 3 . The water velocity in a film around the plug and a wake region behind the plug was measured by a laser Doppler velocimeter. The thickness of the film was also measured with a dye-fluoresce-method by a laser ray. When the updrifting particles were introduced, the rising velocity of the plug became fast a little. However, the velocity was considerably slower than that in the falling particle case and independent on the particle introduction rate. The film around the plug was thicker a little than that in the no particle case, however considerably thinner than that in the falling particle case. The water velocity in the film around the plug was slower a little than that in the no particle case, and not dependent on the particle introduction rate contrary to that in the falling particle case. The vortex size behind the plug was almost the same as that in the no particle case although the vortex region was spread downward in the falling particle case. (author)

  17. Soap Bubbles and Crystals

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 6. Soap Bubbles and Crystals. Jean E Taylor. General Article Volume 11 Issue 6 June 2006 pp 26-30. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/011/06/0026-0030. Keywords. Soap bubble ...

  18. Turbulence, bubbles and drops

    van der Veen, Roeland

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study

  19. Flow visualization using bubbles

    Henry, J.P.

    1974-01-01

    Soap bubbles were used for visualizing flows. The tests effected allowed some characteristics of flows around models in blow tunnels to be precised at mean velocities V 0 5 . The velocity of a bubble is measured by chronophotography, the bulk envelope of the trajectories is also registered [fr

  20. Evaporation, Boiling and Bubbles

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  1. Luminescence from cavitation bubbles deformed in uniform pressure gradients

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2017-09-01

    Presented here are observations that demonstrate how the deformation of millimetric cavitation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our innovative measurement system captures a broad luminescence spectrum (wavelength range, 300-900 nm) from the individual collapses of laser-induced bubbles in water. By varying the bubble size, driving pressure, and perceived gravity level aboard parabolic flights, we probed the limit from aspherical to highly spherical bubble collapses. Luminescence was detected for bubbles of maximum radii within the previously uncovered range, R0=1.5 -6 mm, for laser-induced bubbles. The relative luminescence energy was found to rapidly decrease as a function of the bubble asymmetry quantified by the anisotropy parameter ζ , which is the dimensionless equivalent of the Kelvin impulse. As established previously, ζ also dictates the characteristic parameters of bubble-driven microjets. The threshold of ζ beyond which no luminescence is observed in our experiment closely coincides with the threshold where the microjets visibly pierce the bubble and drive a vapor jet during the rebound. The individual fitted blackbody temperatures range between Tlum=7000 and Tlum=11 500 K but do not show any clear trend as a function of ζ . Time-resolved measurements using a high-speed photodetector disclose multiple luminescence events at each bubble collapse. The averaged full width at half-maximum of the pulse is found to scale with R0 and to range between 10 and 20 ns.

  2. Bubble nonlinear dynamics and stimulated scattering process

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  3. Empirical fractal geometry analysis of some speculative financial bubbles

    Redelico, Francisco O.; Proto, Araceli N.

    2012-11-01

    Empirical evidence of a multifractal signature during increasing of a financial bubble leading to a crash is presented. The April 2000 crash in the NASDAQ composite index and a time series from the discrete Chakrabarti-Stinchcombe model for earthquakes are analyzed using a geometric approach and some common patterns are identified. These patterns can be related the geometry of the rising period of a financial bubbles with the non-concave entropy problem.

  4. Theory calculation of combination of 'embryo' bubble growing-up visible bubble in bubble chamber

    Ye Zipiao; Sheng Xiangdong; Dai Changjiang

    2004-01-01

    By aid of island combination theory of 'embryo' bubble, it is resolved well the question which 'embryo' bubble grows up a visible bubble in the bubble chamber. Through theory calculation it is shown that radius of the big' embryo' bubble combinated not only relates with work matter such as surface tension coefficient, saturation vapour pressure and boiling point of liquid, but also does absorbing quantity of heat and the numbers of 'embryo' bubbles combination. It is explained reasonably that the radius of bubbles in bubble chamber is different for the same energies of neutrons and proton. The track of neutron in bubble chamber is long and thin, and the track of proton in bubble chamber is wide and short. It is also explained reasonably that the bubble radius of the incident particles with more charges which there are the same energies will be wider than that of the incident particles with less charges in the track. (author)

  5. Bubble behaviour and mean diameter in subcooled flow boiling

    Zeitoun, O.; Shoukri, M. [McMaster Univ., Hamilton, Ontario (Canada)

    1995-09-01

    Bubble behaviour and mean bubble diameter in subcooled upward flow boiling in a vertical annular channel were investigated under low pressure and mass flux conditions. A high speed video system was used to visualize the subcooled flow boiling phenomenon. The high speed photographic results indicated that, contrary to the common understanding, bubbles tend to detach from the heating surface upstream of the net vapour generation point. Digital image processing technique was used to measure the mean bubble diameter along the subcooled flow boiling region. Data on the axial area-averaged void fraction distributions were also obtained using a single beam gamma densitometer. Effects of the liquid subcooling, applied heat flux and mass flux on the mean bubble size were investigated. A correlation for the mean bubble diameter as a function of the local subcooling, heat flux and mass flux was obtained.

  6. Bubbles and breaking waves

    Thorpe, S. A.

    1980-01-01

    The physical processes which control the transfer of gases between the atmosphere and oceans or lakes are poorly understood. Clouds of micro-bubbles have been detected below the surface of Loch Ness when the wind is strong enough to cause the waves to break. The rate of transfer of gas into solution from these bubbles is estimated to be significant if repeated on a global scale. We present here further evidence that the bubbles are caused by breaking waves, and discuss the relationship between the mean frequency of wave breaking at a fixed point and the average distance between breaking waves, as might be estimated from an aerial photograph.

  7. Rotating bubble membrane radiator

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  8. Rising equity

    Burr, M.T.

    1992-01-01

    This article reports on the results of a financial rankings survey of the independent energy industry indicating that lenders and investors provided more than five billion dollars in capital for new, private power projects during the first six months of 1992. The topics of the article include rising equity requirements, corporate finance, mergers and acquisitions, project finance investors, revenue bonds, project finance lenders for new projects, project finance lenders for restructurings, and project finance advisors

  9. Bubble Collision in Curved Spacetime

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han

    2014-01-01

    We study vacuum bubble collisions in curved spacetime, in which vacuum bubbles were nucleated in the initial metastable vacuum state by quantum tunneling. The bubbles materialize randomly at different times and then start to grow. It is known that the percolation by true vacuum bubbles is not possible due to the exponential expansion of the space among the bubbles. In this paper, we consider two bubbles of the same size with a preferred axis and assume that two bubbles form very near each other to collide. The two bubbles have the same field value. When the bubbles collide, the collided region oscillates back-and-forth and then the collided region eventually decays and disappears. We discuss radiation and gravitational wave resulting from the collision of two bubbles

  10. Chemistry in Soap Bubbles.

    Lee, Albert W. M.; Wong, A.; Lee, H. W.; Lee, H. Y.; Zhou, Ning-Huai

    2002-01-01

    Describes a laboratory experiment in which common chemical gases are trapped inside soap bubbles. Examines the physical and chemical properties of the gases such as relative density and combustion. (Author/MM)

  11. Nucleation in bubble chambers

    Harigel, G.G.

    1988-01-01

    Various sources and mechanisms for bubble formation in superheated liquids are discussed. Bubble chambers can be filled with a great variety of liquids, such as e.g. the cryogenic liquids hydrogen, deuterium, neon, neon/hydrogen mixtures, argon, nitrogen, argon/nitrogen mixtures, or the warm liquids propane and various Freon like Freon-13B1. The superheated state is normally achieved by a rapid movement of an expansion piston or membrane, but can also be produced by standing ultrasonic waves, shock waves, or putting liquids under tension. Bubble formation can be initiated by ionizing particles, by intense (laser) light, or on rough surfaces. The creation of embryonic bubbles is not completely understood, but the macroscopic growth and condensation can be calculated, allowing to estimate the dynamic heat load [fr

  12. Computational approach for a pair of bubble coalescence process

    Nurul Hasan; Zalinawati binti Zakaria

    2011-01-01

    The coalescence of bubbles has great value in mineral recovery and oil industry. In this paper, two co-axial bubbles rising in a cylinder is modelled to study the coalescence of bubbles for four computational experimental test cases. The Reynolds' (Re) number is chosen in between 8.50 and 10, Bond number, Bo ∼4.25-50, Morton number, M 0.0125-14.7. The viscosity ratio (μ r ) and density ratio (ρ r ) of liquid to bubble are kept constant (100 and 850 respectively). It was found that the Bo number has significant effect on the coalescence process for constant Re, μ r and ρ r . The bubble-bubble distance over time was validated against published experimental data. The results show that VOF approach can be used to model these phenomena accurately. The surface tension was changed to alter the Bo and density of the fluids to alter the Re and M, keeping the μ r and ρ r the same. It was found that for lower Bo, the bubble coalesce is slower and the pocket at the lower part of the leading bubble is less concave (towards downward) which is supported by the experimental data.

  13. Bubble chamber: antiproton annihilation

    1971-01-01

    These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  14. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.

    1999-01-01

    forming bubble decreases, as the superficial liquid velocity is in-creased. Furthermore, it is shown that the void fraction of the resulting two-phase flow increases with volumetric gas flow rate Q(sub d), pipe diameter and gas injection nozzle diameter, while they decrease with surrounding liquid flow. The important role played by flowing liquid in detaching bubbles in a reduced gravity environment is thus emphasized. We observe that the void fraction can be accurately controlled by using single nozzle gas injection, rather than by employing multiple port injection, since the later system gives rise to unpredictable coalescence of adjacent bubbles. It is of interest to note that empirical bubble size and corresponding void fraction are somewhat smaller for the co-flow geometry than the cross-flow configuration at similar flow conditions with similar pipe and nozzle diameters. In order to supplement the empirical data, a theoretical model is employed to study single bubble generation in the dynamic (Q(sub d) = 1 - 1000 cu cm/s) and bubbly flow regime within the framework of the co-flow configuration. This theoretical model is based on an overall force balance acting on the bubble during the two stages of generation, namely the expansion and the detachment stage. Two sets of forces, one aiding and the other inhibiting bubble detachment are identified. Under conditions of reduced gravity, gas momentum flux enhances, while the surface tension force at the air injection nozzle tip inhibits bubble detachment. In parallel, liquid drag and inertia can act as both attaching and detaching forces, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with our experimental results. However, at higher superficial liquid velocities, as the bubble loses its spherical form, empirical bubble size no longer matches the theoretical predictions. In summary, we have developed a combined experimental and

  15. Magnetic-bubble devices

    Fairholme, R.J.

    1978-01-01

    Magnetic bubbles were first described only ten years ago when research workers were discussing orthoferrites containing μm diameter bubbles. However, problems of material fabrication limit crystals to a few mm across which severely curtailed device development. Since then materials have changed and rare-earth-iron garnet films can be grown up 3 inches in diameter with bubble diameters down to sizes below 1 μm. The first commercial products have device capacities in the range 64 000 to 100 000 bits with bubble diameters between 4 and 6 μm. Chip capacities of 1 Mbit are presently under development in the laboratory, as are new techniques to use submicrometre bubbles. The operation and fabrication of a bubble device is described using the serial loop devices currently being manufactured at Plessey as models. Chip organization is one important variable which directly affects the access time. A range of access times and capacities is available which offers a wide range of market opportunities, ranging from consumer products to fixed head disc replacements. some of the application areas are described. (author)

  16. Bubble transport in bifurcations

    Bull, Joseph; Qamar, Adnan

    2017-11-01

    Motivated by a developmental gas embolotherapy technique for cancer treatment, we examine the transport of bubbles entrained in liquid. In gas embolotherapy, infarction of tumors is induced by selectively formed vascular gas bubbles that originate from acoustic vaporization of vascular droplets. In the case of non-functionalized droplets with the objective of vessel occlusion, the bubbles are transported by flow through vessel bifurcations, where they may split prior to eventually reach vessels small enough that they become lodged. This splitting behavior affects the distribution of bubbles and the efficacy of flow occlusion and the treatment. In these studies, we investigated bubble transport in bifurcations using computational and theoretical modeling. The model reproduces the variety of experimentally observed splitting behaviors. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Maximum shear stresses were found to decrease with increasing Reynolds number. The initial bubble length was found to affect the splitting behavior in the presence of gravitational asymmetry. This work was supported by NIH Grant R01EB006476.

  17. Study of bubble structure in N = 20 isotones within relativistic mean-field plus BCS approach

    Kumawat, M.; Singh, U.K.; Jain, S.K.; Saxena, G.; Aggarwal, Mamta; Singh, S. Somorendro; Kaushik, M.

    2017-01-01

    Guided by various theoretical studies and encouraged with recent first experimental evidence of proton density depletion in "3"4Si, we have applied relativistic mean field plus BCS approach for systematic study of bubble structure in magic nuclei with N = 20 isotones. Our present investigations include single particle energies, deformations, separation energies as well as neutron and proton densities etc. It is found that proton sd shells (1d_5_/_2,2s_1_/_2,1d_3_/_2) in N = 20 isotones play very important role in the formation of bubble structure. The unoccupied 2s_1_/_2 state gives rise to bubble since this 2s_1_/_2 state does not have any centrifugal barrier, therefore for Z = 8 - 14 in the isotonic chain radial distributions of such state is found with peak in the interior of the nucleus with corresponding wave functions extending into the surface region. Consequently, in these nuclei with unoccupied s-state the central density found depleted as compared to the nucleus wherein this state is fully occupied. It is important to note here that in these nuclei depletion in proton density for "3"4Si is found with most significance which is in accord with the recent experiment. Moving further for higher Z value, Z = 16 and Z = 18 the 2s_1_/_2 state remains semi-occupied and contributing partially in the depletion of central density resulting semi-bubble structure for Z = 16 and 18. For Z≥20, 2s_1_/_2 state get fully occupied and no sign of bubble structures are seen for higher isotones

  18. Atomistic simulations of thermodynamic properties of Xe gas bubbles in U10Mo fuels

    Hu, Shenyang, E-mail: shenyang.hu@pnnl.gov; Setyawan, Wahyu; Joshi, Vineet V.; Lavender, Curt A.

    2017-07-15

    Xe gas bubble superlattice formation is observed in irradiated uranium–10 wt% molybdenum (U10Mo) fuels. However, the thermodynamic properties of the bubbles (the relationship among bubble size, equilibrium Xe concentration, and bubble pressure) and the mechanisms of bubble superlattice formation are not well known. In this work, the molecular dynamics (MD) method is used to study these properties and mechanisms. The results provide important inputs for quantitative mesoscale models of gas bubble evolution and fuel performance. In the MD simulations, the embedded-atom method (EAM) potential of U10Mo-Xe [1] is employed. Initial gas bubbles with a low Xe concentration (underpressured) are generated in a body-centered cubic (bcc) U10Mo single crystal. Then Xe atoms are sequentially added into the bubbles one by one, and the evolution of pressure and dislocation emission around the bubbles is analyzed. The relationship between pressure, equilibrium Xe concentration, and radius of the bubbles is established. It was found that an overpressured gas bubble emits partial dislocations with a Burgers vector along the <111> direction and a slip plane of (11-2). Meanwhile, dislocation loop punch out was not observed. The overpressured bubble also induces an anisotropic stress field. A tensile stress was found along <110> directions around the bubble, favoring the nucleation and formation of a face-centered cubic bubble superlattice in bcc U10Mo fuels.

  19. Atomistic simulations of thermodynamic properties of Xe gas bubbles in U10Mo fuels

    Hu, Shenyang; Setyawan, Wahyu; Joshi, Vineet V.; Lavender, Curt A.

    2017-07-01

    Xe gas bubble superlattice formation is observed in irradiated uranium-10 wt% molybdenum (U10Mo) fuels. However, the thermodynamic properties of the bubbles (the relationship among bubble size, equilibrium Xe concentration, and bubble pressure) and the mechanisms of bubble superlattice formation are not well known. In this work, the molecular dynamics (MD) method is used to study these properties and mechanisms. The results provide important inputs for quantitative mesoscale models of gas bubble evolution and fuel performance. In the MD simulations, the embedded-atom method (EAM) potential of U10Mo-Xe [1] is employed. Initial gas bubbles with a low Xe concentration (underpressured) are generated in a body-centered cubic (bcc) U10Mo single crystal. Then Xe atoms are sequentially added into the bubbles one by one, and the evolution of pressure and dislocation emission around the bubbles is analyzed. The relationship between pressure, equilibrium Xe concentration, and radius of the bubbles is established. It was found that an overpressured gas bubble emits partial dislocations with a Burgers vector along the direction and a slip plane of (11-2). Meanwhile, dislocation loop punch out was not observed. The overpressured bubble also induces an anisotropic stress field. A tensile stress was found along directions around the bubble, favoring the nucleation and formation of a face-centered cubic bubble superlattice in bcc U10Mo fuels.

  20. Ultrasound induced by CW laser cavitation bubbles

    Korneev, N; Montero, P Rodriguez; Ramos-Garcia, R; Ramirez-San-Juan, J C; Padilla-Martinez, J P

    2011-01-01

    The generation of ultrasound by a collapsing single cavitation bubble in a strongly absorbing liquid illuminated with a moderate power CW laser is described. The ultrasound shock wave is detected with hydrophone and interferometric device. To obtain a stronger pulse it is necessary to adjust a liquid absorption and a beam diameter. Their influence can be qualitatively understood with a simple model.

  1. Helium bubbles aggravated defects production in self-irradiated copper

    Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn

    2017-12-01

    Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.

  2. Bubbling in delay-coupled lasers.

    Flunkert, V; D'Huys, O; Danckaert, J; Fischer, I; Schöll, E

    2009-06-01

    We theoretically study chaos synchronization of two lasers which are delay coupled via an active or a passive relay. While the lasers are synchronized, their dynamics is identical to a single laser with delayed feedback for a passive relay and identical to two delay-coupled lasers for an active relay. Depending on the coupling parameters the system exhibits bubbling, i.e., noise-induced desynchronization, or on-off intermittency. We associate the desynchronization dynamics in the coherence collapse and low-frequency fluctuation regimes with the transverse instability of some of the compound cavity's antimodes. Finally, we demonstrate how, by using an active relay, bubbling can be suppressed.

  3. Bubble dynamics in a superheated liquid

    Sha, W.T.; Shah, V.L.

    1977-09-01

    The report presents an extensive literature survey on bubble dynamics. Growth of a single spherical bubble moving in a uniformly superheated liquid is considered. Equations of motion and energy are presented in the forms that take into consideration the interaction between the motion and the growth. The fourth-order Runge-Kutta method is used to obtain a simultaneous solution of equations of motion and growth rate, and the solution is compared with available experimental results. Results for liquid sodium are presented for a range of pressures and Jakob numbers

  4. An experimental study of particle-bubble interaction and attachment in flotation

    Sanchez Yanez, Aaron

    2017-05-01

    The particle-bubble interaction is found in industrial applications with the purpose of selective separation of materials especially in the mining industry. The separation is achieved with the use of bubbles that collect particles depending on their hydrophobicity. There are few experimental studies involving a single interaction between a bubble and a particle. The purpose of this work is to understand this interaction by the study of a single bubble interacting with a single particle. Experiments were conducted using ultra-pure water, glass particles and air bubbles. Single interactions of particles with bubbles were observed using two high speed cameras. The cameras were placed perpendicular to each other allowing to reconstruct the three-dimensional position of the particle, the bubble and the particle-bubble aggregate. A single size of particle was used varying the size for the bubbles. It was found that the attachment of a particle to a bubble depends on its degree of hydrophobicity and on the relative position of the particle and the bubble before they encounter.

  5. Heat transport in bubbling turbulent convection.

    Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-06-04

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.

  6. Colliding with a crunching bubble

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  7. Bubble growth in a narrow horizontal space

    Stutz, Benoit; Goulet, Remi [CETHIL, UMR5008, CNRS, INSA-Lyon, Universite Lyon1 (France); Passos, Julio Cesar [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. LABSOLAR

    2009-07-01

    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  8. Bubble growth in a narrow horizontal space

    Stutz, Benoit; Goulet, Remi; Passos, Julio Cesar

    2009-01-01

    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  9. A derivation of the stable cavitation threshold accounting for bubble-bubble interactions.

    Guédra, Matthieu; Cornu, Corentin; Inserra, Claude

    2017-09-01

    The subharmonic emission of sound coming from the nonlinear response of a bubble population is the most used indicator for stable cavitation. When driven at twice their resonance frequency, bubbles can exhibit subharmonic spherical oscillations if the acoustic pressure amplitude exceeds a threshold value. Although various theoretical derivations exist for the subharmonic emission by free or coated bubbles, they all rest on the single bubble model. In this paper, we propose an analytical expression of the subharmonic threshold for interacting bubbles in a homogeneous, monodisperse cloud. This theory predicts a shift of the subharmonic resonance frequency and a decrease of the corresponding pressure threshold due to the interactions. For a given sonication frequency, these results show that an optimal value of the interaction strength (i.e. the number density of bubbles) can be found for which the subharmonic threshold is minimum, which is consistent with recently published experiments conducted on ultrasound contrast agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Three-Dimensional Reconstruction of a Gas Bubble Trajectory in Liquid

    Augustyniak Jakub

    2014-01-01

    Full Text Available The identification of the shape of the bubble trajectory is crucial for understanding the mechanism of bubble motion in liquid. In the paper it has been presented the technique of 3D bubble trajectory reconstruction using a single high speed camera and the system of mirrors. In the experiment a glass tank filled with distilled water was used. The nozzle through which the bubbles were generated was placed in the centre of the tank. The movement of the bubbles was recorded with a high speed camera, the Phantom v1610 at a 600 fps. The techniques of image analysis has been applied to determine the coordinates of mass centre of each bubble image. The 3D trajectory of bubble can be obtained by using triangulation methods. In the paper the measurement error of imaging computer tomography has been estimated. The maximum measurement error was equal to ±0,65 [mm]. Trajectories of subsequently departing bubbles were visualized.

  11. Laser controllable generation and manipulation of micro-bubbles in water

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.; Maksimyak, A. P.; Hanson, S. G.; Kontush, S. M.

    2018-01-01

    Micrometer-sized vapor bubbles are formed due to local heating of the water suspension containing absorptive pigment particles of 100 nm diameter. The heating is performed by the CW near-infrared laser radiation. By changing the laser power, four regimes are realized: (1) bubble generation, (2) stable growth of the existing bubbles; (3) stationary existence of the bubbles and (4) bubbles' shrinkage and collapse. The generation and evolution of single bubbles and ensembles of bubbles with controllable sizes and numbers is demonstrated. The bubbles are grouped within the laserilluminated region. They can be easily moved and transported together with the focal spot. The results can be useful for applications associated with the precise manipulation and the species delivery in nano- and micro-engineering problems.

  12. Multiple bubbles in a Hele-Shaw cell

    Vasconcelos, G.L.

    1994-01-01

    A new class of exact solutions is reported for an infinite stream of identical groups of bubbles moving with a constant velocity U in a Hele-Shaw cell when surface tension is neglected. It is suggested that the existence of these solutions might explain some of the complex behavior observed in recent experiments on rising bubbles in a Hele-Shaw cell. Solutions for a finite number of bubbles in a channel are also obtained. In this case, it is shown that solutions with an arbitrary bubble velocity U>V, where V is the fluid velocity at infinity, can in general be obtained from a simple transformation of the solutions for U=2V

  13. Hydrodynamic interaction on large-Reynolds-number aligned bubbles: Drag effects

    Ramirez-Munoz, J.; Salinas-Rodriguez, E.; Soria, A.; Gama-Goicochea, A.

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → The hydrodynamic interaction of a pair aligned equal-sized bubbles is analyzed. → The leading bubble wake decreases the drag on the trailing bubble. → A new semi-analytical model for the trailing bubble's drag is presented. → The equilibrium distance between bubbles is predicted. - Abstract: The hydrodynamic interaction of two equal-sized spherical gas bubbles rising along a vertical line with a Reynolds number (Re) between 50 and 200 is analyzed. An approach to estimate the trailing bubble drag based on the search of a proper reference fluid velocity is proposed. Our main result is a new, simple semi-analytical model for the trailing bubble drag. Additionally, the equilibrium separation distance between bubbles is predicted. The proposed models agree quantitatively up to small distances between bubbles, with reported data for 50 ≤ Re ≤ 200. The relative average error for the trailing bubble drag, Er, is found to be in the range 1.1 ≤ Er ≤ 1.7, i.e., it is of the same order of the analytical predictions in the literature.

  14. Hydrodynamic interaction on large-Reynolds-number aligned bubbles: Drag effects

    Ramirez-Munoz, J., E-mail: jrm@correo.azc.uam.mx [Departamento de Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, 02200 Mexico D.F. (Mexico); Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico); Salinas-Rodriguez, E.; Soria, A. [Departamento de IPH, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, 09340 Mexico D.F. (Mexico); Gama-Goicochea, A. [Centro de Investigacion en Polimeros, Marcos Achar Lobaton No. 2, Tepexpan, 55885 Acolman, Edo. de Mexico (Mexico)

    2011-07-15

    Graphical abstract: Display Omitted Highlights: > The hydrodynamic interaction of a pair aligned equal-sized bubbles is analyzed. > The leading bubble wake decreases the drag on the trailing bubble. > A new semi-analytical model for the trailing bubble's drag is presented. > The equilibrium distance between bubbles is predicted. - Abstract: The hydrodynamic interaction of two equal-sized spherical gas bubbles rising along a vertical line with a Reynolds number (Re) between 50 and 200 is analyzed. An approach to estimate the trailing bubble drag based on the search of a proper reference fluid velocity is proposed. Our main result is a new, simple semi-analytical model for the trailing bubble drag. Additionally, the equilibrium separation distance between bubbles is predicted. The proposed models agree quantitatively up to small distances between bubbles, with reported data for 50 {<=} Re {<=} 200. The relative average error for the trailing bubble drag, Er, is found to be in the range 1.1 {<=} Er {<=} 1.7, i.e., it is of the same order of the analytical predictions in the literature.

  15. Bubble and Drop Nonlinear Dynamics (BDND)

    Trinh, E. H.; Leal, L. Gary; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Free drops and bubbles are weakly nonlinear mechanical systems that are relatively simple to characterize experimentally in 1-G as well as in microgravity. The understanding of the details of their motion contributes to the fundamental study of nonlinear phenomena and to the measurement of the thermophysical properties of freely levitated melts. The goal of this Glovebox-based experimental investigation is the low-gravity assessment of the capabilities of a modular apparatus based on ultrasonic resonators and on the pseudo- extinction optical method. The required experimental task is the accurate measurements of the large-amplitude dynamics of free drops and bubbles in the absence of large biasing influences such as gravity and levitation fields. A single-axis levitator used for the positioning of drops in air, and an ultrasonic water-filled resonator for the trapping of air bubbles have been evaluated in low-gravity and in 1-G. The basic feasibility of drop positioning and shape oscillations measurements has been verified by using a laptop-interfaced automated data acquisition and the optical extinction technique. The major purpose of the investigation was to identify the salient technical issues associated with the development of a full-scale Microgravity experiment on single drop and bubble dynamics.

  16. Bubble fusion: Preliminary estimates

    Krakowski, R.A.

    1995-01-01

    The collapse of a gas-filled bubble in disequilibrium (i.e., internal pressure much-lt external pressure) can occur with a significant focusing of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical shocks; the resulting heating can be sufficient to cause ionization and the emission of atomic radiations. The suggestion that extreme conditions necessary for thermonuclear fusion to occur may be possible has been examined parametrically in terms of the ratio of initial bubble pressure relative to that required for equilibrium. In this sense, the disequilibrium bubble is viewed as a three-dimensional ''sling shot'' that is ''loaded'' to an extent allowed by the maximum level of disequilibrium that can stably be achieved. Values of this disequilibrium ratio in the range 10 -5 --10 -6 are predicted by an idealized bubble-dynamics model as necessary to achieve conditions where nuclear fusion of deuterium-tritium might be observed. Harmonic and aharmonic pressurizations/decompressions are examined as means to achieve the required levels of disequilibrium required to create fusion conditions. A number of phenomena not included in the analysis reported herein could enhance or reduce the small levels of nuclear fusions predicted

  17. Critical scattering by bubbles

    Fiedler-Ferrari, N.; Nussenzveig, H.M.

