Sample records for simulating subsurface flow

  1. Adaptive Multiscale Finite Element Method for Subsurface Flow Simulation

    NARCIS (Netherlands)

    Van Esch, J.M.


    Natural geological formations generally show multiscale structural and functional heterogeneity evolving over many orders of magnitude in space and time. In subsurface hydrological simulations the geological model focuses on the structural hierarchy of physical sub units and the flow model addresses

  2. Advanced Algebraic Multigrid Solvers for Subsurface Flow Simulation

    KAUST Repository

    Chen, Meng-Huo


    In this research we are particularly interested in extending the robustness of multigrid solvers to encounter complex systems related to subsurface reservoir applications for flow problems in porous media. In many cases, the step for solving the pressure filed in subsurface flow simulation becomes a bottleneck for the performance of the simulator. For solving large sparse linear system arising from MPFA discretization, we choose multigrid methods as the linear solver. The possible difficulties and issues will be addressed and the corresponding remedies will be studied. As the multigrid methods are used as the linear solver, the simulator can be parallelized (although not trivial) and the high-resolution simulation become feasible, the ultimately goal which we desire to achieve.

  3. Subsurface flow in a soil-mantled subtropical dolomite karst slope: A field rainfall simulation study (United States)

    Fu, Z. Y.; Chen, H. S.; Zhang, W.; Xu, Q. X.; Wang, S.; Wang, K. L.


    Soil and epikarst co-evolve resulting in complex structures, but their coupled structural effects on hydrological processes are poorly understood in karst regions. This study examined the plot-scale subsurface flow characteristics from an integrated soil-epikarst system perspective in a humid subtropical cockpit karst region of Southwest China. A trench was excavated to the epikarst lower boundary for collecting individual subsurface flows in five sections with different soil thicknesses. Four field rainfall simulation experiments were carried out under different initial moisture conditions (dry and wet) and rainfall intensities (114 mm h- 1 (high) and 46 mm h- 1 (low) on average). The soil-epikarst system was characterized by shallow soil overlaying a highly irregular epikarst surface with a near-steady infiltration rate of about 35 mm h- 1. The subsurface flows occurred mainly along the soil-epikarst interface and were dominated by preferential flow. The subsurface flow hydrographs showed strong spatial variability and had high steady-state coefficients (0.52 and 0.36 for high and low rainfall intensity events). Irregular epikarst surface combining with high vertical drainage capacity resulted in high threshold rainfall depths for subsurface flows: 67 mm and 263 mm for initial wet and dry conditions, respectively. The above results evidenced that the irregular and permeable soil-epikarst interface was a crucial component of soil-epikarst architecture and consequently should be taken into account in the hydrological modeling for karst regions.

  4. Akuna - Integrated Toolsets Supporting Advanced Subsurface Flow and Transport Simulations for Environmental Management

    Energy Technology Data Exchange (ETDEWEB)

    Schuchardt, Karen L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, Deborah A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Finsterle, Stefan A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gable, Carl W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gorton, Ian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gosink, Luke J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keating, Elizabeth H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lansing, Carina S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Joerg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Moeglein, William A.M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pau, George S.H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purohit, Sumit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, Arie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sivaramakrishnan, Chandrika [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    A next generation open source subsurface simulator and user environment for environmental management is being developed through a collaborative effort across Department of Energy National Laboratories. The flow and transport simulator, Amanzi, will be capable of modeling complex subsurface environments and processes using both unstructured and adaptive meshes at very fine spatial resolutions that require supercomputing-scale resources. The user environment, Akuna, provides users with a range of tools to manage environmental and simulator data sets, create models, manage and share simulation data, and visualize results. Underlying the user interface are core toolsets that provide algorithms for sensitivity analysis, parameter estimation, and uncertainty quantification. Akuna is open-source, cross platform software that is initially being demonstrated on the Hanford BC Cribs remediation site. In this paper, we describe the emerging capabilities of Akuna and illustrate how these are being applied to the BC Cribs site.

  5. Development of stream-subsurface flow module in sub-daily simulation of Escherichia coli using SWAT (United States)

    Kim, Minjeong; Boithias, Laurie; Cho, Kyung Hwa; Silvera, Norbert; Thammahacksa, Chanthamousone; Latsachack, Keooudone; Rochelle-Newall, Emma; Sengtaheuanghoung, Oloth; Pierret, Alain; Pachepsky, Yakov A.; Ribolzi, Olivier


    Water contaminated with pathogenic bacteria poses a large threat to public health, especially in the rural areas in the tropics where sanitation and drinking water facilities are often lacking. Several studies have used the Soil and Water Assessment Tool (SWAT) to predict the export of in-stream bacteria at a watershed-scale. However, SWAT is limited to in-stream processes, such as die-off, resuspension and, deposition; and it is usually implemented on a daily time step using the SCS Curve Number method, making it difficult to explore the dynamic fate and transport of bacteria during short but intense events such as flash floods in tropical humid montane headwaters. To address these issues, this study implemented SWAT on an hourly time step using the Green-Ampt infiltration method, and tested the effects of subsurface flow (LATQ+GWQ in SWAT) on bacterial dynamics. We applied the modified SWAT model to the 60-ha Houay Pano catchment in Northern Laos, using sub-daily rainfall and discharge measurements, electric conductivity-derived fractions of overland and subsurface flows, suspended sediments concentrations, and the number of fecal indicator organism Escherichia coli monitored at the catchment outlet from 2011 to 2013. We also took into account land use change by delineating the watershed with the 3-year composite land use map. The results show that low subsurface flow of less than 1 mm recovered the underestimation of E. coli numbers during the dry season, while high subsurface flow caused an overestimation during the wet season. We also found that it is more reasonable to apply the stream-subsurface flow interaction to simulate low in-stream bacteria counts. Using fecal bacteria to identify and understand the possible interactions between overland and subsurface flows may well also provide some insight into the fate of other bacteria, such as those involved in biogeochemical fluxes both in-stream and in the adjacent soils and hyporheic zones.

  6. Modelling and Simulation of Structural Deformation of Isothermal Subsurface Flow and Carbon Dioxide Injection

    KAUST Repository

    El-Amin, Mohamed


    Injection of CO2 in hydrocarbon reservoir has double benefit. On the one hand, it is a profitable method due to issues related to global warming, and on the other hand it is an effective mechanism to enhance hydrocarbon recovery. Such injection associates complex processes involving, e.g., solute transport of dissolved materials, in addition to local changes in density of the phases. Also, increasing carbon dioxide injection may cause a structural deformation of the medium, so it is important to include such effect into the model. The structural deformation modelling in carbon sequestration is important to evaluate the medium stability to avoid CO2 leakage to the atmosphere. On the other hand, geologic formation of the medium is usually heterogeneous and consists of several layers of different permeability. In this work we conduct numerical simulation of two-phase flow in a heterogeneous porous medium domain with dissolved solute transport as well as structural deformation effects. The solute transport of the dissolved component is described by concentration equation. The structural deformation for geomechanics is derived from a general local differential balance equation with neglecting the local mass balance of solid phase and the inertial force term. The flux continuity condition is used at interfaces between different permeability layers of the heterogeneous medium. We analyze the vertical migration of a CO2 plume injected into a 2D layered reservoir. Analysis of distribution of flow field components such as saturation, pressures, velocities, and CO2 concentration are presented.

  7. Numerical simulation for horizontal subsurface flow constructed wetlands: A short review including geothermal effects and solution bounding in biodegradation procedures (United States)

    Liolios, K.; Tsihrintzis, V.; Angelidis, P.; Georgiev, K.; Georgiev, I.


    Current developments on modeling of groundwater flow and contaminant transport and removal in the porous media of Horizontal Subsurface Flow Constructed Wetlands (HSF CWs) are first reviewed in a short way. The two usual environmental engineering approaches, the black-box and the process-based one, are briefly presented. Next, recent research results obtained by using these two approaches are briefly discussed as application examples, where emphasis is given to the evaluation of the optimal design and operation parameters concerning HSF CWs. For the black-box approach, the use of Artificial Neural Networks is discussed for the formulation of models, which predict the removal performance of HSF CWs. A novel mathematical prove is presented, which concerns the dependence of the first-order removal coefficient on the Temperature and the Hydraulic Residence Time. For the process-based approach, an application example is first discussed which concerns procedures to evaluate the optimal range of values for the removal coefficient, dependent on either the Temperature or the Hydraulic Residence Time. This evaluation is based on simulating available experimental results of pilot-scale units operated in Democritus University of Thrace, Xanthi, Greece. Further, in a second example, a novel enlargement of the system of Partial Differential Equations is presented, in order to include geothermal effects. Finally, in a third example, the case of parameters uncertainty concerning biodegradation procedures is considered and the use of upper and a novel approach is presented, which concerns the upper and the lower solution bound for the practical draft design of HSF CWs.

  8. MSTS - Multiphase Subsurface Transport Simulator theory manual

    Energy Technology Data Exchange (ETDEWEB)

    White, M.D.; Nichols, W.E.


    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the {open_quotes}User`s Guide and Reference{close_quotes} companion document.

  9. Discrete Fracture Network Modeling and Simulation of Subsurface Transport for the Topopah Springs and Lava Flow Aquifers at Pahute Mesa, FY 15 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kwicklis, Edward Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrod, Jeremy Ashcraft [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This progress report for fiscal year 2015 (FY15) describes the development of discrete fracture network (DFN) models for Pahute Mesa. DFN models will be used to upscale parameters for simulations of subsurface flow and transport in fractured media in Pahute Mesa. The research focuses on modeling of groundwater flow and contaminant transport using DFNs generated according to fracture characteristics observed in the Topopah Spring Aquifer (TSA) and the Lava Flow Aquifer (LFA). This work will improve the representation of radionuclide transport processes in large-scale, regulatory-focused models with a view to reduce pessimistic bounding approximations and provide more realistic contaminant boundary calculations that can be used to describe the future extent of contaminated groundwater. Our goal is to refine a modeling approach that can translate parameters to larger-scale models that account for local-scale flow and transport processes, which tend to attenuate migration.

  10. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream-aquifer-land interactions (CP v1.0) (United States)

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian; Chen, Xingyuan; Dai, Heng; Hammond, Glenn E.; Riley, William J.; Downs, Janelle L.; Liu, Ying; Zachara, John M.


    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater-river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater-river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater-river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the

  11. Subsurface flow in lowland river gravel bars (United States)

    Bray, E. N.; Dunne, T.


    Geomorphic and hydraulic processes, which form gravel bars in large lowland rivers, have distinctive characteristics that control the magnitude and spatial patterns of infiltration and exfiltration between rivers and their immediate subsurface environments. We present a bedform-infiltration relation together with a set of field measurements along two reaches of the San Joaquin River, CA to illustrate the conditions required for infiltration and exfiltration of flow between a stream and its undulating bed, and a numerical model to investigate the factors that affect paths and residence times of flow through barforms at different discharges. It is shown that asymmetry of bar morphology is a first-order control on the extent and location of infiltration, which would otherwise produce equal areas of infiltration and exfiltration under the assumption of sinusoidal bedforms. Hydraulic conductivity varies by orders of magnitude due to fine sediment accumulation and downstream coarsening related to the process of bar evolution. This systematic variability not only controls the magnitude of infiltration, but also the residence time of flow through the bed. The lowest hydraulic conductivity along the reach occurred where the difference between the topographic gradient and the water-surface gradient is at a maximum and thus where infiltration would be greatest into a homogeneous bar, indicating the importance of managing sand supply to maintain the ventilation and flow through salmon spawning riffles. Numerical simulations corroborate our interpretation that infiltration patterns and rates are controlled by distinctive features of bar morphology.

  12. Integrated Surface/subsurface flow modeling in PFLOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Understanding soil water, groundwater, and shallow surface water dynamics as an integrated hydrological system is critical for understanding the Earth’s critical zone, the thin outer layer at our planet’s surface where vegetation, soil, rock, and gases interact to regulate the environment. Computational tools that take this view of soil moisture and shallow surface flows as a single integrated system are typically referred to as integrated surface/subsurface hydrology models. We extend the open-source, highly parallel, subsurface flow and reactive transport simulator PFLOTRAN to accommodate surface flows. In contrast to most previous implementations, we do not represent a distinct surface system. Instead, the vertical gradient in hydraulic head at the land surface is neglected, which allows the surface flow system to be eliminated and incorporated directly into the subsurface system. This tight coupling approach leads to a robust capability and also greatly simplifies implementation in existing subsurface simulators such as PFLOTRAN. Successful comparisons to independent numerical solutions build confidence in the approximation and implementation. Example simulations of the Walker Branch and East Fork Poplar Creek watersheds near Oak Ridge, Tennessee demonstrate the robustness of the approach in geometrically complex applications. The lack of a robust integrated surface/subsurface hydrology capability had been a barrier to PFLOTRAN’s use in critical zone studies. This work addresses that capability gap, thus enabling PFLOTRAN as a community platform for building integrated models of the critical zone.

  13. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K.


    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.

  14. 4. Modelling Interconnectedness of Subsurface Flow Processes from ...

    African Journals Online (AJOL)


    The study determined subsurface flow processes of 92.3 ha catchment area in order to examine functional relationship among ... subsurface flows, a combination of interflow and groundwater flow, had the two components contributing to stream flow on days ...... Modeling of Water Subsurface Lateral Movement on Top of a ...

  15. [Clogging characteristics of the subsurface flow wetland]. (United States)

    Yan, Lu; Wang, Shi-He; Huang, Juan; Liu, Yang; Wang, Feng


    In order to resolve clogging problem of constructed wetlands caused by improper design or imperfect management and reveal the clogging mechanism, clogging characteristics of the horizontal flow reed wetland and vertical flow reed wetland were studied. Operation stabilities of two types of wetlands were compared. It shows that organic matter accumulates in medium and the concentration is 1.5% - 5%. It mostly occurs in the fore section of top layer in wetland and the concentration is 4% - 5%. The negative correlation between the organic matter content and the subsurface depth was demonstrated. The clogging mechanisms in the horizontal flow wetland and the vertical flow wetland are different. The hydraulic retention time of the horizontal flow wetland is 3.5154 d which is shortened by 21.88%. While the hydraulic retention time of the vertical flow wetland is 5.4648 d and extended by 21.44%. The results indicate that clogging decreases the treatment capacity and running stability conspicuously. The clogging phenomenon of the vertical flow wetland is worse comparatively.

  16. Air-water flow in subsurface systems (United States)

    Hansen, A.; Mishra, P.


    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  17. Scenario simulation based assessment of subsurface energy storage (United States)

    Beyer, C.; Bauer, S.; Dahmke, A.


    Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC

  18. Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) Model (United States)

    This model simulates subsurface flow, fate, and transport of contaminants that are undergoing chemical or biological transformations. This model is applicable to transient conditions in both saturated and unsaturated zones.

  19. Subsurface Transport Over Reactive Multiphases (STORM): A general, coupled, nonisothermal multiphase flow, reactive transport, and porous medium alteration simulator, Version 2 user's guide

    Energy Technology Data Exchange (ETDEWEB)

    DH Bacon; MD White; BP McGrail


    The Hanford Site, in southeastern Washington State, has been used extensively to produce nuclear materials for the US strategic defense arsenal by the Department of Energy (DOE) and its predecessors, the US Atomic Energy Commission and the US Energy Research and Development Administration. A large inventory of radioactive and mixed waste has accumulated in 177 buried single- and double shell tanks. Liquid waste recovered from the tanks will be pretreated to separate the low-activity fraction from the high-level and transuranic wastes. Vitrification is the leading option for immobilization of these wastes, expected to produce approximately 550,000 metric tons of Low Activity Waste (LAW) glass. This total tonnage, based on nominal Na{sub 2}O oxide loading of 20% by weight, is destined for disposal in a near-surface facility. Before disposal of the immobilized waste can proceed, the DOE must approve a performance assessment, a document that described the impacts, if any, of the disposal facility on public health and environmental resources. Studies have shown that release rates of radionuclides from the glass waste form by reaction with water determine the impacts of the disposal action more than any other independent parameter. This report describes the latest accomplishments in the development of a computational tool, Subsurface Transport Over Reactive Multiphases (STORM), Version 2, a general, coupled non-isothermal multiphase flow and reactive transport simulator. The underlying mathematics in STORM describe the rate of change of the solute concentrations of pore water in a variably saturated, non-isothermal porous medium, and the alteration of waste forms, packaging materials, backfill, and host rocks.

  20. Paracetamol removal in subsurface flow constructed wetlands (United States)

    Ranieri, Ezio; Verlicchi, Paola; Young, Thomas M.


    SummaryIn this study two pilot scale Horizontal Subsurface Flow Constructed Wetlands (HSFCWs) near Lecce, Italy, planted with different macrophytes ( Phragmites australis and Typha latifolia) and an unplanted control were assessed for their effectiveness in removing paracetamol. Residence time distributions (RTDs) for the two beds indicated that the Typha bed was characterized by a void volume fraction (porosity) of 0.16 and exhibited more ideal plug flow behavior (Pe = 29.7) than the Phragmites bed (Pe = 26.7), which had similar porosity. The measured hydraulic residence times in the planted beds were 35.8 and 36.7 h when the flow was equal to 1 m 3/d. The Phragmites bed exhibited a range of paracetamol removals from 51.7% for a Hydraulic Loading Rate (HLR) of 240 mm/d to 87% with 120 mm/d HLR and 99.9% with 30 mm/d. The Typha bed showed a similar behavior with percentages of removal slightly lower, ranging from 46.7% (HLR of 240 mm/d) to >99.9% (hydraulic loading rate of 30 mm/d). At the same HLR values the unplanted bed removed between 51.3% and 97.6% of the paracetamol. In all three treatments the paracetamol removal was higher with flow of 1 m 3/d and an area of approx. 7.5 m 2 (half bed) than in the case of flow equal to 0.5 m 3/d with a surface treatment of approx. 3.75 m 2. A first order model for paracetamol removal was evaluated and half lives of 5.16 to 10.2 h were obtained.

  1. Modelling Interconnectedness of Subsurface Flow Processes from a ...

    African Journals Online (AJOL)

    The study determined subsurface flow processes of 92.3 ha catchment area in order to examine functional relationship among the surface and subsurface flow variables from the water balance components data. Days without rainfall had zero infiltration while peak values of infiltrated water corresponded with peak rainfall.

  2. Passive control of fully developed turbulent flow by subsurface phonons (United States)

    Hussein, Mahmoud; Biringen, Sedat; Hsieh, Alan; Bacquet, Clemence; Bastawrous, Mary


    Flow control is a central problem in fluid dynamics where the goal is to alter a flow's natural state to achieve improved performance, such as delay of laminar-to-turbulent transition or reduction of drag in a fully developed turbulent flow. Meeting this goal promises to significantly reduce the dependence on fossil fuels for global transport, impacting air and sea vehicles as well as long-range pipelines. In earlier work, we have shown that phonon motion underneath a surface interacting with a flow may be tuned to cause the flow to stabilize, or destabilize, as desired. This concept was demonstrated by simulating a fully developed plane Poiseuille (channel) flow whereby a small portion of an otherwise rigid wall is replaced with a one-dimensional phononic crystal. A Tollmien-Schlichting wave was introduced to the flow as an evolving disturbance. Upon tuning the frequency-dependent phase and amplitude relations of the surface of the phononic crystal that interfaces with the flow, an artificially introduced instability was shown to stabilize, or destabilize, as needed. In this work, we demonstrate the applicability of the phononic subsurface paradigm to the suppression of turbulence production events in fully developed turbulent flow.

  3. Molecular Simulation towards Efficient and Representative Subsurface Reservoirs Modeling

    KAUST Repository

    Kadoura, Ahmad


    This dissertation focuses on the application of Monte Carlo (MC) molecular simulation and Molecular Dynamics (MD) in modeling thermodynamics and flow of subsurface reservoir fluids. At first, MC molecular simulation is proposed as a promising method to replace correlations and equations of state in subsurface flow simulators. In order to accelerate MC simulations, a set of early rejection schemes (conservative, hybrid, and non-conservative) in addition to extrapolation methods through reweighting and reconstruction of pre-generated MC Markov chains were developed. Furthermore, an extensive study was conducted to investigate sorption and transport processes of methane, carbon dioxide, water, and their mixtures in the inorganic part of shale using both MC and MD simulations. These simulations covered a wide range of thermodynamic conditions, pore sizes, and fluid compositions shedding light on several interesting findings. For example, the possibility to have more carbon dioxide adsorbed with more preadsorbed water concentrations at relatively large basal spaces. The dissertation is divided into four chapters. The first chapter corresponds to the introductory part where a brief background about molecular simulation and motivations are given. The second chapter is devoted to discuss the theoretical aspects and methodology of the proposed MC speeding up techniques in addition to the corresponding results leading to the successful multi-scale simulation of the compressible single-phase flow scenario. In chapter 3, the results regarding our extensive study on shale gas at laboratory conditions are reported. At the fourth and last chapter, we end the dissertation with few concluding remarks highlighting the key findings and summarizing the future directions.

  4. FACT (Version 2.0) - Subsurface Flow and Contaminant Transport Documentation and User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S.E.


    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.

  5. An efficient IMPES-based, shifting matrix algorithm to simulate two-phase, immiscible flow in porous media with application to CO 2 sequestration in the subsurface

    KAUST Repository

    Salama, Amgad


    The flow of two or more immiscible fluids in porous media is ubiquitous particularly in oil industry. This includes secondary and tertiary oil recovery, CO2 sequestration, etc. Accurate predictions of the development of these processes are important in estimating the benefits, e.g., in the form of increased oil extraction, when using certain technology. However, this accurate prediction depends to a large extent on two things; the first is related to our ability to correctly characterize the reservoir with all its complexities and the second depends on our ability to develop robust techniques that solve the governing equations efficiently and accurately. In this work, we introduce a new robust and efficient numerical technique to solving the governing conservation laws which govern the movement of two immiscible fluids in the subsurface. This work will be applied to the problem of CO2 sequestration in deep saline aquifer; however, it can also be extended to incorporate more cases. The traditional solution algorithms to this problem are based on discretizing the governing laws on a generic cell and then proceed to the other cells within loops. Therefore, it is expected that, calling and iterating these loops several times can take significant amount of CPU time. Furthermore, if this process is done using programming languages which require repeated interpretation each time a loop is called like Matlab, Python or the like, extremely longer time is expected particularly for larger systems. In this new algorithm, the solution is done for all the nodes at once and not within loops. The solution methodology involves manipulating all the variables as column vectors. Then using shifting matrices, these vectors are sifted in such a way that subtracting relevant vectors produces the corresponding difference algorithm. It has been found that this technique significantly reduces the amount of CPU times compared with traditional technique implemented within the framework of

  6. Final Report: A Model Management System for Numerical Simulations of Subsurface Processes

    Energy Technology Data Exchange (ETDEWEB)

    Zachmann, David


    The DOE and several other Federal agencies have committed significant resources to support the development of a large number of mathematical models for studying subsurface science problems such as groundwater flow, fate of contaminants and carbon sequestration, to mention only a few. This project provides new tools to help decision makers and stakeholders in subsurface science related problems to select an appropriate set of simulation models for a given field application.

  7. Compositional Simulation of Subsurface Remediation via Density Modified Displacement (United States)

    Phelan, T. J.; Ramsburg, C. A.; Abriola, L. M.


    Reduced interfacial tension displacement of nonaqueous phase liquids (NAPLs) in the subsurface can be an efficient means of remediating contaminant source zones. Application of technologies based upon this principle, however, is problematic for NAPLs that are denser than water (DNAPLs) due to their tendency to sink further into the subsurface when mobilized. Pre-mobilization density conversion via alcohol partitioning has been suggested as a means of overcoming this problem. This presentation details efforts in the mathematical modeling of this proposed technology. A comprehensive, empirically-based, multiphase flow and transport model which incorporates the ternary phase partitioning behavior of the DNAPL-alcohol-water system and compositionally dependent phase (e.g., density and viscosity) and interfacial properties (i.e., interfacial tension, capillary pressure-saturation and relative permeability relationships, NAPL entrapment behavior) is described. Model simulations of bench-scale laboratory experiments examining the density conversion and mobilization of entrapped trichloroethene with n-butanol are presented. These results demonstrate the compositional model's ability to accurately describe the density modified displacement process. Sensitivity of model predictions to different physicochemical processes is highlighted.

  8. Horizontal subsurface flow constructed wetlands for mitigation of ...

    African Journals Online (AJOL)

    The feasibility of using constructed wetlands (CWs) for the mitigation of pesticide runoff has been studied in the last decade. However, a lack of related data was verified when subsurface flow constructed wetlands (SSF CWs) are considered for this purpose. In the present work, SSF CWs were submitted to continuous ...

  9. Treatment of swine wastewater with subsurface-flow constructed ...

    African Journals Online (AJOL)

    This study evaluates the capability of horizontal subsurface-flow constructed wetlands (SSF CWs) for treating pretreated swine wastewater as a function of contact time (CT) and type of macrophyte under the local conditions of Yucatán, Mexico. Experiments were conducted from July 2004 to November 2005 on a ...

  10. Warm season performance of horizontal subsurface flow constructed ...

    African Journals Online (AJOL)

    Warm season performance of horizontal subsurface flow constructed wetlands vegetated with rice treating water from an urban stream polluted with sewage. ... Constructed wetlands demonstrated a very good performance in removing organic matter, fecal indicator microorganisms and nutrients from the influent ...

  11. Evaluation of nutrient removal efficiency and microbial enzyme activity in a baffled subsurface-flow constructed wetland system (United States)

    Lihua Cui; Ying Ouyang; Wenjie Gu; Weozhi Yang; Qiaoling. Xu


    In this study, the enzyme activities and their relationships to domestic wastewater purification are investigated in four different types of subsurface-flow constructed wetlands (CWs), namely the traditional horizontal subsurface-flow, horizontal baffled subsurface-flow, vertical baffled subsurface-flow, and composite baffled subsurface-flow CWs. Results showed that...

  12. Modelling Nitrogen Transformation in Horizontal Subsurface Flow ...

    African Journals Online (AJOL)

    Stella II software was used to simulate nitrogen transformation processes. The results show that the most influential nitrogen ... Accretion of organic nitrogen was a major pathway accounting for 0.279 g/m2.d, which is 19.2% of all the influent nitrogen. The accumulation of ammonia nitrogen was found to be high compared to ...

  13. A fully subordinated linear flow model for hillslope subsurface stormflow (United States)

    Zhang, Yong; Baeumer, Boris; Chen, Li; Reeves, Donald M.; Sun, HongGuang


    Hillslope subsurface stormflow exhibits complex patterns when natural soils with multiscale heterogeneity impart a spatiotemporally nonlocal memory on flow dynamics. To efficiently quantify such nonlocal flow responses, this technical note proposes a fully subordinated flow (FSF) equation where the time- and flow-subordination capture the temporal and spatial memory, respectively. Results show that the time-subordination component of the FSF model captures a wide range of delayed flow response due to various degrees of soil heterogeneity (especially for low-conductivity zones), while the model's flow-subordination term accounts for the rapid flow responses along preferential flow paths. In the FSF model, parameters defining spatiotemporal memory functions may be related to soil properties, while other parameters such as scalar factors controlling the overall advection and diffusion are difficult to predict and can be estimated from subsurface stormflow hydrographs. These parameters can be constants at the hillslope scale because the spatiotemporal subordination, an upscaling technique, can capture the impact of system heterogeneity on flow dynamics, leading to a linear FSF model that might be applicable for various slopes. Valid scale, limitation and extension of the FSF model, and modification of the model for other complex hydrological dynamics are also discussed.

  14. Carbon Tetrachloride Flow and Transport in the Subsurface of the 216-Z-18 Crib and 216-Z-1A Tile Field at the Hanford Site: Multifluid Flow Simulations and Conceptual Model Update

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Mart; Rockhold, Mark L.; Thorne, Paul D.; Last, George V.; Truex, Michael J.


    Carbon tetrachloride (CT) was discharged to the 216-Z-9, Z-1A, and Z-18 waste sites that are included in the 200-PW-1 Operable Unit in Hanford 200 West Area. Fluor Hanford, Inc. is conducting a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation/feasibility study (RI/FS) for the 200-PW-1 Operable Unit. As part of this overall effort, Pacific Northwest National Laboratory (PNNL) was contracted to improve the conceptual model of how CT is distributed in the Hanford 200 West Area subsurface through use of numerical flow and transport modeling. This work supports the U.S. Department of Energy's (DOE's) efforts to characterize the nature and distribution of CT in the 200 West Area and subsequently select an appropriate final remedy.

  15. A Theoretical Study of Subsurface Drainage Model Simulation of ...

    African Journals Online (AJOL)

    A three-dimensional variable-density groundwater flow model, the SEAWAT model, was used to assess the influence of subsurface drain spacing, evapotranspiration and irrigation water quality on salt concentration at the base of the root zone, leaching and drainage in salt affected irrigated land. The study was carried out ...

