WorldWideScience

Sample records for single bead weld

  1. Modeling of welded bead profile for rapid prototyping by robotic MAG welding

    Institute of Scientific and Technical Information of China (English)

    CAO Yong; ZHU Sheng; WANG Tao; WANG Wanglong

    2009-01-01

    As a deposition technology, robotic metal active gas(MAG) welding has shown new promise for rapid prototyping (RP) of metallic parts. During the process of metal forming using robotic MAG welding, sectional profile of single-pass welded bead is critical to formed accuracy and quality of metal pans. In this paper, the experiments of single-pass welded bead for rapid prototyping using robotic MAG welding were carried out. The effect of some edge detectors on the cross-sectional edge of welded bead was discussed and curve fitting was applied using leat square fitting. Consequently, the mathematical model of welded bead profile was developed. The experimental results show that good shape could be obtained under suitable welding parameters. Canny operawr is suitable to edge detection of welded bead profile, and the mathematical model of welded bead profile developed is approximately parabola.

  2. Appropriate welding conditions of temper bead weld repair for SQV2A pressure vessel steel

    International Nuclear Information System (INIS)

    Mizuno, R.; Matsuda, F.; Brziak, P.; Lomozik, M.

    2004-01-01

    Temper bead welding technique is one of the most important repair welding methods for large structures for which it is difficult to perform the specified post weld heat treatment. In this study, appropriate temper bead welding conditions to improve the characteristics of heat affected zone (HAZ) are studied using pressure vessel steel SQV2A corresponding to ASTM A533 Type B Class 1. Thermal/mechanical simulator is employed to give specimens welding thermal cycles from single to quadruple cycle. Charpy absorbed energy and hardness of simulated CGHAZ by first cycle were degraded as compared with base metal. Improvability of these degradations by subsequent cycles is discussed and appropriate temper bead thermal cycles are clarified. When the peak temperature lower than Ac1 and near Ac1 in the second thermal cycle is applied to CGAHZ by first thermal cycle, the characteristics of CGHAZ improve enough. When the other peak temperatures (that is, higher than Ac1) in the second thermal cycle are applied to the CGHAZ, third or more thermal cycle temper bead process should be applied to improve the properties. Appropriate weld condition ranges are selected based on the above results. The validity of the selected ranges is verified by the temper bead welding test. (orig.)

  3. A control system for uniform bead in fillet arc welding on tack welds

    International Nuclear Information System (INIS)

    Kim, Jae Woong; Lee, Jun Young

    2008-01-01

    Positioning a workpiece accurately and preventing weld distortion, tack welding is often adopted before main welding in the construction of welded structures. However, this tack weld deteriorates the final weld bead profile, so that the grinding process is usually performed for a uniform weld bead profile. In this study, a control system for uniform weld bead is proposed for the fillet arc welding on tack welds. The system consists of GMA welding machine, torch manipulator, laser vision sensor for measuring the tack weld size and the database for optimal welding conditions. Experiments have been performed for constructing the database and for evaluating the control capability of the system. It has been shown that the system has the capability to smooth the bead at the high level of quality

  4. Effect of Welding Parameters on Dilution and Weld Bead Geometry in Cladding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of pulsed gas metal arc welding (GMAW) variables on the dilution and weld bead geometry in cladding X65 pipeline steel with 316L stainless steel was studied. Using a full factorial method, a series of experiments were carried out to know the effect of wire feed rate, welding speed, distance between gas nozzle and plate, and the vertical angle of welding on dilution and weld bead geometry. The findings indicate that the dilution of weld metal and its dimension i.e. width, height and depth increase with the feed rate, but the contact angle of the bead decreases first and then increases. Meantime, welding speed has an opposite effect except for dilution. There is an interaction effect between welding parameters at the contact angle. The results also show forehand welding or decreasing electrode extension decrease the angle of contact. Finally,a mathematical model is contrived to highlight the relationship between welding variables with dilution and weld bead geometry.

  5. Half bead welding technique

    International Nuclear Information System (INIS)

    Canonico, D.A.; Holz, P.P.

    1978-05-01

    The ORNL has employed the Section XI half-bead procedure for six repair welds. Table 2 identifies the repairs and the components upon which they were accomplished. The weld repairs were performed to permit us to evaluate material properties, residual stresses, weld repair procedures, and structural behavior of repaired pressure vessels. As a consequence of our study we concluded that when the half bead procedure is correctly applied: (1) there is no metallurgical degradation of the base material, (2) residual stresses of yield point magnitude will be present, and (3) the structural integrity of the pressure vessel is not impaired at Charpy V-notch upper shelf temperatures

  6. Optimization of weld bead geometry of MS plate

    Indian Academy of Sciences (India)

    The considered specimen was checked to harmonize the optimum setting between input factors, for example, welding current, open circuit voltage, and thickness of plate, with respect to obtaining prosperous weld strength as well as bead geometry quality characteristics, for example, tensile strength, bead width, ...

  7. Real-Time Measurement of Width and Height of Weld Beads in GMAW Processes

    Directory of Open Access Journals (Sweden)

    Jesús Emilio Pinto-Lopera

    2016-09-01

    Full Text Available Associated to the weld quality, the weld bead geometry is one of the most important parameters in welding processes. It is a significant requirement in a welding project, especially in automatic welding systems where a specific width, height, or penetration of weld bead is needed. This paper presents a novel technique for real-time measuring of the width and height of weld beads in gas metal arc welding (GMAW using a single high-speed camera and a long-pass optical filter in a passive vision system. The measuring method is based on digital image processing techniques and the image calibration process is based on projective transformations. The measurement process takes less than 3 milliseconds per image, which allows a transfer rate of more than 300 frames per second. The proposed methodology can be used in any metal transfer mode of a gas metal arc welding process and does not have occlusion problems. The responses of the measurement system, presented here, are in a good agreement with off-line data collected by a common laser-based 3D scanner. Each measurement is compare using a statistical Welch’s t-test of the null hypothesis, which, in any case, does not exceed the threshold of significance level α = 0.01, validating the results and the performance of the proposed vision system.

  8. Predicting of bead undercut defects in high-speed gas metal arc welding (GMAW)

    Institute of Scientific and Technical Information of China (English)

    Wen-jing XU; Chuan-song WU; De-gang ZOU

    2008-01-01

    In the gas metal arc welding (GMAW) process, when the welding speed reaches a certain threshold, there will be an onset of weld bead undercut defects which limit the further increase of the welding speed. Establishing a mathematical model for high-speed GMAW to predict the tendency of bead undercuts is of great significance to pre-vent such defects. Under the action of various forces, the transferred metal from filler wire to the weld pool, and the geometry and dimension of the pool itself decide if the bead undercut occurs or not. The previous model simpli-fied the pool shape too much. In this paper, based on the actual weld pool geometry and dimension calculated from a numerical model, a hydrostatic model for liquid metal surface is used to study the onset of bead undercut defects in the high-speed welding process and the effects of dif-ferent welding parameters on the bead undercut tendency.

  9. Process parameters-weld bead geometry interactions and their influence on mechanical properties: A case of dissimilar aluminium alloy electron beam welds

    Directory of Open Access Journals (Sweden)

    P. Mastanaiah

    2018-04-01

    Full Text Available Prediction of weld bead geometry is always an interesting and challenging research topic as it involves understanding of complex multi input and multi output system. The weld bead geometry has a profound impact on the load bearing capability of a weld joint, which in-turn decides the performance in real time service conditions. The present study introduces a novel approach of detecting a relationship between weld bead geometry and mechanical properties (e.g. tensile load for the purpose of catering the best the process could offer. The significance of the proposed approach is demonstrated by a case of dissimilar aluminium alloy (AA2219 and AA5083 electron beam welds. A mathematical model of tensile braking load as a function of geometrical attributes of weld bead geometry is presented. The results of investigation suggests the effective thickness of weld – a geometric parameter of weld bead has the most significant influence on tensile breaking load of dissimilar weld joint. The observations on bead geometry and the mechanical properties (microhardness, ultimate tensile load and face bend angle are correlated with detailed metallurgical analysis. The fusion zone of dissimilar electron beam weld has finer grain size with a moderate evaporation and segregation of alloying elements magnesium and copper respectively. The mechanical properties of weld joint are controlled by optimum bead geometry and HAZ softening in weaker AA5083 Al alloy. Keywords: Electron beam welding, AA2219, AA5083, Bead geometry, Tensile breaking load

  10. Adaptive Neuro-Fuzzy Inference System (ANFIS)-Based Models for Predicting the Weld Bead Width and Depth of Penetration from the Infrared Thermal Image of the Weld Pool

    Science.gov (United States)

    Subashini, L.; Vasudevan, M.

    2012-02-01

    Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.

  11. Some studies on weld bead geometries for laser spot welding process using finite element analysis

    International Nuclear Information System (INIS)

    Siva Shanmugam, N.; Buvanashekaran, G.; Sankaranarayanasamy, K.

    2012-01-01

    Highlights: → In this study, a 2 kW Nd:YAG laser welding system is used to conduct laser spot welding trials. → The size and shape of the laser spot weld is predicted using finite element simulation. → The heat input is assumed to be a three-dimensional conical Gaussian heat source. → The result highlights the effect of beam incident angle on laser spot welds. → The achieved results of numerical simulation are almost identical with a real weldment. -- Abstract: Nd:YAG laser beam welding is a high power density welding process which has the capability to focus the beam to a very small spot diameter of about 0.4 mm. It has favorable characteristics namely, low heat input, narrow heat affected zone and lower distortions, as compared to conventional welding processes. In this study, finite element method (FEM) is applied for predicting the weld bead geometry i.e. bead length (BL), bead width (BW) and depth of penetration (DP) in laser spot welding of AISI 304 stainless steel sheet of thickness 2.5 mm. The input parameters of laser spot welding such as beam power, incident angle of the beam and beam exposure time are varied for conducting experimental trials and numerical simulations. Temperature-dependent thermal properties of AISI 304 stainless steel, the effect of latent heat of fusion, and the convective and radiative aspects of boundary conditions are considered while developing the finite element model. The heat input to the developed model is assumed to be a three-dimensional conical Gaussian heat source. Finite-element simulations of laser spot welding were carried out by using Ansys Parametric Design Language (APDL) available in finite-element code, ANSYS. The results of the numerical analysis provide the shape of the weld beads for different ranges of laser input parameters that are subsequently compared with the results obtained through experimentation and it is found that they are in good agreement.

  12. Development and validation of predictive simulation model of multi-layer repair welding process by temper bead technique

    International Nuclear Information System (INIS)

    Okano, Shigetaka; Miyasaka, Fumikazu; Mochizuki, Masahito; Tanaka, Manabu

    2015-01-01

    Stress corrosion cracking (SCC) has recently been observed in the nickel base alloy weld metal of dissimilar pipe joint used in pressurized water reactor (PWR) . Temper bead technique has been developed as one of repair procedures against SCC applicable in case that post weld heat treatment (PWHT) is difficult to carry out. In this regard, however it is essential to pass the property and performance qualification test to confirm the effect of tempering on the mechanical properties at repair welds before temper bead technique is actually used in practice. Thus the appropriate welding procedure conditions in temper bead technique are determined on the basis of the property and performance qualification testing. It is necessary for certifying the structural soundness and reliability at repair welds but takes a lot of work and time in the present circumstances. Therefore it is desirable to establish the reasonable alternatives for qualifying the property and performance at repair welds. In this study, mathematical modeling and numerical simulation procedures were developed for predicting weld bead configuration and temperature distribution during multi-layer repair welding process by temper bead technique. In the developed simulation technique, characteristics of heat source in temper bead welding are calculated from weld heat input conditions through the arc plasma simulation and then weld bead configuration and temperature distribution during temper bead welding are calculated from characteristics of heat source obtained through the coupling analysis between bead surface shape and thermal conduction. The simulation results were compared with the experimental results under the same welding heat input conditions. As the results, the bead surface shape and temperature distribution, such as A cl lines, were in good agreement between simulation and experimental results. It was concluded that the developed simulation technique has the potential to become useful for

  13. FUZZY REGRESSION MODEL TO PREDICT THE BEAD GEOMETRY IN THE ROBOTIC WELDING PROCESS

    Institute of Scientific and Technical Information of China (English)

    B.S. Sung; I.S. Kim; Y. Xue; H.H. Kim; Y.H. Cha

    2007-01-01

    Recently, there has been a rapid development in computer technology, which has in turn led todevelop the fully robotic welding system using artificial intelligence (AI) technology. However, therobotic welding system has not been achieved due to difficulties of the mathematical model andsensor technologies. The possibilities of the fuzzy regression method to predict the bead geometry,such as bead width, bead height, bead penetration and bead area in the robotic GMA (gas metalarc) welding process is presented. The approach, a well-known method to deal with the problemswith a high degree of fuzziness, is used to build the relationship between four process variablesand the four quality characteristics, respectively. Using these models, the proper prediction of theprocess variables for obtaining the optimal bead geometry can be determined.

  14. Effect of welding current and speed on occurrence of humping bead in high-speed GMAW

    Institute of Scientific and Technical Information of China (English)

    Chen Ji; Wu Chuansong

    2009-01-01

    The developed mathematical model of humping formation mechanism in high-speed gas metal arc welding (GMAW) is used to analyze the effects of welding current and welding speed on the occurrence of humping bead. It considers both the momentum and heat content of backward flowing molten jet inside weld pool. Three-dimensional geometry of weld pool, the spacing between two adjacent humps and hump height along humping weld bead are calculated under different levels of welding current and welding speed. It shows that wire feeding rate, power intensity and the moment of backward flowing molten jet are the major factors on humping bead formation.

  15. Effect of Heat Input on Geometry of Austenitic Stainless Steel Weld Bead on Low Carbon Steel

    Science.gov (United States)

    Saha, Manas Kumar; Hazra, Ritesh; Mondal, Ajit; Das, Santanu

    2018-05-01

    Among different weld cladding processes, gas metal arc welding (GMAW) cladding becomes a cost effective, user friendly, versatile method for protecting the surface of relatively lower grade structural steels from corrosion and/or erosion wear by depositing high grade stainless steels onto them. The quality of cladding largely depends upon the bead geometry of the weldment deposited. Weld bead geometry parameters, like bead width, reinforcement height, depth of penetration, and ratios like reinforcement form factor (RFF) and penetration shape factor (PSF) determine the quality of the weld bead geometry. Various process parameters of gas metal arc welding like heat input, current, voltage, arc travel speed, mode of metal transfer, etc. influence formation of bead geometry. In the current experimental investigation, austenite stainless steel (316) weld beads are formed on low alloy structural steel (E350) by GMAW using 100% CO2 as the shielding gas. Different combinations of current, voltage and arc travel speed are chosen so that heat input increases from 0.35 to 0.75 kJ/mm. Nine number of weld beads are deposited and replicated twice. The observations show that weld bead width increases linearly with increase in heat input, whereas reinforcement height and depth of penetration do not increase with increase in heat input. Regression analysis is done to establish the relationship between heat input and different geometrical parameters of weld bead. The regression models developed agrees well with the experimental data. Within the domain of the present experiment, it is observed that at higher heat input, the weld bead gets wider having little change in penetration and reinforcement; therefore, higher heat input may be recommended for austenitic stainless steel cladding on low alloy steel.

  16. Hot wire TIG temper bead welding for nuclear repairs

    International Nuclear Information System (INIS)

    Lambert, J.A.; Gilston, P.F.

    1989-08-01

    A preliminary assessment has been carried out to determine the suitability of the hot wire tungsten inert gas (TIG) welding process for the repair of thick section, ferritic steel nuclear pressure vessels. The objective has been to identify a hot wire TIG temper bead procedure, suitable for repairs without post weld heat treatment. This procedure involves depositing two weld layers with carefully selected welding parameters such that overlapping thermal cycles produce a refined and tempered heat affected zone, HAZ, microstructure. (author)

  17. Weld pool boundary and weld bead shape reconstruction based on passive vision in P-GMAW

    Institute of Scientific and Technical Information of China (English)

    Yan Zhihong; Zhang Guangjun; Gao Hongming; Wu Lin

    2006-01-01

    A passive visual sensing system is established in this research, and clear weld pool images in pulsed gas metal arc welding ( P-GMA W) can be captured with this system. The three-dimensional weld pool geometry, especially the weld height,is not only a crucial factor in determining workpiece mechanical properties, but also an important parameter for reflecting the penetration. A new three-dimensional (3D) model is established to describe the weld pool geometry in P-GMAW. Then, a series of algorithms are developed to extract the model geometrical parameters from the weld pool images. Furthermore, the method to reconstruct the 3D shape of weld pool boundary and weld bead from the two-dimensional images is investigated.

  18. Effects of off-specification procedures on the mechanical properties of half-bead weld repairs

    International Nuclear Information System (INIS)

    Hobson, D.O.; Nanstad, R.K.

    1983-07-01

    We examined the effects of off-specification procedures on the mechanical properties of half-bead weld repairs. The name half-bead is derived from the specification that half the thickness of the initial weld layer be ground off before the second layer is deposited. In this study the heat-affected zones of a weldment made with both all and none of the first layer removed were tested for toughness, hardness, and microstructural differences, and the results were compared with the properties of a protypical half-bead repair made under ASME Boiler and Pressure Vessel Code, Sect. XI, guidelines. The results of this limited study showed no apparent justification for the requirement to grind off half the first layer in this type of weld repair. The graded electrode sizes used to make the welds probably had more to do with the weld properties than did the range of first-layer thicknesses used in this study

  19. Effects of Heat Input and Bead Generation Methods on Finite Element Analysis of Multi-Pass Welding Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Dong; Kim, Ji Hoon; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of)

    2016-10-15

    Welding residual stresses are determined by various factors such as heat input, initial temperature of molten bead, heating time, cooling time, cooling conditions, and boundary conditions. In this study, a sensitivity analysis was performed to find the major factors and reasonable assumptions for simulation. Two-dimensional axisymmetric simulation was conducted by using commercial finite element analysis program ABAQUS, for multi-pass Alloy 82 welds in a 304 Stainless Steel and SA-105 Carbon Steel. The major object is to evaluate effects of the heat input methods and weld bead generation methods on the welding residual stress distribution. Totally four kinds of methods were compared. From the previous results, we could make the following conclusions. 1. Although there are non-negligible differences in HAZ depending on heat input method, welding residual stress distributions have roughly similar trends. However, it is needed to perform the more exact analysis to apply heat energy more carefully into the individual bead. 2. Residual stress distribution were similar for the two weld bead generation technique. However, overlapping was happened when element birth technique was applied. Effects of overlapping could not ignore as deformation increases. However, overlapping problem was avoided when quiet element technique was used. 3. Since existence of inactive bead elements, inaccurate weld residual stresses could be occurred in boundaries of previous and next weld elements in case of quiet element technique.

  20. Effect of Weld Bead Shape on the Fatigue Behavior of GMAW Lap Fillet Joint in GA 590 MPa Steel Sheets

    Directory of Open Access Journals (Sweden)

    Insung Hwang

    2017-09-01

    Full Text Available In this study, the effect of weld bead shape on the fatigue strength of lap fillet joints using the gas metal arc welding (GMAW process was investigated. The base material used in the experiment was 590 MPa grade galvanealed steel sheet with 2.3 mm and 2.6 mm thickness. In order to make the four types of weld beads with different shapes by factors such as length, angle, and area, the welding process, wire feeding speed, and joint shape were changed. The stress-number of cycles to failure (S–N curve and fatigue strength were obtained from the fatigue test for four types of weld bead, and the cause of the fatigue strength difference was clarified through the analysis of the geometrical factors, such as length, angle, and area of the weld bead. In addition, the relationship between weld bead shape and fatigue strength was discussed.

  1. Influence of heat input on weld bead geometry using duplex stainless steel wire electrode on low alloy steel specimens

    Directory of Open Access Journals (Sweden)

    Ajit Mondal

    2016-12-01

    Full Text Available Gas metal arc welding cladding becomes a popular surfacing technique in many modern industries as it enhances effectively corrosion resistance property and wear resistance property of structural members. Quality of weld cladding may be enhanced by controlling process parameters. If bead formation is found acceptable, cladding is also expected to be good. Weld bead characteristics are often assessed by bead geometry, and it is mainly influenced by heat input. In this paper, duplex stainless steel E2209 T01 is deposited on E250 low alloy steel specimens with 100% CO2 gas as shielding medium with different heats. Weld bead width, height of reinforcement and depth of penetration are measured. Regression analysis is done on the basis of experimental data. Results reveal that within the range of bead-on-plate welding experiments done, parameters of welding geometry are on the whole linearly related with heat input. A condition corresponding to 0.744 kJ/mm heat input is recommended to be used for weld cladding in practice.

  2. ROLE OF FCA WELDING PROCESS PARAMETERS ON BEAD PROFILE, ANGULAR AND BOWING DISTORTION OF FERRITIC STAINLESS STEEL SHEETS

    Directory of Open Access Journals (Sweden)

    VENKATESAN M. V.

    2014-02-01

    Full Text Available This paper discusses the influence of flux cored arc welding (FCAW process parameters such as welding current, travel speed, voltage and CO2 shielding gas flow rate on bead profile, bowing distortion and angular distortion of 409 M ferritic stainless steel sheets of 2 mm thickness. The bowing and angular distortions of the welded plates were measured using a simple device called profile tracer and Vernier bevel protractor respectively. The study revealed that the FCAW process parameters have significant effect on bead profile, and distortion. The relationship between bead profile and distortions were analyzed. Most favorable process parameters that give uniform bead profile and minimum distortion for the weld are recommended for fabrication.

  3. The Numerical Welding Simulation - Developments and Validation of Simplified and Bead Lumping Methods

    International Nuclear Information System (INIS)

    Baup, Olivier

    2001-01-01

    The aim of this work was to study the TIG multipass welding process on stainless steel, by means of numerical methods and then to work out simplified and bead lumping methods in order to reduce adjusting and realisation times of these calculations. A simulation was used as reference for the validation of these methods; after the presentation of the test series having led to the option choices of this calculation (2D generalised plane strains, elastoplastic model with an isotropic hardening, hardening restoration due to high temperatures), various simplifications were tried on a plate geometry. These simplifications related various modelling points with a correct plastic flow representation in the plate. The use of a reduced number of thermal fields characterising the bead deposit and a low number of tensile curves allow to obtain interesting results, decreasing significantly the Computing times. In addition various lumping bead methods have been studied and concerning both the shape and the thermic of the macro-deposits. The macro-deposit shapes studied are in 'L', or in layer or they represent two beads one on top of the other. Among these three methods, only those using a few number of lumping beads gave bad results since thermo-mechanical history was deeply modified near and inside the weld. Thereafter, simplified methods have been applied to a tubular geometry. On this new geometry, experimental measurements were made during welding, which allow a validation of the reference calculation. Simplified and reference calculations gave approximately the same stress fields as found on plate geometry. Finally, in the last part of this document a procedure for automatic data setting permitting to reduce significantly the calculation phase preparation is presented. It has been applied to the calculation of thick pipe welding in 90 beads; the results are compared with a simplified simulation realised by Framatome and with experimental measurements. A bead by

  4. Hardness prediction of HAZ in temper bead welding by non-consistent layer technique

    International Nuclear Information System (INIS)

    Yu, Lina; Saida, Kazuyoshi; Mochizuki, Masahito; Kameyama, Masashi; Chigusa, Naoki; Nishimoto, Kazutoshi

    2014-01-01

    Based on the experimentally obtained hardness database, the neural network-based hardness prediction system of heat affect zone (HAZ) in temper bead welding by Consistent Layer (CSL) technique has been constructed by the authors. However in practical operation, CSL technique is sometimes difficult to perform because of difficulty of the precise heat input controlling, and in such case non-CSL techniques are mainly used in the actual repair process. Therefore in the present study, the neural network-based hardness prediction system of HAZ in temper bead welding by non-CSL techniques has been constructed through thermal cycle simplification, from the view of engineering. The hardness distribution in HAZ with non-CSL techniques was calculated based on the thermal cycles numerically obtained by finite element method. The experimental result has shown that the predicted hardness is in good accordance with the measured ones. It follows that the currently proposed method is effective for estimating the tempering effect during temper bead welding by non-CSL techniques. (author)

  5. Metallurgical Characterization of a Weld Bead Coating Applied by the PTA Process on the D2 Tool Steel

    Directory of Open Access Journals (Sweden)

    Ali Tahaei

    Full Text Available Abstract In this investigation, a nickel-base powder mixed with tungsten carbide particles was applied by Plasma Transferred Arc welding (PTA on the surface of the D2 cold work tool steel to improve surface quality and to extend its lifetime during applications. The Design of Experiment (DoE method was applied to obtain the appropriate combination of hardfacing parameters and to run the minimum number of tests. Current, travel speed and preheat were considered as variable parameters. These parameters are important to reach a final layer with an appropriate bead geometry accompanied with good metallurgical properties. All samples were prepared for metallurgical investigations and the effect of process parameters on the weld bead geometry was considered. For each experiment run, weld bead geometry parameters were measured including dilution, penetration and reinforcement. Microstructures and the distribution of tungsten carbide particles after welding were analyzed by Optical Microscopy (OM and Scanning Electron Microscopy (SEM equipped with an EDS microprobe. In addition, hardness tests were performed to evaluate the mechanical properties of the weld bead layers. Finally, among all the experiments, the best sample with appropriate bead geometry and microstructure was selected.

  6. On crack propagation in the welded polyolefin pipes with and without the presence of weld beads

    Czech Academy of Sciences Publication Activity Database

    Mikula, Jakub; Hutař, Pavel; Nezbedová, E.; Lach, R.; Arbeiter, F.; Ševčík, Martin; Pinter, G.; Grellmann, W.; Náhlík, Luboš

    2015-01-01

    Roč. 87, DEC (2015), s. 95-104 ISSN 0264-1275 R&D Projects: GA ČR(CZ) GAP108/12/1560; GA MŠk(CZ) EE2.3.30.0063; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Slow crack growth * Butt weld * Lifetime estimation * Polyolefin pipes * Weld bead Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.997, year: 2015

  7. Measurement and prediction of residual stress in a bead-on-plate weld benchmark specimen

    International Nuclear Information System (INIS)

    Ficquet, X.; Smith, D.J.; Truman, C.E.; Kingston, E.J.; Dennis, R.J.

    2009-01-01

    This paper presents measurements and predictions of the residual stresses generated by laying a single weld bead on a flat, austenitic stainless steel plate. The residual stress field that is created is strongly three-dimensional and is considered representative of that found in a repair weld. Through-thickness measurements are made using the deep hole drilling technique, and near-surface measurements are made using incremental centre hole drilling. Measurements are compared to predictions at the same locations made using finite element analysis incorporating an advanced, non-linear kinematic hardening model. The work was conducted as part of an European round robin exercise, coordinated as part of the NeT network. Overall, there was broad agreement between measurements and predictions, but there were notable differences

  8. Temper-bead repair-welding of neutron-irradiated reactor (pressure) vessel by low-heat-input TIG and YAG laser welding

    International Nuclear Information System (INIS)

    Nakata, Kiyotomo; Ozawa, Masayoshi; Kamo, Kazuhiko

    2006-01-01

    Weldability in neutron-irradiated low alloy steel for reactor (pressure) vessel has been studied by temper-bead repair-welding of low-heat-input TIG and YAG laser welding. A low alloy steel and its weld, and stainless steel clad and nickel (Ni)-based alloy clad were irradiated in a materials test reactor (LVR-15, Czech Republic) up to 1.4 x 10 24 n/m 2 (>1 MeV) at 290degC, which approximately corresponds to the maximum neutron fluence of 60-year-operation plants' vessels. The He concentration in the irradiated specimens was estimated to be up to 12.9 appm. The repair-welding was carried out by TIG and YAG laser welding at a heat input from 0.06 to 0.86 MJ/m. The mechanical tests of tensile, impact, side bend and hardness were carried out after the repair-welding. Cracks were not observed in the irradiated low alloy steel and its weld by temper-bead repair-welding. Small porosities were formed in the first and second layers of the repair-welds of low alloy steel (base metal). However, only a few porosities were found in the repair-welds of the weld of low alloy steel. From the results of mechanical tests, the repair-welding could be done in the irradiated weld of low alloy steel containing a He concentration up to 12.9 appm, although repair-welding could be done in base metal of low alloy steel containing up to only 1.7 appmHe. On the other hand, cracks occurred in the heat affected zones of stainless steel and Ni-based alloy clads by repair-welding, except by YAG laser repair-welding at a heat input of 0.06 MJ/m in stainless steel clad containing 1.7 appmHe. Based on these results, the determination processes were proposed for optimum parameters of repair-welding of low alloy steel and clad used for reactor (pressure) vessel. (author)

  9. Development of neural network models for the prediction of solidification mode, weld bead geometry and sensitisation in austenitic stainless steels

    International Nuclear Information System (INIS)

    Vasudevan, M.; Raj, B.; Prasad Rao, K.

    2005-01-01

    Quantitative models describing the effect of weld composition on the solidification mode, ferrite content and process parameters on the weld bead geometry are necessary in order to design composition of the welding consumable to ensure primary ferritic solidification mode, proper ferrite content and to ensure right choice of process parameters to achieve good bead geometry. A quantitative model on sensitisation behaviour of austenitic stainless steels is also necessary to optimise the composition of the austenitic stainless steel and to limit the strain on the material in order to enhance the resistance to sensitisation. The present paper discuss the development of quantitative models using artificial neural networks to correlate weld metal composition with solidification mode, process parameter with weld bead geometry and time for sensitisation with composition, strain in the material before welding and the temperature of exposure in austenitic stainless steels. (author)

  10. Detection of ''beading faults'' in welded tubes

    International Nuclear Information System (INIS)

    Mondot, J.

    In the steel tube industry the word ''beading'' refers to a highly localised leak affecting the welded zone. During the pneumatic test its flow rate is generally very low no more than a few thousandths of a mm 3 /second. Detection of such a fault by this test is consequently slow, and those which are choked or at the limit of leakage may escape detection. For greater safety, the tube technician is now using non-destructive testing methods such as eddy-currents and ultrasonics [fr

  11. Inspection from outside of weld bead on tubes by gamma absorptiometry

    International Nuclear Information System (INIS)

    Heintz, L.; Lefevre, C.; Bergey, C.

    1983-07-01

    In this method used when it is impossible to place the gamma source inside the tube, the gamma rays pass through the tube twice. The thickness of the weld bead is determined by only one coordinate of space: the polar angle in the plane of the weld. The method was tested with an uranium ring with machined defects. The position of the defects was determined with an accuracy of 1 degree and resolution is of the order of the tube thickness [fr

  12. Effects of Heat Input and Bead Generation Methods on Finite Element Analysis of Cylindrical Multi-Pass Welding Process of Metals

    International Nuclear Information System (INIS)

    Park, Won Dong; Bahn, Chi Bum; Kim, Ji Hoon

    2017-01-01

    In this study, a finite element analysis of a cylindrical multi-pass weldment for dissimilar metals was performed. The effects of the heat input method and weld bead generation method were considered. We compared two heat input methods: the heat flux method and the temperature method. We also compared two weld bead generation methods: the element birth method and the quiet element method. Although the results of the thermal analysis show deviations between the two heat input methods, the welding residual stresses were similar. Because the areas exposed to high temperature were similar and the strength of the material was very low in high temperature (above the 1000 ℃), the effects of the weld bead temperature were insignificant. The distributions of the welding residual stress were similar to each other. However, gaps and overlaps occurred on the welding boundary surfaces when the element birth method was applied. The quiet element method is more suitable for a large deformation model in order to simulate a more accurate weld shape.

  13. Effects of Heat Input and Bead Generation Methods on Finite Element Analysis of Cylindrical Multi-Pass Welding Process of Metals

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Dong; Bahn, Chi Bum; Kim, Ji Hoon [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-06-15

    In this study, a finite element analysis of a cylindrical multi-pass weldment for dissimilar metals was performed. The effects of the heat input method and weld bead generation method were considered. We compared two heat input methods: the heat flux method and the temperature method. We also compared two weld bead generation methods: the element birth method and the quiet element method. Although the results of the thermal analysis show deviations between the two heat input methods, the welding residual stresses were similar. Because the areas exposed to high temperature were similar and the strength of the material was very low in high temperature (above the 1000 ℃), the effects of the weld bead temperature were insignificant. The distributions of the welding residual stress were similar to each other. However, gaps and overlaps occurred on the welding boundary surfaces when the element birth method was applied. The quiet element method is more suitable for a large deformation model in order to simulate a more accurate weld shape.

  14. Effect of Heat Input During Disk Laser Bead-On-Plate Welding of Thermomechanically Rolled Steel on Penetration Characteristics and Porosity Formation in the Weld Metal

    Directory of Open Access Journals (Sweden)

    Lisiecki A.

    2016-03-01

    Full Text Available The paper presents a detailed analysis of the influence of heat input during laser bead-on-plate welding of 5.0 mm thick plates of S700MC steel by modern Disk laser on the mechanism of steel penetration, shape and depth of penetration, and also on tendency to weld porosity formation. Based on the investigations performed in a wide range of laser welding parameters the relationship between laser power and welding speed, thus heat input, required for full penetration was determined. Additionally the relationship between the laser welding parameters and weld quality was determined.

  15. Effect of processing conditions on residual stress distributions by bead-on-plate welding after surface machining

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Mochizuki, Masahito

    2014-01-01

    Residual stress is important factor for stress corrosion cracking (SCC) that has been observed near the welded zone in nuclear power plants. Especially, surface residual stress is significant for SCC initiation. In the joining processes of pipes, butt welding is conducted after surface machining. Residual stress is generated by both processes, and residual stress distribution due to surface machining is varied by the subsequent butt welding. In previous paper, authors reported that residual stress distribution generated by bead on plate welding after surface machining has a local maximum residual stress near the weld metal. The local maximum residual stress shows approximately 900 MPa that exceeds the stress threshold for SCC initiation. Therefore, for the safety improvement of nuclear power plants, a study on the local maximum residual stress is important. In this study, the effect of surface machining and welding conditions on residual stress distribution generated by welding after surface machining was investigated. Surface machining using lathe machine and bead on plate welding with tungsten inert gas (TIG) arc under various conditions were conducted for plate specimens made of SUS316L. Then, residual stress distributions were measured by X-ray diffraction method (XRD). As a result, residual stress distributions have the local maximum residual stress near the weld metal in all specimens. The values of the local maximum residual stresses are almost the same. The location of the local maximum residual stress is varied by welding condition. It could be consider that the local maximum residual stress is generated by same generation mechanism as welding residual stress in surface machined layer that has high yield stress. (author)

  16. Effects of Flux Precoating and Process Parameter on Welding Performance of Inconel 718 Alloy TIG Welds

    Science.gov (United States)

    Lin, Hsuan-Liang; Wu, Tong-Min; Cheng, Ching-Min

    2014-01-01

    The purpose of this study is to investigate the effect of activating flux on the depth-to-width ratio (DWR) and hot cracking susceptibility of Inconel 718 alloy tungsten inert gas (TIG) welds. The Taguchi method is employed to investigate the welding parameters that affect the DWR of weld bead and to achieve optimal conditions in the TIG welds that are coated with activating flux in TIG (A-TIG) process. There are eight single-component fluxes used in the initial experiment to evaluate the penetration capability of A-TIG welds. The experimental results show that the Inconel 718 alloy welds precoated with 50% SiO2 and 50% MoO3 flux were provided with better welding performance such as DWR and hot cracking susceptibility. The experimental procedure of TIG welding process using mixed-component flux and optimal conditions not only produces a significant increase in DWR of weld bead, but also decreases the hot cracking susceptibility of Inconel 718 alloy welds.

  17. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    Science.gov (United States)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  18. Weld Bead Geometry of Ni-Based Alloy Deposited by PTA Process for Pipe Conduction of Shale Gas

    Science.gov (United States)

    Echavarria-Figueroa, C.; García-Vázquez, F.; Ruiz-Mondragón, J.; Hernández-García, H. M.; González-González, D.; Vargas, A.

    The transportation of shale gas has the problem that the piping used for the extraction does not resist the erosion generated by the amount of solids causing cracks over the surface and it is necessary to extend the life of the pipelines. Plasma transferred arc (PTA) welded coatings are used to improve the surface properties of mechanical parts. Therefore, in this paper is studied the use of Ni-based filler metal as weld bead deposits on A36 steel substrates by PTA. In order to determine the suitable conditions to ensure coating quality on the substrate a design of experiments (DOE) was determined. Welding current, feed rate, and travel speed were used as input parameters and the dilution percentage as the response variable. The composition and properties of hardfacing or overlay deposited are strongly influenced by the dilution obtained. Control of dilution is important, where typically low dilution is desirable. When the dilution is low, the final deposit composition will be closer to that of the filler metal, and the wear and corrosion resistance of the hardfacing will also be maintained. To evaluate the features on the weld beads/substrate interface a microstructural characterization was performed by using scanning electron microscopy and to evaluate the mechanical properties was carried out hardness test.

  19. Development of Alternative Technology to PWHT in Site Welding

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Lee, B. S.; Jang, J. S.; Kim, K. H.; Park, S. D.; Yoon, J. H.; Kim, M. C.; Kim, K. B.; Sung, K. W

    2007-04-15

    ASME Section IX added requirements for qualification when using temper bead welding in the 2004 edition. The temper bead welding techniques which can satisfy the requirements of the Code are needed to use them in the site repair welding. The optimized welding parameters can be obtained when controlling the process to supercritically-reheat and to subcritically-reheat the coarse grain region sequently. The microstructures of SCFGCG obtained from the Gleegle simulated specimens and those of post weld heat treated coarse grain region are compared. The obtained both microstructures showed almost similar patterns. mid bead deposition technique Suggested in this study has a technical concept that the mid beads are deposited between the deposited initial beads repeatedly in a bead layer, which gives a lot of reheating effects on brittle microstructure in HAZ. This newly suggested technique is considered to have more effective tempering effect than the conventional temper bead technique which has concept to deposit one type of beads in a bead layer. The suggested modeling in this study can simulate well the SMAW process. Hence this modeling was used in analyzing the more complicated welding process of multi-layer welding. The modeling was used to analyze the tempering effect on the microstructures of HAZ by considering the patterns of overlapping of the reheating regions under the consequently deposited beads. When considering the crack path in the ever-matched weld metal condition, the interface may have a resistance against the crack propagation. A182 filler and A625 filler were used to make the weld specimens which have different weld metal conditions. The crack directed toward the under-matched weld metal may propagate across the fusion line easier than that of the even-matched weld metal condition.

  20. Development of Alternative Technology to PWHT in Site Welding

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Lee, B. S.; Jang, J. S.; Kim, K. H.; Park, S. D.; Yoon, J. H.; Kim, M. C.; Kim, K. B.; Sung, K. W.

    2007-04-01

    ASME Section IX added requirements for qualification when using temper bead welding in the 2004 edition. The temper bead welding techniques which can satisfy the requirements of the Code are needed to use them in the site repair welding. The optimized welding parameters can be obtained when controlling the process to supercritically-reheat and to subcritically-reheat the coarse grain region sequently. The microstructures of SCFGCG obtained from the Gleegle simulated specimens and those of post weld heat treated coarse grain region are compared. The obtained both microstructures showed almost similar patterns. mid bead deposition technique Suggested in this study has a technical concept that the mid beads are deposited between the deposited initial beads repeatedly in a bead layer, which gives a lot of reheating effects on brittle microstructure in HAZ. This newly suggested technique is considered to have more effective tempering effect than the conventional temper bead technique which has concept to deposit one type of beads in a bead layer. The suggested modeling in this study can simulate well the SMAW process. Hence this modeling was used in analyzing the more complicated welding process of multi-layer welding. The modeling was used to analyze the tempering effect on the microstructures of HAZ by considering the patterns of overlapping of the reheating regions under the consequently deposited beads. When considering the crack path in the ever-matched weld metal condition, the interface may have a resistance against the crack propagation. A182 filler and A625 filler were used to make the weld specimens which have different weld metal conditions. The crack directed toward the under-matched weld metal may propagate across the fusion line easier than that of the even-matched weld metal condition

  1. A Study on the Optimal Welding Condition for Root-Pass in Horizontal Butt-Joint TIG Welding

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung Hun; Kim, Jae-Woong [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2017-04-15

    In this study, to investigate the shape of the back bead as a weld quality parameter and to select the optimal condition of the root-pass TIG welding of a horizontal butt-joint, an experimental design and the response surface method (RSM) have been employed. Three parameters are used as input variables, which include the base current, peak current, and welding speed. The back bead width is selected as an output variable representing the weld quality, the target value of the width is 5.4 mm. Conducting the experiments according to the Box-Behnken experimental design, a 2nd regression model for the back bead width was made, and the validation of the model was confirmed by using the F-test. The desirability function was designed through the nominal-the-best formula for the appropriate back bead width. Finally, the following optimal condition for welding was selected using the RSM: base current of 0.9204, peak current of 0.8676, and welding speed of 0.3776 in coded values. For verification, a test welding process under the optimal condition was executed and the result showed the back bead width of 5.38 mm that matched the target value well.

  2. A Study on the Optimal Welding Condition for Root-Pass in Horizontal Butt-Joint TIG Welding

    International Nuclear Information System (INIS)

    Jung, Sung Hun; Kim, Jae-Woong

    2017-01-01

    In this study, to investigate the shape of the back bead as a weld quality parameter and to select the optimal condition of the root-pass TIG welding of a horizontal butt-joint, an experimental design and the response surface method (RSM) have been employed. Three parameters are used as input variables, which include the base current, peak current, and welding speed. The back bead width is selected as an output variable representing the weld quality, the target value of the width is 5.4 mm. Conducting the experiments according to the Box-Behnken experimental design, a 2nd regression model for the back bead width was made, and the validation of the model was confirmed by using the F-test. The desirability function was designed through the nominal-the-best formula for the appropriate back bead width. Finally, the following optimal condition for welding was selected using the RSM: base current of 0.9204, peak current of 0.8676, and welding speed of 0.3776 in coded values. For verification, a test welding process under the optimal condition was executed and the result showed the back bead width of 5.38 mm that matched the target value well.

  3. Nickel-base alloy overlay weld with improved ultrasonic flaw detection by magnetic stirring welding

    International Nuclear Information System (INIS)

    Takashi, Hirano; Kenji, Hirano; Masayuki, Watando; Takahiro, Arakawa; Minoru, Maeda

    2001-01-01

    Ultrasonic flaw detection is more difficult in Nickel-base alloy welds containing dendrites owing to the decrease ultrasonic transmissibility they cause. The present paper discusses application of magnetic stirring welding as a means for reducing dendrite growth with consequent improvement in ultrasonic transmissibility. Single pass and multi-pass welding tests were conducted to determine optimal welding conditions. By PT and macro observation subsequent to welding was carried out, optimal operation conditions were clarified. Overlay welding tests and UT clearly indicated ultrasonic beam transmissibility in overlay welds to be improved and detection capacity to be greater through application of magnetic stirring welding. Optimal operation conditions were determined based on examination of temper bead effects in the heat affected zone of low alloy steel by application of magnetic stirring welding to the butt welded joints between low alloy and stainless steel. Hardness in this zone of low alloy steel after the fourth layer was less than 350 HV. (author)

  4. Heat Source - Materials Interactions during Fusion Welding.

    Science.gov (United States)

    1982-04-30

    the capabilities of ultrasonic weld pool measurement, and to address questions of applications to active pool size control. -- mom- 44 TIG welding ...preparation. The fraction of absorbed power increases dramatically upon formation of a keyhole . As a result, welds made with sharply beveled edge...laser end electron beam welding processes characteristically produce a deel,, narrow weld bead. This bead is formed by a keyhole mode of operation in

  5. Microstructural Characterization of the Heat-Affected Zones in Grade 92 Steel Welds: Double-Pass and Multipass Welds

    Science.gov (United States)

    Xu, X.; West, G. D.; Siefert, J. A.; Parker, J. D.; Thomson, R. C.

    2018-04-01

    The microstructure in the heat-affected zone (HAZ) of multipass welds typical of those used in power plants and made from 9 wt pct chromium martensitic Grade 92 steel is complex. Therefore, there is a need for systematic microstructural investigations to define the different regions of the microstructure across the HAZ of Grade 92 steel welds manufactured using the traditional arc welding processes in order to understand possible failure mechanisms after long-term service. In this study, the microstructure in the HAZ of an as-fabricated two-pass bead-on-plate weld on a parent metal of Grade 92 steel has been systematically investigated and compared to a complex, multipass thick section weldment using an extensive range of electron and ion-microscopy-based techniques. A dilatometer has been used to apply controlled thermal cycles to simulate the microstructures in distinctly different regions in a multipass HAZ using sequential thermal cycles. A wide range of microstructural properties in the simulated materials were characterized and compared with the experimental observations from the weld HAZ. It has been found that the microstructure in the HAZ can be categorized by a combination of sequential thermal cycles experienced by the different zones within the complex weld metal, using the terminology developed for these regions based on a simpler, single-pass bead-on-plate weld, categorized as complete transformation, partial transformation, and overtempered.

  6. Residual stresses in 2 1/4Cr1Mo welds

    International Nuclear Information System (INIS)

    Fidler, R.; Jerram, K.

    1978-01-01

    Two separate investigations, initiated in an attempt to explain the large amount of residual stress scatter previously observed in the weld metal of eighteen nominally identical thick-section 2 1/4Cr1Mo butt welds, are described in this paper. The first examined the detailed surface residual stress distributions in 2 1/4Cr1Mo manual arc circumferential butt welds in 80mm and 100mm thick 1/2Cr1/2Mo1/4V steam pipe. High residual stresses were found in the regions of overlap between adjacent weld beads, with low values in virgin weld metal. The second utilised single pass manual metal arc bead-in-groove welds to investigate the effects of preheat and weld metal composition on weld metal residual stresses. In four weld metals, mild steel, 1/2Cr1/2Mo1/4V, 1Cr1/2Mo, and 2 1/4Cr1Mo, the residual stresses were very similar, becoming less tensile (or more compressive) with increase of preheat, while the residual stresses in the fifth weld metal (12Cr) were significantly different, being compressive and less affected by preheat. In both investigations the effects have been described in terms of the basic metallurgical phenomena occurring in the weld metal. (author)

  7. Optimization of process parameters of pulsed TIG welded maraging steel C300

    Science.gov (United States)

    Deepak, P.; Jualeash, M. J.; Jishnu, J.; Srinivasan, P.; Arivarasu, M.; Padmanaban, R.; Thirumalini, S.

    2016-09-01

    Pulsed TIG welding technology provides excellent welding performance on thin sections which helps to increase productivity, enhance weld quality, minimize weld costs, and boost operator efficiency and this has drawn the attention of the welding society. Maraging C300 steel is extensively used in defence and aerospace industry and thus its welding becomes an area of paramount importance. In pulsed TIG welding, weld quality depends on the process parameters used. In this work, Pulsed TIG bead-on-plate welding is performed on a 5mm thick maraging C300 plate at different combinations of input parameters: peak current (Ip), base current (Ib) and pulsing frequency (HZ) as per box behnken design with three-levels for each factor. Response surface methodology is utilized for establishing a mathematical model for predicting the weld bead depth. The effect of Ip, Ib and HZ on the weld bead depth is investigated using the developed model. The weld bead depth is found to be affected by all the three parameters. Surface and contour plots developed from regression equation are used to optimize the processing parameters for maximizing the weld bead depth. Optimum values of Ip, Ib and HZ are obtained as 259 A, 120 A and 8 Hz respectively. Using this optimum condition, maximum bead depth of the weld is predicted to be 4.325 mm.

  8. Effects of nitrogen and hydrogen in argon shielding gas on bead profile, delta-ferrite and nitrogen contents of the pulsed GTAW welds of AISI 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Viyanit, Ekkarut [National Metal and Materials Technology Center (MTEC), Pathaumthani (Thailand). Failure Analysis and Surface Technology Lab; Hartung, Fritz; Lothongkum, Gobboon [Chulalongkom University, Bangkok (Thailand). Dept. of Metallurgical Engineering,; Phakpeetinan, Panyasak; Chianpairot, Amnuysak

    2016-08-01

    The general effects of 1, 2, 3 and 4 vol.-% nitrogen and 1, 5 and 10 vol.-% hydrogen in argon shielding gas on weld bead profile (depth/width ratio: D/W) and the δ-ferrite content of AISI 316L pulsed GTAW welds were investigated. The limits for imperfections for the quality levels of welds were based on ISO 5817 B. The plates with a thickness of 6 mm were welded at the flat position and the bead on plate. Increasing hydrogen content in argon shielding gas increases the D/W ratio. Excessive hydrogen addition to argon shielding gas will result in incompletely filled groove and excessive penetration of weld. Increasing welding speed decreases the weld-metal volume and the D/W ratios. Nitrogen addition to argon shielding gas has no effect on the D/W ratio. The addition of a mixture of nitrogen and hydrogen to argon shielding gas on the D/W ratio does not show any interaction between them. An effect on the D/W ratio can be exclusively observed as a function of hydrogen content. Increasing hydrogen content in argon shielding gas increases the δ-ferrite content of weld metal. Increasing either nitrogen content in shielding gas or welding speed decreases the δ-ferrite content of weld metal. The nitrogen addition increases the weld metal nitrogen content, however, the hydrogen addition leads to a decrease of weld metal nitrogen content.

  9. Friction stir welding of single crystal aluminium

    DEFF Research Database (Denmark)

    Fonda, Richard Warren; Wert, John A.; Reynolds, A.P.

    2007-01-01

    Friction stir welds were prepared in different orientations in an aluminium single crystal. The welds were quenched to preserve the microstructure surrounding the tool and then electron backscattered diffraction was used to reveal the generation of grain boundaries and the evolution...... of crystallographic texture around the tool in each weld. The extent of both dynamic recrystallisation and conventional recrystallisation varied considerably as a function of weld orientation. As the base plate begins to interact with the deformation field surrounding the tool, regions of the single crystal rotate...

  10. Use of the gapped bead-on-plate test to investigate hydrogen induced cracking of flux cored arc welds of a quenched and tempered steel

    International Nuclear Information System (INIS)

    Chen, Liang; Dunne, Druce; Davidson, Len

    2014-01-01

    Gapped bead-on-plate (G-BOP) testing of flux cored arc welds was conducted to assess the susceptibility to hydrogen induced cold cracking (HICC) of weld metal deposited on a high strength quenched and tempered steel. For preheat temperatures higher than 40°C, no weld metal cracking was observed using a shielding gas consisting of argon with 20% carbon dioxide. In contrast, the no-crack condition was not achieved for a shielding gas consisting of argon-5% carbon dioxide for preheat temperatures lower than 100°C. This extraordinary difference in weld metal HICC resistance indicates that, in general, the shielding gas mixture can exert a major influence on weld metal transverse cold cracking behaviour

  11. Automatic welding and cladding in heavy fabrication

    International Nuclear Information System (INIS)

    Altamer, A. de

    1980-01-01

    A description is given of the automatic welding processes used by an Italian fabricator of pressure vessels for petrochemical and nuclear plant. The automatic submerged arc welding, submerged arc strip cladding, pulsed TIG, hot wire TIG and MIG welding processes have proved satisfactory in terms of process reliability, metal deposition rate, and cost effectiveness for low alloy and carbon steels. An example shows sequences required during automatic butt welding, including heat treatments. Factors which govern satisfactory automatic welding include automatic anti-drift rotator device, electrode guidance and bead programming system, the capability of single and dual head operation, flux recovery and slag removal systems, operator environment and controls, maintaining continuity of welding and automatic reverse side grinding. Automatic welding is used for: joining vessel sections; joining tubes to tubeplate; cladding of vessel rings and tubes, dished ends and extruded nozzles; nozzle to shell and butt welds, including narrow gap welding. (author)

  12. Research on Heat Source Model and Weld Profile for Fiber Laser Welding of A304 Stainless Steel Thin Sheet

    Directory of Open Access Journals (Sweden)

    Peizhi Li

    2018-01-01

    Full Text Available A heat source model is the key issue for laser welding simulation. The Gaussian heat source model is not suitable to match the actual laser weld profile accurately. Furthermore, fiber lasers are widely recognized to result in good-quality laser beam output, a narrower weld zone, less distortion, and high process efficiency, compared with other types of lasers (such as CO2, Nd : YAG, and diode lasers. At present, there are few heat source models for fiber laser welding. Most of researchers evaluate the weld profile only by the bead width and depth of penetration, which is not suitable for the laser keyhole welding nail-like profile. This paper reports an experimental study and FEA simulation of fiber laser butt welding on 1 mm thick A304 stainless steel. A new heat source model (cylindrical and cylindrical is established to match the actual weld profile using Marc and Fortran software. Four bead geometry parameters (penetration depth, bead width, waist width, and depth of the waist are used to compare between the experimental and simulation results. The results show that the heat source model of cylindrical and cylindrical can match the actual shape of the fiber laser welding feasibly. The error range of the penetration depth, bead width, waist width, and depth of the waist between experimental and simulation results is about 4.1 ± 1.6%, 2.9 ± 2.0%, 13.6 ± 7.4/%, and 18.3 ± 8.0%, respectively. In addition, it is found that the depth of penetration is more sensitive to laser power rather than bead width, waist width, and depth of the waist. Welding speed has a similar influence on the depth of penetration, weld width, waist width, and depth of the waist.

  13. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    Science.gov (United States)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  14. Mathematical Modeling of Metal Active Gas (MAG) Arc Welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the present paper, a numerical model for MAG (metal active gas) arc welding of thin plate has been developed. In MAG arc welding, the electrode wire is melted and supplied into the molten pool intermittently. Accordingly, it is assumed on the modeling that the thermal energy enters the base-plates through two following mechanisms, i.e., direct heating from arc plasma and “indirect” heating from the deposited metal. In the second part of the paper, MAG arc welding process is numerically analyzed by using the model, and the calculated weld bead dimension and surface profile have been compared with the experimental MAG welds on steel plate. As the result, it is made clear that the model is capable of predicting the bead profile of thin-plate MAG arc welding , including weld bead with undercutting.

  15. Effect of Dynamic Reheating Induced by Weaving on the Microstructure of GTAW Weld Metal of 25% Cr Super Duplex Stainless Steel Weld Metal

    Directory of Open Access Journals (Sweden)

    Hee-Joon Sung

    2017-11-01

    Full Text Available The importance of the additional growth and/or transformation of the austenite phase that occurs in weld metals of super duplex stainless steel upon reheating is known. However, the effects have not been fully investigated, especially with respect to reheating induced by weaving during single-pass welding. In this work, bead-on-pipe gas tungsten arc welding (GTAW was conducted on super duplex stainless steel to understand the effect of weaving on the microstructure of weld metal. Microstructural analysis, electron backscatter diffraction (EBSD, and focused ion beam transmission electron microscopy (FIB-TEM were carried out to investigate the relationship between weaving and microstructural change. The weaving of GTAW produced a dynamic reheated area just before the weld bead during welding. It was revealed that extensive reheated weld existed even after one welding pass, and that the content of the austenite phase in the reheated area was higher than that in the non-reheated area, indicating the existence of a large quantity of intragranular austenite phase. In addition, the Cr2N content in the reheated area was lower than that in the non-reheated area. This reduction of Cr2N was closely related to the reheating resulting from weaving. TEM analysis revealed that Cr2N in the non-reheated area was dispersed following heating and transformed to secondary austenite.

  16. Tensile properties of electron-beam-welded single crystals of molybdenum

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi; Irie, Hirosada; Fujii, Tadayuki.

    1987-01-01

    The purpose of this study is to investigate the macro- and microstructures and the tensile properties of electron-beam-welded single crystals of molybdenum. The single-crystal sheets were prepared by means of secondary recrystallization. The welding was carried out by a melt-run technique. The weld metal had the same crystallographic orientation as the base metal, and no grain boundary was observed. However, many large weld pores were formed mostly along the weld bond. The strength and ductility of the welded joints of single crystals were almost the same as those of the base metal (''annealed'' single crystals). It is concluded that the joint efficiency of molybdenum single crystals at room temperature or above was excellent and nearly 100 %. (author)

  17. Macrostructural and microstructural features of 1 000 MPa grade TRIP steel joint by CO2 laser welding

    Institute of Scientific and Technical Information of China (English)

    Wang Wenquan; Sun Daqian; Kang Chungyun

    2008-01-01

    Bead-on-plate CO2 laser welding of 1 000 MPa grade transformation induced plasticity (TRIP) steel was conducted under different welding powers, welding speeds and shield gases. The macrostructural and microstructural features of the welded joint were investigated. The increase of welding speed reduced the width of the weld bead and the porosities in the weld bead resulting from the different flow mode of melted metal in weld pool. The decrease of welding power or use of shield gas of helium also contributed to the reduction of porosity in the weld bead due to the alleviation of induced plasma formation, thus stabilizing the keyhole. The porosity formation intimately correlated with the evaporation of alloy element Mn in the base metal. The laser welded metal had same martensite microstructure as that of water-quenched base metal. The welding parameters which increased cooling rate all led to fine microstructures of the weld bead.

  18. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kistrup, Kasper, E-mail: kkis@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Skotte Sørensen, Karen, E-mail: karen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Center for Integrated Point of Care Technologies (CiPoC), DELTA, Venlighedsvej 4, DK-2870 Hørsholm (Denmark); Wolff, Anders, E-mail: anders.wolff@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Fougt Hansen, Mikkel, E-mail: mikkel.hansen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark)

    2015-04-15

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis-binding buffer, respectively. - Highlights: • We present an all-polymer mass producible passive filled microfluidic chip system. • Rapid system fabrication is obtained by injection moulding and ultrasonic welding. • The system is made for single-use nucleic acid extraction using magnetic beads. • We systematically map compatibility of the chip system with various surfactants. • We quantify the volume carry-over of magnetic beads in water and 0.1% triton-X solution.

  19. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    International Nuclear Information System (INIS)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-01-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis-binding buffer, respectively. - Highlights: • We present an all-polymer mass producible passive filled microfluidic chip system. • Rapid system fabrication is obtained by injection moulding and ultrasonic welding. • The system is made for single-use nucleic acid extraction using magnetic beads. • We systematically map compatibility of the chip system with various surfactants. • We quantify the volume carry-over of magnetic beads in water and 0.1% triton-X solution

  20. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  1. The variable polarity plasma arc welding process: Characteristics and performance

    Science.gov (United States)

    Hung, R. J.; Zhu, G. J.