    1986-11-01

    We apply the complex angular momentum theory to the problem of the critical scattering of light by spherical cavities in the high frequency limit (permittivity greater than the external media) (e.g, air bubble in water) (M.W.O.) [pt

  18. Heavy liquid bubble chamber

    CERN PhotoLab

    1965-01-01

    The CERN Heavy liquid bubble chamber being installed in the north experimental hall at the PS. On the left, the 1180 litre body; in the centre the magnet, which can produce a field of 26 800 gauss; on the right the expansion mechanism.

  19. MISSING: BUBBLE CHAMBER LENS

    2001-01-01

    Would the person who borrowed the large bubble chamber lens from the Microcosm workshops on the ISR please return it. This is a much used piece from our object archives. If anybody has any information about the whereabouts of this object, please contact Emma.Sanders@cern.ch Thank you

  20. BEBC bubble chamber

    CERN PhotoLab

    1972-01-01

    Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.

  1. Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea

    Leifer, Ira; Chernykh, Denis; Shakhova, Natalia; Semiletov, Igor

    2017-06-01

    Sonar surveys provide an effective mechanism for mapping seabed methane flux emissions, with Arctic submerged permafrost seepage having great potential to significantly affect climate. We created in situ engineered bubble plumes from 40 m depth with fluxes spanning 0.019 to 1.1 L s-1 to derive the in situ calibration curve (Q(σ)). These nonlinear curves related flux (Q) to sonar return (σ) for a multibeam echosounder (MBES) and a single-beam echosounder (SBES) for a range of depths. The analysis demonstrated significant multiple bubble acoustic scattering - precluding the use of a theoretical approach to derive Q(σ) from the product of the bubble σ(r) and the bubble size distribution where r is bubble radius. The bubble plume σ occurrence probability distribution function (Ψ(σ)) with respect to Q found Ψ(σ) for weak σ well described by a power law that likely correlated with small-bubble dispersion and was strongly depth dependent. Ψ(σ) for strong σ was largely depth independent, consistent with bubble plume behavior where large bubbles in a plume remain in a focused core. Ψ(σ) was bimodal for all but the weakest plumes. Q(σ) was applied to sonar observations of natural arctic Laptev Sea seepage after accounting for volumetric change with numerical bubble plume simulations. Simulations addressed different depths and gases between calibration and seep plumes. Total mass fluxes (Qm) were 5.56, 42.73, and 4.88 mmol s-1 for MBES data with good to reasonable agreement (4-37 %) between the SBES and MBES systems. The seepage flux occurrence probability distribution function (Ψ(Q)) was bimodal, with weak Ψ(Q) in each seep area well described by a power law, suggesting primarily minor bubble plumes. The seepage-mapped spatial patterns suggested subsurface geologic control attributing methane fluxes to the current state of subsea permafrost.

  2. Bursting Bubbles and Bilayers

    Steven P. Wrenn, Stephen M. Dicker, Eleanor F. Small, Nily R. Dan, Michał Mleczko, Georg Schmitz, Peter A. Lewin

    2012-01-01

    Full Text Available This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol (PEG - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented

  3. Determination of bubble parameters in two-phase flow

    Oliveira Lira, C.A.B. de.

    1980-01-01

    A development of a probe-detector system for measurement of bubble parameters like size, rise velocity and void fraction in two-phase flow is presented. The method uses an electro resistivity probe and a compact electronic circuit has been developed for obtain this purpose. (author)

  4. Bubble properties of heterogeneous bubbly flow in a square bubble column

    Bai, Wei; Deen, Niels G.; Kuipers, J.A.M.

    2010-01-01

    The present work focuses on the measurements of bubble properties in heterogeneous bubbly flows in a square bubble column. A four-point optical fibre probe was used for this purpose. The accuracy and intrusive effect of the optical probe was investigated first. The results show that the optical

  5. Characteristics of bubble plumes, bubble-plume bubbles and waves from wind-steepened wave breaking

    Leifer, I.; Caulliez, G.; Leeuw, G. de

    2007-01-01

    Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened

  6. Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles

    Leifer, I.; Leeuw, G. de

    2006-01-01

    Measurements of bubble plumes from paddle-amplified, wind stress breaking waves were made in a large wind-wave channel during the LUMINY experiment in fresh (but not clean) water. Bubble plumes exhibited considerable variability with respect to dynamics, bubble size distribution, and physical

  7. Bubble Dynamics and Shock Waves

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  8. Plume rise from multiple sources

    Briggs, G.A.

    1975-01-01

    A simple enhancement factor for plume rise from multiple sources is proposed and tested against plume-rise observations. For bent-over buoyant plumes, this results in the recommendation that multiple-source rise be calculated as [(N + S)/(1 + S)]/sup 1/3/ times the single-source rise, Δh 1 , where N is the number of sources and S = 6 (total width of source configuration/N/sup 1/3/ Δh 1 )/sup 3/2/. For calm conditions a crude but simple method is suggested for predicting the height of plume merger and subsequent behavior which is based on the geometry and velocity variations of a single buoyant plume. Finally, it is suggested that large clusters of buoyant sources might occasionally give rise to concentrated vortices either within the source configuration or just downwind of it

  9. Tungsten surface evolution by helium bubble nucleation, growth and rupture

    Sefta, Faiza; Wirth, Brian D.; Hammond, Karl D.; Juslin, Niklas

    2013-01-01

    Molecular dynamics simulations reveal sub-surface mechanisms likely involved in the initial formation of nanometre-sized ‘fuzz’ in tungsten exposed to low-energy helium plasmas. Helium clusters grow to over-pressurized bubbles as a result of repeated cycles of helium absorption and Frenkel pair formation. The self-interstitials either reach the surface as isolated adatoms or trap at the bubble periphery before organizing into prismatic 〈1 1 1〉 dislocation loops. Surface roughening occurs as single adatoms migrate to the surface, prismatic loops glide to the surface to form adatom islands, and ultimately as over-pressurized gas bubbles burst. (paper)

  10. Energy cascading by triple-bubble interactions via time-delayed control

    Lin, Yen-Liang; Chang, Chia-Ming; Tseng, Fan-Gang; Yang, I-Da; Chieng, Ching-Chang

    2012-01-01

    The triple-bubble interaction controlled by a precise time-delayed technique was investigated in detail with respect to different ignition times, heater spaces and sequential firing modes to promote efficient energy cascading and concentration. The target bubble, which was generated under a specific delay time with two auxiliary bubbles, can have a volume that is two or almost three times larger than that of a single bubble. This result overcomes the limitation of energy usage on an explosive microbubble under a constant heat flux. As the heater space decreases, stronger bubble–bubble interactions were obtained due to the hydrodynamic effect and the intensive pressure wave emission, resulting in highly enhancing and depressing bubble dynamics. Other interesting phenomena, such as bubble shifting, mushroom-shape bubble, rod-shape bubble and bubble extension among heaters, were also recorded by a high-speed phase-averaged stroboscopic technique, displaying special non-spherical bubble dynamics. Artificial manipulation of bubble behavior was further conducted in a two-level sequential firing process. Using various volumetric combinations, the adjustable multi-level fluid transportation can be realized by a digital time-delayed control. The above-mentioned information can be applied to not only the design and operation of inkjet printheads but also cavitation research and fluid pumping in microdevices. (paper)

  11. Experimental Analysis of a Bubble Wake Influenced by a Vortex Street

    Sophie Rüttinger

    2018-01-01

    Full Text Available Bubble column reactors are ubiquitous in engineering processes. They are used in waste water treatment, as well as in the chemical, pharmaceutical, biological and food industry. Mass transfer and mixing, as well as biochemical or chemical reactions in such reactors are determined by the hydrodynamics of the bubbly flow. The hydrodynamics of bubbly flows is dominated by bubble wake interactions. Despite the fact that bubble wakes have been investigated intensively in the past, there is still a lack of knowledge about how mass transfer from bubbles is influenced by bubble wake interactions in detail. The scientific scope of this work is to answer the question how bubble wakes are influenced by external flow structures like a vortex street behind a cylinder. For this purpose, the flow field in the vicinity of a single bubble is investigated systematically with high spatial and temporal resolution. High-speed Particle Image Velocimetry (PIV measurements are conducted monitoring the flow structure in the equatorial plane of the single bubble. It is shown that the root mean square (RMS velocity profiles downstream the bubble are influenced significantly by the interaction of vortices. In the presence of a vortex street, the deceleration of the fluid behind the bubble is compensated earlier than in the absence of a vortex street. This happens due to momentum transfer by cross-mixing. Both effects indicate that the interaction of vortices enhances the cross-mixing close to the bubble. Time series of instantaneous velocity fields show the formation of an inner shear layer and coupled vortices. In conclusion, this study shows in detail how the bubble wake is influenced by a vortex street and gives deep insights into possible effects on mixing and mass transfer in bubbly flows.

  12. Three-dimensional investigation of the two-phase flow structure in a bubbly pipe flow

    Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.

    1997-01-01

    Particle Image Velocimetry (PIV) is a non-intrusive measurement technique, which can be used to study the structure of various fluid flows. PIV is used to measure the time varying full field velocity data of a particle-seeded flow field within either a two-dimensional plane or three-dimensional volume. PIV is a very efficient measurement technique since it can obtain both qualitative and quantitative spatial information about the flow field being studied. This information can be further processed into information such as vorticity and pathlines. Other flow measurement techniques (Laser Doppler Velocimetry, Hot Wire Anemometry, etc...) only provide quantitative information at a single point. PIV can be used to study turbulence structures if a sufficient amount of data can be acquired and analyzed, and it can also be extended to study two-phase flows if both phases can be distinguished. In this study, the flow structure around a bubble rising in a pipe filled with water was studied in three-dimensions. The velocity of the rising bubble and the velocity field of the surrounding water was measured. Then the turbulence intensities and Reynolds stresses were calculated from the experimental data. (author)

  13. Bubble and boundary layer behaviour in subcooled flow boiling

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  14. Constrained Vapor Bubble Experiment

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  15. Non-Abelian bubbles in microstate geometries

    Ramírez, Pedro F. [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera, 13-15, C.University Cantoblanco, E-28049 Madrid (Spain); Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS,Orme des Merisiers bâtiment 774, F-91191 Gif-sur-Yvette (France)

    2016-11-24

    We find the first smooth bubbling microstate geometries with non-Abelian fields. The solutions constitute an extension of the BPS three-charge smooth microstates. These consist in general families of regular supersymmetric solutions with non-trivial topology, i.e. bubbles, of N=1, d=5 Super-Einstein-Yang-Mills theory, having the asymptotic charges of a black hole or black ring but with no horizon. The non-Abelian fields make their presence at the very heart of the microstate structure: the physical size of the bubbles is affected by the non-Abelian topological charge they carry, which combines with the Abelian flux threading the bubbles to hold them up. Interestingly the non-Abelian fields carry a set of adjustable continuous parameters that do not alter the asymptotics of the solutions but modify the local geometry. This feature can be used to obtain a classically infinite number of microstate solutions with the asymptotics of a single black hole or black ring.

  16. THE AGE OF THE LOCAL INTERSTELLAR BUBBLE

    Abt, Helmut A.

    2011-01-01

    The Local Interstellar Bubble is an irregular region from 50 to 150 pc from the Sun in which the interstellar gas density is 10 -2 -10 -3 of that outside the bubble and the interstellar temperature is 10 6 K. Evidently most of the gas was swept out by one or more supernovae. I explored the stellar contents and ages of the region from visual double stars, spectroscopic doubles, single stars, open clusters, emission regions, X-ray stars, planetary nebulae, and pulsars. The bubble has three sub-regions. The region toward the galactic center has stars as early as O9.5 V and with ages of 2-4 M yr. It also has a pulsar (PSRJ1856-3754) with a spin-down age of 3.76 Myr. That pulsar is likely to be the remnant of the supernova that drove away most of the gas. The central lobe has stars as early as B7 V and therefore an age of about 160 Myr or less. The Pleiades lobe has stars as early as B3 and therefore an age of about 50 Myr. There are no obvious pulsars that resulted from the supernovae that cleared out those areas. As found previously by Welsh and Lallement, the bubble has five B stars along its perimeter that show high-temperature ions of O VI and C II along their lines of sight, confirming its high interstellar temperature.

  17. Bubble dynamics in drinks

    Broučková Zuzana

    2014-03-01

    Full Text Available This study introduces two physical effects known from beverages: the effect of sinking bubbles and the hot chocolate sound effect. The paper presents two simple „kitchen” experiments. The first and second effects are indicated by means of a flow visualization and microphone measurement, respectively. To quantify the second (acoustic effect, sound records are analyzed using time-frequency signal processing, and the obtained power spectra and spectrograms are discussed.

  18. Bubble dynamics in drinks

    Broučková, Zuzana; Trávníček, Zdeněk; Šafařík, Pavel

    2014-03-01

    This study introduces two physical effects known from beverages: the effect of sinking bubbles and the hot chocolate sound effect. The paper presents two simple "kitchen" experiments. The first and second effects are indicated by means of a flow visualization and microphone measurement, respectively. To quantify the second (acoustic) effect, sound records are analyzed using time-frequency signal processing, and the obtained power spectra and spectrograms are discussed.

  19. Bubble propagation on a rail: a concept for sorting bubbles by size

    Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne

    We demonstrate experimentally that the introduction of a rail, a small height constriction, within the cross-section of a rectangular channel could be used as a robust passive sorting device in two-phase fluid flows. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes can propagate (stably) over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a complementary theoretical analysis based on a depth-averaged theory, which is in qualitative agreement with the experiments. The theoretical study reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions.

  20. Speculation and the 2008 oil bubble: The DCOT Report analysis

    Tokic, Damir

    2012-01-01

    This article analyzes the CFTC's Disaggregated Commitments of Traders (DCOT) Report to get more insights into the behavior of different traders during the 2008 oil bubble. The analysis shows that: (1) the Money Manager category perfectly played the oil bubble, got in early and started selling shortly before the bubble peak; (2) the Producer/Merchant/Processor/User category and the Nonreportable category were covering their short positions into the peak of the bubble; (3) the Swap/Dealer category benefited while the price of oil was rising, but incurred heavy losses as the price of oil collapsed; (4) we find no indications of speculation by any group of traders via the positive feedback trading or rational destabilization; and (5) we do, however, criticize the commercial hedgers for failing to arbitrage the soaring oil prices in 2008. - Highlights: ► We analyze the DCOT Report to study the behavior of traders during the 2008 oil bubble. ► the Money Manger category perfectly played the oil bubble. ► the Producer/Merchant/Processor/User and the Nonreportables engaged in short covering. ► the Swap/Dealer incurred heavy losses as the price of oil collapsed. ► We find no indications of speculation by any category.

  1. Effect of gas expansion on the front shape of a Taylor bubble: an experimental contribution

    Santos Laura

    2014-03-01

    Full Text Available An experimental study where an individual Taylor bubble rises through water with different bubble volume expansion rates is presented with the (front bubble shape determination as main objective. A combination of two techniques, Particle Image Velocimetry (PIV and Pulsed Shadowgraphy (PS, was used to collect images for further treatment in order to characterize the liquid flow pattern in front of the bubble and the bubble shape. Processing the images acquired with pulsed illumination from behind the bubble it was possible to define with precision the bubble shape at different stages when it was expanding. The operation conditions used allowed a wide range of volume expansion rates (0 to 28.5 × 10-6 m3/s with a significant effect on the Taylor bubble velocity; increases in bubble velocity up to 21% were observed relatively to constant volume system condition. Nevertheless, it seems that the front shape of Taylor bubbles does not change significantly with the upward liquid flow rates induced by gas expansion, at least for the volume expansion rates used in the experiments.

  2. Bubble gate for in-plane flow control.

    Oskooei, Ali; Abolhasani, Milad; Günther, Axel

    2013-07-07

    We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.

  3. Influence of Bubble-Bubble interactions on the macroscale circulation patterns in a bubbling gas-solid fluidized bed

    Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    The macro-scale circulation patterns in the emulsion phase of a gas-solid fluidized bed in the bubbling regime have been studied with a 3D Discrete Bubble Model. It has been shown that bubble-bubble interactions strongly influence the extent of the solids circulation and the bubble size

  4. Visualization study of film drops produced by bubble bursting

    Ma Chao; Bo Hanliang

    2012-01-01

    The phenomenon that bubble bursting results in drops production is common in the steam generator of the nuclear power plant, and the fine drops generated by this way is one of the most important source of the drop entrainment in the vapor stream. The visualization experiment about the film drops produced by the bursting bubbles at a free water surface was studied using a high-speed video camera. The results show that the bubble cap breaks up in a single point, within the limits of bubble size in the experiment at present. The whole process can be distinguished into four successive stages: A primary inertial drainage, the bubble cap puncture at the foot or on the top, the film rolls-up and the liquid ring appearing with the hole expanding, and fine film drops emission under the effect of destabilization of a Rayleigh-Taylor type. The expression about the bubble radius and the film drops number is obtain by fitting the experiment data at the bubble radius range from 3-25 mm. The result trend agrees well with the previous work. (authors)

  5. Rational Asset Pricing Bubbles Revisited

    Jan Werner

    2012-01-01

    Price bubble arises when the price of an asset exceeds the asset's fundamental value, that is, the present value of future dividend payments. The important result of Santos and Woodford (1997) says that price bubbles cannot exist in equilibrium in the standard dynamic asset pricing model with rational agents as long as assets are in strictly positive supply and the present value of total future resources is finite. This paper explores the possibility of asset price bubbles when either one of ...

  6. Droplets, Bubbles and Ultrasound Interactions.

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  7. Helium bubble bursting in tungsten

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-01-01

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz

  8. Morphological bubble evolution induced by air diffusion on submerged hydrophobic structures

    Lv, Pengyu; Xiang, Yaolei; Xue, Yahui; Lin, Hao; Duan, Huiling

    2017-03-01

    Bubbles trapped in the cavities always play important roles in the underwater applications of structured hydrophobic surfaces. Air exchange between bubbles and surrounding water has a significant influence on the morphological bubble evolution, which in turn frequently affects the functionalities of the surfaces, such as superhydrophobicity and drag reduction. In this paper, air diffusion induced bubble evolution on submerged hydrophobic micropores under reduced pressures is investigated experimentally and theoretically. The morphological behaviors of collective and single bubbles are observed using confocal microscopy. Four representative evolution phases of bubbles are captured in situ. After depressurization, bubbles will not only grow and coalesce but also shrink and split although the applied pressure remains negative. A diffusion-based model is used to analyze the evolution behavior and the results are consistent with the experimental data. A criterion for bubble growth and shrinkage is also derived along with a phase diagram, revealing that the competition of effective gas partial pressures across the two sides of the diffusion layer dominates the bubble evolution process. Strategies for controlling the bubble evolution behavior are also proposed based on the phase diagram. The current work provides a further understanding of the general behavior of bubble evolution induced by air diffusion and can be employed to better designs of functional microstructured hydrophobic surfaces.

  9. Bubble Coalescence: Effect of Bubble Approach Velocity and Liquid Viscosity

    Orvalho, Sandra; Růžička, Marek; Olivieri, G.; Marzocchella, A.

    2015-01-01

    Roč. 134, SEP 29 (2015), s. 205-216 ISSN 0009-2509 R&D Projects: GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : bubble coalescence * bubble approach velocity * liquid viscosity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.750, year: 2015

  10. Bubble Size Distribution in a Vibrating Bubble Column

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  11. Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound

    Zang, Duyang; Lin, Kejun; Li, Lin; Chen, Zhen; Li, Xiaoguang; Geng, Xingguo

    2017-03-01

    We report on the behavior of levitated soap bubbles in a single-axis acoustic field. For a single bubble, its surface in the polar regions is under compression, but in the equatorial region, it is under suction. Levitation becomes unstable when the height of the bubble approaches half the wavelength of the sound wave because horizontal fluctuations lead to a negative recovery force and a negative levitation force. Vertically stacked double bubbles notably can be stable under levitation if their total vertical length is ˜5λ/6, significantly beyond λ/2 in consequence of the formation of a toroidal high-pressure region around the waist of the two bubbles. Our results provide a deeper insight into the stability of acoustic levitation and the coupling between bubbles and sound field.

  12. Understanding the bubbles

    Turcan, Romeo V.

    that are identified to exist between the Internet and housing market bubbles: uncertainty and sentiments. The iteration between uncertainty and sentiments leads to the emergence of the third commonality: residue. The residue is the difference between the actors’ overall sentiment about exaggerated future prospects...... all boils down to the role pricing plays vis-à-vis the emergence of a new venture and its perceived value. Being in the midst of the global economic crisis provides us with a unique opportunity to refine the proposed model, especially by understanding its temporal and contextual boundaries....

  13. Interface tracking simulations of bubbly flows in PWR relevant geometries

    Fang, Jun, E-mail: jfang3@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Rasquin, Michel, E-mail: michel.rasquin@colorado.edu [Aerospace Engineering Department, University of Colorado, Boulder, CO 80309 (United States); Bolotnov, Igor A., E-mail: igor_bolotnov@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2017-02-15

    Highlights: • Simulations were performed for turbulent bubbly flows in PWR subchannel geometry. • Liquid turbulence is fully resolved by direct numerical simulation approach. • Bubble behavior is captured using level-set interface tracking method. • Time-averaged single- and two-phase turbulent flow statistical quantities are obtained. - Abstract: The advances in high performance computing (HPC) have allowed direct numerical simulation (DNS) approach coupled with interface tracking methods (ITM) to perform high fidelity simulations of turbulent bubbly flows in various complex geometries. In this work, we have chosen the geometry of the pressurized water reactor (PWR) core subchannel to perform a set of interface tracking simulations (ITS) with fully resolved liquid turbulence. The presented research utilizes a massively parallel finite-element based code, PHASTA, for the subchannel geometry simulations of bubbly flow turbulence. The main objective for this research is to demonstrate the ITS capabilities in gaining new insight into bubble/turbulence interactions and assisting the development of improved closure laws for multiphase computational fluid dynamics (M-CFD). Both single- and two-phase turbulent flows were studied within a single PWR subchannel. The analysis of numerical results includes the mean gas and liquid velocity profiles, void fraction distribution and turbulent kinetic energy profiles. Two sets of flow rates and bubble sizes were used in the simulations. The chosen flow rates corresponded to the Reynolds numbers of 29,079 and 80,775 based on channel hydraulic diameter (D{sub h}) and mean velocity. The finite element unstructured grids utilized for these simulations include 53.8 million and 1.11 billion elements, respectively. This has allowed to fully resolve all the turbulence scales and the deformable interfaces of individual bubbles. For the two-phase flow simulations, a 1% bubble volume fraction was used which resulted in 17 bubbles in

  14. Temperature dynamics of liquid outside a spherical bubble

    Sharipov, Vasily

    2011-01-01

    Radial Fourier equation describing temperature distribution outside a spherical bubble is considered. This equation appears from the energy conservation law written for a single bubble. Analytical approximation to the solution of this equation was built for radius and temperature of the surface of the bubble as arbitrary functions of time. In zero-order approximation it is assumed that variation amplitude of bubble radius is much smaller than its value. Together with first-order correction the so obtained solution is in good agreement with numerical results. Reported analytical approximation reduces computation efforts more than 10 times with comparison to the conventional numerical scheme. Finally presented semi-analytical approximation provides a possibility to describe acoustic effects and cavitations being incorporated into the multiphase flow code. (author)

  15. Bubble growth and detachment between two close surfaces

    Fath, H.E.S.

    1985-01-01

    Nucleate boiling is an efficient heat transfer process both as a mean of achieving high heat flux at moderate surface temperature and as a mean of generating steam. The ability to predict nucleate boiling heat flux depends on many interconnected factors such as the number of active sites, the frequency of bubble emission at these sites, and the heat transfer associated with a single bubble. Therefore, the determination of the bubble shape, growth, detachment diameter, and detachment time plays an important role in understanding the boiling mechanisms and in predicting the heat transfer rates. Although much research have been carried-out for the study of free bubble dynamics, the analysis of such problem in a narrow gap-between two close and parallel surfaces (as the gaps between steam generator tubes and tube sheet) has not been attempted, so far as the author is aware. This paper represents an attempt to shed some light on this complex problem. (author)

  16. Simulation of bubble motion under gravity by lattice Boltzmann method

    Takada, Naoki; Misawa, Masaki; Tomiyama, Akio; Hosokawa, Shigeo

    2001-01-01

    We describe the numerical simulation results of bubble motion under gravity by the lattice Boltzmann method (LBM), which assumes that a fluid consists of mesoscopic fluid particles repeating collision and translation and a multiphase interface is reproduced in a self-organizing way by repulsive interaction between different kinds of particles. The purposes in this study are to examine the applicability of LBM to the numerical analysis of bubble motions, and to develop a three-dimensional version of the binary fluid model that introduces a free energy function. We included the buoyancy terms due to the density difference in the lattice Boltzmann equations, and simulated single-and two-bubble motions, setting flow conditions according to the Eoetvoes and Morton numbers. The two-dimensional results by LBM agree with those by the Volume of Fluid method based on the Navier-Stokes equations. The three-dimensional model possesses the surface tension satisfying the Laplace's law, and reproduces the motion of single bubble and the two-bubble interaction of their approach and coalescence in circular tube. There results prove that the buoyancy terms and the 3D model proposed here are suitable, and that LBM is useful for the numerical analysis of bubble motion under gravity. (author)

  17. Interaction of a vortex ring and a bubble

    Jha, Narsing K.; Govardhan, Raghuraman N.

    2014-11-01

    Micro-bubble injection in to boundary layers is one possible method for reducing frictional drag of ships. Although this has been studied for some time, the physical mechanisms responsible for drag reduction using microbubbles in turbulent boundary layers is not yet fully understood. Previous studies suggest that bubble-vortical structure interaction seems to be one of the important physical mechanisms for frictional drag reduction using microbubbles. In the present work, we study a simplification of this problem, namely, the interaction of a single vortical structure, in particular a vortex ring, with a single bubble for better understanding of the physics. The vortex ring is generated using a piston-cylinder arrangement and the bubble is generated by connecting a capillary to an air pump. The bubble dynamics is directly visualized using a high speed camera, while the vorticity modification is measured using time resolved PIV. The results show that significant deformations can occur of both the bubble and the vortex ring. Effect of different non-dimensional parameters on the interaction will be presented in the meeting.

  18. Bubble-induced microstreaming: guiding and destroying lipid vesicles

    Marmottant, Philippe; Hilgenfeldt, Sascha

    2002-11-01

    Micron-sized bubbles respond with strong oscillations when submitted to ultrasound. This has led to their use as echographic contrast enhancers. The large energy and force densities generated by the collapsing bubbles also make them non-invasive mechanical tools: Recently, it has been reported that the interaction of cavitating bubbles with nearby cells can render the latter permeable to large molecules (sonoporation), suggesting prospects for drug delivery and gene transfection. We have developed a laboratory setup that allows for a controlled study of the interaction of single microbubbles with single lipid bilayer vesicles. Substituting vesicles for cell membranes is advantageous because the mechanical properties of vesicles are well-known. Microscopic observations reveal that vesicles near a bubble follow the vivid streaming motion set up by the bubble. The vesicles "bounce" off the bubble, being periodically accelerated towards and away from it, and undergo well-defined shape deformations along their trajectory in accordance with fluid-dynamical theory. Break-up of vesicles could also be observed.