  16. A Theoretical Study of Subsurface Drainage Model Simulation of ...

    African Journals Online (AJOL)


    Abstract. A three-dimensional variable-density groundwater flow model, the SEAWAT model, was used to assess the influence of subsurface drain spacing, ... that is appropriate for groundwater of variable density (Bear, 1997; Evans ...... the effects of salinity and climate change on crop plants. Horti. Sci. 78: 159–174.

  17. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda

    Energy Technology Data Exchange (ETDEWEB)

    Pyrak-Nolte, Laura J [Purdue Univ., West Lafayette, IN (United States); DePaolo, Donald J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Pietraß, Tanja [USDOE Office of Science, Washington, DC (United States)


    From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire the scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research

  18. Efficiency of subsurface flow constructed wetland with trickling filter. (United States)

    Vucinic, Aleksandra Anic; Hrenovic, Jasna; Tepes, Predrag


    Effective wastewater purification in subsurface flow constructed wetlands must include adequate pretreatment and ensure a sufficient amount of dissolved oxygen. In a pilot-scale operation, a subsurface flow constructed wetland (CW) consisted of a primary settlement tank, a trickling filter for pretreatment and two serially assembled basins. The trickling filter was added to ensure sufficient aeration, increase purification of the wastewater and shorten the wastewater purification time. The estimated nominal flow was 0.7 m3/d. The experiments were conducted using the wastewater from the municipal sewage canal of the city of Zagreb, with utilization of three different flows: 0.72 (A), 1.44 (B) and 2.88 (C) m3/d. The efficiency of the purification process was monitored over a period of three years (TSS, BOD5, COD, NH4-N, NO2-N, PO4-P, dissolved oxygen, temperature and pH). The experimental results showed an increase in the removal efficiency with a doubling of the nominal flow from 0.7 to 1.44 m3/d, which could be related to the implementation of the trickling filter where high removal rates were achieved.

  19. HULK - Simple and fast generation of structured hexahedral meshes for improved subsurface simulations (United States)

    Sohrabi, Reza; Jansen, Gunnar; Miller, Stephen A.


    Short for Hexahedra from Unique Location in (K)convex Polyhedra - HULK is a simple and efficient algorithm to generate hexahedral meshes from generic STL files describing a geological model to be used in simulation tools based on the finite difference, finite volume or finite element methods. Using binary space partitioning of the input geometry and octree refinement on the grid, a successive increase in accuracy of the mesh is achieved. HULK generates high accuracy discretizations with cell counts suitable for state-of-the-art subsurface simulators and provides a new method for hexahedral mesh generation in geological settings. A geological model should incorporate structural information and rock properties for any kind of subsurface simulation because simulation accuracy strongly depends on the relevant rock properties and their distribution in space. Therefore, reliable results can only be expected when well-constrained structural and lithological information is used in the simulation. Due to complexities in both the geological modeling and subsurface simulation, an integrated approach of modeling the geology and the physics of the subsurface (e.g. flow, deformation, etc.) is in many cases not available. We address this problem for simulators using hexahedral grids by proposing an efficient mesh generation method. The method is based on octree refinement and provides for direct transfer of structural geological information to the numerical simulator of the underlying physics. Accounting for structures in the subsurface using a geological model efficiently helps increase the accuracy of any kind of numerical subsurface simulation. We developed and implemented a fast and efficient hexahedral mesh generator for subsurface simulations. The simple structure of the algorithm makes it also possible to implement the algorithm directly in the discretization part of other simulation software. However, it can also be used as a stand-alone preprocessing unit. Simulators

  20. iTOUGH2: A multiphysics simulation-optimization framework for analyzing subsurface systems (United States)

    Finsterle, S.; Commer, M.; Edmiston, J. K.; Jung, Y.; Kowalsky, M. B.; Pau, G. S. H.; Wainwright, H. M.; Zhang, Y.


    iTOUGH2 is a simulation-optimization framework for the TOUGH suite of nonisothermal multiphase flow models and related simulators of geophysical, geochemical, and geomechanical processes. After appropriate parameterization of subsurface structures and their properties, iTOUGH2 runs simulations for multiple parameter sets and analyzes the resulting output for parameter estimation through automatic model calibration, local and global sensitivity analyses, data-worth analyses, and uncertainty propagation analyses. Development of iTOUGH2 is driven by scientific challenges and user needs, with new capabilities continually added to both the forward simulator and the optimization framework. This review article provides a summary description of methods and features implemented in iTOUGH2, and discusses the usefulness and limitations of an integrated simulation-optimization workflow in support of the characterization and analysis of complex multiphysics subsurface systems.

  1. Theory and numerical application of subsurface flow and transport for transient freezing conditions

    Energy Technology Data Exchange (ETDEWEB)

    White, M.D. [Pacific Northwest Lab., Richland, WA (United States). Earth and Environmental Sciences Center


    Protective barriers are being investigated for the containment of radioactive waste within subsurface environments. Predicting the effectiveness of cryogenic barriers and near-surface barriers in temperate or arctic climates requires capabilities for numerically modeling subsurface flow and transport for freezing soil conditions. A predictive numerical model is developed herein to simulate the flow and transport of radioactive solutes for three-phase (water-ice-air) systems under freezing conditions. This physically based model simulates the simultaneous flow of water, air, heat, and radioactive solutes through variably saturated and variably frozen geologic media. Expressions for ice (frozen water) and liquid water saturations as functions of temperature, interfacial pressure differences, and osmotic potential are developed from nonhysteretic versions of the Brooks and Corey and van Genuchten functions for soil moisture retention. Aqueous relative permeability functions for variably saturated and variably frozen geologic media are developed from the Mualem and Burdine theories for predicting relative permeability of unsaturated soil. Soil deformations, caused by freezing and melting transitions, are neglected. Algorithms developed for predicting ice and liquid water saturations and aqueous-phase permeabilities were incorporated into the finite-difference based numerical simulator STOMP (Subsurface Transport Over Multiple Phases). Application of the theory is demonstrated by the solution of heat and mass transport in a horizontal cylinder of partially saturated porous media with differentially cooled ends, with the colder end held below the liquid water freezing point. This problem represents an essential capability for modeling cryogenic barriers in variably saturated geologic media.

  2. Airport Network Flow Simulator (United States)


    The Airport Network Flow Simulator is a FORTRAN IV simulation of the flow of air traffic in the nation's 600 commercial airports. It calculates for any group of selected airports: (a) the landing and take-off (Type A) delays; and (b) the gate departu...

  3. Campus Sewage Treatment in Multilayer Horizontal Subsurface Flow Constructed Wetlands

    DEFF Research Database (Denmark)

    Bai, Shaoyuan; Lyu, Tao; Ding, Yanli


    Horizontal subsurface flow constructed wetlands (HSCWs) are widely use for wastewater treatment. The objective of this study is to assess the effects of substrate-size selection and layout optimization on pollutant removal and microbial-community-distribution responses in HSCWs. Three pilot......-scale constructed wetlands (CWs) are established at Guilin University of Technology, China, to treat campus sewage. The three CWs include monolayer (CW1), three-layer (CW2), and six-layer (CW3) substrate structures with the hydraulic conductivity of the substrate increasing from the surface to the bottom...

  4. Subsurface Flow and Contaminant Transport Documentation and User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S.E.


    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media. The code is designed specifically to handle complex multi-layer and/or heterogeneous aquifer systems in an efficient manner and accommodates a wide range of boundary conditions. Additionally, 1-D and 2-D (in Cartesian coordinates) problems are handled in FACT by simply limiting the number of elements in a particular direction(s) to one. The governing equations in FACT are formulated only in Cartesian coordinates.


    Energy Technology Data Exchange (ETDEWEB)

    Hardeman, B.; Swenson, D.; Finsterle, S.; Zhou, Q.


    This is a Phase I report on a project to significantly enhance existing subsurface simulation software using leadership-class computing resources, allowing researchers to solve problems with greater speed and accuracy. Subsurface computer simulation is used for monitoring the behavior of contaminants around nuclear waste disposal and storage areas, groundwater flow, environmental remediation, carbon sequestration, methane hydrate production, and geothermal energy reservoir analysis. The Phase I project was a collaborative effort between Thunderhead Engineering (project lead and developers of a commercial pre- and post-processor for the TOUGH2 simulator) and Lawrence Berkeley National Laboratory (developers of the TOUGH2 simulator for subsurface flow). The Phase I project successfully identified the technical approaches to be implemented in Phase II.

  6. Performance of a vertical subsurface flow constructed wetland under different operational conditions

    National Research Council Canada - National Science Library

    Abdelhakeem, Sara G; Aboulroos, Samir A; Kamel, Mohamed M


    The performance of a vertical subsurface flow constructed wetland (VSSFCW) for sewage effluent treatment was studied in an eight month experiment under different operational conditions including: vegetation...

  7. Lateral and subsurface flows impact arctic coastal plain lake water budgets (United States)

    Koch, Joshua C.


    Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post-snowmelt water budgets. A water budget focused only on post-snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid-summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra-permafrost subsurface inflows from basin-edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic.

  8. Intermediate-Scale Laboratory Experiments of Subsurface Flow and Transport Resulting from Tank Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Martinus; Wietsma, Thomas W.


    Washington River Protection Solutions contracted with Pacific Northwest National Laboratory to conduct laboratory experiments and supporting numerical simulations to improve the understanding of water flow and contaminant transport in the subsurface between waste tanks and ancillary facilities at Waste Management Area C. The work scope included two separate sets of experiments: •Small flow cell experiments to investigate the occurrence of potential unstable fingering resulting from leaks and the limitations of the STOMP (Subsurface Transport Over Multiple Phases) simulator to predict flow patterns and solute transport behavior under these conditions. Unstable infiltration may, under certain conditions, create vertically elongated fingers potentially transporting contaminants rapidly through the unsaturated zone to groundwater. The types of leak that may create deeply penetrating fingers include slow release, long duration leaks in relatively permeable porous media. Such leaks may have occurred below waste tanks at the Hanford Site. •Large flow experiments to investigate the behavior of two types of tank leaks in a simple layered system mimicking the Waste Management Area C. The investigated leaks include a relatively large leak with a short duration from a tank and a long duration leak with a relatively small leakage rate from a cascade line.

  9. A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces (United States)

    Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.


    We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.

  10. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas


    the mass exchange between compartments. A benchmark test, which is based on a classic experimental data set on infiltration excess (Horton) overland flow, identified a feedback mechanism between surface runoff and soil air pressures. Our study suggests that air compression in soils amplifies surface runoff......This work introduces the soil air system into integrated hydrology by simulating the flow processes and interactions of surface runoff, soil moisture and air in the shallow subsurface. The numerical model is formulated as a coupled system of partial differential equations for hydrostatic (diffusive...... wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new...

  11. Modelling bioclogging in variably saturated porous media and the interactions between surface/subsurface flows: Application to Constructed Wetlands. (United States)

    Samsó, Roger; García, Joan; Molle, Pascal; Forquet, Nicolas


    Horizontal subsurface Flow Constructed Wetlands (HF CWs) are biofilters planted with aquatic macrophytes within which wastewater is treated mostly through contact with bacterial biofilms. The high concentrations of organic carbon and nutrients being transported leads to high bacterial biomass production, which decreases the flow capacity of the porous material (bioclogging). In severe bioclogging scenarios, overland flow may take place, reducing overall treatment performance. In this work we developed a mathematical model using COMSOL Multiphysics™ and MATLAB(®) to simulate bioclogging effects in HF CWs. Variably saturated subsurface flow and overland flow were described using the Richards equation. To simplify the inherent complexity of the processes involved in bioclogging development, only one bacterial group was considered, and its growth was described using a Monod equation. Bioclogging effects on the hydrodynamics were taken into account by using a conceptual model that affects the value of Mualem's unsaturated relative permeability. Simulation results with and without bioclogging were compared to showcase the impact of this process on the overall functioning of CWs. The two scenarios rendered visually different bacteria distributions, flow and transport patterns, showing the necessity of including bioclogging effects on CWs models. This work represents one of the few studies available on bioclogging in variably saturated conditions, and the presented model allows simulating the interaction between overland and subsurface flow occurring in most HF CWs. Hence, this work gets us a step closer to being able to describe CWs functioning in an integrated way using mathematical models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Modelling subsurface storm flow with the Representative Elementary Watershed (REW approach: application to the Alzette River Basin

    Directory of Open Access Journals (Sweden)

    G. P. Zhang


    Full Text Available A new domain, the macropore domain describing subsurface storm flow, has been introduced to the Representative Elementary Watershed (REW approach. The mass balance equations have been reformulated and the closure relations associated with subsurface storm flow have been developed. The model code, REWASH, has been revised accordingly. With the revised REWASH, a rainfall-runoff model has been built for the Hesperange catchment, a sub-catchment of the Alzette River Basin. This meso-scale catchment is characterised by fast catchment response to precipitation, and subsurface storm flow is one of the dominant runoff generation processes. The model has been evaluated by a multi-criteria approach using both discharge and groundwater table data measured at various locations in the study site. It is demonstrated that subsurface storm flow contributes considerably to stream flow in the study area. Simulation results show that discharges measured along the main river course are well simulated and groundwater dynamics is well captured, suggesting that the model is a useful tool for catchment-scale hydrological analysis.

  13. Corn stover harvest increases herbicide movement to subsurface drains: RZWQM simulations (United States)

    Shipitalo, Martin J.; Malone, Robert W.; Ma, Liwang; Nolan, Bernard T.; Kanwar, Rameshwar S.; Shaner, Dale L.; Pederson, Carl H.


    BACKGROUND Crop residue removal for bioenergy production can alter soil hydrologic properties and the movement of agrochemicals to subsurface drains. The Root Zone Water Quality Model (RZWQM), previously calibrated using measured flow and atrazine concentrations in drainage from a 0.4 ha chisel-tilled plot, was used to investigate effects of 50 and 100% corn (Zea mays L.) stover harvest and the accompanying reductions in soil crust hydraulic conductivity and total macroporosity on transport of atrazine, metolachlor, and metolachlor oxanilic acid (OXA). RESULTS The model accurately simulated field-measured metolachlor transport in drainage. A 3-yr simulation indicated that 50% residue removal decreased subsurface drainage by 31% and increased atrazine and metolachlor transport in drainage 4 to 5-fold when surface crust conductivity and macroporosity were reduced by 25%. Based on its measured sorption coefficient, ~ 2-fold reductions in OXA losses were simulated with residue removal. CONCLUSION RZWQM indicated that if corn stover harvest reduces crust conductivity and soil macroporosity, losses of atrazine and metolachlor in subsurface drainage will increase due to reduced sorption related to more water moving through fewer macropores. Losses of the metolachlor degradation product OXA will decrease due to the more rapid movement of the parent compound into the soil.

  14. Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands (United States)

    Lihu Cui; Ying Ouyang; Weizhi Yang; Zhujian Huang; Qiaoling Xu; Guangwei Yu


    Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs...

  15. 3-D numerical investigation of subsurface flow in anisotropic porous media using multipoint flux approximation method

    KAUST Repository

    Negara, Ardiansyah


    Anisotropy of hydraulic properties of subsurface geologic formations is an essential feature that has been established as a consequence of the different geologic processes that they undergo during the longer geologic time scale. With respect to petroleum reservoirs, in many cases, anisotropy plays significant role in dictating the direction of flow that becomes no longer dependent only on the pressure gradient direction but also on the principal directions of anisotropy. Furthermore, in complex systems involving the flow of multiphase fluids in which the gravity and the capillarity play an important role, anisotropy can also have important influences. Therefore, there has been great deal of motivation to consider anisotropy when solving the governing conservation laws numerically. Unfortunately, the two-point flux approximation of finite difference approach is not capable of handling full tensor permeability fields. Lately, however, it has been possible to adapt the multipoint flux approximation that can handle anisotropy to the framework of finite difference schemes. In multipoint flux approximation method, the stencil of approximation is more involved, i.e., it requires the involvement of 9-point stencil for the 2-D model and 27-point stencil for the 3-D model. This is apparently challenging and cumbersome when making the global system of equations. In this work, we apply the equation-type approach, which is the experimenting pressure field approach that enables the solution of the global problem breaks into the solution of multitude of local problems that significantly reduce the complexity without affecting the accuracy of numerical solution. This approach also leads in reducing the computational cost during the simulation. We have applied this technique to a variety of anisotropy scenarios of 3-D subsurface flow problems and the numerical results demonstrate that the experimenting pressure field technique fits very well with the multipoint flux approximation

  16. Recovery of subsurface profiles of supergranular flows via iterative inversion of synthetic travel times (United States)

    Bhattacharya, Jishnu; Hanasoge, Shravan M.; Birch, Aaron C.; Gizon, Laurent


    Aims: We develop a helioseismic inversion algorithm that can be used to recover subsurface vertical profiles of two-dimensional supergranular flows from surface measurements of synthetic wave travel times. Methods: We carried out seismic wave-propagation simulations with a two-dimensional section of a flow profile that resembles an average supergranule and a starting model that only has flows at the surface. We assumed that the wave measurements are entirely without realization noise for the purpose of our test. We expanded the vertical profile of the supergranule stream function on a basis of B-splines. We iteratively updated the B-spline coefficients of the supergranule model to reduce the travel-time differences observed between the two simulations. We performed the exercise for four different vertical profiles peaking at different depths below the solar surface. Results: We are able to accurately recover depth profiles of four supergranule models at depths up to 8-10 Mm below the solar surface using f-p4 modes under the assumption that there is no realization noise. We are able to obtain the peak depth and the depth of the return flow for each model. Conclusions: A basis-resolved inversion performs significantly better than an inversion in which the flow field is inverted at each point in the radial grid. This is an encouraging result and might act as a guide in developing more realistic inversion strategies that can be applied to supergranular flows in the Sun.

  17. Effect of Periodic Surface Air Temperature Variations on Subsurface Thermal Structure with Vertical Fluid flow (United States)

    D, R. V.; Ravi, M.; Srivastava, K.


    The influence of climate change on near subsurface temperatures is an important research topic for global change impact assessment at the regional scale. The varying temperature of the air over the surface in long term will disturb subsurface thermal structure. Groundwater flow is another important process which perturbs the thermal distribution into the subsurface. To investigate the effect of periodic air temperature on nonisothermal subsurface, one dimensional transient heat conduction-advection equation is solved numerically using finite element method. Thermal response of subsurface for periodic variations in surface air temperature (SAT) with robin type boundary condition on the surface with vertical ground water flow are calculated and the amplitude attenuation of propagation of surface temperature information in the subsurface for different scenarios of advection and convective coefficient are discussed briefly. The results show the coupled response of trigonometric variation in air temperature with surface temperatures along with ground water velocity has significant implications for the effects of climate change.

  18. An iterative stochastic ensemble method for parameter estimation of subsurface flow models

    KAUST Repository

    Elsheikh, Ahmed H.


    Parameter estimation for subsurface flow models is an essential step for maximizing the value of numerical simulations for future prediction and the development of effective control strategies. We propose the iterative stochastic ensemble method (ISEM) as a general method for parameter estimation based on stochastic estimation of gradients using an ensemble of directional derivatives. ISEM eliminates the need for adjoint coding and deals with the numerical simulator as a blackbox. The proposed method employs directional derivatives within a Gauss-Newton iteration. The update equation in ISEM resembles the update step in ensemble Kalman filter, however the inverse of the output covariance matrix in ISEM is regularized using standard truncated singular value decomposition or Tikhonov regularization. We also investigate the performance of a set of shrinkage based covariance estimators within ISEM. The proposed method is successfully applied on several nonlinear parameter estimation problems for subsurface flow models. The efficiency of the proposed algorithm is demonstrated by the small size of utilized ensembles and in terms of error convergence rates. © 2013 Elsevier Inc.

  19. Subsurface multiphase flow and multicomponent reactive transport modeling using high-performance computing (United States)

    Hammond, Glenn; Lichtner, Peter; Lu, Chuan


    Numerical modeling is a critical tool to the U.S. Department of Energy for evaluating the environmental impact of remediation strategies for subsurface legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most state of the art groundwater models. Of particular concern is the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. There is clearly a need for higher-resolution modeling (i.e. increased spatial and temporal resolution) and increasingly mechanistic descriptions of subsurface physicochemical processes (i.e. increased chemical degrees of freedom). We present SciDAC-funded research being performed in furthering the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers. We are employing PFLOTRAN to simulate uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.

  20. Geoelectrical monitoring of simulated subsurface leakage to support high-hazard nuclear decommissioning at the Sellafield Site, UK

    Energy Technology Data Exchange (ETDEWEB)

    Kuras, Oliver, E-mail: [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Wilkinson, Paul B.; Meldrum, Philip I.; Oxby, Lucy S. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Uhlemann, Sebastian [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); ETH-Swiss Federal Institute of Technology, Institute of Geophysics, Sonneggstr. 5, 8092 Zurich (Switzerland); Chambers, Jonathan E. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Binley, Andrew [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Graham, James [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Smith, Nicholas T. [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); School of Earth, Atmospheric and Environmental Sciences, Williamson Building, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Atherton, Nick [Sellafield Ltd, Albion Square, Swingpump Lane, Whitehaven CA28 7NE (United Kingdom)


    A full-scale field experiment applying 4D (3D time-lapse) cross-borehole Electrical Resistivity Tomography (ERT) to the monitoring of simulated subsurface leakage was undertaken at a legacy nuclear waste silo at the Sellafield Site, UK. The experiment constituted the first application of geoelectrical monitoring in support of decommissioning work at a UK nuclear licensed site. Images of resistivity changes occurring since a baseline date prior to the simulated leaks revealed likely preferential pathways of silo liquor simulant flow in the vadose zone and upper groundwater system. Geophysical evidence was found to be compatible with historic contamination detected in permeable facies in sediment cores retrieved from the ERT boreholes. Results indicate that laterally discontinuous till units forming localized hydraulic barriers substantially affect flow patterns and contaminant transport in the shallow subsurface at Sellafield. We conclude that only geophysical imaging of the kind presented here has the potential to provide the detailed spatial and temporal information at the (sub-)meter scale needed to reduce the uncertainty in models of subsurface processes at nuclear sites. - Graphical abstract: 3D fractional resistivity change (resistivity change Δρ divided by baseline resistivity ρ{sub 0}) image showing results of Stage 1 silo liquor simulant injection. The black line delineates the preferential flow path; green cylinders show regions of historic contamination found in sediment cores from ERT boreholes. - Highlights: • 4D geoelectrical monitoring at Sellafield detected and tracked simulated silo leaks. • ERT revealed likely pathways of silo liquor simulant flow in the subsurface. • The method can reduce uncertainty in subsurface process models at nuclear sites. • Has been applied in this form at a UK nuclear licensed site for the first time • Study demonstrates value of 4D geophysics for nuclear decommissioning.

  1. Efficient numerical simulation of heat storage in subsurface georeservoirs (United States)

    Boockmeyer, A.; Bauer, S.


    The transition of the German energy market towards renewable energy sources, e.g. wind or solar power, requires energy storage technologies to compensate for their fluctuating production. Large amounts of energy could be stored in georeservoirs such as porous formations in the subsurface. One possibility here is to store heat with high temperatures of up to 90°C through borehole heat exchangers (BHEs) since more than 80 % of the total energy consumption in German households are used for heating and hot water supply. Within the ANGUS+ project potential environmental impacts of such heat storages are assessed and quantified. Numerical simulations are performed to predict storage capacities, storage cycle times, and induced effects. For simulation of these highly dynamic storage sites, detailed high-resolution models are required. We set up a model that accounts for all components of the BHE and verified it using experimental data. The model ensures accurate simulation results but also leads to large numerical meshes and thus high simulation times. In this work, we therefore present a numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly for use in larger scale simulations. The numerical model includes all BHE components and represents the temporal and spatial temperature distribution with an accuracy of less than 2% deviation from the fully discretized model. By changing the BHE geometry and using equivalent parameters, the simulation time is reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. Results of a sensitivity study that quantify the effects of different design and storage formation parameters on temperature distribution and storage efficiency for heat storage using multiple BHEs are then shown. It is found that storage efficiency strongly depends on the number of BHEs composing the storage site, their distance and

  2. Advances in Fluid Dynamics of Subsurface Flow of Groundwater, Hydrocarbons, and CO2 (United States)

    Weyer, K. U.


    In the past, the chemical methods of contaminant hydrogeology have dominated much of hydrogeological thinking. In their wake, understanding the physics of subsurface fluid flow and its application to practice and science seemingly has played a secondary role and it often has been replaced by numerical modelling only. Building an understanding of the actual physics of subsurface flow beyond numerical modelling, however, is a confusing experience exposing one to conflicting statements from the sides of engineers, hydrogeologists, and, for a decade or more, by the followers of free convection and density-driven flow. Within the physics of subsurface flow a number of questions arise, such as: Is water really incompressible as assumed in engineering hydraulics? How does buoyancy work? Are underground buoyancy forces generally directed vertically upwards or downwards? What is the consequential difference between hydrostatic and hydrodynamic conditions? What are the force fields causing subsurface flow for water, hydrocarbons and CO2? Is fluid flow really driven by pressure gradients as assumed in reservoir engineering? What is the effect of geothermal gradients on subsurface flow? Do convection cells and free convection exist on-shore? How does variable density flow work? Can today's numerical codes adequately determine variable density flow? Does saltwater really sink to the bottom of geologic systems due to its higher density? Aquitards create confining conditions and thereby confine fluid movements to aquifers? Does more water flow in aquifers than aquitards? The presentation will shed light on the maze of conflicting statements issued within engineering hydraulics and groundwater dynamics. It will also present a field case and its numerical modelling of variable density flow at a major industrial landfill site. The presentation will thereby foster the understanding of the correct physics involved and how this physics can be beneficially applied to practical cases

  3. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering

    KAUST Repository

    El Gharamti, Mohamad


    Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kalman updates of the contaminant model with the data. The problem is better handled when both flow and contaminant states are concurrently estimated using the traditional joint state augmentation approach. In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct EnKFs, one for each model. The presented strategy only deals with the estimation of state variables but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint approach. We conducted synthetic numerical experiments based on various time stepping and observation strategies to evaluate the dual EnKF approach and compare its performance with the joint state augmentation approach. Experimental results show that on average, the dual strategy could reduce the estimation error of the coupled states by 15% compared with the

  4. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands. (United States)

    Huett, D O; Morris, S G; Smith, G; Hunt, N


    Subsurface horizontal flow reed beds are being evaluated for Nitrogen (N) and Phosphorus (P) removal from plant nursery runoff water in New South Wales Australia. The need to include plants (Phragmites australis), the effect of reaction time (3.5 v 7.0 d) and dissolved organic carbon (DOC) on N and P removal in batch fed gravel wetland tubs (55 L) was studied over 19 months. Simulated nursery runoff water containing N (10.1 mg L(-1), 74% as NO3) and P (0.58 mg L(-1), 88% as PO4) and DOC (2-5 mg L(-1)) was used. The planted wetland tubs removed >96% TN and TP over most of the 19-month study period while unplanted tubs were inefficient (wetland to achieve efficient nutrient removal with effluent TN and TP concentrations of <1 mg L(-1) and 0.05 mg L(-1), respectively with a 3.5 day reaction time.

  5. Dynamic coupling of subsurface and seepage flows solved within a regularized partition formulation (United States)

    Marçais, J.; de Dreuzy, J.-R.; Erhel, J.


    Hillslope response to precipitations is characterized by sharp transitions from purely subsurface flow dynamics to simultaneous surface and subsurface flows. Locally, the transition between these two regimes is triggered by soil saturation. Here we develop an integrative approach to simultaneously solve the subsurface flow, locate the potential fully saturated areas and deduce the generated saturation excess overland flow. This approach combines the different dynamics and transitions in a single partition formulation using discontinuous functions. We propose to regularize the system of partial differential equations and to use classic spatial and temporal discretization schemes. We illustrate our methodology on the 1D hillslope storage Boussinesq equations (Troch et al., 2003). We first validate the numerical scheme on previous numerical experiments without saturation excess overland flow. Then we apply our model to a test case with dynamic transitions from purely subsurface flow dynamics to simultaneous surface and subsurface flows. Our results show that discretization respects mass balance both locally and globally, converges when the mesh or time step are refined. Moreover the regularization parameter can be taken small enough to ensure accuracy without suffering of numerical artefacts. Applied to some hundreds of realistic hillslope cases taken from Western side of France (Brittany), the developed method appears to be robust and efficient.