    1991-01-01

    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. The power distribution was analyzed for an argon plasma gas flow constituting the fluid in the VPPA Welding Process. The major heat loss at the torch nozzle is convective heat transfer; in the space between the outlet of the nozzle and the workpiece; radiative heat transfer; and in the keyhole in the workpiece, convective heat transfer. The power absorbed at the workpiece produces the molten puddle that solidifies into the weld bead. Crown and root widths, and crown and root heights of the weld bead are predicted. The basis is provided for an algorithm for automatic control of VPPA welding machine parameters to obtain desired weld bead dimensions.

  2. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    Science.gov (United States)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  3. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  4. Method and device for weld deposit cladding

    International Nuclear Information System (INIS)

    Barger, J.J.

    1977-01-01

    In order to get weld beads of good quality, uniform thickness and faultless transition regions between neighboring beads in weld deposit cladding of metallic workpoeces, it is proposed to use a device in which the electromagnets are arranged adjacent to th zone of molten welding powder and molten metal besides having got suitable supplies for applying the welding powder, the polarity of the magnets being chosen in such a way that the lines of flux between the poles are counteracting the lines of flux surrounding the electrode band because of the welding current. Several variants of arranging the electrodes are presented in detail. (UWI) [de

  5. Investigation on edge joints of Inconel 625 sheets processed with laser welding

    Science.gov (United States)

    Caiazzo, F.; Alfieri, V.; Cardaropoli, F.; Sergi, V.

    2017-08-01

    Laser welding of Inconel 625 edge joint beads in square groove configuration was investigated. The use of different weld geometries in new aerospace solutions explains research on edge joints. A structured plan was carried out in order to characterize the process defining the influence of laser power and welding speed and to study possible interactions among the governing factors. As weld pool protection is crucial in order to obtain sound joints when processing superalloys, a special glove box for gas supply was designed to upgrade the welding head. Welded joints were characterized referring to bead profile, microstructure and X-rays. It was found that heat input plays an important role as it affects welding stability, porosity content and bead shape. Results suggest operating with low values of heat input to reduce porosity and guarantee stable bead conformation. Furthermore, a decrease in the grain size has been observed as a consequence of decreasing heat input.

  6. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-03-01

    Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.

  7. Electron beam welding

    International Nuclear Information System (INIS)

    Gabbay, M.

    1972-01-01

    The bead characteristics and the possible mechanisms of the electron beam penetration are presented. The different welding techniques are exposed and the main parts of an electron beam welding equipment are described. Some applications to nuclear, spatial and other industries are cited [fr

  8. Automatic welding machine for piping

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Koyama, Takaichi; Iizuka, Tomio; Ito, Yoshitoshi; Takami, Katsumi.

    1978-01-01

    A remotely controlled automatic special welding machine for piping was developed. This machine is utilized for long distance pipe lines, chemical plants, thermal power generating plants and nuclear power plants effectively from the viewpoint of good quality control, reduction of labor and good controllability. The function of this welding machine is to inspect the shape and dimensions of edge preparation before welding work by the sense of touch, to detect the temperature of melt pool, inspect the bead form by the sense of touch, and check the welding state by ITV during welding work, and to grind the bead surface and inspect the weld metal by ultrasonic test automatically after welding work. The construction of this welding system, the main specification of the apparatus, the welding procedure in detail, the electrical source of this welding machine, the cooling system, the structure and handling of guide ring, the central control system and the operating characteristics are explained. The working procedure and the effect by using this welding machine, and the application to nuclear power plants and the other industrial field are outlined. The HIDIC 08 is used as the controlling computer. This welding machine is useful for welding SUS piping as well as carbon steel piping. (Nakai, Y.)

  9. Effect of Dynamic Reheating Controlled by the Weaving Width on the Microstructure of GTA Bead-On-Pipe Weld Metal of 25% Cr Super Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Hee-Joon Sung

    2018-05-01

    Full Text Available Gas tungsten arc welding (GTAW with three different heat inputs controlled by the weaving width was performed to understand their effects on the microstructural changes during bead-on-pipe welding of super duplex stainless steel. The microstructure of the weld metals was categorized into three different types of zones: non-reheated, reheated type, and reheating-free zone. Even though single-pass welding with different weaving widths was employed, a reheated microstructure was detected, which has been previously observed with multiple pass welding. This phenomenon was called “dynamic reheating”, because it was produced by the weaving operation during welding regardless of the weaving width. The categorized area fraction varied with the weaving width change. Electron backscatter diffraction (EBSD results at the edge (the area near the fusion line of the low-heat-input condition indicated a higher austenite volume fraction and a lower Cr2N fraction than that of the medium heat input condition. Thus, it described an inverse relationship, because higher heat input provided a lower austenite fraction. In addition, it was observed clearly that the austenite fraction at the medium heat input condition was dramatically increased by reheating, while the Cr2N fraction was reduced. Regardless of the weaving width, reheating contributed to the increase of the austenite fraction, further reducing the Cr2N quantity. The edge areas in the map showed an inverse relationship in the reheated area fraction between low heat input and medium heat input. For this reason, the austenite fraction on the weld metal was determined not only by the heat input, but also by the amount of reheating.

  10. Evolution of microstructure in laser welding of SS304L

    International Nuclear Information System (INIS)

    Kumar, Santosh; Kushwaha, R.P.; Viswanadham, C.S.; Dey, G.K.

    2009-01-01

    Laser welding is an important joining process and its application in industries is growing rapidly. One can produce laser welds over a wide range of process parameters and this offers very good opportunity for producing microstructure of different morphology and scales in the weldment. Weld beads have been produced on 5 mm thick plates of SS304L using CW Nd-YAG laser. Laser power was varied in 200 W to 1000 W range and welding speed was varied in 100 mm/mm to 1000 mm/mm. This resulted in weld beads of different morphology. Microstructure of the weld beads was examined on the cross-section as well as in the axial direction using optical microscopy and Transmission Electron Microscopy (TEM) to study evolution of the microstructure in the weldment. Microstructure was cellular and cellular-dendritic with grains growing from the fusion line towards the centerline. In the central region, cellular growth along the welding direction was observed. The cell size was found to increase with increasing laser power and decreasing welding speed. The findings are presented in this paper. (author)

  11. Protection of welded joints against corrosion degradation

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2013-01-01

    Full Text Available Welded joints form an integral part of steel constructions. Welded joints are undetachable joints, which are however subjects of corrosion processes. The internal energy increases during the fusion welding especially in the heat affected places around the welded joint, which become initiating spot of corrosion degradation.The aim of the experiment is to put a welded joint produced by the MAG method to a test of corrosion degradation under the conditions of the norm ČSN ISO 9227 (salt-spray test. Organic and inorganic anticorrosion protections were applied on welded beads. First of all, there were prepared welded beads using the method MAG; secondly, metallographical analyses of welded metal, heat affected places and base material were processed. Further, microhardness as well as analysis of chemical composition using the EDS microscope were analysed. Based on a current trend in anticorrosion protections, there were chosen three types of protective coatings. First protective system was a double-layer synthetic system, where the base layer is formed by paint Pragroprimer S2000 and the upper layer by finishing paint Industrol S 2013. Second protective system is a duplex system formed by a combination of a base zinc coating with Zinorex paint. The last protective system was formed by zinc dipping only. Corrosion resistance of the individual tested samples was evaluated based on degradation of protective coating. The corrosion origin as well as the corrosion process were observed, the main criteria was the observation of welded bead.

  12. Grinding Parts For Automatic Welding

    Science.gov (United States)

    Burley, Richard K.; Hoult, William S.

    1989-01-01

    Rollers guide grinding tool along prospective welding path. Skatelike fixture holds rotary grinder or file for machining large-diameter rings or ring segments in preparation for welding. Operator grasps handles to push rolling fixture along part. Rollers maintain precise dimensional relationship so grinding wheel cuts precise depth. Fixture-mounted grinder machines surface to quality sufficient for automatic welding; manual welding with attendant variations and distortion not necessary. Developed to enable automatic welding of parts, manual welding of which resulted in weld bead permeated with microscopic fissures.

  13. Non destructive evaluation of residual stresses in welding and hard-surfacing processes

    International Nuclear Information System (INIS)

    Suarez, J.C.; Fernandez, L.M.; Cruz, C.; Aragon, B.; Merino, F.

    1995-01-01

    In this paper transversal and longitudinal stress profiles in welding and hard-surfacing by welding processes are presented. The stresses were measured by RMS of Barkhausen signal. In this work it is shown that in each case the level of stresses is strongly dependent on the number of weld beads of surfacing layers deposited. The subsequent deposition of new weld beads or surfacing layers produces a stress-relieving effect

  14. Degradation Processes of Al-Zn Welded Joints

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2014-01-01

    Full Text Available Welding of metal materials belongs to non-demountable joints. Current trend especially in an automotive industry is to join materials with a different melting temperature. Most of all, there are dural profiles with ferrite or austenite steel. The reason for this is the effort to lower the weight of the whole construction and at the same time preserve sufficient mechanical characteristics. However, there is a big risk of different electrical potentials of both of these metals in this type of non-demountable joints. The experimental part of this paper brings evaluation of mechanical-corrosion processes of overlapped joints produced by the CMT (cold metal transfer method. The base material for weld bead is dural sheet AlMg3 and dural sheet with a surface treatment aluzinc DX51D+AZ 150. Material AlSi5 in the form of a wire was used as an additional material for a welding bath. Method CMT was used in order to create a weld bead. Initial analysis of weld bead was done visually using a binocular microscope. Further, a metallographic analysis of weld bead and base material was processed. The aim was to identify the heat affected area around the welded joint. Microhardness of intermetallic aluminium phases was measured, after the identification of intermetallic phases a chemical analysis EDS was processed. Prepared samples underwent corrosion degradation in a salt spray environment in compliance with the norm ČSN EN ISO 9227. Visual and metallographic evaluation of the individual samples was processed after every week of exposition to the salt spray environment. The goal of this experiment was to record the initial impulse of galvanic corrosion which consists in corrosion degradation in the area of welded joint.

  15. Discontinuity Detection in the Shield Metal Arc Welding Process.

    Science.gov (United States)

    Cocota, José Alberto Naves; Garcia, Gabriel Carvalho; da Costa, Adilson Rodrigues; de Lima, Milton Sérgio Fernandes; Rocha, Filipe Augusto Santos; Freitas, Gustavo Medeiros

    2017-05-10

    This work proposes a new methodology for the detection of discontinuities in the weld bead applied in Shielded Metal Arc Welding (SMAW) processes. The detection system is based on two sensors-a microphone and piezoelectric-that acquire acoustic emissions generated during the welding. The feature vectors extracted from the sensor dataset are used to construct classifier models. The approaches based on Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers are able to identify with a high accuracy the three proposed weld bead classes: desirable weld bead, shrinkage cavity and burn through discontinuities. Experimental results illustrate the system's high accuracy, greater than 90% for each class. A novel Hierarchical Support Vector Machine (HSVM) structure is proposed to make feasible the use of this system in industrial environments. This approach presented 96.6% overall accuracy. Given the simplicity of the equipment involved, this system can be applied in the metal transformation industries.

  16. Welding robot package; Arc yosetsu robot package

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S. [Yaskawa Electric Corp., Kitakyushu (Japan)

    1998-09-01

    For the conventional high-speed welding robot, the welding current was controlled mainly for reducing the spatters during short circuits and for stabilizing the beads by the periodic short circuits. However, an increase of deposition amount in response to the speed is required for the high-speed welding. Large-current low-spatter welding current region control was added. Units were integrated into a package by which the arc length is kept in short without dispersion of arc length for welding without defects such as undercut and unequal beads. In automobile industry, use of aluminum parts is extended for the light weight. The welding is very difficult, and automation is not so progressing in spite of the poor environment. Buckling of welding wire is easy to occur, and supply of wire is obstructed by the deposition of chipped powders on the torch cable, which stay within the contact chip resulting in the deposition. Dislocation of locus is easy to occur at the corner of rectangular pipe during the welding. By improving these troubles, an aluminum MIG welding robot package has been developed. 13 figs.

  17. Prediction of Weld Residual Stress of Narrow Gap Welds

    International Nuclear Information System (INIS)

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  18. Fatique Resistant, Energy Efficient Welding Program, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Egland, Keith; Ludewig, Howard

    2006-05-25

    The program scope was to affect the heat input and the resultant weld bead geometry by synchronizing robotic weave cycles with desired pulsed waveform shapes to develop process parameters relationships and optimized pulsed gas metal arc welding processes for welding fatique-critical structures of steel, high strength steel, and aluminum. Quality would be addressed by developing intelligent methods of weld measurement that accurately predict weld bead geometry from process information. This program was severely underfunded, and eventually terminated. The scope was redirected to investigate tandem narrow groove welding of steel butt joints during the one year of partial funding. A torch was designed and configured to perform a design of experiments of steel butt weld joints that validated the feasability of the process. An initial cost model estimated a 60% cost savings over conventional groove welding by eliminating the joint preparation and reducing the weld volume needed.

  19. Welding and joining of single crystals of BCC refractory metals

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Fujii, Tadayuki

    1989-01-01

    Welding and joining is one of key technologies for the wider utilizations of a material. In the present work, the applicability of welding and joining for a single crystal of BCC refractory metal was investigated. Electron-beam welding and tungsten-inert-gas welding by a melt-run technique, and high-temperature brazing by using brazing metals such as Mo-40%Ru alloy, vanadium or platinum were conducted for molybdenum single crystal which had been prepared by means of secondary recrystallization. 12 refs.,12 figs., 2 tabs. (Author)

  20. A quantitative evaluation of the L.B.W. efficiency on AISI 304 bead on plates welded under different focusing and tilted laser beam conditions

    Science.gov (United States)

    Daurelio, Giuseppe; Ludovico, Antonio D.; Lugara, M. P.; De Filippis, L. A. C.; Spera, A. M.; Rocco, S.

    2005-03-01

    The aim of this search is to evaluate the WE (Welding Efficiency) of each beads versus the different positions of the laser beam optical focus (positive or negative or zero values) respect to the work-piece surface and also versus different laser beam incidence angles (80° and 70°) by using two laser power levels (2 and 2.5 KW) and two welding speeds (3 and 6 m/min). The WE values have been reported on two DA.LU. method plots and the relate evaluations regarding the same ones as well as the recorded best parameters have been evidenced.

  1. Testing of electron beam welding by ultrasonic transducers

    International Nuclear Information System (INIS)

    Touffait, A.-M.; Roule, M.; Destribats, M.-T.

    1978-01-01

    Focalized ultrasonic testing is well adapted to the study of electron beam welding. This type of welding leads to narrow weld beads and to small dimension testing zones. Focalized transducers can be used enabling very small defects to be detected [fr

  2. Influence of weld structure on cross-weld creep behavior in P23 steel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Degnan, C.C. [E.ON Engineering (United Kingdom); Brett, S.J. [RWE npower (United Kingdom); Buchanan, L.W. [Doosan Babcock (United Kingdom)

    2010-07-01

    A thick section pipe weld in low alloy steel P23 has been characterised by cross-weld creep rupture testing at a range of stresses, together with all-weld-metal and parent material testing, under the auspices of the UK High Temperature Power Plant Forum. The results generally show that the weld metal can be weak when tested in the transverse (cross-weld) orientation, and can fail with limited overall ductility by cracking in the zone of refined weld metal beneath the fusion boundary of the superposed weld bead. However, one specimen showed a much superior performance, which could be understood in terms of its locally more creep resistant weld macrostructure. The implications for P23 performance and weld manufacture are discussed. (orig.)

  3. Fiber Laser Welding of Dissimilar 2205/304 Stainless Steel Plates

    Directory of Open Access Journals (Sweden)

    Ghusoon Ridha Mohammed

    2017-12-01

    Full Text Available In this study, an attempt on pulsed-fiber laser welding on an austenitic-duplex stainless steel butt joint configuration was investigated. The influence of various welding parameters, such as beam diameter, peak power, pulse repetition rate, and pulse width on the weld beads geometry was studied by checking the width and depth of the welds after each round of welding parameters combination. The weld bead dimensions and microstructural progression of the weld joints were observed microscopically. Finally, the full penetration specimens were subjected to tensile tests, which were coupled with the analysis of the fracture surfaces. From the results, combination of the selected weld parameters resulted in robust weldments with similar features to those of duplex and austenitic weld metals. The weld depth and width were found to increase proportionally to the laser power. Furthermore, the weld bead geometry was found to be positively affected by the pulse width. Microstructural studies revealed the presence of dendritic and fine grain structures within the weld zone at low peak power, while ferritic microstructures were found on the sides of the weld metal near the SS 304 and austenitic-ferritic microstructure beside the duplex 2205 boundary. Regarding the micro-hardness tests, there was an improvement when compared to the hardness of duplex and austenitic stainless steels base metals. Additionally, the tensile strength of the fiber laser welded joints was found to be higher when compared to the tensile strength of the base metals (duplex and austenitic in all of the joints.

  4. Microstructural evolution and mechanical performance of resistance spot welded DP1000 steel with single and double pulse welding

    NARCIS (Netherlands)

    Chabok, Ali; van der Aa, Ellen; De Hosson, Jeff; Pei, Yutao T.

    2017-01-01

    Two welding schemes of single and double pulse were used for the resistance spot welding of DP1000 dual phase steel. The changes in the mechanical performance and variant pairing of martensite under two different welding conditions were scrutinized. It is demonstrated that, although both welds fail

  5. High Temperature Fatigue Crack Growth Rate Studies in Stainless Steel 316L(N Welds Processed by A-TIG and MP-TIG Welding.

    Directory of Open Access Journals (Sweden)

    Thomas Manuel

    2018-01-01

    Full Text Available Welded stainless steel components used in power plants and chemical industries are subjected to mechanical load cycles at elevated temperatures which result in early fatigue failures. The presence of weld makes the component to be liable to failure in view of residual stresses at the weld region or in the neighboring heat affected zone apart from weld defects. Austenitic stainless steels are often welded using Tungsten Inert Gas (TIG process. In case of single pass welding, there is a reduced weld penetration which results in a low depth-to-width ratio of weld bead. If the number of passes is increased (Multi-Pass TIG welding, it results in weld distortion and subsequent residual stress generation. The activated flux TIG welding, a variant of TIG welding developed by E.O. Paton Institute, is found to reduce the limitation of conventional TIG welding, resulting in a higher depth of penetration using a single pass, reduced weld distortion and higher welding speeds. This paper presents the fatigue crack growth rate characteristics at 823 K temperature in type 316LN stainless steel plates joined by conventional multi-pass TIG (MP-TIG and Activated TIG (A-TIG welding process. Fatigue tests were conducted to characterize the crack growth rates of base metal, HAZ and Weld Metal for A-TIG and MP-TIG configurations. Micro structural evaluation of 316LN base metal suggests a primary austenite phase, whereas, A-TIG weld joints show an equiaxed grain distribution along the weld center and complete penetration during welding (Fig. 1. MP-TIG microstructure shows a highly inhomogeneous microstructure, with grain orientation changing along the interface of each pass. This results in tortuous crack growth in case of MP-TIG welded specimens. Scanning electron microscopy studies have helped to better understand the fatigue crack propagation modes during high temperature testing.

  6. An automatic approach for nondestructive radiographic inspection of pipeline weld joint; Uma abordagem automatica aplicada a inspecao radiografica nao-destrutiva de soldas em tubulacoes

    Energy Technology Data Exchange (ETDEWEB)

    Felisberto, Marcelo K.; Schneider, Guilherme A.; Centeno, Tania M.; Arruda, Lucia V.R. de [Centro Federal de Educacao Tecnologica do Parana, Curitiba, PR (Brazil). CPGEI - Programa de Pos-graduacao em Engenharia Eletrica e Informatica Industrial

    2005-07-01

    The current work contributes to the research in the area of pipelines non-destructive testing by presenting new methodologies for the automatic analysis of welds radiographs. Object recognition techniques based on genetic algorithms were used for the automatic weld bead detection. In addiction, an image digital filter was also tested in the weld bead images and, as a result, supposed defects are highlighted, making them easier to be detected. These methodologies were tested for 120 digital radiographs from carbon steel pipeline welded joints. These images were acquired by a storage phosphor system, using double-wall radiographic exposing technique with single-wall radiographic viewing, according to the ASME V code. As a result, even human vision hard-perceptible defects are automatically highlighted and extracted from the whole image to be separately analyzed. (author)

  7. Beads from Inhumation Rite Burials of Gnezdovo Burial Mound

    Directory of Open Access Journals (Sweden)

    Dobrova Olga P.

    2017-12-01

    Full Text Available The beads from 33 inhumation burials at Gnezdovo burial mound are examined in the article. The beads (total 367 were crafted from stretched tube (258, stretched stick (3, winding (45, press molding (2 pcs., welding (2 pcs., and mosaic beads (9 pcs.. The burial mound contains virtually no broken beads, including the settlement's most common yellow glass beads. Besides glass beads, cornelian, crystal, amber and faience beads have been registered among the burial mound material, as well as beads crafted with metal. Apart from beads, grave inventories contained a series of pendants with a bead strung on a wire ring. The considered complexes contain five pendants of this type. Besides Gnezdovo, similar pendants have been discovered in Kiev, Timerev, Pskov and Vladimir barrows. A comparison between bead sets from Gnezdovo and Kiev burial mounds allows to conclude that the general composition and occurrence frequency of beads is identical for these burials. At the same time, beads crafted with rock crystal, cornelian and metal are more frequently discovered in Kiev inhumations.

  8. Study on laser beam welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Chida, Itaru; Shiihara, Katsunori; Fukuda, Takeshi; Kono, Wataru; Obata, Minoru; Morishima, Yasuo

    2012-01-01

    Laser beam welding is one of the jointing processes by irradiating laser beam on the material surface locally and widely used at various industrial fields. Toshiba has developed various laser-based maintenance and repair technologies and already applied them to several existing nuclear power plants. Laser cladding is a technique to weld the corrosion resistant metal onto a substrate surface by feeding filler wire to improve the corrosion resistance. Temper-bead welding is the heat input process to provide the desired microstructure properties of welded low alloy steels without post weld heat treatment, by inducing proper heat cycle during laser welding. Both laser welding technologies would be performed underwater by blowing the shielding gas for creating the local dry area. In this report, some evaluation results of material characteristics by temper-bead welding to target at Reactor Coolant System nozzle of PWR are presented. (author)

  9. Diffusion welding. [heat treatment of nickel alloys following single step vacuum welding process

    Science.gov (United States)

    Holko, K. H. (Inventor)

    1974-01-01

    Dispersion-strengthened nickel alloys are sanded on one side and chemically polished. This is followed by a single-step welding process wherein the polished surfaces are forced into intimate contact at 1,400 F for one hour in a vacuum. Diffusion, recrystallization, and grain growth across the original weld interface are obtained during postheating at 2,150 F for two hours in hydrogen.

  10. Double Fillet Welding of Carbon Steel T-Joint by Double Channel Shielding Gas Metal Arc Welding Method Using Metal Cored Wire

    Directory of Open Access Journals (Sweden)

    Mert T.

    2017-06-01

    Full Text Available Low carbon steel material and T-joints are frequently used in ship building and steel constructions. Advantages such as high deposition rates, high quality and smooth weld metals and easy automation make cored wires preferable in these industries. In this study, low carbon steel materials with web and flange thicknesses of 6 mm, 8 mm and 10 mm were welded with conventional GMAW and double channel shielding gas metal arc welding (DMAG method to form double fillet T-joints using metal cored wire. The difference between these two methods were characterized by measurements of mean welding parameters, Vickers hardness profiles, weld bead and HAZ geometry of the joints and thermal camera temperature measurements. When weld bead and HAZ geometries are focused, it was seen filler metal molten area increased and base metal molten area decreased in DMAG of low carbon steel. When compared with traditional GMAW, finer and acicular structures in weld metal and more homogenous and smaller grains in HAZ are obtained with double channel shielding gas metal arc welding.

  11. Reduction method for residual stress of welded joint using harmonic vibrational load

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Nishimura, Tadashi; Hiroi, Tetsumaro; Hirai, Seiji

    2007-01-01

    Welding is widely used for construction of many structures. Since welding is a process using locally given heat, residual stress is generated near the bead. Tensile residual stress degrades fatigue strength. Some reduction methods of residual stress have been presented and, for example, heat treatment and shot peening are practically used. However, those methods need special tools and are time consuming. In this paper, a new method for reduction of residual stress using harmonic vibrational load during welding is proposed. The proposed method is examined experimentally for some conditions. Two thin plates are supported on the supporting device and butt-welded using an automatic CO 2 gas shielded arc welding machine. Residual stress in the direction of the bead is measured by using a paralleled beam X-ray diffractometer with scintillation counter after removing quenched scale chemically. First, the welding of rolled steel for general structure for some excitation frequencies is examined. Specimens are welded along the groove on both sides. For all frequencies, tensile residual stress near the bead is significantly reduced. Second, welding of the specimen made of high tensile strength steel is examined. In this case, tensile residual stress near the bead is also reduced. Finally, the proposed method is examined by an analytical method. An analytical model which consists of mass and preloaded springs with elasto-plastic characteristic is used. Reduction of residual stress is demonstrated using this model

  12. Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)

    Science.gov (United States)

    Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.

    2017-07-01

    In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.

  13. Elucidation of Metallic Plume and Spatter Characteristics Based on SVM During High-Power Disk Laser Welding

    International Nuclear Information System (INIS)

    Gao Xiangdong; Liu Guiqian

    2015-01-01

    During deep penetration laser welding, there exist plume (weak plasma) and spatters, which are the results of weld material ejection due to strong laser heating. The characteristics of plume and spatters are related to welding stability and quality. Characteristics of metallic plume and spatters were investigated during high-power disk laser bead-on-plate welding of Type 304 austenitic stainless steel plates at a continuous wave laser power of 10 kW. An ultraviolet and visible sensitive high-speed camera was used to capture the metallic plume and spatter images. Plume area, laser beam path through the plume, swing angle, distance between laser beam focus and plume image centroid, abscissa of plume centroid and spatter numbers are defined as eigenvalues, and the weld bead width was used as a characteristic parameter that reflected welding stability. Welding status was distinguished by SVM (support vector machine) after data normalization and characteristic analysis. Also, PCA (principal components analysis) feature extraction was used to reduce the dimensions of feature space, and PSO (particle swarm optimization) was used to optimize the parameters of SVM. Finally a classification model based on SVM was established to estimate the weld bead width and welding stability. Experimental results show that the established algorithm based on SVM could effectively distinguish the variation of weld bead width, thus providing an experimental example of monitoring high-power disk laser welding quality. (plasma technology)

  14. Study of the mechanical properties of welded joints by wet sub sea welding technique with tubular electrode; Estudo das propriedades mecanicas de juntas soldadas pela tecnica de soldagem subaquatica molhada com eletrodo tubular

    Energy Technology Data Exchange (ETDEWEB)

    Teichmann, Erwin Werner; Baixo, Carlos Eduardo Iconomos; Dutra, Jair Carlos [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Soldagem e Mecatronica - LABSOLDA]. E-mail: erwin@labsolda.ufsc.br; Santos, Valter Rocha dos [Centro Federal de Educacao Tecnologica (CEFET), Rio de Janeiro, RJ (Brazil); Teixeira, Jose Claudio [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1997-07-01

    Some experiments conducted at LABSOLDA/UFSC - a welding laboratory of Santa Catarina Univ., Florianopolis, Brazil - in order to identify mechanical properties, weld bead geometry and the quantity and dimensions of pores in weld beads produced by sub sea wet FCAW are described. Welding in shallow water with power source adjusted to operate in constant current characteristic mode and a set of parameters to establish an open arc transfer mode it was obtained weld beads with regular geometry and an acceptable profile, with low level of defects incidence, no pores and crack free. The tenacity measured by Charpy tests (0C) was 34 J and hardness of 119 HV-10 measured by Vickers tests. The methodology used in the experiments and the results obtained are discussed in the paper. (author)

  15. Statistical analysis of weld bead geometry in Ti6Al4V laser cladding. Comparison of central composite design and five step full factorial test plan

    Energy Technology Data Exchange (ETDEWEB)

    Marko, Angelina [Fraunhofer Institute for Production Systems and Design Technology IPK, Berlin (Germany); Graf, Benjamin; Rethmeier, Michael [Fraunhofer Institute for Production Systems and Design Technology IPK, Berlin (Germany). Dept. for Joining and Coating Technology

    2017-11-01

    The process of laser cladding has become more important during recent years because of its broad application for cladding, repair or additive manufacturing. In the field of mechanical engineering, one use is the repair of turbine blades. For high quality and reliability of the repaired components, it is necessary to adjust the weld bead geometry to the specific repair task. The bead geometry influences the metallurgical bonding and the degree of dilution as well as the formation of defects like pores or cracks. Therefore, it is important to know the effects of the different parameters on the welding bead. A valuable tool to meet this industrial challenge is the design of experiments (DoE). In this context, the user can choose between a huge number of test plans. Greater profit of information is expected by a larger test range. In order to confirm the acceptance, a five-step full factorial test plan is compared to a central composite design in this paper. Moreover, the limits of the experimental range are indicated and restrictions can be derived. As the results show, the essential effects are detected with a full factorial test plan as well as with a central composite design. Merely the effect strength could not always be specified unambiguously. On this account and in consideration of cost efficiency, the use of central compound design is recommended in industrial applications.

  16. Statistical analysis of weld bead geometry in Ti6Al4V laser cladding. Comparison of central composite design and five step full factorial test plan

    International Nuclear Information System (INIS)

    Marko, Angelina; Graf, Benjamin; Rethmeier, Michael

    2017-01-01

    The process of laser cladding has become more important during recent years because of its broad application for cladding, repair or additive manufacturing. In the field of mechanical engineering, one use is the repair of turbine blades. For high quality and reliability of the repaired components, it is necessary to adjust the weld bead geometry to the specific repair task. The bead geometry influences the metallurgical bonding and the degree of dilution as well as the formation of defects like pores or cracks. Therefore, it is important to know the effects of the different parameters on the welding bead. A valuable tool to meet this industrial challenge is the design of experiments (DoE). In this context, the user can choose between a huge number of test plans. Greater profit of information is expected by a larger test range. In order to confirm the acceptance, a five-step full factorial test plan is compared to a central composite design in this paper. Moreover, the limits of the experimental range are indicated and restrictions can be derived. As the results show, the essential effects are detected with a full factorial test plan as well as with a central composite design. Merely the effect strength could not always be specified unambiguously. On this account and in consideration of cost efficiency, the use of central compound design is recommended in industrial applications.

  17. Capabilities of infrared weld monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, P.G.; Keske, J.S.; Leong, K.H.; Kornecki, G.

    1997-11-01

    A non-obtrusive pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld penetration, while AC portions of the output can be correlated with surface irregularities and part misalignment or contamination. Changes in DC behavior are also noted for both full and deep penetration welds. Full penetration welds are signified by an abrupt reduction in the weld monitor output. Bead on plate welds were made on steel, aluminum, and magnesium with both a CW CO{sub 2} laser and a pulsed Nd:YAG laser to explore the relationships between the weld characteristics and the weld monitor output.

  18. Study on laser beam welding technology for nuclear power plants title

    International Nuclear Information System (INIS)

    Chida, Itaru; Shiihara, Katsunori; Fukuda, Takeshi; Kono, Wataru; Obata, Minoru; Morishima, Yasuo

    2011-01-01

    Laser beam welding is one of the jointing processes by irradiating laser beam on the material surface locally and widely used at various industrial fields. Toshiba has developed various laser-based maintenance and repair technologies and already applied them to several existing nuclear power plants. Laser cladding is a technique to weld the corrosion resistant metal onto a substrate surface by feeding filler wire to improve the corrosion resistance. Temper-bead welding is the heat input process to provide the desired microstructure properties of welded low alloy steels without post weld heat treatment, by inducing proper heat cycle during laser welding. Both laser welding technologies would be performed underwater by blowing the shielding gas for creating the local dry area. In this report, some evaluation results of material characteristics by temper-bead welding to target at Reactor Coolant System nozzle of PWR are presented. (author)

  19. Reduction method for residual stress of welded joint using random vibration

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Nishimura, Tadashi; Hiroi, Tetsumaro

    2005-01-01

    Welded joints are used for construction of many structures. Residual stress is induced near the bead caused by locally given heat. Tensile residual stress on the surface may reduce fatigue strength. In this paper, a new method for reduction of residual stress using vibration during welding is proposed. As vibrational load, random vibration, white noise and filtered white noise are used. Two thin plates are butt-welded. Residual stress is measured with a paralleled beam X-ray diffractometer with scintillation counter after removing quenched scale chemically. It is concluded that tensile residual stress near the bead is reduced by using random vibration during welding

  20. Comparison of non-magnetic and magnetic beads in bead-based assays

    NARCIS (Netherlands)

    Hansenová Maňásková, S.; van Belkum, A.; Endtz, H.P.; Bikker, F.J.; Veerman, E.C.I.; van Wamel, W.J.B.

    2016-01-01

    Multiplex bead-based flow cytometry is an attractive way for simultaneous, rapid and cost-effective analysis of multiple analytes in a single sample. Previously, we developed various bead-based assays using non-magnetic beads coated with Staphylococcus aureus and Streptococcus pneumoniae antigens

  1. Prediction Analysis of Weld-Bead and Heat Affected Zone in TIG welding using Artificial Neural Networks

    Science.gov (United States)

    Saldanha, Shamith L.; Kalaichelvi, V.; Karthikeyan, R.

    2018-04-01

    TIG Welding is a high quality form of welding which is very popular in industries. It is one of the few types of welding that can be used to join dissimilar metals. Here a weld joint is formed between stainless steel and monel alloy. It is desired to have control over the weld geometry of such a joint through the adjustment of experimental parameters which are welding current, wire feed speed, arc length and the shielding gas flow rate. To facilitate the automation of the same, a model of the welding system is needed. However the underlying welding process is complex and non-linear, and analytical methods are impractical for industrial use. Therefore artificial neural networks (ANN) are explored for developing the model, as they are well-suited for modelling non-linear multi-variate data. Feed-forward neural networks with backpropagation training algorithm are used, and the data for training the ANN taken from experimental work. There are four outputs corresponding to the weld geometry. Different training and testing phases were carried out using MATLAB software and ANN approximates the given data with minimum amount of error.

  2. Characterization of the mechanical properties and structural integrity of T-welded connections repaired by grinding and wet welding

    Energy Technology Data Exchange (ETDEWEB)

    Terán, G., E-mail: gteran@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Cuamatzi-Meléndez, R., E-mail: rcuamatzi@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Albiter, A., E-mail: aalbiter@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Maldonado, C., E-mail: cmzepeda@umich.mx [Instituto de Investigaciones Metalúrgicas, UMSNH, PO Box 52-B, 58000, México (Mexico); Bracarense, A.Q., E-mail: bracarense@ufmg.br [UFMG Departamento de Engeharia Mecánica Belo Horizonte, MG (Brazil)

    2014-04-01

    This paper presents an experimental methodology to characterize the structural integrity and mechanical properties of repaired T-welded connections using in fixed offshore structures. Grinding is employed to remove localized damage like cracking and corrosion and subsequent wet welding can be used to fill the grinded material. But it is important to define the grinding depth and profile in order to maintain structural integrity during the repair. Therefore, in this work different grinding depths were performed, for damage material removal, at the weld toe of the T-welded connections. The grinding was filled by wet welding in a hyperbaric chamber, simulating three different water depths: 50 m, 70 m and 100 m. The electrodes were coated with vinilic varnish, which is cheap and easy to apply. The characterization of the mechanical properties of the T-welded connections was done with standard tensile, hardness and Charpy tests; microstructure and porosity analysis were also performed. The samples were obtained from the welded connections in regions of the wet weld beads. The test results were compared with the mechanical properties of the T-welded connections welded in air conditions performed by other authors. The results showed that the wet welding technique performed in this work produced good mechanical properties of the repaired T-welded connection. The mechanical properties, measured in wet conditions, for 6 mm grinding depth, were similar for the 3 different water depths measured in air conditions. But for 10 mm grinding depth, the values of the mechanical properties measured in wet conditions were quite lower than that for air conditions for the 3 water depths. However a porosity analysis, performed with a Scanning Electronic Microscopy (SEM), showed that the level of porosity in the resulted wet weld beads is in the range of that published in the literature and some samples revealed lower level of porosity. The main resulting microstructure was polygonal

  3. MICROSTRUCTURE FEATURES OF CHROME-NICKEL COATING WELDED WITH FILLER WIRE PL AN-111 WITH A 50% OVERLAP

    Directory of Open Access Journals (Sweden)

    A. G. Belik

    2017-04-01

    Full Text Available Purpose. The paper involves investigation of microstructure features of the coating welded with filler wire PL AN-111 with a 50% beads overlap. Methodology. Wear-resistant layer was formed by means of electric arc deposit welding using filler wire PL AN-111 on the plate from steel 09G2S. Deposit welding was conducted under the following parameters: welding current is of 650-750 A; arc voltage is of 30-34 V; welding speed is of 32 m/h. Microstructure was researched with application of optical microscopies “Neophot-21”, “Nikon Eclipse M200” and electron scanning microscopy JEOL JSM-6510 LV. Microhardness of structural constituentswas measuredwithtesterFM-300 (Future-Tech under loading of 10-50 g. Findings. It is shown that the overlap of the beads leads to the formation of inhomogeneous microstructure in the cross section that varies by zones from free-carbide austenite to hypereutectic microstructure with primary chromium carbides. The analysis of the microhardness of the structural constituents in various coating areas was carried out. It was found that hardness of austenite, carbide eutectic and carbides M7C3 varies in coatings in the range of 3 100-3 850 МPа, 4 100-6 800 МPа and 12 100-15 100 МPа, accordingly. Originality. Authors determined that Cr-Ni coating comprises substantially austenitic-carbide eutectic with different density and thickness of carbide fibers within eutectic colonies. Along the border “base/coating” a single-phase austenitic layer lies which turns into a layer with a hypoeutectic structure. In the heat affected zone from beads fusion austenite disintegration with the granular carbides formation was recorded. This leads to decreasing of matrix corrosion resistance due to chromium depletion. Above the zone of beads fusion, the coating has a hypereutectic structure with the presence of large primary chromium carbides. Practical value. It is shown that deposit welding with filler wire PL AN-111 with a 50

  4. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  5. Study of the Performance of Stainless Steel A-TIG Welds

    Science.gov (United States)

    Shyu, S. W.; Huang, H. Y.; Tseng, K. H.; Chou, C. P.

    2008-04-01

    The purpose of the present work was to investigate the effect of oxide fluxes on weld morphology, arc voltage, mechanical properties, angular distortion and hot cracking susceptibility obtained with TIG welding, which applied to the welding of 5 mm thick austenitic stainless steel plates. A novel variant of the autogenous TIG welding process, oxide powders (Al2O3, Cr2O3, TiO2, SiO2 and CaO) was applied on a type 304 stainless steel through a thin layer of the flux to produce a bead on plate welds. The experimental results indicated that the increase in the penetration is significant with the use of Cr2O3, TiO2, and SiO2. A-TIG welding can increase the weld depth to bead-width ratio, and tends to reduce the angular distortion of the weldment. It was also found that A-TIG welding can increase the retained delta-ferrite content of stainless steel 304 welds and, in consequence, the hot-cracking susceptibility of as-welded is reduced. Physically constricting the plasma column and reducing the anode spot are the possible mechanism for the effect of certain flux on A-TIG penetration.

  6. INVESTIGATION OF SINGLE-PASS/DOUBLE-PASS TECHNIQUES ON FRICTION STIR WELDING OF ALUMINIUM

    Directory of Open Access Journals (Sweden)

    N.A.A. Sathari

    2014-12-01

    Full Text Available The aim of this research is to study the effects of single-pass/ double-pass techniques on friction stir welding of aluminium. Two pieces of AA1100 with a thickness of 6.0 mm were friction stir welded using a CNC milling machine at rotational speeds of 1400 rpm, 1600 rpm and 1800 rpm respectively for single-pass and double-pass. Microstructure observations of the welded area were studied using an optical microscope. The specimens were tested by using a tensile test and Vickers hardness test to evaluate their mechanical properties. The results indicated that, at low rotational speed, defects such as ‘surface lack of fill’ and tunnels in the welded area contributed to a decrease in mechanical properties. Welded specimens using double-pass techniques show increasing values of tensile strength and hardness. From this investigation it is found that the best parameters of FSW welded aluminium AA1100 plate were those using double-pass techniques that produce mechanically sound joints with a hardness of 56.38 HV and 108 MPa strength at 1800 rpm compared to the single-pass technique. Friction stir welding, single-pass/ double-pass techniques, AA1100, microstructure, mechanical properties.

  7. Mathematical model for optimization of multilayer submerged-arc welding of frame equipment of power units

    International Nuclear Information System (INIS)

    Pankov, V.V.; Chernyshev, G.G.; Kozlov, N.E.

    1987-01-01

    A mathematical model for optimization of multilayer submerged arc welding of frame equipment of power units is constructed. The variation-energy method permits to construct the universal mathematical model for strengthening formation of a single bead; the method is reasonable for simulation of a multilayer welded joint. Minimization of the distance between maximum and minimum layer height of a built-up metal is the necessary condition for qualitative formation of the multilayer joint. One can calculate in real time scale the optimal vector of maximally ten parameters under the multilayer welding condition immediately after change in the grooving width using the developed mathematical model of optimization

  8. The Effect of Welding Current and Composition of Stainless steel on the Panetration in GTAW

    Directory of Open Access Journals (Sweden)

    Ramazan Yılmaz

    2012-06-01

    Full Text Available In this study, welding was performed on the plates of two different types of AISI 316 and AISI 316Ti austenitic stainless steels by GTAW (Gas Tungsten Arc Welding without using welding consumable in flat position. Automatic GTAW welding machine was used to control and obtain the exact values. The effects of welding currents used in welding process and the compositions of the stainless steels materials on the penetration were investigated. Weld bead size and shape such as bead width and dept were important considerations for penetration. Welding process was performed using various welding current values. The study showed that both welding parameters and composition of the stainless steels has influence on the penetration and It is increased with increasing of welding current. Besides, P/W rate of the weldments were influenced by the current and hardness values of the weld metal decrease with increasing welding current. The microstructure of the weld metal was also changed by variation of welding current.

  9. Studies of localized corrosion in welded aluminum alloys by the scanning reference electrode technique

    Science.gov (United States)

    Danford, M. D.; Nunes, A. C.

    1995-01-01

    Localized corrosion in welded samples of 2219-T87 Al alloy (2319 filler), 2090 Al-Li alloy (4043 and 2319 fillers), and 2195 Al-Li alloy (4043 and 2319 fillers) has been investigated using the relatively new scanning reference electrode technique. The weld beads are cathodic in all cases, leading to reduced anode/cathode ratios. A reduction in anode/cathode ratio leads to an increase in the corrosion rates of the welded metals, in agreement with results obtained in previous electrochemical and stress corrosion studies involving the overall corrosion rates of welded samples. The cathodic weld beads are bordered on both sides by strong anodic regions, with high propensity for corrosion.

  10. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Kim, Ji Sung [Korea Maritime and Ocean Univ., Busan (Korea, Republic of)

    2016-12-15

    Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of 0.5 mmt pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output.

  11. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability -

    International Nuclear Information System (INIS)

    Kim, Jong Do; Kim, Ji Sung

    2016-01-01

    Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of 0.5 mmt pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output

  12. A Comparison Between Mechanical And Electrochemical Tests on Ti6Al4V Welded By LBW

    Science.gov (United States)

    Serroni, G.; Bitondo, C.; Astarita, A.; Scala, A.; Gloria, A.; Prisco, U.; Squillace, A.; Bellucci, F.

    2011-05-01

    Titanium and its alloys are nowadays widely used in many sectors: in the medical field (orthopedic and dental ones), in the architectural field, in the chemical plants field and in aeronautic. In this last field it is more and more used both for its contribution to make lightweight and time durable structures and for its compatibility with new materials, first of all Carbon Fiber Reinforced Plastics (CFRP). To this aim, lots of researches are now focusing on new and emerging technologies capable to make titanium objects and, at the same time, reducing the scrap, since titanium alloys for aeronautic application are very expensive. This paper examines Grade 5 Titanium Alloy (Ti6Al4V) welded by Laser Beam (LBW) in butt-joint configuration. The source was Nd:YAG laser, moreover two inert gases were used, in order to provide a shield both on the top and on the bottom of the weld bead. The joints were studied by varying two process parameters: welding speed and power of the laser beam. It was not possible to realize a full experimental plan, due to technological limits in making titanium laser beam welds. The joints were tested to measure their mechanical properties and the corrosion resistance. The process parameters do not significantly affect the maximum static strength of the joints. Microscopic analysis showed that welds made with high power and low welding speed have a uniform weld bead, and no macroscopic defect occurs. Fatigue test results, instead, show a marked influence of the morphology of the weld bead: the occurrence of some defects, such as the undercut, both on the top and on the bottom of the weld bead, dramatically reduced fatigue resistance of the joints. Corrosion resistance was studied using the electrochemical micro cell technique, which allows to distinguish electrochemical properties of each zone of the weld bead, even when, as in this case, they are very narrow. By a general point of view, it has been demonstrated that the joints showing the best

  13. Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2018-04-01

    Full Text Available Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti–6Al–4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.

  14. Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection.

    Science.gov (United States)

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-04-20

    Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti⁻6Al⁻4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.

  15. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  16. Weld analysis and control system

    Science.gov (United States)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  17. Effects of the use of a flat wire electrode in gas metal arc welding and fuzzy logic model for the prediction of weldment shape profile

    Energy Technology Data Exchange (ETDEWEB)

    Karuthapandi, Sripriyan; Thyla, P. R. [PSG College of Technology, Coimbatore (India); Ramu, Murugan [Amrita University, Ettimadai (India)

    2017-05-15

    This paper describes the relationships between the macrostructural characteristics of weld beads and the welding parameters in Gas metal arc welding (GMAW) using a flat wire electrode. Bead-on-plate welds were produced with a flat wire electrode and different combinations of input parameters (i.e., welding current, welding speed, and flat wire electrode orientation). The macrostructural characteristics of the weld beads, namely, deposition, bead width, total bead width, reinforcement height, penetration depth, and depth of HAZ were investigated. A mapping technique was employed to measure these characteristics in various segments of the weldment zones. Results show that the use of a flat wire electrode improves the depth-to-width (D/W) ratio by 16.5 % on average compared with the D/W ratio when a regular electrode is used in GMAW. Furthermore, a fuzzy logic model was established to predict the effects of the use of a flat electrode on the weldment shape profile with varying input parameters. The predictions of the model were compared with the experimental results.

  18. Microstructural examination of Zr-2.5%Nb alloy welds made by pulsed Nd:YAG laser and TIG welding technique

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Varma, P.V.S.; Panakkal, J.P.; Srivastava, D.; Dey, G.K.

    2009-01-01

    The paper describes the weld microstructure of Zr-2.5%Nb alloy material. Bead on plate welds were made using pulsed Nd:YAG laser and TIG welding technique at different parameters. These welds were characterized at macro and microstructural level. Weld pools of Pulsed Laser and TIG welds were not resolved by optical microscopy. SEM too did not reveal much. Orientation imaging microscopy could reveal the presence of fine martensite. It was observed that microstructure is very sensitive to welding parameters. Microhardness studies suggested formation of martensite in the weld pool. It was also observed that laser welds had very sharp weld pool boundary as compared to TIG welds. Variation in microhardness of the weldment is seen and is influenced by overlapping of weld spots causing thermal treatment of previously deposited spots. (author)

  19. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    Science.gov (United States)

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads.

  20. The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds

    Science.gov (United States)

    Pekkarinen, J.; Kujanpää, V.

    This study is focused to determine empirically, which microstructural changes occur in ferritic and duplex stainless steels when heat input is controlled by welding parameters. Test welds were done autogenously bead-on-plate without shielding gas using 5 kW fiber laser. For comparison, some gas tungsten arc welds were made. Used test material were 1.4016 (AISI 430) and 1.4003 (low-carbon ferritic) type steels in ferritic steels group and 1.4162 (low-alloyed duplex, LDX2101) and 1.4462 (AISI 2205) type steels in duplex steels group. Microstructural changes in welds were identified and examined using optical metallographic methods.

  1. Multi Objective Optimization of Weld Parameters of Boiler Steel Using Fuzzy Based Desirability Function

    Directory of Open Access Journals (Sweden)

    M. Satheesh

    2014-01-01

    Full Text Available The high pressure differential across the wall of pressure vessels is potentially dangerous and has caused many fatal accidents in the history of their development and operation. For this reason the structural integrity of weldments is critical to the performance of pressure vessels. In recent years much research has been conducted to the study of variations in welding parameters and consumables on the mechanical properties of pressure vessel steel weldments to optimize weld integrity and ensure pressure vessels are safe. The quality of weld is a very important working aspect for the manufacturing and construction industries. Because of high quality and reliability, Submerged Arc Welding (SAW is one of the chief metal joining processes employed in industry. This paper addresses the application of desirability function approach combined with fuzzy logic analysis to optimize the multiple quality characteristics (bead reinforcement, bead width, bead penetration and dilution of submerged arc welding process parameters of SA 516 Grade 70 steels(boiler steel. Experiments were conducted using Taguchi’s L27 orthogonal array with varying the weld parameters of welding current, arc voltage, welding speed and electrode stickout. By analyzing the response table and response graph of the fuzzy reasoning grade, optimal parameters were obtained. Solutions from this method can be useful for pressure vessel manufacturers and operators to search an optimal solution of welding condition.

  2. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    Science.gov (United States)

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  3. Single-purpose welding machines used in the manufacture of power equipment

    International Nuclear Information System (INIS)

    Bartak, J.

    1988-01-01

    A dedicated welding machine based on submerged arc welding with a wire electrode was developed for welding pipe sockets, spacers and other rotary parts to pressure vessel bodies. Two modifications of this apparatus were devised: one is designed for welding low-alloy carbon steels, where preheating is requisite, the other, for welding austenitic materials, requiring vigorous cooling. The single-purpose ADFS-1 device is designed for surfacing rings 200 to 1200 mm in diameter; it consists of a pillar with a drive, a rotary console, a collector, a horizontal support, a console with a vertical motor support, and a welding head with a feed equipment. Submerged arc welding using a 20x0.5 mm strip electrode is applied. Another dedicated welding machine employing submerged arc welding with a strip electrode was developed for the continuous welding of inner surfaces of pressure vessels in the sites of holes for flares. (Z.M.). 3 figs., 3 refs

  4. Characterization and Optimization of Ni-WC Composite Weld Matrix Deposited by Plasma-Transferred Arc Process

    Science.gov (United States)

    Tahaei, Ali; Horley, Paul; Merlin, Mattia; Torres-Torres, David; Garagnani, Gian Luca; Praga, Rolando; Vázquez, Felipe J. García; Arizmendi-Morquecho, Ana

    2017-03-01

    This work is dedicated to optimization of carbide particle system in a weld bead deposited by PTAW technique over D2 tool steel with high chromium content. The paper reports partial melting of the original carbide grains of the Ni-based filling powder, and growing of the secondary carbide phase (Cr, Ni)_3W_3C in the form of dendrites with wide branches that enhanced mechanical properties of the weld. The optimization of bead parameters was made with design of experiment methodology complemented by a complex sample characterization including SEM, EDXS, XRD, and nanoindentation measurements. It was shown that the preheat of the substrate to a moderate temperature 523 K (250° C) establishes linear pattern of metal flow in the weld pool, resulting in the most homogeneous distribution of the primary carbides in the microstructure of weld bead.

  5. The narrow-gap TIG welding concerns the electric power plants manufacturers

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Polysoude, France, played host to an expert forum on narrow gap welding from 5-7 November 2008. The successful event welcomed around one hundred experts.The power plant construction sector is currently booming worldwide. For plant construction this means using more pressure-resistant, thick-walled pipes made from high temperature steels. The key quality features of this new steel grade are the values for high creep rupture strength that also apply without restriction as the benchmark for every weld seam on these pipes. In particular, the forum on narrow gap welding addressed this area of automated welding technology. During the forum, Mr Hans-Peter Mariner (Polysoude's CEO), has offered an in-depth insight into the latest developments in narrow gap welding. This presentation highlighted that with wall thicknesses of over 60 mm, welding time is shortened by a factor of five to ten in comparison to conventional TIG processes with a traditional V seam. The welding characteristics of the parent material are the decisive factor in the application of the narrow gap process. Technical advances in equipment technology such as automatic centring, HF-free ignition, seam preparation and optimised gas protection further increase the application limits. The geometry and gap width of the weld groove are based on the mechanical properties of the materials being joined, with the shrinkage characteristics of the seam being particularly important. Another key part of the programme was a presentation on the three different narrow gap-welding techniques. The first involves a single pass weld per layer and torch or work-piece revolution. The second is dual pass welding next to one another, when the seam preparation or positioning exceed the required narrow tolerances of a few tenths of a millimetre for one stringer bead per layer. TIG narrow gap welding with a shuttle-motion electrode is ideal with very large wall thicknesses of 150-200 mm. This is particularly the case if the

  6. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Sørensen, Karen Skotte; Wolff, Anders

    2014-01-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible......-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis...

  7. Welding zinc coated steel with a CO/sub 2/ laser

    International Nuclear Information System (INIS)

    Akhter, R.; Steen, W.M.

    1993-01-01

    Welding of zinc coated steel has been studied using a high power CO/sub 2/ laser. This process is of great interest to the manufactures of car, washing machines and other components made from sheet steel and subject to corrosion. The problem associated with the welding of zinc coated steel is the low boiling point of zinc (906C) relative to the high melting point of steel (1500C). The problem is particularly important in lap welding where the zinc layer is between the lapped sheets. Under these conditions the laser 'keyhole' will generate very high vapour pressure in the zinc layer with a consequent severe risk of vapour eruption destroying the continuity of the weld bead. Several techniques are presented for the removal of zinc vapours from the interface between the two sheets. It is shown that this problem solved by suitable gap between the sheets during lap welding. Hence full penetration welds without deterioration of the weld bead can be obtained. A theory has been presented which predicted an exact gap size needed to exhaust the zinc vapour. The gap depends upon the welding speed, zinc coating thickness and thickness of the sheet. The theory predicts the weld quality satisfactorily. (author)

  8. Application of Hard Metal Weld Deposit in the Area of Mixing Organic Materials

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2014-01-01

    Full Text Available Any machine part is subject to degradation processes. Intensive wear occurs either when two bearing surfaces come into contact or when loose particles rub the function surface of a machine part. Soil processing machines are a good example. A similar process of abrasive wear occurs also in mixing machines or lines for material transport, such as worm-conveyors. The experiment part of this paper analyses hard metal weld deposit dedicated for renovation of abrasive stressed surfaces. In order to prolong the service life of a blade disc in a mixing machine Kreis-Biogas-Dissolver, the technology of hard surfacing by an electric arc was used. Tested hard metal electrodes were applied on a steel tape class 11 373. To eliminate mixing with the base material, weld beads were applied in two layers. Firstly, the weld bead was visually analyzed on a binocular microscope. Further, weld bead as well as the base material was analyzed from the metallographic point of view, whose aim was to identify the structure of weld metal and the origin of microcracks in weld bead. Moreover, there was also measured microhardness of weld metal. Abrasive resistance was tested according to the norm ČSN 01 5084, which is an abrasive cloth test. As in the mixing process also erosion wear occurs, there was also processed a test on a Bond device simulating stress of test samples by loose abrasive particles. The abrading agents were formed by broken stones of 8–16 mm in size. Based on the results of the individual tests, the recommendation of usage hard metal electrodes for prolonging service life of machine parts will be made.

  9. TIG welding method and TIG welding device

    International Nuclear Information System (INIS)

    Yoneda, Eishi

    1998-01-01

    The present invention provides a method of TIG welding for members having different heat capacities including a cladding tube and an end plug of a fuel rod to be used, for example, in a reactor, and a device therefor. Namely, in the TIG welding method, the flow rate of a sealed gas to the side of a member having smaller heat capacity is made greater than that on the side of the member having greater heat capacity bordered on the top end of a welding electrode. Since the sealed gas is jetted being localized relative to the welding electrode, arc is restricted in a region of the member having smaller heat capacity and is increased at a region having a larger heat capacity. As a result, the arc is localized, so that the heat input amount to the region having a large heat capacity is increased, and then a plurality of members at the abutting portion are melted uniformly thereby capable of obtaining a uniform molten pool. A bead is formed at the abutting portion thereby capable of obtaining a welded portion with less unevenness and having large strength. (I.S.)

  10. Simultaneous laser cutting and welding of metal foil to edge of a plate

    Science.gov (United States)

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  11. Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm

    International Nuclear Information System (INIS)

    Sathiya, P.; Panneerselvam, K.; Abdul Jaleel, M.Y.

    2012-01-01

    Highlights: ► Super austenitic stainless steel has successfully welded by laser welding with three different shielding gases. ► Among the three shielded joints, the helium shielded weld has more tensile strength. ► Neural network model was developed to predict the depth of penetration, bead width and tensile strength of the joints. ► The developed ANN model is suitably integrated with GA for optimization. -- Abstract: The laser welding input parameters play a very significant role in determining the quality of a weld joint. The quality of the joint can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. In particular mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel are investigated. Full factorial design is used to carry out the experimental design. Artificial neural networks (ANNs) program was developed in MatLab software to establish the relationship between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (argon, helium and nitrogen). The established models are used for optimizing the process parameters using genetic algorithm (GA). Optimum solutions for the three different gases and their respective responses are obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.

  12. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    Science.gov (United States)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-04-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/μg and 1.72(14) nL/μg were found for Milli-Q water and lysis-binding buffer, respectively.

  13. Real-time monitoring of the laser hot-wire welding process

    Science.gov (United States)

    Liu, Wei; Liu, Shuang; Ma, Junjie; Kovacevic, Radovan

    2014-04-01

    The laser hot-wire welding process was investigated in this work. The dynamics of the molten pool during welding was visualized by using a high-speed charge-coupled device (CCD) camera assisted by a green laser as an illumination source. It was found that the molten pool is formed by the irradiation of the laser beam on the filler wire. The effect of the hot-wire voltage on the stability of the welding process was monitored by using a spectrometer that captured the emission spectrum of the laser-induced plasma plume. The spectroscopic study showed that when the hot-wire voltage is above 9 V a great deal of spatters occur, resulting in the instability of the plasma plume and the welding process. The effect of spatters on the plasma plume was shown by the identified spectral lines of the element Mn I. The correlation between the Fe I electron temperature and the weld-bead shape was studied. It was noted that the electron temperature of the plasma plume can be used to real-time monitor the variation of the weld-bead features and the formation of the weld defects.

  14. Note: A quartz cell with Pt single crystal bead electrode for electrochemical scanning tunneling microscope measurements.