  19. Visualization of airflow growing soap bubbles

    Al Rahbi, Hamood; Bock, Matthew; Ryu, Sangjin

    2016-11-01

    Visualizing airflow inside growing soap bubbles can answer questions regarding the fluid dynamics of soap bubble blowing, which is a model system for flows with a gas-liquid-gas interface. Also, understanding the soap bubble blowing process is practical because it can contribute to controlling industrial processes similar to soap bubble blowing. In this study, we visualized airflow which grows soap bubbles using the smoke wire technique to understand how airflow blows soap bubbles. The soap bubble blower setup was built to mimic the human blowing process of soap bubbles, which consists of a blower, a nozzle and a bubble ring. The smoke wire was placed between the nozzle and the bubble ring, and smoke-visualized airflow was captured using a high speed camera. Our visualization shows how air jet flows into the growing soap bubble on the ring and how the airflow interacts with the soap film of growing bubble.

  20. New mechanism for bubble nucleation: Classical transitions

    Easther, Richard; Giblin, John T. Jr; Hui Lam; Lim, Eugene A.

    2009-01-01

    Given a scalar field with metastable minima, bubbles nucleate quantum mechanically. When bubbles collide, energy stored in the bubble walls is converted into kinetic energy of the field. This kinetic energy can facilitate the classical nucleation of new bubbles in minima that lie below those of the 'parent' bubbles. This process is efficient and classical, and changes the dynamics and statistics of bubble formation in models with multiple vacua, relative to that derived from quantum tunneling.

  1. An experimental study on bubble behavior in a vertical round tube

    Nishiura, Masanori; Torimoto, Kazuhiro; Okawa, Tomio; Kataoka, Isao

    2002-01-01

    Using filtrated and deionized tap water as a liquid phase, isolated gas bubbles rising in turbulent upflow in a vertical round tube were videotaped by two high-speed video cameras to measure their equilibrium positions in the radial direction. The measurements were conducted in normal and high temperatures and the flowrate of liquid phase was parametrically changed; the range of measured bubble sizes was 0.35-3.8 mm. The video data revealed that the bubble whose sphere-equivalent diameter is approximately smaller than 1 mm is more probably located in the center part in the tube, while the bubble approximately larger than 1.5 mm is more probably located near the wall; we call these bubbles coring and sliding bubbles, respectively. The critical bubble size for the transition from coring to sliding bubbles increased with the increase of liquid flowrate but it was not significantly affected by the water temperature. The present experimental data of the equilibrium radial bubble position in turbulent upflow would be important information to consider the local void fraction near the heated wall in flow boiling. (author)

  2. Numerical analysis for simulation of condensing vapor bubble using CFD-ACE+

    Goyal, P.; Dutta, Anu; Singh, R.K.

    2014-01-01

    The motion of bubbles is very complex. They may be subject to break-up or coalescence and may appear to move with a spiraling, zigzagging or rocking behavior. Recently, many studies have been carried out to numerically simulate the rising bubble in various conditions by using VOF approach. However, all the above studies were limited to adiabatic bubble where heat and mass transfer between the phases were not considered. In the present work, an attempt was made to capture the behaviour of condensing bubble flowing in a channel, by using commercial CFD code CFD-ACE+ through VOF model. A User-Defined Function was developed to simulate interfacial heat and mass transfer during condensation. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. For validation of CFD-ACE UDF of bubble condensation, a comparison was made with the literature quoted experimental data and it agreed well. Through this work an emphasis was put on VOF module along with the development of an UDF for bubble condensation in CFD-ACE+ code. This theoretical study is motivated by the future CFD application and the intent to investigate the capabilities of the CFD-ACE+ package. (author)

  3. Two-Dimensional Physical and CFD Modelling of Large Gas Bubble Behaviour in Bath Smelting Furnaces

    Yuhua Pan

    2010-09-01

    Full Text Available The behaviour of large gas bubbles in a liquid bath and the mechanisms of splash generation due to gas bubble rupture in high-intensity bath smelting furnaces were investigated by means of physical and mathematical (CFD modelling techniques. In the physical modelling work, a two-dimensional Perspex model of the pilot plant furnace at CSIRO Process Science and Engineering was established in the laboratory. An aqueous glycerol solution was used to simulate liquid slag. Air was injected via a submerged lance into the liquid bath and the bubble behaviour and the resultant splashing phenomena were observed and recorded with a high-speed video camera. In the mathematical modelling work, a two-dimensional CFD model was developed to simulate the free surface flows due to motion and deformation of large gas bubbles in the liquid bath and rupture of the bubbles at the bath free surface. It was concluded from these modelling investigations that the splashes generated in high-intensity bath smelting furnaces are mainly caused by the rupture of fast rising large gas bubbles. The acceleration of the bubbles into the preceding bubbles and the rupture of the coalescent bubbles at the bath surface contribute significantly to splash generation.

  4. Bubble coalescence in breathing DNA

    Novotný, Tomas; Pedersen, Jonas Nyvold; Ambjörnsson, Tobias

    2007-01-01

    We investigate the coalescence of two DNA bubbles initially located at weak segments and separated by a more stable barrier region in a designed construct of double-stranded DNA. The characteristic time for bubble coalescence and the corresponding distribution are derived, as well as the distribu...... vicious walkers in opposite potentials....

  5. A prediction for bubbling geometries

    Okuda, Takuya

    2007-01-01

    We study the supersymmetric circular Wilson loops in N=4 Yang-Mills theory. Their vacuum expectation values are computed in the parameter region that admits smooth bubbling geometry duals. The results are a prediction for the supergravity action evaluated on the bubbling geometries for Wilson loops.

  6. Preparation of bubble damage detectors

    Tu Caiqing; Guo Shilun; Wang Yulan; Hao Xiuhong; Chen Changmao; Su Jingling

    1997-01-01

    Bubble damage detectors have been prepared by using polyacrylamide as detector solid and freon as detector liquid. Tests show that the prepared detectors are sensitive to fast neutrons and have proportionality between bubble number and neutron fluence within a certain range of neutron fluence. Therefore, it can be used as a fast neutron detector and a dosimeter

  7. The little holographic bubble chambers

    Herve, A.

    1983-01-01

    The lifetime study of the charmed particles has readvanced the idea to use holography for the little fast-cycle bubble chambers. A pilot experiment has been realised in 1982 with a little bubble chamber filled up with freon-115. 40000 holograms have been recorded [fr

  8. Bubble chamber: colour enhanced tracks

    1998-01-01

    This artistically-enhanced image of real particle tracks was produced in the Big European Bubble Chamber (BEBC). Liquid hydrogen is used to create bubbles along the paths of the particles as a piston expands the medium. A magnetic field is produced in the detector causing the particles to travel in spirals, allowing charge and momentum to be measured.

  9. Sinking bubbles in stout beers

    Lee, W. T.; Kaar, S.; O'Brien, S. B. G.

    2018-04-01

    A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.

  10. Layered storage of biogenic methane-enriched gas bubbles in peat: A lumped capacitance model controlled by soil structure

    Chen, X.; Comas, X.; Binley, A. M.; Slater, L. D.

    2017-12-01

    Methane can accumulate in the gaseous phase in peats, and enter the atmosphere as gas bubbles with a mass flux higher than that via diffusion and plant-mediated pathways. A complete understanding of the mechanisms regulating bubble storage in peats remains incomplete. We developed a layered model to quantify the storage of gas bubbles over a peat column based on a general lumped capacitance model. This conceptual model was applied to explain the effects of peat structure on bubble storage at different depths observed in a laboratory experiment. A peat monolith was collected from the Everglades, a subtropical wetland located in Florida (USA), and kept submerged in a cuboid chamber over 102 days until gas bubble saturation was achieved. Time-lapse ground-penetrating radar (GPR) was used to estimate changes in gas content of each layer and the corresponding average dimensions of stored gas bubbles. The results highlight a hotspot layer of bubble accumulation at depths between 5 and 10 cm below the monolith surface. Bubbles in this shallow hotspot layer were larger relative to those in deeper layers, whilst the degree of decomposition of the upper layers was generally smaller than that of the lower layers based on von Post humification tests. X-ray Computer tomography (CT) was applied to resin-impregnated peat sections from different depths and the results showed that a higher porosity promotes bubbles storage. The stored gas bubbles were released by changing water levels and the air CH4 concentrations above the peat monolith were measured using a flow-through chamber system to confirm the high CH4 concentration in the stored bubbles. Our findings suggest that bubble capacitance is related to the difference in size between gas bubbles and peat pores. This work has implications for better understanding how changes in water table elevation associated with climate change and sea level rise (particularly for freshwater wetlands near coastal areas like the Everglades) may

  11. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  12. Vortex-ring-induced large bubble entrainment during drop impact

    Thoraval, Marie-Jean

    2016-03-29

    For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops that are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and the pool, controls the crater deformations and pinchoff. However, it is not the strongest vortex rings that are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices that can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts are not produced by oblate drops but by more prolate drop shapes, as had been observed in previous experiments.

  13. Rising Sludge in Secondary Settlers Due to Denitrification

    Henze, Mogens; Dupont, Rene; Grau, Peter

    1993-01-01

    High suspended solids concentrations in settler effluents can be caused by rising sludge, which is the effect of flotation of solids by nitrogen gas resulting from biological denitrification. Many factors influence the nitrogen gas bubble evolution. The most important factor is the rate...

  14. Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow.

    Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi

    2013-01-01

    We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system.

  15. Dynamics and noise emission of laser induced cavitation bubbles in a vortical flow field

    Oweis, Ghanem F.; Choi, Jaehyug; Ceccio, Steven L.

    2004-03-01

    The sound produced by the collapse of discrete cavitation bubbles was examined. Laser-generated cavitation bubbles were produced in both a quiescent and a vortical flow. The sound produced by the collapse of the cavitation bubbles was recorded, and its spectral content was determined. It was found that the risetime of the sound pulse produced by the collapse of single, spherical cavitation bubbles in quiescent fluid exceeded that of the slew rate of the hydrophone, which is consistent with previously published results. It was found that, as collapsing bubbles were deformed by the vortical flow, the acoustic impulse of the bubbles was reduced. Collapsing nonspherical bubbles often created a sound pulse with a risetime that exceeded that of the hydrophone slew rate, although the acoustic impulse created by the bubbles was influenced largely by the degree to which the bubbles became nonspherical before collapse. The noise produced by the slow growth of cavitation bubbles in the vortex core was not detectable. These results have implications for the interpretation of hydrodynamic cavitation noise produced by vortex cavitation.

  16. Light Scattering by Ice Crystals Containing Air Bubbles

    Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.

    2014-12-01

    The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.

  17. Helium solubility and bubble growth in metals under high pressure

    Laakmann, J.

    1985-07-01

    Helium solubility and bubble growth in metals under high pressure polycrystals and single crystals of gold were heated in helium at temperatures between 475 K and 1250 K in a pressure regime of 200 to 2700 bar to measure the solubility of helium in gold. After quenching to room temperature the helium content, measured by mass spectrometry, showed the following properties: 1) A linear dependence of the He solubility on pressure. 2) Thinning of the specimen reduces the helium content by a factor 10 to 100 but does not change the linear pressure dependence. 3) The thermal release of He from thinned polycrystals and single crystals occurs mainly in a single peak at 500 K. 4) The He concentration of the thinned single crystals was lower by a factor of 10 to 50 than that of the thinned polycrystals. 5) The He solubility in single crystals can be described by an enthalpy of solution Hsub(s)sup(f) = 0.85 +- 0.7 eV and a non-configurational entropy of Ssub(s)sup(f) between 0 k and 1 k (k: Boltzmann-constant). In order to measure the pressure dependence of helium bubble growth in nickel polycrystal Ni-foils were α-implanted to a helium content of 130 appm. The evaluation of the size distribution of the helium bubbles after heat treatments shows 1) The helium content of the observable bubbles - assumed to be in equilibrium - equals the amount of helium implanted into the specimen. 2) The activation energy for the growth of helium bubbles is 1.25 +- 0.3 eV. The comparison of specimen which had been heated at low pressures up to 10 bar with others heated at 2500-2700 bar does not show an unequivocal pressure dependence for helium bubble growth. (orig./IHOE) [de

  18. Sonochemistry and the acoustic bubble

    Grieser, Franz; Enomoto, Naoya; Harada, Hisashi; Okitsu, Kenji; Yasui, Kyuichi

    2015-01-01

    Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the p

  19. Effect of bubble interface parameters on predicted of bubble departure diameter in a narrow channel

    Xu Jianjun; Xie Tianzhou; Zhou Wenbin; Chen Bingde; Huang Yanping

    2014-01-01

    The predicted model on the bubble departure diameter in a narrow channel is built by analysis of forces acting on the bubble, and effects of bubble interface parameters such as the bubble inclination angle, upstream contact angle, downstream contact angle and bubble contact diameter on predicted bubble departure diameters in a narrow channel are analysed by comparing with the visual experimental data. Based on the above results, the bubble interface parameters as the input parameters used to obtain the bubble departure diameter in a narrow channel are assured, and the bubble departure diameters in a narrow channel are predicted by solving the force equation. The predicted bubble departure diameters are verified by the 58 bubble departure diameters obtained from the vertical and inclined visual experiment, and the predicted results agree with the experimental results. The different forces acting on the bubble are obtained and the effect of thermal parameters in this experiment on bubble departure diameters is analysed. (authors)

  20. Model and experimental vizualisation of a bubble interacting with an inclined wall

    Podvin, Berengere; Khoja, Suleman; Attinger, Daniel; Moraga, Francisco

    2006-11-01

    We describe the motion of an air bubble rising through water as it interacts with a wall of variable inclination. The bubble diameter varies about O(1) mm. We use lubrication theory to determine the modification of the bubble interface and compute the hydrodynamic force exerted by the wall. The present work is an extension of Moraga et al's model [Computers and Fluids 2006], which was devised for a horizontal wall. The predictions of the model are checked against experimental visualizations. The influence of the Weber number, Reynolds number and wall inclination is examined

  1. New evidence on the first financial bubble

    Frehen, R.G.P.; Goetzmann, W.; Rouwenhorst, K.G.

    2013-01-01

    The Mississippi Bubble, South Sea Bubble and the Dutch Windhandel of 1720 together represent the world's first global financial bubble. We hand-collect cross-sectional price data and investor account data from 1720 to test theories about market bubbles. Our tests suggest that innovation was a key

  2. Numerical study to invistigate the effect of inlet gas velocity and Reynolds number on bubble formation in a viscous liquid

    Islam Tariqul

    2015-01-01

    Full Text Available Bubble formation dynamics has great value in mineral recovery and the oil industry. In this paper, a single bubble formation process through an orifice in a rectangle domain is modelled to study the bubble formation characteristics using the volume of fluid (VOF with the continuum surface force (CSF method. The effect of gas inlet velocities, Ug ~ 0.1 - 0.3 m/s on bubble formation stages (i.e., expansion, elongation and pinch off, bubble contact angle, dynamics and static pressure, bubble departure diameter etc. was investigated through an orifice diameter of 1 mm. The method was also used to study the effect of Reynolds number, Reμ ~ 1.32 - 120 on bubble formation when all other parameters were kept constant. It is found that a high inlet gas velocity accelerated the reducing of the bubble contact angle from an obtuse angle to an acute angle and the faster development of hemispherical shape of the bubble. It is also found that an increasing of Reynolds number caused speeding up of the bubble pinch-off and formed a smaller bubble neck height due to stronger vortex ring around the bubble neck.

  3. Bubble Formation in Basalt-like Melts

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    and their diameter. The variation in melting temperature has little influence on the overall bubble volume. However, the size distribution of the bubbles varies with the melting temperature. When the melt is slowly cooled, the bubble volume increases, implying decreased solubility of the gaseous species. Mass...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  4. Microstreaming from Sessile Semicylindrical Bubbles

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Guo, Lin; Wang, Cheng

    2014-03-01

    Powerful steady streaming flows result from the ultrasonic driving of microbubbles, in particular when these bubbles have semicylindrical cross section and are positioned in contact with a microfluidic channel wall. We have used this streaming in experiment to develop novel methods for trapping and sorting of microparticles by size, as well as for micromixing. Theoretically, we arrive at an analytical description of the streaming flow field through an asymptotic computation that, for the first time, reconciles the boundary layers around the bubble and along the substrate wall, and also takes into account the oscillation modes of the bubble. This approach gives insight into changes in the streaming pattern with bubble size and driving frequency, including a reversal of the flow direction at high frequencies with potentially useful applications. Present address: Mechanical and Aerospace Engineering, Missouri S &T.

  5. Electroweak bubble wall speed limit

    Bödeker, Dietrich [Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld (Germany); Moore, Guy D., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: guymoore@ikp.physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany)

    2017-05-01

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can 'run away,' that is, achieve extreme ultrarelativistic velocities γ ∼ 10{sup 14}. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ∼ 1/α. Though the bubble walls can move at almost the speed of light, they carry an infinitesimal share of the plasma's energy.

  6. Holography in small bubble chambers

    Lecoq, P.

    1984-01-01

    This chapter reports on an experiment to determine the total charm cross section at different incident momenta using the small, heavy liquid bubble chamber HOBC. Holography in liquid hydrogen is also tested using the holographic lexan bubble chamber HOLEBC with the aim of preparing a future holographic experiment in hydrogen. The high intensity tests show that more than 100 incident tracks per hologram do not cause a dramatic effect on the picture quality. Hydrogen is more favorable than freon as the bubble growth is much slower in hydrogen. An advantage of holography is to have the maximum resolution in the full volume of the bubble chamber, which allows a gain in sensitivity by a factor of 10 compared to classical optics as 100 tracks per hologram look reasonable. Holograms are not more difficult to analyze than classical optics high-resolution pictures. The results show that holography is a very powerful technique which can be used in very high resolution particle physics experiments

  7. The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Kreider, Wayne; Breshock, Michael; Williams, James C., Jr.; Bailey, Michael R.

    2018-01-01

    The color Doppler ultrasound twinkling artifact, which highlights kidney stones with rapidly changing color, has the potential to improve stone detection; however, its inconsistent appearance has limited its clinical utility. Recently, it was proposed stable crevice bubbles on the kidney stone surface cause twinkling; however, the hypothesis is not fully accepted because the bubbles have not been directly observed. In this paper, the micron or submicron-sized bubbles predicted by the crevice bubble hypothesis are enlarged in kidney stones of five primary compositions by exposure to acoustic rarefaction pulses or hypobaric static pressures in order to simultaneously capture their appearance by high-speed photography and ultrasound imaging. On filming stones that twinkle, consecutive rarefaction pulses from a lithotripter caused some bubbles to reproducibly grow from specific locations on the stone surface, suggesting the presence of pre-existing crevice bubbles. Hyperbaric and hypobaric static pressures were found to modify the twinkling artifact; however, the simple expectation that hyperbaric exposures reduce and hypobaric pressures increase twinkling by shrinking and enlarging bubbles, respectively, largely held for rough-surfaced stones but was inadequate for smoother stones. Twinkling was found to increase or decrease in response to elevated static pressure on smooth stones, perhaps because of the compression of internal voids. These results support the crevice bubble hypothesis of twinkling and suggest the kidney stone crevices that give rise to the twinkling phenomenon may be internal as well as external.

  8. On the how latitude scanning photometer signatures of equatorial ionosphere plasma bubbles

    Abdu, M.A.; Sobral, J.H.A.; Nakamura, Y.

    1985-01-01

    Meridional and east-west scan 6300 (angstrom) night airglow photometer are being extensively used at the low latitude station Cachoeira Paulista (23 0 S 45 0 W, dip latitude 14 0 ), Brazil, for investigation of trans-equatorial ionospheric plasma bubble dynamics. The zonal velocities of the flux aligned plasma bubbles can be determined, in a straingforward way, from the east-west displacement of the airglow intensity valleys observed by the east-west scan photometer. On the other hand, the determination of the other velocity component of the plasma bubble motion (namely, vertical motion in the equatorial plane) has to be based on the meridional propagation of the airglow valleys observed by the meriodinal scan photometer. Such determinatios of the bubbles vertical rise velocity should, however, involved considerations on different bubble parameters such as, for exemple, the phase of the bubble event (whether growth, mature or decay phase), the limited east-west extension, and the often observed westward tilt of the bubble. In this brief report there were condidered in some detail, possible influences of these different factors on the interpretation of low latitude scanning photometer data to infer trans-equatorial plasma bubble dynamics. (author) [pt

  9. The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact.

    Simon, Julianna C; Sapozhnikov, Oleg A; Kreider, Wayne; Breshock, Michael; Williams, James C; Bailey, Michael R

    2018-01-09

    The color Doppler ultrasound twinkling artifact, which highlights kidney stones with rapidly changing color, has the potential to improve stone detection; however, its inconsistent appearance has limited its clinical utility. Recently, it was proposed stable crevice bubbles on the kidney stone surface cause twinkling; however, the hypothesis is not fully accepted because the bubbles have not been directly observed. In this paper, the micron or submicron-sized bubbles predicted by the crevice bubble hypothesis are enlarged in kidney stones of five primary compositions by exposure to acoustic rarefaction pulses or hypobaric static pressures in order to simultaneously capture their appearance by high-speed photography and ultrasound imaging. On filming stones that twinkle, consecutive rarefaction pulses from a lithotripter caused some bubbles to reproducibly grow from specific locations on the stone surface, suggesting the presence of pre-existing crevice bubbles. Hyperbaric and hypobaric static pressures were found to modify the twinkling artifact; however, the simple expectation that hyperbaric exposures reduce and hypobaric pressures increase twinkling by shrinking and enlarging bubbles, respectively, largely held for rough-surfaced stones but was inadequate for smoother stones. Twinkling was found to increase or decrease in response to elevated static pressure on smooth stones, perhaps because of the compression of internal voids. These results support the crevice bubble hypothesis of twinkling and suggest the kidney stone crevices that give rise to the twinkling phenomenon may be internal as well as external.

  10. Bubbles in a freshwater lake.

    Thorpe, S A; Stubbs, A R

    1979-05-31

    WHEN the wind is strong enough to produce whitecaps on Loch Ness, patchy 'clouds' of acoustic reflectors are detected well below the surface, the depth to which they penetrate increasing with wind speed (Fig. 1). No seasonal variation in the occurrence of the reflectors has been detected. A biological explanation is therefore discounted and we suggest here that they are bubbles caused by waves breaking and forming whitecaps in deep water. Similar bubble clouds may occur in other lakes and in the sea.

  11. OH Production Enhancement in Bubbling Pulsed Discharges

    Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut; Chiru, Petrica; Zaroschi, Valentin; Lungu, Ana M.; Saito, Nagahiro; Bratescu, Maria; Takai, Osamu; Velea, Theodor; Predica, Vasile

    2010-10-01

    The generation of active species, such as H2O2, O*, OH*, HO2*, O3, N2*, etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active species were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).

  12. OH Production Enhancement in Bubbling Pulsed Discharges

    Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut; Chiru, Petrica; Zaroschi, Valentin; Lungu, Ana M.; Saito, Nagahiro; Bratescu, Maria; Takai, Osamu; Velea, Theodor; Predica, Vasile

    2010-01-01

    The generation of active species, such as H 2 O 2 , O * , OH*, HO 2 *, O 3 , N 2 * , etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active species were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).

  13. Measuring online social bubbles

    Dimitar Nikolov

    2015-12-01

    Full Text Available Social media have become a prevalent channel to access information, spread ideas, and influence opinions. However, it has been suggested that social and algorithmic filtering may cause exposure to less diverse points of view. Here we quantitatively measure this kind of social bias at the collective level by mining a massive datasets of web clicks. Our analysis shows that collectively, people access information from a significantly narrower spectrum of sources through social media and email, compared to a search baseline. The significance of this finding for individual exposure is revealed by investigating the relationship between the diversity of information sources experienced by users at both the collective and individual levels in two datasets where individual users can be analyzed—Twitter posts and search logs. There is a strong correlation between collective and individual diversity, supporting the notion that when we use social media we find ourselves inside “social bubbles.” Our results could lead to a deeper understanding of how technology biases our exposure to new information.

  14. Beyond the gas bubble

    Hilt, R.H.

    1990-01-01

    The deliverability issue currently being discussed within the natural gas industry involves both near-term and long-term questions. In the near-term, over the next two or three years, it is probable that the natural gas industry will need to mobilize for much greater levels of investment than have been the experience over the past few years. In the longer-term, it is expected that new opportunities for gas will arise as the nation seeks to meet increasing energy requirements within new environmental constraints. Methane for emissions control, CNG vehicles, expanded gas-fired electricity generation, and increased efficiency of traditional energy services are just a few examples. The issues in the longer-term center on the ability of the gas industry to meet increasing supply requirements reliably and at cost-competitive prices for these markets. This paper begins by reviewing the historical situation of gas deliverability that is the capability of the gas producing and transportation portions of the industry. The delivery system's ability to handle shifts in the centers of consumption and production is discussed, with an emphasis on regional problems of gas deliverability and potential bottlenecks. On the production side, the paper reviews the capability and the required investment necessary to handle an orderly transition to a stable supply and demand balance once the elusive bubble had finally disappeared

  15. Acoustic bubble sorting for ultrasound contrast agent enrichment

    Segers, T.J.; Versluis, Michel

    2014-01-01

    An ultrasound contrast agent (UCA) suspension contains encapsulated microbubbles with a wide size distribution, with radii ranging from 1 to 10 μm. Medical transducers typically operate at a single frequency, therefore only a small selection of bubbles will resonate to the driving ultrasound pulse.

  16. Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid.

    Ramírez-Bahena, Martha H; Vial, Ludovic; Lassalle, Florent; Diel, Benjamin; Chapulliot, David; Daubin, Vincent; Nesme, Xavier; Muller, Daniel

    2014-04-01

    Linear chromosomes are atypical in bacteria and likely a secondary trait derived from ancestral circular molecules. Within the Rhizobiaceae family, whose genome contains at least two chromosomes, a particularity of Agrobacterium fabrum (formerly A. tumefaciens) secondary chromosome (chromid) is to be linear and hairpin-ended thanks to the TelA protelomerase. Linear topology and telA distributions within this bacterial family was screened by pulse field gel electrophoresis and PCR. In A. rubi, A. larrymoorei, Rhizobium skierniewicense, A. viscosum, Agrobacterium sp. NCPPB 1650, and every genomospecies of the biovar 1/A. tumefaciens species complex (including R. pusense, A. radiobacter, A. fabrum, R. nepotum plus seven other unnamed genomospecies), linear chromid topologies were retrieved concomitantly with telA presence, whereas the remote species A. vitis, Allorhizobium undicola, Rhizobium rhizogenes and Ensifer meliloti harbored a circular chromid as well as no telA gene. Moreover, the telA phylogeny is congruent with that of recA used as a marker gene of the Agrobacterium phylogeny. Collectively, these findings strongly suggest that single acquisition of telA by an ancestor was the founding event of a large and diverse clade characterized by the presence of a linear chromid. This clade, characterized by unusual genome architecture, appears to be a relevant candidate to serve as a basis for a possible redefinition of the controversial Agrobacterium genus. In this respect, investigating telA in sequenced genomes allows to both ascertain the place of concerned strains into Agrobacterium spp. and their actual assignation to species/genomospecies in this genus. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. A novel ultrasound based technique for classifying gas bubble sizes in liquids

    Hussein, Walid; Khan, Muhammad Salman; Zamorano, Juan; Espic, Felipe; Yoma, Nestor Becerra

    2014-01-01

    Characterizing gas bubbles in liquids is crucial to many biomedical, environmental and industrial applications. In this paper a novel method is proposed for the classification of bubble sizes using ultrasound analysis, which is widely acknowledged for being non-invasive, non-contact and inexpensive. This classification is based on 2D templates, i.e. the average spectrum of events representing the trace of bubbles when they cross an ultrasound field. The 2D patterns are obtained by capturing ultrasound signals reflected by bubbles. Frequency-domain based features are analyzed that provide discrimination between bubble sizes. These features are then fed to an artificial neural network, which is designed and trained to classify bubble sizes. The benefits of the proposed method are that it facilitates the processing of multiple bubbles simultaneously, the issues concerning masking interference among bubbles are potentially reduced and using a single sinusoidal component makes the transmitter–receiver electronics relatively simpler. Results from three bubble sizes indicate that the proposed scheme can achieve an accuracy in their classification that is as high as 99%. (paper)

  18. A numerical study of three-dimensional bubble merger in the Rayleigh endash Taylor instability

    Li, X.L.