  6. Parameterizing deep water percolation improves subsurface temperature simulations by a multilayer firn model (United States)

    Marchenko, Sergey; van Pelt, Ward J. J.; Claremar, Björn; Pohjola, Veijo; Pettersson, Rickard; Machguth, Horst; Reijmer, Carleen


    Deep preferential percolation of melt water in snow and firn brings water lower along the vertical profile than a laterally homogeneous wetting front. This widely recognized process is an important source of uncertainty in simulations of subsurface temperature, density and water content in seasonal snow and in firn packs on glaciers and ice sheets. However, observation and quantification of preferential flow is challenging and therefore it is not accounted for by most of the contemporary snow/firn models. Here we use temperature measurements in the accumulation zone of Lomonosovfonna, Svalbard, done in April 2012 - 2015 using multiple thermistor strings to describe the process of water percolation in snow and firn. Effects of water flow through the snow and firn profile are further explored using a coupled surface energy balance - firn model forced by the output of the regional climate model WRF. In situ air temperature, radiation and surface height change measurements are used to constrain the surface energy and mass fluxes. To account for the effects of preferential water flow in snow and firn we test a set of depth-dependent functions allocating a certain fraction of the melt water available at the surface to each snow/firn layer. Experiments are performed for a range of characteristic percolation depths and results indicate a reduction in root mean square difference between the modeled and measured temperature by up to a factor of two compared to the results from the default water infiltration scheme. This illustrates the significance of accounting for preferential water percolation to simulate subsurface conditions. The suggested approach to parameterization of the preferential water flow requires low additional computational cost and can be implemented in layered snow/firn models applied both at local and regional scales, for distributed domains with multiple mesh points.

  7. Modelling nitrogen removal in a coupled HRP and unplanted horizontal flow subsurface gravel bed constructed wetland (United States)

    Mayo, A. W.; Mutamba, J.

    A coupled model was developed that incorporates all the major nitrogen transformation mechanisms influencing nitrogen removal in aquatic systems. The model simulates nitrogen transformation and removal processes in the high rate pond (HRP) and the subsurface constructed wetland unit (SSCW). The model considered organic nitrogen (ON), ammonia nitrogen (NH 3-N), and nitrate nitrogen ( NO3--N) as the major forms of nitrogen involved in the transformation chains. The influencing transformation mechanisms considered in the model include uptake of inorganic nitrogen by algae and bacteria, mineralization, sedimentation, volatilisation of ammonia and nitrification coupled with denitrification processes. The results showed that improved nitrogen removal occurred with increase in hydraulic time of the HRP unit. It was also revealed that the HRP can effectively be used to promote nitrification and subsurface flow gravel bed constructed wetland can be used as a denitrifying unit. The most efficient mechanisms were determined using a transformation model. The model indicated that nitrification and mineralization were dominant contributing 51.1% and 14.9%, respectively. Denitrification and mineralization were most significant in the SSCW accounting for 43.5% and 16.7%, respectively. Nitrification-denitrification route was observed to be the most significant mechanism for nitrogen removal in the coupled system with an overall contribution of 53%. The model predicted the overall nitrogen removal as 37% compared to 38.4% obtained from field measurements.

  8. An efficient implicit-pressure/explicit- saturation-method-based shifting-matrix algorithm to simulate two-phase, immiscible flow in porous media with application to CO2 sequestration in the subsurface

    KAUST Repository

    Salama, Amgad


    The flow of two or more immiscible fluids in porous media is widespread, particularly in the oil industry. This includes secondary and tertiary oil recovery and carbon dioxide (CO2) sequestration. Accurate predictions of the development of these processes are important in estimating the benefits and consequences of the use of certain technologies. However, this accurate prediction depends--to a large extent--on two things. The first is related to our ability to correctly characterize the reservoir with all its complexities; the second depends on our ability to develop robust techniques that solve the governing equations efficiently and accurately. In this work, we introduce a new robust and efficient numerical technique for solving the conservation laws that govern the movement of two immiscible fluids in the subsurface. As an example, this work is applied to the problem of CO2 sequestration in deep saline aquifers; however, it can also be extended to incorporate more scenarios. The traditional solution algorithms to this problem are modeled after discretizing the governing laws on a generic cell and then proceed to the other cells within loops. Therefore, it is expected that calling and iterating these loops multiple times can take a significant amount of computer time. Furthermore, if this process is performed with programming languages that require repeated interpretation each time a loop is called, such as Matlab, Python, and others, much longer time is expected, particularly for larger systems. In this new algorithm, the solution is performed for all the nodes at once and not within loops. The solution methodology involves manipulating all the variables as column vectors. By use of shifting matrices, these vectors are shifted in such a way that subtracting relevant vectors produces the corresponding difference algorithm. It has been found that this technique significantly reduces the amount of central-processing-unit (CPU) time compared with a traditional

  9. Subsurface temperatures and surface heat flow in the Michigan Basin and their relationships to regional subsurface fluid movement (United States)

    Vugrinovich, R.


    Linear regression of 405 bottomhole temperature (BHT) measurements vs. associated depths from Michigan's Lower Peninsula results in the following equation relating BHT and depth: BHT(??C) = 14.5 + 0.0192 ?? depth(m) Temperature residuals, defined as (BHT measured)-(BHT calculated), were determined for each of the 405 BHT's. Areas of positive temperature residuals correspond to areas of regional groundwater discharge (determined from maps of equipotential surface) while areas of negative temperature residuals correspond to areas of regional groundwater recharge. These relationships are observed in the principal aquifers in rocks of Devonian and Ordovician age and in a portion of the principal aquifer in rocks of Silurian age. There is a similar correspondence between high surface heat flow (determined using the silica geothermometer) and regional groundwater discharge areas and low surface heat flow and regional groundwater recharge areas. Post-Jurassic depositional and tectonic histories suggest that the observed coupling of subsurface temperature and groundwater flow systems may have persisted since Jurassic time. Thus the higher subsurface palaeotemperatures (and palaeogeothermal gradients) indicated by recent studies most likely pre-date the Jurassic. ?? 1989.

  10. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China. (United States)

    Duan, Jian; Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun


    Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated

  11. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China.

    Directory of Open Access Journals (Sweden)

    Jian Duan

    Full Text Available Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface

  12. Nutrient removal in tropical subsurface flow constructed wetlands under batch and continuous flow conditions. (United States)

    Zhang, Dong Qing; Tan, Soon Keat; Gersberg, Richard M; Zhu, Junfei; Sadreddini, Sara; Li, Yifei


    The aim of this investigation was to evaluate the influence of batch versus continuous flow on the removal efficiencies of chemical oxygen demand (COD), nitrogen (N) and total phosphorus (TP) in tropical subsurface flow constructed wetlands (SSF CW). The quantitative role of the higher aquatic plants in nutrient removal in these two operational modes was also investigated. Results indicated no significant difference (p > 0.05) in COD removal between batch and continuous flow modes for either the planted or unplanted treatments. Furthermore, the batch-loaded planted wetlands showed significantly (p hydraulic retention time (HRT), the presence of plants significantly enhanced both ammonia oxidation and TP removal in both batch and continuous modes of operation as compared to that for unplanted beds. An estimation of the quantitative role of aeration from drain and fill operation at a 4-day HRT, as compared to rhizosphere aeration by the higher aquatic plant, indicated that drain and fill operation might account for only less than half of the higher aquatic plant's quantitative contribution of oxygen (1.55 g O2 per m2 per day for batch flow versus 1.13 g O2 per m2 per day for continuous flow). Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Simulations of the Scandinavian ice sheet and its subsurface conditions

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G.S.; Caban, P.; Hulton, N. [Edinburgh Univ. (United Kingdom). Dept of Geology and Geophysics


    An ice sheet model has been applied to an approximate flow line through the area of the Fennoscandian ice sheet. The modelled ice sheet fluctuations have been matched with stratigraphic evidence of Weichselian ice sheet fluctuation in order to simulate ice sheet attributes through time along the flowline. The model predicts extensive melting at the base of the ice sheet. This output has been used as an input to a simplified model of hydrogeology along the southern flank of the ice sheet so as to reconstruct patterns of subglacial groundwater flow. The output from the model is also used to estimate patterns of subglacial stress and strain. Results suggest that large scale subglacial groundwater catchment are formed which were quite differentin extent from modern catchment; that fossil subglacial groundwaters should be found at sampling depths; and much fracturing in shallow bedrock in Sweden could be glacially generated.

  14. Efficient uncertainty quantification in fully-integrated surface and subsurface hydrologic simulations (United States)

    Miller, K. L.; Berg, S. J.; Davison, J. H.; Sudicky, E. A.; Forsyth, P. A.


    Although high performance computers and advanced numerical methods have made the application of fully-integrated surface and subsurface flow and transport models such as HydroGeoSphere common place, run times for large complex basin models can still be on the order of days to weeks, thus, limiting the usefulness of traditional workhorse algorithms for uncertainty quantification (UQ) such as Latin Hypercube simulation (LHS) or Monte Carlo simulation (MCS), which generally require thousands of simulations to achieve an acceptable level of accuracy. In this paper we investigate non-intrusive polynomial chaos for uncertainty quantification, which in contrast to random sampling methods (e.g., LHS and MCS), represents a model response of interest as a weighted sum of polynomials over the random inputs. Once a chaos expansion has been constructed, approximating the mean, covariance, probability density function, cumulative distribution function, and other common statistics as well as local and global sensitivity measures is straightforward and computationally inexpensive, thus making PCE an attractive UQ method for hydrologic models with long run times. Our polynomial chaos implementation was validated through comparison with analytical solutions as well as solutions obtained via LHS for simple numerical problems. It was then used to quantify parametric uncertainty in a series of numerical problems with increasing complexity, including a two-dimensional fully-saturated, steady flow and transient transport problem with six uncertain parameters and one quantity of interest; a one-dimensional variably-saturated column test involving transient flow and transport, four uncertain parameters, and two quantities of interest at 101 spatial locations and five different times each (1010 total); and a three-dimensional fully-integrated surface and subsurface flow and transport problem for a small test catchment involving seven uncertain parameters and three quantities of interest at

  15. MSTS Multiphase Subsurface Transport Simulator User's Guide and Reference

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E.; White, M.D.


    This User's Guide and Reference provides information and instructions on the use of the Multiphase Subsurface Transport Simulator (MSTS) code and the associated MSTS Graphical Input. The MSTS code is used to simulate water flow, air flow, heat transfer, and dilute species mass transport in variably saturated geologic media for one, two, or three dimensions using an integrated finite-difference numerical scheme. Any or all of these processes may be simulated in a fully coupled manner. MSTS is a two-phase, two-component code with secondary processes that include binary diffusion and vapor pressure lowering. The geologic media may be homogeneous or heterogeneous, isotropic or anisotropic, and unfractured or highly fractured. A problem geometry may be described by either Cartesian or cylindrical coordinates. MSTS is written in FORTRAN 77, following the American National Standards Institute (ANSI) standards, and is machine-independent with the exception of some time and date calls required for quality control (provisions are made in the code for relatively easy adoption to a number of machines for these calls).

  16. MSTS. Multiphase Subsurface Transport Simulator User`s Guide and Reference

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E.; White, M.D.


    This User`s Guide and Reference provides information and instructions on the use of the Multiphase Subsurface Transport Simulator (MSTS) code and the associated MSTS Graphical Input. The MSTS code is used to simulate water flow, air flow, heat transfer, and dilute species mass transport in variably saturated geologic media for one, two, or three dimensions using an integrated finite-difference numerical scheme. Any or all of these processes may be simulated in a fully coupled manner. MSTS is a two-phase, two-component code with secondary processes that include binary diffusion and vapor pressure lowering. The geologic media may be homogeneous or heterogeneous, isotropic or anisotropic, and unfractured or highly fractured. A problem geometry may be described by either Cartesian or cylindrical coordinates. MSTS is written in FORTRAN 77, following the American National Standards Institute (ANSI) standards, and is machine-independent with the exception of some time and date calls required for quality control (provisions are made in the code for relatively easy adoption to a number of machines for these calls).

  17. Influence of groundwater flow on the estimation of subsurface thermal parameters (United States)

    Verdoya, Massimo; Chiozzi, Paolo


    We investigated the influence of groundwater flow on the thermal tests performed in borehole heat exchangers to infer the underground thermal properties. Temperature-time signals were simulated with a moving line source (MLS) model under different hypotheses of Darcy velocity. Periodic and random noise was included in the synthetic data obtained with this model in order to mimic high-frequency disturbances caused by several possible sources (e.g. equipment instability and changes in environmental conditions during the experiment) that often occur in real signals. The subsurface thermal conductivity, the Darcy velocity and the borehole thermal resistance were inferred by minimising the root-mean-square error between the synthetic dataset and the model. The calculated thermal and hydraulic parameters were consistent with the "a priori" values. The optimisation procedure results were then tested with the infinite line source (ILS) model. For a Darcy velocity exceeding 10-7 m s-1, ILS largely overestimates thermal conductivity. The approach relying on the MLS model was finally tested with real temperature-time data and produced reliable estimates of thermal conductivity, Darcy velocity and borehole thermal resistance. The inferred groundwater flow was cross checked by means of an independent method based on the analysis of temperature-depth logs recorded under thermal equilibrium conditions. Such a test validates the Darcy velocity inferred with the MLS approach.

  18. Influence of groundwater flow on the estimation of subsurface thermal parameters (United States)

    Verdoya, Massimo; Chiozzi, Paolo


    We investigated the influence of groundwater flow on the thermal tests performed in borehole heat exchangers to infer the underground thermal properties. Temperature-time signals were simulated with a moving line source (MLS) model under different hypotheses of Darcy velocity. Periodic and random noise was included in the synthetic data obtained with this model in order to mimic high-frequency disturbances caused by several possible sources (e.g. equipment instability and changes in environmental conditions during the experiment) that often occur in real signals. The subsurface thermal conductivity, the Darcy velocity and the borehole thermal resistance were inferred by minimising the root-mean-square error between the synthetic dataset and the model. The calculated thermal and hydraulic parameters were consistent with the "a priori" values. The optimisation procedure results were then tested with the infinite line source (ILS) model. For a Darcy velocity exceeding 10-7 m s-1, ILS largely overestimates thermal conductivity. The approach relying on the MLS model was finally tested with real temperature-time data and produced reliable estimates of thermal conductivity, Darcy velocity and borehole thermal resistance. The inferred groundwater flow was cross checked by means of an independent method based on the analysis of temperature-depth logs recorded under thermal equilibrium conditions. Such a test validates the Darcy velocity inferred with the MLS approach.

  19. Surface and subsurface flows and fluxes in a Florida salt marsh: Measurements, mass balances and process modeling (Invited) (United States)

    Meile, C. D.; Esch, M.; Gray, E. R.; Cable, J. E.


    Coastal wetlands play an important role in the exchange of carbon and nutrients between terrestrial and marine environments, with estimates exceeding 10% of the global ocean C inputs being attributed to wetlands. Constraining such contributions is challenging, as fluxes are bound to vary substantially over a range of timescales, including tidal inundation and seasons. An important factor determining export fluxes are subsurface processes, because fluid passing through the marsh subsurface becomes enriched in inorganic and organic carbon as well as nutrients released during decomposition of organic matter. Thus, even a modest flux of pore water to tidal creeks can lead to a significant loading of carbon and nutrients to the coastal ocean. Here, we present our efforts to quantify the role of groundwater in a microtidal saltmarsh located in the Big Bend region of the Florida Gulf Coast. We established a regional water balance, and from a survey of flow and dissolved organic carbon in tidal creeks between Econfina and Aucilla Rivers provide an estimate of DOC export, indicating that DOC significantly contributes to marsh carbon export. To constrain the role of subsurface processes, we also quantify seepage fluxes of pore water from tidal creek banks, using a combination of field experiments and modeling. Field work involved deploying devices designed to capture pore water seeping from creek banks at multiple heights of the bank. Results show that seepage varies dynamically with the tide, and indicate substantial spatial variability. Additionally, numerical flow modeling was used to assess the experimental design and the impact of the positioning of the seepage collector at the creek bank. Simulation results show significant variation in seepage with vertical position in the creek bank. This information on flow magnitude and dynamics was then combined with concentration measurements in creek and pore waters to scale up from individual observations to provide estimates

  20. [Optimization of aerobic/anaerobic subsurface flow constructed wetlands]. (United States)

    Li, Feng-Min; Shan, Shi; Li, Yuan-Yuan; Li, Yang; Wang, Zheng-Yu


    Previous studies showed that setting aerobic and anaerobic paragraph segments in the subsurface constructed wetlands (SFCWs) can improve the COD, NH4(+)-N, and TN removal rate, whereas the oxygen enrichment environment which produced by the artificial aeration could restrain the NO3(-)-N and NO2(-)-N removal process, and to a certain extent, inhibit the denitrification in SFCWs Therefore, in this research the structure and technology of SFCW with aerobic and anaerobic paragraph segments were optimized, by using the multi-point water inflow and setting the corresponding section for the extra pollutant removal. Results showed that with the hydraulic load of 0.06 m3 x (m2 x d)(-1), the COD, NH4(+)-N and TN removal efficiencies in the optimized SFCW achieved 91.6%, 100% and 87.7% respectively. COD/N increased to 10 speedily after the inflow supplement. The multi-point water inflow could add carbon sources, and simultaneously maximum utilization of wetland to remove pollutants. The optimized SFCW could achieve the purposes of purification process optimization, and provide theoretical basis and application foundation for improving the total nitrogen removal efficiency.

  1. Sub-surface gas flow in porous bodies (United States)

    Teiser, Jens; Schywek, Mathias; de Beule, Caroline; Wurm, Gerhard


    Gas flow within porous media is of importance for various bodies in the Solar System. It occurs within the Martian soil, might be significant in the porous interiors of comets and also within dusty planetesimals in the Solar Nebula. In regimes of low atmospheric pressure, thermal creep leads to an efficient gas flux if temperature gradients are present, e.g. by solar insolation. This flow can lead to erosion or supports the exchange of volatiles within a porous body. Experiments showed that this gas flux dominates over diffusive gas transport under Martian conditions with gas velocities on the order of cm/s. Results from the Rosetta spacecraft suggest that eolian processes occur on comets which might be related to thermal creep gas flow. Here, we present new results of microgravity experiments on a thermally induced gas flow. Gas velocities and their dependence on the atmospheric pressure for different gases (Helium and air) are studied as well as the influence of the geometry of the pores.

  2. Coupled surface and subsurface flow modeling of natural hillslopes in the Aburrá Valley (Medellín, Colombia) (United States)

    Blessent, Daniela; Barco, Janet; Temgoua, André Guy Tranquille; Echeverrri-Ramirez, Oscar


    Numerical results are presented of surface-subsurface water modeling of a natural hillslope located in the Aburrá Valley, in the city of Medellín (Antioquia, Colombia). The integrated finite-element hydrogeological simulator HydroGeoSphere is used to conduct transient variably saturated simulations. The objective is to analyze pore-water pressure and saturation variation at shallow depths, as well as volumes of water infiltrated in the porous medium. These aspects are important in the region of study, which is highly affected by soil movements, especially during the high-rain seasons that occur twice a year. The modeling exercise considers rainfall events that occurred between October and December 2014 and a hillslope that is currently monitored because of soil instability problems. Simulation results show that rainfall temporal variability, mesh resolution, coupling length, and the conceptual model chosen to represent the heterogeneous soil, have a noticeable influence on results, particularly for high rainfall intensities. Results also indicate that surface-subsurface coupled modeling is required to avoid unrealistic increase in hydraulic heads when high rainfall intensities cause top-down saturation of soil. This work is a first effort towards fostering hydrogeological modeling expertise that may support the development of monitoring systems and early landslide warning in a country where the rainy season is often the cause of hydrogeological tragedies associated with landslides, mud flow or debris flow.

  3. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    KAUST Repository

    Elsheikh, Ahmed H.


    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems. © 2013 Elsevier Inc.

  4. Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates

    KAUST Repository

    Elsheikh, Ahmed H.


    An efficient Bayesian calibration method based on the nested sampling (NS) algorithm and non-intrusive polynomial chaos method is presented. Nested sampling is a Bayesian sampling algorithm that builds a discrete representation of the posterior distributions by iteratively re-focusing a set of samples to high likelihood regions. NS allows representing the posterior probability density function (PDF) with a smaller number of samples and reduces the curse of dimensionality effects. The main difficulty of the NS algorithm is in the constrained sampling step which is commonly performed using a random walk Markov Chain Monte-Carlo (MCMC) algorithm. In this work, we perform a two-stage sampling using a polynomial chaos response surface to filter out rejected samples in the Markov Chain Monte-Carlo method. The combined use of nested sampling and the two-stage MCMC based on approximate response surfaces provides significant computational gains in terms of the number of simulation runs. The proposed algorithm is applied for calibration and model selection of subsurface flow models. © 2013.

  5. Modeling Subsurface Reactive Flows Using Leadership-Class Computing

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Richard T [ORNL; Hammond, Glenn [Pacific Northwest National Laboratory (PNNL); Lichtner, Peter [Los Alamos National Laboratory (LANL); Sripathi, Vamsi K [ORNL; Mahinthakumar, Gnanamanika [ORNL; Smith, Barry F [Argonne National Laboratory (ANL)


    We describe our experiences running PFLOTRAN - a code for simulation of coupled hydro-thermal-chemical processes in variably saturated, non-isothermal, porous media - on leadership-class supercomputers, including initial experiences running on the petaflop incarnation of Jaguar, the Cray XT5 at the National Center for Computational Sciences at Oak Ridge National Laboratory. PFLOTRAN utilizes fully implicit time-stepping and is built on top of the Portable, Extensible Toolkit for Scientific Computation (PETSc). We discuss some of the hurdles to 'at scale' performance with PFLOTRAN and the progress we have made in overcoming them on leadership-class computer architectures.

  6. Modeling subsurface reactive flows using leadership-class computing

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Richard Tran [Computational Earth Sciences Group, Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6015 (United States); Hammond, Glenn E [Hydrology Group, Environmental Technology Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lichtner, Peter C [Hydrology, Geochemistry, and Geology Group, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sripathi, Vamsi [Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206 (United States); Mahinthakumar, G [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695-7908 (United States); Smith, Barry F, E-mail: rmills@ornl.go, E-mail: glenn.hammond@pnl.go, E-mail: lichtner@lanl.go, E-mail: vamsi_s@ncsu.ed, E-mail: gmkumar@ncsu.ed, E-mail: bsmith@mcs.anl.go [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4844 (United States)


    We describe our experiences running PFLOTRAN-a code for simulation of coupled hydro-thermal-chemical processes in variably saturated, non-isothermal, porous media- on leadership-class supercomputers, including initial experiences running on the petaflop incarnation of Jaguar, the Cray XT5 at the National Center for Computational Sciences at Oak Ridge National Laboratory. PFLOTRAN utilizes fully implicit time-stepping and is built on top of the Portable, Extensible Toolkit for Scientific Computation (PETSc). We discuss some of the hurdles to 'at scale' performance with PFLOTRAN and the progress we have made in overcoming them on leadership-class computer architectures.

  7. Simulation of Transient Viscoelastic Flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole


    The Lagrangian kinematic description is used to develop a numerical method for simulation of time-dependent flow of viscoelastic fluids described by integral models. The method is shown to converge to first order in the time step and at least second order in the spatial discretization. The method...... is tested on the established sphere in a cylinder benchmark problem, and an extension of the problem to transient flow is proposed....

  8. Tillage impact on herbicide loss by surface runoff and lateral subsurface flow. (United States)

    Potter, Thomas L; Bosch, David D; Strickland, Timothy C


    There is worldwide interest in conservation tillage practices because they can reduce surface runoff, and agrichemical and sediment losses from farm fields. Since these practices typically increase infiltration, their use may increase subsurface transport of water-soluble contaminants. Thus, to assess long-term environmental benefits of conservation tillage data may be needed that quantify both surface and subsurface contaminant fluxes. This study focused on the herbicide fluometuron (N,N-dimethyl-N'-[3-(trifluoromethyl)phenyl]-urea) and its soil degradate DMF (N-methyl-N'-[3-(trifluoromethyl) phenyl]-urea). Both compounds are classed as "leachable". They were measured for 10 years in surface runoff and lateral subsurface flow from paired fields located on a hill slope in the Atlantic Coastal Plain region of the southeastern USA. One group of fields was conventionally tilled incorporating all crop residues into soil prior to planting. The second was strip tilled, a common conservation tillage practice. Seven fluometuron applications were made to cotton (Gossypium hirsutum) produced in rotation with peanut (Arachis hypogea). Combined fluometuron and DMF surface and subsurface losses from the conventionally tilled fields were equivalent to 1.2% and 0.13% of fluometuron applied and 0.31% and 0.32% from the strip tilled fields. Annual surface runoff losses were significantly greater from the conventionally tilled fields while the strip tilled fields had significantly greater annual subsurface losses. Results demonstrated that shifting from conventional to conservation tillage management of farm fields in this landscape will reduce surface runoff losses of herbicides like fluometuron but subsurface losses will likely increase. The same trends can be expected in landscapes with similar soil and hydrologic properties. This should be considered when planning implementation of programs that promote conservation tillage use. Published by Elsevier B.V.

  9. Nested sampling algorithm for subsurface flow model selection, uncertainty quantification, and nonlinear calibration

    KAUST Repository

    Elsheikh, A. H.


    Calibration of subsurface flow models is an essential step for managing ground water aquifers, designing of contaminant remediation plans, and maximizing recovery from hydrocarbon reservoirs. We investigate an efficient sampling algorithm known as nested sampling (NS), which can simultaneously sample the posterior distribution for uncertainty quantification, and estimate the Bayesian evidence for model selection. Model selection statistics, such as the Bayesian evidence, are needed to choose or assign different weights to different models of different levels of complexities. In this work, we report the first successful application of nested sampling for calibration of several nonlinear subsurface flow problems. The estimated Bayesian evidence by the NS algorithm is used to weight different parameterizations of the subsurface flow models (prior model selection). The results of the numerical evaluation implicitly enforced Occam\\'s razor where simpler models with fewer number of parameters are favored over complex models. The proper level of model complexity was automatically determined based on the information content of the calibration data and the data mismatch of the calibrated model.

  10. Parameterizing deep water percolation improves subsurface temperature simulations by a multilayer firn model.

    NARCIS (Netherlands)

    Marchenko, S.; van Pelt, W.J.J.; Claremar, B.; Machguth, H.; Reijmer, C.H.; Pettersson, R.; Pohjola, V.A.


    Deep preferential percolation of melt water in snow and firn brings water lower along the vertical profile than a laterally homogeneous wetting front. This widely recognized process is an important source of uncertainty in simulations of subsurface temperature, density, and water content in seasonal

  11. Development, calibration, and predictive results of a simulator for subsurface pathway fate and transport of aqueous- and gaseous-phase contaminants in the Subsurface Disposal Area at the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Magnuson, S.O.; Sondrup, A.J.


    This document presents the development, calibration, and predictive results of a simulation study of fate and transport of waste buried in the Subsurface Disposal Area (SDA) (which is hereafter referred to as the SDA simulation study). This report builds on incorporates a previous report that dealt only with the calibration of a flow model for simulation of water movement beneath the SDA (Magnuson and Sondrup 1996). The primary purpose of the SDA simulation study was to perform fate and transport calculations to support the IRA. A secondary purpose of the SDA simulation study was to be able to use the model to evaluate possible remediation strategies and their effects on flow and transport in the OU 7-13/14 feasibility study.

  12. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    Directory of Open Access Journals (Sweden)

    Jakubaszek Anita


    Full Text Available The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  13. EOSHYDR: A TOUGH2 Module for CH4-Hydrate Release and Flow in theSubsurface

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George; Apps, John; Pruess, Karsten; Myer, Larry


    EOSHYDR is a new module for the TOUGH2 general-purpose simulator for multi-component, multiphase fluid and heat flow and transport in the subsurface. EOSHYDR is designed to model the non-isothermal CH{sub 4} release, phase behavior and flow under the conditions of the comrilon methane hydrate deposits (i.e., in the permafrost and in deep ocean sediments) by solving the coupled equations of mass and heat balance. As with all other members of the TOUGH2 family of codes, EOSHYDR can handle multidimensional flow domains and cartesian, cylindrical or irregular grids, as well as porous and fractured media. EOSHYDR extends the thermophysical description of water to temperatures as low as -30 C. Both an equilibrium and a kinetic model of hydrate formation or dissociation are included. Two new solid phases are introduced, one for the CH{sub 4}-hydrate and the other for ice. Under equilibrium conditions, water and methane, as well as heat, are the main components. In the kinetic model, the solid hydrate is introduced as the fourth component. The mass components are partitioned among the gas, liquid and the two solid phases. The thermodynamic phase equilibrium in EOSHYDR is described by the P-T-X diagram of the H{sub 2}O-CH{sub 4}system. Phase changes and the corresponding heat transfers are fully described. The effect of salt in pore waters on CH{sub 4} solubility and on the growth and decomposition of gas hydrates is also taken into account. Results are presented for three test problems designed to explore different mechanisms and strategies for production from CH{sub 4}-hydrate reservoirs. These tests include thermal stimulation and depressurization under both permafrost and suboceanic conditions. The results of the tests tend to indicate that CH{sub 4} production from CH{sub 4}-hydrates is technically feasible and has significant potential. Both depressurization and thermal stimulation seem to be capable of producing substantial amounts of CH{sub 4} gas.

  14. Improved design and optimization of subsurface flow constructed wetlands and sand filters (United States)

    Brovelli, A.; Carranza-Díaz, O.; Rossi, L.; Barry, D. A.