    Science.gov (United States)

    Xia, Zhigang; Wang, Jihao; Hou, Yubin; Lu, Qingyou

    2014-09-01

    In this paper, we provide and demonstrate a design of a unique cell with Pt single crystal bead electrode for electrochemical scanning tunneling microscope (ECSTM) measurements. The active metal Pt electrode can be protected from air contamination during the preparation process. The transparency of the cell allows the tip and bead to be aligned by direct observation. Based on this, a new and effective alignment method is introduced. The high-quality bead preparations through this new cell have been confirmed by the ECSTM images of Pt (111).

  15. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (I) - Effect of Type and Flow Rate of Shielding Gases on Weldability -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Kim, Ji Sung [Korea Maritime and Ocean Univ., Busan (Korea, Republic of)

    2016-12-15

    In this study, welding of pure titanium was carried out by using a continuous wave fiber laser with a maximum output of 6.3 kW. Because brittle regions form easily in titanium as a result of oxidation or nitriding, the weld must be protected from the atmosphere by using an appropriate shielding gas. Experiments were performed by changing the type and the flow rate of shielding gases to obtain the optimal shielding condition, and the weldability was then evaluated. The degree of oxidation and nitriding was distinguished by observing the color of beads, and weld microstructure was observed by using an optical microscope and a scanning electron microscope. The mechanical properties of the weld were examined by measuring hardness. When the weld was oxidized or nitrified, the bead color was gray or yellow, and the oxygen or nitrogen content in the bead surface and overall weld tended to be high, as a result of which the hardness of the weld was thrice that of the base metal. A sound silvery white bead was obtained by using Ar as the shielding gas.

  16. Laser Welding Test Results with Gas Atmospheres in Welding Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seo-Yun; Yang, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The weld beads of specimens welded under identical conditions in the helium and argon gas were cleaner, more regular, and steadier than those in a vacuum. The penetration depth of the FZ in the vacuum was much deeper than those in the helium and argon gas. To measure the irradiation properties of nuclear fuel in a test reactor, a nuclear fuel test rod instrumented with various sensors must be fabricated with assembly processes. A laser welding system to assemble the nuclear fuel test rod was designed and fabricated to develop various welding technologies of the fuel test rods to joint between a cladding tube and end-caps. It is an air-cooling optical fiber type and its emission modes are a continuous (CW) mode of which the laser generates continuous emission, and pulse (QCW) mode in which the laser internally generates sequences of pulses. We considered the system welding a sample in a chamber that can weld a specimen in a vacuum and inert gas atmosphere, and the chamber was installed on the working plate of the laser welding system. In the chamber, the laser welding process should be conducted to have no defects on the sealing area between a cladding tube and an end-cap.

  17. Three dimensional multi-pass repair weld simulations

    International Nuclear Information System (INIS)

    Elcoate, C.D.; Dennis, R.J.; Bouchard, P.J.; Smith, M.C.

    2005-01-01

    Full 3-dimensional (3-D) simulation of multi-pass weld repairs is now feasible and practical given the development of improved analysis tools and significantly greater computer power. This paper presents residual stress results from 3-D finite element (FE) analyses simulating a long (arc length of 62 deg. ) and a short (arc length of 20 deg. ) repair to a girth weld in a 19.6 mm thick, 432 mm outer diameter cylindrical test component. Sensitivity studies are used to illustrate the importance of weld bead inter-pass temperature assumptions and to show where model symmetry can be used to reduce the analysis size. The predicted residual stress results are compared with measured axial, hoop and radial through-wall profiles in the heat affected zone of the test component repairs. A good overall agreement is achieved between neutron diffraction and deep hole drilling measurements and the prediction at the mid-length position of the short repair. These results demonstrate that a coarse 3-D FE model, using a 'block-dumped' weld bead deposition approach (rather than progressively depositing weld metal), can accurately capture the important components of a short repair weld residual stress field. However, comparisons of measured with predicted residual stress at mid-length and stop-end positions in the long repair are less satisfactory implying some shortcomings in the FE modelling approach that warrant further investigation

  18. The effect of electrode vertex angle on automatic tungsten-inert-gas welds for stainless steel 304L plates

    International Nuclear Information System (INIS)

    Maarek, V.; Sharir, Y.; Stern, A.

    1980-03-01

    The effect of electrode vertex angle on penetration depth and weld bead width, in automatic tungsten-inert-gas (TIG) dcsp bead-on-plate welding with different currents, has been studied for stainless steel 304L plates 1.5 mm and 8 mm thick. It has been found that for thin plates, wider and deeper welds are obtained when using sharper electrodes while, for thick plates, narrower and deeper welds are produced when blunt electrodes (vertex angle 180 deg) are used. An explanation of the results, based on a literature survey, is included

  19. Weld repair practices without post weld heat treatment for ferritic alloys and their consequences on residual stresses: A review

    International Nuclear Information System (INIS)

    Aloraier, A.; Al-Mazrouee, A.; Price, J.W.H.; Shehata, T.

    2010-01-01

    The use of the half-bead, temper bead welding (TBW), and cold repair techniques is proving to reduce the cost of repairs and extend the life of aged components in power plants, petrochemical and hydrocarbon processing industries. It has been a significant area of interest for more than twenty years. A critical factor in this context is residual stress. The presence of residual stresses can lead to cracking which ultimately results in structural failure. This paper reviews the half-bead, TBW, and cold repair technique practices and their consequences on residual stresses within the nuclear, power, refinery and petrochemical industries and some of the contributions made by our group of researchers in this area. This paper reviews recent work by the Monash University group. We report our work on TBW residual stresses when measured using neutron diffraction which shows very little reduction in residual stresses over normally completed welds. The use of automatic FCAW has been explored in our group and is reported.

  20. Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

    2005-04-15

    The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce

  1. Butt Weldability for SS400 Using Laser-Arc Hybrid Welding

    International Nuclear Information System (INIS)

    Kim, Jong Do; Myoung, Gi Hoon; Park, Duck; Myoung, Gi Hoon; Park, In Duck

    2016-01-01

    This study presents results of an experimental investigation of the laser-arc, hybrid, butt welding process of SS400 structural steel. Welding parameters including laser power, welding current and speed were varied in order to obtain one-pass, full-penetration welds without defects. The conditions that resulted in optimal beads were identified. After welding, hardness measurements and microstructure observations were carried out in order to study weld properties. The mechanical properties of both the base material and welded specimen were compared based on the results of tensile strength measurements. The yield and tensile strengths were found to be similar

  2. Butt Weldability for SS400 Using Laser-Arc Hybrid Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Myoung, Gi Hoon; Park, Duck [Korea Maritime and Ocean Univ., Busan (Korea, Republic of); Myoung, Gi Hoon; Park, In Duck [Korea Institute of Machinery and Materials, Busan (Korea, Republic of)

    2016-07-15

    This study presents results of an experimental investigation of the laser-arc, hybrid, butt welding process of SS400 structural steel. Welding parameters including laser power, welding current and speed were varied in order to obtain one-pass, full-penetration welds without defects. The conditions that resulted in optimal beads were identified. After welding, hardness measurements and microstructure observations were carried out in order to study weld properties. The mechanical properties of both the base material and welded specimen were compared based on the results of tensile strength measurements. The yield and tensile strengths were found to be similar.

  3. Sensing the gas metal arc welding process

    Science.gov (United States)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  4. Studies on the Parametric Effects of Plasma Arc Welding of 2205 Duplex Stainless Steel

    Science.gov (United States)

    Selva Bharathi, R.; Siva Shanmugam, N.; Murali Kannan, R.; Arungalai Vendan, S.

    2018-03-01

    This research study attempts to create an optimized parametric window by employing Taguchi algorithm for Plasma Arc Welding (PAW) of 2 mm thick 2205 duplex stainless steel. The parameters considered for experimentation and optimization are the welding current, welding speed and pilot arc length respectively. The experimentation involves the parameters variation and subsequently recording the depth of penetration and bead width. Welding current of 60-70 A, welding speed of 250-300 mm/min and pilot arc length of 1-2 mm are the range between which the parameters are varied. Design of experiments is used for the experimental trials. Back propagation neural network, Genetic algorithm and Taguchi techniques are used for predicting the bead width, depth of penetration and validated with experimentally achieved results which were in good agreement. Additionally, micro-structural characterizations are carried out to examine the weld quality. The extrapolation of these optimized parametric values yield enhanced weld strength with cost and time reduction.

  5. Welding in repair of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Pilous, V.; Kovarik, R.

    1987-01-01

    Specific welding conditions are described in repair of the pressure vessels of nuclear reactors in operation and the effect is pointed out to of neutrons on changes in steel properties. Some of the special regulations are discussed to be observed in welding jobs. The welding methods are briefly described; the half-bead method is most frequently used. It is stressed that the defect must first be identified using a nondestructive method and the stages must be defined of the welding repair of the pressure vessel. (J.B.). 4 figs., 1 tab., 16 refs

  6. Keyhole shapes during laser welding of thin metal sheets

    International Nuclear Information System (INIS)

    Aalderink, B J; Lange, D F de; Aarts, R G K M; Meijer, J

    2007-01-01

    Camera observations of the full penetration keyhole laser welding process show that the keyhole shape is elongated under certain welding conditions. Under these unfavourable circumstances, the welding process is susceptible to holes in the weld bead. Existing models of the pressure balance at the keyhole wall cannot explain this keyhole elongation. In this paper a new model is presented, accounting for the doubly curved shape of the keyhole wall. In this model, the surface tension pressure has one term that tends to close the keyhole and another term that tries to open it. Model calculations show that when the keyhole diameter is of the same order as the sheet thickness, the latter part can become dominant, causing the keyhole to elongate. Experiments on thin aluminium (AA5182) and mild steel (DC04) sheets verify these model calculations. As the keyhole radius depends on the radius of the focused laser spot, it was found for both materials that the ratio of the spot radius and the sheet thickness must be above a critical value to prevent keyhole elongation. These critical radii are 0.25 for AA5182 and 0.4 for DC04, respectively. Furthermore, differences in appearance of the weld bead between the circular and the elongated keyhole welds could be explained by this model

  7. Assessment of repair welding technologies of irradiated materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Damages of reactor internals of stainless steels caused by SCC and fatigue were identified in aged BWR plants. Repair-welding is one of the practical countermeasure candidates to restore the soundness of components and structures. The project of 'Assessment of Repair welding Technologies of Irradiated Materials' is being carried out to develop the technical guideline regarding the repair-welding of reactor internals. In fiscal 2011, we investigated the weldability of stainless steel 316L irradiated by welding (TIG) tungsten inert gas. Furthermore, the tensile properties and stress corrosion cracking (SCC) susceptibility of the welds were investigated. Cross-sectional observation of heat affected zone (HAZ) of the bead on plate TIG weldments (heat input 4 kJ/cm) of irradiated SUS316L stainless steel containing 0.026 ~ 0.12appm helium showed degradation of grain boundaries due to helium accumulation. Degree of the degradation depended on the amount of helium. No deterioration of grain boundaries was observed by bead on plate welding with one pass one layer when helium content was 0.039appm. The tensile strengths of welds in non-irradiated and irradiated material were similar. However, the elongation of a weldment by irradiated SUS316L containing 0.124appm Helium was lower than non-irradiated. It was estimated to cause the effects of helium bubbles. The SCC susceptibility of the HAZ was no significant difference compared with other locations. (author)

  8. Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel

    Science.gov (United States)

    Sathiya, P.; Panneerselvam, K.; Soundararajan, R.

    2012-09-01

    Laser welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Therefore, mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel were investigated. Full factorial design was used to carry out the experimental design. Artificial Neural networks (ANN) program was developed in MatLab software to establish the relationships between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (Argon, Helium and Nitrogen). The established models were used for optimizing the process parameters using Genetic Algorithm (GA). Optimum solutions for the three different gases and their respective responses were obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.

  9. On Post-Weld Heat Treatment of a Single Crystal Nickel-Based Superalloy Joint by Linear Friction Welding

    Directory of Open Access Journals (Sweden)

    T. J. Ma

    2015-09-01

    Full Text Available Three types of post-weld heat treatment (PWHT, i.e. solution treatment + primary aging + secondary aging (I, secondary aging (II, and primary aging + secondary aging (III, were applied to a single crystal nickel-based superalloy joint made with linear friction welding (LFW. The results show that the grains in the thermomechanically affected zone (TMAZ coarsen seriously and the primary γ' phase in the TMAZ precipitates unevenly after PWHT I. The primary γ' phase in the TMAZ and weld zone (WZ precipitates insufficiently and fine granular secondary γ' phase is observed in the matrix after PWHT II. After PWHT III, the primary γ' phase precipitates more sufficiently and evenly compared to PWHTs I and II. Moreover, the grains in the TMAZ have not coarsened seriously and fine granular secondary γ' phase is not found after PWHT III. PWHT III seems more suitable to the LFWed single crystal nickel-based superalloy joints when performing PWHT.

  10. Flaw evaluation of Nd:YAG laser welding based plume shape by infrared thermal camera

    International Nuclear Information System (INIS)

    Kim, Jae Yeol; Yoo, Young Tae; Yang, Dong Jo; Song, Kyung Seol; Ro, Kyoung Bo

    2003-01-01

    In Nd:YAG laser welding evaluation methods of welding flaw are various. But, the method due to plume shape is difficult to classification od welding flaw. The Nd:YAG laser process is known to have high speed and deep penetration capability to become one of the most advanced welding technologies. At the present time, some methods are studied for measurement of plume shape by using high-speed camera and photo diode. This paper describes the machining characteristics of SM45C carbon steel welding by use of an Nd:YAG laser. In spite of its good mechanical characteristics, SM45C carbon steel has a high carbon contents and suffers a limitation in the industrial application due to the poor welding properties. In this study, plume shape was measured by infrared thermal camera that is non-contact/non-destructive thermal measurement equipment through change of laser generating power, speed, focus. Weld was performed on bead-on method. Measurement results are compared as two equipment. Here, two results are composed of measurement results of plume quantities due to plume shape by infrared thermal camera and inspection results of weld bead include weld flaws by ultrasonic inspector.

  11. Single point incremental forming of tailored blanks produced by friction stir welding

    DEFF Research Database (Denmark)

    Silva, M.B.; Skjødt, Martin; Vilaca, P.

    2009-01-01

    fromthe rotating single point-forming tool. Formability of the tailor welded blanks (TWB) is evaluated by means of benchmark tests carried out on truncated conical and pyramidal shapes and results are compared with similar tests performed on conventional reference blanks of the same material. Results show......This paper is focused on the single point incremental forming (SPIF) of tailored welded blanks produced by friction stirwelding (FSW). Special emphasis is placed on the know-how for producing the tailored blanks and on the utilization of innovative forming strategies to protect thewelding joint...... that the combination of SPIF with tailored welded blanks produced by FSW seems promising in the manufacture of complex sheet metal parts with high depths....

  12. R/D and implement of temper bead welding as newly developed maintenance technique in nuclear power plant

    International Nuclear Information System (INIS)

    Hirano, Shinro; Sera, Takehiko; Chigusa, Naoki; Okimura, Koji; Nishimoto, Kazutoshi

    2011-01-01

    Japanese government has recently addressed a policy to increase capacity factor of existing nuclear PPs to achieve the goal to decrease the emission of CO 2 . Numerous preventive measures have taken in nuclear power plants to minimize the risk of unexpected long shutdown. Newly developed mitigation measures or repair methods need to be qualified to satisfy regulatory standards, before it is implemented to nuclear power plants. The qualification process needs to comply regulatory standards though it may consume time to go through each of the required steps. This paper describes such cases namely ambient temper-bead welding and clarifies the issues that need to be resolved regarding qualification process. The qualification process for new methods that has not been prescribed in regulatory standards temporarily completed by go through confirm testing by JAPEIC, RNP and issuance of no action letter in rush. Currently, the qualification process can only be applied on limited area so generalized qualification process needs to be established. (author)

  13. Alternative welding reconditioning solutions without post welding heat treatment of pressure vessel

    Science.gov (United States)

    Cicic, D. T.; Rontescu, C.; Bogatu, A. M.; Dijmărescu, M. C.

    2017-08-01

    In pressure vessels, working on high temperature and high pressure may appear some defects, cracks for example, which may lead to failure in operation. When these nonconformities are identified, after certain examination, testing and result interpretation, the decision taken is to repair or to replace the deteriorate component. In the current legislation it’s stipulated that any repair, alteration or modification to an item of pressurised equipment that was originally post-weld heat treated after welding (PWHT) should be post-weld heat treated again after repair, requirement that cannot always be respected. For that reason, worldwide, there were developed various welding repair techniques without PWHT, among we find the Half Bead Technique (HBT) and Controlled Deposition Technique (CDT). The paper presents the experimental results obtained by applying the welding reconditioning techniques HBT and CDT in order to restore as quickly as possible the pressure vessels made of 13CrMo4-5. The effects of these techniques upon the heat affected zone are analysed, the graphics of the hardness variation are drawn and the resulted structures are compared in the two cases.

  14. Microstructural characterisation of Inconel 718 gas tungsten arc welds

    International Nuclear Information System (INIS)

    Ram, G.D.J.; Reddy, A.V.; Rao, K.P.

    2005-01-01

    The presence of Nb-rich, brittle, intermetallic Laves phase in Inconel 718 weld fusion zones is detrimental to weld mechanical properties. In the current work, autogenous bead-on-plate gas tungsten-arc welds were deposited in 2 mm thick IN 718 sheets. The welds were subjected to the following heat treatments: i) direct aging, ii) solution treatment at 980 C followed by aging, and iii) solution treatment at 1080 C followed by aging. Detailed microstructural characterisation was carried out using optical, scanning electron and transmission electron microscopes and electron probe microanalysis. The microstructural features in as-welded and post-weld heat treated conditions are discussed. The results show that post-weld heat treatments alone cannot provide satisfactory solution to the Laves problem in Inconel 718 gas tungsten-arc welds

  15. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  16. Method for enhanced control of welding processes

    Science.gov (United States)

    Sheaffer, Donald A.; Renzi, Ronald F.; Tung, David M.; Schroder, Kevin

    2000-01-01

    Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100.times.100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.

  17. Development of a process model for intelligent control of gas metal arc welding

    International Nuclear Information System (INIS)

    Smartt, H.B.; Johnson, J.A.; Einerson, C.J.; Watkins, A.D.; Carlson, N.M.

    1991-01-01

    This paper discusses work in progress on the development of an intelligent control scheme for arc welding. A set of four sensors is used to detect weld bead cooling rate, droplet transfer mode, weld pool and joint location and configuration, and weld defects during welding. A neural network is being developed as the bridge between the multiple sensor set a conventional proportional-integral controller that provides independent control of process variables. This approach is being developed for the gas metal arc welding process. 20 refs., 8 figs

  18. Analysis of the influence of the multipass welding, welding preheat and welding post heat treatments on the behaviour of GMAW joints of HARDOX 400 microalloyed steel; Influencia de la tecnica de soldaduramultipasada y de los tratamientos termicos de precalentamiento y post-soldadura en el comportamiento de uniones GMAW de un acero microaleado HARDOX 400

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, A.; Miguel, V.; Coello, J.; Navarro, A.; Calatayud, A.; Manjabacas, M. C.

    2011-07-01

    The microalloyed steels may be supplied in a hardened state. In these cases, the weldability can be improved by pre-heat and/or post-heat welding treatments. In this paper, the effect of those treatments and the influence of multipass welding on GMAW joints behavior are analyzed for a Hardox 400 microalloyed steel. The microstructure evaluation of the different heat affected zones of the steel has been made and the mechanical properties of those zones are obtained for different conditions as it has been mentioned. The obtained results indicate that preheating the steel leads to a beneficial action that consists on the distance increasing from the bead to the zone in which the hardness is lowest. The post heat treatment strengthens that zone and improves the joint plasticity. This benefit is higher if the joint has been made with preheating. Multipass welding has not been found to have any advantage if it is compared to a single welding pass. (Author) 18 refs.

  19. Welding with high power fiber lasers - A preliminary study

    International Nuclear Information System (INIS)

    Quintino, L.; Costa, A.; Miranda, R.; Yapp, D.; Kumar, V.; Kong, C.J.

    2007-01-01

    The new generation of high power fiber lasers presents several benefits for industrial purposes, namely high power with low beam divergence, flexible beam delivery, low maintenance costs, high efficiency and compact size. This paper presents a brief review of the development of high power lasers, and presents initial data on welding of API 5L: X100 pipeline steel with an 8 kW fiber laser. Weld bead geometry was evaluated and transition between conduction and deep penetration welding modes was investigated

  20. Critical Gap distance in Laser Butt-welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1999-01-01

    In a number of systematic laboratory experiments the critical gap distance that results in sound beads in laser butt welding is sought identified. By grinding the edges of the sheets, a number of "reference" welds are made and compared to the sheets with shear cut edges. In the tests the gap...... was set at 0.00, 0.02, 0.05, 0.08 and 0.10 mm. Mild steel (St 1203) with a thickness of 0.75 and 1.25 mm with and without zinc coating were analysed. A total of 120 welds were made at different welding speeds.As quality norm DIN 8563 was used to divide the welds into quality classes. A number of welds...... were also x-ray photographed.Of the weld combinations analysed 80 % were of high quality and 17 % of a non-acceptable quality. 90 % of the bad welds had a gap distance larger than 0.05 mm. The results showed that 85 % of the bad welds were shear cut and only 15 % grinded. Two third of the bad welds...

  1. Electron beam welding using fusion and cold wire fill

    International Nuclear Information System (INIS)

    Kuncz, F.F.

    1977-01-01

    A straight-fusion (self-filler) welding technique generally poses no problem for electron beam welding. However, where control of penetration is a critical item and burn-through cannot be tolerated, this technique may not be satisfactory. To assure against beam-spike burn-through on a 1/4-inch deep weld joint, a low-power root-fusion pass, supplemented by numerous filler passes, was selected. However, this technique proved to have numerous problems. Voiding and porosity showed frequently in the first applications of this cold-wire filler process. Taper-out cratering, bead-edge undercutting, and spatter were also problems. These imperfections, however, were overcome. Employment of a circle generator provided the necessary heating of the joint walls to eliminate voids. The moving beam spot also provided a stirring action, lessening porosity. Taper-out cratering was eliminated by adjusting the timing of the current cutoff and wire-feed cutoff. Undercutting, bead height, and spatter were controlled by beam defocus

  2. Correlation Between Microstructure and Low-Temperature Impact Toughness of Simulated Reheated Zones in the Multi-pass Weld Metal of High-Strength Steel

    Science.gov (United States)

    Kang, Yongjoon; Park, Gitae; Jeong, Seonghoon; Lee, Changhee

    2018-01-01

    A large fraction of reheated weld metal is formed during multi-pass welding, which significantly affects the mechanical properties (especially toughness) of welded structures. In this study, the low-temperature toughness of the simulated reheated zone in multi-pass weld metal was evaluated and compared to that of the as-deposited zone using microstructural analyses. Two kinds of high-strength steel welds with different hardenabilities were produced by single-pass, bead-in-groove welding, and both welds were thermally cycled to peak temperatures above Ac3 using a Gleeble simulator. When the weld metals were reheated, their toughness deteriorated in response to the increase in the fraction of detrimental microstructural components, i.e., grain boundary ferrite and coalesced bainite in the weld metals with low and high hardenabilities, respectively. In addition, toughness deterioration occurred in conjunction with an increase in the effective grain size, which was attributed to the decrease in nucleation probability of acicular ferrite; the main cause for this decrease changed depending on the hardenability of the weld metal.

  3. Double-Sided Single-Pass Submerged Arc Welding for 2205 Duplex Stainless Steel

    Science.gov (United States)

    Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang

    2013-09-01

    The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (δ) and austenite (γ) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided single-pass (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the σ phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the σ phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with σ phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.

  4. Electron beam welding of aluminium components

    International Nuclear Information System (INIS)

    Maajid, Ali; Vadali, S.K.; Maury, D.K.

    2015-01-01

    Aluminium is one of the most widely used materials in industries like transportation, shipbuilding, manufacturing, aerospace, nuclear, etc. The challenges in joining of aluminium are distortion, cleanliness and quality. Main difficulties faced during fusion welding of aluminium components are removal of surface oxide layer, weld porosity, high heat input requirement, distortion, hot cracking, etc. Physical properties of aluminium such as its high thermal conductivity, high coefficient of thermal expansion, no change in colour at high temperature, large difference in the melting points of the metal and its oxide (∼ 1400 °C) compound the difficulties faced during welding. Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Welding (GMAW), Plasma Arc Welding (PAW), etc are generally used in industries for fusion welding of aluminium alloys. However in case of thicker jobs the above processes are not suitable due to requirements of elaborate edge preparation, preheating of jobs, fixturing to prevent distortion, etc. Moreover, precise control over the heat input during welding and weld bead penetration is not possible with above processes. Further, if heat sensitive parts are located near the weld joint then high energy density beam welding process like Electron Beam Welding (EBW) is the best possible choice for aluminium welding.This paper discusses EB welding of aluminium components, typical geometry of components, selection/optimization of welding parameters, problems faced during standardization of welding and process parameters and their remedies etc.

  5. MAG narrow gap welding - an economic way to minimize welding expenses

    International Nuclear Information System (INIS)

    Kast, W.; Scholz, E.; Weyland, F.

    1982-01-01

    The thicker structural components are, the more important it is to take measures to reduce the volume of the weld. The welding process requiring the smallest possible weld section is the so-called narrow gap process. In submerged arc narrow gap welding as well as in MAG narrow gap welding different variants are imaginable, some of them already in practical use. With regard to efficiency and weld quality an optimum variant of the MAG narrow gap welding process is described. It constitutes a two wire system in which two wire electrodes of 1.2 mm diameter are arranged one behind the other. In order to avoid lack of fusion, the wire guides are slightly pointed towards each groove face. Thus, by inclining the two arcs burning one behind the other in the direction of weld progress, it is achieved that two separately solidifying weld pools and two beads per layer are simultaneously formed. Welding parameters are selected in such a way that a heat input of 16-20 kJ/cm and a deposition rate of 11-16 kgs/h are obtained. In spite of this comparatively high deposition rate, good impact values are found both in the weld and HAZ (largely reduced coarse-grain zone) which is due to an optimum weld build-up. With the available welding equipment the process can be applied to structural members having a thickness of 40-400 mm. The width of gap is 13 mm (root section) with a bevel angle of 1 0 . As filler metal, basic flux-cored wires are used which, depending on the base metal to be welded and the required tensile properties, can be of the Mn-, MnMo-, MnCrMo-, MnNi-, or MnNiMo-alloyed types. (orig.)

  6. Low temperature friction stir welding of P91 steel

    Directory of Open Access Journals (Sweden)

    Prasad Rao Kalvala

    2016-08-01

    Full Text Available Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior (by impression creep tests. The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below Ac1 temperature of P91 steel while it was above Ac3 with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.

  7. Effect of beam oscillation on borated stainless steel electron beam welds

    Energy Technology Data Exchange (ETDEWEB)

    RajaKumar, Guttikonda [Tagore Engineering College, Chennai (India). Dept. of Mechanical Engineering; Ram, G.D. Janaki [Indian Institute of Technology (IIT), Chennai (India). Dept. of Metallurgical and Materials Engineering; Rao, S.R. Koteswara [SSN College of Engineering, Chennai (India). Mechanical Engineering

    2015-07-01

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  8. Effect of beam oscillation on borated stainless steel electron beam welds

    International Nuclear Information System (INIS)

    RajaKumar, Guttikonda; Ram, G.D. Janaki; Rao, S.R. Koteswara

    2015-01-01

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  9. Hanford Site Welding Program Successfully Providing A Single Site Function For Use By Multiple Contractors

    International Nuclear Information System (INIS)

    Cannell, G.R.

    2009-01-01

    The Department of Energy, Richland Operations (DOE-RL) recently restructured its Hanford work scope, awarding two new contracts over the past several months for a total of three contracts to manage the sites cleanup efforts. DOE-RL met with key contractor personnel prior to and during contract transition to ensure site welding activities had appropriate oversight and maintained code compliance. The transition also provided an opportunity to establish a single site-wide function that would provide welding and materials engineering services to the Hanford site contractors: CH2M HILL Plateau Remediation Company (CHPRC); Mission Support Alliance (MSA); Washington River Protection Solutions (WRPS); and Washington Closure Hanford (WCH). Over the years, multiple and separate welding programs (amongst the several contractors) existed at the Hanford site leading to inefficiencies resulting from duplication of administrative efforts, maintenance of welding procedures, welder performance certifications, etc. The new, single program eliminates these inefficiencies. The new program, co-managed by two of the sites' new contractors, the CHPRC ('owner' of the program and responsible for construction welding services) and the MSA (provides maintenance welding services), provides more than just the traditional construction and maintenance welding services. Also provided, are welding engineering, specialty welding development/qualification for the closure of radioactive materials containers and materials evaluation/failure analysis. The following describes the new Hanford site welding program.

  10. Effect of the crack-starter weld condition on the nil-ductility transition temperature

    International Nuclear Information System (INIS)

    Satoh, Masanobu; Funada, Tatsuo; Tomimatsu, Minoru

    1985-01-01

    In ASME Code Sec. III, the value of the reference nil-ductility temperature RT sub(EDT) has an important significance to determine the result of the fracture mechanics evaluation. While in the standard both the drop-weight test and Charpy impact test are required to determine the RT sub(NDT), in practice it is normally determined only by the nil-ductility transition temperature (T sub(EDT)) obtained by the drop-weight test. The cases of data scatter in T sub(NDT) were investigated to establish appropriate conditions of crack-starter bead welding. Drop-weight tests were carried out for nuclear vessel steels by changing welding conditions to examine the effects of welding amperage and shapes of welding table on T sub(NDT). The results show that the preparation of crack-starter bead by small welding amperage should not be allowed, because it makes the measured T sub(NDT) non-conservative, and that it is important to use a welding table which increases the cooling rate of specimen. Furthermore, the authors proposed methods for estimating T sub(NDT) of nuclear vessel steels by using Charpy transition temperatures. (author)

  11. Influences of lumped passes on welding residual stress of a thick-walled nuclear rotor steel pipe by multipass narrow gap welding

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Long, E-mail: mse.longtan@gmail.com [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Jianxun; Zhuang, Dong [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Chuan [Provincial Key Lab of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003 (China)

    2014-07-01

    Highlights: • The internal residual stress of the thick-walled pipe is measured by using the local removal blind hole method. • Two lumped-pass models are developed to reduce computational cost. • The effect of lumped passes on the welding residual stress is discussed. • Reasonable lumped-pass model can guarantee the accuracy and improve the computational efficiency. - Abstract: The purpose of this study is to investigate the effect of the lumped passes simulation on the distribution of residual stresses before and after heat treatment in a thick-walled nuclear power rotor pipe with a 89-pass narrow gap welding process. The local removal blind hole method was used to measure internal residual stress of the thick-walled pipe after post weld heat treatment (PWHT). Based on the ANSYS software, a two-dimensional axisymmetric finite element model is employed. Two lumped-pass models of M-5th model (five weld beads as one lumped pass) and M-10th model (ten weld beads as one lumped pass) were developed to reduce computational cost. Based on the results in this study, the distributions of residual stresses of a thick-walled welded pipe before and after PWHT are developed. Meanwhile, the distribution of the through-wall axial residual stress along the weld center line is demonstrated to be a self-equilibrating type. In addition, the investigation results show that reasonable and reliable lumped-pass model can not only guarantee the accuracy of the simulated results, but also improve the computational efficiency in the thermo-elastic–plastic FE analysis procedure. Therefore, from the viewpoint of engineering application the developed lumped-pass computational procedure is a promising and useful method to predict residual stress of large and complex welded structures.

  12. Influences of lumped passes on welding residual stress of a thick-walled nuclear rotor steel pipe by multipass narrow gap welding

    International Nuclear Information System (INIS)

    Tan, Long; Zhang, Jianxun; Zhuang, Dong; Liu, Chuan

    2014-01-01

    Highlights: • The internal residual stress of the thick-walled pipe is measured by using the local removal blind hole method. • Two lumped-pass models are developed to reduce computational cost. • The effect of lumped passes on the welding residual stress is discussed. • Reasonable lumped-pass model can guarantee the accuracy and improve the computational efficiency. - Abstract: The purpose of this study is to investigate the effect of the lumped passes simulation on the distribution of residual stresses before and after heat treatment in a thick-walled nuclear power rotor pipe with a 89-pass narrow gap welding process. The local removal blind hole method was used to measure internal residual stress of the thick-walled pipe after post weld heat treatment (PWHT). Based on the ANSYS software, a two-dimensional axisymmetric finite element model is employed. Two lumped-pass models of M-5th model (five weld beads as one lumped pass) and M-10th model (ten weld beads as one lumped pass) were developed to reduce computational cost. Based on the results in this study, the distributions of residual stresses of a thick-walled welded pipe before and after PWHT are developed. Meanwhile, the distribution of the through-wall axial residual stress along the weld center line is demonstrated to be a self-equilibrating type. In addition, the investigation results show that reasonable and reliable lumped-pass model can not only guarantee the accuracy of the simulated results, but also improve the computational efficiency in the thermo-elastic–plastic FE analysis procedure. Therefore, from the viewpoint of engineering application the developed lumped-pass computational procedure is a promising and useful method to predict residual stress of large and complex welded structures

  13. Effect of algal density in bead, bead size and bead concentrations ...

    African Journals Online (AJOL)

    Effect of algal density in bead, bead size and bead concentrations on wastewater nutrient removal. ... African Journal of Biotechnology ... The bioreactor containing algal beads (4 mm diameter) with 1.5 x 106 cells bead-1 (cell stocking) at concentration of 10.66 beads ml-1 wastewater (1:3 bead: wastewater, v/v) achieved ...

  14. Investigations on penetration control for automated pipe welding system

    International Nuclear Information System (INIS)

    Fujiki, Daisuke; Sato, Akihiro; Funamoto, Takao; Matsumoto, Toshimi; Kobayashi, Masahiro

    1995-01-01

    We have been investigating process conditions forming sound root bead by orbital welding technique for nuclear power stations. Specimens used were stainless steel (SUS304) pipes (318.5 mm outside diameter and 15.4 mm thickness), and pulsed gas tungsten-arc (GTA) welder was adopted. We have found process conditions to form sound root bead by changing both heat input conditions and joint designs. It is found that reducing volume of molten metal is necessary to form sound root bead. And it is also found that changing joint designs is effective to reduce volume of molten metal. By selecting proper joint designs, we could form sound root bead in constant heat input conditions in every position of pipe. (author)

  15. Magnetic bead detection using nano-transformers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Kwon; Ahn, Doyeol [Institute of Quantum Information Processing and Systems, University of Seoul, 90 Jeonnong, Dongdaemun, Seoul 130-743 (Korea, Republic of); Hwang, Jong Seung; Hwang, Sung Woo, E-mail: dahn@uos.ac.kr [Research Center for Time-domain Nano-functional Devices and School of Electrical Engineering, Korea University, 5-1 Anam, Sungbuk, Seoul 136-701 (Korea, Republic of)

    2010-11-19

    A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level.

  16. Magnetic bead detection using nano-transformers.

    Science.gov (United States)

    Kim, Hyung Kwon; Hwang, Jong Seung; Hwang, Sung Woo; Ahn, Doyeol

    2010-11-19

    A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level.

  17. Induction heat treatment of laser welds

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Sørensen, Joakim Ilsing

    2003-01-01

    of an induction coil. A number of systematic laboratory tests were then performed in order to study the effects of the coil on bead-on-plate laser welded samples. In these tests, important parameters such as coil current and distance between coil and sample were varied. Temperature measurements were made...... the laser beam as close as possible. After welding, the samples were quality assessed according to ISO 13.919-1 and tested for hardness. The metallurgical phases are analysed and briefly described. A comparison between purely laser welded samples and induction heat-treated laser welded samples is made......In this paper, a new approach based on induction heat-treatment of flat laser welded sheets is presented. With this new concept, the ductility of high strength steels GA260 with a thickness of 1.8 mm and CMn with a thickness of 2.13 mm is believed to be improved by prolonging the cooling time from...

  18. Single-sided sheet-to-tube spot welding investigated by 3D numerical simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Chergui, Azeddine; Zhang, Wenqi

    The single-sided resistance spot welding process is analyzed by a 3D numerical study of sheet-to-tube joining. Finite element simulations are carried out in SORPAS® 3D. Two levels of electrode force and five levels of welding current are simulated. The overall effects of changing current and force...

  19. HAZ microstructure in joints made of X13CrMoCoVNbNB9-2-1 (PB2 steel welded with and without post-weld heat treatment

    Directory of Open Access Journals (Sweden)

    M. Łomozik

    2016-07-01

    Full Text Available The article presents the results of research butt welded joints made of X13CrMoCoVNbNB9-2-1 steel. The joints were welded with post-weld heat treatment PWHT and without PWHT, using the temper bead technique TBT. After welding the joint welded with PWHT underwent stress-relief annealing at 770 °C for 3 hours. The scope of structural tests included the microstructural examination of the coarse-grained heat affected zone (HAZ areas of the joints, the comparison of the morphology of these areas and the determination of carbide precipitate types of the coarse grain heat affected zone (CGHAZ of the joints welded with and without PWHT.

  20. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    Science.gov (United States)

    Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.

  1. Single bead near-infrared random laser based on silica-gel infiltrated with Rhodamine 640

    Science.gov (United States)

    Moura, André L.; Barbosa-Silva, Renato; Dominguez, Christian T.; Pecoraro, Édison; Gomes, Anderson S. L.; de Araújo, Cid B.

    2018-04-01

    Photoluminescence properties of single bead silica-gel (SG) embedded with a laser-dye were studied aiming at the operation of near-infrared (NIR) Random Lasers (RLs). The operation of RLs in the NIR spectral region is especially important for biological applications since the optical radiation has deep tissue penetration with negligible damage. Since laser-dyes operating in the NIR have poor stability and are poor emitters, ethanol solutions of Rhodamine 640 (Rh640) infiltrated in SG beads were used. The Rh640 concentrations in ethanol varied from 10-5 to 10-2 M and the excitation at 532 nm was made by using a 7 ns pulsed laser. The proof-of-principle RL scheme herein presented was adopted in order to protect the dye-molecules from the environment and to favor formation of aggregates. The RL emission from ≈650 nm to 720 nm, beyond the typical Rh640 monomer and dimer wavelengths emissions range, was attributed to the trade-off between reabsorption and reemission processes along the light pathways inside the SG bead and the contribution of Rh640 aggregates.

  2. Critical Gap distance in Laser Butt-welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    of "reference" welds are made and compared to sheets with the edges shear cut. The gap distance is precisely controlled by inserting spacers between the sheets. In the tests the gap is set at 0.00, 0.02, 0.05, 0.08 and 0.10 mm. Mild steel (St 1203) with thickness? of 0.75 and 1.25 mm with and without zinc......When butt-welding metal sheets with high power lasers the gap distance between the sheets determine the final quality of the seam. In a number of systematic laboratory experiments the critical gap distance that results in sound beads is identified. By grinding the edges of the sheets, a number...... coating were analysed. A total of 120 welds are made at different welding speeds.As quality norm DIN 8563 is used to divide the welds into quality classes. Since this norm only deals with surface defects a number of welds are also x-ray photographed.According to DIN 8563 the welds have classes of either B...

  3. Device for welding components using ultrasonics, particularly for solar cell contacts and solar cell connections. Vorrichtung zum Verschweissen von Bauteilen unter Verwendung von Ultraschall, insbesondere von Solarzellenkontakten und Solarzellenverbindern

    Energy Technology Data Exchange (ETDEWEB)

    Gochermann, H.

    1983-06-23

    This is a device for welding components, particularly solar cell contacts and solar cell connections, using an ultrasonic welding device. The ultrasonic welding device has a high frequency generator, an ultrasonic emitter, a transmitter, a sonotrode, a device for accommodating the components and controls. The sonotrode is provided with a circumferential beading acting as the welding disc, which, together with the sonotrode, is rolled over the components by a relative movement. The part of the beading which is tangential to the component introduces ultrasonic energy into the component. The relative movement is made possible by the system of the ultrasonic emitter, transmitter and sonotrode with the surrounding beading being mounted so that it can rotate in a vibration node of the transmitter. (orig.).

  4. Optimization of GMAW process of AA 6063-T5 aluminum alloy butt joints based on the response surface methodology and on the bead geometry

    International Nuclear Information System (INIS)

    Miguel, V.; Martinez-Conesa, E. J.; Segura, F.; Manjabacas, M. C.; Abellan, E.

    2012-01-01

    The geometry of the weld beads is characterized by the overhead, the width and the penetration. These values are indices of the behavior of the welded joint and therefore, they can be considered as factors that control the process. This work is performed to optimize the GMAW process of the aluminum alloy AA 6063-T5 by means of the response surface methodology (RSM). The variables herein considered are the arc voltage, the welding speed, the wire feed speed and the separation between surfaces in butt joints. The response functions that are herein studied are the overhead, the width, the penetration and the angle of the bead. The obtained results by RSM show high grade of agreement with the experimental values. The procedure is experimentally validated by welding for the theoretically obtained optimized technological conditions and a wide agreement between theoretical and experimental values is found. (Author) 16 refs.

  5. Multi-physics modeling and numerical simulation of weld pool in GTA welding

    International Nuclear Information System (INIS)

    Nguyen, Minh-Chien

    2015-01-01

    In this work, we develop a 3D physical and numerical model of the GTA (Gas Tungsten Arc) welding process in order to predict, for given welding parameters, useful quantities for the designer of welded assembly: weld bead shape, fluid flow in the weld pool as well as thermal distribution in the work piece. The model is developed in the Cast3M (http://www-cast3m.cea.fr/) finite element software and takes into account the main physical phenomena acting in the work piece and particularly in the weld pool, subject to source terms modeling the arc part of the welding process. A steady solution of this model is thought for and involves the coupling of the nonlinear thermohydraulics and electromagnetic equations together with the displacement of the deformable free surface of the weld pool. A first step in the development consisted in modeling the electromagnetic phenomena with two different numerical methods, in comparing the numerical results obtained with those of the literature and in quantifying the importance of the Lorentz force and the Joule effect compared to the other mechanical and thermal sources by computing power balances. Then, in order to assess the predictive capability of the model, simulations of various welding configurations are performed: variation in the chemical composition of the material, of the welding speed, of the prescribed arc pressure and of the welding positions, which is a focus of this work, are studied. A good agreement is obtained between the results of our model and other experimental and numerical results of the literature. Eventually, a model accounting for metal filling is proposed and its results are discussed. Thus, our complete model can be seen as a solid foundation towards future totally-coupled 3D welding models including the arc and it will be included in WPROCESS the in-house CEA software dedicated to the numerical simulation of welding. (author) [fr

  6. Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel

    International Nuclear Information System (INIS)

    Sathiya, P.; Ajith, P. M.; Soundararajan, R.

    2013-01-01

    The present study is focused on welding of super austenitic stainless steel sheet using gas metal arc welding process with AISI 904 L super austenitic stainless steel with solid wire of 1.2 mm diameter. Based on the Box - Behnken design technique, the experiments are carried out. The input parameters (gas flow rate, voltage, travel speed and wire feed rate) ranges are selected based on the filler wire thickness and base material thickness and the corresponding output variables such as bead width (BW), bead height (BH) and depth of penetration (DP) are measured using optical microscopy. Based on the experimental data, the mathematical models are developed as per regression analysis using Design Expert 7.1 software. An attempt is made to minimize the bead width and bead height and maximize the depth of penetration using genetic algorithm.

  7. Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sathiya, P. [National Institute of Technology Tiruchirappalli (India); Ajith, P. M. [Department of Mechanical Engineering Rajiv Gandhi Institute of Technology, Kottayam (India); Soundararajan, R. [Sri Krishna College of Engineering and Technology, Coimbatore (India)

    2013-08-15

    The present study is focused on welding of super austenitic stainless steel sheet using gas metal arc welding process with AISI 904 L super austenitic stainless steel with solid wire of 1.2 mm diameter. Based on the Box - Behnken design technique, the experiments are carried out. The input parameters (gas flow rate, voltage, travel speed and wire feed rate) ranges are selected based on the filler wire thickness and base material thickness and the corresponding output variables such as bead width (BW), bead height (BH) and depth of penetration (DP) are measured using optical microscopy. Based on the experimental data, the mathematical models are developed as per regression analysis using Design Expert 7.1 software. An attempt is made to minimize the bead width and bead height and maximize the depth of penetration using genetic algorithm.

  8. Study on durability of welded bellows. Fatigue life of bellows with crack in welded bead

    International Nuclear Information System (INIS)

    Hirata, Osamu; Okada, Ken; Yanagisawa, Takasi; Nakajima, Akira.

    1994-01-01

    Reports of study for welded bellows with cracks have apparently not been published to date. The purpose of this investigation is to understand the relationship between the state of stress of welded bellows with micro cracks and the fatigue life. Stresses of welded bellows with cracks were calculated for several different crack lengths by finite element method (FEM), and lives of bellows with cracks were examined by fatigue test. The fatigue life, i.e. the number of cycles to failure was arranged against the remaining wall thickness measured after test instead of the crack length. As a result, it was found that there is a regular relationship between the stress amplitude of peak stress calculated by FEM and the fatigue life of bellows. And then, it was shown that the life of bellows becomes longer than the life estimated using a theoretical S-N curve calculated by Manson's method. Stress intensity factor range (ΔK) and crack propagation rate (da/dN) were also calculated using the results of stress analysis by FEM and fatigue test. The relationship between ΔK and da/dN obtained was almost coincident with the earlier result of fatigue crack growth test of Inconel 718 in the region of da/dN > 1.5x10 -6 mm/cycle, and the propriety of the present results was confirmed. (author)

  9. Effect of algal density in bead, bead size and bead concentrations ...

    African Journals Online (AJOL)

    Laboratory experiments were performed to study nitrogen and phosphorus uptake by the unicellular green microalga Chlorella vulgaris immobilized in calcium alginate beads. Different cell stockings in beads, different bead sizes and different algal bead concentrations in wastewaters were tested. Significant higher nutrients ...

  10. Advantages and successful use of TIG narrow-gap welding

    International Nuclear Information System (INIS)

    Loehberg, R.; Pellkofer, D.; Schmidt, J.

    1986-01-01

    Narrow-gap welding, an advancement of the mechanized TIG impulse welding process with conventional seam geometry (V-shaped and/or U-shaped welds), not only assures great economic efficiency on account of the low weld volume but also offers considerable benefits in terms of quality. Thanks to the low number of beads, the following advantages are gained: less axial and radial shrinkage which reduces the strain in the root area, total heat input and, thus, the dwell time in the critical temperature range from 500 to 800 0 C leading to a chromium depletion at the grain boundaries during the welding process is minimized which markedly reduces the sensitivity of non-stabilized steels to intercrystalline stress corrosion cracking, and a relatively favourable residual welding stress profile in the heat affected zone. The process was used successfully in the past for welds of ferritic and austenitic steel pipes in the construction of nuclear power plants and in the remote-controlled welding during the replacement of piping in plants already in operation. (orig.) [de

  11. Analysis of U and Pu resin bead samples with a single stage mass spectrometer

    International Nuclear Information System (INIS)

    Smith, D.H.; Walker, R.L.; Bertram, L.K.; Carter, J.A.

    1979-01-01

    Resin bead sampling enables the shipment of nanogram U and Pu quantities for analysis. Application of this sampling technique to safeguards was investigated with a single-stage mass spectrometer. Standards gave results in good agreement with NBS certified values. External precisions of +-0.5% were obtained on isotopic ratios of approx. 0.01; precisions on quantitative measurements are +-1.0%

  12. Plasmonic welded single walled carbon nanotubes on monolayer graphene for sensing target protein

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jangheon; Kim, Soohyun [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejeon 305-806 (Korea, Republic of); Kim, Gi Gyu; Jung, Wonsuk, E-mail: wonsuk81@wku.ac.kr [Department of Mechanical and Automotive Engineering, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2016-05-16

    We developed plasmonic welded single walled carbon nanotubes (SWCNTs) on monolayer graphene as a biosensor to detect target antigen molecules, fc fusion protein without any treatment to generate binder groups for linker and antibody. This plasmonic welding induces atomic networks between SWCNTs as junctions containing carboxylic groups and improves the electrical sensitivity of a SWCNTs and the graphene membrane to detect target protein. We investigated generation of the atomic networks between SWCNTs by field-emission scanning electron microscopy and atomic force microscopy after plasmonic welding process. We compared the intensity ratios of D to G peaks from the Raman spectra and electrical sheet resistance of welded SWCNTs with the results of normal SWCNTs, which decreased from 0.115 to 0.086 and from 10.5 to 4.12, respectively. Additionally, we measured the drain current via source/drain voltage after binding of the antigen to the antibody molecules. This electrical sensitivity of the welded SWCNTs was 1.55 times larger than normal SWCNTs.

  13. Welding repair of a dissimilar weld and respective consequences for other German plants

    International Nuclear Information System (INIS)

    Brummer, G.; Dauwel, W.; Wesseling, U.; Ilg, U.; Lauer, P.; Widera, M.; Wachter, O.

    2002-01-01

    During a regular refueling outage in a German nuclear power plant in year 2000, additional non-destructive examinations have been performed on request of the Authority, to fulfill some recommendations of the independent experts with regard to the retrospective application of the Basic Safety Concept for the ferritic main coolant piping of this plant. During these inspections, indications were found in a dissimilar weld between one of the fifteen MCL (main coolant lines) nozzles and the ECC (emergency core cooling) system piping. By means of on-site metallography and laboratory investigations on three boat samples taken from this weld, it could be shown that the indications were due to hot cracking in the surface layer of the weld. In the course of these investigations, at three locations at the circumference of the weld, dis-bonding defects were found between the ferritic base metal of the nozzle and the austenitic weld butter, which has been applied to join the nozzle to the austenitic safe-end. According to the results of the extensive investigations, the dis-bonding occurred during the manufacturing process after stress-relief heat-treatment of the buttering during the welding of the austenitic safe-end to the butter material. There was no evidence for any crack growth during operation of the plant. Due to the large size of the boat-samples, a weld repair was mandatory. This repair has been performed using the so-called temper-bead technique as specified in the ASME Code, without subsequent stress relief heat treatment, using an advanced automatic orbital TIG welding process. The welding has been successfully performed without the need of further repair work. For those dissimilar welds, all other plants, except one, had used Inconel welding material for buttering the ferritic nozzle instead of stainless steel welding metal. For metallurgical reasons, dis-bonding along the fusion line for Inconel buttered dissimilar welds is unlikely to occur. Nevertheless all

  14. Finite-Element Thermal Analysis and Grain Growth Behavior of HAZ on Argon Tungsten-Arc Welding of 443 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Yichen Wang

    2016-03-01

    Full Text Available This paper presents a numerical and infrared experimental study of thermal and grain growth behavior during argon tungsten arc welding of 443 stainless steel. A 3D finite element model was proposed to simulate the welding process. The simulations were carried out via the Ansys Parametric Design Language (APDL available in the finite-element code, ANSYS. To validate the simulation accuracy, a series of experiments using a fully-automated welding process was conducted. The results of the numerical analysis show that the simulation weld bead size and the experiment results have good agreement. The grain growth in the heat-affected zone of 443 stainless steel is influenced via three factors: (1 the thermal cycle experienced; (2 grain boundary migration; and (3 particle precipitation. Grain boundary migration is the main factor. The modified coefficient k of the grain growth index is calculated. The value is 1.16. Moreover, the microhardness of the weld bead softened slightly compared to the base metal.

  15. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    Science.gov (United States)

    Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.

    2005-01-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.

  16. Limit load solution for electron beam welded joints with single edge weld center crack in tension

    Science.gov (United States)

    Lu, Wei; Shi, Yaowu; Li, Xiaoyan; Lei, Yongping

    2012-05-01

    Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments. However, there are no limit load solutions exist for the single edge crack weldments in tension (SEC(T)), which is also a typical geometry in fracture analysis. The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses. The real weld configurations are simplified as a strip, and different weld strength mis-matching ratio M, crack depth/width ratio a/ W and weld width 2H are in consideration. As a result, it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M, a/ W and ligament-to-weld width ratio ( W-a)/ H. Moreover, useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T). For the EBW joints with SEC(T), the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal, when M changing from 1.6 to 0.6. When M decreasing to 0.4, the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of ( W-a)/ H. The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T). The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).

  17. A Study to Increase Weld Penetration in P91 Steel During TIG Welding by using Activating Fluxes

    Science.gov (United States)

    Singh, Akhilesh Kumar; Kumar, Mayank; Dey, Vidyut; Naresh Rai, Ram

    2017-08-01

    Activated Flux TIG (ATIG) welding is a unique joining process, invented at Paton Institute of electric welding in 1960. ATIG welding process is also known as flux zoned TIG (FZTIG). In this process, a thin layer of activating flux is applied along the line on the surface of the material where the welding is to be carries out. The ATIG process aids to increase the weld penetration in thick materials. Activating fluxes used in the literature show the use of oxides like TiO2, SiO2, Cr2O3, ZnO, CaO, Fe2O3, and MnO2 during welding of steels. In the present study, ATIG was carried out on P-91 steel. Though, Tungsten Inert Gas welding gives excellent quality welds, but the penetration obtained in such welding is still demanding. P91 steel which is ferritic steel is used in high temperature applications. As this steel is, generally, used in thick sections, fabrication of such structures with TIG welding is limited, due to its low depth of penetration. To increase the depth of penetration in P91while welding with ATIG, the role of various oxides were investigated. Apart from the oxides mentioned above, in the present study the role of B2O3, V2O5 and MgO, during ATIG welding of P91 was investigated. It was seen that, compared to TIG welding, there was phenomenal increase in weld penetration during ATIG welding. Amongst all the oxides used in this study, maximum penetration was achieved in case of B2O3. The measurements of weld penetration, bead width and heat affected zone of the weldings were carried out using an image analysis technique.

  18. Microstructural characteristics on bead on plate welding of AISI 904 ...

    African Journals Online (AJOL)

    user

    with low impurity level, hot crack formation during welding can be avoided despite ... duration, these carbides are usually replaced by intermetallic compounds, such ... dendritic and austenitic although the interdendritic materials are richer in ...

  19. Proposta de roteiro para a determinação das variáveis de soldagem do Processo TIG pulsado aplicado à soldagem de chapas finas Proposal of roadmap for determining the variables of pulsed TIG welding process applied to welding of thin plates

    Directory of Open Access Journals (Sweden)

    Tiago Vieira da Cunha

    2013-03-01

    Full Text Available Na soldagem TIG pulsada a corrente varia entre dois níveis bem definidos de energia numa determinada frequência, sendo, portanto, necessário a regulagem de um conjunto de variáveis composto pela corrente de pulso, tempo de pulso, corrente de base, tempo de base, além da velocidade de soldagem. Entretanto, apesar de ser uma técnica tão amplamente difundida, na prática estas variáveis de soldagem muitas vezes são reguladas de forma arbitrária. Isto pode conduzir ao uso ineficiente da pulsação da corrente quando considerado o resultado final da solda, bem como nos aspectos de produtividade. Diante desta carência, este trabalho tem por objetivo apresentar um roteiro desenvolvido com o intuito de suprir a necessidade prática de se estabelecer critérios para auxiliar a determinação das variáveis da soldagem TIG pulsada, tomando como premissa a largura desejada para o cordão de solda final, a sobreposição entre os pontos de solda que compõem o cordão e a velocidade de soldagem. Por fim, é apresentada uma aplicação deste roteiro na soldagem "bead on plate" de chapas de aço inox com 1,2 mm de espessura.In pulsed TIG welding the current varies between two well-defined energy levels in a given frequency being, therefore, necessary to the adjustment of a set of variables consisting of the peak current, peak time, background current, background time and the welding speed. However, despite being a technique so widespread, in practice these welding variables are often regulated arbitrarily. This can lead to inefficient use of the pulsed current regarding the end result of the weld as well as in the aspects of productivity. Given this shortage, this paper aims to present a roadmap developed in order to meet the practical need to establish criteria to assist in the determination of pulsed TIG welding variables, taking as its premise the desired width of the weld bead, overlap between the weld points comprising the weld bead and the

  20. Real-time measurement of electron beam weld penetration in uranium by acoustic emission monitoring

    International Nuclear Information System (INIS)

    Whittaker, J.W.; Murphy, J.L.

    1991-07-01

    High quality electron beam (EB) welds are required in uranium test articles. Acoustic emission (AE) techniques are under development with the goal of measuring weld penetration in real-time. One technique, based on Average Signal Level (ASL) measurement was used to record weld AE signatures. Characteristic AE signatures were recorded for bead-on-plate (BOP) and butt joint (BJ) welds made under varied welding conditions. AE waveforms were sampled to determine what microscopic AE behavior led to the observed macroscopic signature features. Deformation twinning and weld expulsion are two of the main sources of emission. AE behavior was correlated with weld penetration as measured by standard metallographic techniques. The ASL value was found to increase approximately linearly with weld penetration in BJ welds. These results form the basis for a real-time monitoring technique for weld penetration. 5 refs

  1. Development of injection moulded, ultrasonically welded immiscible phase filtration devices

    DEFF Research Database (Denmark)

    Kistrup, Kasper

    for ultrasonic welding, suitable for microfluidic systems. A methodology has been established where energy directors can be quickly added to existing mould inserts, using laser micromachining. The produced device was performance tested by isolating methicillin-resistant Staphylococcus aureus from bovine whole....... The device appliesmagnetic bead-based solid-phase extraction for nucleic acid extraction from biological samples, using the immiscible phase filtration (IPF) approach. Device development has employed injection moulding for part fabrication and ultrasonic welding for bonding. Rapid prototyping...

  2. Evaluation of Surface Roughness by Image Processing of a Shot-Peened, TIG-Welded Aluminum 6061-T6 Alloy: An Experimental Case Study

    Directory of Open Access Journals (Sweden)

    Anas M. Atieh

    2018-05-01

    Full Text Available Visual inspection through image processing of welding and shot-peened surfaces is necessary to overcome equipment limitations, avoid measurement errors, and accelerate processing to gain certain surface properties such as surface roughness. Therefore, it is important to design an algorithm to quantify surface properties, which enables us to overcome the aforementioned limitations. In this study, a proposed systematic algorithm is utilized to generate and compare the surface roughness of Tungsten Inert Gas (TIG welded aluminum 6061-T6 alloy treated by two levels of shot-peening, high-intensity and low-intensity. This project is industrial in nature, and the proposed solution was originally requested by local industry to overcome equipment capabilities and limitations. In particular, surface roughness measurements are usually only possible on flat surfaces but not on other areas treated by shot-peening after welding, as in the heat-affected zone and weld beads. Therefore, those critical areas are outside of the measurement limitations. Using the proposed technique, the surface roughness measurements were possible to obtain for weld beads, high-intensity and low-intensity shot-peened surfaces. In addition, a 3D surface topography was generated and dimple size distributions were calculated for the three tested scenarios: control sample (TIG-welded only, high-intensity shot-peened, and low-intensity shot-peened TIG-welded Al6065-T6 samples. Finally, cross-sectional hardness profiles were measured for the three scenarios; in all scenarios, lower hardness measurements were obtained compared to the base metal alloy in the heat-affected zone and in the weld beads even after shot-peening treatments.