    1996-01-01

    The Rayleigh endash Taylor instability arises when a heavy fluid adjacent to a light fluid is accelerated in a direction against the density gradient. Under this unstable configuration, a perturbation mode of small amplitude grows into bubbles of the light fluid and spikes of the heavy fluid. Taylor discovered the steady state motion with constant velocity for a single bubble or periodic bubbles in the Rayleigh endash Taylor instability. Read and Youngs studied the motion of a randomly perturbed fluid interface in the Rayleigh endash Taylor instability. They reported constant acceleration for the overall bubble envelope. Bubble merger is believed to cause the transition from constant velocity to constant acceleration. In this paper, we present a numerical study of this important physical phenomenon. It analyzes the physical process of bubble merger and the relationship between the horizontal bubble expansion and the vertical interface acceleration. A dynamic bubble velocity, beyond Taylor close-quote s steady state value, is observed during the merger process. It is believed that this velocity is due to the superposition of the bubble velocity with a secondary subharmonic unstable mode. The numerical results are compared with experiments. copyright 1996 American Institute of Physics

  19. Bubble masks for time-encoded imaging of fast neutrons.

    Brubaker, Erik; Brennan, James S.; Marleau, Peter; Nowack, Aaron B.; Steele, John T.; Sweany, Melinda; Throckmorton, Daniel J.

    2013-09-01

    Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

  20. Prominence Bubble Shear Flows and the Coupled Kelvin-Helmholtz — Rayleigh-Taylor Instability

    Berger, Thomas; Hillier, Andrew

    2017-08-01

    Prominence bubbles are large arched structures that rise from below into quiescent prominences, often growing to heights on the order of 10 Mm before going unstable and generating plume upflows. While there is general agreement that emerging flux below pre-existing prominences causes the structures, there is lack of agreement on the nature of the bubbles and the cause of the instability flows. One hypothesis is that the bubbles contain coronal temperature plasma and rise into the prominence above due to both magnetic and thermal buoyancy, eventually breaking down via a magnetic Rayleigh-Taylor (RT) instability to release hot plasma and magnetic flux and helicity into the overlying coronal flux rope. Another posits that the bubbles are actually just “arcades” in the prominence indicating a magnetic separator line between the bipole and the prominence fields with the observed upflows and downflows caused by reconnection along the separator. We analyze Hinode/SOT, SDO/AIA, and IRIS observations of prominence bubbles, focusing on characteristics of the bubble boundary layers that may discriminate between the two hypotheses. We find speeds on the order of 10 km/s in prominence plasma downflows and lateral shear flows along the bubble boundary. Inflows to the boundary gradually increase the thickness and brightness of the layer until plasma drains from there, apparently around the dome-like bubble domain. In one case, shear flow across the bubble boundary develops Kelvin-Helmholtz (KH) vortices that we use to infer flow speeds in the low-density bubble on the order of 100 km/sec. IRIS spectra indicate that plasma flows on the bubble boundary at transition region temperatures achieve Doppler speeds on the order of 50 km/s, consistent with this inference. Combined magnetic KH-RT instability analysis leads to flux density estimates of 10 G with a field angle of 30° to the prominence, consistent with vector magnetic field measurements. In contrast, we find no evidence

  1. Experimental and analytical studies of iodine mass transfer from xenon-iodine mixed gas bubble to liquid sodium pool

    Miyahara, S.; Sagawa, N.; Shimoyama, K.

    1996-01-01

    In the fuel pin failure accident of a liquid metal fast reactor, volatile fission products play an important role in the assessment of radiological consequences. Especially the radioisotopes of elemental iodine are important because of their high volatility and of the low permissible dose to human thyroid. The released iodines are known to be retained in the coolant sodium as sodium iodide due to the chemical affinity between alkali metals and halogens. However, the xenon and krypton released with iodines into the sodium pool as bubbles may influence the reaction rate of iodine with sodium during the bubble rising. So far, the only few experimental results have been available concerning the decontamination factor (DF: the ratio of the initial iodine mass in the mixed gas bubble to the released mass into the cover gas) of iodine in this phenomenon. Therefore, experimental and analytical studies were carried out to study the mass transfer of iodine from a xenon-iodine mixed gas bubble to the liquid sodium pool. In the experiments, the bubble was generated in the sodium pool by cracking a quartz ball which contains the xenon-iodine mixed gas and then, the mixed gas released into the argon cover gas was collected to determine the transferred iodine mass into the pool. A rising velocity of the bubble was measured by Chen-type void sensors arranged vertically in the pool. From the measured rising velocity and another observation of bubble behavior in simulated water experiments, it is found that the generated bubble breaks up into several smaller bubbles of spherical cap type during the rising period. Transferred iodine mass per unit initial bubble volume from the bubble to the sodium pool shows increases with increasing time and the initial iodine concentration. A mass transfer rate obtained by differentiating the transferred iodine mass with respect to the time indicates a rapid decrease just after the bubble generation and a slow decrease for the successive period

  2. In-situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

    Masotta, M.; Ni, H.; Keppler, H.

    2013-12-01

    Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in-situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1100 to 1240 °C and 1 bar, obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate (GR) ranges from 3.4*10-6 to 5.2*10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density (NB) at nucleation ranges from 1.8*108 to 7.9*107 cm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble-size distribution (BSD) through time, the BSD's of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSD's may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and

  3. Development and validation of a numerical method for computing two-phase flows without interface reconstruction. Application to Taylor bubbles dynamics

    Benkenida, Adlene

    1999-01-01

    velocity field around the bubble. The main physical subject of the present work focuses on the motion of a single Taylor bubble rising in a vertical tube, or the interaction of two Taylor bubbles. Several physical mechanisms influencing the rise velocity and the dynamics of the wake of the bubble (viscosity, surface tension, liquid velocity and acceleration of the bubble) are analysed. Quantitative comparisons with available theoretical and experimental results reveal very good agreement, and new results are obtained on several aspects. (author) [fr

  4. Bubble nucleation in an explosive micro-bubble actuator

    Van den Broek, D M; Elwenspoek, M

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse. In this paper we take a closer look at the bubble nucleation. The moment of bubble nucleation was determined by both stroboscopic imaging and resistance thermometry. Two nucleation regimes could be distinguished. Several different heater designs were investigated under heat fluxes of hundreds of W mm −2 . A close correspondence between current density in the heater and point of nucleation was found. This results in design rules for effective heaters

  5. Visualization of steam bubbles with evaporation in molten alloy

    Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi; Takenaka, Nobuyuki; Matsubayashi, Masahito

    1997-01-01

    An innovative Steam Generator concept of Fast Breeder Reactors by using liquid-liquid direct contact heat transfer has been developed. In this concept, the SG shell is filled with a molten alloy heated by primary sodium. Water is fed into the high temperature molten alloy, and evaporates by direct contact heating. In order to obtain the fundamental information to discuss the heat transfer mechanisms of the direct contact between the water and the molten alloy, this phenomenon was visualized by neutron radiography. JRR-3M radiography in Japan Atomic Energy Research Institute was used. Followings are main results. (1) The bubbles with evaporation are risen with vigorous form changing, coalescence and break-up. Because of these vigorous evaporation, this system have the high heat transfer performance. (2) The rising velocities and volumes of bubbles are calculated from pixcel values of images. The velocities of the bubbles with evaporation are about 60 cm/s, which is larger than that of inert gas bubbles in molten alloy (20-40 cm/s). (3) The required heat transfer length of evaporation is calculated from pixcel values of images. The relation between heat transfer length and superheat temperature, obtained through the heat transfer test, is conformed by this calculation. (author)

  6. Spherical Solutions of an Underwater Explosion Bubble

    Andrew B. Wardlaw

    1998-01-01

    Full Text Available The evolution of the 1D explosion bubble flow field out to the first bubble minimum is examined in detail using four different models. The most detailed is based on the Euler equations and accounts for the internal bubble fluid motion, while the simplest links a potential water solution to a stationary, Isentropic bubble model. Comparison of the different models with experimental data provides insight into the influence of compressibility and internal bubble dynamics on the behavior of the explosion bubble.

  7. Interactions between bubble formation and heating surface in nucleate boiling

    Luke, Andrea

    2009-01-01

    The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size. (author)

  8. Acoustic bubble sorting for ultrasound contrast agent enrichment.

    Segers, Tim; Versluis, Michel

    2014-05-21

    An ultrasound contrast agent (UCA) suspension contains encapsulated microbubbles with a wide size distribution, with radii ranging from 1 to 10 μm. Medical transducers typically operate at a single frequency, therefore only a small selection of bubbles will resonate to the driving ultrasound pulse. Thus, the sensitivity can be improved by narrowing down the size distribution. Here, we present a simple lab-on-a-chip method to sort the population of microbubbles on-chip using a traveling ultrasound wave. First, we explore the physical parameter space of acoustic bubble sorting using well-defined bubble sizes formed in a flow-focusing device, then we demonstrate successful acoustic sorting of a commercial UCA. This novel sorting strategy may lead to an overall improvement of the sensitivity of contrast ultrasound by more than 10 dB.

  9. Boosted black holes on Kaluza-Klein bubbles

    Iguchi, Hideo; Mishima, Takashi; Tomizawa, Shinya

    2007-01-01

    We construct an exact stationary solution of black-hole-bubble sequence in the five-dimensional Kaluza-Klein theory by using solitonic solution-generating techniques. The solution describes two stationary black holes with topology S 3 on a Kaluza-Klein bubble and has a linear momentum component in the compactified direction. We call the solution boosted black holes on Kaluza-Klein bubble because it has the linear momentum. The Arnowitt-Deser-Misner mass and the linear momentum depend on the two boosted velocity parameters of black holes. In the effective four-dimensional theory, the solution has an electric charge which is proportional to the linear momentum. The solution includes the static solution found by Elvang and Horowitz. The small and the big black holes limits are investigated. The relation between the solution and the single boosted black string are considered

  10. Interactions between bubble formation and heating surface in nucleate boiling

    Luke, Andrea [Leibniz University, Hannover (Denmark). Inst. of Thermodynamics], e-mail: ift@ift.uni-hannover.de

    2009-07-01

    The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size. (author)

  11. Bubble-cell interactions with laser-activated polymeric microcapsules

    Versluis, Michel; Lajoinie, Guillaume; van Rooij, Tom; Skachkov, Ilya; Kooiman, Klazina; de Jong, Nico; Physics of Fluids Group, University of Twente Team; Biomedical Engineering, Erasmus MC Team

    2015-11-01

    Polymeric microcapsules that are made light-absorbing by the addition of a dye in their shell can generate cavitation microbubbles with spatiotemporal control when irradiated by a pulsed laser. These particles less than 3 μm in size can circulate through the body, bind to tissues and are expected to be readily detected, even if a single cavitation bubble is produced. In this paper, we study the impact of such cavitation bubbles on a cell monolayer and quantify it in terms of cell poration and cell viability. Two capsules formulations were used; the first one encapsulates a low boiling point oil and induced less cell damage than the second that was loaded with a high boiling point oil. We also report the generation of stable bubbles by the first capsule formulation that completely absorb the cells in their close vicinity. Physics of Fluid group MIRA Institute for Biomedical Technology and Technical Medicine MESA+ Institute for Nanotechnology.

  12. Bifurcation scenarios for bubbling transition.

    Zimin, Aleksey V; Hunt, Brian R; Ott, Edward

    2003-01-01

    Dynamical systems with chaos on an invariant submanifold can exhibit a type of behavior called bubbling, whereby a small random or fixed perturbation to the system induces intermittent bursting. The bifurcation to bubbling occurs when a periodic orbit embedded in the chaotic attractor in the invariant manifold becomes unstable to perturbations transverse to the invariant manifold. Generically the periodic orbit can become transversely unstable through a pitchfork, transcritical, period-doubling, or Hopf bifurcation. In this paper a unified treatment of the four types of bubbling bifurcation is presented. Conditions are obtained determining whether the transition to bubbling is soft or hard; that is, whether the maximum burst amplitude varies continuously or discontinuously with variation of the parameter through its critical value. For soft bubbling transitions, the scaling of the maximum burst amplitude with the parameter is derived. For both hard and soft transitions the scaling of the average interburst time with the bifurcation parameter is deduced. Both random (noise) and fixed (mismatch) perturbations are considered. Results of numerical experiments testing our theoretical predictions are presented.

  13. Effect of titanium impurities on helium bubble growth in nickel

    Amarendra, G.; Viswanathan, B.; Rajaraman, R.; Srinivasan, S.; Gopinathan, K.P.

    1992-01-01

    Positron lifetime measurements in He-implanted Ni and Ni-Ti alloys containing dilute concentrations of Ti, during isochronal annealing, are reported. In the initial annealing stage of Ni-Ti alloys, only a single lifetime ranging from 160 to 180 ps is observed, in contrast with the two lifetimes seen in pure Ni. This indicates saturation positron trapping at helium-bound Ti-vacancy complexes, formed in high concentrations. Lattice statics calculations of the He binding energy at various defect complexes in Ni-containing Ti give credence to the above interpretation. Above 800K, two lifetimes are resolved in Ni-Ti alloys, where the longer lifetime τ 2 increases with a sharp reduction in its intensity. This is indicative of He bubble growth. The bubble radius r B and bubble concentration C B are obtained from an analysis of positron lifetime parameters. These results indicate that, for a given annealing temperature, r B is smaller by a factor of two and C B higher by nearly an order of magnitude in Ni-Ti than the corresponding values in pure Ni. This is explained as due to significant retardation of bubble growth on the addition of Ti to Ni, where the Ti impurities cause an impediment to bubble migration and coalescence. (author)

  14. Dynamics of the central entrapped bubble during drop impact

    Jian, Zhen; Channa, Murad Ali; Thoraval, Marie-Jean

    2017-11-01

    When a drop impacts onto a liquid surface, it entraps a thin central air disk. The air is then brought towards the axis of symmetry by surface tension. This contraction dynamics is very challenging to capture, due to the small length scales (a few micrometers thin air disk) and time scales (contracting in a few hundred microseconds). We use the open source two-phase flow codes Gerris and Basilisk to study this air entrapment phenomenon. The effects of liquid properties such as viscosity and surface tension, and of the impact velocity were investigated. We focus on the morphology of the contracting air disk. The bubble is expected to contract into a single spherical bubble. However, in some cases, the air can be stretched vertically by the liquid inertia and split into two smaller bubbles. The convergence of capillary waves on the air disk towards the axis of symmetry can also make it rupture at the center, thus forming a toroidal bubble. In other cases, vorticity shedding can deform the contracting bubble, leading to more complex structures. A parameter space analysis based on the Reynolds and Weber numbers was then done to classify the different regimes and explain the transitions. Full affiliation:State Key Laboratory for Strength and Vibration of Mechanical Structures,Shaanxi Key Laboratory of Environment and Control for Flight Vehicle,International Center for Applied Mechanics,School of Aerospace,Xi'an Jiaotong University.

  15. Bursting Bubbles from Combustion of Thermoplastic Materials in Microgravity

    Butler, K. B.

    1999-01-01

    Many thermoplastic materials in common use for a wide range of applications, including spacecraft, develop bubbles internally as they burn due to chemical reactions taking place within the bulk. These bubbles grow and migrate until they burst at the surface, forceably ejecting volatile gases and, occasionally, molten fuel. In experiments in normal gravity, Kashiwagi and Ohlemiller observed vapor jets extending a few centimeters from the surface of a radiatively heated polymethylmethacrylate (PMMA) sample, with some molten material ejected into the gas phase. These physical phenomena complicated the combustion process considerably. In addition to the non-steady release of volatiles, the depth of the surface layer affected by oxygen was increased, attributed to the roughening of the surface by bursting events. The ejection of burning droplets in random directions presents a potential fire hazard unique to microgravity. In microgravity combustion experiments on nylon Velcro fasteners and on polyethylene wire insulation, the presence of bursting fuel vapor bubbles was associated with the ejection of small particles of molten fuel as well as pulsations of the flame. For the nylon fasteners, particle velocities were higher than 30 cm/sec. The droplets burned robustly until all fuel was consumed, demonstrating the potential for the spread of fire in random directions over an extended distance. The sequence of events for a bursting bubble has been photographed by Newitt et al.. As the bubble reaches the fluid surface, the outer surface forms a dome while the internal bubble pressure maintains a depression at the inner interface. Liquid drains from the dome until it breaks into a cloud of droplets on the order of a few microns in size. The bubble gases are released rapidly, generating vortices in the quiescent surroundings and transporting the tiny droplets. The depression left by the escaping gases collapses into a central jet, which rises with a high velocity and may

  16. Characterization of nano-bubbles as an oxygen carrier for in-situ bioremediation of organic pollutants in the subsurface

    KIM, E.; Jung, J.; Kang, S.; Choi, Y.

    2016-12-01

    In-situ bioremediation using bubbles as an oxygen carrier has shown its applicability for aerobic biodegradation of organic pollutants in the subsurface. By recent progresses, generation of nano-sized bubbles is possible, which have enhanced oxygen transfer efficiencies due to their high interfacial area and stability. We are developing an in-situ bioremediation technique using nano-bubbles as an oxygen carrier. In this study, nano-bubbles were characterized for their size and oxygen supply capacity. Nano-bubbles were generated with pure oxygen and pure helium gas. The stable nano-bubbles suspended in water were sonicated to induce the bubbles to coalesce, making them to rise and be released out of the water. By removing the bubbles, the water volume was decreased by 0.006%. The gas released from the bubble suspension was collected to measure the amount of gas in the nano-bubbles. For sparingly soluble helium gas 17.9 mL/L was released from the bubble suspension, while for oxygen 46.2 mL/L was collected. For the oxygen nano-bubble suspension, it is likely that the release of dissolved oxygen (DO) contributed to the collected gas volume. After removing the oxygen nano-bubbles, 36.0 mg/L of DO was still present in water. Altogether, the oxygen nano-bubble suspension was estimated to have 66.2 mg/L of oxygen in a dissolved form and 25.6 mg/L as nano-bubbles. A high DO level in the water was possible because of their large Laplace pressure difference across the fluid interface. Applying Young-Laplace equation and ideal gas law, the bubble diameter was estimated to be approximately 10 nm, having an internal pressure of 323 atm. Considering the saturation DO of 8.26 mg/L for water in equilibrium with the atmosphere, the total oxygen content of 91.8 mg/L in the nano-bubble suspension suggests its great potential as an oxygen carrier. Studies are underway to verify the enhanced aerobic biodegradation of organic pollutants in soils by injecting nano-bubble suspensions.

  17. Effect of a uniform magnetic field on dielectric two-phase bubbly flows using the level set method

    Ansari, M.R.; Hadidi, A.; Nimvari, M.E.

    2012-01-01

    In this study, the behavior of a single bubble in a dielectric viscous fluid under a uniform magnetic field has been simulated numerically using the Level Set method in two-phase bubbly flow. The two-phase bubbly flow was considered to be laminar and homogeneous. Deformation of the bubble was considered to be due to buoyancy and magnetic forces induced from the external applied magnetic field. A computer code was developed to solve the problem using the flow field, the interface of two phases, and the magnetic field. The Finite Volume method was applied using the SIMPLE algorithm to discretize the governing equations. Using this algorithm enables us to calculate the pressure parameter, which has been eliminated by previous researchers because of the complexity of the two-phase flow. The finite difference method was used to solve the magnetic field equation. The results outlined in the present study agree well with the existing experimental data and numerical results. These results show that the magnetic field affects and controls the shape, size, velocity, and location of the bubble. - Highlights: ►A bubble behavior was simulated numerically. ► A single bubble behavior was considered in a dielectric viscous fluid. ► A uniform magnetic field is used to study a bubble behavior. ► Deformation of the bubble was considered using the Level Set method. ► The magnetic field affects the shape, size, velocity, and location of the bubble.

  18. Gas-rise velocities during kicks

    White, D.B. (Sedco Forex (FR))

    1991-12-01

    This paper reports on experiments to examine gas migration rates in drilling muds that were performed in a 15-m-long, 200-mm-ID inclinable flow loop where air injection simulates gas entry during a kick. These tests were conducted using a xanthum gum (a common polymer used in drilling fluids) solution to simulate drilling muds as the liquid phase and air as the gas phase. This work represents a significant extension of existing correlations for gas/liquid flows in large pipe diameters with non- Newtonian fluids. Bubbles rise faster in drilling muds than in water despite the increased viscosity. This surprising result is caused by the change in the flow regime, with large slug-type bubbles forming at lower void fractions. The gas velocity is independent of void fraction, thus simplifying flow modeling. Results show that a gas influx will rise faster in a well than previously believed. This has major implications for kick simulation, with gas arriving at the surface earlier than would be expected and the gas outflow rate being higher than would have been predicted. A model of the two-phase gas flow in drilling mud, including the results of this work, has been incorporated into the joint Schlumberger Cambridge Research (SCR)/BP Intl. kick model.

  19. Generation of Internal Waves by Buoyant Bubbles in Galaxy Clusters and Heating of Intracluster Medium

    Zhang, Congyao; Churazov, Eugene; Schekochihin, Alexander A.

    2018-05-01

    Buoyant bubbles of relativistic plasma in cluster cores plausibly play a key role in conveying the energy from a supermassive black hole to the intracluster medium (ICM) - the process known as radio-mode AGN feedback. Energy conservation guarantees that a bubble loses most of its energy to the ICM after crossing several pressure scale heights. However, actual processes responsible for transferring the energy to the ICM are still being debated. One attractive possibility is the excitation of internal waves, which are trapped in the cluster's core and eventually dissipate. Here we show that a sufficient condition for efficient excitation of these waves in stratified cluster atmospheres is flattening of the bubbles in the radial direction. In our numerical simulations, we model the bubbles phenomenologically as rigid bodies buoyantly rising in the stratified cluster atmosphere. We find that the terminal velocities of the flattened bubbles are small enough so that the Froude number Fr ≲ 1. The effects of stratification make the dominant contribution to the total drag force balancing the buoyancy force. Clear signs of internal waves are seen in the simulations. These waves propagate horizontally and downwards from the rising bubble, spreading their energy over large volumes of the ICM. If our findings are scaled to the conditions of the Perseus cluster, the expected terminal velocity is ˜100 - 200 km s-1 near the cluster cores, which is in broad agreement with direct measurements by the Hitomi satellite.

  20. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    Schneider von Deimling, J.; Papenberg, C.

    2012-03-01

    Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV) to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  1. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    J. Schneider von Deimling

    2012-03-01

    Full Text Available Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  2. Growth process of helium bubbles in aluminium

    Shiraishi, Haruki; Sakairi, Hideo; Yagi, Eiichi; Karasawa, Takashi; Hashiguti, R.R.

    1975-01-01

    The growth process of helium bubbles in α-particle bombarded pure aluminum during isothermal anneal ranging 200 to 645 0 C and 1 to 100 hr was observed by a transmission electron microscope and the possible growth mechanisms are discussed. The effects of helium concentration and cold work were investigated. The helium bubbles are detectable only at the anneal above 550 0 C in both annealed and cold worked samples. The cold work does not cause any extra coarsening trend of bubbles. The observed types of bubble distribution in the grain interior are divided into two categories, irrespective of helium concentration and cold work; (1) the fine and uniform bubble distribution, in which case the average size is limited to about 200 A or less in diameter even at the anneal just below the melting point, and (2) the coarsened and non-uniform bubble distribution ranging 500 to 4000 A in diameter. The intermediate size bubbles are scarcely found in any cases. In the above fine bubble distribution, the increase of helium concentration by a factor of two increases the density by the same factor of two, but does not change the mean size of bubbles. Corresponding to the above two characteristic bubble distributions, it is concluded that two different mechanisms are operative in this experiment; (1) the growth of bubbles by the Brownian motion, in which the growth rate of bubbles is decreased to almost zero by bubble faceting and this results in the bubble size constancy during the prolonged annealing, and (2) the growth of bubbles by the grain boundary sweep-out mechanism, by which the abrupt coarsening of bubbles is caused. The lack of existence of the intermediate size bubbles is explained in this way. (auth.)

  3. Aspherical bubble dynamics and oscillation times

    Godwin, R.P.; Chapyak, E.J. [Los Alamos National Lab., NM (United States); Noack, J.; Vogel, A. [Medizinisches Laserzentrum Luebeck (Germany)

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  4. Bubble Dynamics in Laser Lithotripsy

    Mohammadzadeh, Milad; Mercado, Julian Martinez; Ohl, Claus-Dieter

    2015-01-01

    Laser lithotripsy is a medical procedure for fragmentation of urinary stones with a fiber guided laser pulse of several hundred microseconds long. Using high-speed photography, we present an in-vitro study of bubble dynamics and stone motion induced by Ho:YAG laser lithotripsy. The experiments reveal that detectable stone motion starts only after the bubble collapse, which we relate with the collapse-induced liquid flow. Additionally, we model the bubble formation and dynamics using a set of 2D Rayleigh-Plesset equations with the measured laser pulse profile as an input. The aim is to reduce stone motion through modification of the temporal laser pulse profile, which affects the collapse scenario and consequently the remnant liquid motion. (paper)

  5. Hamiltonian description of bubble dynamics

    Maksimov, A. O.

    2008-01-01

    The dynamics of a nonspherical bubble in a liquid is described within the Hamiltonian formalism. Primary attention is focused on the introduction of the canonical variables into the computational algorithm. The expansion of the Dirichlet-Neumann operator in powers of the displacement of a bubble wall from an equilibrium position is obtained in the explicit form. The first three terms (more specifically, the second-, third-, and fourth-order terms) in the expansion of the Hamiltonian in powers of the canonical variables are determined. These terms describe the spectrum and interaction of three essentially different modes, i.e., monopole oscillations (pulsations), dipole oscillations (translational motions), and surface oscillations. The cubic nonlinearity is analyzed for the problem associated with the generation of Faraday ripples on the wall of a bubble in an acoustic field. The possibility of decay processes occurring in the course of interaction of surface oscillations for the first fifteen (experimentally observed) modes is investigated.

  6. Plasma-focus neutron diagnostics by means of high-sensitivity bubble detectors

    Zoita, V.; Pantea, A.; Patran, A.; Lee, P.; Springham, S.V.; Koh, M.; Rawat, R.S.; Zhang, T.; Hassan, M.

    2005-01-01

    A new type of bubble detector (a superheated fluid detector), the DEFENDER TM , was tested as a neutron diagnostics device on the NX2 plasma focus (PF) device at the NIE/NTU, Singapore. The DEFENDER TM detector was recently developed and commercialised by BTI, Canada, and it is characterised by a very high sensitivity (a factor of about 30 higher than the standard detectors) to fast neutrons (energy above 100 keV). Together with its particular energy response this high sensitivity allows for the development of improved neutron diagnostics for the PF devices. The NX2 plasma focus device has the following typical operating parameters: condenser bank charging voltage: 15 kV; stored energy: 2.3 kJ; peak current: 420 kA; current rise-time: 1.35 μs; deuterium pressure: 20 mbar. During most of the experiments reported here the NX2 device was operated at 14 kV charging voltage and 20 mbar deuterium pressure. A few shots were done at voltages of 14.5 and 15 kV and the same gas pressure. The bubble detector neutron diagnostics experiments carried out on the NX2 machine involved the following measurements: 1. Relative calibration of the four detectors. The detectors were irradiated simultaneously, in identical conditions, by plasma focus neutron pulses and their neutron responses were compared.; 2. angular distribution of the neutron fluence (single shot). The distribution of the neutron fluence was measured at four angles with respect to the PF electrode axis: 0, 30, 60 and 90 deg; 3. Reproducibility of the neutron yield at high repetition rate operation. The NX2 device was operated at 1 Hz repetition rate.; 4. Bubble detector response time. The response time of the DEFENDER TM detector was tested by using the short PF neutron pulses and a high-speed video camera. The paper will present the results of these experiments and their implications for the development of neutron plasma diagnostics techniques based on the bubble detectors and their broader class of superheated

  7. How Stressful Is "Deep Bubbling"?

    Tyrmi, Jaana; Laukkanen, Anne-Maria

    2017-03-01

    Water resistance therapy by phonating through a tube into the water is used to treat dysphonia. Deep submersion (≥10 cm in water, "deep bubbling") is used for hypofunctional voice disorders. Using it with caution is recommended to avoid vocal overloading. This experimental study aimed to investigate how strenuous "deep bubbling" is. Fourteen subjects, half of them with voice training, repeated the syllable [pa:] in comfortable speaking pitch and loudness, loudly, and in strained voice. Thereafter, they phonated a vowel-like sound both in comfortable loudness and loudly into a glass resonance tube immersed 10 cm into the water. Oral pressure, contact quotient (CQ, calculated from electroglottographic signal), and sound pressure level were studied. The peak oral pressure P(oral) during [p] and shuttering of the outer end of the tube was measured to estimate the subglottic pressure P(sub) and the mean P(oral) during vowel portions to enable calculation of transglottic pressure P(trans). Sensations during phonation were reported with an open-ended interview. P(sub) and P(oral) were higher in "deep bubbling" and P(trans) lower than in loud syllable phonation, but the CQ did not differ significantly. Similar results were obtained for the comparison between loud "deep bubbling" and strained phonation, although P(sub) did not differ significantly. Most of the subjects reported "deep bubbling" to be stressful only for respiratory and lip muscles. No big differences were found between trained and untrained subjects. The CQ values suggest that "deep bubbling" may increase vocal fold loading. Further studies should address impact stress during water resistance exercises. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. Cavitation inception from bubble nuclei

    Mørch, Knud Aage

    2015-01-01

    , and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...