    Subsurface flow constructed wetlands and sand filters are engineered systems capable of eliminating a wide range of pollutants from wastewater. These devices are easy to operate, flexible and have low maintenance costs. For these reasons, they are particularly suitable for small settlements and isolated farms and their use has substantially increased in the last 15 years. Furthermore, they are also becoming used as a tertiary - polishing - step in traditional treatment plants. Recent work observed that research is however still necessary to understand better the biogeochemical processes occurring in the porous substrate, their mutual interactions and feedbacks, and ultimately to identify the optimal conditions to degrade or remove from the wastewater both traditional and anthropogenic recalcitrant pollutants, such as hydrocarbons, pharmaceuticals, personal care products. Optimal pollutant elimination is achieved if the contact time between microbial biomass and the contaminated water is sufficiently long. The contact time depends on the hydraulic residence time distribution (HRTD) and is controlled by the hydrodynamic properties of the system. Previous reports noted that poor hydrodynamic behaviour is frequent, with water flowing mainly through preferential paths resulting in a broad HRTD. In such systems the flow rate must be decreased to allow a sufficient proportion of the wastewater to experience the minimum residence time. The pollutant removal efficiency can therefore be significantly reduced, potentially leading to the failure of the system. The aim of this work was to analyse the effect of the heterogeneous distribution of the hydraulic properties of the porous substrate on the HRTD and treatment efficiency, and to develop an improved design methodology to reduce the risk of system failure and to optimize existing systems showing poor hydrodynamics. Numerical modelling was used to evaluate the effect of substrate heterogeneity on the breakthrough curves of

  15. Evidence for debris flow gully formation initiated by shallow subsurface water on Mars (United States)

    Lanza, N.L.; Meyer, G.A.; Okubo, C.H.; Newsom, Horton E.; Wiens, R.C.


    The morphologies of some martian gullies appear similar to terrestrial features associated with debris flow initiation, erosion, and deposition. On Earth, debris flows are often triggered by shallow subsurface throughflow of liquid water in slope-mantling colluvium. This flow causes increased levels of pore pressure and thus decreased shear strength, which can lead to slide failure of slope materials and subsequent debris flow. The threshold for pore pressure-induced failure creates a distinct relationship between the contributing area supplying the subsurface flow and the slope gradient. To provide initial tests of a similar debris flow initiation hypothesis for martian gullies, measurements of the contributing areas and slope gradients were made at the channel heads of martian gullies seen in three HiRISE stereo pairs. These gullies exhibit morphologies suggestive of debris flows such as leveed channels and lobate debris fans, and have well-defined channel heads and limited evidence for multiple flows. Our results show an area-slope relationship for these martian gullies that is consistent with that observed for terrestrial gullies formed by debris flow, supporting the hypothesis that these gullies formed as the result of saturation of near-surface regolith by a liquid. This model favors a source of liquid that is broadly distributed within the source area and shallow; we suggest that such liquid could be generated by melting of broadly distributed icy materials such as snow or permafrost. This interpretation is strengthened by observations of polygonal and mantled terrain in the study areas, which are both suggestive of near-surface ice. ?? 2009 Elsevier Inc.

  16. Evaluation of the hydrological flow paths in a gravel bed filter modeling a horizontal subsurface flow wetland by using a multi-tracer experiment. (United States)

    Birkigt, Jan; Stumpp, Christine; Małoszewski, Piotr; Nijenhuis, Ivonne


    In recent years, constructed wetland systems have become into focus as means of cost-efficient organic contaminant management. Wetland systems provide a highly reactive environment in which several removal pathways of organic chemicals may be present at the same time; however, specific elimination processes and hydraulic conditions are usually separately investigated and thus not fully understood. The flow system in a three dimensional pilot-scale horizontal subsurface constructed wetland was investigated applying a multi-tracer test combined with a mathematical model to evaluate the flow and transport processes. The results indicate the existence of a multiple flow system with two distinct flow paths through the gravel bed and a preferential flow at the bottom transporting 68% of tracer mass resulting from the inflow design of the model wetland system. There the removal of main contaminant chlorobenzene was up to 52% based on different calculation approaches. Determined retention times in the range of 22d to 32.5d the wetland has a heterogeneous flow pattern. Differences between simulated and measured tracer concentrations in the upper sediment indicate diffusion dominated processes due to stagnant water zones. The tracer study combining experimental evaluation with mathematical modeling demonstrated the complexity of flow and transport processes in the constructed wetlands which need to be taken into account during interpretation of the determining attenuation processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Exploring the role of mixing between subsurface flow paths on transit time distributions using a Lagrangian model (United States)

    Zehe, Erwin; Jackisch, Conrad; Rodriguez, Nicolas; Klaus, Julian


    Only a minute amount of global fresh water is stored in the unsaturated zone. Yet this tiny compartment controls soil microbial activity and associated trace gas emissions, transport and transformations of contaminants, plant productivity, runoff generation and groundwater recharge. To date, the processes controlling renewal and age of different fractions of the soil water stock are far from being understood. Current theories and process concepts were largely inferred either from over-simplified laboratory experiments, or non-exhaustive point observations and tracer data in the field. Tracer data provide key but yet integrated information about the distribution of travel times of the tracer molecules to a certain depth or on their travel depth distribution within a given time. We hence are able to observe the "effect" of soil structure i.e. partitioning of infiltrating water between fast preferential and slow flow paths and imperfect subsequent mixing between these flow paths in the subsurface and the related plant water uptake. However, we are not able to study the "cause" - because technologies for in-situ observations of flow, flow path topology and exchange processes at relevant interfaces have up to now not been at hand. In the present study we will make use of a Lagrangian model for subsurface water dynamics to explore how subsurface heterogeneity and mixing among different storage fractions affects residence time distribution in the unsaturated zone in a forward approach. Soil water is represented by particles of constant mass, which travel according to the Itô form of the Fokker Planck equation. The model concept builds on established soil physics by estimating the drift velocity and the diffusion term based on the soil water characteristics. The model has been shown to simulate capillary driven soil moisture dynamics in good accordance with a) the Richards equation and b) observed soil moisture data in different soil. The particle model may furthermore

  18. Simulation of Cavitation Water Flows

    Directory of Open Access Journals (Sweden)

    Piroz Zamankhan


    Full Text Available The air-water mixture from an artificially aerated spillway flowing down to a canyon may cause serious erosion and damage to both the spillway surface and the environment. The location of an aerator, its geometry, and the aeration flow rate are important factors in the design of an environmentally friendly high-energy spillway. In this work, an analysis of the problem based on physical and computational fluid dynamics (CFD modeling is presented. The numerical modeling used was a large eddy simulation technique (LES combined with a discrete element method. Three-dimensional simulations of a spillway were performed on a graphics processing unit (GPU. The result of this analysis in the form of design suggestions may help diminishing the hazards associated with cavitation.

  19. A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs (United States)

    Dana, Saumik; Ganis, Benjamin; Wheeler, Mary F.


    In coupled flow and poromechanics phenomena representing hydrocarbon production or CO2 sequestration in deep subsurface reservoirs, the spatial domain in which fluid flow occurs is usually much smaller than the spatial domain over which significant deformation occurs. The typical approach is to either impose an overburden pressure directly on the reservoir thus treating it as a coupled problem domain or to model flow on a huge domain with zero permeability cells to mimic the no flow boundary condition on the interface of the reservoir and the surrounding rock. The former approach precludes a study of land subsidence or uplift and further does not mimic the true effect of the overburden on stress sensitive reservoirs whereas the latter approach has huge computational costs. In order to address these challenges, we augment the fixed-stress split iterative scheme with upscaling and downscaling operators to enable modeling flow and mechanics on overlapping nonmatching hexahedral grids. Flow is solved on a finer mesh using a multipoint flux mixed finite element method and mechanics is solved on a coarse mesh using a conforming Galerkin method. The multiscale operators are constructed using a procedure that involves singular value decompositions, a surface intersections algorithm and Delaunay triangulations. We numerically demonstrate the convergence of the augmented scheme using the classical Mandel's problem solution.

  20. Transient simulation of radiating flows

    Energy Technology Data Exchange (ETDEWEB)

    Selcuk, Nevin [Department of Chemical Engineering, Middle East Technical University, Inonu Bulvari, 06531 Ankara (Turkey)]. E-mail:; Bilge Uygur, A. [Department of Chemical Engineering, Middle East Technical University, Inonu Bulvari, 06531 Ankara (Turkey); Ayranci, Isil [Department of Chemical Engineering, Middle East Technical University, Inonu Bulvari, 06531 Ankara (Turkey); Tarhan, Tanil [Department of Chemical Engineering, Middle East Technical University, Inonu Bulvari, 06531 Ankara (Turkey)


    Time-dependent Navier-Stokes equations are solved in conjunction with the radiative transfer equation by coupling a previously developed direct numerical simulation-based computational fluid dynamics code to an existing radiation code, both based on the method of lines approach. The temperature profiles predicted by the coupled code are validated against steady-state solutions available in the literature for laminar, axisymmetric, hydrodynamically developed flow of a gray, absorbing, emitting fluid in a heated pipe. Favorable comparisons show the predictive accuracy and reliability of the coupling strategy employed. Transient solutions for a more realistic heat transfer problem are also demonstrated for simultaneous hydrodynamic and thermal development.

  1. Efficiency of a Horizontal Sub-Surface Flow Constructed Wetland Treatment System in an Arid Area

    Directory of Open Access Journals (Sweden)

    Abeer Albalawneh


    Full Text Available The main objective of this study was to evaluate the performance and treatment efficiency of the Horizontal Sub-Surface Flow Constructed Wetland treatment system (HSF-CW in an arid climate. Seventeen sub-surface, horizontal-flow HSF-CW units have been operated for approximately three years to improve the quality of partially-treated municipal wastewater. The studied design parameters included two sizes of volcanic tuff media (i.e., fine or coarse, two different bed dimensions (i.e., long and short, and three plantation types (i.e., reed, kenaf, or no vegetation as a control. The effluent Biological Oxygen Demand (BOD5, Chemical Oxygen Demand (COD, Total Suspended Solid (TSS, and phosphorus from all of the treatments were significantly lower as compared to the influent and demonstrated a removal efficiency of 55%, 51%, 67%, and 55%, respectively. There were significant increases in Electrical Conductivity (EC, sulfate, and calcium in the effluent of most HSF-CWs due to evaporative concentration and mineral dissolution from the media. The study suggests that unplanted beds with either fine or coarse media are the most suitable combinations among all of the studied designs based on their treatment efficiency and less water loss in arid conditions.

  2. Intensified nitrate and phosphorus removal in an electrolysis -integrated horizontal subsurface-flow constructed wetland. (United States)

    Gao, Y; Xie, Y W; Zhang, Q; Wang, A L; Yu, Y X; Yang, L Y


    A novel electrolysis-integrated horizontal subsurface-flow constructed wetland system (E-HFCWs) was developed for intensified removal of nitrogen and phosphorus contaminated water. The dynamics of nitrogen and phosphorus removal and that of main water qualities of inflow and outflow were also evaluated. The hydraulic retention time (HRT) greatly enhanced nitrate removal when the electrolysis current intensity was stabilized at 0.07 mA/cm2. When the HRT ranged from 2 h to 12 h, the removal rate of nitrate increased from 20% to 84%. Phosphorus (P) removal was also greatly enhanced-exceeding 90% when the HRT was longer than 4 h in the electrolysis-integrated HFCWs. This improved P removal is due to the in-situ formation of ferric ions by anodizing of sacrificial iron anodes, causing chemical precipitation, physical adsorption and flocculation of phosphorus. Thus, electrolysis plays an important role in nitrate and phosphorus removal. The diversity and communities of bacteria in the biofilm of substrate was established by the analysis of 16S rDNA gene sequences, and the biofilm was abundant with Comamonadaceae and Xanthomonadaceae bacteria in E-HFCWs. Test results illustrated that the electrolysis integrated with horizontal subsurface-flow constructed wetland is a feasible and effective technology for intensified nitrogen and phosphorus removal. Copyright © 2016. Published by Elsevier Ltd.

  3. Performance of the subsurface flow constructed wetlands for pretreatment of slightly polluted source water. (United States)

    Yang, Xu; Zhang, Xueping; Wang, Jifu; Zhao, Guangying; Wang, Baojian


    The slightly polluted source water of Yellow River was pretreated in a horizontal subsurface flow constructed wetland (HSFCW) and a lateral subsurface flow constructed wetland (LSFCW) in the Ji'nan city Reservoir, Shandong, China. During almost one years run, the results showed that at the hydraulic loading rate of 1 m/day, the removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen (NH4 (+)-N) and total phosphorus (TP) in the HSFCW were 48.9, 51.4, 48.7 and 48.9 %, respectively, and the corresponding removal efficiencies in the LSFCW were 50.51, 53.12, 50.44 and 50.83 %, respectively. The HSFCW and LSFCW had a similar high potential for nutrients removal and LSFCW was slightly better. According to the China standard for surface water resources (GB3838-2002), mean effluent COD can reach the Class I (≤ 15 mg/L), and NH4 (+)-N and TP and TN can reach nearly the Class I (≤ 0.015 mg/L), the Class III (≤ 0.05 mg/L) and the Class IV (≤ 1.5 mg/L), respectively. It can be concluded that the slightly polluted source water from Reservoir was pretreated well by the constructed wetland.

  4. Flow and transport processes in a macroporous subsurface-drained glacial till soil

    DEFF Research Database (Denmark)

    Villholth, Karen G.; Jensen, Karsten Høgh


    The experimental results from a field-scale tracer experiment in a subsurface-drained glacial till soil were analyzed by the application of a single/dual porosity model (MACRO), optionally accounting for concurrent and interacting flow and transport in the bulk soil porosity as well...... as in the macropores. The model analysis showed that macropore flow is essential in describing the observed transport phenomenon on a short as well as a longer time scale. The diffusive exchange of solute between the matrix and the macropores was very sensitive and critical for the model prediction of the drainage...... concentration. The exchange was overpredicted and too rapid when the soil aggregate size (distance between macropores) obtained from an image analysis of soil cores was used in the model. On this basis, the model assumption of instant equilibration of the solute across the matrix porosity, disregarding small...

  5. Optimal Control of Partially Miscible Two-Phase Flow with Applications to Subsurface CO2 Sequestration

    KAUST Repository

    Simon, Moritz


    Motivated by applications in subsurface CO2 sequestration, we investigate constrained optimal control problems with partially miscible two-phase flow in porous media. The objective is, e.g., to maximize the amount of trapped CO2 in an underground reservoir after a fixed period of CO2 injection, where the time-dependent injection rates in multiple wells are used as control parameters. We describe the governing two-phase two-component Darcy flow PDE system and formulate the optimal control problem. For the discretization we use a variant of the BOX method, a locally conservative control-volume FE method. The timestep-wise Lagrangian of the control problem is implemented as a functional in the PDE toolbox Sundance, which is part of the HPC software Trilinos. The resulting MPI parallelized Sundance state and adjoint solvers are linked to the interior point optimization package IPOPT. Finally, we present some numerical results in a heterogeneous model reservoir.

  6. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    Energy Technology Data Exchange (ETDEWEB)

    Moller, Nancy; Weare J. H.


    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and

  7. Effects of plant root on hydraulic performance of clogging process in subsurface flow constructed wetland (United States)

    Hua, Guofen; Zhao, Zhongwei; Zeng, Yitao


    Subsurface flow constructed wetlands (SFCWs) have proven to be an efficient ecological technology for the treatment of various kinds of wastewaters. The clogging issue is the main operational problem, which limits its wide application. Clogging is a complicated process with physical (such as physical filtration), biogeochemical and plant-related processes. It was generally stated that suspended solids accumulation and biofilm play dominant roles response for clogging. However, the role of plants in SFCWs clogging remains unclear and debatable. In this paper, the performance of plants in the whole clogging process was addressed based on the lab-experiments between planted and unplanted system by measuring effective porosity, coefficient of permeability of the substrate within different operation periods. Furthermore, flow pattern and transport properties of the clogging process in the planted and unplanted wetland systems were evaluated by hydraulic performance (e.g. mean residence time, short-circuiting, volumetric efficiency, number of continuously stirred tank reactors, hydraulic efficiency factor, etc.) with salt tracer experiments. Plants played different roles in different clogging stage. In the earlier clogging stage, there were no obvious different effects on clogging process between planted and unplanted system. The effective porosity and coefficient of permeability slightly decreased within the planted system, which indicated that plant root restricted the flow of water when the pore spaces were lager. In the middle and later clogging stage, especially, in the later stage, the effective porosity and the coefficient of permeability increased considerably in the plant root zone. Furthermore, the longer retention times and higher hydraulic efficiency factors were gained in the planted system compared to that of unplanted, which implied that growing roots might open the new pore spaces in the substrate. The results are expected to be useful in the design of

  8. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment. (United States)

    Singh, Rajveer; Sivaguru, Mayandi; Fried, Glenn A; Fouke, Bruce W; Sanford, Robert A; Carrera, Martin; Werth, Charles J


    Physical, chemical, and biological interactions between groundwater and sedimentary rock directly control the fundamental subsurface properties such as porosity, permeability, and flow. This is true for a variety of subsurface scenarios, ranging from shallow groundwater aquifers to deeply buried hydrocarbon reservoirs. Microfluidic flow cells are now commonly being used to study these processes at the pore scale in simplified pore structures meant to mimic subsurface reservoirs. However, these micromodels are typically fabricated from glass, silicon, or polydimethylsiloxane (PDMS), and are therefore incapable of replicating the geochemical reactivity and complex three-dimensional pore networks present in subsurface lithologies. To address these limitations, we developed a new microfluidic experimental test bed, herein called the Real Rock-Microfluidic Flow Cell (RR-MFC). A porous 500μm-thick real rock sample of the Clair Group sandstone from a subsurface hydrocarbon reservoir of the North Sea was prepared and mounted inside a PDMS microfluidic channel, creating a dynamic flow-through experimental platform for real-time tracking of subsurface reactive transport. Transmitted and reflected microscopy, cathodoluminescence microscopy, Raman spectroscopy, and confocal laser microscopy techniques were used to (1) determine the mineralogy, geochemistry, and pore networks within the sandstone inserted in the RR-MFC, (2) analyze non-reactive tracer breakthrough in two- and (depth-limited) three-dimensions, and (3) characterize multiphase flow. The RR-MFC is the first microfluidic experimental platform that allows direct visualization of flow and transport in the pore space of a real subsurface reservoir rock sample, and holds potential to advance our understandings of reactive transport and other subsurface processes relevant to pollutant transport and cleanup in groundwater, as well as energy recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Simulating non-point source pollution with an integrated surface-subsurface hydrologic approach in an agricultural watershed (United States)

    Xiang, L.; Chen, L.; Yu, Z.


    The non-point source pollution is a major threat for water security in agricultural watersheds. A physically-based integrated hydrological model system is implemented in Meilin watershed, a small agricultural watershed in the southwest part of Tai Lake drainage system, China to study surface and subsurface hydrologic processes and to evaluate the solute (N, P) transport along various pathways at a watershed scale. Based on past and ongoing field studies, the watershed is reasonably well characterized and has been monitored on a regular base. Field observed data were used to assess the overland flow and infiltration processes and evaluate how different factors (i.e., soil texture, land use-land cover, and micro-topography) would affect these hydrologic processes. The model is driven by the observed precipitation to simulate surface water, soil moisture, groundwater and solute transport. The model calibration was conducted by using a multi-objective approach and the objectives include streamflow, soil moisture, groundwater level, solute concentration, etc. Numerical experiments were designed to elucidate the dynamics of watershed hydrologic processes as well as the interactive relationship on variables in land surface, unsaturated zone, and groundwater. The results illustrate how soil texture, land use-land cover, and topography would affect different hydrologic processes and their inter-relationship. The work will help better understand physically-coupled flow and solute transport in the watershed and enhance the quality of watershed flow and solute simulation.

  10. Probing Subsurface Flows in NOAA Active Region 12192: Comparison with NOAA 10486 (United States)

    Jain, Kiran; Tripathy, S. C.; Hill, F.


    NOAA Active Region (AR) 12192 is the biggest AR observed in solar cycle 24 so far. This was a long-lived AR that survived for four Carrington rotations (CRs) and exhibited several unusual phenomena. We measure the horizontal subsurface flows in this AR in multiple rotations using the ring-diagram technique of local helioseismology and the Global Oscillation Network Group (GONG+) Dopplergrams, and we investigate how different was the plasma flow in AR 12192 from that in AR 10486. Both regions produced several high M- and X-class flares, but they had different coronal mass ejection (CME) productivity. Our analysis suggests that these ARs had unusually large horizontal flow amplitude with distinctly different directions. While meridional flow in AR 12192 was poleward that supports the flux transport to poles, it was equatorward in AR 10486. Furthermore, there was a sudden increase in the magnitude of estimated zonal flow in shallow layers in AR 12192 during the X3.1 flare; however, it reversed direction in AR 10486 with the X17.2 flare. These flow patterns produced strong twists in horizontal velocity with depth in AR 10486 that persisted throughout the disk passage, as opposed to AR 12192, which produced a twist only after the eruption of the X3.1 flare that disappeared soon after. Our study indicates that the sunspot rotation combined with the reorganization of magnetic field in AR 10486 was not sufficient to decrease the flow energy even after several large flares that might have triggered CMEs. Furthermore, in the absence of sunspot rotation in AR 12192, this reorganization of magnetic field contributed significantly to the substantial release of flow energy after the X3.1 flare.

  11. Integrating surrogate models into subsurface simulation framework allows computation of complex reactive transport scenarios (United States)

    De Lucia, Marco; Kempka, Thomas; Jatnieks, Janis; Kühn, Michael


    Reactive transport simulations - where geochemical reactions are coupled with hydrodynamic transport of reactants - are extremely time consuming and suffer from significant numerical issues. Given the high uncertainties inherently associated with the geochemical models, which also constitute the major computational bottleneck, such requirements may seem inappropriate and probably constitute the main limitation for their wide application. A promising way to ease and speed-up such coupled simulations is achievable employing statistical surrogates instead of "full-physics" geochemical models [1]. Data-driven surrogates are reduced models obtained on a set of pre-calculated "full physics" simulations, capturing their principal features while being extremely fast to compute. Model reduction of course comes at price of a precision loss; however, this appears justified in presence of large uncertainties regarding the parametrization of geochemical processes. This contribution illustrates the integration of surrogates into the flexible simulation framework currently being developed by the authors' research group [2]. The high level language of choice for obtaining and dealing with surrogate models is R, which profits from state-of-the-art methods for statistical analysis of large simulations ensembles. A stand-alone advective mass transport module was furthermore developed in order to add such capability to any multiphase finite volume hydrodynamic simulator within the simulation framework. We present 2D and 3D case studies benchmarking the performance of surrogates and "full physics" chemistry in scenarios pertaining the assessment of geological subsurface utilization. [1] Jatnieks, J., De Lucia, M., Dransch, D., Sips, M.: "Data-driven surrogate model approach for improving the performance of reactive transport simulations.", Energy Procedia 97, 2016, p. 447-453. [2] Kempka, T., Nakaten, B., De Lucia, M., Nakaten, N., Otto, C., Pohl, M., Chabab [Tillner], E., Kühn, M

  12. Limestone and Zeolite as Alternative Media in Horizontal Subsurface Flow Constructed Wetlands: Laboratory-Scale Studies (United States)

    Lizama, K.; Jaque, I.; Ayala, J.


    Arsenic is well known for its chronic toxicity. Millions of people around the world are currently at risk, drinking water with As concentrations above 10 ppb, the WHO drinking water guideline. Although different treatment options exist, they are often limited by elevated costs and maintenance requirements. Constructed wetlands are a natural water treatment system, capable to remove metals and metalloids -including As- via different physical, chemical and biological processes. The use of alternative supporting media to enhance As removal in subsurface flow wetlands has been recommended, but not sufficiently studied. Limestone and zeolite have been identified as effective supporting media in subsurface flow wetlands aiming As removal. However, there are still key aspects to be addressed, such as the implications of using these media, the speciation in the solid phase, the role of vegetation, etc. This study investigated the performance of limestone and zeolite in three types of experiments: batch, column and as main supporting media in a bench scale horizontal subsurface flow wetland system. Synthetic water resembling a contaminated river in Chile (As concentration=3 mg/L, Fe concentration= 100 mg/L, pH=2) was used in all experiments. In the batch experiments, the As concentration, the mass of media and the contact time were varied. The column system consisted of three limestone columns and three zeolite columns, operated under a hydraulic loading of 20 mm/d. The wetland system consisted of twelve PVC cells: six filled with zeolite and six with limestone. Phragmites australis were planted in three cells of each media type, as control cells. From the batch experiments, maximum As sorption capacities as indicated by Langmuir model were 1.3 mg/g for limestone and 0.17 mg/g for zeolite, at 18 h contact time and 6.3 g/L medium concentration. EDS and XPS analyses revealed that As and Fe were retained in zeolite at the end of the batch experiments. Zeolite and limestone

  13. Effect of dosing regime on nitrification in a subsurface vertical flow treatment wetland system. (United States)

    Kantawanichkul, Suwasa; Boontakhum, Walaya


    In this study, the effect of dosing regime on nitrification in a subsurface vertical flow treatment wetland system was investigated. The experimental unit was composed of four circular concrete tanks (1 m diameter and 80 cm deep), filled with gravel (1-2 cm) and planted with Cyperus alternifolius L. Synthetic wastewater with average chemical oxygen demand (COD) and ammonia nitrogen of 1,151 and 339 mg/L was fed into each tank. Different feeding and resting periods were applied: continuous flow (tank 1), 4 hrs on and 4 hrs off (tank 2), 1 hr on and 3 hrs off (tank 3) and 15 minutes on and 3 hrs 45 minutes off (tank 4). All four tanks were under the same hydraulic loading rate of 5 cm/day. After 165 days the reduction of total Kjeldahl nitrogen and ammonia nitrogen and the increase of nitrate nitrogen were greatest in tank 4, which had the shortest feeding period, while the continuous flow produced the lowest results. Effluent tanks 2 and 3 experienced similar levels of nitrification, both higher than that of tank 1. Thus supporting the idea that rapid dosing periods provide better aerobic conditions resulting in enhanced nitrification within the bed. Tank 4 had the highest removal rates for COD, and the continuous flow had the lowest. Tank 2 also exhibited a higher COD removal rate than tank 3, demonstrating that short dosing periods provide better within-bed oxidation and therefore offer higher removal efficiency.

  14. Influence of flow velocity on the removal of faecal coliforms in horizontal subsurface flow constructed wetland. (United States)

    Lohay, W S; Lyimo, T J; Njau, K N


    In order to determine the influence of flow velocity on the removal of faecal coliforms (FC) in constructed wetlands (CWs), removal rate constants of FC (k(FC)) were studied at various flow velocities (u). Membrane filtration technique was used during analysis. Values of k(FC) were determined using Reed's equation of pathogen removal; the results were compared with the plug flow equation. According to Reed's equation, k(FC) values ranged from 1.6 day⁻¹ at a velocity of 4 m/day to 34.5 day⁻¹ at a velocity of 42.9 m/day. The removal rates correlated positively with flow velocity (r = 0.84, p < 0.05). On assuming a plug flow equation, removal rates constants ranged from 0.77 to 11.69 day⁻¹; a more positive correlation (r = 0.93, p < 0.05) was observed. Optimum removal rate constants were observed for the velocity ranging 36 to 43 m/day. Generally, the increase of flow velocity improved FC removal rate constants: implying that pathogen removals are influenced by diffusion of the microorganisms into the biofilms on CW media. The velocity dependent approach together with the plug flow equation is therefore proposed for incorporation in the design of CW in a tropical climate where temperature variations are minor.

  15. Subsurface-water flow and solute transport: federal glossary of selected terms (United States)

    Isensee, Alan R.; Johnson, Lynn; Thornhill, Jerry; Nicholson, Thomas J.; Meyer, Gerald; Vecchioli, John; Laney, Robert


    The purpose of this report is to provide a glossary of selected terms for saturated and unsaturated flow and related processes involved in transport of contaminants in the subsurface. The glossary contains five tables. Table 1 is a list of parameters with associated symbols and units. Tables 2 to 5 are conversion charts. The original manuscript was prepared by Thomas J. Nicholson, U.S. Nuclear Regulatory Commission. It was subsequently examined by the Ground-Water Glossary Working Group and experts within and outside the Federal Government, whose recommendations were accommodated where appropriate in the glossary. It is hoped that the glossary will aid in the communications between soil scientists, hydrologists, and hydrogeologists.