  3. UNS S32750 super duplex steel welding using pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Francini, O.D.; Andrade, G.G.; Clemente, M.S.; Gallego, J.; Ventrella, V.A.

    2016-01-01

    Laser is a flexible and powerful tool with many relevant applications in industry, mainly in the welding area. Lasers today provide the welding industry technical solutions to many problems. This work studied the weld metal obtained by pulsed laser welding of Nd: YAG super duplex stainless steel UNS S32750 employed in the oil and natural gas, analyzing the influence of high cooling rate, due to the laser process, the swing phase ferrite / austenite. Were performed weld beads in butt joint with different repetition rates. The different microstructures were obtained by optical microscopy and scanning electron microscopy. The results showed that the effect of varying the welding energy of Nd: YAG laser on the volume fractions of the phases ferrite/austenite in the weld metal was its ferritization and low austenite amount on the grain boundary. (author)

  4. Residual strains and microstructure development in single and sequential double sided friction stir welds in RQT-701 steel

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, S.J. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)], E-mail: simon.barnes-2@manchester.ac.uk; Steuwer, A. [FaME38, ILL ESRF, 6 rue J.Horowitz, 38042 Grenoble, Cedex (France); University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Mahawish, S. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Johnson, R. [TWI Yorkshire, Wallis Way, Catcliffe, Rotherham S60 5TZ (United Kingdom); Withers, P.J. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2008-09-25

    Single and double sided partial penetration friction stir butt welds, in a rolled, quenched and tempered steel (RQT-701), were produced at The Welding Institute (TWI) under controlled process conditions. The residual strain distributions in the longitudinal and transverse directions have been measured using energy dispersive synchrotron X-ray diffraction. The measured strains were indicative of longitudinal tensile residual stresses at levels greater than the 0.2% yield stress of the parent metal in both the single and double pass welds. In both cases, the maximum tensile strain was found in the parent metal at the boundary of the heat affected zone (HAZ). Microstructural analysis of the welds was carried out using optical microscopy and hardness variations were also mapped across the weld-plate cross-section. The maximum hardness was observed in the mixed bainite/martensite structure of the weld nugget on the advancing side of the stir zone. The minimum hardness was observed in the HAZ.

  5. Residual strains and microstructure development in single and sequential double sided friction stir welds in RQT-701 steel

    International Nuclear Information System (INIS)

    Barnes, S.J.; Steuwer, A.; Mahawish, S.; Johnson, R.; Withers, P.J.

    2008-01-01

    Single and double sided partial penetration friction stir butt welds, in a rolled, quenched and tempered steel (RQT-701), were produced at The Welding Institute (TWI) under controlled process conditions. The residual strain distributions in the longitudinal and transverse directions have been measured using energy dispersive synchrotron X-ray diffraction. The measured strains were indicative of longitudinal tensile residual stresses at levels greater than the 0.2% yield stress of the parent metal in both the single and double pass welds. In both cases, the maximum tensile strain was found in the parent metal at the boundary of the heat affected zone (HAZ). Microstructural analysis of the welds was carried out using optical microscopy and hardness variations were also mapped across the weld-plate cross-section. The maximum hardness was observed in the mixed bainite/martensite structure of the weld nugget on the advancing side of the stir zone. The minimum hardness was observed in the HAZ

  6. Fusion welding studies using laser on Ti-SS dissimilar combination

    Science.gov (United States)

    Shanmugarajan, B.; Padmanabham, G.

    2012-11-01

    Laser welding investigations were carried out on dissimilar Ti-SS combination. The study is aimed to improve the weld strength and ductility by minimizing harmful intermetallics and taking advantage of high cooling rates in laser welding. Results of continuous wave 3.5 kW CO2 laser welding of totally dissimilar combination of Titanium and stainless steel (304) have been discussed. Bead on plate welding experiments were conducted to identify the laser welding parameters using depth of penetration as criteria. The welding of dissimilar combination has been attempted both autogenously and with interlayers such as Vanadium (V) and Tantalum (Ta) in the form of laser cladding as well as strip. Autogenous welds were carried out by varying the laser power, welding speed and position of the laser beam with respect to the joint centre. The resultant welds are characterized by macrostructure analysis, SEM/EDAX and XRD and as welded tensile test in UTM. The autogenous welds have exhibited extensive cracking even when welded at high speeds or by manipulating the beam position with respect to the joint. Similarly Vandaium as interlayer could not achieve crack free joint. A joint with 40 MPa strength could be made with Ta as interlayer. Results and analysis of these variants of laser welded joints are reported and discussed.

  7. A study of electron beam welding of Mo based TZM alloy

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Krishnamurthy, N.

    2013-12-01

    Mo based TZM alloy is one of the most promising refractory alloy having several unique high temperature properties suitable for structural applications in the new generation advanced nuclear reactors. However, this alloy easily picks up interstitial impurities such as N 2 , H 2 and C from air during welding due to its reactive nature. High melting point of TZM alloy also restricts use of conventional welding technique for welding. Hence, Electron beam welding (EBW) technique with its deep penetration power to produce narrow heat affected zones under high vacuum was employed to overcome the above welding constraints by conducting a systematic study using both processes of bead on plate and butt joint configuration. Uniform and defect free weld joints were produced. Weld joints were subjected to optical characterization, chemical homogeneity analysis and microhardness profile study across the width of welds. Improved grain structure with equiaxed grains was obtained in the weld zone as compared to fibrous base structure. Original chemical composition was retained in the weld zone. The detailed results are described in this report. (author)

  8. Numerical weld modeling - a method for calculating weld-induced residual stresses

    International Nuclear Information System (INIS)

    Fricke, S.; Keim, E.; Schmidt, J.

    2001-01-01

    In the past, weld-induced residual stresses caused damage to numerous (power) plant parts, components and systems (Erve, M., Wesseling, U., Kilian, R., Hardt, R., Bruemmer, G., Maier, V., Ilg, U., 1994. Cracking in Stabilized Austenitic Stainless Steel Piping of German Boiling Water Reactors - Characteristic Features and Root Causes. 20. MPA-Seminar 1994, vol. 2, paper 29, pp.29.1-29.21). In the case of BWR nuclear power plants, this damage can be caused by the mechanism of intergranular stress corrosion cracking in austenitic piping or the core shroud in the reactor pressure vessel and is triggered chiefly by weld-induced residual stresses. One solution of this problem that has been used in the past involves experimental measurements of residual stresses in conjunction with weld optimization testing. However, the experimental analysis of all relevant parameters is an extremely tedious process. Numerical simulation using the finite element method (FEM) not only supplements this method but, in view of modern computer capacities, is also an equally valid alternative in its own right. This paper will demonstrate that the technique developed for numerical simulation of the welding process has not only been properly verified and validated on austenitic pipe welds, but that it also permits making selective statements on improvements to the welding process. For instance, numerical simulation can provide information on the starting point of welding for every weld bead, the effect of interpass cooling as far as a possible sensitization of the heat affected zone (HAZ) is concerned, the effect of gap width on the resultant weld residual stresses, or the effect of the 'last pass heat sink welding' (welding of the final passes while simultaneously cooling the inner surface with water) producing compressive stresses in the root area of a circumferential weld in an austenitic pipe. The computer program FERESA (finite element residual stress analysis) was based on a commercially

  9. Influence of preheating on API 5L-X80 pipeline joint welding with self shielded flux-cored wire

    International Nuclear Information System (INIS)

    Cooper, R.; Silva, J. H. F.; Trevisan, R. E.

    2004-01-01

    The present work refers to the characterization of API 5L-X80 pipeline joints welded with self-shielded flux cored wire. This process was evaluated under preheating conditions, with an uniform and steady heat input. All joints were welded in flat position (1G), with the pipe turning and the torch still. Tube dimensions were 762 mm in external diameter and 16 mm in thickness. Welds were applied on single V-groove, with six weld beads, along with three levels of preheating temperatures (room temperature, 100 degree centigree, 160 degree centigree). These temperatures were maintained as inter pass temperature. The filler metal E71T8-K6 with mechanical properties different from parent metal was used in under matched conditions. The weld characterization is presented according to the mechanical test results of tensile strength, hardness and impact test. The mechanical tests were conducted according to API 1104, AWS and ASTM standards. API 1104 and API 51 were used as screening criteria. According to the results obtained, it was possible to remark that it is appropriate to weld API 5L-X80 steel ducts with Self-shielded Flux Cored wires, in conformance to the API standards and no preheat temperature is necessary. (Author) 22 refs

  10. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  11. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    International Nuclear Information System (INIS)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man

    2012-01-01

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  12. Development of laser welding techniques for vanadium alloys

    International Nuclear Information System (INIS)

    Strain, R.V.; Leong, K.H.; Smith, D.L.

    1996-01-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Bead-on-plate and butt welds were previously performed to depths of about 4 mm with a 6-kW CO 2 laser on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys. These welds were made at a speed of 0.042 m/s using argon purging at a flow rate of 2.8 m 3 /s. The purge was distributed with a diffuser nozzle aimed just behind the laser beam during the welding operation. The fusion zones of welds made under these conditions consisted of very fine, needle-shaped grains and were also harder than the bulk metal (230-270 dph, compared to ∼180 dph for the bulk metal). A limited number of impact tests showed that the as-welded ductile-brittle transition temperatures (DBTT) was above room temperature, but heat treatment at 1000 degrees C for 1 h in vacuum reduced the DBTT to <-25 degrees C. Activities during this reporting period focused on improvements in the purging system and determination of the effect of welding speed on welds. A 2-kW continuous YAG laser at Lumonics Corp. in Livonia, MI, was used to make 34 test welds for this study

  13. J-integral analysis of heterogeneous mismatched girth welds in clamped single-edge notched tension specimens

    International Nuclear Information System (INIS)

    Hertelé, Stijn; De Waele, Wim; Verstraete, Matthias; Denys, Rudi; O'Dowd, Noel

    2014-01-01

    Flaw assessment procedures require a quantification of crack driving force, and such procedures are generally based on the assumption of weld homogeneity. However, welds generally have a heterogeneous microstructure, which will influence the crack driving force. This paper describes a stress-based methodology to assess complex heterogeneous welds using a J-based approach. Clamped single-edge notched tension specimens, representative of girth weld flaws, are analyzed and the influence of weld heterogeneity on crack driving force has been determined. The use of a modified limit load for heterogeneous welds is proposed, suitable for implementation in a ‘homogenized’ J-integral estimation scheme. It follows from an explicit modification of an existing solution for centre cracked tension specimens. The proposed solution provides a good estimate of crack driving force and any errors in the approximation may be accounted for by means of a small safety factor on load bearing capacity. - Highlights: • We present a crack driving force estimation procedure for heterogeneous welds. • The procedure is based on a ‘homogenized’ version of the EPRI equation. • Complex welds are translated into equivalent idealized mismatched welds. • The procedure is validated for clamped SE(T) specimens. • A mismatch limit load for clamped SE(T) specimens is developed

  14. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    International Nuclear Information System (INIS)

    Vasantharaja, P.; Vasudevan, M.

    2012-01-01

    Low Activation Ferritic–Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  15. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    Science.gov (United States)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  16. Influence of shielding gas on the mechanical and metallurgical properties of DP-GMA-welded 5083-H321 aluminum alloy

    Science.gov (United States)

    Koushki, Amin Reza; Goodarzi, Massoud; Paidar, Moslem

    2016-12-01

    In the present research, 6-mm-thick 5083-H321 aluminum alloy was joined by the double-pulsed gas metal arc welding (DP-GMAW) process. The objective was to investigate the influence of the shielding gas composition on the microstructure and properties of GMA welds. A macrostructural study indicated that the addition of nitrogen and oxygen to the argon shielding gas resulted in better weld penetration. Furthermore, the tensile strength and bending strength of the welds were improved when oxygen and nitrogen (at concentrations as high as approximately 0.1vol%) were added to the shielding gas; however, these properties were adversely affected when the oxygen and nitrogen contents were increased further. This behavior was attributed to the formation of excessive brown and black oxide films on the bead surface, the formation of intermetallic compounds in the weld metal, and the formation of thicker oxide layers on the bead surface with increasing nitrogen and oxygen contents in the argon-based shielding gas. Analysis by energy-dispersive X-ray spectroscopy revealed that most of these compounds are nitrides or oxides.

  17. Welding process decoupling for improved control

    International Nuclear Information System (INIS)

    Hardt, D.E.; Eagar, T.W.; Lang, J.H.; Jones, L.

    1993-01-01

    The Gas Metal Arc Welding Process is characterized by many important process outputs, all of which should be controlled to ensure consistent high performance joints. However, application of multivariable control methods is confounded by the strong physical coupling of typical outputs of bead shape and thermal properties. This coupling arises from the three dimensional thermal diffusion processes inherent in welding, and cannot be overcome without significant process modification. This paper presents data on the extent of coupling of the process, and proposes process changes to overcome such strong output coupling. Work in rapid torch vibration to change the heat input distribution is detailed, and methods for changing the heat balance between base and fill material heat are described

  18. Effect of linear energy on the properties of an AL alloy in DPMIG welding

    Science.gov (United States)

    Liao, Tianfa; Jin, Li; Xue, Jiaxiang

    2018-01-01

    The effect of different linear energy parameters on the DPMIG welding performance of AA1060 aluminium alloy is studied in this paper. The stability of the welding process is verified with a Labview electrical signal acquisition system, and the microstructure and tensile properties of the welded joint are studied via optical microscopy, scanning electron microscopy and electrical tensile tests. The test results show that the welding process for the DPMIG methods stable and that the weld beads appear as scales. Tensile strength results indicate that, with increasing linear energy, the tensile strength first increases and then decreases. The tensile strength of the joint is maximized when the linear energy is 120.5 J / mm-1.

  19. Mechanical properties of TIG and EB weld joints of F82H

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Takanori, E-mail: hirose.takanori@jaea.go.jp; Sakasegawa, Hideo; Nakajima, Motoki; Tanigawa, Hiroyasu

    2015-10-15

    Highlights: • Narrow groove TIG minimized volume of F82H weld. • Mechanical properties of TIG and EB welds of F82H have been characterized. • Post weld heat treatment successfully moderate the toughness of weld metal without softening the base metal. - Abstract: This work investigates mechanical properties of weld joints of a reduced activation ferritic/martensitic steel, F82H and effects of post weld heat treatment on the welds. Vickers hardness, tensile and Charpy impact tests were conducted on F82H weld joints prepared using tungsten-inert-gas and electron beam after various heat treatments. Although narrow groove tungsten-inert-gas welding reduced volume of weld bead, significant embrittlement was observed in a heat affected zone transformed due to heat input. Post weld heat treatment above 993 K successfully moderated the brittle transformed region. The hardness of the brittle region strongly depends on the heat treatment temperature. Meanwhile, strength of base metal was slightly reduced by the treatment at temperature ranging from 993 to 1053 K. Moreover, softening due to double welding was observed only in the weld metal, but negligible in base metal.

  20. An Approach to Maximize Weld Penetration During TIG Welding of P91 Steel Plates by Utilizing Image Processing and Taguchi Orthogonal Array

    Science.gov (United States)

    Singh, Akhilesh Kumar; Debnath, Tapas; Dey, Vidyut; Rai, Ram Naresh

    2017-10-01

    P-91 is modified 9Cr-1Mo steel. Fabricated structures and components of P-91 has a lot of application in power and chemical industry owing to its excellent properties like high temperature stress corrosion resistance, less susceptibility to thermal fatigue at high operating temperatures. The weld quality and surface finish of fabricated structure of P91 is very good when welded by Tungsten Inert Gas welding (TIG). However, the process has its limitation regarding weld penetration. The success of a welding process lies in fabricating with such a combination of parameters that gives maximum weld penetration and minimum weld width. To carry out an investigation on the effect of the autogenous TIG welding parameters on weld penetration and weld width, bead-on-plate welds were carried on P91 plates of thickness 6 mm in accordance to a Taguchi L9 design. Welding current, welding speed and gas flow rate were the three control variables in the investigation. After autogenous (TIG) welding, the dimension of the weld width, weld penetration and weld area were successfully measured by an image analysis technique developed for the study. The maximum error for the measured dimensions of the weld width, penetration and area with the developed image analysis technique was only 2 % compared to the measurements of Leica-Q-Win-V3 software installed in optical microscope. The measurements with the developed software, unlike the measurements under a microscope, required least human intervention. An Analysis of Variance (ANOVA) confirms the significance of the selected parameters. Thereafter, Taguchi's method was successfully used to trade-off between maximum penetration and minimum weld width while keeping the weld area at a minimum.

  1. Development of laser cutting/welding system for remote maintenance of ITER manifold

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, Hiroto; Tsuchiya, Kazuyuki; Awano, Toshihiko [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Oka, Kiyoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-09-01

    A remote pipe cutting/welding system using a YAG laser was designed and fabricated for the maintenance of the main structural parts of ITER (International Thermonuclear Experimental Reactor), and a mock-up test carried out. The functions of this system are to cut 100A x Sch 40 pipes of SUS316L by internal access, to adjust the core gap between the as-cut pipe and new pipe, and to weld the pipes automatically. The core gap of the pipes could be decreased within the proper welding conditions by the mock-up test, and sound beads were obtained. (author)

  2. Development of ceramic support the base of cordierite for one-side welding

    International Nuclear Information System (INIS)

    Almeida, L.L.P. de; Vieira, C.M.F.; Paranhos, R.P.R.; Tatagiba, L.C.S.

    2009-01-01

    This work has as objective develops ceramic backing for the execution of one side welds in steel. The backing consists the mixture of refractory mineral (Cordierite), adhesive (sodium silicate) and water. Test coupons produced by uniaxial pressing and burned to 1100 deg C they were submitted to physical and mechanical tests for determination the water absorption and flexion strength, respectively. The microstructure of ceramics produced was evaluated by diffraction of X-Ray, scanning electron microscopy and optical microscopy. After the production of the ceramic backing, welding tests were accomplished by the process MIG-MAG to evaluate the format of the weld bead. Based on the results obtained, during and after the welding accomplished with the employment of the ceramic backing, has shown that it is technically feasible for one-side welding. (author)

  3. Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision

    International Nuclear Information System (INIS)

    Xiong, Jun; Zhang, Guangjun

    2013-01-01

    Additive manufacturing based on gas metal arc welding is an advanced technique for depositing fully dense components with low cost. Despite this fact, techniques to achieve accurate control and automation of the process have not yet been perfectly developed. The online measurement of the deposited bead geometry is a key problem for reliable control. In this work a passive vision-sensing system, comprising two cameras and composite filtering techniques, was proposed for real-time detection of the bead height and width through deposition of thin walls. The nozzle to the top surface distance was monitored for eliminating accumulated height errors during the multi-layer deposition process. Various image processing algorithms were applied and discussed for extracting feature parameters. A calibration procedure was presented for the monitoring system. Validation experiments confirmed the effectiveness of the online measurement system for bead geometry in layered additive manufacturing. (paper)

  4. Evaluation of Antigen-Conjugated Fluorescent Beads to Identify Antigen-Specific B Cells

    Directory of Open Access Journals (Sweden)

    Isabel Correa

    2018-03-01

    Full Text Available Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1 specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires.

  5. Evaluation of Antigen-Conjugated Fluorescent Beads to Identify Antigen-Specific B Cells.

    Science.gov (United States)

    Correa, Isabel; Ilieva, Kristina M; Crescioli, Silvia; Lombardi, Sara; Figini, Mariangela; Cheung, Anthony; Spicer, James F; Tutt, Andrew N J; Nestle, Frank O; Karagiannis, Panagiotis; Lacy, Katie E; Karagiannis, Sophia N

    2018-01-01

    Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα) as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1) specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs) were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires.

  6. Evaluation of Antigen-Conjugated Fluorescent Beads to Identify Antigen-Specific B Cells

    Science.gov (United States)

    Correa, Isabel; Ilieva, Kristina M.; Crescioli, Silvia; Lombardi, Sara; Figini, Mariangela; Cheung, Anthony; Spicer, James F.; Tutt, Andrew N. J.; Nestle, Frank O.; Karagiannis, Panagiotis; Lacy, Katie E.; Karagiannis, Sophia N.

    2018-01-01

    Selection of single antigen-specific B cells to identify their expressed antibodies is of considerable interest for evaluating human immune responses. Here, we present a method to identify single antibody-expressing cells using antigen-conjugated fluorescent beads. To establish this, we selected Folate Receptor alpha (FRα) as a model antigen and a mouse B cell line, expressing both the soluble and the membrane-bound forms of a human/mouse chimeric antibody (MOv18 IgG1) specific for FRα, as test antibody-expressing cells. Beads were conjugated to FRα using streptavidin/avidin-biotin bridges and used to select single cells expressing the membrane-bound form of anti-FRα. Bead-bound cells were single cell-sorted and processed for single cell RNA retrotranscription and PCR to isolate antibody heavy and light chain variable regions. Variable regions were then cloned and expressed as human IgG1/k antibodies. Like the original clone, engineered antibodies from single cells recognized native FRα. To evaluate whether antigen-coated beads could identify specific antibody-expressing cells in mixed immune cell populations, human peripheral blood mononuclear cells (PBMCs) were spiked with test antibody-expressing cells. Antigen-specific cells could comprise up to 75% of cells selected with antigen-conjugated beads when the frequency of the antigen-positive cells was 1:100 or higher. In PBMC pools, beads conjugated to recombinant antigens FRα and HER2 bound antigen-specific anti-FRα MOv18 and anti-HER2 Trastuzumab antibody-expressing cells, respectively. From melanoma patient-derived B cells selected with melanoma cell line-derived protein-coated fluorescent beads, we generated a monoclonal antibody that recognized melanoma antigen-coated beads. This approach may be further developed to facilitate analysis of B cells and their antibody profiles at the single cell level and to help unravel humoral immune repertoires. PMID:29628923

  7. The narrow-gap TIG welding concerns the electric power plants manufacturers; Le soudage en joint etroit suscite l'interet des constructeurs de centrales electriques

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2009-05-15

    Polysoude, France, played host to an expert forum on narrow gap welding from 5-7 November 2008. The successful event welcomed around one hundred experts.The power plant construction sector is currently booming worldwide. For plant construction this means using more pressure-resistant, thick-walled pipes made from high temperature steels. The key quality features of this new steel grade are the values for high creep rupture strength that also apply without restriction as the benchmark for every weld seam on these pipes. In particular, the forum on narrow gap welding addressed this area of automated welding technology. During the forum, Mr Hans-Peter Mariner (Polysoude's CEO), has offered an in-depth insight into the latest developments in narrow gap welding. This presentation highlighted that with wall thicknesses of over 60 mm, welding time is shortened by a factor of five to ten in comparison to conventional TIG processes with a traditional V seam. The welding characteristics of the parent material are the decisive factor in the application of the narrow gap process. Technical advances in equipment technology such as automatic centring, HF-free ignition, seam preparation and optimised gas protection further increase the application limits. The geometry and gap width of the weld groove are based on the mechanical properties of the materials being joined, with the shrinkage characteristics of the seam being particularly important. Another key part of the programme was a presentation on the three different narrow gap-welding techniques. The first involves a single pass weld per layer and torch or work-piece revolution. The second is dual pass welding next to one another, when the seam preparation or positioning exceed the required narrow tolerances of a few tenths of a millimetre for one stringer bead per layer. TIG narrow gap welding with a shuttle-motion electrode is ideal with very large wall thicknesses of 150-200 mm. This is particularly the case if the

  8. Adaptive control of penetration and joint following for robotic GTA welding

    International Nuclear Information System (INIS)

    Bahram Mir Sadeghi; Hishamuddin Jamaludin; Iskandar Baharin

    1997-01-01

    A statistical-based method for adaptive control of weld pool penetration and joint following in Tungsten Inert Gas Welding as an approach to process and trajectory control of robotic GTA welding has been designed and simulated. Welding process parameters such as: base current and time, pulse current and time, electrode tip to work piece distance, filler travelling speed, torch speed and work piece thickness were used for finding the equations which describe the interrelationship between the aforementioned variables and penetration depth as well as bead width. The calculation of these equations was developed from the statistical regression analysis of 80 welds deposited using various combinations of welding parameters. For monitoring of the work piece thickness variations, an ultrasonic device was used. In order to control the weld trajectory, a CCD camera was also used. The results showed that the misalignment of the progressive heat affected zone which is adjacent to the weld puddle can be detected, and used for control of the weld trajectory. Also, it was found that scanning of a certain region of the captured image in front of the weld puddle decreases the data processing time drastically

  9. Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser

    Science.gov (United States)

    Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira

    A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.

  10. An investigation of fusion zone microstructures in electron beam welding of copper-stainless steel

    International Nuclear Information System (INIS)

    Magnabosco, I.; Ferro, P.; Bonollo, F.; Arnberg, L.

    2006-01-01

    The article presents a study of three different welded joints produced by electron beam welding dissimilar materials. The junctions were obtained between copper plates and three different austenitic stainless steel plates. Different welding parameters were used according to the different thicknesses of the samples. Morphological, microstructural and mechanical (micro-hardness test) analyses of the weld bead were carried out. The results showed complex heterogeneous fusion zone microstructures characterized both by rapid cooling and poor mixing of the materials which contain main elements which are mutually insoluble. Some defects such as porosity and microfissures were also found. They are mainly due to the process and geometry parameters

  11. Influence of the post-weld surface treatment on the corrosion resistance of the duplex stainless steel 1.4062

    Science.gov (United States)

    Rosemann, P.; Müller, C.; Baumann, O.; Modersohn, W.; Halle, T.

    2017-03-01

    The duplex stainless steel 1.4062 (X2CrNiN22-2) is used as alternative material to austenitic stainless steels in the construction industry. The corrosion resistance of welded seams is influenced by the base material, the weld filler material, the welding process and also by the final surface treatment. The scale layer next to the weld seam can be removed by grinding, pickling, electro-polished or blasting depending on the application and the requested corrosion resistance. Blasted surfaces are often used in industrial practice due to the easier and cheaper manufacturing process compared to pickled or electro-polished surfaces. Furthermore blasting with corundum-grain is more effective than blasting with glass-beads which also lower the process costs. In recent years, stainless steel surfaces showed an unusually high susceptibility to pitting corrosion after grinding with corundum. For this reason, it is now also questioned critically whether the corrosion resistance is influenced by the applied blasting agent. This question was specifically investigated by comparing grinded, pickled, corundum-grain- and glass-bead-blasted welding seams. Results of the SEM analyses of the blasting agents and the blasted surfaces will be presented and correlated with the different performed corrosion tests (potential measurement, KorroPad-test and pitting potential) on welding seams with different surface treatments.

  12. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Sam, Shiju, E-mail: shiju@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India); Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India)

    2014-12-15

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  13. Interaction of both plasmas in CO2 laser-MAG hybrid welding of carbon steel

    Science.gov (United States)

    Kutsuna, Muneharu; Chen, Liang

    2003-03-01

    Researches and developments of laser and arc hybrid welding has been curried out since in 1978. Especially, CO2 laser and TIG hybrid welding has been studied for increasing the penetration depth and welding speed. Recently laser and MIG/MAG/Plasma hybrid welding processes have been developed and applied to industries. It was recognized as a new welding process that promote the flexibility of the process for increasing the penetration depth, welding speed and allowable joint gap and improving the quality of the welds. In the present work, CO2 Laser-MAG hybrid welding of carbon steel (SM490) was investigated to make clear the phenomenon and characteristics of hybrid welding process comparing with laser welding and MAG process. The effects of many process parameters such as welding current, arc voltage, welding speed, defocusing distance, laser-to-arc distance on penetration depth, bead shape, spatter, arc stability and plasma formation were investigated in the present work. Especially, the interaction of laser plasma and MAG arc plasma was considered by changing the laser to arc distance (=DLA).

  14. Analysis of ripple formation in single crystal spot welds

    Energy Technology Data Exchange (ETDEWEB)

    Rappaz, M. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab de Metallurgie Physique; Corrigan, D.; Boatner, L.A. [Oak Ridge National Lab., TN (United States). Solid State Div.

    1997-10-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 {micro}m) and spacing (typically {approximately} 60 {micro}m) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f{sub 0} given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v{sub s}/f{sub 0}, where v{sub s} is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.

  15. Influence of anisotropic hardening on longitudinal welding strains and stresses

    International Nuclear Information System (INIS)

    Gatovskij, K.M.; Revutskij, M.N.

    1981-01-01

    The algorithm and program for estimation of longitudinal welding strains and stresses with account of hardening and Bauschinger effect, which expand the possibilities of more complete description of stress change during thermodeformation welding cycles at bead surfacing on plate made of the 06Kh18N9T steel and AMg61 alloy. It is shown that for metals, deformation curves which are characterized by considerable yield moduli (Esub(T)/E>=0.05) hardening effect is considerable and its account leads to the decrease of stress level in the heataffected zone (down to 20%) [ru

  16. Multipass autogenous electron beam welding

    International Nuclear Information System (INIS)

    Murphy, J.L.; Mustaleski, T.M. Jr.; Watson, L.C.

    1986-01-01

    A multipass, autogenous welding procedure was developed for 7.6 mm (0.3 in.) wall thickness Type 304L stainless steel cylinders. The joint geometry has a 1.5 mm (0.06 in.) root-face width and a rectangular stepped groove that is 0.762 mm (0.03 in.) wide at the top of the root face and extends 1.5 mm in height, terminating into a groove width of 1.27 mm which extends to the outside of the 1.27 mm high weld-boss. One weld pass is made on the root, three passes on the 0.762 mm wide groove and three passes to complete the weld. Multipass, autogenous, electron beam welds maintain the characteristic high depth-to-width ratios and low heat input of single-pass, electron beam welds. The increased part distortion (which is still much less than from arc processes) in multipass weldments is corrected by a preweld machined compensation. Mechanical properties of multipass welds compare well with single-pass welds. The yield strength of welds in aluminum alloy 5083 is approximately the same for single-pass or multipass electron beam and gas, metal-arc welds. The incidence and size of porosity is less in multipass electron beam welding of aluminum as compared to gas, metal-arc welds. The multipass, autogenous, electron beam welding method has proven to be a reliable way to make some difficult welds in multilayer parts or in an instance where inside part temperature or weld underbead must be controlled and weld discontinuities must be minimized

  17. Metal-Containing Polystyrene Beads as Standards for Mass Cytometry.

    Science.gov (United States)

    Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Kinach, Robert; Dai, Sheng; Thickett, Stuart C; Tanner, Scott; Winnik, Mitchell A

    2010-01-01

    We examine the suitability of metal-containing polystyrene beads for the calibration of a mass cytometer instrument, a single particle analyser based on an inductively coupled plasma ion source and a time of flight mass spectrometer. These metal-containing beads are also verified for their use as internal standards for this instrument. These beads were synthesized by multiple-stage dispersion polymerization with acrylic acid as a comonomer. Acrylic acid acts as a ligand to anchor the metal ions within the interior of the beads. Mass cytometry enabled the bead-by-bead measurement of the metal-content and determination of the metal-content distribution. Beads synthesized by dispersion polymerization that involved three stages were shown to have narrower bead-to-bead variation in their lanthanide content than beads synthesized by 2-stage dispersion polymerization. The beads exhibited insignificant release of their lanthanide content to aqueous solutions of different pHs over a period of six months. When mixed with KG1a or U937 cell lines, metal-containing polymer beads were shown not to affect the mass cytometry response to the metal content of element-tagged antibodies specifically attached to these cells.

  18. Thermo-mechanic and Microstructural Analysis of an Underwater Welding Joint

    Directory of Open Access Journals (Sweden)

    Pedro Hernández Gutiérrez

    Full Text Available Abstract The aim of this research is to present a comparative analysis between theoretical and experimental thermal fields as well as a microstructural behaviour and residual stresses applying multiple weld beads in the joint of two API 5L X52 pipe sections. The thermal field, microstructural and residual stresses were numerically modelled through the finite element method (FEM and compared to experimentally. The simulation conditions used in the FEM analysis were similar considerations to the underwater welding conditions. The finite element analysis was carried out, first by a non-linear transient thermal analysis for obtaining the global temperature history generated during the underwater welding process. Subsequently, a microstructural behaviour was determined using the temperatures distribution obtained in the pipe material by calculating the structural transformations of the material during the welding process, and finally a stress analysis was developed using the temperatures obtained from the thermal analysis. It was found that this simulation method can be used efficiently to determinate with accuracy the optimum welding parameters of this kind of weld applications.

  19. Controlled, all-position, butterbead-temperbead welding technique for nuclear repairs

    International Nuclear Information System (INIS)

    Clark, J.N.; Lambert, J.A.

    1986-01-01

    Sections III and XI of the ASME boiler and pressure vessel code describe a half-bead temper repair welding technique specifically designed for in-service BWR and PWR repair applications without postweld heat treatment. The method relies on deposition of two layers of weld beads. Prior to deposition of the second layer, half the first layer is ground away. As a result, the first layer HAZ is tempered or retransformed by the second layer heat input. It is on the basis of this tempering that a concession is granted to omit postweld heat treatment. The grinding stage is difficult to control, time consuming, and can involve long exposure of personnel to a radioactive environment. Consequently, there has been pressure to find a viable alternative to the half-bead technique. Much interest has been shown in the butterbead-temperbead technique, which is essentially the CEGB two-layer HAZ refinement technique. This does not require grinding of the first layer and achieves HAZ retransformation by increasing the heat input of the second layer. The elimination of the grinding stage considerably reduces repair time and, consequently, radiation exposure. The method has now been included as an acceptable alternative to the half-bead technique in section XI of the ASME code. The CEGB method has been used successfully in the U.K. power industry, mainly for prevention of stress relief cracking, but also to improve HAZ toughness for low temperature service. Two-layer HAZ refinement is achieved by retransformation of the first layer HAZ by the thermal field of the second layer

  20. Susceptibility to hydrogen-induced cracking in H2S corrosion environment of API 5L-X80 weld metal

    International Nuclear Information System (INIS)

    Hilton, J.; Fals, H. C.; Trevisan, R. E.

    2009-01-01

    The susceptibility to hydrogen-induced cracking in H 2 S environment of welded API X80 steel was studied. The flux cored arc welding (FCAW) process was employed with E71-T1 and E71-T8K6 wires. The welding parameters were kept constant, but the samples were welded using different preheat temperatures (room temperature and 100 degree centigrade). The gapped bead-on-plate (G-BOP) test was used. The specimens of modified G-BOP tests were exposed to an environment saturated in H 2 S, as recommended by the NACE TM0284 standard. The weld beads were characterized by optical microscopy and the level of residual hydrogen in the samples was measured. The fracture surface areas of hydrogen-induced cracking were calculated and the fracture mode was discussed. It was found that the preheating temperature of 100 degree centigrade was enough to avoid cracking, even in the presence of H 2 S. It was also found that the E71- T8K6 wire was more susceptible to cracking, and the typical mixed-mode fracture was predominant in all samples. (Author) 15 refs

  1. Characterization of lap joints laser beam welding of thin AA 2024 sheets with Yb:YAG disk-laser

    Science.gov (United States)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Sergi, Vincenzo

    2012-06-01

    Lap joints obtained by overlapping two plates are widely diffused in aerospace industry. Nevertheless, because of natural aging, adhesively bonded and riveted aircraft lap joints may be affected by cracks from rivets, voids or corrosion. Friction stir welding has been proposed as a valid alternative, although large heat affected zones are produced both in the top and the bottom plate due to the pin diameter. Interest has therefore been shown in studying laser lap welding as the laser beam has been proved to be competitive since it allows to concentrate the thermal input and increases productivity and quality. Some challenges arise as a consequence of aluminum low absorptance and high thermal conductivity; furthermore, issues are due to metallurgical challenges such as both micro and macro porosity formation and softening in the fused zone. Welding of AA 2024 thin sheets in a lap joint configuration is discussed in this paper: tests are carried out using a recently developed Trumpf TruDisk 2002 Yb:YAG disk-laser with high beam quality which allows to produce beads with low plates distortion and better penetration. The influence of the processing parameters is discussed considering the fused zone extent and the bead shape. The porosity content as well as the morphological features of the beads have been examined.

  2. Double fillet lap of laser welding of thin sheet AZ31B Mg alloy

    Science.gov (United States)

    Ishak, Mahadzir; Salleh, M. N. M.

    2018-05-01

    In this paper, we describe the experimental laser welding of thin sheet AZ31B using double fillet lap joint method. Laser welding is capable of producing high quality weld seams especially for small weld bead on thin sheet product. In this experiment, both edges for upper and lower sheets were subjected to the laser beam from the pulse wave (PW) mode of fiber laser. Welded sample were tested their joint strength by tensile-shear strength method and the fracture loads were studied. Strength for all welded samples were investigated and the effect of laser parameters on the joint strength and appearances were studied. Pulsed energy (EP) from laser process give higher effect on joint strength compared to the welding speed (WS) and angle of irradiation (AOI). Highest joint strength was possessed by sample with high EP with the same value of WS and AOI. The strength was low due to the crack defect at the centre of weld region.

  3. Keyhole behavior and liquid flow in molten pool during laser-arc hybrid welding

    Science.gov (United States)

    Naito, Yasuaki; Katayama, Seiji; Matsunawa, Akira

    2003-03-01

    Hybrid welding was carried out on Type 304 stainless steel plate under various conditions using YAG laser combined with TIG arc. During arc and laser-arc hybrid welding, arc voltage variation was measured, and arc plasma, laser-induced plume and evaporation spots as well as keyhole behavior and liquid flow in the molten pool were observed through CCD camera and X-ray real-time transmission apparatus. It was consequently found that hybrid welding possessed many features in comparison with YAG laser welding. The deepest weld bead could be produced when the YAG laser beam of high power density was shot on the molten pool made beforehand stably with TIG arc. A keyhole was long and narrow, and its behavior was rather stable inside the molten pool. It was also confirmed that porosity was reduced by the suppression of bubble formation in hybrid welding utilizing a laser of a moderate power density.

  4. Optimisation of laser welding parameters for welding of P92 material using Taguchi based grey relational analysis

    Directory of Open Access Journals (Sweden)

    Shanmugarajan B.

    2016-08-01

    Full Text Available Creep strength enhanced ferritic (CSEF steels are used in advanced power plant systems for high temperature applications. P92 (Cr–W–Mo–V steel, classified under CSEF steels, is a candidate material for piping, tubing, etc., in ultra-super critical and advanced ultra-super critical boiler applications. In the present work, laser welding process has been optimised for P92 material by using Taguchi based grey relational analysis (GRA. Bead on plate (BOP trials were carried out using a 3.5 kW diffusion cooled slab CO2 laser by varying laser power, welding speed and focal position. The optimum parameters have been derived by considering the responses such as depth of penetration, weld width and heat affected zone (HAZ width. Analysis of variance (ANOVA has been used to analyse the effect of different parameters on the responses. Based on ANOVA, laser power of 3 kW, welding speed of 1 m/min and focal plane at −4 mm have evolved as optimised set of parameters. The responses of the optimised parameters obtained using the GRA have been verified experimentally and found to closely correlate with the predicted value.

  5. Beads.

    Science.gov (United States)

    Weewish Tree, 1979

    1979-01-01

    Beads served both as ornaments and as a medium of exchange, and the Indians manufactured them from such natural sources as bones, stones, beans, nuts, animal teeth, and polished antlers. Even after the introduction of European glass beads, the Indians continued to make their favorite beads from the natural sources. (DS)

  6. Application of Factorial Design for Gas Parameter Optimization in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Dragsted, Birgitte; Olsen, Flemming Ove

    1997-01-01

    The effect of different gas process parameters involved in CO2 laser welding has been studied by applying two-set of three-level complete factorial designs. In this work 5 gas parameters, gas type, gas flow rate, gas blowing angle, gas nozzle diameter, gas blowing point-offset, are optimized...... to be a very useful tool for parameter optimi-zation in laser welding process. Keywords: CO2 laser welding, gas parameters, factorial design, Analysis of Variance........ The bead-on-plate welding specimens are evaluated by a number of quality char-acteristics, such as the penetration depth and the seam width. The significance of the gas pa-rameters and their interactions are based on the data found by the Analysis of Variance-ANOVA. This statistic methodology is proven...

  7. Yb-fibre Laser Welding of 6 mm Duplex Stainless Steel 2205

    Science.gov (United States)

    Bolut, M.; Kong, C. Y.; Blackburn, J.; Cashell, K. A.; Hobson, P. R.

    Duplex stainless steel (DSS) is one of the materials of choice for structural and nuclear applications, having high strength and good corrosion resistance when compared with other grades of stainless steel. The welding process used to join these materials is critical as transformation of the microstructure during welding directly affects the material properties. High power laser welding has recently seen an increase in research interest as it offers both speed and flexibility. This paper presents an investigation into the important parameters affecting laser welding of DSS grade 2205, with particular focus given to the critical issue of phase transformation during welding. Bead-on-plate melt-run trials without filler material were performed on 6mm thick plates using a 5 kW Yb-fibre laser. The laser beam was characterized and a Design of Experiment approach was used to quantify the impact of the process parameters. Optical metallographic methods were used to examine the resulting microstructures.

  8. An integrated open-cavity system for magnetic bead manipulation.

    Science.gov (United States)

    Abu-Nimeh, F T; Salem, F M

    2013-02-01

    Superparamagnetic beads are increasingly used in biomedical assays to manipulate, transport, and maneuver biomaterials. We present a low-cost integrated system designed in bulk CMOS to manipulate and separate biomedical magnetic beads. The system consists of 8 × 8 coil-arrays suitable for single bead manipulation, or collaborative multi-bead manipulation, using pseudo-parallel executions. We demonstrate the flexibility of the design in terms of different coil sizes, DC current levels, and layout techniques. In one array module example, the size of a single coil is 30 μm × 30 μm and the full array occupies an area of 248 μm × 248 μm in 0.5 μm CMOS technology. The programmable DC current source supports 8 discrete levels up to 1.5 mA. The total power consumption of the entire module is 9 mW when running at full power.

  9. The effect of cast-to-cast variations on the quality of thin section nickel alloy welded joints

    International Nuclear Information System (INIS)

    Lambert, J.A.

    1989-02-01

    The welding behaviour of 26 commercial casts of Alloy 800 has been quantified for mechanised, autogenous, full penetration, bead-on-strip tungsten inert gas welding tests. Weld front and back widths have been measured and correlated with minor element variations. Casts with similar welding responses have been sorted into groups. The behaviour of the weld pool, surface slags and arc have been compared and a convection controlled model has been used to account for differences between the groups of casts. The main factors governing laboratory process control variability have been identified and a statistical method has been used to identify all the components of weld variance. An optimum size of welding test matrix has been proposed to determine typical cast-to-cast variations at high significance levels. (author)

  10. Application of Phased Array Ultrasonic Testing (PAUT) on Single V-Butt Weld Integrity Determination

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohd Kamal Shah Shamsudin; Norhazleena Azaman

    2015-01-01

    Phased Array Ultrasonic Testing (PAUT) utilizes arrays of piezoelectric elements that are embedded in an epoxy base. The benefit of having such kind of array is that beam forming such as steering and focusing the beam front possible. This enables scanning patterns such as linear scan, sectorial scan and depth focusing scan to be performed. Ultrasonic phased array systems can potentially be employed in almost any test where conventional ultrasonic flaw detectors have traditionally been used. Weld inspection and crack detection are the most important applications, and these tests are done across a wide range of industries including aerospace, power generation, petrochemical, metal billet and tubular goods suppliers, pipeline construction and maintenance, structural metals, and general manufacturing. Phased arrays can also be effectively used to profile remaining wall thickness in corrosion survey applications. The benefits of PAUT are simplifying inspection of components of complex geometry, inspection of components with limited access, testing of welds with multiple angles from a single probe and increasing the probability of detection while improving signal-to-noise ratio. This paper compares the result of inspection on several specimens using PAUT as to digital radiography. The specimens are welded plates with single V-butt weld made of carbon steel. Digital radiography is done using blue imaging plate with x-ray source. PAUT is done using Olympus MX2 with 5 MHz probe consisting of 64 elements. The location, size and length of defect is compared. (author)

  11. Study on the Relationship Between Emission Signals and Weld Defect for In-Process Monitoring in CO{sub 2} Laser Welding of Zn-Coated Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Lee, Chang Je [Korea Maritime University, Busan (Korea, Republic of)

    2010-10-15

    In this study, the plasma induced by CO{sub 2} laser lap welding of 6t Zn coated steel used for ship building was measured using photodiodes and a microphone. Then, the welding phenomenon with gap clearance of lap joint was compared with RMS-treated signal. Thus, we found that intensity of the RMS-treated signal increased with Zn vaporization; further, the presence of defects results in rapid variations with the RMS value as a function of lap-joint parameters. Besides, the FFT value of the raw signal with variations of changing welding parameters was calculated, and then the calculated FFT frequency value was set as the bandwidth of digital filter for a more accurate in-process monitoring. The RMS values were acquired by filtering the raw signal. By matching the weld beads and the calculated RMS values, we confirmed that there is a strong relationship between the signals and the defects.

  12. Elution of Clindamycin and Enrofloxacin From Calcium Sulfate Hemihydrate Beads In Vitro.

    Science.gov (United States)

    Phillips, Heidi; Boothe, Dawn M; Bennett, R Avery

    2015-11-01

    To compare the in vitro elution characteristics of clindamycin and enrofloxacin from calcium sulfate hemihydrate beads containing a single antibiotic, both antibiotics, and each antibiotic incubated in the same eluent well. Experimental in vitro study. Calcium sulfate hemihydrate beads were formed by mixing with clindamycin and/or enrofloxacin to create 4 study groups: (1) 160 mg clindamycin/10 beads; (2) 160 mg enrofloxacin/10 beads; (3) 160 mg clindamycin + 160 mg enrofloxacin/10 beads; and (4) 160 mg clindamycin/5 beads and 160 mg enrofloxacin/5 beads. Chains of beads were formed in triplicate and placed in 5 mL phosphate buffered saline (PBS; pH 7.4 and room temperature) with constant agitation. Antibiotic-conditioned PBS was sampled at 14 time points from 1 hour to 30 days. Clindamycin and enrofloxacin concentrations in PBS were determined using high-performance liquid chromatography. Eluent concentrations from clindamycin-impregnated beads failed to remain sufficiently above minimum inhibitory concentration (MIC) for common infecting bacteria over the study period. Enrofloxacin eluent concentrations remained sufficiently above MIC for common wound pathogens of dogs and cats and demonstrated an atypical biphasic release pattern. No significant differences in elution occurred as a result of copolymerization of the antibiotics into a single bead or from individual beads co-eluting in the same eluent well. Clindamycin-impregnated beads cannot be recommended for treatment of infection at the studied doses; however, use of enrofloxacin-impregnated beads may be justified when susceptible bacteria are cultured. © Copyright 2015 by The American College of Veterinary Surgeons.

  13. Ultrasonic testing of electron beam closure weld on pressure vessel

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1975-01-01

    One of the special products manufactured at the General Electric Neutron Devices Department (GEND) is a small stainless steel vessel designed to hold a component under high pressure for long periods. The vessel is a thick-walled cylinder with a threaded receptacle into which a plug is screwed and welded after receiving the unit to be tested. The test cavity is then pressurized through a small diameter opening in the bottom and that opening is welded closed. When x-ray inspection techniques did not reveal defective welds at the threaded plug in a pressured vessel, occasional ''leakers'' occurred. With normal equipment tolerances, the electron beam spike tends to wander from the desired path, particularly at the root of the weld. Ultrasonic techniques were used to successfully inspect the weld. The testing technique is based on the observation that ultrasonic energy is reflected from the unwelded screw threads and not from the regions where the threads are completely fused together by welding. Any gas pore or any threaded region outside the weld bead can produce an echo. The units are rotated while the ultrasonic transducer travels in a direction parallel to the axis of rotation and toward the welded end. This produces a helical scan which is converted to a two-dimensional presentation in which incomplete welds can be noted. (U.S.)

  14. Weldability and weld performance of a special grade Hastelloy-X modified for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Shimizu, S.; Mutoh, Y.

    1984-01-01

    The characteristics of weld defects in the electron beam (EB) welding and the tungsten inert gas (TIG) arc welding for Hastelloy-XR, a modified version of Hastelloy-X, are clarified through the bead-on-plate test and the Trans-Varestraint test. Based on the results, weldabilities on EB and TIG weldings for Hastelloy-XR are discussed and found to be almost the same as Hastelloy-X. The creep rupture behaviors of the welded joints are evaluated by employing data on creep properties of the base and the weld metals. According to the evaluation, the creep rupture strength of the EB-welded joint may be superior to that of the TIG-welded joint. The corrosion test in helium containing certain impurities is conducted for the weld metals. There is no significant difference of such corrosion characteristics as weight gain, internal oxidation, depleted zone, and so on between the base and the weld metals. Those are superior to Hastelloy-X

  15. Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds

    Directory of Open Access Journals (Sweden)

    G. Magudeeswaran

    2014-09-01

    Full Text Available The activated TIG (ATIG welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention. The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency. The major influencing ATIG welding parameters, such as electrode gap, travel speed, current and voltage, that aid in controlling the aspect ratio of DSS joints, must be optimized to obtain desirable aspect ratio for DSS joints. Hence in this study, the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array (OA experimental design and other statistical tools such as Analysis of Variance (ANOVA and Pooled ANOVA techniques. The optimum process parameters are found to be 1 mm electrode gap, 130 mm/min travel speed, 140 A current and 12 V voltage. The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidification cracking.

  16. Development of end plug welding method in the fabrication of FBR fuel pins

    International Nuclear Information System (INIS)

    Ohtani, Seiji; Sawayama, Takeo; Tateishi, Yoshinori

    1977-01-01

    As a part of the development of the automatic and remote controlled fabrication of FBR fuel pins, welding of fuel pin end plugs has been examined. Cladding tubes and end plugs used for this experiment are made of SUS 316, and they are the components of fuel pins for the prototype fast breeder reactor (Monju) or the second core of Joyo (Joyo MK-II). The welding tests of cladding tubes and four kinds of end plugs were carried out by means of two techniques; tungsten inert gas welding and laser welding. It can be said that no considerable difference was observed in weld penetration, occurrence rate of weld defects and breaking strength between the tight fit and the loose fit plugs. The face-to-face fit welding requires the least welding heat input, but involves much difficulty in the control of weld penetration and bead zone diameter. The good concentrative property and high energy density of laser beam make the face of weld hollow due to the vaporization of weld metal. However, this problem can be easily solved by changing the shape of end plugs. Good results in the other characteristics of the weld also were obtained by this laser welding. Further experiment is needed in connection with the compatibility of weld metal with sodium and neutron irradiation before final judgement is made on the laser welding technique. (Nakai, Y.)

  17. Methods of acicular ferrite forming in the weld bead metal (Brief analysis

    Directory of Open Access Journals (Sweden)

    Володимир Олександрович Лебедєв

    2016-11-01

    Full Text Available A brief analysis of the methods of acicular ferrite formation as the most preferable structural component in the weld metal has been presented. The term «acicular ferrite» is meant as a structure that forms during pearlite and martensite transformation and austenite decomposition. Acicular ferrite is a packet structure consisting of battens of bainitic ferrite, there being no cementite particles inside these battens at all. The chemical elements most effectively influencing on the formation of acicular ferrite have been considered and their combined effect as well. It has been shown in particular, that the most effective chemical element in terms of impact toughness and cost relation is manganese. Besides, the results of multipass surfacing with impulse and constant feed of low-alloy steel wire electrode have been considered. According to these results acicular ferrite forms in both cases. However, at impulse feed of the electrode wire high mechanical properties of surfacing layer were got in the first passes, the form of the acicular ferrite crystallite has been improved and volume shares of polygonal and lamellar ferrite have been reduced. An assumption has been made, according to which acicular ferrite in the surfacing layer may be obtained through superposition of mechanical low-frequency oscillation on the welding torch or on the welding pool instead of periodic thermal effect due to electrode wire periodic feed

  18. Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire

    Science.gov (United States)

    Gao, Ming; Chen, Cong; Wang, Lei; Wang, Zemin; Zeng, Xiaoyan

    2015-05-01

    Laser-arc hybrid welding with Cu3Si filler wire was employed to join dissimilar Ti6Al4V titanium alloy and AISI316 stainless steel (316SS). The effects of welding parameters on bead shape, microstructure, mechanical properties, and fracture behavior were investigated in detail. The results show that cross-weld tensile strength of the joints is up to 212 MPa. In the joint, obvious nonuniformity of the microstructure is found in the fusion zone (FZ) and at the interfaces from the top to the bottom, which could be improved by increasing heat input. For the homogeneous joint, the FZ is characterized by Fe67- x Si x Ti33 dendrites spreading on α-Cu matrix, and the two interfaces of 316SS/FZ and FZ/Ti6Al4V are characterized by a bamboo-like 316SS layer and a CuTi2 layer, respectively. All the tensile samples fractured in the hardest CuTi2 layer at Ti6Al4V side of the joints. The fracture surface is characterized by river pattern revealing brittle cleavage fracture. The bead formation mechanisms were discussed according to the melt flow and the thermodynamic calculation.

  19. Welding stainless steels for structures operating at liquid helium temperature

    International Nuclear Information System (INIS)

    Witherell, C.E.

    1980-01-01

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2 0 K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2 0 K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness

  20. Study of the characteristics of duplex stainless steel activated tungsten inert gas welds

    International Nuclear Information System (INIS)

    Chern, Tsann-Shyi; Tseng, Kuang-Hung; Tsai, Hsien-Lung

    2011-01-01

    The purpose of this study is to investigate the effects of the specific fluxes used in the tungsten inert gas (TIG) process on surface appearance, weld morphology, angular distortion, mechanical properties, and microstructures when welding 6 mm thick duplex stainless steel. This study applies a novel variant of the autogenous TIG welding, using oxide powders (TiO 2 , MnO 2 , SiO 2 , MoO 3 , and Cr 2 O 3 ), to grade 2205 stainless steel through a thin layer of the flux to produce a bead-on-plate joint. Experimental results indicate that using SiO 2 , MoO 3 , and Cr 2 O 3 fluxes leads to a significant increase in the penetration capability of TIG welds. The activated TIG process can increase the joint penetration and the weld depth-to-width ratio, and tends to reduce the angular distortion of grade 2205 stainless steel weldment. The welded joint also exhibited greater mechanical strength. These results suggest that the plasma column and the anode root are a mechanism for determining the morphology of activated TIG welds.

  1. 10,170 flawless welds

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    The welding of tubes containing the principal current-carrying busbars in the LHC magnets was one of the main activities of the SMACC project. After a year of preparation and another of intense activity in the tunnel, the last weld was completed on Wednesday 14 May. Over 10,170 welds have been inspected and not a single fault has been found.    The welder (above) creates the weld using an orbital welding machine (below) specifically designed for CERN. Each of the eight sectors of the LHC contains around 210 interconnects between the superconducting magnets. Consolidating these interconnections was the SMACC project’s primary objective. One of the last jobs before closing the interconnects is the welding of the M lines: each has a 104 mm diameter and a radial clearance of just 45 mm. In total: 10,170 welds carried out in a single year of activities. A true challenge, which was carried out by a team of 30 highly specialised welders, working under the supervision o...

  2. Effects of residual stress on fatigue strength of small diameter welded pipe joint

    International Nuclear Information System (INIS)

    Yamashita, Tetsuo; Hattori, Takahiro; Nomoto, Toshiharu; Iida, Kunihiro; Sato, Masanobu

    1996-01-01

    A power plant consists of many welded components, therefore, it is essential in establishing the reliability of the power plant to maintain the reliability of all welded components. The fatigue failure caused by mechanical vibrations of small diameter welded joints, which is represented by socket welded joints, is one of the major causes of trouble for the welded parts of the power plant. Here, bending fatigue tests were conducted to investigate the fatigue strength of small diameter socket welded pipe joints. In the most cases of large diameter socket joints, a fatigue crack started from the root of the fillet weld though the stress amplitude at the root was smaller than that at the toe of fillet weld. Additionally, the fatigue strength was affected by the weld bead sequence. The residual stress was considered to be one of the important parameters governing fatigue strength, therefore, its effects were investigated. In several types of pipe joints, the local stress and residual stress distributions were calculated by finite element analysis. The residual stresses were compressive at the toe and tensile at the root of the socket welded joints. Based on these results, the effects of residual stresses on the fatigue strength are discussed for small diameter welded pipe joints in the present work

  3. Optimization and Prediction of Angular Distortion and Weldment Characteristics of TIG Square Butt Joints

    Science.gov (United States)

    Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.

    2014-05-01

    Autogenous arc welds with minimum upper weld bead depression and lower weld bead bulging are desired as such welds do not require a second welding pass for filling up the upper bead depressions (UBDs) and characterized with minimum angular distortion. The present paper describes optimization and prediction of angular distortion and weldment characteristics such as upper weld bead depression and lower weld bead bulging of TIG-welded structural steel square butt joints. Full factorial design of experiment was utilized for selecting the combinations of welding process parameter to produce the square butts. A mathematical model was developed to establish the relationship between TIG welding process parameters and responses such as upper bead width, lower bead width, UBD, lower bead height (bulging), weld cross-sectional area, and angular distortions. The optimal welding condition to minimize UBD and lower bead bulging of the TIG butt joints was identified.

  4. PAD WELDING EFFECT ON CRANKSHAFT LENGTH WHILE MAKING BUILD-UP PROCESS

    Directory of Open Access Journals (Sweden)

    T. V. Vigerina

    2011-01-01

    Full Text Available The paper reveals a pad welding effect on axial sizes of a crankshaft to be built-up and a dependence of axial deformation of built-up element on an elasticity modulus, a heating temperature and thermal coefficient of linear expansion of an element and a plating, weave bead sizes. This dependence enables to forecast tensile stresses in the plating. The paper contains justification on limitation of axial deformation of the built crank due to decrease of pad welding numbers up to only one during the whole period of its lifetime and carrying out  resource-saving measures.