  9. Numerical investigation on the influence of surface tension and viscous force on the bubble dynamics with a CLSVOF method

    Wang, Zhiying; Li, Yikai; Huang, Biao; Gao, Deming [Beijing Institute of Technology, Beijing (China)

    2016-06-15

    We numerically investigated the rising of bubbles in a quiescent liquid layer. The numerical simulation is performed by solving the incompressible, multiphase Navier-Stokes equations via computational code in axisymmetric coordinates using a Coupled level-set and volume-of-fluid (CLSVOF) method. The numerical results show that the CLSVOF method with a novel algebraic relation between F and f for axisymmetric two-phase flows not only can predict the bubble surface accurately, but also overcome the deficiency in preserving volume conservation. The effects of the Reynolds number Re and the Bond number Bo on the bubble deformation and its motion are investigated. The results show that with the increasing of Re (10 < Re < 150), the bubble shape transfers from oblate ellipsoidal cap to toroidal when Bo = 116. With the increasing of Bo (10 < Bo < 700), the bubble shape transfers from oblate ellipsoidal to toroidal when Re = 30. Although the toroidal bubble shapes are reached in these two cases, the transition modes are different. For the case Bo = 116, the bubble front is pierced by an upward jet from the rear of the bubble. While for the case Re = 30, the rear of the bubble is pierced by a downward jet from the front part.

  10. Bubble dynamics equations in Newton fluid

    Xiao, J

    2008-01-01

    For the high-speed flow of Newton fluid, bubble is produced and expanded when it moves toward the surface of fluid. Bubble dynamics is a very important research field to understand the intrinsic feature of bubble production and motion. This research formulates the bubble expansion by expansion-local rotation transformation, which can be calculated by the measured velocity field. Then, the related dynamic equations are established to describe the interaction between the fluid and the bubble. The research shows that the bubble production condition can be expressed by critical vortex value and fluid pressure; and the bubble expansion rate can be obtained by solving the non-linear dynamic equation of bubble motion. The results may help the related research as it shows a special kind of fluid motion in theoretic sense. As an application example, the nanofiber radium-voltage relation and threshold voltage-surface tension relation in electrospinning process are discussed

  11. Bubble nucleation in an explosive micro-bubble actuator

    van den Broek, D.M.; Elwenspoek, Michael Curt

    2008-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure

  12. Discrete bubble modeling for a micro-structured bubble column

    Jain, D.; Lau, Y.M.; Kuipers, J.A.M.; Deen, N.G.

    2013-01-01

    Gas–liquid flows with solid catalyst particles are encountered in many applications in the chemical, petrochemical, pharmaceutical industries, etc. Most commonly, two reactor types are applied for large scale in the industry. They are slurry bubble column and trickle bed reactors. Both of these

  13. First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering

    Baxter, D.; Chen, C. J.; Crisler, M.; Cwiok, T.; Dahl, C. E.; Grimsted, A.; Gupta, J.; Jin, M.; Puig, R.; Temples, D.; Zhang, J.

    2017-06-01

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a Cf 252 neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19 ±6 keV (1 σ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3 ×10-7 bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF3 I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.

  14. Macroscopic Ensembles of Aligned Carbon Nanotubes in Bubble Imprints Studied by Polarized Raman Microscopy

    Shota Ushiba

    2014-01-01

    Full Text Available We study the alignment of single-wall carbon nanotubes (SWCNTs in bubble imprints through polarized Raman microscopy. A hemispherical bubble containing SWCNTs is pressed against a glass substrate, resulting in an imprint of the bubble membrane with a coffee ring on the substrate. We find that macroscopic ensembles of aligned SWCNTs are obtained in the imprints, in which there are three patterns of orientations: (i azimuthal alignment on the coffee ring, (ii radial alignment at the edge of the membrane, and (iii random orientation at the center of the membrane. We also find that the alignment of SWCNTs in the imprints can be manipulated by spinning bubbles. The orientation of SWCNTs on the coffee ring is directed radially, which is orthogonal to the case of unspun bubbles. This approach enables one to align SWCNTs in large quantities and in a short time, potentially opening up a wide range of CNT-based electronic and optical applications.

  15. Bubble number saturation curve and asymptotics of hypobaric and hyperbaric exposures.

    Wienke, B R

    1991-12-01

    Within bubble number limits of the varying permeability and reduced gradient bubble models, it is shown that a linear form of the saturation curve for hyperbaric exposures and a nearly constant decompression ratio for hypobaric exposures are simultaneously recovered from the phase volume constraint. Both limits are maintained within a single bubble number saturation curve. A bubble term, varying exponentially with inverse pressure, provides closure. Two constants describe the saturation curve, both linked to seed numbers. Limits of other decompression models are also discussed and contrasted for completeness. It is suggested that the bubble number saturation curve thus provides a consistent link between hypobaric and hyperbaric data, a link not established by earlier decompression models.

  16. Bubble formation upon crystallization of high nitrogen iron base alloys

    Svyazhin, A.G.; Sivka, E.; Skuza, Z.

    2000-01-01

    A study is made into the conditions of nitrogen bubble formation during crystallization of unalloyed iron, alloys of Fe-O, Fe-O-S systems, steels 1Kh13, 0Kh18N9 and a two-phase Fe-11%Cr-1%Mo-0.2%V steel. It is revealed that the amount of bubbles in a high nitrogen steel casting increases with a degree of nitrogen supersaturation and decreases with a cooling rate growth and with a rise of surfactant concentration in the metal. In sound castings a nitrogen content can be increased due to a cooling rate growth, nitrogen dilution with inert gas, an increase of nitrogen pressure during crystallization as well as due to the introduction of such surfactants as sulphur, selenium, tellurium, tin [ru

  17. Formation of soap bubbles by gas jet

    Zhou, M. L.; Li, M.; Chen, Z. Y.; Han, J. F.; Liu, D.

    2017-01-01

    Soap bubbles can be easily generated by varies methods, while their formation process is complicated and still worth study. A model about the bubble formation process was proposed in Phys. Rev. Lett. 116, 077801 recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after repeating these experiments, we found the bubbles could be generated in two velocities ranges which corresponded to laminar and turbulent gas jet respective...

  18. Study of CO2 bubble dynamics in seawater from QICS field Experiment

    Chen, B.; Dewar, M.; Sellami, N.; Stahl, H.; Blackford, J.

    2013-12-01

    One of the concerns of employing CCS at engineering scale is the risk of leakage of storage CO2 on the environment and especially on the marine life. QICS, a scientific research project was launched with an aim to study the effects of a potential leak from a CCS system on the UK marine environment [1]. The project involves the injection of CO2 from a shore-based lab into shallow marine sediments. One of the main objectives of the project is to generate experimental data to be compared with the developed physical models. The results of the models are vital for the biogeochemical and ecological models in order to predict the impact of a CO2 leak in a variety of situations. For the evaluation of the fate of the CO2 bubbles into the surrounding seawater, the physical model requires two key parameters to be used as input which are: (i) a correlation of the drag coefficient as function of the CO2 bubble Reynolds number and (ii) the CO2 bubble size distribution. By precisely measuring the CO2 bubble size and rising speed, these two parameters can be established. For this purpose, the dynamical characteristics of the rising CO2 bubbles in Scottish seawater were investigated experimentally within the QICS project. Observations of the CO2 bubbles plume rising freely in the in seawater column were captured by video survey using a ruler positioned at the leakage pockmark as dimension reference. This observation made it possible, for the first time, to discuss the dynamics of the CO2 bubbles released in seawater. [1] QICS, QICS: Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage. (Accessed 15.07.13), http://www.bgs.ac.uk/qics/home.html

  19. Mechanics of gas-vapor bubbles

    Hao, Yue; Zhang, Yuhang; Prosperetti, Andrea

    2017-01-01

    Most bubbles contain a mixture of vapor and incondensible gases. While the limit cases of pure vapor and pure gas bubbles are well studied, much less is known about the more realistic case of a mixture. The bubble contents continuously change due to the combined effects of evaporation and

  20. Vapor Bubbles in Flow and Acoustic Fields

    Prosperetti, Andrea; Hao, Yue; Sadhal, S.S

    2002-01-01

    A review of several aspects of the interaction of bubbles with acoustic and flow fields is presented. The focus of the paper is on bubbles in hot liquids, in which the bubble contains mostly vapor, with little or no permanent gas. The topics covered include the effect of translation on condensation

  1. Computing bubble-points of CO

    Ramdin, M.; Balaji, S.P.; Vicent Luna, J.M.; Torres-Knoop, A; Chen, Q.; Dubbeldam, D.; Calero, S; de Loos, T.W.; Vlugt, T.J.H.

    2016-01-01

    Computing bubble-points of multicomponent mixtures using Monte Carlo simulations is a non-trivial task. A new method is used to compute gas compositions from a known temperature, bubble-point pressure, and liquid composition. Monte Carlo simulations are used to calculate the bubble-points of

  2. Experimental study of vapor bubble dynamics

    Pasquini, Maria-Elena

    2015-01-01

    The object of this thesis is an experimental study of vapor bubble dynamics in sub-cooled nucleate boiling. The test section is locally heated by focusing a laser beam: heat fluxes from 1 e4 to 1.5 e6 W/m 2 and water temperature between 100 and 88 C have been considered. Three boiling regimes have been observed. Under saturated conditions and with low heat fluxes a developed nucleate boiling regime has been observed. Under higher sub-cooling and still with low heat fluxes an equilibrium regime has been observed in which the liquid flowrate evaporating at the bubble base is compensated by the vapor condensing flowrate at bubble top. A third regime have been observed at high heat fluxes for all water conditions: it is characterized by the formation of a large dry spot on the heated surface that keeps the nucleation site dry after bubble detachment. The condensation phase starts after bubble detachment. Bubble equivalent radius at detachment varies between 1 and 2.5 mm. Bubble properties have been measured and non-dimensional groups have been used to characterize bubble dynamics. Capillary waves have been observed on the bubble surface thanks to high-speed images acquisition. Two main phenomena have been proposed to explain capillary waves effects on bubble condensation: increasing of the phases interface area and decreasing of vapor bubble translation velocity, because of the increased drag force on the deformed bubble. (author) [fr

  3. The Behaviour of Gas Bubble during Rest Period of Pulse-Activated Electrolysis Hydrogen Production

    Vilasmongkolchai Thanet

    2016-01-01

    Full Text Available The pulse-activated electrolyzer has been developed and used for several years. With the capability of enhancing the efficiency of an electrolytic process and easy operation, this technique becomes an interesting process for hydrogen production. Unfortunately during electrolytic reaction, the creation of bubbles becomes a reaction inhibitor and consumes energy. This paper aims to study the proper rest period that gives the bubble free rise-off the solution without additional bubble created. The mathematical method and acoustic emission method were used for investigation of bubble’s rising velocity. The result shows that the variation of rest period on pulse-activated makes production efficiency enhanced. For the practicality of use and set control parameters, duty cycle and frequency were demonstrated instead of rest period.

  4. Droplets, Bubbles and Ultrasound Interactions

    Shpak, O.; Verweij, M.; de Jong, N.; Versluis, Michel; Escoffre, J.M.; Bouakaz, A.

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to

  5. "Financial Bubbles" and Monetary Policy

    Tikhonov, Yuriy A.; Pudovkina, Olga E.; Permjakova, Juliana V.

    2016-01-01

    The relevance of this research is caused by the need of strengthening a role of monetary regulators to prevent financial bubbles in the financial markets. The aim of the article is the analysis of a problem of crisis phenomena in the markets of financial assets owing to an inadequate growth of their cost, owing to subjective reasons. The leading…

  6. Soliton bubbles and phase transformations

    Masperi, L.

    1989-01-01

    It is shown that no topological classical solutions in form of bubbles of a real scalar field theory with Lagrangian of quartet and sextet self interactions in 1+1 dimensions are responsible to discontinue transitions in the quantum problem between phases with degenerated and disordered excited level. (M.C.K.)

  7. Impurity bubbles in a BEC

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  8. Explosive micro-bubble actuator

    van den Broek, D.M.; Elwenspoek, Michael Curt

    2007-01-01

    Explosive evaporation occurs when a thin layer of liquid reaches a very high temperature in a very short time. At these temperatures homogeneous nucleation takes place. The nucleated bubbles almost instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse and

  9. Propagation of a finite bubble in a Hele-Shaw channel of variable depth

    Juel, Anne; Franco-Gomez, Andres; Thompson, Alice; Hazel, Andrew

    2017-11-01

    We study the propagation of finite bubbles in a Hele-Shaw channel, where a centred rail is introduced to provide a small axially-uniform depth constriction. We demonstrate experimentally that this channel geometry can be used as a passive sorting device. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes on the order of the rail width can propagate over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a depth-averaged theory which reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions. In contrast, for larger bubbles and sufficiently large imposed flow rates, we find that initially centred bubbles do not converge onto a steady mode of propagation. Instead they transiently explore weakly unstable steady modes, an evolution which results in their break-up and eventual settling into a steady state of changed topology. The financial support of CONICYT and the Leverhulme Trust are gratefully acknowledged.

  10. Numerical simulation of bubble growth and departure during flow boiling period by lattice Boltzmann method

    Sun, Tao; Li, Weizhong; Yang, Shuai

    2013-01-01

    Highlights: • The bubble departure diameter is proportional to g −0.425 in quiescent fluid. • The bubble release frequency is proportional to g 0.678 in quiescent fluid. • The simulation result supports the transient micro-convection model. • The bubble departure diameter has exponential relation with inlet velocity. • The bubble release frequency has linear relation with inlet velocity. -- Abstract: Nucleate boiling flows on a horizontal plate are studied in this paper by a hybrid lattice Boltzmann method, where both quiescent and slowly flowing ambient are concerned. The process of a single bubble growth on and departure from the superheated wall is simulated. The simulation result supports the transient micro-convection model. The bubble departure diameter and the release frequency are investigated from the simulation result. It is found that the bubble departure diameter and the release frequency are proportional to g −0.425 and g 0.678 in quiescent fluid, respectively, where g is the gravitational acceleration. Nucleate boiling in slowly flowing ambient is also calculated in consideration of forced convection. It is presented that the bubble departure diameter and the release frequency have exponential relationship and linear relationship with inlet velocity in slowly flowing fluid, respectively

  11. Numerical study of the impact of a drop containing a bubble

    Wei, Yu; Thoraval, Marie-Jean

    2017-11-01

    The impact of a drop has many applications from inkjet printing to the spreading of crops diseases. This fundamental phenomenon has therefore attracted a lot of interest from different fields. However, they have mostly focused on the simplest case of a drop containing a single fluid. In inkjet printing and in the deposition process of thermal barrier coatings, some bubbles can be present in the drop when it impacts on the solid surface. The presence of the bubble can produce some additional splashing, and affect the quality of the deposited material. Only a few studies have looked at this problem, and many questions still need to be investigated. Generally, there are three possibilities when a drop containing a bubble impacts onto a solid surface, namely the bubble stays in drop, the bubble bursts and a counter jet forms. We have performed axisymmetric numerical simulations with the open source code Gerris to study this vertical jet. We have systematically varied several parameters, including the impact velocity, the bubble size, the vertical position of the bubble, and the liquid properties. We were thus able to characterize under which condition the bubble leads to splashing and the velocity of the produced jet.

  12. Measurement system of bubbly flow using Ultrasonic Velocity Profile Monitor and Video Data Processing Unit. 3. Comparison of flow characteristics between bubbly cocurrent and countercurrent flows

    Zhou, Shirong; Suzuki, Yumiko; Aritomi, Masanori; Matsuzaki, Mitsuo; Takeda, Yasushi; Mori, Michitsugu

    1998-01-01

    The authors have developed a new measurement system which consisted of an Ultrasonic Velocity Profile Monitor (UVP) and a Video Data Processing Unit (VDP) in order to clarify the two-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for two-dimensional two-phase flow. In the present paper, the proposed measurement system is applied to fully developed bubbly cocurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. In addition, the two-phase multiplier profile of turbulence intensity, which was defined as a ratio of the standard deviation of velocity fluctuation in a bubbly flow to that in a water single phase flow, were examined. Next, these flow characteristics were compared with those in bubbly countercurrent flows reported in our previous paper. Finally, concerning the drift flux model, the distribution parameter and drift velocity were obtained directly from both bubble and water velocity profiles and void fraction profiles, and their results were compared with those in bubbly countercurrent flows. (author)

  13. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    Kwon, J O; Yang, J S; Lee, S J; Rhee, K; Chung, S K

    2011-01-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  14. THE YOUNG INTERSTELLAR BUBBLE WITHIN THE ROSETTE NEBULA

    Bruhweiler, F. C.; Bourdin, M. O.; Freire Ferrero, R.; Gull, T. R.

    2010-01-01

    We use high-resolution International Ultraviolet Explorer (IUE) data and the interstellar (IS) features of highly ionized Si IV and C IV seen toward the young, bright OB stars of NGC 2244 in the core of the Rosette Nebula to study the physics of young IS bubbles. Two discrete velocity components in Si IV and C IV are seen toward stars in the 6.2 pc radius central cavity, while only a single velocity component is seen toward those stars in the surrounding H II region, at the perimeter and external to this cavity. The central region shows characteristics of a very young, windblown bubble. The shell around the central hot cavity is expanding at 56 km s -1 with respect to the embedded OB stars, while the surrounding H II region of the Rosette is expanding at ∼13 km s -1 . Even though these stars are quite young (∼2-4 Myr), both the radius and expansion velocity of the 6.2 pc inner shell point to a far younger age; t age ∼ 6.4 x 10 4 years. These results represent a strong contradiction to theory and present modeling, where much larger bubbles are predicted around individual O stars and O associations. Specifically, the results for this small bubble and its deduced age extend the 'missing wind luminosity problem' to young evolving bubbles. These results indicate that OB star winds mix the surrounding H II regions and the wind kinetic energy is converted to turbulence and radiated away in the dense H II regions. These winds do not form hot, adiabatically expanding cavities. True IS bubbles appear only to form at later evolutionary times, perhaps triggered by increased mass loss rates or discrete ejection events. Means for rectifying discrepancies between theory and observations are discussed.

  15. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  16. Analysis of the heat and mass transfer processes of a UO2 bubble in sodium for the Fuel Aerosol Simulant Test (FAST)

    Tobias, M.L.

    1979-01-01

    The anticipated behavior of uranium oxide vapor bubbles produced by the capacitor discharge vaporization (CDV) method in the Fuel Aerosol Simulant Test (FAST) Facility is discussed on the basis of relatively simple physical models. Results of calculations for the rate of bubble rise and for heat and mass transfer rates are presented. Parametric studies indicate that future analysis efforts should emphasize the diffusion condensation process and the loss of heat from the bubble by radiation. Transfer of heat in the surrounding sodium is rapid enough that simplified models should be adequate. No important effects were noted in connection with bubble depth, initial quantity of UO 2 , or initial superheat

  17. The growth of intra-granular bubbles in post-irradiation annealed UO2 fuel

    White, R.J.

    2001-01-01

    Post-irradiation examinations of low temperature irradiated UO 2 reveal large numbers of very small intra-granular bubbles, typically of around 1 nm diameter. During high temperature reactor transients these bubbles act as sinks for fission gas atoms and vacancies and can give rise to large volumetric swellings, sometimes of the order of 10%. Under irradiation conditions, the nucleation and growth of these bubbles is determined by a balance between irradiation-induced nucleation, diffusional growth and an irradiation induced re-solution mechanism. This conceptual picture is, however, incomplete because in the absence of irradiation the model predicts that the bubble population present from the pre-irradiation would act as the dominant sink for fission gas atoms resulting in large intra-granular swellings and little or no fission gas release. In practice, large fission gas releases are observed from post-irradiation annealed fuel. A recent series of experiments addressed the issue of fission gas release and swelling in post-irradiation annealed UO 2 originating from Advanced Gas Cooled Reactor (AGR) fuel which had been ramp tested in the Halden Test reactor. Specimens of fuel were subjected to transient heating at ramp rates of 0.5 deg. C/s and 20 deg. C/s to target temperatures between 1600 deg. C and 1900 deg. C. The release of fission gas was monitored during the tests. Subsequently, the fuel was subjected to post-irradiation examination involving detailed Scanning Electron Microscopy (SEM) analysis. Bubble-size distributions were obtained from seventeen specimens, which entailed the measurement of nearly 26,000 intra-granular bubbles. The analysis reveals that the bubble densities remain approximately invariant during the anneals and the bubble-size distributions exhibit long exponential tails in which the largest bubbles are present in concentrations of 10 4 or 10 5 lower than the concentrations of the average sized bubbles. Detailed modelling of the bubble

  18. Numerical study of the dielectric liquid around an electrical discharge generated vapor bubble in ultrasonic assisted EDM.

    Shervani-Tabar, Mohammad T; Mobadersany, Nima

    2013-07-01

    In electrical discharge machining due to the electrical current, very small bubbles are created in the dielectric fluid between the tool and the workpiece. Increase of the number of bubbles and their growth in size generate a single bubble. The bubble has an important role in electrical discharge machining. In this paper the effect of ultrasonic vibration of the tool and the velocity fields and pressure distribution in the dielectric fluid around the bubble in the process of electrical discharge machining are studied numerically. The boundary integral equation method is applied for the numerical solution of the problem. It is shown that ultrasonic vibration of the tool has great influence on the evolution of the bubble, fluid behavior and the efficiency of the machining in EDM. At the last stages of the collapse phase of the bubble, a liquid jet develops on the bubble which has different shapes. Due to the different cases, and a high pressure region appears just near the jet of the bubble. Also the fluid particles have the highest relative velocity just near the liquid jet of the bubble. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Three-dimensional numerical simulation of crown spike due to coupling effect between bubbles and free surface

    Han Rui; Zhang A-Man; Li Shuai

    2014-01-01

    The motion of gas bubbles beneath a free surface will lead to a spike of fluid on the free surface. The distance of the bubbles to the free surface is the key factor to different phenomena. When the inception distance varies in some range, crown phenomenon would happen after the impact of weak buoyancy bubbles, so this kind of spike is defined as crown spike in the present paper. Based on potential flow theory, a three-dimensional numerical model is established to simulate the motion of the free-surface spike generated by one bubble or a horizontal line of two in-phase bubbles. After the downward jet formed near the end of the collapse phase, the simulation of the free surface is performed to study the crown spike without regard to the toroidal bubble's effect. Calculations about the interaction between one bubble and free surface agree well with the experimental results conducted with a high-speed camera, and relative error is within 15%. Crown spike in both single- and two-bubble cases are simulated numerically. Different features and laws of the motion of crown spike, depending on the bubble-boundary distances and the inter-bubble distances, have been investigated

  20. Bubbles generated from wind-steepened breaking waves: 2. Bubble plumes, bubbles, and wave characteristics

    Leifer, I.; Caulliez, G.; Leeuw, G.de

    2006-01-01

    Measurements of breaking-wave-generated bubble plumes were made in fresh (but not clean) water in a large wind-wave tunnel. To preserve diversity, a classification scheme was developed on the basis of plume dimensions and "optical density," or the plume's ability to obscure the background. Optically

  1. An equation of motion for bubble growth

    Lesage, F.J. [College d' Enseignement General et Professionnel de L' Outaouais, Gatineau, Quebec (Canada). Dept. of Mathematics; Cotton, J.S. [McMaster University, Hamilton, ON (Canada). Dept. of Mechanical Engineering; Robinson, A.J. [Trinity College Dublin (Ireland). Dept. of Mechanical and Manufacturing Engineering

    2009-07-01

    A mathematical model is developed which describes asymmetric bubble growth, either during boiling or bubble injection from submerged orifices. The model is developed using the integral form of the continuity and momentum equations, resulting in a general expression for the acceleration of the bubble's centre of gravity. The proposed model highlights the need to include acceleration due to an asymmetric gain or loss of mass in order to accurately predict bubble motion. Some scenarios are posed by which the growth of bubbles, particularly idealized bubbles that remain a section of a sphere, must include the fact that bubble growth can be asymmetric. In particular, for approximately hemispherical bubble growth the sum of the forces acting on the bubble is negligible compared with the asymmetric term. Further, for bubble injection from a submerged needle this component in the equation of motion is very significant during the initial rapid growth phase as the bubble issues from the nozzle changing from a near hemisphere to truncated sphere geometry. (author)

  2. An equation of motion for bubble growth

    Lesage, F.J.; Cotton, J.S.; Robinson, A.J.

    2009-01-01

    A mathematical model is developed which describes asymmetric bubble growth, either during boiling or bubble injection from submerged orifices. The model is developed using the integral form of the continuity and momentum equations, resulting in a general expression for the acceleration of the bubble's centre of gravity. The proposed model highlights the need to include acceleration due to an asymmetric gain or loss of mass in order to accurately predict bubble motion. Some scenarios are posed by which the growth of bubbles, particularly idealized bubbles that remain a section of a sphere, must include the fact that bubble growth can be asymmetric. In particular, for approximately hemispherical bubble growth the sum of the forces acting on the bubble is negligible compared with the asymmetric term. Further, for bubble injection from a submerged needle this component in the equation of motion is very significant during the initial rapid growth phase as the bubble issues from the nozzle changing from a near hemisphere to truncated sphere geometry. (author)

  3. Nanosecond Discharge in Bubbled Liquid n-Heptane: Effects of Gas Composition and Water Addition

    Hamdan, Ahmad

    2016-08-30

    Recently, an aqueous discharge reactor was developed to facilitate reformation of liquid fuels by in-liquid plasma. To gain a microscopic understanding of the physical elements behind this aqueous reactor, we investigate nanosecond discharges in liquid n-heptane with single and double gaseous bubbles in the gap between electrodes. We introduce discharge probability (DP) to characterize the stochastic nature of the discharges, and we investigate the dependence of DP on the gap distance, applied voltage, gaseous bubble composition, and the water content in n-heptane/distilled-water emulsified mixtures. Propagation of a streamer through the bubbles indicates no discharges in the liquids. DP is controlled by the properties of the gaseous bubble rather than by the composition of the liquid mixture in the gap with a single bubble; meanwhile, DP is determined by the dielectric permittivity of the liquid mixture in the gap with double bubbles, results that are supported by static electric field simulations. We found that a physical mechanism of increasing DP is caused by an interaction between bubbles and an importance of the dielectric permittivity of a liquid mixture on the local enhancement of field intensity. We also discuss detailed physical characteristics, such as plasma lifetime and electron density within the discharge channel, by estimating from measured emissions with a gated-intensified charge-coupled device and by using spectroscopic images, respectively. © 1973-2012 IEEE.