  16. Flow and transport processes in a macroporous subsurface-drained glacial till soil

    DEFF Research Database (Denmark)

    Villholth, Karen Grothe; Jensen, Karsten Høgh; Fredericia, Johnny


    of macropore structure and hydraulic efficiency, using image analysis and tension infiltration, and of soil water content, level of groundwater table, and chloride content of soil water within the soil profile yielded insights into small-scale processes and their associated variability. Macropore how......The qualitative and quantitative effects of macropore flow and transport in an agricultural subsurface-drained glacial till soil in eastern Denmark have been investigated. Three controlled tracer experiments on individual field plots (each approximately 1000 m(2)) were carried out by surface...... application of the conservative chloride ion under different application conditions. The subsequent continuous long-term monitoring of the rate and chloride concentration of the drainage discharge represented an integrated and large-scale approach to the problem. In addition, point-scale determination...

  17. Clustered iterative stochastic ensemble method for multi-modal calibration of subsurface flow models

    KAUST Repository

    Elsheikh, Ahmed H.


    A novel multi-modal parameter estimation algorithm is introduced. Parameter estimation is an ill-posed inverse problem that might admit many different solutions. This is attributed to the limited amount of measured data used to constrain the inverse problem. The proposed multi-modal model calibration algorithm uses an iterative stochastic ensemble method (ISEM) for parameter estimation. ISEM employs an ensemble of directional derivatives within a Gauss-Newton iteration for nonlinear parameter estimation. ISEM is augmented with a clustering step based on k-means algorithm to form sub-ensembles. These sub-ensembles are used to explore different parts of the search space. Clusters are updated at regular intervals of the algorithm to allow merging of close clusters approaching the same local minima. Numerical testing demonstrates the potential of the proposed algorithm in dealing with multi-modal nonlinear parameter estimation for subsurface flow models. © 2013 Elsevier B.V.

  18. Surface and subsurface hydrothermal flow pathways at Norris Geyser Basin, Yellowstone National Park (United States)

    Graham Wall, B. R.


    During summer 2003 at Yellowstone's Norris Geyser Basin notable changes were observed in the discharge of heat and steam, creating new thermal features, dying vegetation, and the consequent closure of trails to protect public safety. In order to interpret data collected from GPS, seismic, and temperature instruments deployed in response to the increased hydrothermal activity, a study has been undertaken to provide a more complete knowledge of the spatial distribution of subsurface fluid conduits. Geologic data, including mapped outcrops, aerial imagery, thermal infrared imagery, and subsurface core, indicate that fracture pathways in the Lava Creek Tuff (LCT) channel flow in the hydrothermal system. These data show clear evidence that NE-SW and NW-SE trending structures provide major flow pathways at Norris. By mapping fracture sets in outcrops of LCT with varied degrees of hydrothermal alteration, one can consistently identify fractures that localize hydrothermal fluid flow, alteration, and the geometry of surface thermal features. Alteration is characterized by acid leaching that quickly alters LCT mafic minerals and glassy groundmass, which in outcrop is recognized by corroded and disaggregated LCT with local secondary mineral deposition. Mapping the sequence from unaltered to altered LCT has identified vertical cooling joints as primary conduits for hydrothermal fluids. These vertical joints correlate with the NE-SW trending geomorphic expression of the LCT in this area, and parallel the adjacent caldera boundary. Horizontal fractures parallel depositional stratigraphy, and in core from drill holes Y-9 (248 m) and Y-12 (332 m) appear to initiate at collapsed vapor-phase cavities or regions of altered fiamme. Vertical fractures in the core show sequences of hydrothermal minerals locally derived from water-rock interaction that line fracture walls, characteristic of mineral deposition associated with repeat reactivation. Although the hydrothermal system is

  19. Influence of substrate heterogeneity on the hydraulic residence time and removal efficiency of horizontal subsurface flow constructed wetlands (United States)

    Carranza-Diaz, O.; Brovelli, A.; Rossi, L.; Barry, D. A.


    Horizontal, subsurface flow constructed wetlands are wastewater treatment devices. The influent polluted water flows through a porous substrate where the contaminants are removed, for example by microbial oxidation, surface adsorption and mineral precipitation. These systems are widely used with varying degrees of success to treat municipal and agricultural contaminated waters and remove the organic carbon and nutrient load. Constructed wetlands are an appealing and promising technology, because they (i) are potentially very efficient in removing the pollutants, (ii) require only a small external energy input and (iii) require low maintenance. However, practical experience has shown that the observed purification rate is highly variable and is often much smaller than expected. One of the numerous reasons proposed to explain the variable efficiency of constructed wetlands is the existence of highly conductive zones within the porous substrate, which produce a dramatic reduction of the hydraulic residence time and therefore directly decreases the overall water purification rate. This work aims to understand quantitatively the relationship between the spatial variability in the hydraulic properties of the substrate and the effective residence time in constructed wetlands. We conducted two suites of stochastic numerical simulations, modelling the transport of a conservative tracer in a three-dimensional simulated constructed wetland in one case, and the microbial oxidation of a carbon source in the other. Within each group of simulations, different hydraulic conductivity fields were tested. These were based on a log-normal, spatially correlated random field (with exponential spatial correlation). The amount of heterogeneity was varied by changing the variance correlation length in the three directions. For each set of parameters, different realizations are considered to deduce both the expected residence time for a certain amount of heterogeneity, and its range of

  20. Subsurface temperature variations and heat flow in the Anambra Basin, Nigeria (United States)

    Mosto Onuoha, K.; Ekine, Anthony S.


    Data from sixteen deep walls drilled for oil exploration purposes in the Anambra Basin of southeastern Nigeria indicate large variations in temperature gradients and heat flow within the basin. Geothermal gradients vary between 25 and 49 ± 1°C km -1, while heat flow estimates are in the range 48 to 76 ± 3 mW m -2. The highest geothermal gradients and heat flow values were computed for the wells located in the southwestern part of the basin north of Onitsha and Asaba. This part of the basin coincides with zones of thick, low conductivity sediments, low ground surface elevation, and hydraulic discharge zones. The general direction of increase in geothermal gradient, originally projected as south to north by earlier workers dealing with the Niger Delta data and the very limited well data from the Anambra Basin, is inconsistent with the results of the present study. The distribution of subsurface temperatures, geothermal gradients and heat flow is found to be directly related to the basin hydrodynamics - higher geothermal gradients and heat flow in areas of low hydraulic head distribution. Hydrocarbon metamorphism and migration appear to have been greatly influenced by the movements of circulating meteoric waters. A higher level of organic maturity of sediments should be expected in the southwestern zone, where the thermal anomaly exists. However, owing to hydrodynamic activities, tertiary migration would have taken place leaving many traces of residual hydrocarbons. The several cases of fluorescence noticed in wells in the southwestern zone of the Anambra Basin are taken as evidence that this process may indeed have taken place in the geological past of the basin.

  1. Wildfire Effects on Soil Hydraulic Properties and Subsurface Flow Pathways in Southwestern Oregon (United States)

    Bladon, K. D.; Cole, R.


    The Stouts Creek wildfire burned 10,700 ha of forestland in the foothills of the Cascade Mountains in southwestern Oregon in summer 2015. Burn severity was spatially variable, with 17% of the landscape burning at high severity and 33% at medium severity. Two small headwater catchments (Stouts Ck and Callahan Ck), which were more severely impacted by the wildfire, were investigated regarding the effects of wildfire on soil hydraulic properties and runoff generation. Mean soil moisture in the surface soil layer (θsurf; 0-5 cm) along unburned hillslopes was 20.4% ± 2.5%, while mean θsurf on burned hillslopes was 13.9% ± 2.2% (F = 11.8; p = .002). Similarly, mean θdepth (5-10 cm) on reference hillslopes was 22.0 ± 2.2%, and mean θdepth on burned hillslopes was 17.6 ± 2.8% (F = 4.54; p = .042). Unsaturated hydraulic conductivity was approximately the same at the soil surface in the unburned (3.34 mm hr-1) and burned catchments (2.76 mm hr-1)—however, unsaturated hydraulic conductivity at 10 cm depth in the soil was 3-times greater along unburned hillslopes compared to the burned hillslopes (χ2 = 6.5; p = .01). A dye tracer experiment and soil profile image analysis showed high variability in infiltration and subsurface flow paths between reference and burned plots. Dye image analysis suggested that water infiltrated and moved vertically as a more uniform wetting front with little evidence of lateral movement of water downslope in the reference plots. Alternatively, the burned plots showed greater evidence of heterogeneous finger flow, as well as evidence of overland flow, which produced gullies (>4 m long, 0.5 m wide) below the bottom edges of the burned plots. Overall, results suggest the wildfire impacted soil structure with likely impacts on surface runoff and subsurface flow pathways—these hillslope changes can influence the timing and magnitude of streamflow and increase soil erosion, negatively affecting source water quality.

  2. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States (United States)

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell


    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...

  3. Flow simulation and high performance computing (United States)

    Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Kalro, V.; Litke, M.


    Flow simulation is a computational tool for exploring science and technology involving flow applications. It can provide cost-effective alternatives or complements to laboratory experiments, field tests and prototyping. Flow simulation relies heavily on high performance computing (HPC). We view HPC as having two major components. One is advanced algorithms capable of accurately simulating complex, real-world problems. The other is advanced computer hardware and networking with sufficient power, memory and bandwidth to execute those simulations. While HPC enables flow simulation, flow simulation motivates development of novel HPC techniques. This paper focuses on demonstrating that flow simulation has come a long way and is being applied to many complex, real-world problems in different fields of engineering and applied sciences, particularly in aerospace engineering and applied fluid mechanics. Flow simulation has come a long way because HPC has come a long way. This paper also provides a brief review of some of the recently-developed HPC methods and tools that has played a major role in bringing flow simulation where it is today. A number of 3D flow simulations are presented in this paper as examples of the level of computational capability reached with recent HPC methods and hardware. These examples are, flow around a fighter aircraft, flow around two trains passing in a tunnel, large ram-air parachutes, flow over hydraulic structures, contaminant dispersion in a model subway station, airflow past an automobile, multiple spheres falling in a liquid-filled tube, and dynamics of a paratrooper jumping from a cargo aircraft.

  4. Simulation of Rainfall-Runoff Response in Ecological Swale with On-Line Subsurface Detention Using Infoworks SD. (United States)

    Ghadim, Hamed Benisi; Hin, Lai Sai


      The Bio-Ecological Drainage System (BIOECODS) is a sustainable drainage (SUDS) to demonstrate the 'control at source' approaches for urban stormwater management in Malaysia. It is an environmentally friendly drainage system that was designed to increase infiltration, reduce peak flow at outlet, improve water quality, through different BMPs, such as grass swale, retention pond, etc. A special feature of BIOECODS is ecological swale with on-line subsurface detention. This study attempted to create a model of ecological swale with on-line subsurface conveyance system with InfoWorks SD. The new technique has been used Storm Water Management Model (SWMM) model to describe overland flow routing and Soil Conservation Service Method (SCS) used to model infiltration or subsurface flow. The modeling technique has been proven successful, as the predicted and observed closely match each other, with a mean error of 4.58 to 7.32%. The calibrated model then used to determine the ratio of the flow exchange between the surface and subsurface drainage system. Results from the model showed that the runoff ratio exchange between the surface and subsurface is 60 to 90%.

  5. On-site wastewater treatment using subsurface flow constructed wetlands in Ireland. (United States)

    Gill, Laurence W; O'Luanaigh, Niall; Johnston, Paul M


    The results from an Irish EPA-funded project on the effectiveness of using constructed wetlands for treating wastewater from single households is presented, which has contributed to the design guidelines included in the new EPA Code of Practice. Three subsurface flow gravel-filled wetlands were constructed on separate sites--one to provide secondary treatment and the other two to provide tertiary treatment stages for the domestic effluent. A comprehensive analysis over three years was then conducted to provide a robust characterization of the internal dynamics of the systems, particularly with respect to N and P removal as well as evaluating the temporal water balance across the different seasons. The removal of Total N was only 29% and 30% in the secondary and tertiary treatment wetlands, respectively; particularly disappointing for the tertiary treatment process, which was receiving nitrified effluent. Studies on the (15)N stable isotope confirmed that 35% of the ammonium from the septic tank was passing straight through the process without taking part in any biogeochemical processes. However, influent N in the wetlands was shown to be biologically assimilated into organic nitrogen and then released again as soluble ammonium--so-called nitrogen "spiraling." Removal of Total P in the wetlands averaged from 28% to 45% with higher P removals measured during summer periods, although the effluent concentrations were still found to be high (> 5 mg/l on average). The phosphorus in the plant material was also analysed revealing that the annual above-ground stem matter only accounted for 1.3% to 8.4% of the annual total P-load in the wetlands. Finally, the water balance analyses showed that the mean flow discharging from both the secondary and tertiary treatment wetlands was slightly greater than the mean flow to the reed bed over the trial period, with rainfall acting to increase flows by 13% and 5%, respectively, on average in winter while just about balancing

  6. Form and function in hillslope hydrology: characterization of subsurface flow based on response observations (United States)

    Angermann, Lisa; Jackisch, Conrad; Allroggen, Niklas; Sprenger, Matthias; Zehe, Erwin; Tronicke, Jens; Weiler, Markus; Blume, Theresa


    The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches

  7. Flow Simulation of Solid Rocket Motors. 2; Sub-Scale Air Flow Simulation of Port Flows (United States)

    Yeh, Y. P.; Ramandran, N.; Smith, A. W.; Heaman, J. P.


    The injection-flow issuing from a porous medium in the cold-flow simulation of internal port flows in solid rocket motors is characterized by a spatial instability termed pseudoturbulence that produces a rather non-uniform (lumpy) injection-velocity profile. The objective of this study is to investigate the interaction between the injection- and the developing axial-flows. The findings show that this interaction generally weakens the lumpy injection profile and affects the subsequent development of the axial flow. The injection profile is found to depend on the material characteristics, and the ensuing pseudoturbulence is a function of the injection velocity, the axial position and the distance from the porous wall. The flow transition (from laminar to turbulent) of the axial-flow is accelerated in flows emerging from smaller pores primarily due to the higher pseudoturbulence produced by the smaller pores in comparison to that associated with larger pores. In flows with rather uniform injection-flow profiles (weak or no pseudoturbulence), the axial and transverse velocity components in the porous duct are found to satisfy the sine/cosine analytical solutions derived from inviscid assumptions. The transition results from the present study are compared with previous results from surveyed literature, and detailed flow development measurements are presented in terms of the blowing fraction, and characterizing Reynolds numbers.

  8. Subsurface Flow Model Calibration under Uncertain Geologic Scenarios with Adaptive Sparse Reconstruction Techniques (United States)

    Khaninezhad, M. M.; Jafarpour, B.


    Construction of predictive aquifer and reservoir models involves subjective interpretation and interpolation of spatially limited data and imperfect modeling assumptions. Hence, the process can introduce significant uncertainty and bias into subsurface flow and transport modeling. In particular, the uncertainty in the geologic continuity model can markedly degrade the quality of fluid displacement predictions and, hence, the efficiency of resource development plans. We present a novel approach for flow model calibration under uncertainty in geologic continuity model. Our approach is inspired by recent advances in sparse reconstruction and takes advantage of the selection property of the l1-norm minimization in sparse bases. Using an adaptive saprse reconstruction framework, we develop a prior model identification method to discriminate against distinct prior geologic continuity models (e.g., variograms) that are proposed for model calibration. Realizations from each geologic continuity model are used to generate a diverse geologic dictionary that compactly represents models from each proposed prior geologic scenario. The inversion method is initialized by taking the same number of elements from each prior geologic continuity model. At each iteration of the nonlinear model calibration process the contribution of the proposed prior models to the reconstructed solution is monitored and, to improve the solution quality, elements from inconsistent prior models are replaced with additional elements from geologically consistent priors. We use several numerical examples to illustrate the effectiveness of the proposed adaptive prior identification approach for model calibration under uncertainty in prior geologic continuity.

  9. [Treatment of 1, 2-dichlorobenzene in wastewater by using horizontal subsurface flow constructed wetlands]. (United States)

    Ding, Cheng; Yang, Tang-Yi; Yu, Qian; Li, Zhao-Xia; Yang, Chun-Sheng


    Pilot-scale horizontal subsurface flow constructed wetlands (SFCW) planted with Phragmites australis were constructed to treat in 1,2-dichlorobenzene (o-DCB) wastewater. Different soil substrates of loam (W-L), fine sand (W-F) and coarse sand (W-C) were used in the three SFCW and a loam wetland with no reeds W-Z was taken as control. Results showed that the optimal hydraulic retention time (HRT) and pollutants surface loading rate(ALR)were 5 d and 150 mg x (m2 x d)(-1). Removal efficiencies for o-DCB of W-L, W-F, W-C and W-Z were 81.2%, 71.1%, 72.4% and 65.2%, respectively. The performance of systems achieved in mid-August and declined from October, with order of W-L > W-C > W-Z > W-F. Spatial concentration dynamics of o-DCB and dissolved oxygen (DO) were also investigated in W-L and W-Z, which indicated that DO was an important role to removal of o-DCB. The residual quantity of o-DCB in wetland substrate decreased along the flow direction and increased with the depth of substrate layers, the mean residual in the root, stem and leaf of reeds were 30.28, 14.85 and 6.18 microg x g(-1).

  10. Clogging influence on metals migration and removal in sub-surface flow constructed wetlands (United States)

    Ranieri, Ezio; Young, Thomas M.


    Chromium (Cr) and Nickel (Ni) removal from secondary effluent has been evaluated in a four year research program to determine the effectiveness of Sub-Surface Flow (SSF) Constructed Wetlands (cws). Tests were performed in small scale (10 l/h) and full scale (150 m3/d) SSF cws. Metals removal was also assessed as a function of increased clogging that occurred in the cws over the course of the study. Cr and Ni content were evaluated in sediments at various locations along the flow path and in plant tissues by sampling Phragmites australis roots, stems and leaves. Clogging was evaluated by measuring hydraulic conductivity at the same sampling locations at the beginning and at the end of the experiment. Residence Time Distribution (RTD) curves were also assessed at the beginning and after 48 months; the skewness of the RTDs increased over this period. Proportionality between increasing clogging and sediment accumulation of metals was observed, especially for Ni. Adsorption to the original matrix and the accumulated sediment is a removal mechanism consistent with available data.

  11. Development of a horizontal subsurface flow modular constructed wetland for urban runoff treatment. (United States)

    Choi, J Y; Maniquiz, M C; Geronimo, F K; Lee, S Y; Lee, B S; Kim, L H


    Constructed wetlands (CWs) are well recognized as having low construction and maintenance cost and low energy requirement. However, CW design has been mainly based on rule-of-thumb approaches. In this study, the efficiency of a modular horizontal subsurface flow (HSSF) CW using four different design schemes was investigated. Based on the results, the four systems have attained more than 90% removal of total suspended solids and more than 50% removal efficiency for total phosphorus, PO(4)-P and Zn. The planted system achieved higher pollutant removal rates than the unplanted system. In terms of media, bottom ash was more effective than woodchip in reducing the pollutants. Considering the flow length, optimum removal efficiency was achieved after passing the sedimentation tank and vertical media layer; with respect to depth, more pollutants were removed in the upper sand layer than in the lower gravel layer. This study recommended a surface area of 0.25 to 0.8% of catchment area for planted CW and 0.26 to 0.9% for unplanted CW using the 7.5 to 10 mm design rainfall.


    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able...

  13. Successes and Challenges of Incompressible Flow Simulation (United States)

    Kwak, Dochan; Kiris, Cetin


    During the past thirty years, numerical methods and simulation tools for incompressible flows have been advanced as a subset of CFD discipline. Even though incompressible flows are encountered in many areas of engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to rather stringent requirements for predicting aerodynamic performance characteristics of flight vehicles, while flow devices involving low speed or incompressible flow could be reasonably well designed without resorting to accurate numerical simulations. As flow devices are required to be more sophisticated and highly efficient, CFD tools become indispensable in fluid engineering for incompressible and low speed flow. This paper is intended to review some of the successes made possible by advances in computational technologies during the same period, and discuss some of the current challenges.

  14. Akuna: An Open Source User Environment for Managing Subsurface Simulation Workflows (United States)

    Freedman, V. L.; Agarwal, D.; Bensema, K.; Finsterle, S.; Gable, C. W.; Keating, E. H.; Krishnan, H.; Lansing, C.; Moeglein, W.; Pau, G. S. H.; Porter, E.; Scheibe, T. D.


    The U.S. Department of Energy (DOE) is investing in development of a numerical modeling toolset called ASCEM (Advanced Simulation Capability for Environmental Management) to support modeling analyses at legacy waste sites. ASCEM is an open source and modular computing framework that incorporates new advances and tools for predicting contaminant fate and transport in natural and engineered systems. The ASCEM toolset includes both a Platform with Integrated Toolsets (called Akuna) and a High-Performance Computing multi-process simulator (called Amanzi). The focus of this presentation is on Akuna, an open-source user environment that manages subsurface simulation workflows and associated data and metadata. In this presentation, key elements of Akuna are demonstrated, which includes toolsets for model setup, database management, sensitivity analysis, parameter estimation, uncertainty quantification, and visualization of both model setup and simulation results. A key component of the workflow is in the automated job launching and monitoring capabilities, which allow a user to submit and monitor simulation runs on high-performance, parallel computers. Visualization of large outputs can also be performed without moving data back to local resources. These capabilities make high-performance computing accessible to the users who might not be familiar with batch queue systems and usage protocols on different supercomputers and clusters.

  15. Application of a fully integrated surface-subsurface physically based flow model for evaluating groundwater recharge from a flash flood event (United States)

    Pino, Cristian; Herrera, Paulo; Therrien, René


    In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.

  16. Snowmelt-induced subsurface and overland flows in a hillslope in Noname Watershed, Laramie River Basin, Wyoming (United States)

    Rogers, T.; Ohara, N.


    Only few field observations have been implemented using surface and sub-surface trenches to investigate snowmelt-induced hillslope runoffs in mountainous regions. Hillslope trenches may be one of the most direct ways to measure subsurface and overland flow during winter and spring seasons. In July 2014, a 10 meter long trench was constructed with hand tools through glacial till on a south facing hillslope in the Noname Watershed, Medicine Bow National Forest, Wyoming, where heavy equipment and motorized vehicles were restricted. This trench measures subsurface and overland flow for a 610 square meters catchment which has an average slope of 25 degrees. This water-collecting trench is equipped with 4 soil-moisture and temperature sensors to detect the presence of unsaturated flow. Field observations from the trench showed that diurnal oscillation of snowmelt seemed to control the overland flow between the snow and soil surface. The water inputs to the hillslope, including rainfall, evaporation, and snowmelt rates, were estimated from the energy balance computations using the observed meteorological data at the site. Using the water input data, the lateral flow component through the deeper soil or weathered bedrock layer was also quantified by the mass balance in the catchment. This study provides one of key field activities for Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) project.

  17. Simulation of Subsurface Multiphase Contaminant Extraction Using a Bioslurping Well Model

    Energy Technology Data Exchange (ETDEWEB)

    Matos de Souza, Michelle; Oostrom, Mart; White, Mark D.; Cardoso da Silva, Gerson; Barbosa, Maria Claudia


    Subsurface simulation of multiphase extraction from wells is notoriously difficult. Explicit representation of well geometry requires small grid resolution, potentially leading to large computational demands. To reduce the problem dimensionality, multiphase extraction is mostly modeled using vertically-averaged approaches. In this paper, a multiphase well model approach is presented as an alternative to simplify the application. The well model, a multiphase extension of the classic Peaceman model, has been implemented in the STOMP simulator. The numerical solution approach accounts for local conditions and gradients in the exchange of fluids between the well and the aquifer. Advantages of this well model implementation include the option to simulate the effects of well characteristics and operation. Simulations were conducted investigating the effects of extraction location, applied vacuum pressure, and a number of hydraulic properties. The obtained results were all consistent and logical. A major outcome of the test simulations is that, in contrast with common recommendations to extract from either the gas-NAPL or the NAPL-aqueous phase interface, the optimum extraction location should be in between these two levels. The new model implementation was also used to simulate extraction at a field site in Brazil. The simulation shows a good match with the field data, suggesting that the new STOMP well module may correctly represent oil removal. The field simulations depend on the quality of the site conceptual model, including the porous media and contaminant properties and the boundary and extraction conditions adopted. The new module may potentially be used to design field applications and analyze extraction data.

  18. Progress in Unsteady Turbopump Flow Simulations (United States)

    Kiris, Cetin C.; Chan, William; Kwak, Dochan; Williams, Robert


    This viewgraph presentation discusses unsteady flow simulations for a turbopump intended for a reusable launch vehicle (RLV). The simulation process makes use of computational grids and parallel processing. The architecture of the parallel computers used is discussed, as is the scripting of turbopump simulations.

  19. Experiment Research on Purifying Domestic Sewage by Duplex Subsurface Flow Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    SHANG Ping


    Full Text Available The purification effect on domestic sewage were researched in the new-type of duplex subsurface flow constructed wetlands, of which pollutants were analyzed through the small scale test on the purification effect under different conditions of hydraulic loading, season,aeration pattern. The results showed that water quality of the system was stabilized, which could reach the 1 class A criteria specified in the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant ( GB 18918-2002.The removal rate of COD,NH3-N could reach up to 87.2%, 68.9% under the conditions of the hydraulic load being 184 mm·d-1.And there were still more than 20% removal efficien-cy of various pollutants on the conditions of low temperature in winter. Orthogonal test showed that the optimum operating conditions was 28.6℃for the temperature, 0.184 m3·m-2·d-1 for hydraulic loading, and 2.4 d for hydraulic retention time. The experimental research showed that pre-aeration was significantly better than the anaerobic treatment on purifying effect.

  20. Wastewater treatment in horizontal subsurface flow constructed wetlands using different media (setup stage

    Directory of Open Access Journals (Sweden)

    Abdel Razik A. Zidan


    Full Text Available Wastewater treatment through horizontal subsurface flow (HSSF constructed wetlands (CWs using three different treatment media (gravel, pieces of plastic pipes, and shredded tire rubber chips were investigated in Samaha village, Dakahliya, Egypt. The study focused on the wetland setup stage during the first months of its operation (setup stage. In this stage media porosity, bacterial biofilm, and plant roots growth were in progress and it was prior to the operational steady state stage. Objectives of this paper are to study the change in media porosity of HSSF wetland cells in order to estimate duration of wetland setup stage, and to evaluate the use of different bed media on biological oxygen demand (BOD, chemical oxygen demand (COD and total suspended solids (TSS treatment. The results showed that after 180 days of operation, the wetland cells had reached steady porosity and had started stable treatment. Also performance of plastic media bed in pollutants reduction was better than gravel and rubber beds and gravel media was in advanced than rubber media.

  1. Leachate treatment and greenhouse gas emission in subsurface horizontal flow constructed wetland. (United States)

    Chiemchaisri, C; Chiemchaisri, W; Junsod, J; Threedeach, S; Wicranarachchi, P N


    Organic and nitrogen removal efficiencies in subsurface horizontal flow wetland system (HSF) with cattail (Typha augustifolia) treating young and partially stabilized solid waste leachate were investigated. Hydraulic loading rate (HLR) in the system was varied at 0.01, 0.028 and 0.056 m(3)/m(2) d which is equivalent to hydraulic retention time (HRT) of 28, 10 and 5 d. Average BOD removals in the system were 98% and 71% when applied to young and partially stabilized leachate at HLR of 0.01 m(3)/m(2) d. In term of total kjeldahl nitrogen, average removal efficiencies were 43% and 46%. High nitrogen in the stabilized leachate adversely affected the treatment performance and vegetation in the system. Nitrogen transforming bacteria were found varied along the treatment pathway. Methane emission rate was found to be highest at the inlet zone during young leachate treatment at 79-712 mg/m(2) d whereas CO2 emission ranged from 26-3266 mg/m(2) d. The emission of N2O was not detected.

  2. [Segregation effect of purification for nitrogen and phosphate pollution in the subsurface flow constructed wetlands]. (United States)

    Liu, Shu-Yuan; Yan, Bai-Xing; Wang, Li-Xia


    Three minitype subsurface-horizontal flow constructed wetlands planted with Calamagrostis angustifolia and Phragmites australis and filled with soil and slag were used to investigate the N, P and pH for upper layer and underlayer wetland system by intermission operation. Results demonstrated that TN removal rates in the superstratum of Calamagrostis angustifolia and Phragmites australis wetlands were 0.771 g x (m2 x d)(-1), 1.481 g x(m2 x d)(-1) with 10 days of the hydraulic retention, which were 1.15 and 1.31 times higher than that of underlayer wetland systems, respectively. Simultaneity, TP removal rates in the superstratum of Calamagrostis angustifolia and Phragmites australis wetlands were 1.655 g x (m2 x d)(-1), 6.838 g x (m2 x d)(-1), respectively, which were 1.13 and 1.28 times higher than that of underlayer wetland systems, respectively. The purification ability of upper layer in the wetland system was higher than that of underlayer. A regular trend of pH changes and upstanding buffer ability of wetland system were found. The pH values in the upper layer of soil-slag wetlands were smaller than that of underlayer which was contrary to the soil wetland. The break-point of pH curve indicates the termination of NH4(+) -N reaction in constructed wetland.