  5. The effect of plasma arc process parameters on the properties of dissimilar AISI 1040/AISI 304 steel plate welds

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Musa; Kirik, Ihsan; Orhan, Nuri [Firat Univ., Elazig (Turkey); Celik, Ferkan [Science Industry and Technology Ministry of Turkey (Turkey)

    2012-11-01

    In this study, 10 mm thick AISI 1040 and AISI 304 steel plates were welded in the butt position without pretreatment by plasma transferred arc (PTA) welding technique. Therefore, mechanical behaviour, microstructure, penetration depth and length were investigated. After welding, microstructural changes in the interface regions of the welded specimens were examined by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Micro-hardness as well as V-notch Charpy tests were performed to determine the mechanical properties of the welds. The influence of the welding parameters on the dimension and shape of the joints has been found out. From the results, it was derived that with the parameters used, a partly keyhole weld bead formed with a penetration depth of 10 mm and a width of 11 mm in butt position. (orig.)

  6. Ultrasonic inspection of AA6013 laser welded joints

    Directory of Open Access Journals (Sweden)

    Adriano Passini

    2011-09-01

    Full Text Available Interest in laser beam welding for aerospace applications is continuously growing, mainly for aluminum alloys. The joints quality is usually assessed by non-destructive inspection (NDI. In this work, bead on plate laser welds on 1.6 mm thick AA6013 alloy sheets, using a 2 kW Yb-fiber laser were obtained and inspected by pulse/echo ultrasonic phased-array technique. Good and poor quality welds were inspected in order to verify the limits of inspection, comparing also to X-ray radiography and metallographic inspections. The results showed that ultrasonic phased array technique was able to identify the presence of grouped porosity, through the attenuation of the amplitude of the echo signal. This attenuation is attributed to the scattering of the waves caused by micro pores, with individual size below the resolution limit of the equipment, but when grouped, can cause a perceptive effect on the reflection spectra.

  7. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    黄承志; 李原芳; 黄新华; 范美坤

    2000-01-01

    The microarray of DNA probes with 5’ -NH2 and 5’ -Tex/3’ -NH2 modified terminus on 10 um carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) is characterized in the preseni paper. it was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentra-tion of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  8. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The microarray of DNA probes with 5′-NH2 and 5′-Tex/3′-NH2 modified terminus on 10 m m carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)- carbodiimide (EDC) is characterized in the present paper. It was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentration of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  9. Development of Preemptive Repair Technology for Alloy 600 J-Groove Welds of Reactor Vessel Upper Head CEDM Nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kwang Woon; Lee, Jang Wook; Cho, Ki Hyun; Choi, Kwang Min; Choi, Dong Chul; Cho, Sang Beum; Cho, Hong Seok [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    After 2000, PWSCC in numerous NPPs around the world has been generated, and recently, PWSCC in several CEDM nozzles of domestic NPP Hanbit Unit 3 and 4 was founded and repaired with embedded flaw repair(EFR) welding method by Westinghouse. In this study, development status of EFR equipment and basic experimental results for preventive PWSCC of RVUH CEDM nozzles will be introduced. The development of EFR seal welding equipment and welding process for the preemptive repair with original Alloy 600 J-Groove welds of RVUHP was conducted. The EFR welding equipment was tested to be possible seal welding to track J-Groove welds with three dimensional curved surfaces and OD penetration with vertical welding position. Through several BOP and overlay welding experiments, it was verified that good weld beads with no defects, such as cracks, spatter, undercut at the stable welding conditions with heat input of 27.4-32.5 KJ/in were well produced. Consequently, it is expected that the EFR seal welding technique will be applicable on the site.

  10. Characterization of Mechanical Properties and Residual Stress in API 5L X80 Steel Welded Joints

    Science.gov (United States)

    de Sousa Lins, Amilton; de Souza, Luís Felipe Guimarães; Fonseca, Maria Cindra

    2018-01-01

    The use of high-strength and low-alloy steels, high design factors and increasingly stringent safety requirements have increased the operating pressure levels and, consequently, the need for further studies to avoid and prevent premature pipe failure. To evaluate the possibility of improving productivity in manual arc welding of this type of steel, this work characterizes the mechanical properties and residual stresses in API 5L X80 steel welded joints using the SMAW and FCAW processes. The residual stresses were analyzed using x-ray diffraction with the sin2 ψ method at the top and root of the welded joints in the longitudinal and transverse directions of the weld bead. The mechanical properties of the welded joints by both processes were characterized in terms of tensile strength, impact toughness and Vickers microhardness in the welded and shot peening conditions. A predominantly compressive residual stress was found, and shot peening increased the tensile strength and impact toughness in both welded joints.

  11. Fatigue properties of dissimilar metal laser welded lap joints

    Science.gov (United States)

    Dinsley, Christopher Paul

    This work involves laser welding austenitic and duplex stainless steel to zinc-coated mild steel, more specifically 1.2mm V1437, which is a Volvo Truck Coiporation rephosphorised mild steel. The work investigates both tensile and lap shear properties of similar and dissimilar metal laser welded butt and lap joints, with the majority of the investigation concentrating on the fatigue properties of dissimilar metal laser welded lap joints. The problems encountered when laser welding zinc-coated steel are addressed and overcome with regard to dissimilar metal lap joints with stainless steel. The result being the production of a set of guidelines for laser welding stainless steel to zinc-coated mild steel. The stages of laser welded lap joint fatigue life are defined and the factors affecting dissimilar metal laser welded lap joint fatigue properties are analysed and determined; the findings suggesting that dissimilar metal lap joint fatigue properties are primarily controlled by the local stress at the internal lap face and the early crack growth rate of the material at the internal lap face. The lap joint rotation, in turn, is controlled by sheet thickness, weld width and interfacial gap. Laser welded lap joint fatigue properties are found to be independent of base material properties, allowing dissimilar metal lap joints to be produced without fatigue failure occurring preferentially in the weaker parent material, irrespective of large base material property differences. The effects of Marangoni flow on the compositions of the laser weld beads are experimentally characterised. The results providing definite proof of the stirring mechanism within the weld pool through the use of speeds maps for chromium and nickel. Keywords: Laser welding, dissimilar metal, Zinc-coated mild steel, Austenitic stainless steel, Duplex stainless steel, Fatigue, Lap joint rotation, Automotive.

  12. Welding stainless steels for structures operating at liquid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Witherell, C.E.

    1980-04-18

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2/sup 0/K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2/sup 0/K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness.

  13. Investigation on fracture toughness of laser beam welded steels

    International Nuclear Information System (INIS)

    Riekehr, S.; Cam, G.; Santos, J.F. dos; Kocak, M.; Klein, R.M.; Fischer, R.

    1999-01-01

    Laser beam welding is currently used in the welding of a variety of structural materials including hot and cold rolled steels, high strength low alloy and stainless steels, aluminium and titanium alloys, refractory and high temperature alloys and dissimilar materials. This high power density welding process has unique advantages of cost effectiveness, low distortion, high welding speed, easy automation, deep penetration, narrow bead width, and narrow HAZ compared to the conventional fusion welding processes. However, there is a need to understand the deformation and fracture properties of laser beam weld joints in order to use this cost effective process for fabrication of structural components fully. In the present study, an austenitic stainless steel, X5CrNi18 10 (1.4301) and a ferritic structural steel, RSt37-2 (1.0038), with a thickness of 4 mm were welded by 5 kW CO 2 laser process. Microhardness measurements were conducted to determine the hardness profiles of the joints. Flat micro-tensile specimens were extracted from the base metal, fusion zone, and heat affected zone of ferritic joint to determine the mechanical property variation across the joint and the strength mismatch ratio between the base metal and the fusion zone. Moreover, fracture mechanics specimens were extracted from the joints and tested at room temperature to determine fracture toughness, Crack Tip Opening Displacement (CTOD), of the laser beam welded specimens. The effect of the weld region strength mis-matching on the fracture toughness of the joints have been evaluated. Crack initiation, crack growth and crack deviation processes have also been examined. These results were used to explain the influence of mechanical heterogeneity of the weld region on fracture behaviour. This work is a part of the ongoing Brite-Euram project Assessment of Quality of Power Beam Weld Joints (ASPOW). (orig.)

  14. Effects of Ar and He on Microstructures and Properties of Laser Welded 800MPa TRIP Steel

    Directory of Open Access Journals (Sweden)

    Wang Wen-Quan

    2018-01-01

    Full Text Available Fiber laser welding of cold rolled TRIP steel (transformation Induced Plasticity steel sheet with tensile strength of 820MPa and thickness of 1.4mm was carried out using shielding gases Ar and He, respectively. For the same laser power and welding speed, the effects of different shielding gases on penetration and bead section morphologies were investigated. The microstructures and properties of the TRIP steel joints were also studied. The investigation showed that higher penetration and lower porosity could be obtained under shielding gas He using the same laser power and welding speed. The microstructures of the TRIP joint mainly included martensite and retained austenite. But the joint microhardness and tensile strength were higher under the shielding gas He. The tensile strength of the welded joint perpendicular to the weld line was equal to that of the base metal. But the tensile strength of the joint parallel with the weld line was higher than that of the base metal. The plasticity and formability of the welded joint were impaired due to the formation of martensite in the weld metal.

  15. Development and application of high-precision laser welding technology for manufacturing Ti alloy frames of glasses

    International Nuclear Information System (INIS)

    Kim, S. S.; Yang, M. S.; Kim, W. K.; Lee, D. Y.; Kim, J. M.; Leem, B. C.; Shin, J. S.; Lee, D. H.

    1999-12-01

    The research and development efforts of the high precision laser welding technology for manufacturing titanium alloy frames of glasses. For this purpose, laser welding device with the high beam quality is designed and fabricated, which consists of a optical fiber transmission part, a welding monitoring part and a welding controller. The welding nozzle and holding fixtures for manufacturing titanium and shape memory alloy frames of glasses. Titanium and shape memory alloy frames of glasses to be developed were experimentally manufactured by utilizing the laser welding using the optical fiber of GI 400 μm. As a result, the seam welding with the bead width of 0.3 mm or less and the weld penetration of 0.3-0.4mm could be accomplished. The fundamental technology was established through design of welding jigs with a variety of configurations and adequate welding conditions. Also, for the purpose to enable the companies participating in this project to commercialize the developed technology acceleratedly, a training program for the engineers belonging to such companies was conducted along with the technology transfer through joint experiments with the engineers. (author)

  16. Thermo-Mechanical Modeling of Laser-Mig Hybrid Welding (lmhw)

    Science.gov (United States)

    Kounde, Ludovic; Engel, Thierry; Bergheau, Jean-Michel; Boisselier, Didier

    2011-01-01

    Hybrid welding is a combination of two different technologies such as laser (Nd: YAG, CO2…) and electric arc welding (MIG, MAG / TIG …) developed to assemble thick metal sheets (over 3 mm) in order to reduce the required laser power. As a matter of fact, hybrid welding is a lso used in the welding of thin materials to benefit from process, deep penetration and gap limit. But the thermo-mechanical behaviour of thin parts assembled by LMHW technology for railway cars production is far from being controlled the modeling and simulation contribute to the assessment of the causes and effects of the thermo mechanical behaviour in the assembled parts. In order to reproduce the morphology of melted and heat-affected zones, two analytic functions were combined to model the heat source of LMHW. On one hand, we applied a so-called "diaboloïd" (DB) which is a modified hyperboloid, based on experimental parameters and the analysis of the macrographs of the welds. On the other hand, we used a so-called "double ellipsoïd" (DE) which takes the MIG only contribution including the bead into account. The comparison between experimental result and numerical result shows a good agreement.

  17. Shear punch testing as a tool for evaluating welded pipeline steel

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, G.R.; Elwazri, A.; Varano, R.; Yue, S.; Jonas, J.J. [McGill Univ., Montreal, PQ (Canada). Dept. of Metals and Materials Engineering; Pokutylowicz, N. [ExxonMobil Research and Engineering Co., Annandale, NJ (United States)

    2005-07-01

    This study examined the mechanical properties across a welded joint in a 35 mm steel pipe. Results were compared with microhardness measurements. The chemical composition of the 4130 steel and welding wire included carbon, manganese, silicon, nickel, chromium and molybdenum. The thermal cycles experienced during welding can result in differences in the grain size, phase, composition and morphology of precipitates. These thermal cycles can upset the balance of high strength and good toughness in steels, producing poor toughness in the heat-affected zone (HAZ). In the shear punch test, a flat-ended cylindrical punch was used to produce a 3 mm diameter disk from a sheet specimen with a recommended thickness of 300 to 350 {mu}m. The shear punch test provided tensile property data with only a very small amount of material, which is ideal for testing welds. It also provides full tensile data (yield strength, ultimate tensile strength and elongation) which are not specifically provided by hardness testing. Shear punch techniques can also improve the across-weld resolution of tensile testing. The results showed that the changes in strength properties across the weld were consistent with the microhardness measurements. The change in elongation across the weld joint was successfully measured using the punch test method. The HAZ in the welded joint in this study had a good combination of high strength and ductility, while the weld bead had moderate strength and relatively low ductility. 7 refs., 1 tab., 9 figs.

  18. Sensoring fusion data from the optic and acoustic emissions of electric arcs in the GMAW-S process for welding quality assessment.

    Science.gov (United States)

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  19. Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment

    Directory of Open Access Journals (Sweden)

    Eber Huanca Cayo

    2012-05-01

    Full Text Available The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  20. Laser Welding Process Parameters Optimization Using Variable-Fidelity Metamodel and NSGA-II

    Directory of Open Access Journals (Sweden)

    Wang Chaochao

    2017-01-01

    Full Text Available An optimization methodology based on variable-fidelity (VF metamodels and nondominated sorting genetic algorithm II (NSGA-II for laser bead-on-plate welding of stainless steel 316L is presented. The relationships between input process parameters (laser power, welding speed and laser focal position and output responses (weld width and weld depth are constructed by VF metamodels. In VF metamodels, the information from two levels fidelity models are integrated, in which the low-fidelity model (LF is finite element simulation model that is used to capture the general trend of the metamodels, and high-fidelity (HF model which from physical experiments is used to ensure the accuracy of metamodels. The accuracy of the VF metamodel is verified by actual experiments. To slove the optimization problem, NSGA-II is used to search for multi-objective Pareto optimal solutions. The results of verification experiments show that the obtained optimal parameters are effective and reliable.

  1. The inhomogeneous microstructure and deformation of similar and dissimilar Al-Zn containing Mg friction stir welds

    Science.gov (United States)

    Hiscocks, Jessica

    The magnesium-based aluminum-zinc alloys have excellent stiffness to weight ratios, and may be combined by friction stir welding to expand the possible applications. The high aluminum alloy AZ80 in particular has the advantage of being relatively stiff but still extrudable. However limited friction stir welding research is available for this alloy and extrapolation from the extensive work in aluminum alloys is impractical due differences in precipitation behaviour, and magnesium's high plastic anisotropy and tendency to form strong textures during friction stir welding. This work investigates the correlations between local friction stir welded microstructures, textures, residual strains, and the local deformation behaviour based on strain mapping during tensile tests. Covering bead-on-plate and butt configurations, joining of similar and dissimilar materials, and a range of processing conditions, many findings of interest for deformation modelling and industrial applications are presented. Synchrotron x-ray diffraction study of an entire friction stir weld was used to determine texture, residual strain and dislocation density data from a single experiment. A number of unique findings were made, mainly related to the asymmetric distribution of properties both between sides of the weld and through the depth. Particularly in the case of strain measurements, features not detectable at coarser measurement spacing or by line scan are presented and compared for multiple processing conditions. Investigation of the longitudinal material flow during welding showed that even when periodicity in grain size, precipitate distribution, or texture was not observed, periodic changes in texture intensity resulting from compaction of material behind the tool were present, providing evidence that movement of nugget material remained periodic. Strain localisation and fracture behaviour were found to be completely different between good quality similar and dissimilar friction stir welds

  2. Nd:YAG laser welding of aerospace grade ZE41A magnesium alloy: Modeling and experimental investigations

    International Nuclear Information System (INIS)

    Al-Kazzaz, H.; Medraj, M.; Cao, X.; Jahazi, M.

    2008-01-01

    Keyhole formation as well as the geometry of weld profiles during Nd:YAG laser welding of ZE41A-T5 were studied through combining various models and concepts. The results indicated that weld width and fusion area decrease with increasing welding speed. In the case of partially penetrated welding, penetration depth decreases with increasing welding speed. Also, the model predicted that excessive decrease in laser power or increase in defocusing distance decreases surface power density, thereby changing the welding mode from fully penetrated keyhole, to partially penetrated keyhole, and then to the conduction mode. The predicted conditions for keyhole stability and welding modes as well as the weld profiles for various processing conditions were validated by some selected welding experiments. These experiments included studying the effects of welding speed, laser power, joint gap and laser defocusing on the weld geometry of 2- and 6-mm butt joints or bead-on-plates of ZE41A-T5 sand castings using a continuous wave 4 kW Nd:YAG laser system and 1.6-mm EZ33A-T5 filler wire. Good agreements were found between the model predictions and experimental results indicating the validity of the assumptions made for the development of the model

  3. Soft zone formation in dissimilar welds between two Cr-Mo steels

    International Nuclear Information System (INIS)

    Albert, S.K.; Gill, T.P.S.; Tyagi, A.K.; Mannan, S.L.; Rodriguez, P.; Kulkarni, S.D.

    1997-01-01

    Two dissimilar weldments between 9Cr-1Mo and 2.25Cr-1Mo ferritic steels have been characterized for their microstructural stability during various postweld heat treatments (PWHTs). The samples for the investigation were extracted from bead-on-plate weldments made by depositing 2.25Cr-1Mo weld metal on 9Cr-1Mo base plate and vice versa. Subsequent application of PWHT resulted in the formation of a soft zone in the low Cr ferritic steel weld or base plate. A carbide-rich hard zone, adjoining the soft zone, was also detected in the high Cr side of the weldment. Unmixed zones in the weld metal provided additional soft and hard zones in the weld metals. The migration of carbon from low-Cr steel to high-Cr steel, driven by the carbon activity gradient, has been shown to be responsible for the formation of soft and hard zones. A carbon activity diagram for 2.25Cr-1Mo/9Cr-1Mo weldments has been proposed to aid in the selection of welding consumables for reducing or preventing the soft zone formation

  4. Dimensional characteristics of welds performed on AISI 1045 steel by means of the application of high power diode laser

    International Nuclear Information System (INIS)

    Sanchez-Castillo, A.; Pou, J.; Lusquinos, F.; Quintero, F.; Soto, R.; Boutinguiza, M.; Saavedra, M.; Perez-Amor, M.

    2004-01-01

    The named High Power diode Laser (HPDL), emits a beam of optical energy generated by diode stimulation and offers the capability of supplying levels of power up to 6 kW. The objective of this research work was to study the main welding variables and their effects on dimensional characteristics of the beads performed by means of application of this novel laser. The results obtained, show that HPDL, is an energy source able to perform welds on AISI 1045 steel plates under conduction mode, without any kind of mechanized preparation, preheating or post-weld treatment and, without filler metal application. (Author) 16 refs

  5. Theoretical study of in-plane response of magnetic field sensor to magnetic beads in an in-plane homogeneous field

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Hansen, Mikkel Fougt

    2008-01-01

    We present a systematic theoretical study of the average in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead and a monolayer of magnetic beads magnetized by an in-plane externally applied homogeneous magnetic field. General theoretical expressions...... are derived such that the sensor response and its dependence on the sensor size, spacer layer thickness, bead diameter, and bead susceptibility can easily be evaluated. The average magnetic field from a single bead close to the sensor shows a strong dependence on the position of the bead and a change of sign...... when the bead passes the edge of the sensor in the direction of the applied field. Analytical approximations are derived for the average field from a homogeneous monolayer of beads for beads much smaller than the sensor dimension and for a bead size chosen to minimize the position sensitivity...

  6. Seleção de parâmetros através do método Taguchi para soldagem de revestimento com ligas de níquel pelo processo MIG/MAG Using the Taguchi method to select welding parameters for weld overlay with nickel alloy through the GMAW process

    Directory of Open Access Journals (Sweden)

    Antonio Rodolfo Paulino Pessoa

    2010-12-01

    Full Text Available Neste trabalho utilizou-se o método Taguchi (planejamento Robusto de experimentos, para cumprir com um reduzido número de ensaios, dois objetivos: obter a influência dos fatores de controle sobre as variáveis respostas e determinar as condições ideais para aplicação das ligas de níquel nas soldagens de revestimentos através do processo MIG/MAG com transferência metálica por curto-circuito. Foram escolhidos seis fatores de controle com três níveis cada: Tensão de referência, Velocidade de soldagem, Tipo de tecimento, Técnica da tocha, Gás de proteção e o Material de adição. Por sua vez as variáveis respostas escolhidas foram: Diluição (D e Razão entre o reforço e a largura (R/L. As soldagens foram realizadas na posição plana por simples deposição sobre chapas de aço ASTM 516 Gr60 com dimensões de 200 x 50 x 12,7 mm. O uso do tecimento proporcionou cordões com baixos valores da razão R/L e obteve valores bastante baixos de diluição chegando à ordem de 5%. A combinação dos níveis dos fatores de controle apontados como ótimos pelo método Taguchi resultaram em valores para as variáveis repostas consideradas adequadas para a soldagem de revestimento.In this work aim the Taguchi method (Robust design of experiments was chosen to achieve with a limited number of tests two objectives: the first was to the influence of the control factors (welding parameters on quality characteristics (weld bead geometry and the second was to determine optimal conditions for weld overlay with nickel alloy through the GMAW process in a short circuiting transfer mode. Six control factors were employed with three levels each: Reference voltage, Welding speed, Arc oscillation, welding gun orientation (Perpendicular, forehand and backhand, Shielding gas and filler metal. Already the employed quality characteristics were: Percent dilution (D and the ration between reinforcement and bead width (R/L. The weldings were accomplished using

  7. Dry hyperbaric gas metal arc welding of subsea pipelines: experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Amin S.

    2012-07-01

    welding parameters. The datasets are representing the effects of using pure argon under 14 incrementally increased pressure levels. Fast Fourier Transformation (FFT) is used to characterize the frequency domain of the waveforms. Auto-correlation Function (AF) and Power Spectral Density (PSD) were calculated assuming the Wiener-Khinchin theorem. Considering the AF, it is possible to visualize the deteriorating stability of the arc. The rate of stability degradation is quite gentle after 20 bar, though, huge differences were observed from 1 to 20 bar. The characteristic frequencies of 100-150 Hz and 350-400 Hz were observed. The first range can be associated with the mass transfer or molten droplet launch frequency and the latter range is representative of the rectified mains. The spread of large low-frequency peaks at higher pressures is illustrating the mass transfer deterioration. The aforementioned peaks were found above 125 bar where the range of the characteristic frequency peaks in voltage and current waveforms started to deviate. The calculated arc power is higher at high-pressure range while the weld bead geometry was barely varied. It implies that the arc efficiency factor decreases at high pressures.The heat source dimensions and heat efficiency factor are two major inputs for finite element (FE) simulations of the weld. However, a systematic classification of these factors was hardly available prior to this work. Additionally, to the best of author's knowledge, the direct high-speed observation of the arc inside the hyperbaric welding chamber has not been investigated in detail by far due to several technological issues. The varying bead-on-plate welds including the end crater appearance can possibly be good candidates to categorize the FE heat source dimensions. Double-ellipsoidal heat source (Goldak's Model) was implemented in WeldSimS R FE code that is used in this study. Since the model incorporates two superimposed reference heat sources, the

  8. Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh, V. R.; Seyedkashi, S. M. H.

    2011-01-01

    Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.

  9. Fiber Laser Welding Properties of Copper Materials for Secondary Batteries

    Directory of Open Access Journals (Sweden)

    Young-Tae YOU

    2017-11-01

    Full Text Available Secondary battery is composed of four main elements: cathodes, anodes, membranes and electrolyte. The cathodes and the anodes are connected to the poles that allow input and output of the current generated while the battery is being charged or discharged. In this study laser welding is conducted for 40 sheets of pure copper material with thickness of 38μm, which are used in currently manufactured lithium-ion batteries, using pulse-wave fiber laser to compare welded joint to standard bolt joint and to determine optimum process parameters. The parameters, which has significant impact on penetration of the pulse waveform laser to the overlapped thin sheets, is the peak power while the size of the weld zone is mainly affected by the pulse irradiation time and the focal position. It is confirmed that overlapping rate is affected by the pulse repetition rate rather than by the pulse irradiation time. At the cross-section of the weld zone, even with the increased peak power, the width of the front bead weld size does not change significantly, but the cross-sectional area becomes larger. This is because the energy density per pulse increases as the peak power increases.DOI: http://dx.doi.org/10.5755/j01.ms.23.4.16316

  10. Helium-induced weld cracking in austenitic and martensitic steels

    International Nuclear Information System (INIS)

    Lin, H.T.; Chin, B.A.

    1991-01-01

    Helium was uniformly implanted into type 316 stainless steel and Sandvik HT-9 (12Cr-1MoVW) to levels of 0.18 to 256 and 0.3 to 1 a.p.p.m., respectively, using the ''tritium trick'' technique. Autogenous bead-on-plate, full penetration, welds were then produced under fully constrained conditions using the gas tungsten arc welding (GTAW) process. The control and hydrogen-charged plates of both alloys were sound and free of any weld defects. For the 316 stainless steel, catastrophic intergranular fracture occurred in the heat-affected zone (HAZ) of welds with helium levels ≥ 2.5 a.p.p.m. In addition to the HAZ cracking, brittle fracture along the centreline of the fusion zone was also observed for the welds containing greater than 100 a.p.p.m. He. For HT-9, intergranular cracking occurred in the HAZ along prior-austenite grain boundaries of welds containing 1 a.p.p.m. He. Electron microscopy observations showed that the cracking in the HAZ originated from the growth and coalescence of grain-boundary helium bubbles and that the fusion-zone cracking resulted from the growth of helium bubbles at dendrite boundaries. The bubble growth kinetics in the HAZ is dominated by stress-induced diffusion of vacancies into bubbles. Results of this study indicate that the use of conventional GTAW techniques to repair irradiation-degraded materials containing even small amounts of helium may be difficult. (author)

  11. On the effects of gravity and sulfur content on the weld shape in horizontal narrow gap GTAW of stainless steels

    KAUST Repository

    Traidia, Abderrazak

    2013-07-01

    A simplified 2D axisymmetric model and a comprehensive 3D weld pool model, accounting for the free surface deformation and the filler metal addition, have been developed to investigate the factors that lead to asymmetric bead shapes in horizontal GTA welding of stainless steels. Buoyancy-induced flow and the sagging of the pool free surface, under the action of gravity, are found to be responsible for the weld asymmetry and the decrease in the weld penetration at the bottom sidewall. The numerical results clearly emphasized the beneficial role of the Marangoni shear stress in limiting the asymmetry of horizontal GTA welds. An additional experimental investigation showed that the asymmetry in the weld shape can be reduced when placing the lowest sulfur content component at the bottom side. © 2013 Elsevier B.V. All rights reserved.

  12. A non-conventional technique for evaluating welded joints based on the electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Santos, T.G.; Sorger, G., E-mail: telmo.santos@fct.unl.pt, E-mail: lgs18243@campus.fct.unl.pt [Universidade Nova de Lisboa, UNIDEMI, Departamento de Engenharia Mecanica e Industrial, Faculdade de Ciencias e Tecnologia, Caparica (Portugal); Vilaca, P., E-mail: pedro.vilaca@aalto.fi [Aalto Univ., Dept. of Engineering Design and Production, School of Engineering, Aalto (Finland); Miranda, R., E-mail: rmiranda@fct.unl.pt [Universidade Nova de Lisboa, UNIDEMI, Departamento de Engenharia Mecanica e Industrial, Faculdade de Ciencias e Tecnologia, Caparica (Portugal)

    2015-01-15

    Recent studies showed that electrical conductivity is a valuable technique to identify the different zones of solid-state welded joints with a good correlation with the microstructure and hardness. This is a relevant result since this technique is fast and, in some cases, non destructive, The concept was applied to other welding processes such as the ones involving fusion to a wide range of materials, For this, a comprehensive study was performed using friction stir welding, tungsten inert gas (TlG) and gas metal arc (MAG) welding processes in either bead on plate or butt joints in: carbon steel, magnesium and titanium, Eddy current nondestructive testing (NDT) was used to measure the electrical conductivity at different depths in transverse sections of the processed materials. The profiles were compared to the hardness profiles in the same sections. As a result, a correlation was observed in most materials welded by solid state and by fusion processes. The variation of the electrical conductivity closely follows that measured in the hardness. Another interesting conclusion is that, even for fusion welding of carbon steels, the technique has potential to complement the hardness measurements and microstructural observations, allowing the identification of the distinct zones of welds in materials commonly used in industry. (author)

  13. Nanohole 3D-size tailoring through polystyrene bead combustion during thin film deposition

    International Nuclear Information System (INIS)

    Peng Xiaofeng; Kamiya, Itaru

    2009-01-01

    A novel approach is presented for nanohole 3D-size tailoring. The process starts with a monolayer of polystyrene (PS) beads spun coat on silicon wafer as a template. The holes can be directly prepared through combustion of PS beads by oxygen plasma during metal or oxide thin film deposition. The incoming particles are prevented from adhering on PS beads by H 2 O and CO 2 generated from the combustion of the PS beads. The hole depth generally depends on the film thickness. The hole diameter can be tailored by the PS bead size, film deposition rate, and also the combustion speed of the PS beads. In this work, a series of holes with depth of 4-24 nm and diameter of 10-36 nm has been successfully prepared. The hole wall materials can be selected from metals such as Au or Pt and oxides such as SiO 2 or Al 2 O 3 . These templates could be suitable for the preparation and characterization of novel nanodevices based on single quantum dots or single molecules, and could be extended to the studies of a wide range of coating materials and substrates with controlled hole depth and diameters.

  14. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    International Nuclear Information System (INIS)

    Rizzi, Giovanni; Østerberg, Frederik W.; Henriksen, Anders D.; Dufva, Martin; Hansen, Mikkel F.

    2015-01-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface. The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover, we demonstrate that a single sensor bridge can be used to genotype a SNP. - Highlights: • We apply magnetoresistive sensors to study solid-surface hybridization kinetics of DNA. • We measure DNA melting profiles for perfectly matching DNA duplexes and for a single base mismatch. • We present a procedure to correct for temperature dependencies of the sensor output. • We reliably extract melting temperatures for the DNA hybrids. • We demonstrate direct measurement of differential binding signal for two probes on a single sensor

  15. Analysis of a weld of an hydrogen tank under pressure: contribution of the nano-indentation for the characterization

    International Nuclear Information System (INIS)

    Russo, C.; Delobelle, P.; Perreux, D.; Russo, C.; Munier, E.; Decamps, B.

    2007-01-01

    This work deals with the size of an hydrogen spherical tank under pressure, composed of two half shell in aluminium alloy AZ5G machined in a forged bar and welded by electrons beam by a circumference. In this work, it is shown what the nano-indentation test can bring here. The influence of the tempering heat treatment after welding, the grains diameter and the loss in alloy elements (Zn and Mg) on the local mechanical properties of the weld bead has been revealed. In the same way, a hardening of the alloy due to the hydrogen penetration and leading to an increase of the dislocations density is observed. (O.M.)

  16. Theoretical study of in-plane response of magnetic field sensor to magnetic beads magnetized by the sensor self-field

    DEFF Research Database (Denmark)

    Hansen, Troels Borum Grave; Damsgaard, Christian Danvad; Dalslet, Bjarke Thomas

    2010-01-01

    We present a theoretical study of the spatially averaged in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead, a monolayer of magnetic beads, and a half-space filled with magnetic beads being magnetized by the magnetic self-field due to the applied...... bias current through the sensor. The analysis of the single bead response shows that beads always contribute positively to the average magnetic field as opposed to the case for an applied homogeneous magnetic field where the sign of the signal depends on the bead position. General expressions...... and analytical approximations are derived for the sensor response to beads as function of the bead distribution, the bias current, the geometry and size of the sensor, and the bead characteristics. Consequences for the sensor design are exemplified and it is described how the contribution from the self...

  17. Single-pass continuous-flow leach test of PNL 76-68 glass: some selected Bead Leach I results

    International Nuclear Information System (INIS)

    Coles, D.G.

    1981-01-01

    A single-pass continuous-flow leach test of PNL 76-68 glass beads (7 mm dia) was concluded after 420 days of uninterrupted operation. Variables included in the experimental matrix were flow-rate, leachant composition, and temperature. Analysis was conducted on all leachate samples for 237 Np and 239 Pu as well as a number of nonradioactive elements. Results indicated that flow-rate and leachant systematically affected the leach rate, but only slightly. Temperature effects were significant. Plutonium leach rate was lower at higher temperature suggesting that Pu sorption onto the beads was enhanced at the higher temperature. The range of leach rates for all analyzed elements (except Pu), at both temperatures, at all three flow rates, and with all three leachant compositions varied over only three orders of magnitude. The range of variables used in this experiment covered those expected in many proposed repository environments. The preliminary interpretation of the results aPPh 3 also reacted with Mn 2 (CO) 10 and Cp 2 Mo 2 (CO) 6 to give a variety of products at room temperature. A radical mechanism was suggested

  18. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications

    Science.gov (United States)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Snead, Lance L.

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  19. Deformation behavior of laser welds in high temperature oxidation resistant Fe–Cr–Al alloys for fuel cladding applications

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G., E-mail: fieldkg@ornl.gov; Gussev, Maxim N., E-mail: gussevmn@ornl.gov; Yamamoto, Yukinori, E-mail: yamamotoy@ornl.gov; Snead, Lance L., E-mail: sneadll@ornl.gov

    2014-11-15

    Ferritic-structured Fe–Cr–Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe–(13–17.5)Cr–(3–4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  20. Influence of M-TIG and A-TIG Welding Process on Microstructure and Mechanical Behavior of 409 Ferritic Stainless Steel

    Science.gov (United States)

    Vidyarthy, R. S.; Dwivedi, D. K.; Vasudevan, M.

    2017-03-01

    The current study investigates the effects of activating flux tungsten inert gas welding (A-TIG) and multipass tungsten inert gas welding (M-TIG) on the weld morphology, angular distortion, microstructures and mechanical properties when welding 8-mm-thick 409 ferritic stainless steel (FSS). SiO2 was used as activating flux for A-TIG welding, while SUPERTIG ER309L was used as filler for M-TIG welding. Bead-on-plate weld trials were carried out to obtain the full penetration by using different combinations of flux coating density, welding speed and welding current. An optical microscope, field emission scanning microscope (FESEM), and x-ray diffractometer were used for the metallurgical characterizations. Vickers hardness, tensile test, Charpy toughness test, and creep behavior test were carried out to evaluate the mechanical properties of the base and weld metals. Experimental results indicate that the A-TIG process can increase the joint penetration and tends to reduce the angular distortion of the 409 FSS weldment. The A-TIG welded joint also exhibited greater mechanical strength. However, a critically low Charpy toughness was measured for the A-TIG weld fusion zone, which was later sufficiently improved after post weld heat treatment (PWHT). It was concluded that PWHT is mandatory for A-TIG welded 409 FSS.

  1. Sensor controlled robotic welding for nuclear applications. Annual progress report

    International Nuclear Information System (INIS)

    Chin, B.A.; Madsen, N.H.; Goodling, J.S.

    1986-01-01

    Significant accomplishments towards the development of an adaptive robotic welding system have been made during the first eight months of the project. The project is currently within budget and on schedule. Accomplishments were both scientific and programmatic in form. A list of the scientific accomplishments follows: demonstrated that the thermal profiles generated for intentionally induced defects during the welding process are similar in steel, aluminum and stainless steel. The conclusion is therefore that infrared sensing is applicable to the welding of over 90% of all materials used in the energy industry. Completed design and testing of a first generation communication system used to transfer information from the infrared camera to the computer in a near real time form. This demonstrates that information can be obtained, sorted, transferred and received in a time frame consistent with on-line process control. Demonstrated rudimentary seam tracking using infrared sensing and closed loop logic routines. A linear relationship exists between measured peak surface temperature and depth of penetration. Similarily, a linear relationship exists between measured infrared width and weld bead width. These relations suggest that penetration parameters may be controlled using surface measurements as obtained by infrared thermography

  2. Effect of formulation of alginate beads on their mechanical behavior and stiffness

    Institute of Scientific and Technical Information of China (English)

    Eng-Seng Chan; Tek-Kaun Lim; Wan-Ping Voo; Ravindra Pogaku; Beng Ti Tey; Zhibing Zhang

    2011-01-01

    The aim of this work was to determine the effect of formulation of alginate beads on their mechanical behavior and stiffness when compressed at high speed. The alginate beads were formulated using different types and concentrations of alginate and gelling cations and were produced using an extrusiondripping method. Single wet beads were compressed at a speed of 40 mm/min, and their elastic limits were investigated, and the corresponding force versus displacement data were obtained. The Young's moduli of the beads were determined from the force versus displacement data using the Hertz's contact mechanics theory. The alginate beads were found to exhibit plastic behavior when they were compressed beyond 50% with the exception of copper-alginate beads for which yield occured at lower deformation.Alginate beads made of higher guluronic acid contents and gelling cations of higher chemical affinity were found to have greater stiffness. Increasing the concentration of alginate and gelling ions also generated a similar effect. At such a compression speed, the values of Young's modulus of the beads were found to be in the range between 250 and 900 kPa depending on the bead formulation.

  3. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    Science.gov (United States)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  4. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    Science.gov (United States)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  5. Global and local characteristics of an autogenous single pass electron beam weld in thick gage UNS S41500 steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarafan, S., E-mail: Sheida.Sarafan.1@ens.etsmtl.ca [École de Technologie Supérieure, Montréal, Québec, Canada H3C 1K3 (Canada); National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Wanjara, P., E-mail: priti.wanjara@nrc-cnrc.gc.ca [National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Gholipour, J., E-mail: Javad.gholipour@nrc-cnrc.gc.ca [National Research Council Canada, Aerospace, Montréal, Québec, Canada H3T 2B2 (Canada); Champliaud, H., E-mail: henri.champliaud@etsmtl.ca [École de Technologie Supérieure, Montréal, Québec, Canada H3C 1K3 (Canada)

    2016-06-01

    Electron beam welding of UNS S41500, a low carbon martensitic stainless steel utilized in hydroelectric turbine manufacturing, was investigated by applying a single pass autogenous process to penetrate a section thickness of 72 mm without preheating. In the as-welded and post-weld heat treated conditions, the evolution in microhardness and microstructure across the weldments, as well as the global and local tensile properties, were evaluated. In the as-welded condition, assessment of the microhardness and the associated microstructure across the welds led to the identification of six regions, including the fusion zone, four heat affected zones and the base metal; each of these regions consisted of different phase constituents, such as tempered martensite, untempered martensite, delta ferrite and retained austenite. Post-weld heat treatment, undertaken to temper the untempered martensite in the as-welded microstructure, was effective in homogenizing the hardness across the weldment. The mechanical response of the welds, determined through tensile testing at room temperature with an automated non-contact three-dimensional deformation measurement system, indicated that the global tensile properties in the as-welded and post-weld heat treated conditions met the acceptance criteria in the ASME Section IX standard. Also, evaluation of the local tensile properties in the fusion and heat affected zones of the as-welded samples allowed a more comprehensive understanding of the strength and ductility associated with the different microstructures in the “composite” nature of the weldment. Fractographic analysis demonstrated dimpled features on the tensile fracture surfaces and failure was associated with debonding between the martensitic matrix and the secondary phases (such as delta ferrite and retained austenite) that resulted in the formation, growth and coalescence of voids into a macroscale crack.

  6. Generation rate of carbon monoxide from CO2 arc welding.

    Science.gov (United States)

    Ojima, Jun

    2013-01-01

    CO poisoning has been a serious industrial hazard in Japanese workplaces. Although incomplete combustion is the major cause of CO generation, there is a risk of CO poisoning during some welding operations. The aim of the present study was to evaluate the generation rate of CO from CO2 arc welding under controlled laboratory conditions and estimate the ventilation requirements for the prevention of CO poisoning. Bead on plate welding was carried out with an automatic welding robot on a rolled steel base metal under several conditions. The concentration of emitted CO from the welding was measured by a real-time CO monitor in a well-ventilated laboratory that was free from ambient CO contamination. The generation rate of CO was obtained from the three measurements-the flow rate of the welding exhaust gas, CO concentration in the exhaust gas and the arcing time. Then the ventilation requirement to prevent CO poisoning was calculated. The generation rate of CO was found to be 386-883 ml/min with a solid wire and 331-1,293 ml/min with a flux cored wire respectively. It was found that the CO concentration in a room would be maintained theoretically below the OSHA PEL (50 ppm) providing the ventilation rate in the room was 6.6-25.9 m3/min. The actual ventilation requirement was then estimated to be 6.6-259 m3/min considering incomplete mixing. In order to prevent CO poisoning, some countermeasures against gaseous emission as well as welding fumes should be taken eagerly.

  7. On the effects of gravity and sulfur content on the weld shape in horizontal narrow gap GTAW of stainless steels

    KAUST Repository

    Traidia, Abderrazak; Roger, Frederic; Schroeder, Jeanne; Guyot, Evelyne; Marlaud, Thorsten

    2013-01-01

    A simplified 2D axisymmetric model and a comprehensive 3D weld pool model, accounting for the free surface deformation and the filler metal addition, have been developed to investigate the factors that lead to asymmetric bead shapes in horizontal

  8. Laser-GMA Hybrid Pipe Welding System

    National Research Council Canada - National Science Library

    Reutzel, Edward W; Kern, Ludwig; Sullivan, Michael J; Tressler, Jay F; Avalos, Juan

    2007-01-01

    The combination of laser welding with conventional gas metal arc welding technology offers substantial increases in production rate of joining pipe through single-pass joining compared to multi-pass...

  9. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  10. Optimization of welding parameters using a genetic algorithm: A robotic arm–assisted implementation for recovery of Pelton turbine blades

    Directory of Open Access Journals (Sweden)

    Luis Pérez Pozo

    2015-11-01

    Full Text Available This work presents the operational optimization of a welding operation involving using genetic algorithms. The welding curves correspond to the profile of a blade-shaped Pelton turbine. The procedure involved the development of a series of tests and observation of the parameters that will be controlled during the welding process. After the tests were performed, the samples were prepared for chemical attack, which allowed observation of the penetration, weld area, and dilution. After that, mathematical models were developed that correlate the controllable welding parameters with the aforementioned bead parameters. In those mathematical models, the optimization of the process parameters was performed using genetic algorithms. Specially programmed functions for mutation, reproduction, and initialization processes were written and used in the implemented model. After the optimization process was completed, the results were evaluated through new tests to verify whether the obtained objective functions properly describe the characteristics of the weld. The comparisons showed errors of less than 6%.

  11. UNS S32750 super duplex steel welding using pulsed Nd:YAG laser; Soldagem do aco superduplex UNS S32750 com laser pulsado Nd:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Francini, O.D.; Andrade, G.G.; Clemente, M.S.; Gallego, J.; Ventrella, V.A., E-mail: ventrella@dem.feis.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Departamento de Engenharia Mecanica

    2016-07-01

    Laser is a flexible and powerful tool with many relevant applications in industry, mainly in the welding area. Lasers today provide the welding industry technical solutions to many problems. This work studied the weld metal obtained by pulsed laser welding of Nd: YAG super duplex stainless steel UNS S32750 employed in the oil and natural gas, analyzing the influence of high cooling rate, due to the laser process, the swing phase ferrite / austenite. Were performed weld beads in butt joint with different repetition rates. The different microstructures were obtained by optical microscopy and scanning electron microscopy. The results showed that the effect of varying the welding energy of Nd: YAG laser on the volume fractions of the phases ferrite/austenite in the weld metal was its ferritization and low austenite amount on the grain boundary. (author)

  12. Incerteza na medição dos parâmetros geométricos do cordão de solda Measurement uncertainty of geometric parameters in weld beads

    Directory of Open Access Journals (Sweden)

    Rosenda Valdés Arencibia

    2011-03-01

    Full Text Available Este trabalho apresenta uma metodologia para estimar a incerteza associada à medição dos parâmetros que definem a geometria do cordão de solda, especificamente da área do cordão, de forma a atender à exigência estabelecida pela norma NBR ISO/IEC 17025. A qualidade geométrica dos corpos de prova utilizados durante as medições foi ainda avaliada através da medição dos desvios geométricos de planeza e de perpendicularidade. As seguintes etapas foram propostas e realizadas: identificação dos parâmetros que definem a geometria do cordão de solda; identificação e estudo das variáveis que afetam a medição destes parâmetros; adoção do modelo matemático para estimativa da incerteza de cada parâmetro; planejamento e execução dos experimentos para o levantamento dos dados, cálculo da incerteza e, finalmente, análise e discussão dos resultados. Através da análise dos resultados foi possível concluir que as incertezas provenientes da calibração do sistema de medição e relativa ao desvio de perpendicularidade contribuíram significativamente para a incerteza final. As análises despertaram uma preocupação com relação aos valores permissíveis para o desvio de perpendicularidade dos corpos de prova utilizados durante as medições.This work presents a methodology to estimate the uncertainty associated to the measurement of the weld bead geometric parameters in order to address the requirements of NBR ISO/IEC 17025 Standard. The specimen geometric quality was additionally evaluated through the measurement of flatness and perpendicularity deviations. The following steps were proposed and executed: identification of weld bead geometric parameters; identification and study of the variables that affect measurement of the identified parameters; adoption of a mathematical model to estimate the uncertainty for each parameter; planning and execution of the experiments for data obtaining; uncertainty determination, analysis

  13. The Use of Fiberglass and Ceramic Cylinders to Support the Root Pass in C-Steel Welds with a Double-V Groove

    Directory of Open Access Journals (Sweden)

    Ricardo Fernandes Gurgel

    2015-09-01

    Full Text Available Abstract The aim of this work is to evaluate the effectiveness of fiberglass and ceramic fiber cylinders as root-pass weld backing for a double-V groove in 16 mm-thick carbon steel. Three different cylinder diameters were tested: 4.8, 9.5 mm (fiberglass and 6.4 mm (ceramic fiber. The welding process used was GMAW. The welding technique and the following process variables were investigated: root opening, current and travel speed. The results show that cylindrical fiberglass and ceramic fiber backings not only have excellent refractory properties, but also seal the root opening and contain the weld pool sufficiently to produce a root bead free of discontinuities and with a satisfactory shape and geometry. Working points were defined, together with a possible operating range for the welding parameters. It was concluded that cylindrical fiberglass and ceramic fiber weld backings hold great promise for use in root-pass welds in double-V grooves in applications in the naval and metallurgical industry.

  14. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    Science.gov (United States)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  15. A method for visual inspection of welding by means of image processing of x-ray photograph

    International Nuclear Information System (INIS)

    Koshimizu, Hiroyasu; Yoshida, Tohru.

    1983-01-01

    Computer image processing is becoming a helpful tool even in industrial inspections. A computerized method for welding visual inspection is proposed in this paper. This method is based on computer image processing of X-ray photograph of welding, in which the appearance information of weldments such as shape of weld bead really exists. Structural patterns are extracted at first and seven computer measures for inspection are calculated using those patterns. Software system for visual inspection is constructed based on these seven measures. It was experimentally made clear that this system can provide a performance of more than 0.85 correlation to human visual inspection. As a result, the visual inspection by computer using X-ray photograph became a promising tool to realize objectivity and quantitativity of welding inspection. Additionally, the consistency of the system, the possibility to reduce computing costs, and so on are discussed to improve the proposed method. (author)

  16. Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration

    Science.gov (United States)

    Kong, Fanrong; Ma, Junjie; Carlson, Blair; Kovacevic, Radovan

    2012-10-01

    Two different cases regarding the zinc coating at the lap joint faying surface are selected for studying the influence of zinc vapor on the keyhole dynamics of the weld pool and the final welding quality. One case has the zinc coating fully removed at the faying surface; while the other case retains the zinc coating on the faying surface. It is found that removal of the zinc coating at the faying surface produces a significantly better weld quality as exemplified by a lack of spatters whereas intense spatters are present when the zinc coating is present at the faying surface. Spectroscopy is used to detect the optical spectra emitted from a laser generated plasma plume during the laser welding of galvanized high strength DP980 steel in a lap-joint configuration. A correlation between the electron temperature and defects within the weld bead is identified by using the Boltzmann plot method. The laser weld pool keyhole dynamic behavior affected by a high-pressure zinc vapor generated at the faying surface of galvanized steel lap-joint is monitored in real-time by a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source.

  17. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    Energy Technology Data Exchange (ETDEWEB)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay [Indian Institute of Technology Guwahati, Assam (India)

    2017-05-15

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  18. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    International Nuclear Information System (INIS)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay

    2017-01-01

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  19. Fibrous polymer grafted magnetic chitosan beads with strong poly(cation-exchange) groups for single step purification of lysozyme.

    Science.gov (United States)

    Bayramoglu, Gulay; Tekinay, Turgay; Ozalp, V Cengiz; Arica, M Yakup

    2015-05-15

    Lysozyme is an important polypetide used in medical and food applications. We report a novel magnetic strong cation exchange beads for efficient purification of lysozyme from chicken egg white. Magnetic chitosan (MCHT) beads were synthesized via phase inversion method, and then grafted with poly(glycidyl methacrylate) (p(GMA)) via the surface-initiated atom transfer radical polymerization (SI-ATRP). Epoxy groups of the grafted polymer, were modified into strong cation-exchange groups (i.e., sulfonate groups) in the presence of sodium sulfite. The MCTH and MCTH-g-p(GMA)-SO3H beads were characterized by ATR-FTIR, SEM, and VSM. The sulphonate groups content of the modified MCTH-g-p(GMA)-4 beads was found to be 0.53mmolg(-1) of beads by the potentiometric titration method. The MCTH-g-p(GMA)-SO3H beads were first used as an ion-exchange support for adsorption of lysozyme from aqueous solution. The influence of different experimental parameters such as pH, contact time, and temperature on the adsorption process was evaluated. The maximum adsorption capacity was found to be 208.7mgg(-1) beads. Adsorption of lysozyme on the MCTH-g-p(GMA)-SO3H beads fitted to Langmuir isotherm model and followed the pseudo second-order kinetic. More than 93% of the adsorbed lysozyme was desorbed using Na2CO3 solution (pH 11.0). The purity of the lysozyme was checked by HPLC and SDS gel electrophoresis. In addition, the MCTH-g-p(GMA)-SO3H beads prepared in this work showed promising potential for separation of various anionic molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Soldagem unilateral com suporte cerâmico de cordierita One-sided welding with cordierite ceramic backing

    Directory of Open Access Journals (Sweden)

    Luciana Lezira Pereira de Almeida

    2010-06-01

    Full Text Available Este trabalho apresenta a avaliação de juntas soldadas com suporte cerâmico de cordierita produzido em laboratorio. Foi utilizada a técnica de soldagem unilateral em chapas de aço A-36 com espessuras de 6,4 e 15,8 mm pelo processo MIG-MAG. Com a chapa de 6,4 mm foi avalliado apenas o passe de raiz sobre o suporte cerâmico. Com a chapa de 15,8 mm foi produzida uma junta soldada em passes múltiplos. Após soldagem as juntas soldadas foram submetidas a ensaios de inspeção visual, liquido penetrante, macrografia, microdureza Vickers, microscopia ótica, ensaios de dobramento e de tração e análise química por EDS. Os resultados mostram que o passe de raiz, realizado sobre o suporte cerâmico, apresentou bom acabamento, isento de descontinuidades, com penetração adequada nas laterais do chanfro e reforço de solda apropriado. Em relação à junta soldada, a microestrutura da zona fundida (ZF obteve predominância de ferrita primária, em suas formas de ferrita de contorno de grão e poligonal, e ferrita com segunda fase alinhada. A microdureza Vickers obteve valores médios abaixo de 180 HV tanto na zona termicamente afetada (ZTA como na ZF. Os ensaios de dobramento não apresentaram descontinuidades maiores que 3 mm e nos ensaios de tração a ruptura ocorreu no metal base, indicando que o procedimento de soldagem foi adequado. A composição das inclusões tanto do passe de raiz como do ultimo passe de solda possuem os mesmos constituintes, apesar de proporções diferentes, indicando que não houve contaminação do material do suporte cerâmico no cordão de solda.This work presents the evaluation of welded joints using ceramic backing made in the laboratory. The one-sided welding technique was used to weld A-36 steel plate with 6,4 and 15,8 mm thick by the GMAW process. With the 6,4 mm steel plate, only the root bead welded over the ceramic backing was evaluated. With the 15,8 mm steel plate, a multipass welded joint was made

  1. Soldagem unilateral com suporte cerâmico de cordierita One-sided welding with cordierite ceramic backing

    Directory of Open Access Journals (Sweden)

    Luciana Lezira Pereira de Almeida

    2010-03-01

    Full Text Available Este trabalho apresenta a avaliação de juntas soldadas com suporte cerâmico de cordierita produzido em laboratorio. Foi utilizada a técnica de soldagem unilateral em chapas de aço A-36 com espessuras de 6,4 e 15,8 mm pelo processo MIG-MAG. Com a chapa de 6,4 mm foi avalliado apenas o passe de raiz sobre o suporte cerâmico. Com a chapa de 15,8 mm foi produzida uma junta soldada em passes múltiplos. Após soldagem as juntas soldadas foram submetidas a ensaios de inspeção visual, liquido penetrante, macrografia, microdureza Vickers, microscopia ótica, ensaios de dobramento e de tração e análise química por EDS. Os resultados mostram que o passe de raiz, realizado sobre o suporte cerâmico, apresentou bom acabamento, isento de descontinuidades, com penetração adequada nas laterais do chanfro e reforço de solda apropriado. Em relação à junta soldada, a microestrutura da zona fundida (ZF obteve predominância de ferrita primária, em suas formas de ferrita de contorno de grão e poligonal, e ferrita com segunda fase alinhada. A microdureza Vickers obteve valores médios abaixo de 180 HV tanto na zona termicamente afetada (ZTA como na ZF. Os ensaios de dobramento não apresentaram descontinuidades maiores que 3 mm e nos ensaios de tração a ruptura ocorreu no metal base, indicando que o procedimento de soldagem foi adequado. A composição das inclusões tanto do passe de raiz como do ultimo passe de solda possuem os mesmos constituintes, apesar de proporções diferentes, indicando que não houve contaminação do material do suporte cerâmico no cordão de solda.This work presents the evaluation of welded joints using ceramic backing made in the laboratory. The one-sided welding technique was used to weld A-36 steel plate with 6,4 and 15,8 mm thick by the GMAW process. With the 6,4 mm steel plate, only the root bead welded over the ceramic backing was evaluated. With the 15,8 mm steel plate, a multipass welded joint was made

  2. Study of The Effect of Draw-bead Geometry on Stretch Flange Formability

    Science.gov (United States)

    Orlov, O. S.; Winkler, S. L.; Worswick, M. J.; Lloyd, D. J.; Finn, M. J.

    2004-06-01

    A fully instrumented stretch flange press equipped with a back-up punch and draw-beads near the specimen cutout area is simulated. The utilization of different draw-bead geometries is examined numerically to determine the restraining forces, strains and amount of damage generated in stretch flanges during forming. Simulations of the forming process are conducted for 1mm AA5182 sheets with circular cutouts. The damage evolution with the deformed specimens is investigated using the explicit dynamic finite element code, LS-DYNA, with a modified Gurson-based material model. It was found that double draw-beads can provide the same amount of restraining force as single draw-beads, but at reduced levels of damage.

  3. Sangadzhi Kononov, Buddhist Prayer Beads

    OpenAIRE

    Churyumov, Anton; Kovaeva, Bair

    2016-01-01

    Prayer beads have special dividers that divide the beads into 7, 21 and 33. Apart from using in prayers, the Kalmyks also keep beads as amulets that are believed to have strong energy. After prayers, old people often bless their children and grandchildren with their beads. Such beads are also kept in families from one generation to the next. Sangadzhi believes that prayer beads store inside them the energy of mantras that have been read with them. There is an interesting story about the pray...

  4. Sequential mass spectrometric analysis of uranium and plutonium employing resin bead technique

    International Nuclear Information System (INIS)

    Ramakumar, K.L.; Aggarwal, S.K.; Chitambar, S.A.; Jain, H.C.

    1985-01-01

    Sequential mass spectrometric analysis of uranium and plutonium employing anion exchange resin bead technique is reported using a high sensitive single stage magnetic analyser instrument, the routinely employed rhenium double filament assembly and 0.5M HNO 3 as a wetting agent for loading the resin beads. A precision of bettter than 0.3per cent (2sigma) is obtained on the isotopic ratio measurements. However, extreme care has to be exercised to carry the resin bead experiments under ultra clean conditions so as to avoid pick up of contamination. (author)

  5. SCC testing of steam generator tubes repaired by welded sleeves

    International Nuclear Information System (INIS)

    Pierson, E.; Stubbe, J.

    1993-01-01

    One way to repair steam generator tubing is to introduce a sleeve inside the tube so that it spans the corroded area and to seal it at both ends. This technique has been studied at Laborelec with a particular attention paid to the occurrence of new SCC cracks at the upper joint. Tube segments coming from the same lot of mill annealed alloy 600 were sent to six manufacturers to be sleeved by their own procedure (including TIG, laser or kinetic welding, followed or not by a stress relief heat treatment), and then tested at Laborelecin 10% NaOH at 350 degrees C. The tests were performed with and without differential pressure i.e. in capsules (Δ = 9 and 19 MPa) and in autoclave (Δp = 0). Nearly all the not stress relieved mock-ups developed through cracks in several hundred hours in auto-clave. The cracks were circumferential and situated near the weld. At 9 and 19 MPa, the time to failure decreased and longitudinal cracks appeared near the weld and at the transition zone of expanded areas. Cracks were never observed in the alloy 690 sleeve, except in the weld bead. Reference capsules (roll expaned tubes) made of the same lot of alloy 600 were tested in the same environment

  6. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding

    Science.gov (United States)

    Shao, Wen Jun; Huang, Yu; Zhang, Yong

    2018-02-01

    Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.