  4. Comparison of Monetary Policy Actions and Central Bank Communication on Tackling Asset Price Bubbles-Evidence from China's Stock Market.

    Sun, Ou; Liu, Zhixin

    2016-01-01

    We examine the different effects of monetary policy actions and central bank communication on China's stock market bubbles with a Time-varying Parameter SVAR model. We find that with negative responses of fundamental component and positive responses of bubble component of asset prices, contractionary monetary policy induces the observed stock prices to rise during periods of large bubbles. By contrast, central bank communication acts on the market through expectation guidance and has more significant effects on stock prices in the long run, which implies that central bank communication be used as an effective long-term instrument for the central bank's policymaking.

  5. An assembly of steadily translating bubbles in a Hele–Shaw channel

    Crowdy, Darren

    2009-01-01

    This paper presents new solutions for any finite number of bubbles steadily translating along a Hele–Shaw channel. This constitutes a nonlinear free boundary problem. The solutions can be written down explicitly in terms of a special transcendental function called the Schottky–Klein prime function. This work generalizes the exact solutions for a single bubble in a channel found by Tanveer (1987 Phys. Fluids 30 651–8) as well as the solutions for streams of bubbles aligned along the channel centreline due to Vasconcelos (1994 Phys. Rev. E 50 R3306–9)

  6. Hypodense bubbles in acute extradural haematomas following venous sinus tear

    Chee, C.P.; Habib, Z.A.

    1991-01-01

    Between January 1982 and December 1989, 12 patients with 13 acute extradural haematomas as a result of injury involving the venous sinuses were treated by the first author. The CT scan apperances in 6 cases were remarkable in that there were large bubbles of low density in the hyperdense haematomas and liquid blood was found during the operation. The possible underlying pathophysiological changes that gave rise this appearance are discussed. The CT scan appearance and the proximity of the clot to the venous sinuses should alert the neurosurgeon to the high probabilities of venous sinus tear such that proper treatment can be offered. (orig.)

  7. Hypodense bubbles in acute extradural haematomas following venous sinus tear

    Chee, C.P.; Habib, Z.A. (Malaya Univ. Hospital, Kuala Lumpur (Malaysia). Neurosurgical and Radiological Services)

    1991-04-01

    Between January 1982 and December 1989, 12 patients with 13 acute extradural haematomas as a result of injury involving the venous sinuses were treated by the first author. The CT scan apperances in 6 cases were remarkable in that there were large bubbles of low density in the hyperdense haematomas and liquid blood was found during the operation. The possible underlying pathophysiological changes that gave rise this appearance are discussed. The CT scan appearance and the proximity of the clot to the venous sinuses should alert the neurosurgeon to the high probabilities of venous sinus tear such that proper treatment can be offered. (orig.).

  8. A study of gas bubbles in liquid mercury in a vertical Hele-Shaw cell

    Klaasen, B.; Blanpain, B. [KU Leuven, Research Group for High Temperature Processes and Industrial Ecology, Department of Metallurgy and Materials Engineering, Leuven (Belgium); Verhaeghe, F. [KU Leuven, Research Group for High Temperature Processes and Industrial Ecology, Department of Metallurgy and Materials Engineering, Leuven (Belgium); Umicore Group Research and Development, Olen (Belgium); Fransaer, J. [KU Leuven, Research Group for Materials with Novel Functionality, Department of Metallurgy and Materials Engineering, Leuven (Belgium)

    2014-01-15

    High-quality observations of mesoscopic gas bubbles in liquid metal are vital for a further development of pyrometallurgical gas injection reactors. However, the opacity of metals enforces the use of indirect imaging techniques with limited temporal or spatial resolution. In addition, accurate interface tracking requires tomography which further complicates the design of a high-temperature experimental setup. In this paper, an alternative approach is suggested that circumvents these two main restrictions. By injecting gas in a thin layer of liquid metal entrapped between two flat and closely spaced plates, bubbles in a Hele-Shaw flow regime are generated. The resulting quasi-2D multiphase flow phenomena can be fully captured from a single point of view and, when using a non-wetted transparent plate material, the bubbles can be observed directly. The feasibility of this approach is demonstrated by observations on buoyancy-driven nitrogen bubbles in liquid mercury in a vertical Hele-Shaw cell. By using a moving high-speed camera to make continuous close up recordings of individual bubbles, the position and geometry of these bubbles are quantified with a high resolution along their entire path. After a thorough evaluation of the experimental accuracy, this information is used for a detailed analysis of the bubble expansion along the path. While the observed bubble growth is mainly caused by the hydrostatic pressure gradient, a careful assessment of the volume variations for smaller bubbles shows that an accurate bubble description should account for significant dynamic pressure variations that seem to be largely regime dependent. (orig.)

  9. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models

    Warzinski, Robert P.; Lynn, Ronald; Haljasmaa, Igor; Leifer, Ira; Shaffer, Frank; Anderson, Brian J.; Levine, Jonathan S.

    2014-10-01

    Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high-definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep-sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep-sea eruptions.

  10. Bubble entrapment through topological change

    Thoroddsen, Sigurdur T.

    2010-05-03

    When a viscousdrop impacts onto a solid surface, it entraps a myriad of microbubbles at the interface between liquid and solid. We present direct high-speed video observations of this entrapment. For viscousdrops, the tip of the spreading lamella is separated from the surface and levitated on a cushion of air. We show that the primary mechanism for the bubble entrapment is contact between this precursor sheet of liquid with the solid and not air pulled directly through cusps in the contact line. The sheet makes contact with the solid surface,forming a wetted patch, which grows in size, but only entraps a bubble when it meets the advancing contact line. The leading front of this wet patch can also lead to the localized thinning and puncturing of the liquid film producing strong splashing of droplets.

  11. Bubbling in vibrated granular films.

    Zamankhan, Piroz

    2011-02-01

    With the help of experiments, computer simulations, and a theoretical investigation, a general model is developed of the flow dynamics of dense granular media immersed in air in an intermediate regime where both collisional and frictional interactions may affect the flow behavior. The model is tested using the example of a system in which bubbles and solid structures are produced in granular films shaken vertically. Both experiments and large-scale, three-dimensional simulations of this system are performed. The experimental results are compared with the results of the simulation to verify the validity of the model. The data indicate evidence of formation of bubbles when peak acceleration relative to gravity exceeds a critical value Γ(b). The air-grain interfaces of bubblelike structures are found to exhibit fractal structure with dimension D=1.7±0.05.

  12. Bubble entrapment through topological change

    Thoroddsen, Sigurdur T; Takehara, K.; Etoh, T. G.

    2010-01-01

    When a viscousdrop impacts onto a solid surface, it entraps a myriad of microbubbles at the interface between liquid and solid. We present direct high-speed video observations of this entrapment. For viscousdrops, the tip of the spreading lamella is separated from the surface and levitated on a cushion of air. We show that the primary mechanism for the bubble entrapment is contact between this precursor sheet of liquid with the solid and not air pulled directly through cusps in the contact line. The sheet makes contact with the solid surface,forming a wetted patch, which grows in size, but only entraps a bubble when it meets the advancing contact line. The leading front of this wet patch can also lead to the localized thinning and puncturing of the liquid film producing strong splashing of droplets.

  13. Modelling of Spherical Gas Bubble Oscillations and Sonoluminescence

    Prosperetti, A.; Hao, Y.

    1999-01-01

    The discovery of single-bubble sonoluminescence has led to a renewed interest in the forced radial oscillations of gas bubbles. Many of the more recent studies devoted to this topic have used several simplifications in the modelling, and in particular in accounting for liquid compressibility and thermal processes in the bubble. In this paper the significance of these simplifications is explored by contrasting the results of Lohse and co-workers with those of a more detailed model. It is found that, even though there may be little apparent difference between the radius-versus time behaviour of the bubble as predicted by the two models, quantities such as the spherical stability boundary and the threshold for rectified diffusion are affected in a quantitatively significant way. These effects are a manifestation of the subtle dependence upon dissipative processes of the phase of radial motion with respect to the driving sound field. The parameter space region, where according to the theory of Lohse and co-workers, sonoluminescence should be observable, is recalculated with the new model and is found to be enlarged with respect to the earlier estimate. The dependence of this parameter region on sound frequency is also illustrated.

  14. Desulfurization kinetics of molten copper by gas bubbling

    Fukunaka, Y.; Nishikawa, K.; Sohn, H. S.; Asaki, Z.

    1991-02-01

    Molten copper with 0.74 wt pct sulfur content was desulfurized at 1523 K by bubbling Ar-O2 gas through a submerged nozzle. The reaction rate was significantly influenced not only by the oxygen partial pressure but also by the gas flow rate. Little evolution of SO2 gas was observed in the initial 10 seconds of the oxidation; however, this was followed by a period of high evolution rate of SO2 gas. The partial pressure of SO2 gas decreased with further progress of the desulfurization. The effect of the immersion depth of the submerged nozzle was negligible. The overall reaction is decomposed to two elementary reactions: the desulfurization and the dissolution rate of oxygen. The assumptions were made that these reactions are at equilibrium and that the reaction rates are controlled by mass transfer rates within and around the gas bubble. The time variations of sulfur and oxygen contents in the melt and the SO2 partial pressure in the off-gas under various bubbling conditions were well explained by the mathematical model combined with the reported thermodynamic data of these reactions. Based on the present model, it was anticipated that the oxidation rate around a single gas bubble was mainly determined by the rate of gas-phase mass transfer, but all oxygen gas blown into the melt was virtually consumed to the desulfurization and dissolution reactions before it escaped from the melt surface.

  15. Bubble collisions in general relativity

    Siklos, S.T.C.; Wu, Z.C.; University of Science and Technology of China, Hofei, Anhwei)

    1983-01-01

    The collision of two bubbles of true vacuum in a background of false vacuum is considered in the context of General Relativity. It is found that in the thin wall approximation, the problem, can be solved exactly. The region to the future of the collision is described by the pseudo-Schwarzschild de Sitter metric. The parameters in this metric are found by solving the junction conditions at each collision. (author)

  16. BEBC Big European Bubble Chamber

    CERN PhotoLab

    1974-01-01

    A view of the dismantling of the magnet of BEBC, the 3.7 m European Bubble Chamber : iron magnetic shielding ; lower and upper parts of the vacuum enclosure of the magnet; turbo-molecular vacuum pumps for the "fish-eye" windows; the two superconducting coils; a handling platform; the two cryostats suspended from the bar of the travelling crane which has a 170 ton carrying capacity. The chamber proper, not dismantled, is inside the shielding.

  17. Bubbling Controlled by Needle Movement

    Vejražka, Jiří; Zedníková, Mária; Stanovský, Petr; Růžička, Marek; Drahoš, Jiří

    2008-01-01

    Roč. 40, 7-8 (2008), s. 521-533 ISSN 0169-5983 R&D Projects: GA ČR GP101/05/P229; GA ČR(CZ) GA104/05/2566 Institutional research plan: CEZ:AV0Z40720504 Keywords : bubble * detechment * control Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.012, year: 2008

  18. Informational pathologies and interest bubbles

    Hendricks, Vincent Fella; Wiewiura, Joachim Schmidt

    2017-01-01

    This article contends that certain configurations of information networks facilitate specific cognitive states that are instrumental for decision and action on social media. Group-related knowledge and belief states—in particular common knowledge and pluralistic ignorance—may enable strong public...... signals. Indeed, some network configurations and attitude states foster informational pathologies that may fuel interest bubbles affecting agenda-setting and the generation of narratives in public spheres....

  19. When Will Occur the Crude Oil Bubbles?

    Su, Chi-Wei; Li, Zheng-Zheng; Chang, Hsu-Ling; Lobonţ, Oana-Ramona

    2017-01-01

    In this paper, we apply a recursive unit root test to investigate whether there exist multiple bubbles in crude oil price. The method is best suited for a practical implementation of a time series and delivers a consistent date-stamping strategy for the origination and termination of multiple bubbles. The empirical result indicates that there exist six bubbles during 1986–2016 when the oil price deviate from its intrinsic value based on market fundamentals. Specifically, oil price contains the fundamentals and bubble components. The dates of the bubbles correspond to specific events in the politics and financial markets. The authorities should actively fight speculative bubbles or just observe their evolutions and speculation activities may decrease, which is favour of the stabilisation of the staple commodities including crude oil price. These findings have important economic and policy implications to recognise the cause of bubbles and take corresponding measures to reduce the impact on the real economy cause of the fluctuation of crude oil price. - Highlights: • Investigate multiple bubbles in crude oil price. • Indicate six bubbles deviate from its intrinsic value based on market fundamentals. • The bubbles correspond to specific events in the politics and financial markets. • Reduce the impact on the real economy cause of the fluctuation of crude oil price.

  20. Armoring confined bubbles in concentrated colloidal suspensions

    Yu, Yingxian; Khodaparast, Sepideh; Stone, Howard

    2016-11-01

    Encapsulation of a bubble with microparticles is known to significantly improve the stability of the bubble. This phenomenon has recently gained increasing attention due to its application in a variety of technologies such as foam stabilization, drug encapsulation and colloidosomes. Nevertheless, the production of such colloidal armored bubble with controlled size and particle coverage ratio is still a great challenge industrially. We study the coating process of a long air bubble by microparticles in a circular tube filled with a concentrated microparticles colloidal suspension. As the bubble proceeds in the suspension of particles, a monolayer of micro-particles forms on the interface of the bubble, which eventually results in a fully armored bubble. We investigate the phenomenon that triggers and controls the evolution of the particle accumulation on the bubble interface. Moreover, we examine the effects of the mean flow velocity, the size of the colloids and concentration of the suspension on the dynamics of the armored bubble. The results of this study can potentially be applied to production of particle-encapsulated bubbles, surface-cleaning techniques, and gas-assisted injection molding.

  1. Effect of free-air nuclei on fully developed individual bubble cavitation

    Danel, F.; Lecoffre, Y.

    1976-01-01

    Fully developed individual-bubble cavitation was studied. Nuclei population and pressure distribution at the boundary of a cavitating converging-diverging test section were measured. It was shown that some cavitation tests can only yield valid results if the free air content of the water is known. During the initial stages of bubble growth the wall pressure in the cavitation region is lower than the vapor pressure. Wall pressure rises later. For a given cavitation number and flow velocity, the pressure distribution depends on the number of expanding bubbles on the hydrofoil. Minimum pressure coefficient depends only on the cavitation number, the flow velocity and the number of expanding bubbles present. Bubbles generate pressure pulses at the wall; combined effect of all such pulses is to shift the wall pressure away from the value that would be obtained at the same cavitation number if no cavitation was present. The greater the number of expanding bubbles, the more the wall pressure tends to approach the vapor pressure. An important result of the work is to pin-point free air contents of water tunnel which lead to correct scaling of cavitation flows [fr

  2. Experimental investigation of the hydrodynamics of confined bubble plumes in water and viscous media

    Brahma N Reddy Vanga; Martin A Lopez de Bertodano; Alexandr Zaruba; Eckhard Krepper; Horst-Michael Prasser

    2005-01-01

    Wire-mesh tomography measurements of void fraction and bubble size distribution in a rectangular bubble column 10 cm wide and 2 cm deep have been conducted. Experiments were performed in an air-water and ethylene glycol system with the column operating in the dispersed bubbly flow regime.Experiments were conducted for plumes with different aspect ratios between 2.2 to 13. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. The behaviour of the long plumes (larger aspect ratio) was found to be significantly different than that of the short plumes (aspect ratios 2 to 4). The oscillating nature of the bubble plume is preserved over the entire height of the water column for the short plumes. The longer plumes are characterized by two distinct regions, the near injector oscillating region and a further downstream region where the bubbles rise in a string like motion. The void fraction distribution in the oscillating region of the plume exhibits a center-peak profile. A 'wall peak' has been observed in the measured void fraction profiles (for higher gas flow rates) in the downstream string-like region. The effect of column height and superficial gas velocity on the void distribution has been investigated. This paper presents the measurement principle and the experimental results for short and long plumes in an air-water system and for short plumes rising in viscous media. The results of the visualization experiment characterizing the structure of the bubble plume and the oscillation frequency of the bubble plumes are reported. (authors)

  3. Semi-analytic techniques for calculating bubble wall profiles

    Akula, Sujeet; Balazs, Csaba; White, Graham A.

    2016-01-01

    We present semi-analytic techniques for finding bubble wall profiles during first order phase transitions with multiple scalar fields. Our method involves reducing the problem to an equation with a single field, finding an approximate analytic solution and perturbing around it. The perturbations can be written in a semi-analytic form. We assert that our technique lacks convergence problems and demonstrate the speed of convergence on an example potential. (orig.)

  4. Nano-scale bubble thermonuclear fusion in acoustically cavitated deuterated liquid

    Robert I Nigmatulin; Richard T Lahey Jr; Rusi Taleyarkhan

    2005-01-01

    Full text of publication follows: It has been experimentally shown (Taleyarkhan, West, Cho, Lahey, Nigmatulin, Block, 2002, 2004) that neutron emission and tritium formation may occur in deuterated acetone (D-acetone C 3 DO 6 ) under acoustic cavitation conditions. Intensity of the fast neutron (2.45 MeV) emission and tritium nucleus production is ∼ 4 x 10 5 s -1 . This suggests ultrahigh compression of matter produced inside bubbles during their collapse. In the paper a systematic theoretical analysis of the vapor bubble growth and subsequent implosion in intense acoustic fields in D-acetone is presented. The goal is to describe and explain the experimental observations of thermonuclear fusion for collapsing cavitation bubble in D-acetone. The dynamics of bubbles formed during maximum rarefaction in the liquid is numerically studied on the basis of the developed models of a single bubble and bubble clusters. It is supposed that during their growth the bubbles coagulate and form a few bigger bubbles, which then collapse under the action of additional pressure pulses produced in the liquid through the intensification of acoustic waves within the cluster. A shock wave is shown to be formed inside the bubble during the latter's rapid contraction. Focusing of this shock wave in the bubble center initiates dissociation and ionization, violent increases in density (10 4 kg m 3 ), pressure (10 10 -10 11 bar) and temperature (2 x 10 8 K), high enough to produce nuclear fusion reactions. The bubble looks like micro-hydrogen bomb. The diameter of the neutron emission zone is about 100 nm. The highest neutron emission is recorded at about 10-20 nm from the bubble center. It is found out that the intensity of bubble implosion and the number of neutron emitted increase with variations in nucleation phase, positive half-wave amplitude, liquid temperature and also with the involvement of coagulation mechanisms within the cluster during the bubble simultaneous growth. The number

  5. Cosmic bubble and domain wall instabilities III: the role of oscillons in three-dimensional bubble collisions

    Bond, J. Richard; Braden, Jonathan [CITA, University of Toronto, 60 St. George Street, Toronto, ON, M5S 3H8 (Canada); Mersini-Houghton, Laura, E-mail: bond@cita.utoronto.ca, E-mail: j.braden@ucl.ac.uk, E-mail: mersini@physics.unc.edu [Department of Physics and Astronomy, University of North Carolina-Chapel Hill, NC 27599-3255 (United States)

    2015-09-01

    We study collisions between pairs of bubbles nucleated in an ambient false vacuum. For the first time, we include the effects of small initial (quantum) fluctuations around the instanton profiles describing the most likely initial bubble profile. Past studies of this problem neglect these fluctuations and work under the assumption that the collisions posess an exact SO(2,1) symmetry. We use three-dimensional lattice simulations to demonstrate that for double-well potentials, small initial perturbations to this symmetry can be amplified as the system evolves. Initially the amplification is well-described by linear perturbation theory around the SO(2,1) background, but the onset of strong nonlinearities amongst the fluctuations quickly leads to a drastic breaking of the original SO(2,1) symmetry and the production of oscillons in the collision region. We explore several single-field models, and we find it is hard to both realize inflation inside of a bubble and produce oscillons in a collision. Finally, we extend our results to a simple two-field model. The additional freedom allowed by the second field allows us to construct viable inflationary models that allow oscillon production in collisions. The breaking of the SO(2,1) symmetry allows for a new class of observational signatures from bubble collisions that do not posess azimuthal symmetry, including the production of gravitational waves which cannot be supported by an SO(2,1) spacetime.

  6. Evaluation of stability and size distribution of sunflower oil-coated micro bubbles for localized drug delivery.

    Filho, Walter Duarte de Araujo; Schneider, Fábio Kurt; Morales, Rigoberto E M

    2012-09-20

    Micro bubbles were initially introduced as contrast agents for ultrasound examinations as they are able to modify the signal-to-noise ratio in imaging, thus improving the assessment of clinical information on human tissue. Recent developments have demonstrated the feasibility of using these bubbles as drug carriers in localized delivery. In micro fluidics devices for generation of micro bubbles, the bubbles are formed at interface of liquid gas through a strangulation process. A device that uses these features can produce micro bubbles with small size dispersion in a single step. A T-junction micro fluidic device constructed using 3D prototyping was made for the production of mono dispersed micro bubbles. These micro bubbles use sunflower oil as a lipid layer. Stability studies for micro bubbles with diameters different generated from a liquid phase of the same viscosity were conducted to evaluate whether micro bubbles can be used as drug carriers. The biocompatibility of coating layer, the ability to withstand environmental pressure variations combined with echogenicity, are key factors that they can safely play the role of drug transporters. The normal distribution curve with small dispersion of the diameter of bubbles validates the process of generating micro bubbles with low value of variation coefficient, i.e., 0.381 at 1.90%. The results also showed the feasibility of using sunflower oil as the lipid matrix with stable population of bubbles over 217 minutes for micro bubbles with an average diameter of 313.04 μm and 121 minutes for micro bubbles with an average diameter of 73.74 μm, considering bubbles with air as gaseous phase. The results indicate that the micro fluidic device designed can be used for producing micro bubbles with low variation coefficient using sunflower oil as a coating of micro bubbles. These carriers were stable for periods of time that are long enough for clinical applications even when regular air is used as the gas phase. Improved

  7. Evaluation of stability and size distribution of sunflower oil-coated micro bubbles for localized drug delivery

    Filho WalterDuartedeAraujo

    2012-09-01

    Full Text Available Abstract Background Micro bubbles were initially introduced as contrast agents for ultrasound examinations as they are able to modify the signal-to-noise ratio in imaging, thus improving the assessment of clinical information on human tissue. Recent developments have demonstrated the feasibility of using these bubbles as drug carriers in localized delivery. In micro fluidics devices for generation of micro bubbles, the bubbles are formed at interface of liquid gas through a strangulation process. A device that uses these features can produce micro bubbles with small size dispersion in a single step. Methods A T-junction micro fluidic device constructed using 3D prototyping was made for the production of mono dispersed micro bubbles. These micro bubbles use sunflower oil as a lipid layer. Stability studies for micro bubbles with diameters different generated from a liquid phase of the same viscosity were conducted to evaluate whether micro bubbles can be used as drug carriers. The biocompatibility of coating layer, the ability to withstand environmental pressure variations combined with echogenicity, are key factors that they can safely play the role of drug transporters. Results The normal distribution curve with small dispersion of the diameter of bubbles validates the process of generating micro bubbles with low value of variation coefficient, i.e., 0.381 at 1.90%. The results also showed the feasibility of using sunflower oil as the lipid matrix with stable population of bubbles over 217 minutes for micro bubbles with an average diameter of 313.04 μm and 121 minutes for micro bubbles with an average diameter of 73.74 μm, considering bubbles with air as gaseous phase. Conclusion The results indicate that the micro fluidic device designed can be used for producing micro bubbles with low variation coefficient using sunflower oil as a coating of micro bubbles. These carriers were stable for periods of time that are long enough for clinical

  8. Bernoulli Suction Effect on Soap Bubble Blowing?

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  9. Formation of soap bubbles by gas jet

    Zhou, Maolei; Li, Min; Chen, Zhiyuan; Han, Jifeng; Liu, Dong

    2017-12-01

    Soap bubbles can be easily generated by various methods, while their formation process is complicated and still worth studying. A model about the bubble formation process was proposed in the study by Salkin et al. [Phys. Rev. Lett. 116, 077801 (2016)] recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after a detailed study of these experiments, we found that the bubbles could be generated in two velocity ranges which corresponded to the laminar and turbulent gas jet, respectively, and the predicted threshold was only effective for turbulent gas flow. The study revealed that the bubble formation was greatly influenced by the aerodynamics of the gas jet blowing to the film, and these results will help to further understand the formation mechanism of the soap bubble as well as the interaction between the gas jet and the thin liquid film.

  10. Manipulating bubbles with secondary Bjerknes forces

    Lanoy, Maxime [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France); Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Derec, Caroline; Leroy, Valentin [Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), 10 rue Alice Domon et Léonie Duquet, 75013 Paris (France); Tourin, Arnaud [Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, 1 rue Jussieu, 75005 Paris (France)

    2015-11-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices.

  11. Mechanism of bubble detachment from vibrating walls

    Kim, Dongjun; Park, Jun Kwon, E-mail: junkeun@postech.ac.kr; Kang, Kwan Hyoung [Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Kang, In Seok [Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of)

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  12. The KEK 1 m hydrogen bubble chamber

    Doi, Yoshikuni; Araoka, Osamu; Hayashi, Kohei; Hayashi, Yoshio; Hirabayashi, Hiromi.

    1978-03-01

    A medium size hydrogen bubble chamber has been constructed at the National Laboratory for High Energy Physics, KEK. The bubble chamber has been designed to be operated with a maximum rate of three times per half a second in every two second repetition time of the accelerator, by utilizing a hydraulic expansion system. The bubble chamber has a one meter diameter and a visible volume of about 280 l. A three-view stereo camera system is used for taking photographic pictures of the chamber. A 2 MW bubble chamber magnet is constructed. The main part of the bubble chamber vessel is supported by the magnet yoke. The magnet gives a maximum field of 18.4 kG at the centre of the fiducial volume of the chamber. The overall system of the KEK 1 m hydrogen bubble chamber facility is described in some detail. Some operational characteristics of the facility are also reported. (auth.)

  13. Manipulating bubbles with secondary Bjerknes forces

    Lanoy, Maxime; Derec, Caroline; Leroy, Valentin; Tourin, Arnaud

    2015-01-01

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices

  14. Optimal conditions for particle-bubble attachment in flotation: an experimental study

    Sanchez Yanez, Aaron; Hernandez Sanchez, Jose Federico; Thoroddsen, Sigurdur T.

    2017-11-01

    Mineral flotation is a process used in the mining industry for separating solid particles of different sizes and densities. The separation is done by injecting bubbles into a slurry where the particles attach to them, forming floating aggregates. The attachment depends mainly on the bubbles and particles sizes as well as the hydrophobicity and roughness of the particles. We simplified the collective behavior in the industrial process to a single free particle-bubble collision, in contrast with previous studies where one of the two was kept fixed. We experimentally investigated the collision of spherical solid particles of a fixed diameter with bubbles of different sizes. By controlling the initial relative offset of the bubble and the particle, we conducted experiments observing their interaction. Recording with two synchronized high-speed cameras, perpendicular to each other, we can reconstruct the tridimensional trajectories of the bubble, the solid particle, and the aggregate. We describe the conditions for which the attachment happens in terms of dimensionless parameters such as the Ohnesorge number, the relative particle-bubble offset and the hydrophobicity of the particle surface. We furthermore investigate the role of the surface roughness in the attachment.

  15. From Stable ZnO and GaN Clusters to Novel Double Bubbles and Frameworks

    Matthew R. Farrow

    2014-05-01

    Full Text Available A bottom up approach is employed in the design of novel materials: first, gas-phase “double bubble” clusters are constructed from high symmetry, Th, 24 and 96 atom, single bubbles of ZnO and GaN. These are used to construct bulk frameworks. Upon geometry optimization—minimisation of energies and forces computed using density functional theory—the symmetry of the double bubble clusters is reduced to either C1 or C2, and the average bond lengths for the outer bubbles are 1.9 Å, whereas the average bonds for the inner bubble are larger for ZnO than for GaN; 2.0 Å and 1.9 Å, respectively. A careful analysis of the bond distributions reveals that the inter-bubble bonds are bi-modal, and that there is a greater distortion for ZnO. Similar bond distributions are found for the corresponding frameworks. The distortion of the ZnO double bubble is found to be related to the increased flexibility of the outer bubble when composed of ZnO rather than GaN, which is reflected in their bulk moduli. The energetics suggest that (ZnO12@(GaN48 is more stable both in gas phase and bulk frameworks than (ZnO12@(ZnO48 and (GaN12@(GaN48. Formation enthalpies are similar to those found for carbon fullerenes.