  3. Performance of experimental horizontal subsurface flow constructed wetlands fed with dissolved or particulate organic matter. (United States)

    Caselles-Osorio, Aracelly; García, Joan


    In this study, the effect of the influent type of organic matter (dissolved or particulate) on the efficiency of two experimental horizontal subsurface flow constructed wetlands (SSF CWs) was investigated. The SSF CWs' surface area was 0.54 m(2) and the water depth was 0.3m. They were monitored for a period of 9 months. One of the SSF CWs was fed with dissolved organic matter (glucose, assumed to be readily biodegradable), and the other with particulate organic matter (starch, assumed to be slowly biodegradable). The removal efficiency of the systems was tested at different hydraulic retention times (HRTs) in the presence or absence of sulphate. The removal efficiency of the COD was not different in the two systems, reaching eliminations of around 85% in the presence of sulphates and around 95% in their absence. Ammonia N removal was low in the two SSF CWs; the system fed with glucose generally had statistically significant higher removal (45%) than the one fed with starch (40%). Ammonia N removal was more affected by the HRT than by the presence or absence of sulphates. Hydraulic conductivity measurements showed that it was lower near the inlet of the SFF CW fed with glucose, probably connected to the fact that there was a more substantial development of the biofilm. The results of this study suggest that SSF CWs are not sensitive to the type of organic matter in the influents, whether it is readily (like glucose) or slowly (like starch) biodegradable, for the removal of COD.

  4. Evaluation of extremely shallow vertical subsurface flow constructed wetland for nutrient removal. (United States)

    Taniguchi, T; Nakano, K; Chiba, N; Nomura, M; Nishimura, O


    Mesocosm-scale vertical subsurface flow constructed wetlands (SSF, 0.5 m length, 0.3 m width) with different reed-bed thickness, including standard SSF (SD, 0.6 m deep), shallow SSF (S, 0.3 m deep) and extremely shallow SSF (ES, 0.075 m deep) were set up at sewage treatment plant and their nutrient removal efficiencies from the sewage plant effluent were compared under three hydraulic loading rate (HLR) conditions of 0.15, 0.45 and 0.75 m(3) m(-2) d(-1). A very interesting characteristics was found for the extremely shallow SSF, in which a high nitrogen removal efficiency was obtained despite the effective hydraulic retention time was only 1/8 times as long as the standard SSF. The results of kinetic analysis confirmed that the high volumetric nitrogen removal efficiency observed in the extremely shallow SSF did not depend on high response against the water temperature but on much higher basic nitrogen removal activity compared with other SSF. The phosphorus removal depending on the adsorption to sand in the reed-bed filter was, however, the lowest in the extremely shallow SSF although the volumetric removal efficiency was much higher compared with other SSF. Results of morphological analysis of rhizosphere collected from respective reed-bed suggested that the extremely shallow SSF lead to a very high-density rhizosphere, resulting in a high basic nitrogen removal activity and volumetric phosphorus removal efficiency.

  5. Long-term performance of subsurface-flow constructed wetlands treating Cd wastewater. (United States)

    Visesmanee, Varangkana; Polprasert, Chongrak; Parkpian, Preeda


    This study was conducted to investigate the long-term performance of subsurface-flow constructed wetland (SFCW) units treating a wastewater containing cadmium (Cd). The hydraulic retention time (HRT) was found to have significant effects on the SFCW performance, especially on Cd removal. During the 320 days of Cd feeding, the HRTs of 1, 3, 5 and 8 days resulted in the Cd removal efficiencies of 50, 90, 99 and 99%, respectively. The actual Cd breakthrough times in the SFCW effluent were found to be longer than the theoretical values calculated from the maximum adsorption capacities only, especially at the HRTs longer than 1 day, and were dependent on the operating HRT and Cd loading. Other mechanisms such as filtration, sedimentation and plant uptake were also responsible for Cd removal in the SFCW beds. The extents of Cd plant uptake were 21 and 6% of the Cd inputs for the SFCW units operating at the HRTs of 3 and 1 days, respectively. Based on Cd mass balance and fractionation analysis, the SFCW media were found to be most effective in Cd removal through adsorption of the residual and Fe/Mn oxide bound fractions. The results of this long-term study re-affirmed the necessity to determine actual breakthrough times of Cd or other heavy metals in the SFCW effluent which are dependent on HRT and Cd loading and are usually longer than the theoretical values calculated from the maximum adsorption capacity only.

  6. Fractional analysis of arsenic in subsurface-flow constructed wetlands with different length to depth ratios. (United States)

    Singhakant, C; Koottatep, T; Satayavivad, J


    Arsenic (As) removal in subsurface-flow constructed wetlands (CW) planting with vetiver grasses was experimented by comparing between two different configurations; (i) deep-bed units (dpCW) with length to depth (L:D) ratio=2 and (ii) shallow-bed units (shCW) with L:D ratio=8; operating at hydraulic retention time (HRT) of 6, 9, and 12 days. The tracer study of CW units revealed that no effect of L:D ratio on dispersion number could be determined, but affecting to the effective volume ratio. Based on the data obtained from the pilot-scale experiments of CW units for 117 days, it is apparent that the dpCW could achieve relatively high As removals (52.9%, 59.2%, and 72.1% at HRT of 6, 9, and 12 days, respectively). Analysis of As mass balance showed that only 0.2-0.4% of As input was uptaken by vetiver grasses whereas the major portion was retained in the CW media (38.9-77.6%). Forms of the retained As was determined by sequential fractionation which could indicate As complexation with iron and manganese on the media surface of 31-38% and As trapping into the media of 42-52% of the total. No obvious difference of As fractions in bed of between dpCW and shCW units was observable.

  7. [Effect of Intermittent Aeration on Nitrogen Removal Efficiency in Vertical Subsurface Flow Constructed Wetland]. (United States)

    Wang, Jian; Li, Huai-zheng; Zhen, Bao-chong; Liu, Zhen-dong


    One-stage vertical subsurface flow constructed wetlands (CWs) were used to treat effluent from grit chamber in municipal wastewater treatment plant. The CW was divided into aerobic zone and anoxic zone by means of raising the effluent level and installing a perforated pipe. Two parameters (the ratio of aeration time and nonaeration time, aeration cycle) were optimized in the experiment to enhance nitrogen removal efficiency. The results suggested that the removal rates of COD and NH₄⁺-N increased while TN showed a trend of first increasing and then decreasing with the increasing ratio. When the ratio was 3:1, the C/N value in the anoxic zone was 4. 8. And the TN effluent concentration was 15.8 mg · L⁻¹ with the highest removal rate (62.1%), which was increased by 12.7% compared with continuous aeration. As the extension of the aeration cycle, the DO effluent concentration as well as the removal rates of COD and NH: -N declined gradually. The TN removal rate reached the maximum (65.5%) when the aeration cycle was 6h. However, the TN removal rate dropped rapidly when the cycle exceeded the hydraulic retention time in the anoxic zone.

  8. Re-evaluation of a subsurface injection experiment for testing flow and transport models

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, M.J.; Lewis, R.E.; Engelman, R.E.; Pearson, A.L.; Murray, C.J.; Smoot, J.L. Lu, A.H. [Pacific Northwest Lab., Richland, WA (United States); Randall, P.R. [Three Rivers Scientific, Richland, WA (United States); Wegener, W.H. [Hoquiam High School, Hoquiam, WA (United States)


    The current preferred method for disposal of low-level radioactive waste (LLW) at the Hanford Site is to vitrify the wastes so they can be stored in a near-surface, shallow-land burial facility (Shord 1995). Pacific Northwest Laboratory (PNL) managed the PNL Vitrification Technology Development (PVTD) Project to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a disposal facility for the vitrified LLW. Vadose zone flow and transport models are recognized as necessary tools for baseline risk assessments of stored waste forms. The objective of the Controlled Field Testing task of the PVTD Project is to perform and analyze field experiments to demonstrate the appropriateness of conceptual models for the performance assessment. The most convincing way to demonstrate appropriateness is to show that the model can reproduce the movement of water and contaminants in the field. Before expensive new experiments are initiated, an injection experiment conducted at the Hanford Site in 1980 (designated the ``Sisson and the Lu experiment``) should be completely analyzed and understood. Briefly, in that test, a solution containing multiple tracers was injected at a single point into the subsurface sediments. The resulting spread of the water and tracers was monitored in wells surrounding the injection point. Given the advances in knowledge, computational capabilities, and models over the last 15 years, it is important to re-analyze the data before proceeding to other experiments and history-matching exercises.

  9. Boosting iterative stochastic ensemble method for nonlinear calibration of subsurface flow models

    KAUST Repository

    Elsheikh, Ahmed H.


    A novel parameter estimation algorithm is proposed. The inverse problem is formulated as a sequential data integration problem in which Gaussian process regression (GPR) is used to integrate the prior knowledge (static data). The search space is further parameterized using Karhunen-Loève expansion to build a set of basis functions that spans the search space. Optimal weights of the reduced basis functions are estimated by an iterative stochastic ensemble method (ISEM). ISEM employs directional derivatives within a Gauss-Newton iteration for efficient gradient estimation. The resulting update equation relies on the inverse of the output covariance matrix which is rank deficient.In the proposed algorithm we use an iterative regularization based on the ℓ2 Boosting algorithm. ℓ2 Boosting iteratively fits the residual and the amount of regularization is controlled by the number of iterations. A termination criteria based on Akaike information criterion (AIC) is utilized. This regularization method is very attractive in terms of performance and simplicity of implementation. The proposed algorithm combining ISEM and ℓ2 Boosting is evaluated on several nonlinear subsurface flow parameter estimation problems. The efficiency of the proposed algorithm is demonstrated by the small size of utilized ensembles and in terms of error convergence rates. © 2013 Elsevier B.V.

  10. Use of horizontal subsurface flow constructed wetlands to treat reverse osmosis concentrate of rolling wastewater. (United States)

    Xu, Jingcheng; Zhao, Gang; Huang, Xiangfeng; Guo, Haobo; Liu, Wei


    According to the characteristics of the reverse osmosis concentrate (ROC) generated from iron and steel company, we used three sets of parallel horizontal subsurface flow (HSF) constructed wetlands (CWs) with different plants and substrate layouts to treat the high-salinity wastewater. The plant growth and removal efficiencies under saline condition were evaluated. The evaluation was based entirely on routinely collected water quality data and the physical and chemical characteristics of the plants (Phragmites australis, Typha latifolia, Iris wilsonii, and Scirpus planiculmis). The principal parameters of concern in the effluent were chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The results showed that the CWs were able to remove COD, TN, and TP from ROC. S. planiculmis was not suitable for the treatment of high-saline wastewater. The sequence of metals accumulated in CW plants was K>Ca>Na>Mg>Zn>Cu. More than 70% of metals were accumulated in the aboveground of P. australis. The CW filled with gravel and manganese ore and planted with P. australis and T. latifolia had the best performance of pollutant removal, with average removal of 49.96%, 39.45%, and 72.01% for COD, TN, and TP, respectively. The effluent water quality met the regulation in China. These results suggested that HSF CW planted with P. australis and T. latifolia can be applied for ROC pollutants removal.

  11. Nitrogen and COD removal from domestic and synthetic wastewater in subsurface-flow constructed wetlands. (United States)

    Collison, R S; Grismer, M E


    Comparisons of the performance of constructed-wetland systems (CWs) for treating domestic wastewater in the laboratory and field may use pathogen-free synthetic wastewater to avoid regulatory health concerns. However, little to no data are available describing the relative treatment efficiencies of CWs to both actual and synthetic domestic wastewaters so as to enable such comparison. To fill this gap, treatment performances with respect to organics (chemical organic demand; COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) and a similar-strength synthetic wastewater under planted and non-planted subsurface-flow CWs are determined. One pair of CWs was planted with cattails in May 2008, whereas the adjacent system was non-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each CWs, and effluent samples were collected and tested for COD and nitrogen species regularly during four different periods over six months. Overall, statistically significant greater removal of COD (-12%) and nitrogen (-5%) occurred from the synthetic as compared with the domestic wastewater from the planted and non-planted CWs. Effluent BOD5/COD ratios from the synthetic wastewater CWs averaged nearly twice that from the domestic wastewater CWs (0.17 vs 0.10), reflecting greater concentrations of readily degraded compounds. That removal fractions were consistent across the mid-range loading rates to the CWs suggests that the synthetic wastewater can be used in testing laboratory CWs with reasonable success in application of their results to the field.

  12. Design, construction and performance of a horizontal subsurface flow wetland system in Australia. (United States)

    Bolton, Lise M W; Bolton, Keith G E


    Malabugilmah is a remote Aboriginal community located in Clarence Valley, Northern NSW, Australia. In 2006, seven horizontal subsurface flow wetland clusters consisting of 3 m × 2 m wetland cells in series were designed and constructed to treat septic tank effluent to a secondary level (Total Suspended Solids (TSS) 50% Total Nitrogen (TN) reduction, no net Total Phosphorus (TP) export and ≥99.9% Faecal Coliform (FC) reduction. The wetland cell configuration allowed the wetlands to be located on steeper terrain, enabling effluent to be treated to a secondary level without the use of pumps. In addition to the water quality targets, the wetlands were designed and constructed to satisfy environmental, economic and social needs of the community. The wetland systems were planted with a local Australian wetland tree species which has become well established. Two wetland clusters have been monitored over the last 4 years. The wetlands have demonstrated to be robust over time, providing a high level of secondary treatment over an extended period.

  13. The Effect of Different Subsurface Drainage Systems on Improvement of Water Flow in Paddy fields

    Directory of Open Access Journals (Sweden)

    ghassem aghajani mazandarani


    Full Text Available Introduction: Better use of water and soil resources in paddy fields, increase in rice production and farmer's income, installation of subsurface drainage system is necessary. The main goalof these systems, are aeration conditions improvement prevention of water logging, yield increase, land use increase and multiuse of the land. In different countries, installation of subsurface drainage cause yield increase and working condition on the land, but no research has been conducted in different depths and spacing. On the other hand, spacing and depth are the most important parameters in the installation of drainage systems, have a direct effect on incoming water into the drains. The aim of this research, is an investigation of the effect of subsurface drainage with different depths and spacing on discharge rate variation and water table fall, in order to analyze the improvement of water flow movement in the soil. Also, study the effect of different drainage systems on the increase of the canola yield as the second cultivation in these treatments have been compared. Materials and Methods: To measure hydraulic conductivity in different depths, the auger holes have been dug (excavated. The saturated hydraulic conductivity in these holes wasdetermined using Ernst method (1950 before installation of drainage systems. In the drainage pilot plot of Sari Agricultural Sciences and Natural Resources University three subsurface drainage systems with mineral envelope have been installed. 1- The first one with the 0.9 m depth and 30 m spacing (D90 L30, 2- The second one with 0.65 m depth and 15 m spacing (D0.65 L15 and 3- The third one with 0.65 m depth and spacing (D0.65 L30 and one bi-level system with mineral envelope including four drains of 15 m spacing with 0.9 m and 0.65 m depths were installed alternatively. After auger hole equipment installations, in the middle spacing of two subsurface and water table reading possible, the water table fluctuation and

  14. Simulating water, solute, and heat transport in the subsurface with the VS2DI software package (United States)

    Healy, R.W.


    The software package VS2DI was developed by the U.S. Geological Survey for simulating water, solute, and heat transport in variably saturated porous media. The package consists of a graphical preprocessor to facilitate construction of a simulation, a postprocessor for visualizing simulation results, and two numerical models that solve for flow and solute transport (VS2DT) and flow and heat transport (VS2DH). The finite-difference method is used to solve the Richards equation for flow and the advection-dispersion equation for solute or heat transport. This study presents a brief description of the VS2DI package, an overview of the various types of problems that have been addressed with the package, and an analysis of the advantages and limitations of the package. A review of other models and modeling approaches for studying water, solute, and heat transport also is provided. ?? Soil Science Society of America. All rights reserved.

  15. Developing Training Image-Based Priors for Inversion of Subsurface Geophysical and Flow Data (United States)

    Caers, J.


    Forecasting in subsurface formations, whether for groundwater, storage or oil & gas production, can rely on a wealth of geological information. Currently, most of this information remains underused in both the theory and practice of forecasting based on inverse models which heavily relies on spatial covariances and multi-Gaussian theory. By means of real field studies, I will provide an outline of how such geological information can be accounted through the construction and validation of a large set of training images and the generation of model realizations with MPS (multiple-point geostatistics). Often most critical in solving such inverse problems is the development of prior models that are later used for posterior sampling or stochastic search. I propose therefore a two-stage approach where the first stage consists of a validation of the training image-based prior with the geophysical and flow data. This stage will require only the generation of a few (100s) geological models and the forward modeling of the data response on these models. For geophysical data, the validation consists of comparing histograms of multi-scale wavelet transforms between the forward models and the field data. For flow data, the validation is based on a reduction of dimensionality of the forward response and the data using multi-dimensional scaling. The outcome of this validation is an estimate of the prior probability assigned to each training image, with several training images getting assigned zero probability (incompatible with field data). These prior probabilities are used in the second stage to actually invert for the data using stochastic search. In such stochastic search, I avoid parameterizing the model space and present methods that efficiently perform a direct search in the space of the validated training image-based prior model realizations.

  16. Heat flow and subsurface temperature distributions in central and western New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, D.S.; Fromm, K.


    Initiation of a geothermal energy program in western and central New York requires knowledge of subsurface temperatures for targeting areas of potential resources. The temperature distribution in possible geothermal reservoirs, calculated from heat flow measurements and modeling techniques, shows that a large area of New York can be considered for exploitation of geothermal resources. Though the temperatures at currently accessible depths show the availability of only a low-temperature (less than 100/sup 0/C), direct-use resource, this can be considered as an alternative for the future energy needs of New York State. From analysis of bottom-hole-temperature data and direct heat flow measurements, estimates of temperatures in the Cambrian Sandstones provide the basis of the economic evaluation of the reservoir. This reservoir contains the extractable fluids needed for targeting a potential geothermal well site in the low-temperature geothermal target zone. In the northern section of the Appalachian basin, reservoir temperatures in the Cambrian are below 50/sup 0/C but may be over 80/sup 0/C in the deeper parts of the basin in southern New York State. Using a minimum of 50/sup 0/C as a useful reservoir temperature, temperatures in excess of this value are encountered in the Theresa Formation at depths in excess of 1300 meters. Considering a maximum depth for economical drilling to be 2500 meters with present technology, the 2500 meters to the Theresa (sea level datum) forms the lower limit of the geothermal resource. Temperatures in the range of 70/sup 0/C to 80/sup 0/C are predicted for the southern portion of New York State.

  17. Optimal conditions for chlorothalonil and dissolved organic carbon in horizontal subsurface flow constructed wetlands. (United States)

    Rìos-Montes, Karina A; Casas-Zapata, Juan C; Briones-Gallardo, Roberto; Peñuela, Gustavo


    The most efficient system of horizontal subsurface flow constructed wetlands (HSSFCW) for removing dissolved organic carbon (DOC) in the presence of chlorothalonil pesticide (CLT) present in synthetic domestic wastewater was determined using the macrophyte Phragmites australis. Two concentrations of CLT (85 and 385 μg L-1) and one concentration of glucose (20 mg L-1) were evaluated in four pilot scale horizontal surface flow constructed wetlands coupled with two sizes of silica gravel, igneous gravel, fine chalky gravel (3.18-6.35 mm), coarse gravel (12.70-25.40 mm) and two water surface heights (20 and 40 cm). For a month, wetlands were acclimated with domestic wastewater. Some groups of bacteria were also identified in the biofilm attached to the gravel. In each treatment periodic samplings were conducted in the influent and effluent. Chlorothalonil was quantified by gas chromatography (GC-ECD m), DOC by an organic carbon analyzer and bacterial groups using conventional microbiology in accordance with Standard Methods. The largest removals of DOC (85.82%-85.31%) were found when using fine gravel (3.18-6.35 mm) and the lower layer of water (20 cm). The bacterial groups quantified in the biofilm were total heterotrophic, revivable heterotrophic, Pseudomonas and total coliforms. The results of this study indicate that fine grain gravel (3.18-6.35 mm) and both water levels (20 to 40 cm) can be used in the removal of organic matter and for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT in HSSFCW.

  18. The removal of nutrients from plant nursery irrigation runoff in subsurface horizontal-flow wetlands. (United States)

    Headley, T R; Huett, D O; Davison, L


    In New South Wales (NSW) Australia, the recent introduction of legislation to control runoff and charge for water used in agricultural production has encouraged commercial plant nurseries to collect and recycle their irrigation drainage. Runoff from a nursery typically contains around 6 mg/L TN (> 70% as NO3), 0.5 mg/L TP (> 50% as P04), and virtually no organic matter (BOD wetlands in the removal of nutrients from nursery runoff on the sub-tropical northern coast of NSW, Australia. Four experimental subsurface flow wetlands (1 m x 4 m x 0.5 m water depth) were planted with Phragmites australis in April 1999. TN and TP load removals were > 84% and > 65% respectively at HRTs of between 5 and 2 days, with the majority of out-flowing TN and TP being organic in form. Internal generation of organic N and P resulted in persistent background levels of 0.45 mg/L TN and 0.15 mg/L TP in the reed bed effluent. TN, NH4 and TP removal was affected by HRT (P NO2, NO3 and Ortho-P was achieved at all HRTs, with outlet concentrations generally < 0.01 mg/L for all. For TN, a strong relationship existed between removal rate (g/m2/day) and loading rate (r2 = 0.995), while a weaker relationship existed for TP (r2 = 0.47). It is estimated that a 1 ha nursery would require a reed bed area of 200 m2 for a 2 day HRT.

  19. Uncertainty analyses of infiltration and subsurface flow and transport for SDMP sites

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, P.D.; Rockhold, M.L.; Gee, G.W. [Pacific Northwest National Lab., Richland, WA (United States)


    US Nuclear Regulatory Commission staff have identified a number of sites requiring special attention in the decommissioning process because of elevated levels of radioactive contaminants. Traits common to many of these sites include limited data characterizing the subsurface, the presence of long-lived radionuclides necessitating a long-term analysis (1,000 years or more), and potential exposure through multiple pathways. As a consequence of these traits, the uncertainty in predicted exposures can be significant. In addition, simplifications to the physical system and the transport mechanisms are often necessary to reduce the computational requirements of the analysis. Several multiple-pathway transport codes exist for estimating dose, two of which were used in this study. These two codes have built-in Monte Carlo simulation capabilities that were used for the uncertainty analysis. Several tools for improving uncertainty analyses of exposure estimates through the groundwater pathway have been developed and are discussed in this report. Generic probability distributions for unsaturated and saturated zone soil hydraulic parameters are presented. A method is presented to combine the generic distributions with site-specific water retention data using a Bayesian analysis. The resulting updated soil hydraulic parameter distributions can be used to obtain an updated estimate of the probability distribution of dose. The method is illustrated using a hypothetical decommissioning site.

  20. En route air traffic flow simulation. (United States)


    The report covers the conception, design, development, and initial implementation of an advanced simulation technique applied to a study of national air traffic flow and its control by En Route Air Route Traffic Control Centers (ARTCC). It is intende...

  1. Simulation of multiphase flow in hydrocyclone

    Directory of Open Access Journals (Sweden)

    Rudolf P.


    Full Text Available Multiphase gas-liquid-solid swirling flow within hydrocyclone is simulated. Geometry and boundary conditions are based on Hsieh's 75 mm hydrocyclone. Extensive simulations point that standard mixture model with careful selection of interphase drag law is suitable for correct prediction of particle classification in case of dilute suspensions. However this approach fails for higher mass loading. It is also confirmed that Reynolds stress model is the best choice for multiphase modeling of the swirling flow on relatively coarse grids.

  2. Investigations of subsurface flow constructed wetlands and associated geomaterial resources in the Akumal and Reforma regions, Quintana Roo, Mexico (United States)

    Krekeler, Mark P. S.; Probst, Pete; Samsonov, Misha; Tselepis, Cynthia M.; Bates, William; Kearns, Lance E.; Maynard, J. Barry


    Subsurface flow constructed wetlands in the village of Akumal, Quintana Roo, Mexico were surveyed to determine the general status of the wetland systems and provide baseline information for long term monitoring and further study. Twenty subsurface flow wetlands were surveyed and common problems observed in the systems were overloading, poor plant cover, odor, and no secondary containment. Bulk mineral composition of aggregate from two subsurface flow constructed wetlands was determined to consist solely of calcite using bulk powder X-ray diffraction. Some soil structure is developed in the aggregate and aggregate levels in wetlands drop at an estimated rate between 3 and 10 cm/year for overloaded wetlands owing to dissolution. Mineral composition from fresh aggregate samples commonly is a mixture of calcite and aragonite. Trace amounts of Pb, Zn, Co, and Cr were observed in fresh aggregate. Coefficients of permeability ( k) varied from 0.006 to 0.027 cm/s with an average values being 0.016 cm/s. Grain size analysis of fresh aggregate samples indicates there are unimodal and multimodal size distributions in the samples with modes in the coarse and fine sand being common. Investigations of other geologic media from the Reforma region indicate that a dolomite with minor amounts of Fe-oxide and palygorskite is abundant and may be a better aggregate source that the current materials used. A Ca-montmorillonite bed was identified in the Reforma region as well and this unit is suitable to serve as a clay liner to prevent leaks for new and existing wetland systems. These newly discovered geologic resources should aid in the improvement of subsurface flow constructed wetlands in the region. Although problems do exist in these wetlands with respect to design, these systems represent a successful implementation of constructed wetlands at a community level in developing regions.

  3. Effect of depth and plants on pollutant removal in horizontal subsurface flow constructed wetlands and their application in Ethiopia


    Ayano, Kinfe Kassa


    Die vorliegende Arbeit behandelt die Schadstoffeliminierung, das Nitrifikationspotenzial und das hydrodynamische Verhalten horizontal durchflossener Bodenfilter (subsurface flow-constructed wetlands, HSSFCW) in Abhängigkeit von ihrer Beettiefe und Bepflanzung. Die betreffenden Untersuchungen erfolgten in Langenreichenbach (Deutschland) von September 2010 bis September 2012 und in Arba Minch (Äthiopien) von Juli 2012 bis März 2013. An beiden Standorten wurden unbepflanzte und bepflanzte (plant...

  4. Design of combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using Vetiveria zizanioides (akar wangi) (United States)

    Astuti, A. D.; Lindu, M.; Yanidar, R.; Faruq, M.


    As environmental regulation has become stricter in recent years, there is an increasing concern about the issue of wastewater treatment in urban areas. Senior High School as center of student activity has a potential source to generated domestic wastewater from toilet, bathroom and canteen. Canteen wastewater contains high-organic content that to be treated before discharged. Based on previous research the subsurface constructed wetland-multilayer filtration with vertical flow is an attractive alternative to provide efficient treatment of canteen wastewater. The effluent concentration complied with regulation according to [9]. Due to limited land, addition of preliminary treatment such as the presence of biofilter was found to improve the performance. The aim of this study was to design combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using vetiveria zizanioides (akar wangi) treating canteen wastewater. Vetiveria zizanioides (akar wangi) is used because from previous research, subsurface constructed wetland-multilayer filtration (SCW-MLF) with vertical flow type using vetiveria zizanioides (akar wangi) can be an alternative canteen wastewater treatment that is uncomplicated in technology, low cost in operational and have a beautiful landscape view, besides no odors or insects were presented during the operation.