  7. Real weld geometry determining mechanical properties of high power laser welded medium plates

    Science.gov (United States)

    Liu, Sang; Mi, Gaoyang; Yan, Fei; Wang, Chunming; Li, Peigen

    2018-06-01

    Weld width is commonly used as one of main factors to assess joint performances in laser welding. However, it changes significantly through the thickness direction in conditions of medium or thick plates. In this study, high-power autogenous laser welding was conducted on 7 mm thickness 201 stainless steel to elucidate the factor of whole weld transverse shape critically affecting the mechanical properties with the aim of predicting the performance visually through the weld appearance. The results show that single variation of welding parameters could result in great changes of weld pool figures and subsequently weld transverse shapes. All the obtained welds are composed of austenite containing small amount of cellular dendritic δ-Ferrite. The 0.2% proof stresses of Nail- and Peanut-shaped joint reach 458 MPa and 454 MPa, 88.2% and 87.5% of the base material respectively, while that of Wedge-shaped joint only comes to 371 MPa, 71.5% of the base material. The deterioration effect is believed to be caused by the axial grain zone in the weld center. The fatigue strength of joint P is a bit lower than N, but much better than W. Significant deformation incompatibility through the whole thickness and microstructure resistance to crack initiation should be responsible for the poor performance of W-shaped joints.

  8. A two-channel detection method for autofluorescence correction and efficient on-bead screening of one-bead one-compound combinatorial libraries using the COPAS fluorescence activated bead sorting system

    International Nuclear Information System (INIS)

    Hintersteiner, Martin; Auer, Manfred

    2013-01-01

    One-bead one-compound combinatorial library beads exhibit varying levels of autofluorescence after solid phase combinatorial synthesis. Very often this causes significant problems for automated on-bead screening using TentaGel beads and fluorescently labeled target proteins. Herein, we present a method to overcome this limitation when fluorescence activated bead sorting is used as the screening method. We have equipped the COPAS bead sorting instrument with a high-speed profiling unit and developed a spectral autofluorescence correction method. The correction method is based on a simple algebraic operation using the fluorescence data from two detection channels and is applied on-the-fly in order to reliably identify hit beads by COPAS bead sorting. Our method provides a practical tool for the fast and efficient isolation of hit beads from one-bead one-compound library screens using either fluorescently labeled target proteins or biotinylated target proteins. This method makes hit bead identification easier and more reliable. It reduces false positives and eliminates the need for time-consuming pre-sorting of library beads in order to remove autofluorescent beads. (technical note)

  9. Mechanical properties and fracture behaviour of ODS steel friction stir welds at variable temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, H., E-mail: huwdawson@gmail.com [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Serrano, M.; Hernandez, R. [Structural Materials Division, Technology Department, CIEMAT, Avda de la Complutense 40, 28040 Madrid (Spain); Cater, S. [Friction and Forge Processes Department, Joining Technologies Group, TWI Technology Centre (Yorkshire), Advanced Manufacturing Park, Wallis Way, Catcliffe, Rotherham S60 5TZ (United Kingdom); Jimenez-Melero, E. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2017-05-02

    We have assessed the microstructure and the temperature-dependent mechanical behaviour of five bead-on-plate friction stir welds of Oxide Dispersion Strengthened (ODS) steel, produced using systematic changes to the tool rotation and traverse speed. Friction stir welding can potentially retain the fine dispersion of nanoparticles, and therefore also the high-temperature strength and radiation damage resistance of these materials. Tensile testing was carried out on the MA956 base material at a range of temperatures, from room temperature up to 750 °C. The mechanical properties of the welds were investigated via tensile testing at room temperature and at 500 °C, together with micro-hardness testing. The welds exhibited similar strength and ductility to the base material at both testing temperatures as welding caused a partial loss of particle strengthening, alongside an increase in grain boundary strengthening due to a greatly refined grain size in the stir zones. The micro-hardness data revealed a trend of increasing hardness with increasing tool traverse speed or decreasing rotation speed. This was attributed to the smaller grain size and lower nanoparticle number density in the welds created with these parameters. At 500 °C, the yield stress and ultimate tensile stress of the base material and the welds decreased, due to a progressive reduction in both the Orowan-type particle strengthening and the grain boundary strengthening.

  10. Effects of multi-pass arc welding on mechanical properties of carbon steel C25 plate

    International Nuclear Information System (INIS)

    Adedayo, S.M.; Babatunde, A.S.

    2013-01-01

    The effects of multi-pass welding on mechanical properties of C25 carbon steel plate were examined. Mild steel plate workpieces of 90 x 55 mm 2 area and 10 mm thickness with a 30 degrees vee weld-grooves were subjected to single and multi-pass welding. Toughness, hardness and tensile tests of single and multi-pass welds were conducted. Toughness values of the welds under double pass welds were higher than both single pass and unwelded alloy, at respective maximum values of 2464, 2342 and 2170 kN/m. Hardness values were reduced under double pass relative to single pass welding with both being lower than the value for unwelded alloy; the values were 40.5, 43.2 and 48.5 Rs respectively at 12 mm from the weld line. The tensile strength of 347 N/mm 2 under multi-pass weld was higher than single pass weld with value of 314 N/mm 2 . Therefore, the temperature distribution and apparent pre-heating during multi-pass welding increased the toughness and tensile strength of the weldments, but reduced the hardness. (au)

  11. Bead-based screening in chemical biology and drug discovery

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Nielsen, Thomas Eiland; Qvortrup, Katrine

    2018-01-01

    libraries for early drug discovery. Among the various library forms, the one-bead-one-compound (OBOC) library, where each bead carries many copies of a single compound, holds the greatest potential for the rapid identification of novel hits against emerging drug targets. However, this potential has not yet...... been fully realized due to a number of technical obstacles. In this feature article, we review the progress that has been made towards bead-based library screening and applications to the discovery of bioactive compounds. We identify the key challenges of this approach and highlight key steps needed......High-throughput screening is an important component of the drug discovery process. The screening of libraries containing hundreds of thousands of compounds requires assays amanable to miniaturisation and automization. Combinatorial chemistry holds a unique promise to deliver structural diverse...

  12. New Nanoparticles Dispersing Beads Mill with Ultra Small Beads and its Application

    International Nuclear Information System (INIS)

    Inkyo, M; Tahara, T; Imajyo, Y

    2011-01-01

    Two of the major problems related to nanoparticle dispersion with a conventional beads mill are re-agglomeration and damage to the crystalline structure of the particles. The Ultra Apex Mill was developed to solve these problems by enabling the use of ultra-small beads with a diameter of less than 0.1mm. The core of this breakthrough development is centrifugation technology which allows the use of beads as small as 0.015mm. When dispersing agglomerated nanoparticles the impulse of the small beads is very low which means there is little influence on the particles. The surface energy of the nanoparticles remains low so the properties are not likely to change. As a result, stable nanoparticle dispersions can be achieved without re-cohesion. The Ultra Apex Mill is superior to conventional beads mills that are limited to much larger bead sizes. The technology of the Ultra Apex Mill has pioneered practical applications for nanoparticles in various fields: composition materials for LCD screens, ink-jet printing, ceramic condensers and cosmetics.

  13. Influence of weld discontinuities on strain controlled fatigue behavior of 308 stainless steel weld metal

    International Nuclear Information System (INIS)

    Bhanu Sankara Rao, K.; Valsan, M.; Sandhya, R.; Mannan, S.L.; Rodriguez, P.

    1994-01-01

    Detailed investigations have been performed for assessing the importance of weld discontinuities in strain controlled low cycle fatigue (LCF) behavior of 308 stainless steel (SS) welds. The LCF behavior of 308 SS welds containing defects was compared with that of type 304 SS base material and 308 SS sound weld metal. Weld pads were prepared by shielded metal arc welding process. Porosity and slag inclusions were introduced deliberately into the weld metal by grossly exaggerating the conditions normally causing such defects. Total axial strain controlled LCF tests have been conducted in air at 823 K on type 304 SS base and 308 SS sound weld metal employing strain amplitudes in the range from ±0.25 to ±0.8 percent. A single strain amplitude of ±0.25 percent was used for all the tests conducted on weld samples containing defects. The results indicated that the base material undergoes cyclic hardening whereas sound and defective welds experience cyclic softening. Base metal showed higher fatigue life than sound weld metal at all strain amplitudes. The presence of porosity and slag inclusions in the weld metal led to significant reduction in life. Porosity on the specimen surface has been found to be particularly harmful and caused a reduction in life by a factor of seven relative to sound weld metal

  14. Influence of preheating on API 5L-X80 pipeline joint welding with self shielded flux-cored wire; Influencia del precalentamiento en las propiedades de uniones soldadas de acero API 5L-X80 soldadas con alambre tubular autoprotegido

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.; Silva, J. H. F.; Trevisan, R. E.

    2004-07-01

    The present work refers to the characterization of API 5L-X80 pipeline joints welded with self-shielded flux cored wire. This process was evaluated under preheating conditions, with an uniform and steady heat input. All joints were welded in flat position (1G), with the pipe turning and the torch still. Tube dimensions were 762 mm in external diameter and 16 mm in thickness. Welds were applied on single V-groove, with six weld beads, along with three levels of preheating temperatures (room temperature, 100 degree centigree, 160 degree centigree). These temperatures were maintained as inter pass temperature. The filler metal E71T8-K6 with mechanical properties different from parent metal was used in under matched conditions. The weld characterization is presented according to the mechanical test results of tensile strength, hardness and impact test. The mechanical tests were conducted according to API 1104, AWS and ASTM standards. API 1104 and API 51 were used as screening criteria. According to the results obtained, it was possible to remark that it is appropriate to weld API 5L-X80 steel ducts with Self-shielded Flux Cored wires, in conformance to the API standards and no preheat temperature is necessary. (Author) 22 refs.

  15. A study on influence of heat input variation on microstructure of reduced activation ferritic martensitic steel weld metal produced by GTAW process

    International Nuclear Information System (INIS)

    Arivazhagan, B.; Srinivasan, G.; Albert, S.K.; Bhaduri, A.K.

    2011-01-01

    Reduced activation ferritic martensitic (RAFM) steel is a major structural material for test blanket module (TBM) to be incorporated in International Thermonuclear Experimental Reactor (ITER) programme to study the breeding of tritium in fusion reactors. This material has been mainly developed to achieve significant reduction in the induced radioactivity from the structural material used. Fabrication of TBM involves extensive welding, and gas tungsten arc welding (GTAW) process is one of the welding processes being considered for this purpose. In the present work, the effect of heat input on microstructure of indigenously developed RAFM steel weld metal produced by GTAW process has been studied. Autogenous bead-on-plate welding, autogenous butt-welding, butt-welding with filler wire addition, and pulsed welding on RAFMS have been carried out using GTAW process respectively. The weld metal is found to contain δ-ferrite and its volume fraction increased with increase in heat input. This fact suggests that δ-ferrite content in the weld metal is influenced by the cooling rate during welding. It was also observed that the hardness of the weld metal decreased with increase in δ-ferrite content. This paper highlights the effect of heat input and PWHT duration on microstructure and hardness of welds.

  16. Friction of N-bead macromolecules in solution: Effects of the bead-solvent interaction

    International Nuclear Information System (INIS)

    Uvarov, Alexander; Fritzsche, Stephan

    2006-01-01

    The role of the bead-solvent interaction has been studied for its influence on the dynamics of an N-bead macromolecule which is immersed into a solution. Using a Fokker-Planck equation for the phase-space distribution function of the macromolecule, we show that all the effects of the solution can be treated entirely in terms of the friction tensors which are assigned to each pair of interacting beads in the chain. For the high-density as well as for the critical solvent, the properties of these tensors are discussed in detail and are calculated by using several (realistic) choices of the bead-solvent potential. From the friction tensors, moreover, an expression for the center-of-mass friction coefficient of a (N-bead) chain macromolecule is derived. Numerical data for this coefficient for 'truncated' Lennard-Jones bead-solvent potential are compared with results from molecular dynamic simulations and from the phenomenological theoretical data as found in the literature

  17. Optimization of GMAW process of AA 6063-T5 aluminum alloy butt joints based on the response surface methodology and on the bead geometry; Optimizacion del proceso de soldadura GMAW de uniones a tope de la aleacion AA 6063-T5 basada en la metodologia de superficie de respuesta y en la geometria del cordon de soldadura

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, V.; Martinez-Conesa, E. J.; Segura, F.; Manjabacas, M. C.; Abellan, E.

    2012-11-01

    The geometry of the weld beads is characterized by the overhead, the width and the penetration. These values are indices of the behavior of the welded joint and therefore, they can be considered as factors that control the process. This work is performed to optimize the GMAW process of the aluminum alloy AA 6063-T5 by means of the response surface methodology (RSM). The variables herein considered are the arc voltage, the welding speed, the wire feed speed and the separation between surfaces in butt joints. The response functions that are herein studied are the overhead, the width, the penetration and the angle of the bead. The obtained results by RSM show high grade of agreement with the experimental values. The procedure is experimentally validated by welding for the theoretically obtained optimized technological conditions and a wide agreement between theoretical and experimental values is found. (Author) 16 refs.

  18. Investigation and Optimization of Disk-Laser Welding of 1 mm Thick Ti-6Al-4V Titanium Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2015-01-01

    Full Text Available Ti-6Al-4V joints are employed in nuclear engineering, civil industry, military, and space vehicles. Laser beam welding has been proven to be promising, thanks to increased penetration depth and reduction of possible defects of the welding bead; moreover, a smaller grain size in the fusion zone is better in comparison to either TIG or plasma arc welding, thus providing an increase in tensile strength of any welded structures. In this frame, the regression models for a number of crucial responses are discussed in this paper. The study has been conducted on 1 mm thick Ti-6Al-4V plates in square butt welding configuration; a disk-laser source has been used. A three-level Box-Behnken experimental design is considered. An optimum condition is then suggested via numerical optimization with the response surface method using desirability functions with proper weights and importance of constraints. Eventually, Vickers microhardness testing has been conducted to discuss structural changes in fusion and heat affected zone due to welding thermal cycles.

  19. Successful subretinal delivery and monitoring of MicroBeads in mice.

    Directory of Open Access Journals (Sweden)

    M Dominik Fischer

    Full Text Available To monitor viability of implanted genetically engineered and microencapsulated human stem cells (MicroBeads in the mouse eye, and to study the impact of the beads and/or xenogenic cells on retinal integrity.MicroBeads were implanted into the subretinal space of SV126 wild type mice using an ab externo approach. Viability of microencapsulated cells was monitored by noninvasive retinal imaging (Spectralis™ HRA+OCT. Retinal integrity was also assessed with retinal imaging and upon the end of the study by light and electron microscopy. The implanted GFP-marked cells encapsulated in subretinal MicroBeads remained viable over a period of up to 4 months. Retinal integrity and viability appeared unaltered apart from the focal damage due to the surgical implantation, GFAP upregulation, and opsin mistargeting in the immediate surrounding tissue.The accessibility for routine surgery and its immune privileged state make the eye an ideal target for release system implants for therapeutic substances, including neurotrophic and anti-angiogenic compounds or protein based biosimilars. Microencapsulated human stem cells (MicroBeads promise to overcome limitations inherent with single factor release systems, as they are able to produce physiologic combinations of bioactive compounds.

  20. Modeling of the mechanical behaviour of welded structures: behaviour laws and rupture criteria

    International Nuclear Information System (INIS)

    Paris, T.; Delaplanche, D.; Saanouni, K.

    2006-01-01

    In the framework of the technological developments carried out in the CEA, the analysis of the mechanical behaviour of the heterogeneous welded bonds Ta/TA6V is a main preoccupation. Indeed, the welding of these two materials which cannot be distinguished by their mechanical and thermal properties induces strong microstructural heterogeneities in the melted zone. In order to characterize the behaviour of the welded joints and to develop a model of mechanical behaviour, a four points bending test on a notched specimen has been developed and implemented. This new test has allowed to obtain a macroscopic response of strength-displacement type but to analyze too more finely, with an optical extensometry and images correlation method, the influence of the heterogeneities on the local deformation of the welded joint. The confrontation of these results to a metallurgical study allows to validate the first conclusions deduced of the mechanical characterization tests and to conclude as for the local mechanisms governing the behaviour and the damage of the melted zone. The mechanical behaviour can be restored by an elasto-viscoplastic model with isotropic and non linear kinematic strain hardening coupled to this damage. The proposed model allows to identify the macroscopic behaviour of the weld bead. (O.M.)

  1. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Koray Yurtisik

    2013-09-01

    Full Text Available Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure without compromising the welding efficiency. 11.1 mm-thick standard duplex stainless steel plates were joined in a single-pass using this novel technique. Same plates were also subjected to conventional gas metal arc and plasma arc welding processes, providing benchmarks for the investigation of the weldability of the material. In the first place, the hybrid welding process enabled us to achieve less heat input compared to gas metal arc welding. Consequently, the precipitation of secondary phases, which are known to be detrimental to the toughness and corrosion resistance of duplex stainless steels, was significantly suppressed in both fusion and heat affected zones. Secondly, contrary to other keyhole techniques, proper cooling time and weld metal chemistry were achieved during the process, facilitating sufficient reconstructive transformation of austenite in the ferrite phase.

  2. Numerical Analysis of Crack Progress in Different Areas of a Friction Stir Welded Bead for an 5251 H14 Aluminum Alloy Specimen

    Directory of Open Access Journals (Sweden)

    Y. Kambouz

    2014-02-01

    Full Text Available The assemblies welded by Friction Stir Welding have a major advantage which is the absence of a metal filler. This process contributes to the welding of materials that are known to be difficult to weld using the conventional techniques often employed in the field of transport, for example in the automobile body by applying a spot welding. The numerical modeling of this type of process is complex, not only in terms of the variety of physical phenomena which must be considered, but also because of the experimental procedure that must be followed in order to verify and validate numerical predictions. In this work, a finite element model is proposed in order to simulate the crack propagation under monotonic loading in different areas of the weld seam of a strain hardening CT-50 aluminum alloy 5251H14 specimen.

  3. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Henriksen, Anders Dahl

    2014-01-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches....... The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover...

  4. Effect of welding speed on microstructural and mechanical properties of friction stir welded Inconel 600

    International Nuclear Information System (INIS)

    Song, K.H.; Fujii, H.; Nakata, K.

    2009-01-01

    In order to evaluate the properties of a friction stir welded Ni base alloy, Inconel 600 (single phase type) was selected. Sound friction stir welds without weld defect were obtained at 150 and 200 mm/min in welding speed, however, a groove like defect occurred at 250 mm/min. The electron back scattered diffraction (EBSD) method was used to analyze the grain boundary character distribution. As a result, dynamic recrystallization was observed at all conditions, and the grain refinement was achieved in the stir zone, and it was gradually accelerated from 19 μm in average grain size of the base material to 3.4 μm in the stir zone with increasing the welding speed. It also has an effect on the mechanical properties so that friction stir welded zone showed 20% higher microhardness and 10% higher tensile strength than those of base material.

  5. Experimental and numerical studies on the issues in laser welding of light-weight alloys in a zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud

    It is advantageous for the transportation industry to use lightweight components in the structure in order to save mass and reduce CO2 emissions. One of the lightest structural metals, magnesium, fulfills the need for mass reduction within the automotive industry. Many of the body structure components in the automotive industry are assembled using joining processes such as fusion welding. Furthermore, laser welding offers a low heat impact, high process rate, joining method which is becoming increasingly popular as the cost for laser systems continues to decrease. However, there is a limited body of work investigating the laser welding of magnesium and therefore, in the current study, different techniques and methods for laser welding of magnesium alloys are numerically and experimentally studied in order to optimize process parameters to achieve high quality welds. A feasibility study was designed in order to study the effect of various laser welding process parameters (such as laser power levels and welding speeds) on weld quality. Three regression models were developed to find the best fit model that relates process parameters to the shear load of the weld. Furthermore, to understand the effect of laser welding parameters on temperature distribution in laser welding of AZ31B magnesium alloy, a numerical model was developed. A rotary Gaussian volumetric body heat source was applied in this study to obtain the temperature history during the laser welding process. Cross-sectional views of the weld beads, temperature history recorded by thermocouples, and temperature history recorded by infrared camera were used to validate the numerical model. In order to study the real-time dynamic behavior of the molten pool and the keyhole during the welding process, a high speed charge-coupled device (CCD) assisted with a green laser as an illumination source was used. In order to observe the presence of pores, prior studies destructively evaluated the weld bead however; in the

  6. Single-pass continuous-flow leach test of PNL 76-68 glass: some selected Bead Leach I results

    International Nuclear Information System (INIS)

    Coles, D.G.

    1981-01-01

    A single-pass continuous-flow leach test of PNL 76-68 glass beads (7 mm dia) was concluded after 420 days of uninterrupted operation. Variables included in the experimental matrix were flow-rate, leachant composition, and temperature. Analysis was conducted on all leachate samples for 237 Np and 239 Pu as well as a number of nonradioactive elements. Results indicated that flow-rate and leachant systematically affected the leach rate, but only slightly. Temperature effects were significant. Plutonium leach rate was lower at higher temperature suggesting that Pu sorption onto the beads was enhanced at the higher temperature. The range of leach rates for all analyzed elements (except Pu), at both temperature, at all three flow rates, and with all three leachant compositions varied only three orders of magnitude. The range of variables used in this experiment covered those expected in many proposed repository environments. The preliminary interpretation of the results also indicated that matrix dissolution may be the dominant leaching mechanism, at least for Np in bicarbonate leachant. Regardless of the leaching mechanism the importance of this study is that it bounds the effects of repository environments when the ground water is oxidizing and when it doesn't reach the waste form until the waste has cooled to ambient rock temperature

  7. Investigation on microstructure and properties of narrow-gap laser welding on reduced activation ferritic/martensitic steel CLF-1 with a thickness of 35 mm

    Science.gov (United States)

    Wu, Shikai; Zhang, Jianchao; Yang, Jiaoxi; Lu, Junxia; Liao, Hongbin; Wang, Xiaoyu

    2018-05-01

    Reduced activation ferritic martensitic (RAFM) steel is chosen as a structural material for test blanket modules (TBMs) to be constructed in International Thermonuclear Experimental Reactor (ITER) and China Fusion Engineering Test Reactor (CFETR). Chinese specific RAFM steel named with CLF-1 has been developed for CFETR. In this paper, a narrow-gap groove laser multi-pass welding of CLF-1 steel with thickness of 35 mm is conduced by YLS-15000 fiber laser. Further, the microstructures of different regions in the weld joint were characterized, and tensile impact and micro-hardness tests were carried out for evaluating the mecharical properties. The results show that the butt weld joint of CLF-1 steel with a thickness of 35 mm was well-formed using the optimal narrow-gap laser filler wire welding and no obvious defects was found such as incomplete fusion cracks and pores. The microstructures of backing layer is dominated by lath martensites and the Heat-Affected Zone (HAZ) was mainly filled with two-phase hybrid structures of secondary-tempering sorbites and martensites. The filler layer is similar to the backing layer in microstructures. In tensile tests, the tensile samples from different parts of the joint all fractured at base metal (BM). The micro-hardness of weld metal (WM) was found to be higher than that of BM and the Heat-Affected Zone (HAZ) exhibited no obvious softening. After post weld heat treatment (PWHT), it can be observed that the fusion zone of the autogenous welding bead and the upper filling beads mainly consist of lath martensites which caused the lower impact absorbing energy. The HAZ mainly included two-phase hybrid structures of secondary-tempering sorbites and martensites and exhibited favorable impact toughness.

  8. Cast-to-cast variation in end-plug welds for TRIGA fuel elements

    International Nuclear Information System (INIS)

    Gondac, C.; Truta, C.

    2013-01-01

    In the Institute for Nuclear Research (INR) Pitesti - TRIGA Reactor Department there are under development activities for assembling TRIGA-LEU fuel elements locally manufactured, through autogenous Tungsten-Inert-Gas (TIG) welding. Due to specific problems occurring in welding Ni alloys, namely the dissimilar joint between Inconel 600 and Inconel 800 at the end-plug weld, weldability tests on Inconel 600 under various conditions were performed. The tests had been carried out in two stages: basic tests, on simple turned rods of Inconel 600; confirmation tests, on real (actual) end plug –to – clad welding. The basic tests had been done on simple rods machined (turned) at 13.8 mm (main diameter of the plugs) on which there have been made simple semicircular weldings ( no joint involved). Confirmation tests were done on the plug-clad assembly (dissimilar welding Incoloy-Inconel), with the welding parameters resulted from the preliminary conclusions of the basic tests. After welding, the samples were transversally sectioned, prepared for metallographic examination according to the specific procedure. The samples were examined at the metallographic microscope, and photo records for each sectioned welding bead have been taken . Measurements have been made on the recorded photos resulting the essential characteristics of the penetration: width W, depth d and ratio W/d. From the obtained results the following conclusions can be formulated: the penetration depth of the end-plug weld at the TRIGA fuel element varies substantially depending on the material cast of which the plug is produced; the optimization tests had covered the whole range of parameters in which do not appear systematic defects in welds that are specific to the alloys of Nickel ( porosity, hot cracking); for 2011-2012 casts higher energy (640 As) is required compared to the welding energy used for the 2009 batch, but to be sure that the manufacturing requirements are fulfilled, it is necessary to carry

  9. Beautiful Beads: A Lesson in Making Beads with Friendly Clay. AMACO[R] Lesson.

    Science.gov (United States)

    Gamble, Harriet; Gamble, David

    This lesson resource includes a brief summary of the history of bead making and historic fascination with beads as adornment. A focus on design elements, color theory, craftsmanship, and technical skill in bead making is encouraged. The plan includes lesson goals and objectives; background preparation; a glossary of terms; a list of supplies; and…

  10. Measurements of the residual stresses in the welded steel columns based on the x-ray diffraction method, 2

    International Nuclear Information System (INIS)

    Kaneta, Kiyoshi; Nishizawa, Hidekazu; Arashiyama, Masaki.

    1982-01-01

    In order to evaluate the applicability of two kinds of techniques of the X-ray stress analysis, namely, the standard sin 2 psi method and the newly developed phi-sin 2 psi method, bending tests have been performed. The test results have proved that the values of the stresses measured by means of the mechanical devices and of those measured by the two kinds of the X-ray techniques coincide each other. Then, these two methods have been applied to measure the surface residual stresses of the box-typed, welded steel columns and the following conclusions have been drawn. 1. The principal stress of the surface residural stresses is, in most cases, oriented to the rolled directions at the center of the steel plates, and it tends to rotate in the neighborhood of the heat affected zones. 2. Tensile residual stresses of a large magnitude have been observed in the direction parallel to the beads of the weld, and the moderate compressive residual stresses can be detected in the direction normal to the beads. (author)

  11. Experimental and simulated strength of spot welds

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Bennedbæk, Rune A.K.; Larsen, Morten B.

    2014-01-01

    Weld strength testing of single spots in DP600 steel is presented for the three typical testing procedures, i.e. tensile-shear, cross-tension and peel testing. Spot welds are performed at two sets of welding parameters and strength testing under these conditions is presented by load......-elongation curves revealing the maximum load and the elongation at break. Welding and strength testing is simulated by SORPAS® 3D, which allows the two processes to be prepared in a combined simulation, such that the simulated welding properties are naturally applied to the simulation of strength testing. Besides...... the size and shape of the weld nugget, these properties include the new strength of the material in the weld and the heat affected zone based on the predicted hardness resulting from microstructural phase changes simulated during cooling of the weld before strength testing. Comparisons between overall...

  12. Glass bead cultivation of fungi

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, H.

    2013-01-01

    Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum...... and Fusarium solani cultivated on agar plates, in shaking liquid culture or on glass beads was compared. Agar plate culture and glass bead cultivation yielded comparable results while liquid culture had lower production of secondary metabolites. RNA extraction from glass beads and liquid cultures was easier...... to specific nutrient factors. •Fungal growth on glass beads eases and improves fungal RNA extraction....

  13. Diffusion welding of ZrO2 solid electrolyte cells

    International Nuclear Information System (INIS)

    Schaefer, W.; Schmidberger, R.

    1980-01-01

    Zirconia based solid-electrolyte-cells can be applied as electrolysis-cells or fuel cells at high temperatures. Scaling up to technical aggregates must be realized by a gastight electrical series-connection of many tubular single cells. A suitable process for connecting single cells is diffusion welding. Starting materials were sintered zirconia-tubes (16 mm diameter, 10 mm length) and gastight interconnecting rings (16 mm diameter, 0.5-2mm length) from gold, platinum or electrically conducting mixed oxides. ZrO 2 -tubes and interconnecting rings were mounted in alternating sequence and diffusion welded under axial pressure at high temperatures. From economic reasons noble metals cannot be used for technical aggregates. The developments were therefore concentrated on the connection with mixed oxides. Optimized welding parameters are: 1400-1500 0 C welding temperature, 2 hours welding time and an axial pressure of approximately 1 Nmm 2 . Up to now gastight tubes consisting of 20 single cells were preparated by diffusion-welding in one step. The process will be further developed for the production of 50-cell-tubes with a total length of about 60 cm. (orig.) [de

  14. Effect of the purging gas on properties of Ti stabilized AISI 321 stainless steel TIG welds

    Energy Technology Data Exchange (ETDEWEB)

    Taban, Emel; Kaluc, Erdinc; Aykan, T. Serkan [Kocaeli Univ. (Turkey). Dept. of Mechanical Engineering

    2014-07-01

    Gas purging is necessary to provide a high quality of stainless steel pipe welding in order to prevent oxidation of the weld zone inside the pipe. AISI 321 stabilized austenitic stainless steel pipes commonly preferred in refinery applications have been welded by the TIG welding process both with and without the use of purging gas. As purging gases, Ar, N{sub 2}, Ar + N{sub 2} and N{sub 2} + 10% H{sub 2} were used, respectively. The aim of this investigation is to detect the effect of purging gas on the weld joint properties such as microstructure, corrosion, strength and impact toughness. Macro sections and microstructures of the welds were investigated. Chemical composition analysis to obtain the nitrogen, oxygen and hydrogen content of the weld root was done by Leco analysis. Ferrite content of the beads including root and cap passes were measured by a ferritscope. Vickers hardness (HV10) values were obtained. Intergranular and pitting corrosion tests were applied to determine the corrosion resistance of all welds. Type of the purging gas affected pitting corrosion properties as well as the ferrite content and nitrogen, oxygen and hydrogen contents at the roots of the welds. Any hot cracking problems are not predicted as the weld still solidifies with ferrite in the primary phase as confirmed by microstructural and ferrite content analysis. Mechanical testing showed no significant change according to the purge gas. AISI 321 steel and 347 consumable compositions would permit use of nitrogen rich gases for root shielding without a risk of hot cracking.

  15. Development of resistance welding process. 6. Evaluation test of welding properties of martensitic ODS steel)

    International Nuclear Information System (INIS)

    Kono, Shusaku; Seki, Masayuki; Ishibashi, Fujio

    2003-05-01

    The welding condition and the heat-treatment condition were optimized to evaluate welding properties of the martensitic ODS steel cladding tube. The test pieces for evaluation of strength properties of the welded zone were produced by the optimized welding condition. In order to evaluate the strength of the welded zone, the internal creep rapture test, the single axis creep rapture test, the burst test and the tensile test were conducted. Following results were obtained in these tests. (1) Weld ability: An excellent welding characteristic was observed. The micro cracks, etc. were not served at the joint starting point. The joint starting points were connected uniformly with errors less than 0.05 mm. It is considered that an excellent welding characteristic was result of homogeneous micro structure of cladding material. (2) End plug material: In case of the material of end plug was martensitic ODS steel as same as that of cladding tube, the micro structure and the precipitation state carbide near the welded zone were found to be almost same as that of cladding tube. (3) Optimization of heat-treatment condition: The heat treatments of normalizing (1050degC) and tempering (780degC) were performed after welding and the micro structure near the welded zone was the isometric structure with low dislocation density, the precipitation state of carbide was uniform as same as that of cladding tube. These heat treatments can relax the residual stress accumulated when welding; it is considered that these heat treatments after welding are indispensable. (4) Strength of welded zone: The strength of the welded zone was found to be equal to that of cladding tube in all the strength tests. Therefore, it is concluded that the welding technology for the martensitic ODS steel is completed. (author)

  16. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2014-02-01

    Full Text Available Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties.

  17. Surface residual stress evaluation in double-electrode butt welded steel plates

    International Nuclear Information System (INIS)

    Estefen, S.F.; Gurova, T.; Castello, X.; Leontiev, A.

    2010-01-01

    Surface residual stress evaluation for double-electrode welding was studied. The stresses were monitored after each operational step: positioning, implementing of constraints, welding and constraints removal. The measurements were performed at the deposited metal, heat affected zone, base metal close to the weld joint and along the plate using the X-ray diffraction method. It was observed differences in the stress evaluations for double-electrode welding which resulted in lower bending distortions and higher values of surface residual stresses, compared with single-electrode welding. This behavior is associated with the stress distribution just after the welding processes in both heat affected zone and base metal close to the fillet for double-electrode welding. The main results from the laboratorial tests indicated lower values of the bending distortions for double-electrode welding compared with the single-electrode. In relation to the residual stress, the double-electrode welding generated, in general, higher stress values in both longitudinal and transversal directions.

  18. Two kinds of ketoprofen enteric gel beads (CA and CS-SA using biopolymer alginate

    Directory of Open Access Journals (Sweden)

    Bingchao Cheng

    2018-03-01

    Full Text Available To obtain expected rapid-release and sustained-release of ketoprofen gel beads, this paper adopted biopolymer alginate to prepare alginate beads and chitosan-alginate gel beads. Formulation factors were investigated and optimized by the single factor test. The release of ketoprofen from calcium alginate gel beads in pH 1.0 hydrochloric acid solution was less than 10% during 2 h, then in pH6.8 was about 95% during 45 min, which met the requirements of rapid-release preparations. However, the drug release of chitosan-alginate gel beads in pH1.0 was less than 5% during 2 h, then in pH6.8 was about 50% during 6 h and reached more than 95% during 12 h, which had a good sustained-release behavior. In addition, the release kinetics of keteprofen from the calcium alginate gel beads fitted well with the Korsmeyer–Peppas model and followed a case-II transport mechanism. However, the release of keteprofen from the chitosan-alginate gel beads exhibited a non-Fickian mechanism and based on the mixed mechanisms of diffusion and polymer relaxation from chitosan-alginate beads. In a word, alginate gel beads of ketoprofen were instant analgesic, while chitosan-alginate gel beads could control the release of ketoprofen during gastro-intestinal tract and prolong the drug's action time. Keywords: Gel beads, Enteric rapid-release, Enteric sustained-release, Ketoprofen

  19. Confocal nanoscanning, bead picking (CONA): PickoScreen microscopes for automated and quantitative screening of one-bead one-compound libraries.

    Science.gov (United States)

    Hintersteiner, Martin; Buehler, Christof; Uhl, Volker; Schmied, Mario; Müller, Jürgen; Kottig, Karsten; Auer, Manfred

    2009-01-01

    Solid phase combinatorial chemistry provides fast and cost-effective access to large bead based libraries with compound numbers easily exceeding tens of thousands of compounds. Incubating one-bead one-compound library beads with fluorescently labeled target proteins and identifying and isolating the beads which contain a bound target protein, potentially represents one of the most powerful generic primary high throughput screening formats. On-bead screening (OBS) based on this detection principle can be carried out with limited automation. Often hit bead detection, i.e. recognizing beads with a fluorescently labeled protein bound to the compound on the bead, relies on eye-inspection under a wide-field microscope. Using low resolution detection techniques, the identification of hit beads and their ranking is limited by a low fluorescence signal intensity and varying levels of the library beads' autofluorescence. To exploit the full potential of an OBS process, reliable methods for both automated quantitative detection of hit beads and their subsequent isolation are needed. In a joint collaborative effort with Evotec Technologies (now Perkin-Elmer Cellular Technologies Germany GmbH), we have built two confocal bead scanner and picker platforms PS02 and a high-speed variant PS04 dedicated to automated high resolution OBS. The PS0X instruments combine fully automated confocal large area scanning of a bead monolayer at the bottom of standard MTP plates with semiautomated isolation of individual hit beads via hydraulic-driven picker capillaries. The quantification of fluorescence intensities with high spatial resolution in the equatorial plane of each bead allows for a reliable discrimination between entirely bright autofluorescent beads and real hit beads which exhibit an increased fluorescence signal at the outer few micrometers of the bead. The achieved screening speed of up to 200,000 bead assayed in less than 7 h and the picking time of approximately 1 bead

  20. Thermal treatments effect on the austenite-ferrite equilibrium in a duplex stainless steel weld beads

    International Nuclear Information System (INIS)

    Belkessa, Brahim; Badji, Riad; Bettahar, Kheireddine; Maza, Halim

    2006-01-01

    Heat treatments in the temperature range between 800 to 1200 C, with a keeping at high temperature of 60 min, followed by a water quenching at 20 C, have been carried out on austeno-ferritic stainless steel welds (of type SAF 2205-UNS S31803). The heat treatments carried out at temperatures below 1000 C have modified the structure of the duplex stainless steel 2205 in inducing the formation of precipitates, identified by X-ray diffraction as being the intermetallic compound σ and the chromium carbides M 23 C 6 . The treatments applied to temperatures superior to 1000 C shift the δ-γ equilibrium towards the δ phase. Indeed, the increase of the ferrite rate with the treatment temperature is approximately linear. The ferrite rates are higher in the heat-affected zone, which has been submitted to a ferritizing due to the welding thermal effects. (O.M.)

  1. Modelling of microstructural creep damage in welded joints of 316L stainless steel

    International Nuclear Information System (INIS)

    Bouche, G.

    2000-01-01

    Welded joints of 316L stainless steel under service conditions at elevated temperature are known to be preferential sites of creep damage, as compared to the base material. This damage results in the formation of cavities and the development of creep cracks which can lead to a premature failure of welded components. The complex two-phase microstructure of 316L welds was simulated by manually filling a mould with longitudinal deposited weld beads. The moulded material was then aged during 2000 hours at 600 deg. C. High resolution Scanning Electron Microscopy was largely used to examine the microstructure of the simulated material before and after ageing. Smooth and notched creep specimens were cut from the mould and tested at 600 deg. C under various stress levels. A comparison of the lifetime versus nominal stress curves for the base and welded materials shows a greater dependence of the welded material to creep phenomena. Observation and EBSD analysis show that damage is preferentially located along the austenite grain boundaries. The stress and strain fields in the notched specimens were calculated by finite element method. A correlation of this field to the observed damage was made in order to propose a predictive law relating the creep damage to the mechanical conditions applied locally. Further mechanical tests and simulation on CT specimens and mode II tubular specimens allowed validating the model under various multiaxial loading conditions. (author)

  2. Cell surface clustering of Cadherin adhesion complex induced by antibody coated beads

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cadherin receptors mediate cell-cell adhesion, signal transduction and assembly of cytoskeletons. How a single transmembrane molecule Cadherin can be involved in multiple functions through modulating its binding activities with many membrane adhesion molecules and cytoskeletal components is an unanswered question which can be elucidated by clues from bead experiments. Human lung cells expressing N-Cadherin were examined. After co-incubation with anti-N-Cadherin monoclonal antibody coated beads, cell surface clustering of N-Cadherin was induced. Immunofluorescent detection demonstrated that in addition to Cadherin, β-Catenin, α-Catenin, α-Actinin and Actin fluorescence also aggregated respectively at the membrane site of bead attachment. Myosin heavy chain (MHC), another major component of Actin cytoskeleton, did not aggregate at the membrane site of bead attachment. Adhesion unrelated protein Con A and polylysine conjugated beads did not induce the clustering of adhesion molecules. It is indicated that the Cadherin/Catenins/α-Actinin/Actin complex is formed at Cadherin mediated cell adherens junction; occupancy and cell surface clustering of Cadherin is crucial for the formation of Cadherin adhesion protein complexes.

  3. Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet

    Science.gov (United States)

    Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo

    A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests

  4. Impact of Microplastic Beads and Fibers on Waterflea (Ceriodaphnia dubia) Survival, Growth, and Reproduction: Implications of Single and Mixture Exposures.

    Science.gov (United States)

    Ziajahromi, Shima; Kumar, Anupama; Neale, Peta A; Leusch, Frederic D L

    2017-11-21

    There is limited knowledge regarding the adverse effects of wastewater-derived microplastics, particularly fibers, on aquatic biota. In this study, we examined the acute (48 h) and chronic (8 d) effects of microplastic polyester fibers and polyethylene (PE) beads on freshwater zooplankton Ceriodaphnia dubia. We also assessed the acute response of C. dubia to a binary mixture of microplastic beads and fibers for the first time. Acute exposure to fibers and PE beads both showed a dose-dependent effect on survival. An equitoxic binary mixture of beads and fibers resulted in a toxic unit of 1.85 indicating less than additive effects. Chronic exposure to lower concentrations did not significantly affect survival of C. dubia, but a dose-dependent effect on growth and reproduction was observed. Fibers showed greater adverse effects than PE beads. While ingestion of fibers was not observed, scanning electron microscopy showed carapace and antenna deformities after exposure to fibers, with no deformities observed after exposure to PE beads. While much of the current research has focused on microplastic beads, our study shows that microplastic fibers pose a greater risk to C. dubia, with reduced reproductive output observed at concentrations within an order of magnitude of reported environmental levels.

  5. Study on unified fatigue strength assessment method for welded structure. Hot spot stress evaluating method for various combinations of plate thickness and weld leg length; Yosetsu kozo no toitsutekina hiro kyodo hyokaho ni kansuru kenkyu. Itaatsu to yosetsu ashinaga no kumiawase ni taisuru hot spot oryoku sanshutsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K.; Inamura, F.; Koe, S. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1996-12-31

    There has been tried to apply unified assessment method using hot spot stress, which is effective to evaluate fatigue strength of fillet welded structures for ships and marine structures. This method can be applied to complicated structures and is independent of welding processes. In this study, first, stress analysis has been conducted for two-dimensional fillet welded joint models with various combinations of plate thickness and weld leg length of general fillet structures by means of boundary element method. Then, critical position, which is not affected by local stress concentration due to bead, was determined from the detailed stress distribution in the vicinity of weld toe. As a result, a general equation has been proposed to estimate the hot spot stress by one-point representative method. Second, the fatigue tests of typical fillet welded joints have been conducted by applying this method. Consequently, it was demonstrated that the unified fatigue strength can be evaluated by the S-N data based on hot spot stress range determined from the proposed equation, independent of structural stress concentration. 22 refs., 14 figs.

  6. Study on unified fatigue strength assessment method for welded structure. Hot spot stress evaluating method for various combinations of plate thickness and weld leg length; Yosetsu kozo no toitsutekina hiro kyodo hyokaho ni kansuru kenkyu. Itaatsu to yosetsu ashinaga no kumiawase ni taisuru hot spot oryoku sanshutsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K; Inamura, F; Koe, S [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1997-12-31

    There has been tried to apply unified assessment method using hot spot stress, which is effective to evaluate fatigue strength of fillet welded structures for ships and marine structures. This method can be applied to complicated structures and is independent of welding processes. In this study, first, stress analysis has been conducted for two-dimensional fillet welded joint models with various combinations of plate thickness and weld leg length of general fillet structures by means of boundary element method. Then, critical position, which is not affected by local stress concentration due to bead, was determined from the detailed stress distribution in the vicinity of weld toe. As a result, a general equation has been proposed to estimate the hot spot stress by one-point representative method. Second, the fatigue tests of typical fillet welded joints have been conducted by applying this method. Consequently, it was demonstrated that the unified fatigue strength can be evaluated by the S-N data based on hot spot stress range determined from the proposed equation, independent of structural stress concentration. 22 refs., 14 figs.

  7. Glass bead sterilizer comprehensively defeats hot air oven in orthodontic clinic

    Directory of Open Access Journals (Sweden)

    Sanjeev Vasudev Jakati

    2015-01-01

    Full Text Available Background: It is necessary to ′try in′ several bands before the correct one is selected. A possible concern with re-using such bands is the lack of cross-infection control. Aim and Objectives: To determine whether such bands could be successfully decontaminated with Glass bead sterilization so that they could be re-used without a cross-infection risk. Materials: Custom made molar bands were taken and buccal tubes,lingual sheath and lingual cleat were welded under strict aseptic conditions. Methods: Samples were divided into 2 groups i.e. A and B, based on mode for sterilization. Sterilized attachments were placed in each of 2 conical flask. The bacteria spores were inoculated into both flask under strict aseptic conditions. Bacteria Bacillus subtillis and Staphylococcus albus species were allowed to multiply in individual flasks filled with BHI broth for 24 hours. Bands from 1st group were placed in a glass bead sterilizer. For the 2 nd group i.e. hot air oven group, all bands were placed together. After sterilization bands were removed and placed in freshly sterilized 500ml conical flask containing BHI broth for 24 hours in the incubator. The following day randomly 4 attachments were selected from each group and streaked on blood agar culture plates. Results: After sterilization and on further incubation in BHI broth for 24 and 48 hrs. Respectively no growth was seen. Conclusion: 1 hr. of Hot Air Oven sterilization (excluding pre sterilization heat up time and post sterilization cooling time at 190°C is as effective as 3 min of Chair side Glass Bead sterilization.

  8. Weld-brazing - a new joining process. [combination resistance spot welding and brazing of titanium alloys

    Science.gov (United States)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1972-01-01

    A joining process designated weld brazing which combines resistance spot welding and brazing has been developed. Resistance spot welding is used to position and align the parts as well as to establish a suitable faying surface gap for brazing. Fabrication is then completed by capillary flow of the braze alloy into the joint. The process has been used successfully to fabricate Ti-6Al-4V titanium alloy joints using 3003 aluminum braze alloy. Test results obtained on single overlap and hat-stiffened structural specimens show that weld brazed joints are superior in tensile shear, stress rupture, fatigue, and buckling than joint fabricated by spotwelding or brazing. Another attractive feature of the process is that the brazed joints is hermetically sealed by the braze material.

  9. Thermoelectric Cooling-Aided Bead Geometry Regulation in Wire and Arc-Based Additive Manufacturing of Thin-Walled Structures

    Directory of Open Access Journals (Sweden)

    Fang Li

    2018-01-01

    Full Text Available Wire and arc-based additive manufacturing (WAAM is a rapidly developing technology which employs a welding arc to melt metal wire for additive manufacturing purposes. During WAAM of thin-walled structures, as the wall height increases, the heat dissipation to the substrate is slowed down gradually and so is the solidification of the molten pool, leading to variation of the bead geometry. Though gradually reducing the heat input via adjusting the process parameters can alleviate this issue, as suggested by previous studies, it relies on experience to a large extent and inevitably sacrifices the deposition rate because the wire feed rate is directly coupled with the heat input. This study introduces for the first time an in-process active cooling system based on thermoelectric cooling technology into WAAM, which aims to eliminate the difference in heat dissipation between upper and lower layers. The case study shows that, with the aid of thermoelectric cooling, the bead width error is reduced by 56.8%, the total fabrication time is reduced by 60.9%, and the average grain size is refined by 25%. The proposed technique provides new insight into bead geometry regulation during WAAM with various benefits in terms of geometric accuracy, productivity, and microstructure.

  10. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  11. Micro friction stir lap welding of AISI 430 ferritic stainless steel: a study on the mechanical properties, microstructure, texture and magnetic properties

    Science.gov (United States)

    Mostaan, Hossein; Safari, Mehdi; Bakhtiari, Arash

    2018-04-01

    In this study, the effect of friction stir welding of AISI 430 (X6Cr17, material number 1.4016) ferritic stainless steel is examined. Two thin sheets with dimensions of 0.4 × 50 × 200 mm3 are joined in lap configuration. Optical microscopy and field emission electron microscopy were used in order to microstructural evaluations and fracture analysis, respectively. Tensile test and microhardness measurements are employed in order to study the mechanical behaviors of welds. Also, vibrational sample magnetometry (VSM) is employed for characterizing magnetic properties of welded samples. Texture analysis is carried out in order to clarify the change mechanism of magnetic properties in the welded area. The results show that AISI 430 sheets are successfully joined considering both, the appearance of the welding bead and the strength of the welded joint. It is found that by friction stir welding of AISI 430 sheets, texture components with easy axes magnetization have been replaced by texture components with harder magnetization axes. VSM analysis showed that friction stir welding leads to increase in residual induction (Br) and coercivity (Hc). This increase is attributed to the grain refining due the friction stir welding and formation of texture components with harder axes of magnetizations.

  12. Fundamental Study of Electron Beam Welding of AA6061-T6 Aluminum Alloy for Nuclear Fuel Plate Assembly (II)

    International Nuclear Information System (INIS)

    Kim, Soosung; Lee, Haein; Lee, Donbae; Park, Jongman; Lee, Yoonsang

    2013-01-01

    Certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes posses the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using a electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. In this experiment, a feasibility test was carried out by tensile tester, bead-on-plate welding and metallographic examination to comply with the aluminum welding procedure. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the mechanical testing and microstructure examinations. This study was carried out to determine the suitable welding process and to investigate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory EBW of the square butt weld specimens was developed. In comparison with the rolling directions of test specimens, the tensile strengths were no difference between the longitudinal and transverse welds. Based on this fundamental study, fabrication and assembly of the nuclear fuel plates will be provided for the future Kijang research reactor project

  13. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  14. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    Science.gov (United States)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) -Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  15. Microfluidic magnetic bead conveyor belt

    NARCIS (Netherlands)

    van Pelt, S.; Frijns, A.J.H.; den Toonder, J.M.J.

    2017-01-01

    Magnetic beads play an important role in the miniaturization of clinical diagnostics systems. In lab-on-chip platforms, beads can be made to link to a target species and can then be used for the manipulation and detection of this species. Current bead actuation systems utilize complex on-chip coil

  16. Retractable Pin Tools for the Friction Stir Welding Process

    Science.gov (United States)

    1998-01-01

    Two companies have successfully commercialized a specialized welding tool developed at the Marshall Space Flight Center (MSFC). Friction stir welding uses the high rotational speed of a tool and the resulting frictional heat created from contact to crush, 'stir' together, and forge a bond between two metal alloys. It has had a major drawback, reliance on a single-piece pin tool. The pin is slowly plunged into the joint between two materials to be welded and rotated as high speed. At the end of the weld, the single-piece pin tool is retracted and leaves a 'keyhole,' something which is unacceptable when welding cylindrical objects such as drums, pipes and storage tanks. Another drawback is the requirement for different-length pin tools when welding materials of varying thickness. An engineer at the MSFC helped design an automatic retractable pin tool that uses a computer-controlled motor to automatically retract the pin into the shoulder of the tool at the end of the weld, preventing keyholes. This design allows the pin angle and length to be adjusted for changes in material thickness and results in a smooth hole closure at the end of the weld. Benefits of friction stir welding, using the MSFC retractable pin tool technology, include the following: The ability to weld a wide range of alloys, including previously unweldable and composite materials; provision of twice the fatigue resistance of fusion welds and no keyholes; minimization of material distortion; no creation of hazards such as welding fumes, radiation, high voltage, liquid metals, or arcing; automatic retraction of the pin at the end of the weld; and maintaining full penetration of the pin.

  17. Temperature and distortion transients in gas tungsten-arc weldments

    International Nuclear Information System (INIS)

    Glickstein, S.S.; Friedman, E.

    1979-10-01

    An analysis and test program to develop a fundamental understanding of the gas tungsten-arc welding process has been undertaken at the Bettis Atomic Power Laboratory to develop techniques to determine and control the various welding parameters and weldment conditions so as to result in optimum weld response characteristics. These response characteristics include depth of penetration, weld bead configuration, weld bead sink and roll, distortion, and cracking sensitivity. The results are documented of that part of the program devoted to analytical and experimental investigations of temperatures, weld bead dimensions, and distortions for moving gas tungsten-arc welds applied to Alloy 600 plates

  18. The control of beads diameter of bead-on-string electrospun nanofibers and the corresponding release behaviors of embedded drugs

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingxiao [Key Laboratory of Textile Science and Technology (Donghua University), Ministry of Education of China, Shanghai 201620 (China); College of Textiles, Donghua University, Shanghai 201620 (China); Ding, Xin, E-mail: xding@dhu.edu.cn [Key Laboratory of Textile Science and Technology (Donghua University), Ministry of Education of China, Shanghai 201620 (China); College of Textiles, Donghua University, Shanghai 201620 (China); Tian, Lingling, E-mail: lingling_tian@nus.edu.sg [Center of Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Hu, Jiyong; Yang, Xudong [Key Laboratory of Textile Science and Technology (Donghua University), Ministry of Education of China, Shanghai 201620 (China); College of Textiles, Donghua University, Shanghai 201620 (China); Ramakrishna, Seeram [Center of Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore); Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632 (China)

    2017-05-01

    Bead-on-string nanofibers, with appropriate control of the beads diameter, are potential fibrous structures for efficient encapsulation of particle drugs in micron scales and could achieve controlled drug release for tissue engineering applications. In this study, the beads diameter of electrospun bead-on-string nanofibers was controlled by adjusting the concentration of spinning polymer, poly (lactic-co-glycolic acid) (PLGA), and the solvent ratio of chloroform to acetone. The images of the scanning electron microscopy (SEM) suggested that bead-on-string nanofibers could be successfully obtained only with a certain range of PLGA solution concentration. Moreover, with the decrease in the solvent ratio of chloroform to acetone, the range was left-shifted towards a smaller concentration. In addition, increase in the PLGA solution concentration within the range the beads diameter became greater and the shape of the beads changed from oval to slender when increasing the PLGA concentration within the range. The bead-on-string nanofibers with different beads diameter were further used to load micro-particle drugs of tetracycline hydrochloride, as a model drug, to examine the release behavior of nanofibers scaffold. The release profiles of drug loaded bead-on-string nanofibers demonstrated the possibility to alleviate the burst drug release by means of beads diameter control. - Highlights: • Bead diameter of bead-on-string electrospun nanofibers was controlled by varying solvent ratio and polymer concentration. • The effect of the addition of particle drugs on BD of bead-on-string electrospun nanofibers was studied. • The corresponding release behaviors of nanofibers with different BD loading micro-particle drugs were investigated. • Bead-on-string nanofibers with bigger BD could alleviate the initial burst release.

  19. The control of beads diameter of bead-on-string electrospun nanofibers and the corresponding release behaviors of embedded drugs

    International Nuclear Information System (INIS)

    Li, Tingxiao; Ding, Xin; Tian, Lingling; Hu, Jiyong; Yang, Xudong; Ramakrishna, Seeram

    2017-01-01

    Bead-on-string nanofibers, with appropriate control of the beads diameter, are potential fibrous structures for efficient encapsulation of particle drugs in micron scales and could achieve controlled drug release for tissue engineering applications. In this study, the beads diameter of electrospun bead-on-string nanofibers was controlled by adjusting the concentration of spinning polymer, poly (lactic-co-glycolic acid) (PLGA), and the solvent ratio of chloroform to acetone. The images of the scanning electron microscopy (SEM) suggested that bead-on-string nanofibers could be successfully obtained only with a certain range of PLGA solution concentration. Moreover, with the decrease in the solvent ratio of chloroform to acetone, the range was left-shifted towards a smaller concentration. In addition, increase in the PLGA solution concentration within the range the beads diameter became greater and the shape of the beads changed from oval to slender when increasing the PLGA concentration within the range. The bead-on-string nanofibers with different beads diameter were further used to load micro-particle drugs of tetracycline hydrochloride, as a model drug, to examine the release behavior of nanofibers scaffold. The release profiles of drug loaded bead-on-string nanofibers demonstrated the possibility to alleviate the burst drug release by means of beads diameter control. - Highlights: • Bead diameter of bead-on-string electrospun nanofibers was controlled by varying solvent ratio and polymer concentration. • The effect of the addition of particle drugs on BD of bead-on-string electrospun nanofibers was studied. • The corresponding release behaviors of nanofibers with different BD loading micro-particle drugs were investigated. • Bead-on-string nanofibers with bigger BD could alleviate the initial burst release.

  20. Friction-Stir Welding - Heavy Inclusions in Bi-metallic welds of Al 2219/2195

    Science.gov (United States)

    Rietz, Ward W., Jr.

    2008-01-01

    Heavy Inclusions (HI) were detected for the first time by radiographic examination in aluminum alloy 2219forging/2195plate (advancing/retreating side) Friction Sir Welds (FSW) for the Space Shuttle External Tank (ET) Program. Radiographic HI indications appear as either small (approx.0.005"-0.025") individual particles or clusters of small particles. Initial work was performed to verify that the HI was not foreign material or caused by FSW pin tool debris. That and subsequent elemental analysis determined that the HI were large agglomerations of Al2Cu (theta phase), which is the strengthening precipitate in Al2219. A literature search on that subject determined that the agglomeration of phase has also been found in Al2219 bead on plate FSW [Ref. 1]. Since this was detected in ET space flight hardware, an investigative study of the effect of agglomerated theta phase particles in FSW Al2219f/2195p was performed. Numerous panels of various lengths were welded per ET weld procedures and radiographically inspected to determine if any HI was detected. Areas that had HI were sampled for room temperature and cyclic cryogenic (-423F) tensile testing and determined no significant adverse affect on mechanical properties when compared to test specimens without HI and historical data. Fracture surface examination using the Scanning Electron Microscope (SEM) revealed smaller phase agglomerations undetectable by radiographic inspection dispersed throughout the Al2219f/2195p FSW. This indicates that phase agglomeration is inherent to the Al2219f/2195p FSW process and only rarely creates agglomerations large enough to be detected by radiography. HI has not been observed in FSW of plate to plate material for either Al2219 or AL2195.

  1. Influence of the Overlapping Factor and Welding Speed on T-Joint Welding of Ti6Al4V and Inconel 600 Using Low-Power Fiber Laser

    Directory of Open Access Journals (Sweden)

    Shamini Janasekaran

    2016-06-01

    Full Text Available Double-sided laser beam welding of skin-stringer joints is an established method for many applications. However, in certain cases with limited accessibility, single-sided laser beam joining is considered. In the present study, single-sided welding of titanium alloy Ti6Al4V and nickel-based alloy Inconel 600 in a T-joint configuration was carried out using continuous-wave (CW, low-power Ytterbium (Yb-fiber laser. The influence of the overlapping factor and welding speed of the laser beam on weld morphology and properties was investigated using scanning electron microscopy (SEM and X-ray diffraction (XRD, respectively. XRD analysis revealed the presence of intermetallic layers containing NiTi and NiTi2 at the skin-stringer joint. The strength of the joints was evaluated using pull testing, while the hardness of the joints was analyzed using Vickers hardness measurement at the base metal (BM, fusion zone (FZ and heat-affected zone (HAZ. The results showed that the highest force needed to break the samples apart was approximately 150 N at a laser welding power of 250 W, welding speed of 40 mm/s and overlapping factor of 50%. During low-power single-sided laser welding, the properties of the T-joints were affected by the overlapping factor and laser welding speed.