  16. Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles.

    Toytman, I; Silbergleit, A; Simanovski, D; Palanker, D

    2010-10-01

    Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.

  17. Simulating the universe(s) III: observables for the full bubble collision spacetime

    Johnson, Matthew C. [Department of Physics and Astronomy, York University, Toronto, On, M3J 1P3 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Wainwright, Carroll L.; Aguirre, Anthony [SCIPP and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States); Peiris, Hiranya V. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-07-14

    This is the third paper in a series establishing a quantitative relation between inflationary scalar field potential landscapes and the relic perturbations left by the collision between bubbles produced during eternal inflation. We introduce a new method for computing cosmological observables from numerical relativity simulations of bubble collisions in one space and one time dimension. This method tiles comoving hypersurfaces with locally-perturbed Friedmann-Robertson-Walker coordinate patches. The method extends previous work, which was limited to the spacetime region just inside the future light cone of the collision, and allows us to explore the full bubble-collision spacetime. We validate our new methods against previous work, and present a full set of predictions for the comoving curvature perturbation and local negative spatial curvature produced by identical and non-identical bubble collisions, in single scalar field models of eternal inflation. In both collision types, there is a non-zero contribution to the spatial curvature and cosmic microwave background quadrupole. Some collisions between non-identical bubbles excite wall modes, giving extra structure to the predicted temperature anisotropies. We comment on the implications of our results for future observational searches. For non-identical bubble collisions, we also find that the surfaces of constant field can readjust in the presence of a collision to produce spatially infinite sections that become nearly homogeneous deep into the region affected by the collision. Contrary to previous assumptions, this is true even in the bubble into which the domain wall is accelerating.

  18. Calculation of vapour bubble growth on the lower generatrix of horizontal tubes

    Chajka, V.D.

    1987-01-01

    The known models of vapour bubble growth are compared with experimental data. Cinematographic study of vapour formation during water boiling was carried out with elements of horizontal tubes of copper 10, 16, 24, 34 and 70 mm in diameter under the pressure of 100 kPa and specific thermal loadings of 20 and 40 kW/m 2 . According to the experimental data the main volume of vapour phase is occupied by vapour bubbles from the lower part of the horizontal tube. Five stages of vapour bubble growth on the lower generatrix of the horizontal tube: nucleation, growth to the point of breaking off from nucleate centre, the breaking off from the nucleate centre, the tube surface flowing around during floating up, the breaking off from the tube surface, were singled out. The shape of vapour volume varied during the whole period of the bubble growth and it was mainly determined by the horizontal tube diameter. The change of vapour bubble radius in time is the function of the horizontal tube diameter. Comparison of the experimental data with the known models of vapour bubble growth has shown, that every stage of vapour bubble growth on the lower generatrix of the tube is determined by the complex of thermal and hydrodynamic conditions, the effect of which depends on the horizontal tube diameter

  19. From bubble bursting to droplet evaporation in the context of champagne aerosols

    Seon, Thomas; Ghabache, Elisabeth; Antkowiak, Arnaud; Liger-Belair, Gerard

    2015-11-01

    As champagne or sparkling wine is poured into a glass, a myriad of ascending bubbles collapse and therefore radiate a multitude of tiny droplets above the free surface into the form of very characteristic and refreshing aerosols. Because these aerosols have been found to hold the organoleptic ``essence'' of champagne they are believed to play a crucial role in the flavor release in comparison with that from a flat wine for example. Based on the model experiment of a single bubble bursting in idealized champagnes, the velocity, radius and maximum height of the first jet drop following bubble collapse have been characterized, with varying bubble size and liquid properties in the context of champagne aerosols. Using the experimental results and simple theoretical models for drop and surface evaporation, we show that bubble bursting aerosols drastically enhance the transfer of liquid in the atmosphere with respect to a flat liquid surface. Contrary to popular opinion, we exhibit that small bubbles are negative in terms of aroma release, and we underline bubble radii enabling to optimize the droplet height and evaporation in the whole range of champagne properties. These results pave the road to the fine tuning of champagne aroma diffusion, a major issue of the sparkling wine industry.

  20. Slopes To Prevent Trapping of Bubbles in Microfluidic Channels

    Greer, Harold E.; Lee, Michael C.; Smith, J. Anthony; Willis, Peter A.

    2010-01-01

    The idea of designing a microfluidic channel to slope upward along the direction of flow of the liquid in the channel has been conceived to help prevent trapping of gas bubbles in the channel. In the original application that gave rise to this idea, the microfluidic channels are parts of micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. It is necessary to prevent trapping of gas bubbles in these devices because uninterrupted liquid pathways are essential for sustaining the electrical conduction and flows that are essential for CE. The idea is also applicable to microfluidic devices that may be developed for similar terrestrial microCE biotechnological applications or other terrestrial applications in which trapping of bubbles in microfluidic channels cannot be tolerated. A typical microCE device in the original application includes, among other things, multiple layers of borosilicate float glass wafers. Microfluidic channels are formed in the wafers, typically by use of wet chemical etching. The figure presents a simplified cross section of part of such a device in which the CE channel is formed in the lowermost wafer (denoted the channel wafer) and, according to the present innovation, slopes upward into a via hole in another wafer (denoted the manifold wafer) lying immediately above the channel wafer. Another feature of the present innovation is that the via hole in the manifold wafer is made to taper to a wider opening at the top to further reduce the tendency to trap bubbles. At the time of reporting the information for this article, an effort to identify an optimum technique for forming the slope and the taper was in progress. Of the techniques considered thus far, the one considered to be most promising is precision milling by use of femtosecond laser pulses. Other similar techniques that may work equally well are precision milling using a focused ion beam, or a small diamond

  1. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas

  2. Local measurements in turbulent bubbly flows

    Suzanne, C.; Ellingsen, K.; Risso, F.; Roig, V.

    1998-01-01

    Local measurements methods in bubbly flows are discussed. Concerning liquid velocity measurement, problems linked to HFA and LDA are first analysed. Then simultaneously recorded velocity signals obtained by both anemometers are compared. New signal processing are developed for the two techniques. Bubble sizes and velocities measurements methods using intrusive double optical sensor probe are presented. Plane bubbly mixing layer has been investigated. Local measurements using the described methods are presented as examples. (author)

  3. Bursting the bubble of melt inclusions

    Lowenstern, Jacob B.

    2015-01-01

    Most silicate melt inclusions (MI) contain bubbles, whose significance has been alternately calculated, pondered, and ignored, but rarely if ever directly explored. Moore et al. (2015) analyze the bubbles, as well as their host glasses, and conclude that they often hold the preponderance of CO2 in the MI. Their findings entreat future researchers to account for the presence of bubbles in MI when calculating volatile budgets, saturation pressures, and eruptive flux.

  4. Fast Initialization of Bubble-Memory Systems

    Looney, K. T.; Nichols, C. D.; Hayes, P. J.

    1986-01-01

    Improved scheme several orders of magnitude faster than normal initialization scheme. State-of-the-art commercial bubble-memory device used. Hardware interface designed connects controlling microprocessor to bubblememory circuitry. System software written to exercise various functions of bubble-memory system in comparison made between normal and fast techniques. Future implementations of approach utilize E2PROM (electrically-erasable programable read-only memory) to provide greater system flexibility. Fastinitialization technique applicable to all bubble-memory devices.

  5. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit. 2. Flow characteristics of bubbly countercurrent flow

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu.

    1997-01-01

    The authors have developed a measurement system which is composed of an ultrasonic velocity profile monitor and a video data processing unit in order to clarify its multi-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system was applied for bubbly countercurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. Next, turbulence intensity in a continuous liquid phase was defined as a standard deviation of velocity fluctuation, and the two-phase multiplier profile of turbulence intensity in the channel was clarified as a ratio of the standard deviation of flow fluctuation in a bubbly countercurrent flow to that in a water single phase flow. Finally, the distribution parameter and drift velocity used in the drift flux model for bubbly countercurrent flows were calculated from the obtained velocity profiles of both phases and void fraction profile, and were compared with the correlation proposed for bubbly countercurrent flows. (author)

  6. Bubble nuclei in relativistic mean field theory

    Shukla, A.; Aberg, S.; Patra, S.K.

    2011-01-01

    Bubble nuclei are characterized by a depletion of their central density, i.e. the formation of the proton or neutron void and subsequently forming proton or neutron bubble nuclei. Possibility of the formation of bubble nuclei has been explored through different nuclear models and in different mass regions. Advancements in experimental nuclear physics has led our experimental access to many new shapes and structures, which were inaccessible hitherto. In the present paper, the possibility of observing nuclear bubble in oxygen isotopes, particularly for 22 O has been studied

  7. Improvised bubble continuous positive airway pressure (BCPAP ...

    Improvised bubble continuous positive airway pressure (BCPAP) device at the National Hospital Abuja gives immediate improvement in respiratory rate and oxygenation in neonates with respiratory distress.

  8. The Behavior of Micro Bubbles and Bubble Cluster in Ultrasound Field

    Yoshizawa, Shin; Matsumoto, Yoichiro

    2001-11-01

    Ultrasound is widely applied in the clinical field today, such as ultrasound imaging, Extracorporeal Shock Wave Lithotripsy (ESWL) and so on. It is essential to take a real understanding of the dynamics of micro bubbles and bubble cluster in these applications. Thus we numerically simulate them in ultrasound field in this paper. In the numerical simulation, we consider the thermal behavior inside the bubble and the pressure wave phenomena in the bubble cluster in detail, namely, the evaporation and condensation of liquid at the bubble wall, heat transfer through the bubble wall, diffusion of non-condensable gas inside the bubble and the compressibility of liquid. Initial cluster radius is to 0.5[mm], bubble radius is 1.7[mm], void fraction is 0.1[ambient pressure is 101.3[kPa], temperature is 293[K] and the amplitude of ultrasound is 50[kPa]. We simulate bubble cluster in ultrasound field at various frequencies and we obtain the following conclusions. 1) The maximum pressure inside bubble cluster reaches 5[MPa] and this is much higher than that of a bubble. 2) Bubble cluster behaves like a rigid body acoustically when the frequency of ultrasound is much higher than its natural frequency.

  9. The Rise of Iran

    Rahigh-Aghsan, Ali

    Iran is viewed as a rising power that poses an increasing threat to regional and even global security. This view is wrong for three reasons. Iran's hard and soft power is exaggerated by most accounts; it is too limited to allow the Iranians to dominate the Persian Gulf let alone the Middle East...

  10. The Rise of Iran

    Rahigh-Aghsan, Ali; Jakobsen, Peter Viggo

    2010-01-01

    Iran is viewed as a rising power that poses an increasing threat to regional and even global security. This view is wrong for three reasons. Iran's hard and soft power is exaggerated by most accounts; it is too limited to allow the Iranians to dominate the Persian Gulf let alone the Middle East...

  11. Bubbling in unbounded coflowing liquids.

    Gañán-Calvo, Alfonso M; Herrada, Miguel A; Garstecki, Piotr

    2006-03-31

    An investigation of the stability of low density and viscosity fluid jets and spouts in unbounded coflowing liquids is presented. A full parametrical analysis from low to high Weber and Reynolds numbers shows that the presence of any fluid of finite density and viscosity inside the hollow jet elicits a transition from an absolute to a convective instability at a finite value of the Weber number, for any value of the Reynolds number. Below that critical value of the Weber number, the absolute character of the instability leads to local breakup, and consequently to local bubbling. Experimental data support our model.

  12. Scales and structures in bubbly flows. Experimental analysis of the flow in bubble columns and in bubbling fluidized beds

    Groen, J.S.

    2004-01-01

    In this project a detailed experimental analysis was performed of the dynamic flow field in bubbly flows, with the purpose of determining local hydrodynamics and scale effects. Measurements were done in gas-liquid systems (air-water bubble columns) and in gas-solid systems (air-sand bubbing

  13. Magnetic bubbles and domain evolution in Fe/Gd multilayer nanodots

    Wang, T. T.; Liu, W.; Dai, Z. M.; Zhao, X. T.; Zhao, X. G.; Zhang, Z. D.

    2018-04-01

    The formation of magnetic bubbles and the domain-evolution processes, induced by a perpendicular magnetic field in Fe/Gd multilayer films and nanodots, have been investigated. At room temperature, the stripe domains in a continuous film transform into magnetic bubbles in an external field, while bubbles form spontaneously in nanodots due to the existence of shape anisotropy. When the temperature decreases to 20 K, the enhancement of the perpendicular magnetic anisotropy of the samples results in an increase of the domain size in the continuous film and the magnetization-reversal behavior of each nanodot becomes independent, and most reversed dots do not depend on each other, indicating the magnetic characteristics of a single domain. The present research provides further understanding of the evolution of magnetic bubbles in the Fe/Gd system and suggests their promising applications in patterned recording materials.

  14. Observation of He bubbles in ion irradiated fusion materials by conductive atomic force microscopy

    Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Li, Ruihuan [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Yang, Deming [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Wu, Yunfeng; Niu, Jinhai; Yang, Qi [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Zhao, Jijun [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electronic Science, Aeronautics, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-10-15

    Using a non-destructive conductive atomic force microscope combined with the Ar{sup +} etching technique, we demonstrate that nanoscale and conductive He bubbles are formed in the implanted layer of single-crystalline 6H-SiC irradiated with 100 keV He{sup +}. We find that the surface swelling of irradiated SiC samples is well correlated with the growth of elliptic He bubbles in the implanted layer. First-principle calculations are performed to estimate the internal pressure of the He bubble in the void of SiC. Analysis indicates that nanoscale He bubbles acting as a captor capture the He atoms diffusing along the implanted layer at an evaluated temperature and result in the surface swelling of irradiated SiC materials.

  15. A VERY DEEP CHANDRA OBSERVATION OF A2052: BUBBLES, SHOCKS, AND SLOSHING

    Blanton, E. L.; Douglass, E. M.; Randall, S. W.; McNamara, B. R.; Clarke, T. E.; Sarazin, C. L.; McDonald, M.

    2011-01-01

    We present the first results from a very deep (∼650 ks) Chandra X-ray observation of A2052, as well as archival Very Large Array radio observations. The data reveal detailed structure in the inner parts of the cluster, including bubbles evacuated by radio lobes of the active galactic nucleus (AGN), compressed bubble rims, filaments, and loops. Two concentric shocks are seen, and a temperature rise is measured for the innermost one. On larger scales, we report the first detection of an excess surface brightness spiral feature. The spiral has cooler temperatures, lower entropies, and higher abundances than its surroundings, and is likely the result of sloshing gas initiated by a previous cluster-cluster or sub-cluster merger. Initial evidence for previously unseen bubbles at larger radii related to earlier outbursts from the AGN is presented.

  16. Natural oscillations of a gas bubble in a liquid-filled cavity located in a viscoelastic medium

    Doinikov, Alexander A.; Marmottant, Philippe

    2018-04-01

    The present study is motivated by cavitation phenomena that occur in the stems of trees. The internal pressure in tree conduits can drop down to significant negative values. This drop gives rise to cavitation bubbles, which undergo high-frequency eigenmodes. The aim of the present study is to determine the parameters of the bubble natural oscillations. To this end, a theory is developed that describes the pulsation of a spherical bubble located at the center of a spherical cavity surrounded by an infinite solid medium. It is assumed that the medium inside the bubble is a gas-vapor mixture, the cavity is filled with a compressible viscous liquid, and the medium surrounding the cavity behaves as a viscoelastic solid. The theoretical solution takes into account the outgoing acoustic wave produced by the bubble pulsation, the incoming wave caused by reflection from the liquid-solid boundary, and the outgoing wave propagating in the solid. A dispersion equation for the calculation of complex wavenumbers of the bubble eigenmodes is derived. Approximate analytical solutions to the dispersion equation are found. Numerical simulations are performed to reveal the effect of different physical parameters on the resonance frequency and the attenuation coefficient of the bubble oscillations.

  17. The relationship between critical flux and fibre movement induced by bubbling in a submerged hollow fibre system.

    Wicaksana, F; Fan, A G; Chen, V

    2005-01-01

    Bubbling has been used to enhance various processes. In this paper we deal with the effect of bubbling on submerged hollow fibre membranes, where bubbling is applied to prevent severe membrane fouling. Previous work with submerged hollow fibres has observed that significant fibre movement can be induced by bubbling and that there is a qualitative relationship between fibre movement and filtration performance. Therefore, the aim of the present research has been to analyse the link between bubbling, fibre movement and critical flux, identified as the flux at which the transmembrane pressure (TMP) starts to rise. Tests were performed on vertical isolated fibres with a model feed of yeast suspension. The fibres were subject to steady bubbling from below. The parameters of interest were the fibre characteristics, such as tightness, diameter and length, as well as feed concentration. The results confirmed that the critical fluxes are affected by the fibre characteristics and feed concentration. Higher critical flux values can be achieved by using loose fibres, smaller diameters and longer fibres. The enhancement is partially linked to fibre movement and this is confirmed by improved performance when fibres are subject to mechanical movement in the absence of bubbling.

  18. Simple improvements to classical bubble nucleation models.

    Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  19. Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel

    Oguri, Ryota; Ando, Keita

    2018-05-01

    An optical visualization technique is developed to study cavitation bubble nucleation that results from interaction between a laser-induced shock and a preexisting gas bubble in a 10 wt. % gelatin gel; images of the nucleated cavitation bubbles are captured and the cavitation inception pressure is determined based on Euler flow simulation. A spherical gas cavity is generated by focusing an infrared laser pulse into a gas-supersaturated gel and the size of the laser-generated bubble in mechanical equilibrium is tuned via mass transfer of the dissolved gas into the bubble. A spherical shock is then generated, through rapid expansion of plasma induced by the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gel under tension that results from acoustic impedance mismatching at the bubble interface interacting with the shock. We measure the probability of cavitation inception from a series of the repeated experiments, by varying the bubble radius and the standoff distance. The threshold pressure is defined at the cavitation inception probability equal to one half and is calculated, through comparisons to Euler flow simulation, at -24.4 MPa. This threshold value is similar to that from shock-bubble interaction experiments using water, meaning that viscoelasticity of the 10 wt. % gelatin gel has a limited impact on bubble nucleation dynamics.

  20. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  1. Galactic Teamwork Makes Distant Bubbles

    Kohler, Susanna

    2016-03-01

    During the period of reionization that followed the dark ages of our universe, hydrogen was transformed from a neutral state, which is opaque to radiation, to an ionized one, which is transparent to radiation. But what generated the initial ionizing radiation? The recent discovery of multiple distant galaxies offers evidence for how this process occurred.Two Distant GalaxiesWe believe reionization occurred somewhere between a redshift of z = 6 and 7, because Ly-emitting galaxies drop out at roughly this redshift. Beyond this distance, were generally unable to see the light from these galaxies, because the universe is no longer transparent to their emission. This is not always the case, however: if a bubble of ionized gas exists around a distant galaxy, the radiation can escape, allowing us to see the galaxy.This is true of two recently-discovered Ly-emitting galaxies, confirmed to be at a redshift of z~7 and located near one another in a region known as the Bremer Deep Field. The fact that were able to see the radiation from these galaxies means that they are in an ionized HII region presumably one of the earlier regions to have become reionized in the universe.But on their own, neither of these galaxies is capable of generating an ionized bubble large enough for their light to escape. So what ionized the region around them, and what does this mean for our understanding of how reionization occurred in the universe?A Little Help From FriendsLocation in different filters of the objects in the Hubble Bremer Deep Field catalog. The z~7 selection region is outlined by the grey box. BDF-521 and BDF-3299 were the two originally discovered galaxies; the remaining red markers indicate the additional six galaxies discovered in the same region. [Castellano et al. 2016]A team of scientists led by Marco Castellano (Rome Observatory, INAF) investigated the possibility that there are other, faint galaxies near these two that have helped to ionize the region. Performing a survey

  2. The Rise of Iran

    Jakobsen, Peter Viggo; Rahigh-Aghsan, Ali

    2010-01-01

    Iran is viewed by many as a rising power that poses an increasing threat to regional and even global security. This view is wrong for three reasons. Iran's hard and soft power is exaggerated by most accounts; it is too limited to allow the Iranians to dominate the Persian Gulf let alone the Middle...... East, and its brand of Shi‘ism has very limited appeal outside of Iran. Second, growing internal political and economic instability will seriously limit Iran's bid for regional dominance. Third, the failure to stop the Iranian nuclear program has led analysts to underestimate the ability of the other...... regional powers and the West to balance Iran and contain its influence, even if it acquires nuclear weapons. If these limitations on Iranian power are taken into account the rise seems destined to be a short one....

  3. Oscillation of large air bubble cloud

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  4. Oscillation of large air bubble cloud

    Bae, Y.Y.; Kim, H.Y.; Park, J.K.

    2001-01-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  5. Mesoporous hollow spheres from soap bubbling.

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Measurements of local liquid velocity and interfacial parameters of air-water bubbly flows in a horizontal tube

    Yang Jian; Zhang Mingyuan; Zhang Chaojie; Su Yuliang

    2002-01-01

    Distribution of local kinematic parameters of air-water bubbly flows in a horizontal tube with an ID of 35 mm was investigated. The local liquid velocity was measured with a cylindrical hot film probe, and local void fraction, bubble frequency and bubble velocity were measured with a double-sensor probe. It was found that the axial liquid velocity has a same profile as that of single liquid phase flow in the lower part of the tube, and it suffers a sudden reduction in the upper part of the tube. With increasing airflow rate, the liquid velocity would increase in the lower part of the tube, and further decrease at the upper part of the tube, respectively. Most bubbles are congested at the upper part of the tube, and the void fraction and bubble frequencies have similar profile and both are asymmetrical with the tube axis with their maximum values located near the upper tube wall

  7. Numerical studies of cavitation erosion on an elastic-plastic material caused by shock-induced bubble collapse

    Turangan, C. K.; Ball, G. J.; Jamaluddin, A. R.; Leighton, T. G.

    2017-09-01

    We present a study of shock-induced collapse of single bubbles near/attached to an elastic-plastic solid using the free-Lagrange method, which forms the latest part of our shock-induced collapse studies. We simulated the collapse of 40 μm radius single bubbles near/attached to rigid and aluminium walls by a 60 MPa lithotripter shock for various scenarios based on bubble-wall separations, and the collapse of a 255 μm radius bubble attached to aluminium foil with a 65 MPa lithotripter shock. The coupling of the multi-phases, compressibility, axisymmetric geometry and elastic-plastic material model within a single solver has enabled us to examine the impingement of high-speed liquid jets from the shock-induced collapsing bubbles, which imposes an extreme compression in the aluminium that leads to pitting and plastic deformation. For certain scenarios, instead of the high-speed jet, a radially inwards flow along the aluminium surface contracts the bubble to produce a `mushroom shape'. This work provides methods for quantifying which parameters (e.g. bubble sizes and separations from the solid) might promote or inhibit erosion on solid surfaces.

  8. Thermal stability of bubble domains in ferromagnetic discs

    Hrkac, G [University of Sheffield, Engineering Materials, Mappin Street, Sheffield S1 3JD (United Kingdom) ; Bance, S [University of Sheffield, Engineering Materials, Mappin Street, Sheffield S1 3JD (United Kingdom) ; Goncharov, A [University of Sheffield, Engineering Materials, Mappin Street, Sheffield S1 3JD (United Kingdom) ; Schrefl, T [University of Sheffield, Engineering Materials, Mappin Street, Sheffield S1 3JD (United Kingdom) ; Suess, D [Vienna University of Technology, Wiedner Hauptstr. 8-10e, A-1040 Vienna (Austria)

    2007-05-07

    The transition and thermal stability of disc-shaped ferromagnetic particles at the temperature of T = 300 K with a uniaxial anisotropy along the symmetry axis from a bi-domain to a single domain state has been studied. The nudge elastic band method was used to map the energy landscape and to calculate the energy barrier between the transition states. For single FePt disc-shaped particles with perpendicular anisotropy three transition configurations have been found: single domain, stripe- and stable bubble domains at zero applied field. The single domain configuration along the positive anisotropy axis is reached by an annihilation process of the domain wall and the all-down state by a complex domain expansion process. Magnetization configurations in two interacting discs show an increase in thermal stability compared with single disc systems, which is attributed to the interacting magnetostatic energy between the two particles.

  9. Thermal stability of bubble domains in ferromagnetic discs

    Hrkac, G; Bance, S; Goncharov, A; Schrefl, T; Suess, D

    2007-01-01

    The transition and thermal stability of disc-shaped ferromagnetic particles at the temperature of T = 300 K with a uniaxial anisotropy along the symmetry axis from a bi-domain to a single domain state has been studied. The nudge elastic band method was used to map the energy landscape and to calculate the energy barrier between the transition states. For single FePt disc-shaped particles with perpendicular anisotropy three transition configurations have been found: single domain, stripe- and stable bubble domains at zero applied field. The single domain configuration along the positive anisotropy axis is reached by an annihilation process of the domain wall and the all-down state by a complex domain expansion process. Magnetization configurations in two interacting discs show an increase in thermal stability compared with single disc systems, which is attributed to the interacting magnetostatic energy between the two particles

  10. Contemporary sea level rise.

    Cazenave, Anny; Llovel, William

    2010-01-01

    Measuring sea level change and understanding its causes has considerably improved in the recent years, essentially because new in situ and remote sensing observations have become available. Here we report on most recent results on contemporary sea level rise. We first present sea level observations from tide gauges over the twentieth century and from satellite altimetry since the early 1990s. We next discuss the most recent progress made in quantifying the processes causing sea level change on timescales ranging from years to decades, i.e., thermal expansion of the oceans, land ice mass loss, and land water-storage change. We show that for the 1993-2007 time span, the sum of climate-related contributions (2.85 +/- 0.35 mm year(-1)) is only slightly less than altimetry-based sea level rise (3.3 +/- 0.4 mm year(-1)): approximately 30% of the observed rate of rise is due to ocean thermal expansion and approximately 55% results from land ice melt. Recent acceleration in glacier melting and ice mass loss from the ice sheets increases the latter contribution up to 80% for the past five years. We also review the main causes of regional variability in sea level trends: The dominant contribution results from nonuniform changes in ocean thermal expansion.

  11. In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

    Masotta, M.; Ni, H.; Keppler, H.

    2014-02-01

    Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1,100 to 1,240 °C and 0.1 MPa (1 bar), obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate ( G R) ranges from 3.4 × 10-6 to 5.2 × 10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density ( N B) at nucleation ranges from 7.9 × 104 mm-3 to 1.8 × 105 mm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble size distribution (BSD) through time, the BSDs of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSDs may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important

  12. Hydrodynamics of single- and two-phase flow in inclined rod arrays

    Ebeling-Koning, D.B.; Todreas, N.E.