  5. Dynamics of Bacterial Community Abundance and Structure in Horizontal Subsurface Flow Wetland Mesocosms Treating Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    Kristjan Oopkaup


    Full Text Available Dynamics of bacterial community abundance and structure of a newly established horizontal subsurface flow (HSSF pilot-scale wetland were studied using high-throughput sequencing and quantitative polymerase chain reaction (PCR methods. Bacterial community abundance increased rapidly within one month and stabilised thereafter in three replicate HSSF constructed wetland (CW mesocosms. The most dominant phylum was Proteobacteria, followed by Bacteroidetes in wetland media biofilms and Firmicutes in influent wastewater. CW bacterial community diversity increased over time and was positively related to the wastewater treatment efficiency. Increase in the abundance of total bacteria in the community was accompanied with the abundance of denitrifying bacteria that promoted nitrate and nitrite removal from the wastewater. During the 150-day study period, similar patterns of bacterial community successions were observed in replicate HSSF CW mesocosms. The data indicate that successions in the bacterial community in HSSF CW are shaped by biotic interactions, with a significant contribution made by external abiotic factors such as influent chemical parameters. Network analysis of the bacterial community revealed that organic matter and nitrogen removal in HSSF CW could be, in large part, allocated to a small subset of tightly interconnected bacterial species. The diversity of bacterial community and abundance of denitrifiers were good predictors of the removal efficiency of ammonia, nitrate and total organic C in HSSF CW mesocosms, while the removal of the seven-day biochemical oxygen demand (BOD7 was best predicted by the abundance of a small set of bacterial phylotypes. The results suggest that nitrogen removal in HSSF CW consist of two main pathways. The first is heterotrophic nitrification, which is coupled with aerobic denitrification and mediated by mixotrophic nitrite-oxidizers. The second pathway is anaerobic denitrification, which leads to gaseous

  6. Desain IPAL Pengolahan Grey Water dengan Teknologi Subsurface Flow Constructed Wetland di Rusunawa Grudo Surabaya

    Directory of Open Access Journals (Sweden)

    Ahmad Safrodin


    Full Text Available Pencemaran Lingkungan di Kota Surabaya akan terus meningkat  seiring dengan perkembangan penduduk dan keterbatasan sarana sanitasi yang kurang baik. Pencemaran lingkungan ini didominasi limbah domestik sehingga perlu sistem pengolahan yang efektif dan efisien dalam mendegradasi senyawa polutan. Teknologi Constructed wetland merupakan  sistem  pengolahan  terencana atau terkontrol yang telah didesain dan dibangun menggunakan proses alami yang  melibatkan  vegetasi,  media,  dan  mikroorganisme  untuk  mengolah  air  limbah domestik. Teknologi ini dapat diterapkan untuk skala perumahan baik individu atau secara komunal. Rusunawa Grudo Surabaya merupakan rusun yang belum memiliki IPAL untuk mengolah greywater, sehingga sistem Contructed wetland ini dapat diterapkan untuk meningkatkan kualitas sanitasi lingkungan. Perencanaan sistem Constructed wetland di Rusunawa Grudo Surabaya mempertimbangkan aspek kuantitas dan kualitas air limbah. Kualitas air limbah domestik menunjukkan nilai COD 329.81 mg/L; BOD 182.02 mg/L; dan TSS 103.33 mg/L, sedangkan kuantitas air limbah 33.6 m3/hari. Sistem ini terdiri dari unit ekualisasi, Subsurface Flow Constructed Wetland dengan tanaman Cyperus alternifolius, dan kolam penampung. Hasil perencanaan menunjukkan efisiensi pengolahan seluruh sistem untuk COD, BOD, dan TSS masing-masing sebesar 86%, 85%, dan 88%. Desain sistem IPAL menghasilkan luas permukaan 480 m2, kedalaman bed 0,5 m, beban pada bed (OLR 12.75 gr BOD/m2.hari, beban hidrolik (HLR 0,07 m3/m2.hari dengan waktu tinggal 3 hari. Kualitas efluen yang didapatkan menunjukkan nilai BOD 25 mg/L, COD 48.35 mg/L dan TSS 11.72 mg/L. Dihasilkan standar operasional dan perawatan IPAL dan Biaya investasi seluruh sistem constructed wetland diperkirakan sebesar Rp.412.059.022.

  7. Swine wastewater treatment using vertical subsurface flow constructed wetland planted with Napier grass

    Directory of Open Access Journals (Sweden)

    Pantip Klomjek


    Full Text Available This research aims to investigate the pollutant removal efficiencies in swine wastewater using a vertical subsurface flow constructed wetland (VSF CW planted with two species of Napier grass. The grass productivities were also cultivated and compared in order to provide information for species selection. Twelve treatment units were set up with the VSF CWs planted with Giant Napier grass (Pennisetum purpureum cv. King grass and Dwarf Napier grass (Pennisetum purpureum cv. Mott. with 2 and 5 cm d−1 of hydraulic loading rates (HLR. Comparisons of removal efficiency and grass productivity were analyzed using Duncan's Multiple Range Test and t-test at the significant level 0.05. Both species of Napier grass performed more than 70% of removal efficiency of BOD and TKN. The VSF CW planted with Giant Napier grass at 5 cm d−1 HLR performed the highest BOD removal efficiency of 94 ± 1%, while the 2 cm d−1 HLR removed COD with efficiency of 64 ± 6%. The results also showed the effluent from all treatment units contained averages of BOD, COD, TSS, TKN and pH that followed Thailand's swine wastewater quality standard. Average fresh yields and dry yields were between 4.6 ± 0.4 to 15.2 ± 1.2 and 0.5 ± 0.1 to 2.2 ± 0.1 kg m−2, respectively. The dry yields obtained from four cutting cycles in five months of CW system operation were higher than the ones planted with a traditional method, but declined continuously after each cutting cycle. Both species of Napier grass indicated their suitability to be used in the VSF CW for swine wastewater treatment.

  8. Application of the gas tracer method for measuring oxygen transfer rates in subsurface flow constructed wetlands. (United States)

    Tyroller, Lina; Rousseau, Diederik P L; Santa, Santa; García, Joan


    The oxygen transfer rate (OTR) has a significant impact on the design, optimal operation and modelling of constructed wetlands treating wastewater. Oxygen consumption is very fast in wetlands and the OTR cannot be determined using an oxygen mass balance. This problem is circumvented in this study by applying the gas tracer method. Experiments were conducted in an unplanted gravel bed (dimensions L x W x d 125 x 50 x 35 cm filled with a 30-cm layer of 10-11-mm gravel) and a planted horizontal subsurface flow constructed wetland (HSSFCW) (L x W x d 110 x 70 x 38 cm filled with a 30-cm layer of 3.5-mm gravel with Phragmites australis). Tap water saturated with propane as gas tracer (pure or commercial cooking gas, depending on the test) was used. The mass transfer ratio between oxygen and commercial propane gas was quite constant and averaged R = 1.03, which is slightly lower than the value of R = 1.39 that is usually reported for pure propane. The OTR ranged from 0.31 to 5.04 g O(2) m(-2) d(-1) in the unplanted gravel bed and from 0.3 to 3.2 g O(2) m(-2) d(-1) in the HSSFCW, depending on the hydraulic retention time (HRT). The results of this study suggest that the OTR in HSSFCW is very low for the oxygen demand of standard wastewater and the OTR calculations based on mass balances and theoretical stoichiometric considerations overestimate OTR values by a factor that ranges from 10 to 100. The gas tracer method is a promising tool for determining OTR in constructed wetlands, with commercial gas proving to be a viable low-cost alternative for determining OTR. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant. (United States)

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa


    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d-1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH4+ 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  10. Nitrogen and COD Removal from Septic Tank Wastewater in Subsurface Flow Constructed Wetlands: Plants Effects. (United States)

    Collison, R S; Grismer, M E


    We evaluated subsurface flow (SSF) constructed wetland treatment performance with respect to organics (COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) wastewater as affected by the presence of plants, substrate "rock" cation exchange capacity (CEC), laboratory versus field conditions and use of synthetic as compared to actual domestic wastewater. This article considers the effects of plants on constructed wetland treatment in the field. Each constructed wetland system was comprised of two beds (2.6 m long by 0.28 m wide and deep filled with ~18 mm crushed lava rock) separated by an aeration tank connected in series. The lava rock had a porosity of ~47% and a CEC of 4 meq/100 gm. One pair of constructed wetland systems was planted with cattails in May 2008, while an adjacent pair of systems remained un-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each constructed wetland system and effluent samples were regularly collected and tested for COD and nitrogen species during four time periods spanning November 2008 through June 2009. These effluent concentrations were tested for statistical differences at the 95% level for individual time periods as well as the overall 6-month period. Organics removal from domestic wastewater was 78.8% and 76.1% in the planted and un-planted constructed wetland systems, respectively, while ammonium removal was 94.5% and 90.2%, respectively. Similarly, organics removal from the synthetic wastewater of equivalent strength was 88.8% and 90.1% for planted and un-planted constructed wetland systems, respectively, while ammonium removal was 96.9% and 97.3%, respectively.

  11. Performance of two small subsurface flow constructed wetlands treating domestic wastewaters in Italy. (United States)

    Mietto, Anna; Borin, Maurizio


    The performance of a vertical and a horizontal subsurface flow wetland (v-SSF and h-SSF), designed for treating domestic wastewater from a single family, was investigated by monitoring total nitrogen (TN), nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total phosphorus (TP), chemical oxygen demand (COD) and the dissolved oxygen (DO) content of the influent and the effluent wastewater of each system during the first two years of operation. The growth of Phragmites australis in each system was recorded by measuring the height and observing their general conditions. The treated domestic wastewater presented similar chemical-physical characteristics in the two systems which operated in analogous environmental conditions. The median influent characteristics were: TN 81.9mg L(-1), NO3-N 0.19 mg L(-1), NH4-N 33.5 mg L(-1), TP 11.9 mg L(-1) and COD 354.5 mg L(-1). During the whole monitoring period median reductions in the v-SSF were TN 71%, NH4-N 94%, TP 27% and COD 92% whereas in the h-SSF they were TN 59%, NH4-N 21%, TP 52% and COD 70%. Internal production of NO3-N was observed, mainly in the v-SSF probably due to the difference in oxygen availability in the medium and the design of the system. DO concentration increased in the effluents in both years, with higher values measured in v-SSF than in h-SSF. The reduction performance increased in the second year, particularly in v-SSF, whereas no statistical differences were observed between spring-summer and autumn-winter periods. P. australis reached maximum development at the end of summer in both systems and maintained a stable height during autumn-winter. In h-SSF the vegetation located close to the influent showed lower growth than in the rest of the bed.

  12. Performance of a vertical subsurface flow constructed wetland under different operational conditions

    Directory of Open Access Journals (Sweden)

    Sara G. Abdelhakeem


    Full Text Available The performance of a vertical subsurface flow constructed wetland (VSSFCW for sewage effluent treatment was studied in an eight month experiment under different operational conditions including: vegetation (the presence or absence of common reeds “Phragmites australis”, media type (gravel or vermiculite, and mode of sewage feeding (continuous or batch. Plants had a significant effect (P < 0.05 on the removal efficiency and mass removal rate of all pollutants, except phosphorous. The average removal efficiencies of chemical oxygen demand (COD, biological oxygen demand (BOD, total suspended solids (TSS, ammonium (NH4 and total-P (TP were 75%, 84%, 75%, 32% and 22% for the planted beds compared to 29%, 37%, 42%, 26% and 17%, respectively, for the unplanted beds. The VSSFCW was ineffective in removing nitrate (NO3. The effect of either media type or feeding mode system on the removal efficiency of COD and BOD was insignificant. Vermiculite media significantly (P < 0.05 increased the efficiency of the wetland in removing NH4, TP and dissolved phosphorous (DP when compared with gravel particularly in the planted beds. The batch mode was more effective in removing TSS and NH4 compared to the continuous mode. Volumetric rate constant (kV was different for various pollutants and significantly increased due to the presence of plants. Media type had no significant effect on the values of kV for COD, BOD and TSS, while kV for NH4 and TP under vermiculite in the planted beds and kV for P in the unplanted beds were significantly higher than those under gravel.

  13. [Removal efficiency of nitrogen in aerobic/anaerobic subsurface flow constructed wetlands]. (United States)

    Li, Feng-Min; Shan, Shi; Wang, Hao-Yun; Song, Ni; Wang, Zhen-Yu


    In order to adjust the dissolved oxygen in the traditional subsurface flow constructed wetlands (SFCWs) and increase the purification efficiency of sewage water, the traditional SFCWs were divided into different sections with enhanced functions. Different kinds of aerobic/anaerobic SFCWs were designed to study the influence of ratio and location of aerobic/anaerobic, artificial aeration and other factors on the nitrogen in effluent. The purification efficiency of the water in this study was compared with that in traditional SFCWs. The results showed that the removal efficiencies of NH4(+)-N and TN in traditional SFCWs were 18.4% and 40.6% but 99.7% and 50.7% in aerobic/anaerobic/aerobic SFCWs with aeration (O-A-O SFCWs with aeration) treatment. Aeration in the front and in the rear, and anaerobic treatment in the middle was used in this treatment. Removal efficiency of NH4(+)-N in O-A-O SFCWs with aeration treatment was 100%, while that of O-A-O SFCWs without aeration was about 50%. The removal efficiencies of NH4(+) -N in new SFCWs with aeration in the front and in the rear were increased by 82.81% and 17.91% but 73.16% in the middle. It shows that aeration can significantly improve the removal efficiency of nitrogen, especially NH4(+)-N. Aeration in the front and back can greatly improve the removal efficiency NH4(+)-N and TN. But aeration resulting to oxygen-rich environment is not conducive to the denitrification, which will be an important factor of limiting the TN removal efficiency.

  14. Nutrient removal and plant biomass in a subsurface flow constructed wetland in Brisbane, Australia. (United States)

    Browning, K; Greenway, M


    Four native plant species (Baumea articulata, Carex fascicularis, Philydrum lanuginosum and Schoenoplectus mucronatus) are being investigated for their suitability in subsurface flow wetlands. The pilot scale Oxley Wetland, Brisbane, consists of 4 cells with different sized gravel (5 mm and 20 mm). The project aims to investigate nutrient removal rates and removal efficiency; nutrient storage in plant biomass; effect of cropping on plant regrowth, and the effect of gravel size on both water treatment and plant growth. Average daily mass removal rates ranged from 7.3 Kgha(-1)d(-1) NH4-N in Cell D to 4.6 Kgha(-1)d(-1) in Cell C i.e. 37%-22% removal efficiency respectively; 5.2 Kgha(-1)d(-1) NOx-N in Cell C to 1.3 Kgha(-1)d(-1) in Cell A (i.e. 75%-22% removal efficiency) and 0.8 Kgha(-1)d(-1) PO4-P in Cell A to 0.1 Kgha(-1)d(-1) in Cell C (i.e. 10%-1% removal efficiency). Cell A was the youngest wetland with new 5 mm gravel. Plant biomass was highest for Baumea and Carex. Gravel size does not appear to have affected biomass and recovery following cropping. Carex consistently had the highest harvested above ground biomass with high re-growth following cropping. Cropping appears to have retarded growth of the other three species with Schoenoplectus consistently having slowest regrowth. Plant biomass and nutrient storage was highest in Cell A and accounted for 11% of nitrogen removal and 3% of phosphorus removal.

  15. Modelling the impact of a subsurface barrier on groundwater flow in the lower Palar River basin, southern India (United States)

    Senthilkumar, M.; Elango, L.


    Groundwater modelling is widely used as a management tool to understand the behaviour of aquifer systems under different hydrological stresses, whether induced naturally or by humans. The objective of this study was to assess the effect of a subsurface barrier on groundwater flow in the Palar River basin, Tamil Nadu, southern India. Groundwater is supplied to a nearby nuclear power plant and groundwater also supplies irrigation, industrial and domestic needs. In order to meet the increasing demand for groundwater for the nuclear power station, a subsurface barrier/dam was proposed across Palar River to increase the groundwater heads and to minimise the subsurface discharge of groundwater into the sea. The groundwater model used in this study predicted that groundwater levels would increase by about 0.1-0.3 m extending out a distance of about 1.5-2 km from the upstream side of the barrier, while on the downstream side, the groundwater head would lower by about 0.1-0.2 m. The model also predicted that with the subsurface barrier in place the additional groundwater requirement of approximately 13,600 m3/day (3 million gallons (UK)/day) can be met with minimum decline in regional groundwater head.

  16. Reactive multiphase flow simulation workshop summary

    Energy Technology Data Exchange (ETDEWEB)

    VanderHeyden, W.B.


    A workshop on computer simulation of reactive multiphase flow was held on May 18 and 19, 1995 in the Computational Testbed for Industry at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Approximately 35 to 40 people attended the workshop. This included 21 participants from 12 companies representing the petroleum, chemical, environmental and consumer products industries, two representatives from the DOE Office of Industrial Technologies and several from Los Alamos. The dialog at the meeting suggested that reactive multiphase flow simulation represents an excellent candidate for government/industry/academia collaborative research. A white paper on a potential consortium for reactive multiphase flow with input from workshop participants will be issued separately.

  17. Simulation and modeling of turbulent flows

    CERN Document Server

    Gatski, Thomas B; Lumley, John L


    This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.

  18. Simulation of subsurface storage and recovery of treated effluent injected in a saline aquifer, St. Petersburg, Florida (United States)

    Yobbi, D.K.


    The potential for subsurface storage and recovery of treated effluent into the uppermost producing zone (zone A) of the Upper Floridan aquifer in St. Petersburg, Florida, is being studied by the U.S. Geological Survey, in cooperation with the city of St. Petersburg and the Southwest Florida Water Management District. A measure of the success of this practice is the recovery efficiency, or the quantity of water relative to the quantity injected, that can be recovered before the water that is withdrawn fails to meet water-quality standards. The feasibility of this practice will depend upon the ability of the injected zone to receive, store, and discharge the injected fluid. A cylindrical model of ground-water flow and solute transport, incorporating available data on aquifer properties and water quality, was developed to determine the relation of recovery efficiency to various aquifer and fluid properties that could prevail in the study area. The reference case for testing was a base model considered representative of the saline aquifer underlying St. Petersburg. Parameter variations in the tests represent possible variations in aquifer conditions in the area. The model also was used to study the effect of various cyclic injection and withdrawal schemes on the recovery efficiency of the well and aquifer system. A base simulation assuming 15 days of injection of effluent at a rate of 1.0 million gallons per day and 15 days of withdrawal at a rate of 1.0 million gallons per day was used as reference to compare changes in various hydraulic and chemical parameters on recovery efficiency. A recovery efficiency of 20 percent was estimated for the base simulation. For practical ranges of hydraulic and fluid properties that could prevail in the study area, the model analysis indicates that (1) the greater the density contrast between injected and resident formation water, the lower the recovery efficiency, (2) recovery efficiency decreases significantly as dispersion

  19. The Airport Network Flow Simulator. (United States)


    The impact of investment at an individual airport is felt through-out the National Airport System by reduction of delays at other airports in the the system. A GPSS model was constructed to simulate the propagation of delays through a nine-airport sy...

  20. UASB followed by Sub-Surface Horizontal Flow Phytodepuration for the Treatment of the Sewage Generated by a Small Rural Community

    National Research Council Canada - National Science Library

    Massimo Raboni; Renato Gavasci; Giordano Urbini


    .... The process consists of a preliminary mechanical treatment adopting coarse screens and grit traps, followed by a biological treatment in a UASB reactor and a sub-surface horizontal flow phytodepuration step...

  1. Modeling and simulation of reactive flows

    CERN Document Server

    Bortoli, De AL; Pereira, Felipe


    Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va

  2. Subsurface Flow Modeling in Single and Dual Continuum Anisotropic Porous Media using the Multipoint Flux Approximation Method

    KAUST Repository

    Negara, Ardiansyah


    Anisotropy of hydraulic properties of the subsurface geologic formations is an essential feature that has been established as a consequence of the different geologic processes that undergo during the longer geologic time scale. With respect to subsurface reservoirs, in many cases, anisotropy plays significant role in dictating the direction of flow that becomes no longer dependent only on driving forces like the pressure gradient and gravity but also on the principal directions of anisotropy. Therefore, there has been a great deal of motivation to consider anisotropy into the subsurface flow and transport models. In this dissertation, we present subsurface flow modeling in single and dual continuum anisotropic porous media, which include the single-phase groundwater flow coupled with the solute transport in anisotropic porous media, the two-phase flow with gravity effect in anisotropic porous media, and the natural gas flow in anisotropic shale reservoirs. We have employed the multipoint flux approximation (MPFA) method to handle anisotropy in the flow model. The MPFA method is designed to provide correct discretization of the flow equations for general orientation of the principal directions of the permeability tensor. The implementation of MPFA method is combined with the experimenting pressure field approach, a newly developed technique that enables the solution of the global problem breaks down into the solution of multitude of local problems. The numerical results of the study demonstrate the significant effects of anisotropy of the subsurface formations. For the single-phase groundwater flow coupled with the solute transport modeling in anisotropic porous media, the results shows the strong impact of anisotropy on the pressure field and the migration of the solute concentration. For the two-phase flow modeling with gravity effect in anisotropic porous media, it is observed that the buoyancy-driven flow, which emerges due to the density differences between the

  3. Effects of Subsurface Sampling & Processing on Martian Simulant Containing Varying Quantities of Water (United States)

    Menard, J.; Sangillo, J.; Savain, A.; McNamara, K. M.


    The presence of water-ice in the Martian subsurface is a subject of much debate and excited speculation. Recent results from the gammaray spectrometer (GRS) on board NASA's Mars Odyssey spacecraft indicate the presence of large amounts of hydrogen in regions of predicted ice stability. The combination of chemistry, low gravitational field (3.71 m/s(exp 2)) and a surface pressure of about 6.36 mbar at the mean radius, place limits on the stability of H2O on the surface, however, results from the GRS indicate that the hydrogen rich phase may be present at a depth as shallow as one meter in some locations on Mars. The potential for water on Mars leads directly to the speculation that life may once have existed there, since liquid water is the unifying factor for environments known to support life on Earth. Lubricant-free drilling has been considered as a means of obtaining water-rich subsurface samples on Mars, and two recent white papers sponsored by the Mars Program have attempted to identify the problems associated with this goal. The two major issues identified were: the engineering challenges of drilling into a water-soil mixture where phase changes may occur; and the potential to compromise the integrity of in-situ scientific analysis due to contamination, volatilization, and mineralogical or chemical changes as a result of processing. This study is a first attempt to simulate lubricantfree drilling into JSC Mars-1 simulant containing up to 50% water by weight. The goal is to address the following: 1) Does sample processing cause reactions or changes in mineralogy which will compromise the interpretation of scientific measurements conducted on the surface? 2) Does the presence of water-ice in the sample complicate (1)? 3) Do lubricant-free drilling and processing leave trace contaminants which may compromise our understanding of sample composition? 4) How does the torque/power required for drilling change as a function of water content and does this lead to

  4. A Finite Difference, Semi-implicit, Equation-of-State Efficient Algorithm for the Compositional Flow Modeling in the Subsurface: Numerical Examples

    KAUST Repository

    Saavedra, Sebastian


    The mathematical model that has been recognized to have the more accurate approximation to the physical laws govern subsurface hydrocarbon flow in reservoirs is the Compositional Model. The features of this model are adequate to describe not only the performance of a multiphase system but also to represent the transport of chemical species in a porous medium. Its importance relies not only on its current relevance to simulate petroleum extraction processes, such as, Primary, Secondary, and Enhanced Oil Recovery Process (EOR) processes but also, in the recent years, carbon dioxide (CO2) sequestration. The purpose of this study is to investigate the subsurface compositional flow under isothermal conditions for several oil well cases. While simultaneously addressing computational implementation finesses to contribute to the efficiency of the algorithm. This study provides the theoretical framework and computational implementation subtleties of an IMplicit Pressure Explicit Composition (IMPEC)-Volume-balance (VB), two-phase, equation-of-state, approach to model isothermal compositional flow based on the finite difference scheme. The developed model neglects capillary effects and diffusion. From the phase equilibrium premise, the model accounts for volumetric performances of the phases, compressibility of the phases, and composition-dependent viscosities. The Equation of State (EoS) employed to approximate the hydrocarbons behaviour is the Peng Robinson Equation of State (PR-EOS). Various numerical examples were simulated. The numerical results captured the complex physics involved, i.e., compositional, gravitational, phase-splitting, viscosity and relative permeability effects. Regarding the numerical scheme, a phase-volumetric-flux estimation eases the calculation of phase velocities by naturally fitting to phase-upstream-upwinding. And contributes to a faster computation and an efficient programming development.

  5. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Thomas [California Inst. of Technology (CalTech), Pasadena, CA (United States); Efendiev, Yalchin [Stanford Univ., CA (United States); Tchelepi, Hamdi [Texas A & M Univ., College Station, TX (United States); Durlofsky, Louis [Stanford Univ., CA (United States)


    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics.

  6. Design, implementation and results of an autonomous hydrogeophysical monitoring system to monitor subsurface flow at the Hanford 300 area (United States)

    Versteeg, R. J.; Ward, A.


    Time lapse electrical data (both self potential and electrical resistivity data) can provide information on subsurface flow, and over the last several years there has been an increase in the interest of automating hydrogeophysical data acquisition systems. Such systems require both adaptations to hardware and system setup, and a well designed computational backend allowing for the management and processing of such data. The 300 area at Hanford is the location of multiple DOE Office of Science and Environmental Management funded research efforts which seek to understand the groundwater and contaminant behavior at this site. The groundwater head distribution and resulting flow at this site is known to be strongly influenced by the adjacent Columbia river, and there is an interest in mapping out the spatiotemporal flow directions at this site. The site has been extensively characterized using electrical resistivity measurements, and the geometries and resistivities of subsurface formations are well known both from borings and geophysical characterization efforts. In addition, the overall Hanford 300 area contains 8 continuously recording wells which monitor groundwater level and conductivity at the site at 15 minute intervals, as well as adjacent monitoring stations which record river stage. An autonomous, one hundred electrode SP system was installed at the Hanford 300 area over a 300 x 300 m sub part of the site. Data from both the hydrological sensors and geophysical systems is collected automatically, and transferred to a central database server located at the Idaho National Laboratory. Once data is arrived, data qa/qc and data reduction are run automatically to create time lapse maps of self potential values. We will discuss the design, implementation and results obtained with this system (including ongoing modeling and inversion efforts for the data collected with these systems) as well as the potential of these hydrogeophysical monitoring systems to provide

  7. [Effect of reed rhizosphere on nitrogen and COD removal efficiency in subsurface flow constructed wetlands]. (United States)

    Dai, Yuan-yuan; Yang, Xin-ping; Zhou, Li-xiang


    Nitrogen removal efficiency was investigated in three subsurface flow constructed wetlands (CWs) with and without reed. Root bag made of nylon sieve with 300 mesh was used to enwrap the reed root in one of reed CWs to distinguish reed rhizosphere from non-rhizosphere. The CWs with root bag enwrapped reed root (hereinafter called as mesh CWs) and other CWs were fed with artificial ammonium-rich wastewater. The results indicated that the COD and N removal occurred mainly in the front of CWs, and C and nitrogen removal occurred concurrently along the stream way. When C/N ratio of influent was 5, the removal efficiencies of NH4+ -N in control CWs, reed CWs and mesh CWs were 66.2%, 94.2% and 82.2%, respectively. TN removal efficiencies were 67.2%, 90.7% and 76.1% respectively. Simultaneous nitrification and denitrification phenomenon in this study was also observed. The removal efficiency of organic carbon was different from nitrogen removal efficiency, mesh CWs showed the highest COD removal efficiency with 80.9%, while control CWs and reed CWs were 72.2% and 56.2%, respectively. C/N ratio of wastewater throughout the bed was more than 5 in three CWs, which indicated carbon source supply was enough for denitrification. The oxidation-reduction position (ORP) and concentration of total organic carbon in rhizosphere and non-rhizosphere were detected. The ORP in the front of mesh CWs's rhizosphere was much higher than that in control CWs and non-rhizosphere in mesh CWs, which were 11-311 mV and 62-261 mV, respectively. Root exudates also showed the difference between rhizosphere and non-rhizosphere in mesh CWs, the TOC of them were 21.3-54.6 mg x L(-1) and 6.65-12.0 mg x L(-1). Due to the higher ORP and concentration of TOC, the nitrogen removal efficiency in plant CWs was much higher than that in control CWs.

  8. Biological mechanisms associated with triazophos (TAP) removal by horizontal subsurface flow constructed wetlands (HSFCW)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Juan; Feng, Yuqin; Dai, Yanran; Cui, Naxin [State Key Laboratory of Pollution Control and ResourceReuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Anderson, Bruce [Department of Civil Engineering, Queen' s University, Kingston K7L3N6 (Canada); Cheng, Shuiping, E-mail: [State Key Laboratory of Pollution Control and ResourceReuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)


    Triazophos (TAP) is a widely used pesticide that is easily accumulated in the environment due to its relatively high stability: this accumulation from agricultural runoff results in potential hazards to aquatic ecosystems. Constructed wetlands are generally considered to be an effective technology for treating TAP polluted surface water. However, knowledge about the biological mechanisms of TAP removal is still lacking. This study investigates the responses of a wetland plant (Canna indica), substrate enzymes and microbial communities in bench-scale horizontal subsurface-flow constructed wetlands (HSCWs) loaded with different TAP concentrations (0, 0.1, 0.5 and 5 mg·L{sup −1}). The results indicate that TAP stimulated the activities of superoxide dismutase (SOD) and peroxidase (POD) in the roots of C. indica. The highest TAP concentrations significantly inhibited photosynthetic activities, as shown by a reduced effective quantum yield of PS II (Φ{sub PSII}) and lower electron transport rates (ETR). However, interestingly, the lower TAP loadings exhibited some favorable effects on these two variables, suggesting that C. indica is a suitable species for use in wetlands designed for treatment of low TAP concentrations. Urease and alkaline phosphatase (ALP) in the wetland substrate were activated by TAP. Two-way ANOVA demonstrated that urease activity was influenced by both the TAP concentrations and season, while acidphosphatase (ACP) only responded to seasonal variations. Analysis of high throughput sequencing of 16S rRNA revealed seasonal variations in the microbial community structure of the wetland substrate at the phylum and family levels. In addition, urease activity had a greater correlation with the relative abundance of some functional microbial groups, such as the Bacillaceae family, and the ALP and ACP may be influenced by the plant more than substrate microbial communities. - Highlights: • Physiological responses of the wetland plant to triazophos

  9. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tchelepi, Hamdi


    A multiscale linear-solver framework for the pressure equation associated with flow in highly heterogeneous porous formations was developed. The multiscale based approach is cast in a general algebraic form, which facilitates integration of the new scalable linear solver in existing flow simulators. The Algebraic Multiscale Solver (AMS) is employed as a preconditioner within a multi-stage strategy. The formulations investigated include the standard MultiScale Finite-Element (MSFE) andMultiScale Finite-Volume (MSFV) methods. The local-stage solvers include incomplete factorization and the so-called Correction Functions (CF) associated with the MSFV approach. Extensive testing of AMS, as an iterative linear solver, indicate excellent convergence rates and computational scalability. AMS compares favorably with advanced Algebraic MultiGrid (AMG) solvers for highly detailed three-dimensional heterogeneous models. Moreover, AMS is expected to be especially beneficial in solving time-dependent problems of coupled multiphase flow and transport in large-scale subsurface formations.