  2. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    Science.gov (United States)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  3. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    Science.gov (United States)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  4. A bead-spring chain as a one-dimensional polyelectrolyte gel.

    Science.gov (United States)

    Manning, Gerald S

    2018-05-23

    The physical principles underlying expansion of a single-chain polyelectrolyte coil caused by Coulomb repulsions among its ionized groups, and the expansion of a cross-linked polyelectrolyte gel, are probably the same. In this paper, we analyze a "one-dimensional" version of a gel, namely, a linear chain of charged beads connected by Hooke's law springs. In the Debye-Hückel range of relatively weak Coulomb strength, where counterion condensation does not occur, the springs are realistically stretched on a nanolength scale by the repulsive interactions among the beads, if we use a spring constant normalized by the inverse square of the solvent Bjerrum length. The persistence length and radius of gyration counter-intuitively decrease when Coulomb strength is increased, if analyzed in the framework of an OSF-type theory; however, a buckling theory generates the increase that is consistent with bead-spring simulations.

  5. Welding using soap shielding. Fremgangsmaate til utfoerelse av buesveising samt sveisestang til utoevelse av fremgangmaaten

    Energy Technology Data Exchange (ETDEWEB)

    Kauppi, M.; Niinivaara, J.; Nurminen, M.

    1984-08-06

    A procedure is disclosed in the application, for carrying out arc welding under water or in otherwise difficult external conditions. In the procedure, there is introduced in the arc area or in its immediate vicinity, an auxiliary substance having the purpose to boost the ignition of the arc and its burning and to retard the cooling of the weld bead produced, so that the emergence of gases from the welded seam is promoted and the quality of the weld seam improves. The auxiliary substance used consists mainly of soap which is a salt formed by anions of a fatty acid, a fatty acid mixture or a mixture of fatty and resin acids and by metal cations or a mixture of such salts and which may in addition contain water and inorganic salts. Best results have been obtained by using for auxiliary substance soft soaps made of tall oil and which contain salts of both fatty acids, such as oleic and linoleic acid and of resin acids, such as abietic acid. Good results have further been obtained with soft soaps based exclusively on salts of saturated or unsaturated fatty acids. 4 drawings, 3 tables.

  6. Preparation of acetaminophen capsules containing beads prepared by hot-melt direct blend coating.

    Science.gov (United States)

    Pham, Loan; Christensen, John M

    2014-02-01

    Twelve hydrophobic coating agents were assessed for their effects on drug release after coating sugar cores by a flexible hot-melt coating method using direct blending. Drug-containing pellets were also produced and used as cores. The cores were coated with single or double wax layers containing acetaminophen (APAP). The harder the wax, the slower the resultant drug releases from single-coated beads. Wax coating can be deposited on cores up to 28% of the beads final weight and reaching 58% with wax and drug. Carnauba-coated beads dissolved in approximately 6 h releasing 80% of the loaded drug. Applying another wax layer extended drug release over 20 h, while still delivering 80% of the loaded drug. When drug-containing pellets (33-58% drug loading) were used as cores, double wax-coated pellets exhibited a near zero-order drug release for 16 h, releasing 80% of the loaded drug delivering 18 mg/h. The simple process of hot-melt coating by direct blending of pellet-containing drug-coated formulations provides excellent options for immediate and sustained release formulations when higher lipid coating or drug loading is warranted. Predicted plasma drug concentration time profiles using convolution and in vitro drug release properties of the beads were performed for optimal formulations.

  7. Fused Bead Analysis of Diogenite Meteorites

    Science.gov (United States)

    Mittlefehldt, D.W.; Beck, B.W.; McSween, H.Y.; Lee, C.T. A.

    2009-01-01

    Bulk rock chemistry is an essential dataset in meteoritics and planetary science [1]. A common method used to obtain the bulk chemistry of meteorites is ICP-MS. While the accuracy, precision and low detection limits of this process are advantageous [2], the sample size used for analysis (approx.70 mg) can be a problem in a field where small and finite samples are the norm. Fused bead analysis is another bulk rock analytical technique that has been used in meteoritics [3]. This technique involves forming a glass bead from 10 mg of sample and measuring its chemistry using a defocused beam on a microprobe. Though the ICP-MS has lower detection limits than the microprobe, the fused bead method destroys a much smaller sample of the meteorite. Fused bead analysis was initially designed for samples with near-eutectic compositions and low viscosities. Melts generated of this type homogenize at relatively low temperatures and produce primary melts near the sample s bulk composition [3]. The application of fused bead analysis to samples with noneutectic melt compositions has not been validated. The purpose of this study is to test if fused bead analysis can accurately determine the bulk rock chemistry of non-eutectic melt composition meteorites. To determine this, we conduct two examinations of the fused bead. First, we compare ICP-MS and fused bead results of the same samples using statistical analysis. Secondly, we inspect the beads for the presence of crystals and chemical heterogeneity. The presence of either of these would indicate incomplete melting and quenching of the bead.

  8. Analysis of plutonium and uranium by the resin bead-mass spectrometric method

    International Nuclear Information System (INIS)

    Walker, R.L.; Smith, D.H.

    1979-01-01

    The development of the resin bead method and the techniques employed in its application to isotopic analysis of Pu and U in highly radioactive solutions of spent reactor fuel will be described. The method, developed primarily for safeguards analyses, may also be applied to isotopic measurement for assessing nuclear fuel cycle technology. Satisfactory analyses of both elements can be obtained from a single resin bead when the initial dissolver solution has a U/Pu ratio in the range of 50 to 300. Optimum bead loadings are 1 to 3 ng Pu and U; these loadings are obtained if the concentration of the solution is adjusted to about 1 μg U per bead before the beads are introduced. Isotopic composition measurements of NBS standards using this technique indicate a precision of +- 0.5% for minor isotopes in the 1% concentration range and +- 0.1% for major isotopes in the 50% range. Analyses of a synthetic dissolver solution give an accuracy for the isotope dilution measurement of Pu and U of less than or equal to 0.5% with an internal precision of 0.9% and 0.6% for Pu and U, respectively

  9. Mechanical behavior of multipass welded joint during stress relief annealing

    International Nuclear Information System (INIS)

    Ueda, Yukio; Fukuda, Keiji; Nakacho, Keiji; Takahashi, Eiji; Sakamoto, Koichi.

    1978-01-01

    An investigation into mechanical behavior of a multipass welded joint of a pressure vessel during stress relief annealing was conducted. The study was performed theoretically and experimentally on idealized research models. In the theoretical analysis, the thermal elastic-plastic creep theory developed by the authors was applied. The behavior of multipass welded joints during the entire thermal cycle, from welding to stress relief annealing, was consistently analyzed by this theory. The results of the analysis show a good, fundamentally coincidence with the experimental findings. The outline of the results and conclusions is as follows. (1) In the case of the material (2 1/4Cr-1Mo steel) furnished in this study, the creep strain rate during stress relief annealing below 575 0 C obeys the strain-hardening creep law using the transient creep and the one above 575 0 C obeys the power creep law using the stational creep. (2) In the transverse residual stress (σsub(x)) distribution after annealing, the location of the largest tensile stress on the top surface is about 15 mm away from the toe of weld, and the largest at the cross section is just below the finishing bead. These features are similar to those of welding residual stresses. But the stress distribution after annealing is smoother than one from welding. (3) The effectiveness of stress relief annealing depends greatly on the annealing temperature. For example, most of residual stresses are relieved at the heating stage with a heating rate of 30 0 C/hr. to 100 0 C/hr. if the annealing temperature is 650 0 C, but if the annealing temperature is 550 0 C, the annealing is not effective even with a longer holding time. (4) In the case of multipass welding residual stresses studied in this paper, the behaviors of high stresses during annealing are approximated by ones during anisothermal relaxation. (auth.)

  10. Disposal of bead ion exchange resin wastes

    International Nuclear Information System (INIS)

    Gay, R.L.; Granthan, L.F.

    1985-01-01

    Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means

  11. Definition of Beam Diameter for Electron Beam Welding

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  12. Pulsed laser manipulation of an optically trapped bead: Averaging thermal noise and measuring the pulsed force amplitude

    DEFF Research Database (Denmark)

    Lindballe, Thue Bjerring; Kristensen, Martin V. G.; Keiding, Søren Rud

    2013-01-01

    An experimental strategy for post-eliminating thermal noise on position measurements of optically trapped particles is presented. Using a nanosecond pulsed laser, synchronized to the detection system, to exert a periodic driving force on an optically trapped 10 polystyrene bead, the laser pulse-bead...... interaction is repeated hundreds of times. Traces with the bead position following the prompt displacement from equilibrium, induced by each laser pulse, are averaged and reveal the underlying deterministic motion of the bead, which is not visible in a single trace due to thermal noise. The motion of the bead...... is analyzed from the direct time-dependent position measurements and from the power spectrum. The results show that the bead is on average displaced 208 nm from the trap center and exposed to a force amplitude of 71 nanoNewton, more than five orders of magnitude larger than the trapping forces. Our...

  13. Improvement and qualification of ultrasonic testing of dissimilar welds in the primary circuit of NPPs

    International Nuclear Information System (INIS)

    Mitzscherling, Steffen; Barth, Enrico; Homann, Tobias; Prager, Jens; Goetschel, Sebastian; Weiser, Martin

    2017-01-01

    The austenitic and dissimilar welds found in the primary circuit of nuclear power plants are not only extremely relevant to safety but also place very high demands on material testing. In addition to limited accessibility, the macroscopic structure of the weld seam is of paramount importance for ultrasound testing. In order to reliably determine material errors in position and size, the grain orientations and the elastic constants of the anisotropic weld bead structure must be known. The following work steps are used for the imaging representation of possible material defects: First, the weld seam is sounded in order to be able to determine important weld seam parameters, such as, for example, the grain orientation, using an inverse method. On the basis of these parameters, the sound paths are simulated in the next step by means of raytracing (RT). Finally, this RT simulation is assigned the measurement data (A-scans) from different transmitter and receiver positions and superimposed according to the Synthetic Aperature Focusing Technique (SAFT) method. The combination of inverse process, RT and SAFT also ensures a correct visualization of the faults in anisotropic materials. We explain these three methods and present the test arrangement of test specimens with artificial test errors. Measurement data as well as their evaluation are compared with the results of a CIVA simulation. [de

  14. Development of an auto-welding system for CRD nozzle repair welds using a 3D laser vision sensor

    International Nuclear Information System (INIS)

    Park, K.; Kim, Y.; Byeon, J.; Sung, K.; Yeom, C.; Rhee, S.

    2007-01-01

    A control rod device (CRD) nozzle attaches to the hemispherical surface of a reactor head with J-groove welding. Primary water stress corrosion cracking (PWSCC) causes degradation in these welds, which requires that these defect areas be repaired. To perform this repair welding automatically on a complicated weld groove shape, an auto-welding system was developed incorporating a laser vision sensor that measures the 3-dimensional (3D) shape of the groove and a weld-path creation program that calculates the weld-path parameters. Welding trials with a J-groove workpiece were performed to establish a basis for developing this auto-welding system. Because the reactor head is placed on a lay down support, the outer-most region of the CRD nozzle has restricted access. Due to this tight space, several parameters of the design, such as size, weight and movement of the auto-welding system, had to be carefully considered. The cross section of the J-groove weld is basically an oval shape where the included angle of the J-groove ranges from 0 to 57 degrees. To measure the complex shape, we used double lasers coupled to a single charge coupled device (CCD) camera. We then developed a program to generate the weld-path parameters using the measured 3D shape as a basis. The program has the ability to determine the first and final welding positions and to calculate all weld-path parameters. An optimized image-processing algorithm was applied to resolve noise interference and diffused reflection of the joint surfaces. The auto-welding system is composed of a 4-axis manipulator, gas tungsten arc welding (GTAW) power supply, an optimized designed and manufactured GTAW torch and a 3D laser vision sensor. Through welding trials with 0 and 38-degree included-angle workpieces with both J-groove and U-groove weld, the performance of this auto-welding system was qualified for field application

  15. Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders.

    Science.gov (United States)

    Bertram, Jens; Brand, Peter; Hartmann, Laura; Schettgen, Thomas; Kossack, Veronika; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-10-01

    Several existing field studies evaluate aluminium welding works but no thoroughly controlled exposure scenario for welding fume has been described yet. This study provides information about the uptake and elimination of aluminium from welding fumes under controlled conditions. In the Aachen Workplace Simulation Laboratory, we are able to generate welding fumes of a defined particle mass concentration. We exposed 12, until then occupationally unexposed participants with aluminium-containing welding fumes of a metal inert gas (MIG) welding process of a total dust mass concentration of 2.5 mg/m(3) for 6 h. Room air filter samples were collected, and the aluminium concentration in air derived. Urine and plasma samples were collected directly before and after the 6-h lasting exposure, as well as after 1 and 7 days. Human biomonitoring methods were used to determine the aluminium content of the samples with high-resolution continuum source atomic absorption spectrometry. Urinary aluminium concentrations showed significant changes after exposure compared to preexposure levels (mean t(1) (0 h) 13.5 µg/L; mean t(2) (6 h) 23.5 µg/L). Plasma results showed the same pattern but pre-post comparison did not reach significance. We were able to detect a significant increase of the internal aluminium burden of a single MIG aluminium welding process in urine, while plasma failed significance. Biphasic elimination kinetic can be observed. The German BAT of 60 µg/g creatinine was not exceeded, and urinary aluminium returned nearly to baseline concentrations after 7 days.

  16. A comparative study of the SSC resistance of a novel welding process IEA with SAW and MIG

    International Nuclear Information System (INIS)

    Natividad, C.; Salazar, M.; Espinosa-Medina, M.A.; Perez, R.

    2007-01-01

    The Stress Sulphide Cracking resistance of X65 weldments produced by Indirect Electric Arc, Submerged Arc Welding (SAW) and Metal Inert Gas (MIG) processes were evaluated in a NACE solution saturated with H 2 S at 25 deg. C, 37 deg. C and 50 deg. C using Slow Strain Rate Tests (SSRT) and electrochemical measurements. Weldments produced by the Indirect Electric Arc presented the best Stress Sulphide Cracking resistance at 25 deg. C. This behavior is attributed to the microstructural modification of the weld bead from ferrite in a needlelike form to a fine grain microstructure, which was not observed at 37 deg. C and 50 deg. C. In addition, the hydrogen permeation flux increased with the temperature, this result is associated with the ferrite phase. The electrochemical results show a decrease of the trapping sites for the atomic hydrogen on this weldment. This behavior has not been observed for the other welding processes due to their microstructure (a typical columnar growth of coarse grain)

  17. Effect of Welding Process on Microstructure, Mechanical and Pitting Corrosion Behaviour of 2205 Duplex Stainless Steel Welds

    Science.gov (United States)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    An attempt has been made to weld 2205 Duplex stainless steel of 6mm thick plate using conventional gas tungsten arc welding (GTAW) and activated gas tungsten arc welding (A- GTAW) process using silica powder as activated flux. Present work is aimed at studying the effect of welding process on depth of penetration, width of weld zone of 2205 duplex stainless steel. It also aims to observe the microstructural changes and its effect on mechanical properties and pitting corrosion resistance of 2205 duplex stainless steel welds. Metallography is done to observe the microstructural changes of the welds using image analyzer attached to the optical microscopy. Hardness studies, tensile and ductility bend tests were evaluated for mechanical properties. Potentio-dynamic polarization studies were carried out using a basic GillAC electro-chemical system in 3.5% NaCl solution to observe the pitting corrosion behaviour. Results of the present investigation established that increased depth of penetration and reduction of weld width in a single pass by activated GTAW with the application of SiO2 flux was observed when compared with conventional GTAW process. It may be attributed to the arc constriction effect. Microstructure of the weld zones for both the welds is observed to be having combination of austenite and delta ferrite. Grain boundary austenite (GBA) with Widmanstatten-type austenite (WA) of plate-like feature was nucleated from the grain boundaries in the weld zone of A-GTAW process. Mechanical properties are relatively low in activated GTAW process and are attributed to changes in microstructural morphology of austenite. Improved pitting corrosion resistance was observed for the welds made with A-GTAW process.

  18. Metallurgical and mechanical examinations of steel–copper joints arc welded using bronze and nickel-base superalloy filler materials

    International Nuclear Information System (INIS)

    Velu, M.; Bhat, Sunil

    2013-01-01

    Highlights: ► Optical and scanning electron microscopy show defect free weld interfaces. ► Energy dispersive spectroscopy shows low dilution level of the weld by Fe. ► XRD studies show no brittle intermetallic phases in the weld interfaces. ► Weld interfaces did not fail during tensile, transverse bending and impact tests. ► The joint exhibits superior strength properties than that of bronze filler. - Abstract: The paper presents metallurgical and mechanical examinations of joints between dissimilar metals viz. copper (UNSC11000) and alloy steel (En31) obtained by Shielded Metal Arc Welding (SMAW) using two different filler materials, bronze and nickel-base super alloy. The weld bead of the joint with bronze-filler displayed porosity, while that with nickel-filler did not. In tension tests, the weldments with bronze-filler fractured in the centre of the weld, while those with nickel-filler fractured in the heat affected zone (HAZ) of copper. Since the latter exhibited higher strength than the former, all the major tests were undertaken over the joints with nickel-filler alone. Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) indicated corrugated weld interfaces and favorable elemental diffusions across them. X-ray diffraction (XRD) studies around the weld interfaces did not reveal any detrimental intermetallic compounds. Transverse bending tests showed that flexural strengths of the weldments were higher than the tensile strengths. Transverse side bend tests confirmed good ductility of the joints. Shear strength of the weld-interface (Cu–Ni or Ni–steel) was higher than the yield strength of weaker metal. Microhardness and Charpy impact values were measured at all the important zones across the weldment

  19. Microfluidic magnetic bead conveyor belt.

    Science.gov (United States)

    van Pelt, Stijn; Frijns, Arjan; den Toonder, Jaap

    2017-11-07

    Magnetic beads play an important role in the miniaturization of clinical diagnostics systems. In lab-on-chip platforms, beads can be made to link to a target species and can then be used for the manipulation and detection of this species. Current bead actuation systems utilize complex on-chip coil systems that offer low field strengths and little versatility. We demonstrate a novel system based on an external rotating magnetic field and on-chip soft-magnetic structures to focus the field locally. These structures were designed and optimized using finite element simulations in order to create a number of local flux density maxima. These maxima, to which the magnetic beads are attracted, move over the chip surface in a continuous way together with the rotation of the external field, resulting in a mechanism similar to that of a conveyor belt. A prototype was fabricated using PDMS molding techniques mixed with iron powder for the magnetic structures. In the subsequent experiments, a quadrupole electromagnet was used to create the rotating external field. We observed that beads formed agglomerates that rolled over the chip surface, just above the magnetic structures. Field rotation frequencies between 0.1-50 Hz were tested resulting in magnetic bead speeds of over 1 mm s -1 for the highest frequency. With this, we have shown that our novel concept works, combining a simple design and simple operation with a powerful and versatile method for bead actuation. This makes it a promising method for further research and utilization in lab-on-chip systems.

  20. Evaluation of the Effect of Psyllium on the Viability of Lactobacillus Acidophilus in Alginate-Polyl Lysine Beads.

    Science.gov (United States)

    Esmaeilzadeh, Jaleh; Nazemiyeh, Hossein; Maghsoodi, Maryam; Lotfipour, Farzaneh

    2016-09-01

    Purpose: Psylliumseeds are used in traditional herbal medicine to treat various disorders. Moreover, as a soluble fiber, psyllium has potential to stimulate bacterial growth in digestive system. We aimed to substitute alkali-extractable polysaccharides of psyllium for alginate in beads with second coat of poly-l-lysine to coat Lactobacillus acidophilus. Methods: Beads were prepared using extrusion technique. Poly-l-lysine as second coat was incorporated on optimum alginate/psyllium beads using immersion technique. Beads were characterized in terms of size, encapsulation efficiency, integrity and bacterial survival in harsh conditions. Results: Beads with narrow size distribution ranging from 1.85 ± 0.05 to 2.40 ± 0.18 mm with encapsulation efficiency higher than 96% were achieved. Psyllium concentrations in beads did not produce constant trend in bead sizes. Surface topography by SEM showed that substitution of psyllium enhanced integrity of obtained beads. Psyllium successfully protected the bacteria against acidic condition and lyophilization equal to alginate in the beads. Better survivability with beads of alginate/psyllium-poly-l-lysine was achieved with around 2 log rise in bacterial count in acid condition compared to the corresponding single coat beads. Conclusion: Alginate/psyllium (1:2) beads with narrow size distribution and high encapsulation efficiency of the bacteria have been achieved. Presence of psyllium produced a much smoother and integrated surface texture for the beads with sufficient protection of the bacteria against acidic condition as much as alginate. Considering the health benefits of psyllium and its prebiotic activity, psyllium can be beneficially replaced in part for alginate in probiotic coating.

  1. 3D Modeling and Testing of Contact Problems in Resistance Welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin

    A generic, electro-thermo-mechanically coupled finite element program is developed for three-dimensional simulation of resistance welding. The developed computer program has reached a level of a complete standalone software that can be utilized as a tool in the analysis of resistance welding...... of resistance welding processes, which cover a wide range of spot welding and projection welding applications. Three-dimensional simulation of spot welding enables the analysis of critical effects like electrode misalignment and shunt effects between consecutive spots. A single-sided spot welding case involving...... three-dimensional contact is also presented. This case was suggested by and discussed with a German steel manufacturer. When it comes to projection welding, a natural need for three-dimensional analysis arises in many cases because of the involved geometries. Cross-wire welding and welding of square...

  2. Fillet Weld Stress Using Finite Element Methods

    Science.gov (United States)

    Lehnhoff, T. F.; Green, G. W.

    1985-01-01

    Average elastic Von Mises equivalent stresses were calculated along the throat of a single lap fillet weld. The average elastic stresses were compared to initial yield and to plastic instability conditions to modify conventional design formulas is presented. The factor is a linear function of the thicknesses of the parent plates attached by the fillet weld.

  3. Low-cost commercial glass beads as dosimeters in radiotherapy

    International Nuclear Information System (INIS)

    Jafari, S.M.; Bradley, D.A.; Gouldstone, C.A.; Sharpe, P.H.G.; Alalawi, A.; Jordan, T.J.; Clark, C.H.; Nisbet, A.; Spyrou, N.M.

    2014-01-01

    Recent developments in advanced radiotherapy techniques using small field photon beams, require small detectors to determine the delivered dose in steep dose gradient fields. Commercially available glass jewellery beads exhibit thermoluminescent properties and have the potential to be used as dosimeters in radiotherapy due to their small size ( 60 Co gamma rays over doses ranging from 1 to 2500 cGy. A thermoluminescence (TL) system and an electron paramagnetic resonance (EPR) system were employed for read out. Both the TL and EPR studies demonstrated a radiation-induced signal, the sensitivity of which varied with bead colour. White coloured beads proved to be the most sensitive for both systems. The smallest and therefore least sensitive bead sizes allowed measurement of doses of 1 cGy using the TL system while that for the EPR system was approximately 1000 cGy. The fading rate was found to be 10% 30 days after irradiation with both readout systems. The dose response is linear with measured dose over the dose range 1 to 2500 cGy, with an R 2 correlation coefficient of greater than 0.999. The batch-to-batch reproducibility of a set of dosimeters after a single irradiation was found to be 3% (1 SD). The reproducibility of individual dosimeters was found to be 1.7%. No measurable angular dependence was found (results agreed within 1%). Dose rate response was found to agree within 1% for dose rates of 100 to 600 cGy/min. These results demonstrate the potential use of glass beads as TL dosimeters over the dose range commonly applied in radiotherapy. - Highlights: • We examined the dosimetric properties of a low cost commercially produced glass seed beads. • Glass beads are available in small size of 1–3 mm, suitable for dosimetry of small radiation fields. • The results demonstrate a mean reproducibility of 0.23% (2 SD), batch homogeneity of within 5%. • Dose response was linear over wide dose range tested for 1 cGy to kGy. • Improved fading effect of 10

  4. Hybrid laser arc welding of a used fuel container

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, C., E-mail: cboyle@nwmo.ca [Nuclear Waste Management Organization, Toronto, ON (Canada); Martel, P. [Novika Solutions, La Pocatiere, QC (Canada)

    2015-07-01

    The Nuclear Waste Management Organization (NWMO) has designed a novel Used Fuel Container (UFC) optimized for CANDU used nuclear fuel. The Mark II container is constructed of nuclear grade pipe for the body and capped with hemi-spherical heads. The head-to-shell joint fit-up features an integral backing designed for external pressure, eliminating the need for a full penetration closure weld. The NWMO and Novika Solutions have developed a partial penetration, single pass Hybrid Laser Arc Weld (HLAW) closure welding process requiring no post-weld heat treatment. This paper will discuss the joint design, HLAW process, associated welding equipment, and prototype container fabrication. (author)

  5. Hybrid laser arc welding of a used fuel container

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, C. [Nuclear Waste Management Organization (NWMO), Toronto, Ontario (Canada); Martel, P. [Novika Solutions, La Pocatiere, Quebec (Canada)

    2015-09-15

    The Nuclear Waste Management Organization (NWMO) has designed a novel Used Fuel Container (UFC) optimized for CANDU used nuclear fuel. The Mark II container is constructed of nuclear grade pipe for the body and capped with hemi-spherical heads. The head-to-shell joint fit-up features an integral backing designed for external pressure, eliminating the need for a full penetration closure weld. The NWMO and Novika Solutions have developed a partial penetration, single pass Hybrid Laser Axe Weld (HLAW) closure welding process requiring no post-weld heat treatment. This paper will discuss the joint design, HLAW process, associated welding equipment, and prototype container fabrication. (author)

  6. Direct friction measurement in draw bead testing

    DEFF Research Database (Denmark)

    Olsson, David Dam; Bay, Niels; Andreasen, Jan Lasson

    2005-01-01

    The application of draw beads in sheet metal stamping ensures controlled drawing-in of flange parts. Lubrication conditions in draw beads are severe due to sliding under simultaneous bending. Based on the original draw bead test design by Nine [1] comprehensive studies of friction in draw beads...... have been reported in literature. A major drawback in all these studies is that friction is not directly measured, but requires repeated measurements of the drawing force with and without relative sliding between the draw beads and the sheet material. This implies two tests with a fixed draw bead tool...... and a freely rotating tool respectively, an approach, which inevitably implies large uncertainties due to scatter in the experimental conditions. In order to avoid this problem a new draw bead test is proposed by the authors measuring the friction force acting on the tool radius directly by a build...

  7. Effect of geometric construction on residual stress distribution in designing a nuclear rotor joined by multipass narrow gap welding

    International Nuclear Information System (INIS)

    Tan, Long; Zhang, Linjie; Zhang, Jianxun; Zhuang, Dong

    2014-01-01

    Highlights: • The internal stress of the pipe is measured using local material removal method. • Bottom protrusion at weld seam can release the stress and mitigate stress evolution. The through-wall axial stress is bending type under the effect of the rotor discs. • The impact of geometric construction on the stress evolution begins after pass 15. - Abstract: The purpose of this study is to investigate the effect of geometric construction on the distribution of residual stresses before and after heat treatment in designing a nuclear welded rotor. The local material removal method was used to measure internal residual stress of the experimental pipe after post weld heat treatment. Three finite element models were employed as follows: a model of experimental pipe, a model with a bottom protrusion existed at the weld region, and a model of two rotor discs butt-welded with a bottom protrusion at the weld region. Investigated results showed that the bottom protrusion existed at the weld region can decrease the residual stress and mitigate the stress evolution significantly on the inner surface. Under the binding effect of the rotor discs, the axial stress of inner surface region is compressive stress; the through-wall axial stress at the weld center line can be deemed to a bending type; both the hoop stress and axial stress at the weld center line on the inner surface are compressive. The impact of geometric construction on the stress evolution at the root bead begins after pass 15 deposited

  8. Weld evaluation on spherical pressure vessels using holographic interferometry

    International Nuclear Information System (INIS)

    Boyd, D.M.; Wilcox, W.W.

    1980-01-01

    Waist welds on spherical experimental pressure vessels have been evaluated under pressure using holographic interferometry. A coincident viewing and illumination optical configuration coupled with a parabolic mirror was used so that the entire weld region could be examined with a single hologram. Positioning the pressure vessel at the focal point of the parabolic mirror provides a relatively undistorted 360 degree view of the waist weld. Double exposure and real time holography were used to obtain displacement information on the weld region. Results are compared with radiographic and ultrasonic inspections

  9. A String of Beads

    Science.gov (United States)

    Mead, Kelly C.

    2006-01-01

    In this article, the author relates how she designed a math activity she called Beads to use in conjunction with their school's 100th day celebration. Beads has provided her kindergarten class with many opportunities to practice a variety of math skills - counting, patterning, sorting, comparing, making sets, predicting, identifying numerals,…

  10. Microstructure and mechanical performance of depositing CuSi3 Cu alloy onto 30CrMnSi steel plate by the novel consumable and non-consumable electrodes indirect arc welding

    International Nuclear Information System (INIS)

    Wang, Jun; Cao, Jian; Feng, Jicai

    2010-01-01

    A novel consumable and non-consumable electrodes indirect arc welding (CNC-IAW) with low heat input was successfully applied in depositing CuSi 3 Cu alloy onto 30CrMnSi steel plate. The indirect arc was generated between the consumable and non-consumable welding torch. The microstructure of the deposited weld was analyzed by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and optical microscopy (OM). The results showed that the dilution ratio of the bead-on-plate weld was controlled no higher than 5% and the deleterious iron picking up was effectively restrained. The deposited metal mainly consisted of ε-Cu solid solution and a small amount of Fe 2 Si phase. In the interfacial zone between the deposited metal and base metal, the thickness of the zone changed from thick to thin and the microstructure changed from complex to simple from the middle to both sides. In the middle of the interfacial zone, the microstructure presented three sub-layers consisting of Fe 3 Si (L)/Fe 3 Si (S) + ε-Cu/α-Fe. In the both sides of the interfacial zone, the microstructure presented single α-Fe layer. The formation mechanism of the interfacial zone could be successfully explained by the formation of the Fe liquid-solid phase zone adjacent to the Fe base metal and the interfusion between Fe and Si. The average compressive shear strength reached 321 MPa and its fracture morphology mainly belonged to ductile fracture.

  11. The Optimization of Process Parameters and Microstructural Characterization of Fiber Laser Welded Dissimilar HSLA and MART Steel Joints

    Directory of Open Access Journals (Sweden)

    Celalettin Yuce

    2016-10-01

    Full Text Available Nowadays, environmental impact, safety and fuel efficiency are fundamental issues for the automotive industry. These objectives are met by using a combination of different types of steels in the auto bodies. Therefore, it is important to have an understanding of how dissimilar materials behave when they are welded. This paper presents the process parameters’ optimization procedure of fiber laser welded dissimilar high strength low alloy (HSLA and martensitic steel (MART steel using a Taguchi approach. The influence of laser power, welding speed and focal position on the mechanical and microstructural properties of the joints was determined. The optimum parameters for the maximum tensile load-minimum heat input were predicted, and the individual significance of parameters on the response was evaluated by ANOVA results. The optimum levels of the process parameters were defined. Furthermore, microstructural examination and microhardness measurements of the selected welds were conducted. The samples of the dissimilar joints showed a remarkable microstructural change from nearly fully martensitic in the weld bead to the unchanged microstructure in the base metals. The heat affected zone (HAZ region of joints was divided into five subzones. The fusion zone resulted in an important hardness increase, but the formation of a soft zone in the HAZ region.

  12. Study of the corrosion behavior of magnesium alloy weldings in NaCl solutions by gravimetric tests

    Directory of Open Access Journals (Sweden)

    Segarra, José A.

    2015-09-01

    Full Text Available In this article, the corrosion behavior of commercial AZ31 welded plates in aqueous chloride media was investigated by means of gravimetric techniques and Neutral Salt Spray tests (NSS. The AZ31 samples tested were welded using Gas Tugsten Arc Welding (GTAW and different filler materials. Material microstructures were investigated by optical microscopy to stablish the influence of those microstructures in the corrosion behavior. Gravimetric and NSS tests indicate that the use of more noble filler alloys for the sample welding, preventing the reduction of aluminum content in weld beads, does not imply a better corrosion behavior.En este artículo se ha investigado el comportamiento frente a la corrosión en medios acuosos salinos de chapas soldadas de aleación AZ31 mediante técnicas gravimétricas y ensayo en cámara de niebla salina. Las muestras estudiadas han sido soldadas mediante soldadura TIG (Tungsten Inert Gas y con diferentes materiales de aporte. En el estudio se ha empleado microscopía óptica para analizar la microestructura. Los ensayos de gravimetría y los ensayos de niebla salina indican que el empleo de materiales de aporte más nobles para soldar las muestras evitando la disminución del contenido en aluminio en los cordones, no implica un mejor comportamiento frente a la corrosión.

  13. Improving the corrosion properties of magnesium AZ31 alloy GTA weld metal using microarc oxidation process

    Institute of Scientific and Technical Information of China (English)

    M.Siva Prasad; M.Ashfaq; N.Kishore Babu; A.Sreekanth; K.Sivaprasad; V.Muthupandi

    2017-01-01

    In this work,the morphology,phase composition,and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated.Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode.A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times.The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy.The oxide film improved the corrosion resistance substantially compared to the uncoated specimens.The sample coated for 10 min exhibited better corrosion properties.The corrosion resistance of the coatings was concluded to strongly depend on the morphology,whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.

  14. Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets

    Energy Technology Data Exchange (ETDEWEB)

    Karpagaraj, A.; Siva shanmugam, N., E-mail: nsiva@nitt.edu; Sankaranarayanasamy, K.

    2015-07-29

    Gas Tungsten Arc Welding (GTAW) is a commonly used welding process for welding Titanium materials. Welding of titanium and its alloys poses several intricacies to the designer as they are prone to oxidation phenomenon. To overcome this contamination, a relatively new type of shielding arrangement is experimented. The proposed design and arrangement have been employed for joining commercially pure titanium sheets with variations in the GTAW process parameters namely the welding current and travel speed. Bead on plate (BoP) trials were conducted on thin sheets of 2 mm thickness by varying the process parameters. Subsequently, the macro structure images were captured. Based on these results, the process parameters are chosen for carrying out full penetration butt joints on 1.6 mm and 2 mm thick titanium sheets. The influences of these parameters of GTAW on the microstructure, mechanical properties and surface morphology at the fractured locations of the welded joints are examined. The microstructural properties of base metal, heat affected zone and fusion zone are analyzed through optical microscopy. The welded joints showed an ultimate tensile strength of about 383 MPa with 15.7% elongation. The hardness value at fusion zone and base metal are typically observed to be 191 and 153 HV-0.5, respectively. X-ray diffraction study is conducted to examine the chemical composition in the parent metal and fusion zone of the weld. Fractured surface is examined using Scanning Electron Microscopy which revealed dimple kind of rupture present at the fractured surfaces owing to insufficient or excessive heat with slight impurities that prevents the accomplishment of stronger micro-level weld integrity.

  15. Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets

    International Nuclear Information System (INIS)

    Karpagaraj, A.; Siva shanmugam, N.; Sankaranarayanasamy, K.

    2015-01-01

    Gas Tungsten Arc Welding (GTAW) is a commonly used welding process for welding Titanium materials. Welding of titanium and its alloys poses several intricacies to the designer as they are prone to oxidation phenomenon. To overcome this contamination, a relatively new type of shielding arrangement is experimented. The proposed design and arrangement have been employed for joining commercially pure titanium sheets with variations in the GTAW process parameters namely the welding current and travel speed. Bead on plate (BoP) trials were conducted on thin sheets of 2 mm thickness by varying the process parameters. Subsequently, the macro structure images were captured. Based on these results, the process parameters are chosen for carrying out full penetration butt joints on 1.6 mm and 2 mm thick titanium sheets. The influences of these parameters of GTAW on the microstructure, mechanical properties and surface morphology at the fractured locations of the welded joints are examined. The microstructural properties of base metal, heat affected zone and fusion zone are analyzed through optical microscopy. The welded joints showed an ultimate tensile strength of about 383 MPa with 15.7% elongation. The hardness value at fusion zone and base metal are typically observed to be 191 and 153 HV-0.5, respectively. X-ray diffraction study is conducted to examine the chemical composition in the parent metal and fusion zone of the weld. Fractured surface is examined using Scanning Electron Microscopy which revealed dimple kind of rupture present at the fractured surfaces owing to insufficient or excessive heat with slight impurities that prevents the accomplishment of stronger micro-level weld integrity

  16. Microstructural Study on Oxygen Permeated Arc Beads

    Directory of Open Access Journals (Sweden)

    Kuan-Heng Liu

    2015-01-01

    Full Text Available We simulated short circuit of loaded copper wire at ambient atmosphere and successfully identified various phases of the arc bead. A cuprous oxide flake was formed on the surface of the arc bead in the rapid solidification process, and there were two microstructural constituents, namely, Cu-κ eutectic structure and solutal dendrites. Due to the arc bead formed at atmosphere during the local equilibrium solidification process, the phase of arc bead has segregated to the cuprous oxide flake, Cu-κ eutectic, and Cu phase solutal dendrites, which are the fingerprints of the arc bead permeated by oxygen.

  17. Physical and chemical analysis of glass beads and glassy slag from Iron Age sites in northeast Thailand : preliminary findings

    International Nuclear Information System (INIS)

    Saitowitz, S.J.; Reid, D.L.

    2001-01-01

    Substantial numbers of glass beads have been found at the Iron Age site of Noen U-Loke (ca. 850 BC to AD 500) in northeast Thailand. Typological classification of the beads, using standardised procedures, together with specialized analytical data show that while distinctly different bead-making techniques were used to produce the beads, the chemical composition of the glass was very similar. This information suggests the possibility of multiple craftsmen, at varied levels of expertise, using glass made at a single source or using raw materials found within a specific region. These findings allow for more detailed physical and chemical analysis of the beads, so as to quantify the spatial and temporal variability of different bead types. A fragment of glassy slag, excavated at Noen U-Loke, was analysed to distinguish whether it could be associated with a glass making process. However, the results were unable to confirm whether it was used to make glass suitable for beads. (author). 30 refs., 12 figs., 2 tabs

  18. In-bead screening

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to screening of one-bead-one-compound (OBOC) combinatorial libraries which is useful for the discovery of compounds displaying molecular interactions with a biological or a physicochemical system, such as substrates and inhibitors of enzymes and the like. The invention...... provides a method for screening a library of compounds for their interaction with a physico- chemical or biological system and a corresponding kit for performing the method of screening a one-bead-one-compound library of compounds....

  19. New miRNA labeling method for bead-based quantification

    Directory of Open Access Journals (Sweden)

    Lanfranchi Gerolamo

    2010-06-01

    Full Text Available Abstract Background microRNAs (miRNAs are small single-stranded non-coding RNAs that act as crucial regulators of gene expression. Different methods have been developed for miRNA expression profiling in order to better understand gene regulation in normal and pathological conditions. miRNAs expression values obtained from large scale methodologies such as microarrays still need a validation step with alternative technologies. Results Here we have applied with an innovative approach, the Luminex® xMAP™ technology validate expression data of differentially expressed miRNAs obtained from high throughput arrays. We have developed a novel labeling system of small RNA molecules (below 200 nt, optimizing the sensitive cloning method for miRNAs, termed miRNA amplification profiling (mRAP. The Luminex expression patterns of three miRNAs (miR-23a, miR-27a and miR-199a in seven different cell lines have been validated by TaqMan miRNA assay. In all cases, bead-based meas were confirmed by the data obtained by TaqMan and microarray technologies. Conclusions We demonstrate that the measure of individual miRNA by the bead-based method is feasible, high speed, sensitive and low cost. The Luminex® xMAP™ technology also provides flexibility, since the central reaction can be scaled up with additional miRNA capturing beads, allowing validation of many differentially expressed miRNAs obtained from microarrays in a single experiment. We propose this technology as an alternative method to qRT-PCR for validating miRNAs expression data obtained with high-throughput technologies.

  20. Microstructural characterization of laser and electron beam (EB) welds of Nb-1Zr-0.1C alloy

    International Nuclear Information System (INIS)

    Badgujar, B.P.; Tewari, R.; Dey, G.K.; Samajdar, I.

    2015-01-01

    Nb-1wt%Zr-0.1wt%C alloy is being considered for the structural applications in proposed Compact High Temperature Reactor (CHTR) on account of its excellent combination of high temperature properties. The applications of this alloy calls for welding, which is a difficult task due to its reactive nature, higher thermal conductivity and melting point. The high energy density techniques like laser and electron beam were employed to produce the welds on sheets of Nb-alloy at various processing parameters in bead-on-plate and square butt joint configurations. The weld joints produced were characterized by studying their optical, Scanning Electron Microscopy (SEM) and Electron Back Scattering Diffraction (EBSD) micro-graphs. The SEM micrograph of EB fusion zone along with the heat affected zone (HAZ) and the base region were studied and abrupt changes in the grain morphology were found in each zone. The fusion zone shows larger grains indicating the rapid grain growth after solidification, whereas the HAZ shows relatively smaller size of the grains but still much larger than the base zone. The SEM micrograph of central part of the same butt weld shows clear grain boundaries with a large variation in the grain size (45-82 micrometer) in the weld region. The heat affected zone (HAZ) and base metal showed fine carbide precipitates along the grain boundaries, whereas carbides were found dissolved in the weld zone. The EBSD micrograph of electron beam fusion zone describing the grain orientation in the weld region are described. The micro-hardness profile across the width of welds was also studied. The detailed results of all these studies are described in this paper. (author)

  1. Fiber laser welding of nickel based superalloy Inconel 625

    Science.gov (United States)

    Janicki, Damian M.

    2013-01-01

    The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.

  2. An analysis of the shielding gas flow from a coaxial conical nozzle during high power CO2 laser welding

    International Nuclear Information System (INIS)

    Ancona, Antonio; Sibillano, Teresa; Lugara, Pietro Mario; Gonnella, Giuseppe; Pascazio, Giuseppe; Maffione, Donato

    2006-01-01

    An experimental and theoretical study on the role of the nitrogen gas stream, exiting from a conventional conical nozzle tip during a laser welding process, has been carried out. A mathematical model has been used, based on the Navier-Stokes equations which express fundamental conservation laws of mass, momentum and energy for a compressible fluid. Numerical simulations of the gas stream colliding onto a plane surface have been performed showing the effects of variations of inlet gas pressure, nozzle exit diameter and standoff distance on the density and Mach number contours, axis pressure of the gas jet and plate pressure produced on the workpiece surface. Laser welding experiments have been performed on carbon and stainless steel specimens, by varying the process parameters in the same range as in the simulations and keeping constant the incident power and the travel speed. Two different gas stream regimes were found, namely sonic and subsonic, which were experimentally verified to produce cutting and welding conditions, respectively. Weld performances have been evaluated in terms of bead width, penetration depth and melted area. Nozzle standoff distance was found to have a negligible influence, while the exit diameter and the flow rate significantly affect the weld results. The numerical predictions allowed an explanation of the experimental results yielding useful suggestions for enhancing the weld quality, acting simply on the shielding gas parameters

  3. Corrosion Resistant Cladding by YAG Laser Welding in Underwater Environment

    International Nuclear Information System (INIS)

    Tsutomi Kochi; Toshio Kojima; Suemi Hirata; Ichiro Morita; Katsura Ohwaki

    2002-01-01

    environment was carried out in the different welding position, horizontal, vertical upward and downward. The soundness of cladding layers (about 3 mm) is confirmed in visual and penetration test, and cross section observation. In the application to the actual plants, it is preferable to reduce the start and end point numbers of beads with which a defect is easy to cause. Therefore a special welding equipment for a YAG laser CRC that could weld continuously was developed. (authors)

  4. Towards Hypoxia-responsive Drug-eluting Embolization Beads.

    Science.gov (United States)

    Ashrafi, Koorosh; Heaysman, Clare L; Phillips, Gary J; Lloyd, Andrew W; Lewis, Andrew L

    2017-05-30

    Drug release from chemoembolization microspheres stimulated by the presence of a chemically reducing environment may provide benefits for targeting drug resistant and metastatic hypoxic tumours. A water-soluble disulfide-based bifunctional cross-linker bis(acryloyl)-(l)-cystine (BALC) was synthesised, characterised and incorporated into a modified poly(vinyl) alcohol (PVA) hydrogel beads at varying concentrations using reverse suspension polymerisation. The beads were characterised to confirm the amount of cross-linker within each formulation and its effects on the bead properties. Elemental and UV/visible spectroscopic analysis confirmed the incorporation of BALC within the beads and sizing studies showed that in the presence of a reducing agent, all bead formulations increased in mean diameter. The BALC beads could be loaded with doxorubicin hydrochloride and amounts in excess of 300mg of drug per mL of hydrated beads could be achieved but required conversion of the carboxylic acid groups of the BALC to their sodium carboxylate salt forms. Elution of doxorubicin from the beads demonstrated a controlled release via ionic exchange. Some formulations exhibited an increase in size and release of drug in the presence of a reducing agent, and therefore demonstrated the ability to respond to an in vitro reducing environment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Self-organizing magnetic beads for biomedical applications

    International Nuclear Information System (INIS)

    Gusenbauer, Markus; Kovacs, Alexander; Reichel, Franz; Exl, Lukas; Bance, Simon; Özelt, Harald; Schrefl, Thomas

    2012-01-01

    In the field of biomedicine magnetic beads are used for drug delivery and to treat hyperthermia. Here we propose to use self-organized bead structures to isolate circulating tumor cells using lab-on-chip technologies. Typically blood flows past microposts functionalized with antibodies for circulating tumor cells. Creating these microposts with interacting magnetic beads makes it possible to tune the geometry in size, position and shape. We developed a simulation tool that combines micromagnetics and discrete particle dynamics, in order to design micropost arrays made of interacting beads. The simulation takes into account the viscous drag of the blood flow, magnetostatic interactions between the magnetic beads and gradient forces from external aligned magnets. We developed a particle–particle particle–mesh method for effective computation of the magnetic force and torque acting on the particles. - Highlights: ► We propose to use self-organized bead structures to isolate circulating tumor cells. ► Flexible ways are important to get a high probability of catching cancer cells. ► The beads make it possible to tune the geometry in size position and shape.

  6. Determination of Elements and Carbon Content of Stainless Steel Welded Pipeline

    Directory of Open Access Journals (Sweden)

    Pavel Hudeček

    2016-01-01

    Full Text Available Find out defects or problems of welds are not so simple from time to time. Specially, if weld has been made in rough environmental conditions like high temperature, dusty wind and humidity. It is important to assure have good conditions to realize basic step of welding. For welding, have been used welding procedures specification and procedure qualification record. However, difficult conditions, documentations rightness or human errors are always here. Common weld defects like cracks, porosity, lack of penetration and distortion can compromise the strength of the base metal, as well as the integrity of the weld. According of site inspection, there were suspicion of inclusions, leaker or segregation in root of weld. Surface treatment after welding and keep the intervals between single welds to not overheat the pipes. To recognize those suspicions, mechanical testing around weld joint, determination of carbon content and inductively coupled plasma atomic emission spectroscopy will be done.

  7. Computational simulation of weld microstructure and distortion by considering process mechanics

    Science.gov (United States)

    Mochizuki, M.; Mikami, Y.; Okano, S.; Itoh, S.

    2009-05-01

    Highly precise fabrication of welded materials is in great demand, and so microstructure and distortion controls are essential. Furthermore, consideration of process mechanics is important for intelligent fabrication. In this study, the microstructure and hardness distribution in multi-pass weld metal are evaluated by computational simulations under the conditions of multiple heat cycles and phase transformation. Because conventional CCT diagrams of weld metal are not available even for single-pass weld metal, new diagrams for multi-pass weld metals are created. The weld microstructure and hardness distribution are precisely predicted when using the created CCT diagram for multi-pass weld metal and calculating the weld thermal cycle. Weld distortion is also investigated by using numerical simulation with a thermal elastic-plastic analysis. In conventional evaluations of weld distortion, the average heat input has been used as the dominant parameter; however, it is difficult to consider the effect of molten pool configurations on weld distortion based only on the heat input. Thus, the effect of welding process conditions on weld distortion is studied by considering molten pool configurations, determined by temperature distribution and history.

  8. Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-05-01

    The effect of surface oxide layer existing at the lap-joint faying surface of magnesium sheets is investigated on the keyhole dynamics of the weld pool and weld bead qualities. It is observed that by removing the oxide layer from the faying surface of the lap joint, a high quality weld can be achieved in the laser welding process. However, the presence of an oxide layer deteriorates the quality of the weld by forming pores at the interface of the two overlapped sheets. The purpose of this paper is to identify the correlation between the integrity of the weld and the interaction between the laser and material. A spectroscopy sensor was applied to detect the spectra emitted from a plasma plume during the laser welding of AZ31B magnesium alloy in a zero-gap lap joint configuration. The electron temperature was calculated by applying a Boltzmann plot method based on the detected spectra, and the correlation between the pore formation and the spectral signals was studied. The laser molten pool and the keyhole condition were monitored in real-time by a high speed charge-coupled device (CCD) camera. A green laser was used as an illumination source in order to detect the influence of the oxide layer on the dynamic behavior of the molten pool. Results revealed that the detected spectrum and weld defects had a meaningful correlation for real-time monitoring of the weld quality during laser welding of magnesium alloys.

  9. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    Science.gov (United States)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  10. Characterization of Plasmodium Lactate Dehydrogenase and Histidine-Rich Protein 2 Clearance Patterns via Rapid On-Bead Detection from a Single Dried Blood Spot

    Science.gov (United States)

    Markwalter, Christine F.; Gibson, Lauren E.; Mudenda, Lwiindi; Kimmel, Danielle W.; Mbambara, Saidon; Thuma, Philip E.; Wright, David W.

    2018-01-01

    Abstract. A rapid, on-bead enzyme-linked immunosorbent assay for Plasmodium lactate dehydrogenase (pLDH) and Plasmodium falciparum histidine-rich protein 2 (HRP2) was adapted for use with dried blood spot (DBS) samples. This assay detected both biomarkers from a single DBS sample with only 45 minutes of total incubation time and detection limits of 600 ± 500 pM (pLDH) and 69 ± 30 pM (HRP2), corresponding to 150 and 24 parasites/μL, respectively. This sensitive and reproducible on-bead detection method was used to quantify pLDH and HRP2 in patient DBS samples from rural Zambia collected at multiple time points after treatment. Biomarker clearance patterns relative to parasite clearance were determined; pLDH clearance followed closely with parasite clearance, whereas most patients maintained detectable levels of HRP2 for 35–52 days after treatment. Furthermore, weak-to-moderate correlations between biomarker concentration and parasite densities were found for both biomarkers. This work demonstrates the utility of the developed assay for epidemiological study and surveillance of malaria. PMID:29557342

  11. The use of electromagnetic body forces to enhance the quality of laser welds

    Science.gov (United States)

    Ambrosy, Guenter; Berger, P.; Huegel, H.; Lindenau, D.

    2003-11-01

    The use of electromagnetic body forces in laser beam welding of aluminum alloys is a new method to shape the geometry and to enhance the quality of the weld seams. In this new approach, electromagnetic volume forces are utilized by applying magnetic fields and electric currents of various origins. Acting in the liquid metal, they directly affect the flow field and can lead to favourable conditions for the melt dynamics and energy coupling. Numerous welds with full and partial penetration using both CO2 and Nd:YAG lasers demonstrate that this method directly influences the seam geometry and top-bead topography as well as the penetration depth and the evolution of pores and cracks. In the case of full penetration, it is also possible to lift or to lower the weld pool. The method, therefore, can be used to shape the geometry and to enhance the quality of the weld seam. Depending on the orientation of an external magnetic field, significant impacts are achieved in CO2 welding, even without an external current: the shape of the cross-sectional area can be increased of up to 50% and also the seam width is changed. Whereas for such conditions with Nd:YAG lasers no significant effect could be observed, it turned out that, when an external electric current is applied, similar effects are present with both wavelengths. In further investigations, the effect of electromagnetic body forces resulting from the interaction of an external current and its self-induced magnetic field was studied. Hereby, the current was fed into the workpiece via a tungsten electrode or a filler wire. The resulting phenomena are the same independent from wavelength and means of current feed.

  12. Study on hybrid heat source overlap welding of magnesium alloy AZ31B

    International Nuclear Information System (INIS)

    Liang, G.L.; Zhou, G.; Yuan, S.Q.

    2009-01-01

    The magnesium alloy AZ31B was overlap welded by hybrid welding (laser-tungsten inert gas arc). According to the hybrid welding interaction principle, a new heat source model, hybrid welding heat source model, was developed with finite element analysis. At the same time, using a high-temperature metallographical microscope, the macro-appearance and microstructure characteristics of the joint after hybrid overlap welding were studied. The results indicate that the hybrid welding was superior to the single tungsten inert gas welding or laser welding on the aspects of improving the utilized efficiency of the arc and enhancing the absorptivity of materials to laser energy. Due to the energy characteristics of hybrid overlap welding the macro-appearance of the joint was cup-shaped, the top weld showed the hybrid welding microstructure, while, the lower weld showed the typical laser welding microstructure

  13. Study on hybrid heat source overlap welding of magnesium alloy AZ31B

    Energy Technology Data Exchange (ETDEWEB)

    Liang, G.L. [Department of Electromechanical Engineering, Tangshan College, Tangshan 063000 (China)], E-mail: guoliliang@sohu.com; Zhou, G. [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yuan, S.Q. [Department of Electromechanical Engineering, Tangshan College, Tangshan 063000 (China)

    2009-01-15

    The magnesium alloy AZ31B was overlap welded by hybrid welding (laser-tungsten inert gas arc). According to the hybrid welding interaction principle, a new heat source model, hybrid welding heat source model, was developed with finite element analysis. At the same time, using a high-temperature metallographical microscope, the macro-appearance and microstructure characteristics of the joint after hybrid overlap welding were studied. The results indicate that the hybrid welding was superior to the single tungsten inert gas welding or laser welding on the aspects of improving the utilized efficiency of the arc and enhancing the absorptivity of materials to laser energy. Due to the energy characteristics of hybrid overlap welding the macro-appearance of the joint was cup-shaped, the top weld showed the hybrid welding microstructure, while, the lower weld showed the typical laser welding microstructure.

  14. On the chemical variability of Middelburg glass beads and rods

    International Nuclear Information System (INIS)

    Karklins, K.; Kottman, J.; Hancock, R.G.V.; Sempowski, M.L.; Nohe, A.W.; Moreau, J.-F.; Aufreiter, S.; Kenyon, I.

    2001-01-01

    Forty-three glass samples from a late 16th-early 17th century, glass beadmaking house in Middelburg, the Netherlands, were selected for maximum colouring variability, including plain and multi-coloured varieties. The glass chemistries were quite diverse, within each colour grouping. For each single colour of glass, anticipated colouring elements (copper for turquoise blue, cobalt for dark blue, manganese for rose, and tin for white) were used, with the exception of two beads that were opacified wih antimony rather than with tin. Multi-coloured glass glasses (chevron beads) produced chemistries that match the mixing of the different coloured glasses. In some cases, low relative amounts of some inter-mixed glasses were not detectable against the composition of the major glass component. (author). 16 refs., 3 tabs

  15. Use of micrometric latex beads to improve the porosity of hydroxyapatite obtained by chemical coprecipitation method

    Science.gov (United States)

    Webler, G. D.; Rodrigues, W. C.; Silva, A. E. S.; Silva, A. O. S.; Fonseca, E. J. S.; Degenhardt, M. F. S.; Oliveira, C. L. P.; Otubo, L.; Barros Filho, D. A.

    2018-04-01

    Hydroxyapatite is one of the most important biomaterials whose application mainly extends to implants and drug delivery. This work will discuss the changes in the pore size distribution of hydroxyapatite when there are latex beads present during the synthesis. These changes were monitored using different techniques: small angle X-ray scattering, X-ray diffraction, thermal gravimetrical analysis, N2 adsorption, scanning and transmission electron microscopy. Latex beads and hydroxyapatite form a single nanocomposite with well-distinguished inorganic and organic phases. Latex bead removal in the temperature range of 300-600 °C did not modify the original crystalline structure of hydroxyapatite. However, the latex beads favored an increase in the adsorption capacity of mesopores at temperatures higher than their glassy transition (Tg). The main result of this research work consists on the increase of surface area and pore size distribution obtained after the removal of latex beads template. Latex beads have been used in a different approach changing the porosity of hydroxyapatite scaffolds not only introducing new routes for cell integration but also broadening the pore size distribution which can result in a more high efficiency for drug release in living cells.

  16. Toughness of submerged arc weld metals of controlled rolled NB bearing steel

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Shiga, A.; Kamada, A.; Tsuboi, J.

    1982-01-01

    The toughness and the hardness of reheated weld metals depend on the maximum reheating temperature. When the maximum reheating temperature is 500 to 700 0 C, the hardness of single pass weld metal increases and the toughness decreases because of fine Nb- and V-carbonitride precipitation. When the maximum reheating temperature is over 800 0 C, the hardness and the toughness remain almost unchanged. The stress relieving treatment of single pass weld metal at 600 0 C for 1 up to about 100 hours causes the increase in hardness and then decreases the hardness gradually. It needs over 500 hours to obtain the same hardness value as that of as-welded metal. The addition of Ti to weld metal is very effective to improve the toughness, however excess Ti increases the hardness of stress relieved weld metal by precipitating as fine Ti-carbonitride. Therefore Ti addition should be restricted within the lowest limit required to improve as-welded metal toughness. The optimum Ti content is about 0.020% in the case of weld metal of which oxygen content is 350 ppM or so. In multipass welding, the hardness of weld metal affected by subsequent weld heat cycle varies from pass to pass, because Nb and V content change with the passes as the result of the change in dilution from base metal. The most hardened zone is observed in the reheated first pass weld metal, in which Nb and V content are the highest. Good weld metal toughness would be obtained by lowering dilution from base metal and taking advantage of grain refinement by subsequent passes

  17. Microfabricated Passive Magnetic Bead separators

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Lund-Olesen, Torsten; Smistrup, Kristian

    2006-01-01

    The use and manipulation of functionalized magnetic beads for bioanalysis in lab-on-a-chip systems is receiving growing interest. We have developed microfluidic systems with integrated magnetic structures for the capture and release of magnetic beads. The systems are fabricated in silicon by deep...