    1983-09-01

    Required inputs for thermal-hydraulic codes are constitutive relations for fluid-solid flow resistance, in single-phase flow, and interfacial momentum exchange (relative phase motion), in two-phase flow. An inclined rod array air-water experiment was constructed to study the hydrodynamics of multidimensional porous medium flow in rod arrays. Velocities, pressures, and bubble distributions were measured in square rod arrays of P/d = 1.5, at 0, 30, 45, and 90 degree inclinations to the vertical flow direction. Constitutive models for single-phase flow resistance are reviewed, new comprehensive models developed, and an assessment with previously published and new data made. The principle of superimposing one-dimensional correlations proves successful for turbulent single-phase inclined flow. For bubbly two-phase incline flow a new flow separation phenomena was observed and modeled. A two-region liquid velocity model is developed to explain the experimentally observed phenomena. Fundamental data for bubbles rising in rod arrays were also taken

  13. Satellite formation during bubble transition through an interface between immiscible liquids

    Li, Erqiang

    2014-03-12

    When a bubble rises to an interface between two immiscible liquids, it can pass through the interface, if this is energetically favourable, i.e. The bubble preferring the side of the interface with the lower air-liquid surface tension. Once the intermediate film between the bubble and the interface has drained sufficiently, the bubble makes contact with the interface, forming a triple-line and producing strong capillary waves which travel around the bubble and can pinch off a satellite on the opposite side, akin to the dynamics in the coalescence cascade. We identify the critical Ohnesorge numbers where such satellites are produced and characterize their sizes. The total transition time scales with the bubble size and differential surface tension, while the satellite pinch-off time scales with the capillary-inertial time of the pool liquid, which originally surrounds the bubble. We also use high-speed video imaging to study the motion of the neck of the contact. For low viscosity we show that it grows in time with a power-law exponent between 0.44 and 0.50, with a prefactor modified by the net sum of the three interfacial tensions. Increasing the viscosity of the receiving liquid drop drastically slows down the motion of the triple-line, when the Ohnesorge number exceeds ${\\\\sim }$0.08. This differs qualitatively from the coalescence of two miscible drops of different viscosities, where the lower viscosity sets the coalescence speed. We thereby propose a strong resistance from the triple-line. © 2014 Cambridge University Press.

  14. Some aspects of hydrodynamic forces and heat transfer on a spherical bubble

    Legendre, Dominique

    1996-01-01

    This work, carried out by means of numerical simulation, is devoted to the study of momentum and energy transfers between a spherical bubble and a given flow for Reynolds numbers ranging from 0.1 to 500. The three-dimensional Navier-Stokes equations and the temperature equation are solved in an orthogonal curvilinear grid using a finite volume approach. Several new results concerning interfacial transfer and inertial forces are discussed. For example, it is shown that history thermal effects are of importance in many unsteady flows though straining effects are unimportant. The study of boiling and condensation of a vapor bubble in a uniform flow, in which interfacial energy transfer governs the evolution of the bubbles radius, shows that these two phenomena are in fact dramatically different regarding interfacial transfer as well as hydrodynamic aspects. The added mass force caused by the bubble volume variation is found to be described in viscous flow by the inviscid flow solution and a significant history force is induced by initial conditions. Most of this work is devoted to the study of the lift force in rotational and/or straining flows. At high Reynolds number, the lift coefficient in a pure shear flow is found to be independent from the flow vorticity and is well described by the inviscid flow solution. When viscosity increases, this coefficient depends on both viscosity and vorticity. For a more complex flow (plane strain, solid-body rotation), the force on the bubble is obtained by adding the inertial force to the rotational lift force. At last, the study of the hydrodynamic interaction caused by a wall or an other bubble shows that, when the Reynolds number decreases, the bubble is repelled when the spacing becomes of the order of the diameter although the potential solution always gives rise to an attractive force. (author) [fr

  15. Optical nucleation of bubble clouds in a high pressure spherical resonator.

    Anderson, Phillip; Sampathkumar, A; Murray, Todd W; Gaitan, D Felipe; Glynn Holt, R

    2011-11-01

    An experimental setup for nucleating clouds of bubbles in a high-pressure spherical resonator is described. Using nanosecond laser pulses and multiple phase gratings, bubble clouds are optically nucleated in an acoustic field. Dynamics of the clouds are captured using a high-speed CCD camera. The images reveal cloud nucleation, growth, and collapse and the resulting emission of radially expanding shockwaves. These shockwaves are reflected at the interior surface of the resonator and then reconverge to the center of the resonator. As the shocks reconverge upon the center of the resonator, they renucleate and grow the bubble cloud. This process is repeated over many acoustic cycles and with each successive shock reconvergence, the bubble cloud becomes more organized and centralized so that subsequent collapses give rise to stronger, better defined shockwaves. After many acoustic cycles individual bubbles cannot be distinguished and the cloud is then referred to as a cluster. Sustainability of the process is ultimately limited by the detuning of the acoustic field inside the resonator. The nucleation parameter space is studied in terms of laser firing phase, laser energy, and acoustic power used.

  16. Nonlinear dynamics of drops and bubbles and chaotic phenomena

    Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.

    1994-01-01

    Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence

  17. Sea Level Rise Data Discovery

    Quach, N.; Huang, T.; Boening, C.; Gill, K. M.

    2016-12-01

    Research related to sea level rise crosses multiple disciplines from sea ice to land hydrology. The NASA Sea Level Change Portal (SLCP) is a one-stop source for current sea level change information and data, including interactive tools for accessing and viewing regional data, a virtual dashboard of sea level indicators, and ongoing updates through a suite of editorial products that include content articles, graphics, videos, and animations. The architecture behind the SLCP makes it possible to integrate web content and data relevant to sea level change that are archived across various data centers as well as new data generated by sea level change principal investigators. The Extensible Data Gateway Environment (EDGE) is incorporated into the SLCP architecture to provide a unified platform for web content and science data discovery. EDGE is a data integration platform designed to facilitate high-performance geospatial data discovery and access with the ability to support multi-metadata standard specifications. EDGE has the capability to retrieve data from one or more sources and package the resulting sets into a single response to the requestor. With this unified endpoint, the Data Analysis Tool that is available on the SLCP can retrieve dataset and granule level metadata as well as perform geospatial search on the data. This talk focuses on the architecture that makes it possible to seamlessly integrate and enable discovery of disparate data relevant to sea level rise.

  18. Simulation and analysis of collapsing vapor-bubble clusters with special emphasis on potentially erosive impact loads at walls

    Ogloblina, Daria; Schmidt, Steffen J.; Adams, Nikolaus A.

    2018-06-01

    Cavitation is a process where a liquid evaporates due to a pressure drop and re-condenses violently. Noise, material erosion and altered system dynamics characterize for such a process for which shock waves, rarefaction waves and vapor generation are typical phenomena. The current paper presents novel results for collapsing vapour-bubble clusters in a liquid environment close to a wall obtained by computational fluid mechanics (CFD) simulations. The driving pressure initially is 10 MPa in the liquid. Computations are carried out by using a fully compressible single-fluid flow model in combination with a conservative finite volume method (FVM). The investigated bubble clusters (referred to as "clouds") differ by their initial vapor volume fractions, initial stand-off distances to the wall and by initial bubble radii. The effects of collapse focusing due to bubble-bubble interaction are analysed by investigating the intensities and positions of individual bubble collapses, as well as by the resulting shock-induced pressure field at the wall. Stronger interaction of the bubbles leads to an intensification of the collapse strength for individual bubbles, collapse focusing towards the center of the cloud and enhanced re-evaporation. The obtained results reveal collapse features which are common for all cases, as well as case-specific differences during collapse-rebound cycles. Simultaneous measurements of maximum pressures at the wall and within the flow field and of the vapor volume evolution show that not only the primary collapse but also subsequent collapses are potentially relevant for erosion.

  19. PIV measurement of turbulent bubbly mixing layer flow with polymer additives

    Ning, T; Guo, F; Chen, B; Zhang, X

    2009-01-01

    Based on experimental investigation of single-phase turbulent mixing layer flow with polymer additives, bubbly mixing layer was experimentally investigated by PIV. The velocity ratio between high and low speed is 4:1 and the Reynolds number based on the velocity difference of two steams and hydraulic diameter of the channel ranges is 73333. Gas bubbles with about 0.5% gas fraction were injected into pure water mixing layer with/without polymer additives from three different parts at the end of the splitter plate. The comparison between single phase and bubbly mixing layer shows clearly that the dynamic development of mixing layer is great influenced by the bubble injection. Similar with single phase, the Reynolds stress and vorticity still concentrate in a coniform area of central mixing flow field part and the width will increase with increasing the Reynolds number. Mean Reynolds stress will decrease with bubble injection in high Reynolds numbers and the decreasing of Reynolds stress with polymer additives is much more than pure water case.

  20. Legacies of the bubble chamber

    Mulvey, J.H.

    1994-01-01

    Legacies are what we pass on to those who follow us, the foundations on which the next advances in our science are being made; the things by which we shall be remembered, recorded in learned journals, written in the text books -food for the historians of science. This is not a summary, and it will draw no conclusions. It is a personal view which will look a little wider than the main physics results to include a mention of one or two of the technologies and methods handed on to both particle physics and other branches of sciences, a brief reference to bubble chamber pictures as aids in teaching, and a comment on the challenge now increasingly applied in the UK - and perhaps elsewhere -as a criterion for funding research: will it contribute to ''wealth creation''? (orig.)

  1. An experimental propane bubble chamber

    Rogozinski, A.

    1957-01-01

    Describes a propane bubble chamber 10 cm in diameter and 5 cm deep. The body of the chamber is in stainless steel, and it has two windows of polished hardened glass. The compression and decompression of the propane are performed either through a piston in direct contact with the liquid, or by the action on the liquid, through a triple-mylar-Perbunan membrane, of a compressed gas. The general and also optimum working conditions of the chamber are described, and a few results are given concerning, in particular, the tests of the breakage-resistance of the windows and the measurements of the thermal expansion of the compressibility isotherm for the propane employed. (author) [fr

  2. Studies on shock phenomena in two-phase flow, (4). Characteristics in channel flow consisting of bubbly mixture and liquid in series

    Akagawa, Koji; Fujii, Terushige; Ito, Yutaka; Hiraki, Sei

    1982-04-01

    The research carried out so far was related to the case in which the mean void ratio in a pipe distributed almost invariably in axial direction. However, in actual piping system, the distribution of void ratio sometimes changes in axial direction such as evaporating tubes. In this study, in order to clarify the basic characteristics of shock phenomena in a piping system in which the density of two-phase flow changes in axial direction, experiment was carried out on air and water two-component bubbly flow, in which single phase was in upstream, and two-phase flow with constant void ratio in axial direction was in downstream. Also, the theoretical study on the phenomena was performed. The experimental setup and experimental method, the result of the waveform of pressure response, the behavior of pressure waves at the interface of two-phase flow and single phase flow, the qualitative analysis of the waveform of pressure response, and the analysis of pressure rise are reported. By the sudden closure of a valve, the pressure in two-phase flow rose by the initial potential surge, thereafter stepped pressure rise was observed. This phenomenon can be explained by the reflection of pressure waves at the interface of two-phase flow and single phase flow.

  3. Gas Bubbles Investigation in Contaminated Water Using Optical Tomography Based on Independent Component Analysis Method

    Mohd Taufiq Mohd Khairi

    2016-01-01

    Full Text Available This paper presents the results of concentration profiles for gas bubble flow in a vertical pipeline containing contaminated water using an optical tomography system. The concentration profiles for the bubble flow quantities are investigated under five different flows conditions, a single bubble, double bubbles, 25% of air opening, 50% of air opening, and 100% of air opening flow rates where a valve is used to control the gas flow in the vertical pipeline. The system is aided by the independent component analysis (ICA algorithm to reconstruct the concentration profiles of the liquid-gas flow. The behaviour of the gas bubbles was investigated in contaminated water in which the water sample was prepared by adding 25 mL of colour ingredients to 3 liters of pure water. The result shows that the application of ICA has enabled the system to detect the presence of gas bubbles in contaminated water. This information provides vital information on the flow inside the pipe and hence could be very significant in increasing the efficiency of the process industries.

  4. Numerical study of the bubbly flow regime in micro-channel flow boiling

    Bhuvankar, Pramod; Dabiri, Sadegh

    2017-11-01

    Two-phase flow accompanied by boiling in micro-channel heat sinks is an effective means for heat removal from computer chips. We present a numerical study of flow boiling in micro-channels with conjugate heat transfer with a focus on the bubbly flow regime. The bubbles are assumed to nucleate at a pre-determined location and frequency. The Navier Stokes equations are solved using a single fluid formulation with the Front tracking method. Phase change is implemented using the deficit in heat flux across the bubble interface. The analytical solution for bubble growth in a superheated liquid is used as a benchmark to validate the mentioned numerical method. Water and FC-72 are studied as the operating fluids in a micro-channel made of Copper with a focus on hotspot mitigation. The micro-channel of cross-section 231 μm × 1000 μm , is used to study the effects of vertical up-flow, vertical down-flow and horizontal flow of the mentioned fluids on the heat transfer coefficients. A simple film model accounting for mass and energy conservation is applied wherever the bubble approaches closer than a cell width to the wall. The results of the simulation are compared with existing experimental data for bubble growth rates and heat transfer coefficients.

  5. Towards classification of the bifurcation structure of a spherical cavitation bubble.

    Behnia, Sohrab; Sojahrood, Amin Jafari; Soltanpoor, Wiria; Sarkhosh, Leila

    2009-12-01

    We focus on a single cavitation bubble driven by ultrasound, a system which is a specimen of forced nonlinear oscillators and is characterized by its extreme sensitivity to the initial conditions. The driven radial oscillations of the bubble are considered to be implicated by the principles of chaos physics and owing to specific ranges of control parameters, can be periodic or chaotic. Despite the growing number of investigations on its dynamics, there is not yet an inclusive yardstick to sort the dynamical behavior of the bubble into classes; also, the response oscillations are so complex that long term prediction on the behavior becomes difficult to accomplish. In this study, the nonlinear dynamics of a bubble oscillator was treated numerically and the simulations were proceeded with bifurcation diagrams. The calculated bifurcation diagrams were compared in an attempt to classify the bubble dynamic characteristics when varying the control parameters. The comparison reveals distinctive bifurcation patterns as a consequence of driving the systems with unequal ratios of R(0)lambda (where R(0) is the bubble initial radius and lambda is the wavelength of the driving ultrasonic wave). Results indicated that systems having the equal ratio of R(0)lambda, share remarkable similarities in their bifurcating behavior and can be classified under a unit category.

  6. Electrohydrodynamic bubbling: an alternative route to fabricate porous structures of silk fibroin based materials.

    Ekemen, Zeynep; Ahmad, Zeeshan; Stride, Eleanor; Kaplan, David; Edirisinghe, Mohan

    2013-05-13

    Conventional fabrication techniques and structures employed in the design of silk fibroin (SF) based porous materials provide only limited control over pore size and require several processing stages. In this study, it is shown that, by utilizing electrohydrodynamic bubbling, not only can new hollow spherical structures of SF be formed in a single step by means of bubbles, but the resulting bubbles can serve as pore generators when dehydrated. The bubble characteristics can be controlled through simple adjustments to the processing parameters. Bubbles with diameters in the range of 240-1000 μm were fabricated in controlled fashion. FT-IR characterization confirmed that the rate of air infused during processing enhanced β-sheet packing in SF at higher flow rates. Dynamic mechanical analysis also demonstrated a correlation between air flow rate and film tensile strength. Results indicate that electrohydrodynamically generated SF and their composite bubbles can be employed as new tools to generate porous structures in a controlled manner with a range of potential applications in biocoatings and tissue engineering scaffolds.

  7. Bubbling cell death: A hot air balloon released from the nucleus in the cold.

    Chang, Nan-Shan

    2016-06-01

    Cell death emanating from the nucleus is largely unknown. In our recent study, we determined that when temperature is lowered in the surrounding environment, apoptosis stops and bubbling cell death (BCD) occurs. The study concerns the severity of frostbite. When exposed to severe cold and strong ultraviolet (UV) irradiation, people may suffer serious damages to the skin and internal organs. This ultimately leads to limb amputations, organ failure, and death. BCD is defined as "formation of a single bubble from the nucleus per cell and release of this swelling bubble from the cell surface to extracellular space that causes cell death." When cells are subjected to UV irradiation and/or brief cold shock (4℃ for 5 min) and then incubated at room temperature or 4℃ for time-lapse microscopy, each cell releases an enlarging nuclear gas bubble containing nitric oxide. Certain cells may simultaneously eject hundreds or thousands of exosome-like particles. Unlike apoptosis, no phosphatidylserine flip-over, mitochondrial apoptosis, damage to Golgi complex, and chromosomal DNA fragmentation are shown in BCD. When the temperature is increased back at 37℃, bubble formation stops and apoptosis restarts. Mechanistically, proapoptotic WW domain-containing oxidoreductase and p53 block the protective TNF receptor adaptor factor 2 that allows nitric oxide synthase 2 to synthesize nitric oxide and bubble formation. In this mini-review, updated knowledge in cell death and the proposed molecular mechanism for BCD are provided. © 2016 by the Society for Experimental Biology and Medicine.

  8. Bubble dynamics under acoustic excitation with multiple frequencies

    Zhang, Y N; Zhang, Y N; Li, S C

    2015-01-01

    Because of its magnificent mechanical and chemical effects, acoustic cavitation plays an important role in a broad range of biomedical, chemical and mechanical engineering problems. Particularly, irradiation of the multiple frequency acoustic wave could enhance the effects of cavitation. The advantages of employment of multi-frequency ultrasonic field include decreasing the cavitation thresholds, promoting cavitation nuclei generation, increasing the mass transfer and improving energy efficiency. Therefore, multi-frequency ultrasonic systems are employed in a variety of applications, e.g., to enhance the intensity of sonoluminenscence, to increase efficiency of sonochemical reaction, to improve the accuracy of ultrasound imaging and the efficiency of tissue ablation. Compared to single-frequency systems, a lot of new features of bubble dynamics exist in multi-frequency systems, such as special properties of oscillating bubbles, unique resonances in the bubble response curves, and unusual chaotic behaviours. In present paper, the underlying mechanisms of the cavitation effects under multi-frequency acoustical excitation are also briefly introduced

  9. Numerical modeling of bubble dynamics in magmas

    Huber, Christian; Su, Yanqing; Parmigiani, Andrea

    2014-05-01

    Understanding the complex non-linear physics that governs volcanic eruptions is contingent on our ability to characterize the dynamics of bubbles and its effect on the ascending magma. The exsolution and migration of bubbles has also a great impact on the heat and mass transport in and out of magma bodies stored at shallow depths in the crust. Multiphase systems like magmas are by definition heterogeneous at small scales. Although mixture theory or homogenization methods are convenient to represent multiphase systems as a homogeneous equivalent media, these approaches do not inform us on possible feedbacks at the pore-scale and can be significantly misleading. In this presentation, we discuss the development and application of bubble-scale multiphase flow modeling to address the following questions : How do bubbles impact heat and mass transport in magma chambers ? How efficient are chemical exchanges between the melt and bubbles during magma decompression? What is the role of hydrodynamic interactions on the deformation of bubbles while the magma is sheared? Addressing these questions requires powerful numerical methods that accurately model the balance between viscous, capillary and pressure stresses. We discuss how these bubble-scale models can provide important constraints on the dynamics of magmas stored at shallow depth or ascending to the surface during an eruption.

  10. Performance Tests for Bubble Blockage Device

    Ha, Kwang Soon; Wi, Kyung Jin; Park, Rae Joon; Wan, Han Seong

    2014-01-01

    Postulated severe core damage accidents have a high threat risk for the safety of human health and jeopardize the environment. Versatile measures have been suggested and applied to mitigate severe accidents in nuclear power plants. To improve the thermal margin for the severe accident measures in high-power reactors, engineered corium cooling systems involving boiling-induced two-phase natural circulation have been proposed for decay heat removal. A boiling-induced natural circulation flow is generated in a coolant path between a hot vessel wall and cold coolant reservoir. In general, it is possible for some bubbles to be entrained in the natural circulation loop. If some bubbles entrain in the liquid phase flow passage, flow instability may occur, that is, the natural circulation mass flow rate may be oscillated. A new device to block the entraining bubbles is proposed and verified using air-water test loop. To avoid bubbles entrained in the natural circulation flow loop, a new device was proposed and verified using an air-water test loop. The air injection and liquid circulation loop was prepared, and the tests for the bubble blockage devices were performed by varying the geometry and shape of the devices. The performance of the bubble blockage device was more effective as the area ratio of the inlet to the down-comer increased, and the device height decreased. If the device has a rim to generate a vortex zone, the bubbles will be most effectively blocked

  11. Bubbles in the self-accelerating universe

    Izumi, Keisuke; Tanaka, Takahiro; Koyama, Kazuya; Pujolas, Oriol

    2007-01-01

    We revisit the issue of the stability in the Dvali-Gabadadze-Porrati model by considering the nucleation of bubbles of the conventional branch within the self-accelerating branch. We construct an instanton describing this process in the thin wall approximation. On one side of the bubble wall, the bulk consists of the exterior of the brane, while on the other side it is the interior. The solution requires the presence of a 2-brane (the bubble wall) which induces the transition. However, we show that this instanton cannot be realized as the thin wall limit of any smooth solution. Once the bubble thickness is resolved, the equations of motion do not allow O(4) symmetric solutions joining the two branches. We conclude that the thin wall instanton is unphysical, and that one cannot have processes connecting the two branches, unless negative tension bubble walls are introduced. This also suggests that the self-accelerating branch does not decay into the conventional branch nucleating bubbles. We comment on other kinds of bubbles that could interpolate between the two branches

  12. Average properties of bidisperse bubbly flows

    Serrano-García, J. C.; Mendez-Díaz, S.; Zenit, R.

    2018-03-01

    Experiments were performed in a vertical channel to study the properties of a bubbly flow composed of two distinct bubble size species. Bubbles were produced using a capillary bank with tubes with two distinct inner diameters; the flow through each capillary size was controlled such that the amount of large or small bubbles could be controlled. Using water and water-glycerin mixtures, a wide range of Reynolds and Weber number ranges were investigated. The gas volume fraction ranged between 0.5% and 6%. The measurements of the mean bubble velocity of each species and the liquid velocity variance were obtained and contrasted with the monodisperse flows with equivalent gas volume fractions. We found that the bidispersity can induce a reduction of the mean bubble velocity of the large species; for the small size species, the bubble velocity can be increased, decreased, or remain unaffected depending of the flow conditions. The liquid velocity variance of the bidisperse flows is, in general, bound by the values of the small and large monodisperse values; interestingly, in some cases, the liquid velocity fluctuations can be larger than either monodisperse case. A simple model for the liquid agitation for bidisperse flows is proposed, with good agreement with the experimental measurements.

  13. The Minnaert bubble: an acoustic approach

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude [Laboratoire Matiere et Systemes Complexes, Universite Paris Diderot and CNRS UMR 7057, 10 rue Alice Domont et Leonie Duquet, 75013 Paris (France); Leroy, Valentin [Laboratoire Ondes et Acoustique, Universite Paris 7 and CNRS UMR 7587, ESPCI, 10 rue Vauquelin, 75005 Paris (France)], E-mail: martin.devaud@univ-paris-diderot.fr

    2008-11-15

    We propose an ab initio introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian variables. In unbounded water, the air-water system has a continuum of eigenmodes, some of them correspond to regular Fabry-Perot resonances. A singular resonance, the lowest one, is shown to coincide with that of Minnaert. In bounded water, the eigenmodes spectrum is discrete, with a finite fundamental frequency. A spectacular quasi-locking of the latter occurs if it happens to exceed the Minnaert frequency, which provides an unforeseen one-bubble alternative version of the famous 'hot chocolate effect'. In the (low) frequency domain in which sound propagation inside the bubble reduces to a simple 'breathing' (i.e. inflation/deflation), the light air bubble can be 'dressed' by the outer water pressure forces, and is turned into the heavy Minnaert bubble. Thanks to this unexpected renormalization process, we demonstrate that the Minnaert bubble definitely behaves like a true harmonic oscillator of the spring-bob type, but with a damping term and a forcing term in apparent disagreement with those commonly admitted in the literature. Finally, we underline the double role played by the water. In order to tell the water motion associated with water compressibility (i.e. the sound) from the simple incompressible accompaniment of the bubble breathing, we introduce a new picture analogous to the electromagnetic radiative picture in Coulomb gauge, which naturally leads us to split the water displacement in an instantaneous and a retarded part. The Minnaert renormalized mass of the dressed bubble is then automatically recovered.

  14. Pressure waves in a supersaturated bubbly magma

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  15. Coal prices rise

    McLean, A.

    2001-01-01

    Coking and semi hard coking coal price agreements had been reached, but, strangely enough, the reaching of common ground on semi soft coking coal, ultra low volatile coal and thermal coal seemed some way off. More of this phenomenon later, but suffice to say that, traditionally, the semi soft and thermal coal prices have fallen into place as soon as the hard, or prime, coking coal prices have been determined. The rise and rise of the popularity of the ultra low volatile coals has seen demand for this type of coal grow almost exponentially. Perhaps one of the most interesting facets of the coking coal settlements announced to date is that the deals appear almost to have been preordained. The extraordinary thing is that the preordination has been at the prescience of the sellers. Traditionally, coking coal price fixing has been the prerogative of the Japanese Steel Mills (JSM) cartel (Nippon, NKK, Kawasaki, Kobe and Sumitomo) who presented a united front to a somewhat disorganised force of predominantly Australian and Canadian sellers. However, by the time JFY 2001 had come round, the rules of the game had changed

  16. Lifetime of Bubble Rafts: Cooperativity and Avalanches

    Ritacco, Hernán; Kiefer, Flavien; Langevin, Dominique

    2007-06-01

    We have studied the collapse of pseudo-bi-dimensional foams. These foams are made of uniformly sized soap bubbles packed in an hexagonal lattice sitting at the top of a liquid surface. The collapse process follows the sequence: (1) rupture of a first bubble, driven by thermal fluctuations and (2) a cascade of bursting bubbles. We present a simple numerical model which captures the main characteristics of the dynamics of foam collapse. We show that in a certain range of viscosities of the foaming solutions, the size distribution of the avalanches follows power laws as in self-organized criticality processes.

  17. Decay of bubble of disoriented chiral condensate

    Gani, V.A.; Kudryavtsev, A.E.; Belova, T.I.

    1999-01-01

    The space-time structure for the process of decay of a bubble of hypothetical phase -disoriented chiral condensate (DCC) i discussed. The evolution of the initial classical field configuration corresponding to the bubble of DCC is studied, both numerically and analytically. The decay of this initial configuration depends crucially on self-interaction of the pionic fields. It is shown that in some cases this self-interaction leads to the formation of sort of breather solution, formed from pionic fields situated in the center of the initial bubble of DCC. This breather looks like a long-lived source of pionic fields [ru

  18. Dechanneling of particles by gas bubbles

    Ronikier-Polonsky, Danuta.

    1976-01-01

    The dechanneling probability P of a particle hitting a gas bubble in a solid is evaluated theoretically. This probability is found to depend neither on the energy of the particle, nor on the radius of the bubble. A simple expression of P is given in the case of a harmonic channeling potential. Then an experiment is described concerning α particles channeled along (111) planes in aluminium containing helium bubbles. In this particular case, the measured probabilitity (P=0.27+-0.09) is in good agreement with the corresponding theoretical values (0.34 for a harmonic potential and 0.24 for a more realistic potential) [fr

  19. Experimental observation of exploding electron bubbles

    Classen, J.; Su, C.K.; Hall, S.C.; Pettersen, M.S.; Maris, H.J.

    1996-01-01

    Since free electrons form small voids in liquid helium they are expected to be preferred sites for nucleating macroscopic bubbles when the liquid is exposed to sufficiently large negative pressures. We have performed a series of cavitation experiments using focussed ultrasound where free electrons were introduced into the liquid by a radioactive source. The electron bubbles are found to explode at negative pressures significantly lower than those required for homogeneous nucleation. We present measurements of the thresholds for cavitation at electrons in the temperature range 1 - 4.5 K. Reasonable agreement with a simple model for the stability limit of the electron bubble is obtained. (author)

  20. A view inside the Gargamelle bubble chamber

    1970-01-01

    Gargamelle was the name given to a big bubble chamber built at the Saclay Laboratory in France during the late 1960s. It was designed principally for the detection at CERN of the elusive particles called neutrinos. A bubble chamber contains a liquid under pressure, which reveals the tracks of electrically charged particles as trails of tiny bubbles when the pressure is reduced. Neutrinos have no charge, and so leave no tracks, but the aim with Gargamelle was "see neutrinos" by making visible any charged particles set in motion by the interaction of neutrinos in the liquid