  18. An analysis of the shielding gas flow from a coaxial conical nozzle during high power CO{sub 2} laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Ancona, Antonio [CNR-INFM Regional Laboratory LIT3, via Orabona 4, 70126 Bari (Italy); Sibillano, Teresa [CNR-INFM Regional Laboratory LIT3, via Orabona 4, 70126 Bari (Italy); Dipartimento Interateneo di Fisica, Universita Degli Studi di Bari, via Orabona 4, 70126 Bari (Italy); Lugara, Pietro Mario [CNR-INFM Regional Laboratory LIT3, via Orabona 4, 70126 Bari (Italy); Dipartimento Interateneo di Fisica, Universita Degli Studi di Bari, via Orabona 4, 70126 Bari (Italy); Gonnella, Giuseppe [Dipartimento Interateneo di Fisica, Universita Degli Studi di Bari, via Orabona 4, 70126 Bari (Italy); Pascazio, Giuseppe [Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, via Re David 200, 70125 Bari (Italy); Centro di Eccellenza in Meccanica Computazionale, Politecnico di Bari, via Re David 200, 70125 Bari (Italy); Maffione, Donato [Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, via Re David 200, 70125 Bari (Italy); Centro di Eccellenza in Meccanica Computazionale, Politecnico di Bari, via Re David 200, 70125 Bari (Italy)

    2006-02-07

    An experimental and theoretical study on the role of the nitrogen gas stream, exiting from a conventional conical nozzle tip during a laser welding process, has been carried out. A mathematical model has been used, based on the Navier-Stokes equations which express fundamental conservation laws of mass, momentum and energy for a compressible fluid. Numerical simulations of the gas stream colliding onto a plane surface have been performed showing the effects of variations of inlet gas pressure, nozzle exit diameter and standoff distance on the density and Mach number contours, axis pressure of the gas jet and plate pressure produced on the workpiece surface. Laser welding experiments have been performed on carbon and stainless steel specimens, by varying the process parameters in the same range as in the simulations and keeping constant the incident power and the travel speed. Two different gas stream regimes were found, namely sonic and subsonic, which were experimentally verified to produce cutting and welding conditions, respectively. Weld performances have been evaluated in terms of bead width, penetration depth and melted area. Nozzle standoff distance was found to have a negligible influence, while the exit diameter and the flow rate significantly affect the weld results. The numerical predictions allowed an explanation of the experimental results yielding useful suggestions for enhancing the weld quality, acting simply on the shielding gas parameters.

  19. Dimensional characteristics of welds performed on AISI 1045 steel by means of the application of high power diode laser; Caracteristicas dimensionales de soldadura formadas sobre el acero AISI 1045 mediante la aplicacion del laser diodo de alta potencia

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Castillo, A.; Pou, J.; Lusquinos, F.; Quintero, F.; Soto, R.; Boutinguiza, M.; Saavedra, M.; Perez-Amor, M.

    2004-07-01

    The named High Power diode Laser (HPDL), emits a beam of optical energy generated by diode stimulation and offers the capability of supplying levels of power up to 6 kW. The objective of this research work was to study the main welding variables and their effects on dimensional characteristics of the beads performed by means of application of this novel laser. The results obtained, show that HPDL, is an energy source able to perform welds on AISI 1045 steel plates under conduction mode, without any kind of mechanized preparation, preheating or post-weld treatment and, without filler metal application. (Author) 16 refs.

  20. Modeling and analyzing the effects of heat treatment on the characteristics of magnesium alloy joint welded by the tungsten-arc inert gas welding

    International Nuclear Information System (INIS)

    Tsai, Te-Chang; Chou, Chih-Chung; Tsai, Deng-Maw; Chiang, Ko-Ta

    2011-01-01

    Highlights: → The mathematical model was provided to study the effect of heat treatment on the magnesium alloy welded joint. → The solution strengthening effect of β-phase Mg 17 Al 12 gain promotes the strengthening matrix and ductility of hcp-α-phase Mg. → The average size and proportion of α-phase Mg grain decreases with the increase of the tempering time and temperature. → An increase in the high value of tempering temperature and tempering time leads to increase the maximum tensile strength. → The values of the elongation increases with increasing in both the value of tempering temperature and tempering time. -- Abstract: The objective of this paper is to present the mathematical models for modeling and analysis of the effects of heat treatment on the characteristics of magnesium alloy joint welded by the tungsten-arc inert gas (TIG) welding. The process of heat treatment adopts the tempering process with varying processing parameters, including tempering temperature and tempering time. The microstructure and mechanical properties of the welded joint are considered in the characteristic evaluation and explored by experiment. An experimental plan of the face-centered central composite design (CCD) based on the response surface methodology (RSM) has been employed to carry out the experimental study. The results of analysis of variance (ANOVA) and comparisons of experimental data show that the mathematical models of the value of the maximum tensile strength and elongation are fairly well fitted with the experimental values with a 95% confidence interval. In the tempering process, the microstructure of welded joint in the weld bead displays two main microstructures of hcp-α-phase Mg and bcc-β-phase Mg 17 Al 12 . Results show that the average size and proportion of α-phase Mg grains decreases with the increase of the tempering time and temperature. But, the increase of the tempering time and temperature promote increasing the average size and

  1. Quantification of Residual Stresses in External Attachment Welding Applications

    DEFF Research Database (Denmark)

    Alhajri, R.; Liu, S.; Yu, Z.

    2017-01-01

    welding (GMAW) process to deposit single beadonplate welds with ER70S6 wire on ASTM516 grade 70 pressure vessel steel plates of 6.3, 12.7, and 19 mm thicknesses. Microstructural analysis, temperature, and distortion measurements of weldments were performed to qualify the FEA modeling results. In addition...

  2. The Beads of Translation: Using Beads to Translate mRNA into a Polypeptide Bracelet

    Science.gov (United States)

    Dunlap, Dacey; Patrick, Patricia

    2012-01-01

    During this activity, by making beaded bracelets that represent the steps of translation, students simulate the creation of an amino acid chain. They are given an mRNA sequence that they translate into a corresponding polypeptide chain (beads). This activity focuses on the events and sites of translation. The activity provides students with a…

  3. Development and tests of large nuclear turbo-generator welded rotors

    International Nuclear Information System (INIS)

    Colombie, H.; Thiery, M.; Rotzinger, R.; Pelissou, C.; Tabacco, C.; Fernagut, V.

    2015-01-01

    Turbo-generators require large forgings for the rotor and it is a worldwide practice to manufacture turbo-generator rotor bodies as single piece forgings. Rotors for nuclear applications (4-pole rotors design, 1500/1800 rpm) require forgings of up to 2.0 m diameter and ultra large ingots with weight more than 500 tons. Nowadays only few forge masters can deliver such forgings in the world. Based on the large welding experience Alstom has gained over decades on steam and gas turbines and Alstom's multi piece shrunk turbo-generator rotors, it was suggested to manufacture 4-pole turbo-generator rotors by welding the shaft from aligned cylindrical forgings. Compared to turbine welded rotors, the shaft of a turbo-generator rotor presents differences linked to dimensions/weight, weld depth and electrical application. The manufacture of a 2 disc model allowed to prove through electrical and mechanical analysis the reliability of the concept as well as the reliability of the manufacturing processes through material tests, micro sections, electrical component tests, weld geometry, welding processes (TIG,SAW,...), weld inspection (Ultrasonic testing, radiographic inspection,...) weld heat treatments and machining. Then a full rotor able to replace a single forging rotor was manufactured in order to validate and prove to potential customers the validity of the welded rotor technology. During the first order from EDF of a welded 900 MW spare rotor, the procedure for the Non Destructive Test on a slotted rotor was developed upon EDF request in order to compare future Non Destructive Testing with the finger print of the new rotor. This complete rotor was delivered to EDF in January 2013. This rotor is in operation in a nuclear unit since November 2013. (authors)

  4. Antibody-integrated and functionalized graphite-encapsulated magnetic beads, produced using ammonia gas plasma technology, for capturing Salmonella.

    Science.gov (United States)

    Sakudo, Akikazu; Chou, Han; Nagatsu, Masaaki

    2015-03-01

    Salmonella spp. is the single and most important causative agent of foodborne infections, especially involving foods such as eggs, milk and meat. To prevent infection, a reliable surveillance system is required that can quickly and sensitively detect Salmonella. Here, we describe the development of antibody-integrated magnetic beads that are functionalized by a novel strategy using ammonia gas plasma. Ammonia plasma, produced by a radio frequency (RF) power supply, was allowed to react with the surface of graphite-encapsulated magnetic beads, resulting in the introduction of amino groups. An anti-Salmonella antibody was then anchored by sulfide groups present on the protein surface to the amino groups of the magnetic beads via N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP). The potential usefulness of these magnetic beads for capturing Salmonella was examined as follows. The beads were incubated with Salmonella in liquid medium and then separated from the supernatant by applying a magnetic field. After thorough washing, adsorption of Salmonella to the beads was confirmed by immunochromatography, polymerase chain reaction and a direct culture assay. Our findings indicate that the capture and concentration of Salmonella using the antibody-integrated magnetic beads was more efficient than commercial Dynabeads® anti-Salmonella, which are conventionally used for concentrating Salmonella from liquid cultures. We believe this novel bead technology will contribute to the enhanced detection of Salmonella. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. K Basin sludge/resin bead separation test report

    International Nuclear Information System (INIS)

    Squier, D.M.

    1998-01-01

    The K Basin sludge is an accumulation of fuel element corrosion products, organic and inorganic ion exchange materials, canister gasket materials, iron and aluminum corrosion products, sand, dirt and minor amounts of other organic material. The sludge will be collected and treated for storage and eventual disposal. This process will remove the large solid materials by a 1/4 inch screen. The screened material will be subjected to nitric acid in a chemical treatment process. The organic ion exchange resin beads produce undesirable chemical reactions with the nitric acid. The resin beads must be removed from the bulk material and treated by another process. An effective bead separation method must extract 95% of the resin bead mass without entraining more than 5% of the other sludge component mass. The test plan I-INF-2729, ''Organic Ion Exchange Resin Separation Methods Evaluation,'' proposed the evaluation of air lift, hydro cyclone, agitated slurry and elutriation resin bead separation methods. This follows the testing strategy outlined in section 4.1 of BNF-2574, ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process''. Engineering study BNF-3128, ''Separation of Organic Ion Exchange Resins from Sludge,'' Rev. 0, focused the evaluation tests on a method that removed the fine sludge particles by a sieve and then extracted the beads by means of a elutriation column. Ninety-nine percent of the resin beads are larger than 125 microns and 98.5 percent are 300 microns and larger. Particles smaller than 125 microns make up the largest portion of sludge in the K Basins. Eliminating a large part of the sludge's non-bead component will reduce the quantity that is lifted with the resin beads in the elutriation column. Resin bead particle size distribution measurements are given in Appendix A The Engineering Testing Laboratory conducted measurements of a elutriation column's ability to extract resin beads from a sieved, non-radioactive sludge

  6. Elastase-coupled beads as a tool for characterizing localized alveolar tissue destruction associated with the onset of emphysema

    Science.gov (United States)

    Craig, J. M.; Scott, A. L.

    2013-01-01

    Intratracheal elastase challenge of laboratory animals has long been established as a model for observing the physiological and morphological changes that result from alveolar destruction, the hallmark of emphysema. However, instillation of elastase suspended in buffer results in widespread inflammation and variable emphysematous lesions, which has made the identification of specific cellular and molecular events associated with the onset of emphysema difficult to define. Here we establish a bead-based elastase delivery system that induces localized tissue destruction, a key event in the initiation of emphysema. Elastase was coupled to bisacrylamide beads, which were shown to retain enzymatic activity prior to intratracheal administration in mice. C57BL/6 mice were given a single dose of 40,000 beads, which became distributed throughout the small airways and parenchyma of the lung. Elastase-coupled beads resulted in a quantifiable loss of alveolar tissue immediately surrounding the beads, an effect that was not observed with beads that lacked protein altogether or with beads containing elastase inactivated by an irreversible inhibitor. Furthermore, beads bound with active elastase elicited local recruitment of mononuclear cells, including macrophages, and polymorphonuclear neutrophils to the site of bead deposition, a feature consistent with the cellular infiltration observed following conventional solubilized elastase challenges. This work identifies a novel bead-based enzyme delivery system that also extends the elastase model of emphysema to permit the characterization of mechanisms that drive alveolar surface area loss following elastin degradation in focal emphysematous lesions. PMID:23558388

  7. Distributed Nd-YAG laser welding and process control in inert glove boxes

    International Nuclear Information System (INIS)

    Milewski, J.O.; Lewis, G.K.; Barbe, M.R.; Cremers, D.A.

    1993-01-01

    We have fabricated and assembled a fiber optic delivered ND-YAG laser welding work station that consists of three glove boxes served by a single 1kw laser. Processing considerations related to the welding of special nuclear materials, toxic materials and complex part geometry are addressed within each work cell. We are proceeding with a development effort to integrate the equipment capabilities with remote sensing, process monitoring and control systems. These systems will provide real time data acquisition during welding, monitoring and verification of weld parameters, and CAD/CAM to CNC generated positioning paths. Computerized information storage, retrieval and network methods are used for weld process documentation and data analysis. A virtual control panel is being configured to integrate the monitoring and control operation of individual subsystems, such as laser and motion control into a single graphical interface. Development work on sensors to monitor laser beam characteristics and weld depth in real time with potential for adaptive control is in progress. System capabilities and results of these development efforts are presented

  8. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  9. Transition welds in welding of two-ply steels

    International Nuclear Information System (INIS)

    Fartushnyj, V.G.; Evsyukov, Yu.G.

    1977-01-01

    Studied were physico-mechanical properties of welds made by various welding wires of chromium-nickel and nickel-chromium steels in submerged arc welding of double-layer steels with main layer of the VSt.3sp. carbon steel. It is shown that service-reliable structures welded of two-layer steels are obtained by providing the content from 11 to 20 % Ni in the automatically welded transition layer

  10. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ying, E-mail: csudengying@163.com [School of Metallurgy and Environment, Central South University, Hunan, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); State Key Laboratory for Power Metallurgy, Central South University, Hunan, Changsha 410083 (China); Peng, Bing [School of Metallurgy and Environment, Central South University, Hunan, Changsha 410083 (China); Xu, Guofu, E-mail: csuxgf66@csu.edu.cn [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); State Key Laboratory for Power Metallurgy, Central South University, Hunan, Changsha 410083 (China); Pan, Qinglin; Yin, Zhimin; Ye, Rui [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); Wang, Yingjun; Lu, Liying [Northeast Light Alloy Co. Ltd., Hei Longjiang, Harbin 150060 (China)

    2015-07-15

    New aerospace high strength Al–Zn–Mg and Al–Zn–Mg–0.25Sc–0.10Zr (wt%) alloys were welded by tungsten inert gas (TIG) process using a new Al–6.0Mg–0.25Sc–0.10Zr (wt%) filler material, and friction stir welding (FSW) process, respectively. Mechanical property and microstructure of the welded joints were investigated comparatively by tensile tests and microscopy methods. The results show that Sc and Zr can improve the yield strength and ultimate tensile strength of Al–Zn–Mg alloy by 59 MPa (23.3%) and 16 MPa (4.0%) in TIG welded joints, and by 77 MPa (23.8%) and 54 MPa (11.9%) in FSW welded joints, respectively. The ultimate tensile strength and elongation of new Al–Zn–Mg–Sc–Zr alloy FSW welded joint are 506±4 MPa and 6.34±0.2%, respectively, showing superior post welded performance. Mechanical property of welded joint is mainly controlled by its “weakest microstructural zone”. TIG welded Al–Zn–Mg and Al–Zn–Mg–Sc–Zr alloys reinforced with weld bead both failed at fusion boundaries. Secondary Al{sub 3}Sc{sub x}Zr{sub 1−x} particles originally present in parent alloy coarsen during TIG welding process, but they can restrain the grain growth and recrystallization here, thus improving welding performance. For two FSW welded joints, fracture occurred in weld nugget zone. Secondary Al{sub 3}Sc{sub x}Zr{sub 1−x} nano-particles almost can keep unchangeable size (20–40 nm) across the entire FSW welded joint, and thus provide effective Orowan strengthening, grain boundary strengthening and substructure strengthening to strengthen FSW joints. The positive effect from Sc and Zr additions into base metals can be better preserved by FSW process than by TIG welding process.

  11. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys

    International Nuclear Information System (INIS)

    Deng, Ying; Peng, Bing; Xu, Guofu; Pan, Qinglin; Yin, Zhimin; Ye, Rui; Wang, Yingjun; Lu, Liying

    2015-01-01

    New aerospace high strength Al–Zn–Mg and Al–Zn–Mg–0.25Sc–0.10Zr (wt%) alloys were welded by tungsten inert gas (TIG) process using a new Al–6.0Mg–0.25Sc–0.10Zr (wt%) filler material, and friction stir welding (FSW) process, respectively. Mechanical property and microstructure of the welded joints were investigated comparatively by tensile tests and microscopy methods. The results show that Sc and Zr can improve the yield strength and ultimate tensile strength of Al–Zn–Mg alloy by 59 MPa (23.3%) and 16 MPa (4.0%) in TIG welded joints, and by 77 MPa (23.8%) and 54 MPa (11.9%) in FSW welded joints, respectively. The ultimate tensile strength and elongation of new Al–Zn–Mg–Sc–Zr alloy FSW welded joint are 506±4 MPa and 6.34±0.2%, respectively, showing superior post welded performance. Mechanical property of welded joint is mainly controlled by its “weakest microstructural zone”. TIG welded Al–Zn–Mg and Al–Zn–Mg–Sc–Zr alloys reinforced with weld bead both failed at fusion boundaries. Secondary Al 3 Sc x Zr 1−x particles originally present in parent alloy coarsen during TIG welding process, but they can restrain the grain growth and recrystallization here, thus improving welding performance. For two FSW welded joints, fracture occurred in weld nugget zone. Secondary Al 3 Sc x Zr 1−x nano-particles almost can keep unchangeable size (20–40 nm) across the entire FSW welded joint, and thus provide effective Orowan strengthening, grain boundary strengthening and substructure strengthening to strengthen FSW joints. The positive effect from Sc and Zr additions into base metals can be better preserved by FSW process than by TIG welding process

  12. Bead Capture on Magnetic Sensors in a Microfluidic System

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Dalslet, Bjarke Thomas; Damsgaard, Christian Danvad

    2009-01-01

    The accumulation of magnetic beads by gravitational sedimentation and magnetic capture on a planar Hall-effect sensor integrated in a microfluidic channel is studied systematically as a function of the bead concentration, the fluid flow rate, and the sensor bias current. It is demonstrated...... that the sedimentation flux is proportional to the bead concentration and has a power law relation to the fluid flow rate. The mechanisms for the bead accumulation are investigated and it is found that gravitational sedimentation dominates the bead accumulation, whereas the stability of the sedimented beads against...

  13. Desenvolvimento da ferrita delta na solda e ZTA resultante de soldagem plasma pulsada em um aço inoxidável supermartensítico Delta-ferrite development in weld and HAZ produced by pulsed plasma arc welding in a supermartensitic stainless steel

    Directory of Open Access Journals (Sweden)

    Sérgio L. Henke

    2013-03-01

    Full Text Available A ferrita delta é considerada uma fase indesejável na microestrutura dos aços inoxidáveis martensíticos haja vista a mesma poder influenciar no desempenho da resistência à fadiga, tenacidade e corrosão sob-tensão. Sendo assim, o objetivo deste trabalho foi investigar o efeito da soldagem plasma pulsada sobre a distribuição e quantidade de ferrita delta em um aço inoxidável supermartensítico. Para tal foram obtidos cordões por meio de fusão superficial sobre uma amostra de aço inoxidável supermartensítico de alta liga utilizando corrente pulsada e convencional. Em seguida foi efetuada a caracterização microestrutural, em especial da ferrita delta, via análises metalográficas por meio de microscopia óptica e eletrônica de varredura . Os experimentos revelaram que, para o mesmo aporte térmico, a pulsação de corrente promoveu a formação de ferrita delta na forma de bandas ao longo do cordão de solda e redução significativa desta fase na ZTA quando comparada à soldagem convencional.The objective of this study was to investigate the effect of pulsed plasma welding on the distribution and amount of delta ferrite which is considered an undesirable phase in a supermartensitic stainless steel. For such weld beads have been obtained by melting the surface of a sample of a high-alloy supermartensitic stainless steel using pulsed and conventional current. Microstructural characterization, especially of delta ferrite, was performed by metallographic analysis by means of optical microscopy and scanning electron microscopy. The experiments showed that for the same heat input, pulsed current promoted the formation of delta ferrite in the form of bands along the weld bead and caused a significant reduction of this phase in HAZ as compared to conventional welding.

  14. Influence of Metal Transfer Stability and Shielding Gas Composition on CO and CO2 Emissions during Short-circuiting MIG/MAG Welding

    Directory of Open Access Journals (Sweden)

    Valter Alves de Meneses

    Full Text Available Abstract: Several studies have demonstrated the influence of parameters and shielding gas on metal transfer stability or on the generation of fumes in MIG/MAG welding, but little or nothing has been discussed regarding the emission of toxic and asphyxiating gases, particularly as it pertains to parameterization of the process. The purpose of this study was to analyze and evaluate the effect of manufacturing aspects of welding processes (short-circuit metal transfer stability and shielding gas composition on the gas emission levels during MIG/MAG welding (occupational health and environmental aspects. Using mixtures of Argon with CO2 and O2 and maintaining the same average current and the same weld bead volume, short-circuit welding was performed with carbon steel welding wire in open (welder’s breathing zone and confined environments. The welding voltage was adjusted to gradually vary the transfer stability. It was found that the richer the composition of the shielding gas is in CO2, the more CO and CO2 are generated by the arc. However, unlike fume emission, voltage and transfer stability had no effect on the generation of these gases. It was also found that despite the large quantity of CO and CO2 emitted by the arc, especially when using pure CO2 shielding gas, there was no high level residual concentration of CO and CO2 in or near the worker’s breathing zone, even in confined work cells.

  15. Weld controller for automated nuclear service welding

    International Nuclear Information System (INIS)

    Barfield, K.L.; Strubhar, P.M.; Green, D.I.

    1995-01-01

    B and W Nuclear Technologies (BWNT) uses many different types of weld heads for automated welding in the commercial nuclear service industry. Some weld heads are purchased as standard items, while others are custom designed and fabricated by BWNT requiring synchronized multiaxis motion control. BWNT recently completed a development program to build a common weld controller that interfaces to all types of weld heads used by BWNT. Their goal was to construct a system that had the flexibility to add different modules to increase the capability of the controller as different application needs become necessary. The benefits from having a common controller are listed. This presentation explains the weld controller system and the types of applications to which it has been applied

  16. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  17. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    International Nuclear Information System (INIS)

    Adamson, D.; Pickenheim, Bradley

    2008-01-01

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  18. Use of servo controlled weld head for end closure welding

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, S.K.; Setty, D.S.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2010-07-01

    In the PHWR fuel fabrication line resistance welding processes are used for joining various zirconium based alloy components to fuel tube of similar material. The quality requirement of these welding processes is very stringent and has to meet all the product requirements. At present these welding processes are being carried out by using standard resistance welding machines. In the resistance welding process in addition to current and time, force is one of the critical and important parameter, which influences the weld quality. At present advanced feed back type fast response medium frequency weld controllers are being used. This has upslope/down slope, constant and repetitive weld pattern selection features makes this critical welding process more reliable. Compared to weld controllers, squeeze force application devices are limited and normally standard high response pneumatic cylinders are used in the welding process. With this type of devices the force is constant during welding process and cannot be varied during welding process as per the material deformation characteristics. Similarly due to non-availability of feed back systems in the squeeze force application systems restricts the accuracy and quality of the welding process. In the present paper the influence of squeeze force pattern on the weld quality using advanced feed back type servo based force control system was studied. Different squeeze forces were used during pre and post weld heat periods along with constant force and compared with the weld quality. (author)

  19. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  20. Welding in nuclear engineering

    International Nuclear Information System (INIS)

    1982-01-01

    The 3rd international conference 'Welding in nuclear engineering', organized in 1978 by the Deutscher Verband fuer Schweisstechnik e.V., was, like the two foregoing conferences in 1970 and 1974, an absolute success. The noteworthy echo to this meeting in the international technical world - the number of 650 participants from 26 countries is self-evidence - and this fact, was for the Deutscher Verband fuer Schweisstechnik e.V. occasion and at the same time an obligation now to follow in the same way, the meeting that was started 12 years ago, by organizing the international conference 'Welding in nuclear engineering'. The conference this year offers in addition to the two plenary session lectures, 34 short reports and a further 28 single contributions in the form of two poster-sessions. Unfortunately, it was again not possible to accept all the papers submitted because the conference was limited to 2 days only. Nevertheless, the papers will offer a representative cross-section through the total range of welding engineering. In particular, the poster session, which take place for the first time within the scope of a meeting organized by the Working Group 'Welding in Nuclear Engineering', should contribute to the aim that this time again the discussions will form the main point of the conference. (orig./RW) [de

  1. Development of welding technology for improving the metallurgical and mechanical properties of 21st century nickel based superalloy 686

    Energy Technology Data Exchange (ETDEWEB)

    Arulmurugan, B. [School of Mechanical Engineering, VIT University, Vellore 632014 (India); KPR Institute of Engineering and Technology, Coimbatore (India); Manikandan, M., E-mail: mano.manikandan@gmail.com [School of Mechanical Engineering, VIT University, Vellore 632014 (India)

    2017-04-13

    Alloy 686 is a highly corrosion resistant 21st-Century Nickel based superalloy derived from Ni-Cr-Mo ternary system. The alloying elements chromium (Cr) and molybdenum (Mo) are added to improve the resistance to corrosion in the broad range of service environment. The presence of a higher percentage of alloying elements Cr and Mo lead to microsegregation and end up with hot cracking in the fusion zone of Nickel-based superalloys. However, there is scanty of information regarding the welding of alloy 686 with respect to the microsegregation of alloying elements. The present study investigates the possibility of bringing down the microsegregation to cut down the formation of secondary phases in the fusion zone. The weld joints were fabricated by Gas Tungsten Arc Welding (GTAW) and Pulsed current gas tungsten arc welding (PCGTAW) with ERNiCrMo-10 filler and without filler wire (autogenous) mode. The microstructural properties of the weld joints were studied with optical and Scanning Electron Microscope (SEM). The joints fabricated by pulsed current (PC) technique shows refined microstructure, narrower weld bead and practically no heat affected zone (HAZ). Scanning Electron Microscope demonstrates the presence of secondary phases in the interdendritic regions of GTAW case. Energy Dispersive X-ray Spectroscopy (EDS) analysis was carried out to evaluate the microsegregation of alloying element. The results show that the segregation of Mo noticed in the interdendritic zone of GTAW both autogenous and filler wire. Tensile and Impact tests were done to evaluate the strength, ductility, and toughness of the weld joints. The results show that the PCGTA helps to obtain improved strength, ductility and toughness of the weld joints compared to their respective GTAW. Bend test did not lead to cracking irrespective of the type of welding adopted in the present study.

  2. Multiplexed Analysis of Serum Breast and Ovarian Cancer Markers by Means of Suspension Bead-quantum Dot Microarrays

    Science.gov (United States)

    Brazhnik, Kristina; Sokolova, Zinaida; Baryshnikova, Maria; Bilan, Regina; Nabiev, Igor; Sukhanova, Alyona

    Multiplexed analysis of cancer markers is crucial for early tumor diagnosis and screening. We have designed lab-on-a-bead microarray for quantitative detection of three breast cancer markers in human serum. Quantum dots were used as bead-bound fluorescent tags for identifying each marker by means of flow cytometry. Antigen-specific beads reliably detected CA 15-3, CEA, and CA 125 in serum samples, providing clear discrimination between the samples with respect to the antigen levels. The novel microarray is advantageous over the routine single-analyte ones due to the simultaneous detection of various markers. Therefore the developed microarray is a promising tool for serum tumor marker profiling.

  3. A mathematical approach based on finite differences method for analyzing the temperature field in arc welding of stainless steel thin sheets; Desarrollo de un modelo matematico de diferencias finitas para el analisis del campo de temperaturas en la soldadura por arco de chapas finas de acero inoxidable

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Conesa, E.J.; Estrems, M.; Miguel, V.

    2010-07-01

    This work develops a finite difference method to evaluate the temperature field in the heat affected zone in butt welding applied to AISI 304 stainless steel thin sheet by GTAW process. A computer program has been developed and implemented by Visual Basic for Applications (VBA) in MS-Excel spreadsheet. The results that are obtained using the numerical application foresee the thermal behaviour of arc welding processes. An experimental methodology has been developed to validate the mathematical model that allows to measure the temperature in several points close to the weld bead. The methodology is applied to a stainless steel sheet with a thickness lower than 3 mm, although may be used for other steels and welding processes as MIG/MAG and SMAW. The data which has been obtained from the experimental procedure have been used to validate the results that have been calculated by the finite differences numerical method. The mathematical model adjustment has been carried out taking into account the experimental results. The differences found between the experimental and theoretical approaches are due to the convection and radiation heat losses, which have not been considered in the simulation model.With this simple model, the designer will be able to calculate the thermal cycles that take place in the process as well as to predict the temperature field in the proximity of the weld bead. (Author). 18 refs.

  4. Modelling grain-scattered ultrasound in austenitic stainless-steel welds: A hybrid model

    International Nuclear Information System (INIS)

    Nowers, O.; Duxbury, D. J.; Velichko, A.; Drinkwater, B. W.

    2015-01-01

    The ultrasonic inspection of austenitic stainless steel welds can be challenging due to their coarse grain structure, charaterised by preferentially oriented, elongated grains. The anisotropy of the weld is manifested as both a ‘steering’ of the beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the influence of weld properties, such as mean grain size and orientation distribution, on the magnitude of scattered ultrasound is not well understood. A hybrid model has been developed to allow the study of grain-scatter effects in austenitic welds. An efficient 2D Finite Element (FE) method is used to calculate the complete scattering response from a single elliptical austenitic grain of arbitrary length and width as a function of the specific inspection frequency. A grain allocation model of the weld is presented to approximate the characteristic structures observed in austenitic welds and the complete scattering behaviour of each grain calculated. This model is incorporated into a semi-analytical framework for a single-element inspection of a typical weld in immersion. Experimental validation evidence is demonstrated indicating excellent qualitative agreement of SNR as a function of frequency and a minimum SNR difference of 2 dB at a centre frequency of 2.25 MHz. Additionally, an example Monte-Carlo study is presented detailing the variation of SNR as a function of the anisotropy distribution of the weld, and the application of confidence analysis to inform inspection development

  5. Energy efficient bead milling of microalgae: Effect of bead size on disintegration and release of proteins and carbohydrates.

    Science.gov (United States)

    Postma, P R; Suarez-Garcia, E; Safi, C; Yonathan, K; Olivieri, G; Barbosa, M J; Wijffels, R H; Eppink, M H M

    2017-01-01

    The disintegration of three industry relevant algae (Chlorella vulgaris, Neochloris oleoabundans and Tetraselmis suecica) was studied in a lab scale bead mill at different bead sizes (0.3-1mm). Cell disintegration, proteins and carbohydrates released into the water phase followed a first order kinetics. The process is selective towards proteins over carbohydrates during early stages of milling. In general, smaller beads led to higher kinetic rates, with a minimum specific energy consumption of ⩽0.47kWhkg DW -1 for 0.3mm beads. After analysis of the stress parameters (stress number and stress intensity), it appears that optimal disintegration and energy usage for all strains occurs in the 0.3-0.4mm range. During the course of bead milling, the native structure of the marker protein Rubisco was retained, confirming the mildness of the disruption process. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Low temperature corneal laser welding investigated by atomic force microscopy

    Science.gov (United States)

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-02-01

    The structural modifications in the stromal matrix induced by low-temperature corneal laser welding were investigated by atomic force microscopy (AFM). This procedure consists of staining the wound with Indocyanine Green (ICG), followed by irradiation with a near-infrared laser operated at low-power densities. This induces a local heating in the 55-65 °C range. In welded tissue, extracellular components undergo heat-induced structural modifications, resulting in a joining effect between the cut edges. However, the exact mechanism generating the welding, to date, is not completely understood. Full-thickness cuts, 3.5 mm in length, were made in fresh porcine cornea samples, and these were then subjected to laser welding operated at 16.7 W/cm2 power density. AFM imaging was performed on resin-embedded semi-thin slices once they had been cleared by chemical etching, in order to expose the stromal bulk of the tissue within the section. We then carried out a morphological analysis of characteristic fibrillar features in the laser-treated and control samples. AFM images of control stromal regions highlighted well-organized collagen fibrils (36.2 +/- 8.7 nm in size) running parallel to each other as in a typical lamellar domain. The fibrils exhibited a beaded pattern with a 22-39 nm axial periodicity. Laser-treated corneal regions were characterized by a significant disorganization of the intralamellar architecture. At the weld site, groups of interwoven fibrils joined the cut edges, showing structural properties that were fully comparable with those of control regions. This suggested that fibrillar collagen is not denatured by low-temperature laser welding, confirming previous transmission electron microscopy (TEM) observations, and thus it is probably not involved in the closure mechanism of corneal cuts. The loss of fibrillar organization may be related to some structural modifications in some interfibrillar substance as proteoglycans or collagen VI. Furthermore, AFM

  7. Experimental assessment of the influence of welding process parameters on Lamb wave transmission across ultrasonically welded thermoplastic composite joints

    Science.gov (United States)

    Ochôa, Pedro; Fernandez Villegas, Irene; Groves, Roger M.; Benedictus, Rinze

    2018-01-01

    One of the advantages of thermoplastic composites relative to their thermoset counterparts is the possibility of assembling components through welding. Ultrasonic welding in particular is very promising for industrialization. However, uncertainty in the fatigue and fracture behaviour of composites is still an obstacle to the full utilisation of these materials. Health monitoring is then of vital importance, and Lamb wave techniques have been widely recognised as some of the most promising approaches for that end. This paper presents the first experimental study about the influence of welding travel on the transmission of Lamb waves across ultrasonically welded thermoplastic composite joints in single-lap configuration. The main aim of this research is to start to understand how guided waves interact with the internal structure of ultrasonic welds, so that benign, manufacturing-related structural features can be distinguished from damaging ones in signal interpretation. The power transmission coefficient and the correlation coefficient proved to be suitable for analysing the wave propagation phenomena, allowing quantitative identification of small variations of weld-line thickness and intermolecular diffusion at the weld interface. The conclusions are used to develop a tentative damage detection criterion which can later on assist the design of a Lamb wave based structural health monitoring system for thermoplastic composite structures. The Lamb wave test results are backed up by phased-array inspections, which also provide some extra insight on the internal structure of ultrasonic welds.

  8. Micromachined filter-chamber array with passive valves for biochemical assays on beads.

    Science.gov (United States)

    Andersson, H; van der Wijngaart, W; Stemme, G

    2001-01-01

    The filter-chamber array presented here enables a real-time parallel analysis of three different samples on beads in a volume of 3 nL, on a 1 cm2 chip. The filter-chamber array is a system containing three filter-chambers, three passive valves at the inlet channels and a common outlet. The design enables parallel sample handling and time-controlled analysis. The device is microfabricated in silicon and sealed with a Pyrex lid to enable real-time analysis. Single nucleotide polymorphism analysis by using pyrosequencing has successfully been performed in single filter-chamber devices. The passive valves consist of plasma-deposited octafluorocyclobutane and show a much higher resistance towards water and surface-active solutions than previous hydrophobic patches. The device is not sensitive to gas bubbles, clogging is rare and reversible, and the filter-chamber array is reusable. More complex (bio)chemical reactions on beads can be performed in the devices with passive valves than in the devices without valves.

  9. Effect of fiber laser parameters on laser welded AZ31B Magnesium alloys

    Directory of Open Access Journals (Sweden)

    Mat Salleh Naqiuddin

    2017-01-01

    Full Text Available Recently, the usage of Magnesium (Mg alloys has been hugely applied in the industrial application such as in automotive, marine, and electronic due to its advantages of recyclability and lightweight. This alloys required low heat input to be weld since it is easily evaporated due to the Magnesium Oxide (MgO at the surface and it also possesses lower melting point compared to steel. Laser welding is more convenient to weld Mg alloys due to its high power and lower heat input. AZ31B was selected since it has strong mechanical properties among others Mg alloys due to the major alloying elements; Aluminium (Al and Zinc (Zn. Low power fiber laser machine with wavelength of 900 nm was used in this experiment. The intention of this work was to investigate the effect of low power fiber laser parameters and effect of shielding gas on weld penetration and microstructure. Another aim in this work was to produce the joint for this thin sheets metal. Penetration depth and microstructure evaluation were emphasized in the analysis section. Bead-on-Plate (BOP and laser lap welding was conducted on AZ31B with thicknesses of 1.0 mm and 0.6 mm for feasibility study using pulsed wave (PW mode. Defocusing features was used in order to find better focal position, which has less occurrence of evaporation (underfill. The effect of different angle of irradiation was also investigated. Two types of shielding gases, Argon (Ar and Nitrogen (N2 were used in order to study the effect of shielding gas. Lastly, the effect of pulsed energy on penetration types and depth of BOP welded samples was investigated. Focus point was found at focal length of 156 mm with 393.75 μm. For BOP experiment, higher pulsed energy used contributes to melt through defect. Meanwhile, Ns shielding gas proved to be better shielding gas in laser welding the AZ31B. Higher angle of irradiation could reduce the underfill defect. Fillet Lap joint of similar metal was successfully done where 2.0 J of

  10. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  11. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  12. Helium-induced weld degradation of HT-9 steel

    International Nuclear Information System (INIS)

    Wang, Chin-An; Chin, B.A.; Lin, Hua T.; Grossbeck, M.L.

    1992-01-01

    Helium-bearing Sandvik HT-9 ferritic steel was tested for weldability to simulate the welding of structural components of a fusion reactor after irradiation. Helium was introduced into HT-9 steel to 0.3 and 1 atomic parts per million (appm) by tritium doping and decay. Autogenous single pass full penetration welds were produced using the gas tungsten arc (GTA) welding process under laterally constrained conditions. Macroscopic examination showed no sign of any weld defect in HT-9 steel containing 0.3 appm helium. However, intergranular micro cracks were observed in the HAZ of HT-9 steel containing 1 appm helium. The microcracking was attributed to helium bubble growth at grain boundaries under the influence of high stresses and temperatures that were present during welding. Mechanical test results showed that both yield strength (YS) and ultimate tensile strength (UTS) decreased with increasing temperature, while the total elongation increased with increasing temperature for all control and helium-bearing HT-9 steels

  13. TiO2 beads and TiO2-chitosan beads for urease immobilization

    International Nuclear Information System (INIS)

    Ispirli Doğaç, Yasemin; Deveci, İlyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-01-01

    The aim of the present study is to synthesize TiO 2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO 2 beads. In the first method (A), urease enzyme was immobilized onto TiO 2 beads by adsorption and then crosslinking. In the second method (B), TiO 2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2 mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5 mg/ml for A and 1.0 mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0 mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60 °C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4–70 °C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30 °C (A), 40 °C (B) and 35 °C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65 °C. However, at this temperature free urease protected only 15% activity. - Highlights: • TiO 2 and TiO 2 -chitosan beads for urease immobilization have been prepared and characterized. • The beads used in this work are good matrices for the immobilization of urease. • The immobilized urease was shown to have good properties and stabilities (pH and thermal stability, operational stability). • The 50

  14. Laser-welded ureteral anastomoses: experimental studies with three techniques.

    Science.gov (United States)

    Gürpinar, T; Gürer, S; Kattan, M W; Wang, L; Griffith, D P

    1996-01-01

    Tissue welding with laser energy is a new technique for reconstructive surgery. The potential advantages of laser welding are (a) lack of foreign body reaction, (b) decreased operative time, (c) less tissue manipulation, and (d) effective union of tissues equivalent to sutured anastomoses. We have performed ureteral anastomoses in adult mongrel dogs using a KTP 532 nm laser at an intensity of 1.4 W. Multiple "spot welds" of 1-s duration were utilized in a single layer anastomosis. Laser-welded anastomoses were performed with and without protein solder (33% and 50% human albumin) and were compared to sutured anastomoses. The laser-welded anastomoses required less operative time and provided bursting pressure levels similar to those of traditional sutured anastomoses. There was no advantage or disadvantage to the addition of human albumin as a solder in these experimental studies.

  15. Welding-induced local maximum residual stress in heat affected zone of low-carbon austenitic stainless steel with machined surface layer and its influential factors

    International Nuclear Information System (INIS)

    Okano, Shigetaka; Ihara, Ryohei; Kanamaru, Daisuke; Mochizuki, Masahito

    2015-01-01

    In this study, the effects of work-hardening and pre-existing stress in the machined surface layer of low-carbon austenitic stainless steel on the welding-induced residual stress were experimentally investigated through the use of weld specimens with three different surface layers; as-cutout, mechanically-polished and electrolytically-polished. The high tensile and compressive stresses exist in the work-hardened surface layer of the as-cutout and mechanically-polished specimens, respectively. Meanwhile, no stress and work-hardened surface layer exist in the electrolytically-polished specimen. TIG bead-on-plate welding under the same welding heat input conditions was performed to introduce the residual stress into these specimens. Using these welded specimens, the distributions of welding-induced residual stress were measured by the X-ray diffraction method. Similarly, the distributions of hardness in welds were estimated by the Vickers hardness test. And then, these distributions were compared with one another. Based on the results, the residual stress in the weld metal (WM) is completely unaffected by the machined surface layer because the work-hardened surface layer disappears through the processes of melting and solidification during welding. The local maximum longitudinal tensile residual stress in the heat affected zone (HAZ) depends on the work-hardening but not on the existing stress, regardless of whether tensile or compressive, in the machined surface layer before welding. At the base metal far from WM and HAZ, the residual stress is formed by the addition of the welding-induced residual stress to the pre-existing stress in the machined surface layer before welding. The features of the welding-induced residual stress in low-carbon austenitic stainless steel with the machined surface layer and their influential factors were thus clarified. (author)

  16. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  17. Acoustoelastic evaluation of welding and heat treatment stress relieving of pressure vessel steel for Angra 3

    International Nuclear Information System (INIS)

    Moraes, Bruno C. de; Bittencourt, Marcelo de S.Q.

    2015-01-01

    Currently the knowledge of non-destructive techniques allows to evaluate the stresses on components and mechanical structures, aiming at physical security, preservation of the environment and avoid financial losses associated with the construction and operation of industrial plants. The search for new techniques, especially applied in the nuclear industry to assess status more accurately, voltage safety and to ensure structural integrity, for example, core components of the primary circuit, such as the reactor pressure vessel and steam generator has become of great importance within the community of non-destructive testing .This paper aims to contribute to the non-destructive technique development in order to ensure the structural integrity of nuclear components. One acoustoelastic evaluation of steel 20 MnMoNi 55, used in pressure vessels of nuclear power plants were performed. The acoustic birefringence technique was use to evaluate the acoustoelastic behavior of the test material in the as received condition, after welding and after the stress relief heat treatment. The constant acoustoelastic material was obtained by an uniaxial loading test. It was found a slight anisotropy in the material as received. After welding, a marked variation of acoustic birefringence in the region near the weld bead was observed. The heat treatment indicated a new change of acoustic birefringence. Obtaining the acoustoelastic constant allowed the evaluation of stress in the different conditions of the weld and treated material. (author)

  18. Acoustoelastic evaluation of welding and heat treatment stress relieving of pressure vessel steel for Angra 3

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Bruno C. de, E-mail: bruno.cesar@nuclep.gov.br [Nuclebras Equipamentos Pesados S.A (NUCLEP), Itaguai, RJ (Brazil); Bittencourt, Marcelo de S.Q., E-mail: bruno.cesar@nuclep.gov.br, E-mail: bittenc@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Currently the knowledge of non-destructive techniques allows to evaluate the stresses on components and mechanical structures, aiming at physical security, preservation of the environment and avoid financial losses associated with the construction and operation of industrial plants. The search for new techniques, especially applied in the nuclear industry to assess status more accurately, voltage safety and to ensure structural integrity, for example, core components of the primary circuit, such as the reactor pressure vessel and steam generator has become of great importance within the community of non-destructive testing .This paper aims to contribute to the non-destructive technique development in order to ensure the structural integrity of nuclear components. One acoustoelastic evaluation of steel 20 MnMoNi 55, used in pressure vessels of nuclear power plants were performed. The acoustic birefringence technique was use to evaluate the acoustoelastic behavior of the test material in the as received condition, after welding and after the stress relief heat treatment. The constant acoustoelastic material was obtained by an uniaxial loading test. It was found a slight anisotropy in the material as received. After welding, a marked variation of acoustic birefringence in the region near the weld bead was observed. The heat treatment indicated a new change of acoustic birefringence. Obtaining the acoustoelastic constant allowed the evaluation of stress in the different conditions of the weld and treated material. (author)

  19. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced...... residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature failure in the weld components. This paper deals with the influence and impact of welding method on the welding...... induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...

  20. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  1. Fracture mechanics characterisation of the WWER-440 reactor pressure vessel beltline welding seam of Greifswald unit 8

    International Nuclear Information System (INIS)

    Viehrig, Hans-Werner; Schuhknecht, Jan

    2008-01-01

    WWER-440 second generation (V-213) reactor pressure vessels (RPV) were produced by IZHORA in Russia and by SKODA in the former Czechoslovakia. The surveillance Charpy-V and fracture mechanics SE(B) specimens of both producers have different orientations. The main difference is the crack extension direction which is through the RPV thickness and circumferential for ISHORA and SKODA RPV, respectively. In particular for the investigation of weld metal from multilayer submerged welding seams the crack extension direction is of importance. Depending on the crack extension direction in the specimen there are different welding beads or a uniform structure along the crack front. The specimen orientation becomes more important when the fracture toughness of the weld metal is directly determined on surveillance specimens according to the Master Curve (MC) approach as standardised in the ASTM Standard Test Method E1921. This approach was applied on weld metal of the RPV beltline welding seam of Greifswald Unit 8 RPV. Charpy size SE(B) specimens from 13 locations equally spaced over the thickness of the welding seam were tested. The specimens are in TL and TS orientation. The fracture toughness values measured on the SE(B) specimens with both orientations follow the course of the MC. Nearly all values lie within the fracture toughness curves for 5% and 95% fracture probability. There is a strong variation of the reference temperature T 0 though the thickness of the welding seam, which can be explained with structural differences. The scatter is more pronounced for the TS SE(B) specimens. It can be shown that specimens with TS and TL orientation in the welding seam have a differentiating and integrating behaviour, respectively. The statistical assumptions behind the MC approach are valid for both specimen orientations even if the structure is not uniform along the crack front. By comparison crack extension, JR, curves measured on SE(B) specimens with TL and TS orientation show

  2. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  3. APPLICATIONS OF A SINGLE CARBON ELECTRODE

    African Journals Online (AJOL)

    Preferred Customer

    Page 1 ... ABSTRACT: A single carbon electrode used with a common arc welder has been successfully used on steel to weld, to surface harden, to spot weld sheet, to pierce holes and to do simple brazing. ... applications: welding, spot welding, hole piercing, etc. The metal tube holding the carbon electrodes is banded with ...

  4. Alternate Welding Processes for In-Service Welding

    Science.gov (United States)

    2009-04-24

    Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a rep...

  5. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  6. Calcium Pectinate Beads Formation: Shape and Size Analysis

    Directory of Open Access Journals (Sweden)

    Boon-Beng Lee

    2014-04-01

    Full Text Available The aim of this study was to investigate the inter-relationship between process variables and the size and shape of pectin solution droplets upon detachment from a dripping tip as well as Ca-pectinate beads formed after gelation via image analysis. The sphericity factor (SF of the droplets was generally smaller than 0.05. There was no specific trend between the SF of the droplets and the pectin concentration or the dripping tip radius. The SF the beads formed from high-concentration pectin solutions and a small dripping tip was smaller than 0.05. The results show that the Reynolds number and Ohnesorge number of the droplets fall within the operating region for forming spherical beads in the shape diagram, with the exception to the lower boundary. The lower boundary of the operating region has to be revised to Oh = 2.3. This is because the critical viscosity for Ca-pectinate bead formation is higher than that of Ca-alginate beads. On the other hand, the radius of the droplets and beads increased as the dripping tip radius increased. The bead radius can easily be predicted by Tate’s law equation.

  7. HPMA and HEMA copolymer bead interactions with eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Cristina D. Vianna-Soares

    2004-09-01

    Full Text Available Two different hydrophilic acrylate beads were prepared via aqueous suspension polymerization. Beads produced of a hydroxypropyl methacrylate (HPMA and ethyleneglycol methacrylate (EDMA copolymer were obtained using a polyvinyl alcohol suspending medium. Copolymers of 2hydroxyethyl methacrylate (HEMA, methyl methacrylate (MMA and ethyleneglycol methacrylate (EDMA beads were obtained using magnesium hydroxide as the suspending agent. Following characterization by scanning electron microscopy (SEM, nitrogen sorption analysis (NSA and mercury intrusion porosimetry (MIP, the beads were cultured with monkey fibroblasts (COS7 to evaluate their ability to support cell growth, attachment and adhesion. Cell growth behavior onto small HPMA/EDMA copolymer beads and large HEMA/MMA/EDMA copolymer beads is evaluated regarding their hidrophilicity/hidrophobicity and surface roughness.

  8. Analysis of a weld of an hydrogen tank under pressure: contribution of the nano-indentation for the characterization; Analyse d'une soudure d'un reservoir d'hydrogene sous pression: apport de la nanoindentation pour la caracterisation

    Energy Technology Data Exchange (ETDEWEB)

    Russo, C.; Delobelle, P.; Perreux, D. [Laboratoire de Mecanique Appliquee R. Chaleat (LMARC), Institut FEMTO-ST, UFC and CNRS, 25 - Besancon (France); Russo, C.; Munier, E. [CEA Valduc, 21 - Is-sur-Tille (France); Decamps, B. [Institut de Chimie et des Materiaux Paris-Est vient, CNRS, CMTR-ICMPE, 94 - Thiais (France)

    2007-07-01

    This work deals with the size of an hydrogen spherical tank under pressure, composed of two half shell in aluminium alloy AZ5G machined in a forged bar and welded by electrons beam by a circumference. In this work, it is shown what the nano-indentation test can bring here. The influence of the tempering heat treatment after welding, the grains diameter and the loss in alloy elements (Zn and Mg) on the local mechanical properties of the weld bead has been revealed. In the same way, a hardening of the alloy due to the hydrogen penetration and leading to an increase of the dislocations density is observed. (O.M.)

  9. Closing the weld gap with laser/mig hybrid welding process

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Wiwe, Bjarne David

    2003-01-01

    In this article, laboratory tests are demonstrated that systematically accesses the critical gap distance when welding CMn 2.13 mm steel with a 2.6 kW CO2 laser, combined with a MIG energy source. In the work, the welding speed is varied at gap distances from 0 to 0.8 mm such that the limits...... for obtaining sound welds are identified. The welds are quality assessed according to ISO 13.919-1 and EN25817, transversal hardness measurements are made and the heat input to the workpiece is calculated. The results show that the critical gap is 0.1 mm for a laser weld alone. With hybrid welding, this can...... be increased to 0.6 mm, even at a welding speed of 3.5 m/min. The maximum welding speed with the hybrid process is comparable to laser welding alone, 4.5 m/min. The measured hardness is comparable to MIG welding, and this corresponds to a 33 percent reduction compared to laser welding alone. The heat input...

  10. Controlled torque on superparamagnetic beads for functional biosensors

    NARCIS (Netherlands)

    Janssen, X.J.A.; Schellekens, A.J.; van Ommering, K.; IJzendoorn, van L.J.; Prins, M.W.J.

    2009-01-01

    We demonstrate that a rotating magnetic field can be used to apply a controlled torque on superparamagnetic beads which leads to a tunable bead rotation frequency in fluid. Smooth rotation is obtained for field rotation frequencies many orders of magnitude higher than the bead rotation frequency. A

  11. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2017-12-01

    Full Text Available The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding parameters and micro-jet cooling parameters is very important to achieve a proper steel structure. In this study, the metallographic structure, tensile results and impact toughness of welded joints have been analysed in terms of welding parameters.

  12. Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding

    Science.gov (United States)

    Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.

    2016-04-01

    The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.

  13. Bead magnetorelaxometry with an on-chip magnetoresistive sensor

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Damsgaard, Christian Danvad; Donolato, Marco

    2011-01-01

    Magnetorelaxometry measurements on suspensions of magnetic beads are demonstrated using a planar Hall effect sensor chip embedded in a microfluidic system. The alternating magnetic field used for magnetizing the beads is provided by the sensor bias current and the complex magnetic susceptibility...... spectra are recorded as the 2nd harmonic of the sensor response. The complex magnetic susceptibility signal appears when a magnetic bead suspension is injected, it scales with the bead concentration, and it follows the Cole-Cole expression for Brownian relaxation. The complex magnetic susceptibility...... signal resembles that from conventional magnetorelaxometry done on the same samples apart from an offset in Brownian relaxation frequency. The time dependence of the signal can be rationalized as originating from sedimented beads....

  14. Entrapment of laurel lipase in chitosan hydrogel beads.

    Science.gov (United States)

    Yagar, Hulya; Balkan, Ugur

    2017-08-01

    Laurel seed lipase was entrapped within chitosan beads with ionotropic gelatin method using tripolyphosphate (TPP) as multivalent covalent counter ion. Immobilization yield was 78%. First, optimum immobilization conditions were determined, and morphology of chitosan beads was characterized by scanning electron microscopy. Optimum pH and temperature were evaluated as 6.0 and 40 °C, respectively. The immobilized beads saved about 55% of its activities at 60° while saved about 32% at 70 °C for 30 min. V max /K m values were determined as 31.75 and 2.87 using olive oil as substrate for immobilized beads and free enzyme, respectively. Immobilized beads showed the activities during 30 days at +4 °C.

  15. The Effect of Heat Input and Composition on Weld Metal Microstructures in Thin Section HY-130 GMAW(Gas Metal Are Welding) Weldments

    Science.gov (United States)

    1988-12-01

    weldments, Glover et al. [Ref. Ej show, via a schematic CCT diagram , that austenite should transform to coarse polygonal ferrite with regions of pearlite...are essentially subjected to continuous cooling during solidification, so the resultant microstructures should be predictable from CCT diagrams . Unfortunately...cooling rate variaticn just within a single weld pass. Although individual CCT diagrams for weld metals are generally not available, the influence of

  16. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  17. Fracture toughness of a welded super duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Pilhagen, Johan, E-mail: pilhagen@kth.se [Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden); Sieurin, Henrik [Scania CV AB, Södertälje (Sweden); Sandström, Rolf [Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden)

    2014-06-01

    Fracture toughness testing was conducted on standard single-edge notched bend bar specimens of base and weld metal. The material was the SAF 2906 super duplex stainless steel. The aim was to evaluate the susceptibility for brittle failure at sub-zero temperatures for the base and weld metal. The base metal was tested between −103 and −60 °C and was evaluated according to the crack-tip opening displacement method. The fracture event at and below −80 °C can be described as ductile until critical cleavage initiation occurs, which caused unstable failure of the specimen. The welding method used was submerged arc welding with a 7 wt% nickel filler metal. The welded specimens were post-weld heat treated (PWHT) at 1100 °C for 20 min and then quenched. Energy-dispersive X-ray spectroscopy analysis showed that during PWHT substitutional element partitioning occurred which resulted in decreased nickel content in the ferrite. The PWHT weld metal specimens were tested at −72 °C. The fracture sequence was critical cleavage fracture initiation after minor crack-tip blunting and ductile fracture.

  18. Bead-bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension

    Science.gov (United States)

    Maiti, Amitesh; McGrother, Simon

    2004-01-01

    Dissipative particle dynamics (DPD) is a mesoscale modeling method for simulating equilibrium and dynamical properties of polymers in solution. The basic idea has been around for several decades in the form of bead-spring models. A few years ago, Groot and Warren [J. Chem. Phys. 107, 4423 (1997)] established an important link between DPD and the Flory-Huggins χ-parameter theory for polymer solutions. We revisit the Groot-Warren theory and investigate the DPD interaction parameters as a function of bead size. In particular, we show a consistent scheme of computing the interfacial tension in a segregated binary mixture. Results for three systems chosen for illustration are in excellent agreement with experimental results. This opens the door for determining DPD interactions using interfacial tension as a fitting parameter.

  19. Cu-Fe welding techniques by electromagnetic and electron beam welding processes

    International Nuclear Information System (INIS)

    Kumar, Satendra; Saroj, P.C.; Kulkarni, M.R.; Sharma, A.; Rajawat, R.K.; Saha, T.K.

    2015-01-01

    Electromagnetic welding being a solid state welding process has been found suitable for welding Copper and Iron which are conventionally very tricky. Owing to good electrical conductivity of both copper and iron, they are best suited combination for EM welding. For the experimental conditions presented above, 1.0 mm wall thickness of Cu tube was lap welded to Fe disc. A heavy duty four disc stainless steel coil was used for electromagnetic welding of samples. MSLD of the welded samples indicated leak proof joints. Metallographic examination of the welds also revealed defect free interfaces. Electron beam welding is also a non-conventional welding process used for joining dissimilar materials. Autogenous welding of the above specimen was carried out by EBW method for the sake of comparison. A characterization analysis of the above mentioned joining processes will be discussed in the paper. (author)

  20. Three-bead steering microswimmers

    Science.gov (United States)

    Rizvi, Mohd Suhail; Farutin, Alexander; Misbah, Chaouqi

    2018-02-01

    The self-propelled microswimmers have recently attracted considerable attention as model systems for biological cell migration as well as artificial micromachines. A simple and well-studied microswimmer model consists of three identical spherical beads joined by two springs in a linear fashion with active oscillatory forces being applied on the beads to generate self-propulsion. We have extended this linear microswimmer configuration to a triangular geometry where the three beads are connected by three identical springs in an equilateral triangular manner. The active forces acting on each spring can lead to autonomous steering motion; i.e., allowing the swimmer to move along arbitrary paths. We explore the microswimmer dynamics analytically and pinpoint its rich character depending on the nature of the active forces. The microswimmers can translate along a straight trajectory, rotate at a fixed location, as well as perform a simultaneous translation and rotation resulting in complex curved trajectories. The sinusoidal active forces on the three springs of the microswimmer contain naturally four operating parameters which are more than required for the steering motion. We identify the minimal operating parameters which are essential for the motion of the microswimmer along any given arbitrary trajectory. Therefore, along with providing insights into the mechanics of the complex motion of the natural and artificial microswimmers, the triangular three-bead microswimmer can be utilized as a model for targeted drug delivery systems and autonomous underwater vehicles where intricate trajectories are involved.