  10. Simulation of Flow and Transport at the Micro (Pore) Scale

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, D; Miller, G H


    An important problem in porous media involves the ability of micron and submicron-sized biological particles such as viruses or bacteria to move in groundwater systems through geologic media characterized by rock or mixed gravel, clay and sand materials. Current simulation capabilities require properly upscaled (continuum) models of colloidal filtration and adsorption to augment existing theories of fluid flow and chemical transport. Practical models typically address flow and transport behavior in aquifers over distances of 1 to 10 km where, for example, fluid momentum balance is governed by the simple Darcy's Law as a function of a pressure gradient, elevation gradient and a medium-dependent permeability parameter. In addition to fluid advection, there are multiple transport processes occurring in these systems including diffusion, dispersion and chemical interactions with solids or other aqueous chemical species. Particle transport is typically modeled in the same way as dissolved species, except that additional loss terms are incorporated to model particle filtration (physical interception), adsorption (chemical interception) and inactivation. Proper resolution of these processes at the porous medium continuum scale constitutes an important closure problem in subsurface science. We present a new simulation capability based on enabling technologies developed for microfluidics applications to model transport of colloidal-sized particles at the microscale, with relevance to the pore scale in geophysical subsurface systems. Particulate is represented by a bead-rod polymer model and is fully-coupled to a Newtonian solvent described by Navier-Stokes. Finite differences are used to discretize the interior of the domain; a Cartesian grid embedded boundary/volume-of-fluid method is used near boundaries and interfaces. This approach to complex geometry is amenable to direct simulation on grids obtained from surface extractions of tomographic image data. Short

  11. Pedestrian flow simulation validation and verification techniques


    Dridi, Mohamed H.


    For the verification and validation of microscopic simulation models of pedestrian flow, we have performed experiments for different kind of facilities and sites where most conflicts and congestion happens e.g. corridors, narrow passages, and crosswalks. The validity of the model should compare the experimental conditions and simulation results with video recording carried out in the same condition like in real life e.g. pedestrian flux and density distributions. The strategy in this techniqu...

  12. Viscoelastic flow simulations in model porous media (United States)

    De, S.; Kuipers, J. A. M.; Peters, E. A. J. F.; Padding, J. T.


    We investigate the flow of unsteadfy three-dimensional viscoelastic fluid through an array of symmetric and asymmetric sets of cylinders constituting a model porous medium. The simulations are performed using a finite-volume methodology with a staggered grid. The solid-fluid interfaces of the porous structure are modeled using a second-order immersed boundary method [S. De et al., J. Non-Newtonian Fluid Mech. 232, 67 (2016), 10.1016/j.jnnfm.2016.04.002]. A finitely extensible nonlinear elastic constitutive model with Peterlin closure is used to model the viscoelastic part. By means of periodic boundary conditions, we model the flow behavior for a Newtonian as well as a viscoelastic fluid through successive contractions and expansions. We observe the presence of counterrotating vortices in the dead ends of our geometry. The simulations provide detailed insight into how flow structure, viscoelastic stresses, and viscoelastic work change with increasing Deborah number De. We observe completely different flow structures and different distributions of the viscoelastic work at high De in the symmetric and asymmetric configurations, even though they have the exact same porosity. Moreover, we find that even for the symmetric contraction-expansion flow, most energy dissipation is occurring in shear-dominated regions of the flow domain, not in extensional-flow-dominated regions.

  13. Ammonia, phosphate, phenol, and copper(II) removal from aqueous solution by subsurface and surface flow constructed wetland. (United States)

    Mojiri, Amin; Ahmad, Zakiah; Tajuddin, Ramlah Mohd; Arshad, Mohd Fadzil; Gholami, Ali


    Water pollution is a global problem. During current study, ammonia, phosphate, phenol, and copper(II) were removed from aqueous solution by subsurface and surface flow constructed wetland. In current investigation, distilled water was polluted with four contaminants including ammonia, phosphate, copper (Cu), and phenol. Response surface methodology and central composite design were applied to optimize pollutant removal during treatment by subsurface flow constructed wetland (SSFCW). Contact time (12 to 80 h) and initial pollutant concentration (20 to 85 mg/L) were selected as independent factors; some upper and lower ranges were also monitored for accuracy. In SSFCW, water hyacinth transplanted in two substrate layers, namely zeolite and cockle shell. SSFCW removed 87.7, 81.4, 74.7, and 54.9% of ammonia, phosphate, Cu, and phenol, respectively, at optimum contact time (64.5 h) and initial pollutant concentration (69.2 mg/L). Aqueous solution was moved to a surface flow constructed wetland (SFCW) after treating via SSFCW at optimum conditions. In SFCW, Typha was transplanted to a fixed powdered substrate layer, including bentonite, zeolite, and cockle shell. SFCW could develop performance of this combined system and could improve elimination efficacy of the four contaminants to 99.99%. So this combined CW showed a good performance in removing pollutants. Graphical abstract Wetlands arrangement for treating aqueous solution in current study.

  14. Dairy farm wastewater treatment using horizontal subsurface flow wetlands with Typha domingensis and different substrates. (United States)

    Schierano, María Celeste; Maine, María Alejandra; Panigatti, María Cecilia


    The aim of this work was to evaluate the influence of different substrates in the performance of a horizontal flow constructed wetland employed in dairy farm wastewater treatment. Typha domingensis was chosen for this study due to its high productivity and efficiency in nutrient removal. Fifteen microcosm-scale reactors simulating horizontal flow constructed wetlands were disposed in a greenhouse in triplicate. Five substrates (river gravel, gravel, LECA, river gravel + zeolite and gravel + zeolite) were evaluated. Real effluent with previous treatment was used. Dairy farm effluents favoured T. domingensis growth, probably due to their high nutrient concentrations. The treatments with the different substrates studied were efficient in the treatment of the dairy farm effluent obtaining ammonium ([Formula: see text]) and total phosphorus (TP) removals between 88-99% and 86-99%, respectively. Removal efficiencies were significantly higher in treatments using LECA and combined substrate (gravel + zeolite). After treatment, the quality of the final effluent was significantly improved. Outlet effluent complied with regulations and could be discharged into the environment.

  15. Influence of bed media characteristics on ammonia and nitrate removal in shallow horizontal subsurface flow constructed wetlands


    Albuquerque, António; Oliveira,; Semitela, S.; Amaral, L.


    Two bed media were tested (gravel and Filtralite) in shallow horizontal subsurface flow (HSSF) constructed wetlands in order to evaluate the removal of ammonia and nitrate for different types of wastewater (acetate-based and domestic wastewater) and different COD/N ratios. The use of Filtralite allowed both higher mass removal rates (1.1 g NH4–N m−2 d−1 and 3 g NO3–N m−2 d−1) and removal efficiencies (>62% for ammonia, 90–100% for nitrate), in less than 2 weeks, when compared to the ones obse...

  16. Simulation of lateral flow with SWAT (United States)

    Calibration of the SWAT model for the Goodwater Creek Experimental Watershed (GCEW) showed that percolation through the restrictive claypan layer, lateral flow above that layer, and redistribution of excess moisture up to the ground surface were not correctly simulated. In addition, surface runoff a...

  17. Implicit time accurate simulation of unsteady flow

    NARCIS (Netherlands)

    van Buuren, R.; Kuerten, Johannes G.M.; Geurts, Bernardus J.


    In this paper we study the properties of an implicit time integration method for the simulation of unsteady shock boundary layer interaction flow. Using an explicit second-order Runge-Kutta scheme we determine a reference solution for the implicit second-order Crank Nicolson scheme. This a-stable

  18. Multiphase reacting flows modelling and simulation

    CERN Document Server

    Marchisio, Daniele L


    The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...

  19. Numerical simulation of flow through biofluid devices

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S.E.; Kwak, D. (NASA Ames Research Center, Moffett Field, CA (US)); Kiris, C.; Chang, I.D. (Stanford Univ., Stanford, CA (US))


    The results of a numerical simulation on a Cray-2 supercomputer of flow through an artificial heart and through an artificial tilting-disk heart valve are presented. The simulation involves solving the incompressible Navier-Stokes equations; the solution process is described. The details and difficulties of modeling these particular geometries are discussed. The artificial heart geometry uses a single moving grid, and the valve computation uses an overlaid-grid approach with one moving grid and one stationary grid. The equations must be solved iteratively for each discrete time step of the computations, requiring a significant amount of computing time. It is particularly difficult to analyze and present the fluid physics represented by these calculations because of the time-varying nature of the flow, and because the flows are internal. The use of three-dimensional graphics and scientific visualization techniques have become instrumental in solving these problems.

  20. CFD simulation of neutral ABL flows

    DEFF Research Database (Denmark)

    Zhang, Xiaodong

    This work is to evaluate the CFD prediction of Atmospheric Boundary Layer flow field over different terrains employing Fluent 6.3 software. How accurate the simulation could achieve depend on following aspects: viscous model, wall functions, agreement of CFD model with inlet wind velocity profile...... and top boundary condition. Fluent employ wall function roughness modifications based on data from experiments with sand grain roughened pipes and channels, describe wall adjacent zone with Roughness Height (Ks) instead of Roughness Length (z0). In a CFD simulation of ABL flow, the mean wind velocity...... ABL and the measurements are best documented until now. Comparison with measured data shows that the CFD model can well predict the velocity field and relative turbulence kinetic energy field. Furthermore, a series of artificial complex terrains are designed, and some of the main simulation results...

  1. Numerical simulation of turbulent slurry flows (United States)

    Haghgoo, Mohammad Reza; Spiteri, Reymond J.; Bergstrom, Donlad J.


    Slurry flows, i.e., the flow of an agglomeration of liquid and particles, are widely employed in many industrial applications, such as hydro-transport systems, pharmaceutical batch crystallizers, and wastewater disposal. Although there are numerous studies available in the literature on turbulent gas-particle flows, the hydrodynamics of turbulent liquid-particle flows has received much less attention. In particular, the fluid-phase turbulence modulation due to the particle fluctuating motion is not yet well understood and remains challenging to model. This study reports the results of a numerical simulation of a vertically oriented slurry pipe flow using a two-fluid model based on the kinetic theory of granular flows. The particle stress model also includes the effects of frictional contact. Different turbulence modulation models are considered, and their capability to capture the characteristic features of the turbulent flow is assessed. The model predictions are validated against published experimental data and demonstrate the significant effect of the particles on the fluid-phase turbulence.

  2. Full scale horizontal subsurface flow constructed wetlands to treat domestic wastewater by Juncus acutus and Cortaderia selloana. (United States)

    Aydın Temel, Fulya; Avcı, Esin; Ardalı, Yüksel


    In the present study, a full scale horizontal subsurface flow constructed wetland was designed, constructed and operated to treat domestic wastewater of Kızılcaören village in Samsun city of Turkey. The total surface area of HSFCW was divided into equal parts. The effects of Juncus acutus L. and Cortaderia selloana (Schult.Schult.f.)Asch.&Graebn. on pollutants removal in HSFCWs were evaluated with the meteorological factors. The average removal efficiencies of J. acutus and C. selloana were determined as 60.3-57.7% for BOD; 24.2-38.9% for TN; 31.4-49.8% for OM; 35.4-43.3% for TP; 18.9-27.1% for orthophosphate; 24.4-28.7% for NH4-N; 29.5-37.2% for TSS; and 35.3-44.3% for TSM. Two-way ANOVA was applied to determine any difference for the removal of all parameters between the plant types and months on the mean values of contaminant removal. A correlation matrix of all parameters was determined. Subsurface flow constructed wetland was found quite efficient for the treatment of domestic wastewater in rural settlements. HSFCW is also more economical to install and maintain than a conventional wastewater treatment system while enhancing ecosystem services.

  3. Fluid Flow Simulations of a Vane Separator

    Directory of Open Access Journals (Sweden)

    Aage I. Jøsang


    Full Text Available In this work, the fluid flow in a vane separator is simulated by Computational Fluid Dynamics (CFD. Detailed measurements of air flow inside a single passage in a vane separator have earlier been presented (Josang and Melaaen 2000. The simulations cover various turbulence models (k-epsilon and RSM turbulence models, near wall treatments, numerical schemes and structured grid as well as un-structured grid simulations. Earlier simulations show that a proper matching between the grid and the near wall treatment is important. However, most important is the effect of the two different numerical schemes together with the turbulence models. The selected numerical schemes are two different first order schemes (the power law scheme and the first order upwind scheme and the higher order QUICK scheme. Normally, the highest order scheme is asssumed to produce the most accurate result, but in the present work the combination of the best turbulence model (RSM and QUICK gave the worst result. Most of the other combinations gave good predicted flow fields, although some deviations exist for the prediction of the recirculation zones.

  4. Pedestrian Flow Simulation Validation and Verification Techniques

    CERN Document Server

    Dridi, Mohamed H


    For the verification and validation of microscopic simulation models of pedestrian flow, we have performed experiments for different kind of facilities and sites where most conflicts and congestion happens e.g. corridors, narrow passages, and crosswalks. The validity of the model should compare the experimental conditions and simulation results with video recording carried out in the same condition like in real life e.g. pedestrian flux and density distributions. The strategy in this technique is to achieve a certain amount of accuracy required in the simulation model. This method is good at detecting the critical points in the pedestrians walking areas. For the calibration of suitable models we use the results obtained from analyzing the video recordings in Hajj 2009 and these results can be used to check the design sections of pedestrian facilities and exits. As practical examples, we present the simulation of pilgrim streams on the Jamarat bridge. The objectives of this study are twofold: first, to show th...

  5. Simulation of Flow Control Using Deformable Surfaces (United States)

    Truman, C. Randall


    The goal of this investigation is to numerically simulate the effects of oscillatory actuators placed on the leading edge of an airfoil, and to quantify the effects of oscillatory blowing on an airfoil stall behavior. It has been demonstrated experimentally that periodic blowing can delay flow separation at high angle of attack. The computations are to be performed for a TAU 0015 airfoil at a high Reynolds number of approx. 1 x 10(exp 6) with turbulent flow conditions. The two-equation Wilcox k - w turbulence model has been shown to provide reliable descriptions of transition and turbulence at high Reynolds numbers. The results are to be compared to Seifert's experimental data.

  6. Parameter estimation in channel network flow simulation

    Directory of Open Access Journals (Sweden)

    Han Longxi


    Full Text Available Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.

  7. Effect of diffusional mass transfer on the performance of horizontal subsurface flow constructed wetlands in tropical climate conditions. (United States)

    Njau, K N; Gastory, L; Eshton, B; Katima, J H Y; Minja, R J A; Kimwaga, R; Shaaban, M


    The effect of mass transfer on the removal rate constants of BOD5, NH3, NO3 and TKN has been investigated in a Horizontal Subsurface Flow Constructed Wetland (HSSFCW) planted with Phragmites mauritianus. The plug flow model was assumed and the inlet and outlet concentrations were used to determine the observed removal rate constants. Mass transfer effects were studied by assessing the influence of interstitial velocity on pollutant removal rates in CW cells of different widths. The flow velocities varied between 3-46 m/d. Results indicate that the observed removal rate constants are highly influenced by the flow velocity. Correlation of dimensionless groups namely Reynolds Number (Re), Sherwood Number (Sh) and Schmidt Number (Sc) were applied and log-log plots of rate constants against velocity yielded straight lines with values beta = 0.87 for BOD5, 1.88 for NH3, 1.20 for NO3 and 0.94 for TKN. The correlation matched the expected for packed beds although the constant beta was higher than expected for low Reynolds numbers. These results indicate that the design values of rate constants used to size wetlands are influenced by flow velocity. This paper suggests the incorporation of mass transfer into CW design procedures in order to improve the performance of CW systems and reduce land requirements.

  8. Distributed Power-Flow Controller (DPFC) Simulation


    T Jagan Mohan Rao; B. Ravi Kumar


    This paper describes the steady-state response and control of power in transmission line equipped with FACTS devices. Detailed simulations are carried out on two -machine systems to illustrate the control features of these devices and their influence to increase power transfer capability and improve system reliability. The DPFC is derived from the unified power-flow controller (UPFC) and DPFC has the same control capability as the UPFC. The DPFC can be considered as a UPFC with an...

  9. Simulation of a flow around biting teeth (United States)

    Narusawa, Hideaki; Yamamoto, Eriko; Kuwahara, Kunio


    We simulated a flow around biting teeth. The decayed tooth is a disease that a majority of people are annoyed. These are often generated from a deep groove at occlusal surface. It is known that a person who bites well doesn't suffer from a decayed tooth easily. Biting forces reach as much as 60 kg/cm^2 by an adult male, and when chewing, upper and lower teeth approach to bite by those forces. The crushed food mixed with saliva becomes high viscosity fluid, and is pushed out of ditches of teeth in the direction of the cheek or the tongue. Teeth with complex three dimension curved surface are thought to form venturi at this time, and to generate big pressure partially. An excellent dental articulation will possibly help a natural generation of a flow to remove dental plaque, i.e. the cause of the decayed tooth. Moreover, the relation of this flow with the destruction of the filled metal or the polymer is doubted. In this research, we try to clarify the pressure distributions by this flow generation as well as its dynamics when chewing. One of our goals is to enable an objective design of the shape of the dental fillings and the artificial tooth. Tooth has a very small uneven ground and a bluff body. In this case, to calculate a computational numerical simulation to solve the Navier-Stokes equations three dimension Cartesian coordinate system is employed.

  10. Controlling Fluid Flow in the Subsurface through Ureolysis-Controlled Mineral Precipitation (United States)

    Gerlach, R.; Phillips, A. J.; Cunningham, A. B.; Spangler, L.


    In situ urea hydrolysis has been used by us successfully to manipulate the carbonate alkalinity and control the precipitation of carbonate minerals. Urea hydrolysis can be promoted using microbial cells, enzymes or thermal energy. This technology can be used to mitigate leakage pathways, seal fractures or control fluid transport in the subsurface in hydrocarbon production, enhanced geothermal energy storage, carbon sequestration, nuclear waste disposal, etc. We have completed two field demonstrations of the urea hydrolysis-controlled in situ mineral precipitation technology. The first demonstration showed fracture sealing was possible in a sandstone formation approx. 1120' below ground surface (bgs) and that the fracture had increased resistance to re-fracturing after mineralization treatment. The second field demonstration was performed in a well with an identified channel in the cement near the wellbore at approx. 1020' bgs. The in situ mineralization treatment resulted in reduced pressure decay during shut in periods and reduced injectivity. In addition, a noticeable difference was observed in the solids percentage in the ultrasonic imaging logs before and after biomineralization treatment. The presentation will summarize and put into context the field and our recent laboratory research focusing on permeability manipulation using the in situ ureolysis-driven mineralization technology under ambient and subsurface pressure conditions. We have demonstrated permeability reductions of 3-6 orders of magnitude in 100 µm to 4mm gaps between shale, sandstone and cement/steel interfaces.

  11. Corn stover harvest increases herbicide movement to subsurface drains – Root Zone Water Quality Model simulations (United States)

    BACKGROUND: Removal of crop residues for bioenergy production can alter soil hydrologic properties, but there is little information on its impact on transport of herbicides and their degradation products to subsurface drains. The Root Zone Water Quality Model, previously calibrated using measured fl...

  12. Hybrid constructed wetlands for highly polluted river water treatment and comparison of surface- and subsurface-flow cells. (United States)

    Zheng, Yucong; Wang, Xiaochang; Xiong, Jiaqing; Liu, Yongjun; Zhao, Yaqian


    A series of large pilot constructed wetland (CW) systems were constructed near the confluence of an urban stream to a larger river in Xi'an, a northwestern megacity in China, for treating polluted stream water before it entered the receiving water body. Each CW system is a combination of surface-and subsurface-flow cells with local gravel, sand or slag as substrates and Phragmites australis and Typha orientalis as plants. During a one-year operation with an average surface loading of 0.053 m(3)/(m(2)·day), the overall COD, BOD, NH3-N, total nitrogen (TN) and total phosphorus (TP) removals were 72.7% ± 4.5%, 93.4% ± 2.1%, 54.0% ± 6.3%, 53.9% ± 6.0% and 69.4% ± 4.6%, respectively, which brought about an effective improvement of the river water quality. Surface-flow cells showed better NH3-N removal than their TN removal while subsurface-flow cells showed better TN removal than their NH3-N removal. Using local slag as the substrate, the organic and phosphorus removal could be much improved. Seasonal variation was also found in the removal of all the pollutants and autumn seemed to be the best season for pollutant removal due to the moderate water temperature and well grown plants in the CWs. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. Subsurface Structure and Fluid Flow Analysis Using Geophysical Methods in the Geothermal Manifestation Area of Paguyangan, Brebes, Central Java

    Directory of Open Access Journals (Sweden)

    Agus Seyawan


    Full Text Available The indication of an active geothermal system is shown by the presence of surface manifestations such as the hot spring in Kedungoleng, Paguyangan, Brebes, Central Java. The temperature of the largest hot spring reaches 74o C and there is an assumption that this is an outflow of Mount Slamet geothermal system. DC-resistivity, Spontaneous Potential (SP and Shallow Surface Temperature surveys were conducted to determine the subsurface structure as well as its correlation with the distribution of thermal fluid flow and shallow surface temperature. The subsurface resistivity has been investigated using 5 points of the Schlumberger configuration with 400 m separation for each point. For the fluid and temperature pattern, a measurement using 15 m interval in 3 lines of conducting fixed electrode configuration has been carried out, along with a 75 cm of depth of temperature measurement around the manifestation area. The thermal fluid is assumed by the low resistivity of 0.756 to 6.91Ωm and this indicates sandstone that has permeable characteristic. The fluid flows in two layers of Sandstone at more than 10 meter from surface of the first layer. Accordingly, the SP values have a range between -11- 11 mV and a depth interval of 13.42- 28.75 m and the distribution of temperature is between 24o-70oC at a tilting range of 46.06o-12.60o. Hence it can be inferred that the thermal fluid moves in the Northwest direction and is controlled by a fault structure stretching from Northwest to Southeast. Article History: Received Feb 3, 2016; Received in revised form July 11, 2016; Accepted August 13, 2016; Available online How to Cite This Article: Setyawan, A., Triahadini, A., Yuliananto, Y., Aribowo, Y., and Widiarso, D.A. (2016 Subsurface Structure and Fluid Flow Analyses Using Geophysical Methods in Geothermal Manifestation Area of Paguyangan, Brebes, Central Java. Int. Journal of Renewable Energy Development, 5(3, 171-177.

  14. Adaptive LES Methodology for Turbulent Flow Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Oleg V. Vasilyev


    Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulations that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic

  15. Improving Chemical EOR Simulations and Reducing the Subsurface Uncertainty Using Downscaling Conditioned to Tracer Data

    KAUST Repository

    Torrealba, Victor A.


    Recovery mechanisms are more likely to be influenced by grid-block size and reservoir heterogeneity in Chemical EOR (CEOR) than in conventional Water Flood (WF) simulations. Grid upscaling based on single-phase flow is a common practice in WF simulation models, where simulation grids are coarsened to perform history matching and sensitivity analyses within affordable computational times. This coarse grid resolution (typically about 100 ft.) could be sufficient in WF, however, it usually fails to capture key physical mechanisms in CEOR. In addition to increased numerical dispersion in coarse models, these models tend to artificially increase the level of mixing between the fluids and may not have enough resolution to capture different length scales of geological features to which EOR processes can be highly sensitive. As a result of which, coarse models usually overestimate the sweep efficiency, and underestimate the displacement efficiency. Grid refinement (simple downscaling) can resolve artificial mixing but appropriately re-creating the fine-scale heterogeneity, without degrading the history-match conducted on the coarse-scale, remains a challenge. Because of the difference in recovery mechanisms involved in CEOR, such as miscibility and thermodynamic phase split, the impact of grid downscaling on CEOR simulations is not well understood. In this work, we introduce a geostatistical downscaling method conditioned to tracer data to refine a coarse history-matched WF model. This downscaling process is necessary for CEOR simulations when the original (fine) earth model is not available or when major disconnects occur between the original earth model and the history-matched coarse WF model. The proposed downscaling method is a process of refining the coarse grid, and populating the relevant properties in the newly created finer grid cells. The method considers the values of rock properties in the coarse grid as hard data, and the corresponding variograms and property

  16. WISDOM GPR subsurface investigations in the Atacama desert during the SAFER rover operation simulation (United States)

    Dorizon, Sophie; Ciarletti, Valérie; Vieau, André-Jean; Plettemeier, Dirk; Benedix, Wolf-Stefan; Mütze, Marco; Hassen-Kodja, Rafik; Humeau, Olivier


    SAFER (Sample Acquisition Field Experiment with a Rover) is a field trial that occured from 7th to 13th October 2013 in the Atacama desert, Chile. This trial was designed to gather together scientists and engineers in a context of a real spatial mission with a rover. This is ESA's opportunity to validate operations procedures for the ExoMars 2018 mission, since a rover, provided by Astrium, was equipped with three ExoMars payload instruments, namely the WISDOM (Water Ice Subsurface Deposits Observations on Mars) Ground Penetrating Radar, PANCAM (Panoramic Camera) and CLUPI (Close-UP Imager), and was used to experiment the real context of a Martian rover mission. The test site was located close to the Paranal ESO's Observatory (European Southern Observatorys) while the operations were conducted in the Satellite Applications Catapult remote Center in Harwell, UK. The location was chosen for its well-known resemblance with Mars' surface and its arid dryness. To provide the best from this trial, geologists, engineers and instrumentation scientists teams collaborated by processing and analyzing the data, planning in real time the next trajectories for the Bridget rover, as well as the sites of interest for WISDOM subsurface investigations. This WISDOM GPR has been designed to define the geological context of the ExoMars 2018 landing site by characterizing the shallow subsurface in terms of electromagnetic properties and structures. It will allow to lead the drill to locations of potential exobiologocal interest. WISDOM is a polarimetric step frequency radar operating from 0.5GHz to 3GHz, which allows a vertical resolution of a few centimeters over a few meters depth. Provided with a DEM (Digital Elevation Model) and a low-resolution map to assist the team with the rover's operations, several soudings with WISDOM were done over the area. The WISDOM data allowed, in collaboration with the SCISCYS team, to map the electromagnetic contrasts into the subsurface underneath

  17. Sparse calibration of subsurface flow models using nonlinear orthogonal matching pursuit and an iterative stochastic ensemble method

    KAUST Repository

    Elsheikh, Ahmed H.


    We introduce a nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of subsurface flow models. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated basis function with the residual from a large pool of basis functions. The discovered basis (aka support) is augmented across the nonlinear iterations. Once a set of basis functions are selected, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on stochastically approximated gradient using an iterative stochastic ensemble method (ISEM). In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm. The proposed algorithm is the first ensemble based algorithm that tackels the sparse nonlinear parameter estimation problem. © 2013 Elsevier Ltd.

  18. Treatment of high-strength wastewater in tropical constructed wetlands planted with Sesbania sesban: Horizontal subsurface flow versus vertical downflow

    DEFF Research Database (Denmark)

    Dan, Truong Hoang; Quang, Le Nhat; Chiem, Nguyen Huu


    of 80, 160 and 320mmd-1. The S. sesban plants grew very well in the constructed wetland systems and produced 17.2-20.2kgdry matterm-2year-1 with a high nitrogen content. Mass removal rates and removal rate constants increased with loading rate, but at 320mmd-1 the effluent quality was unacceptable...... and hydraulic problems appeared. Mass removal rates and removal rate constants were much higher than reported in other studies probably because of the high-strength wastewater, the high loading rates and the tropical conditions. Planted systems removed pollutants much more efficiently than the unplanted...... subsurface flow system and a saturated vertical downflow system was established with planted and unplanted beds to assess the effects of system design and presence of plants on treatment performance. The systems were loaded with a mixture of domestic and pig farm wastewater at three hydraulic loading rates...

  19. [Treatment of marine-aquaculture effluent by the multi-soil-layer (MSL) system and subsurface flow constructed wetland]. (United States)

    Song, Ying; Huang, Yu-ting; Ge, Chuan; Zhang, Hao; Chen, Xin; Zhang, Zhi-jianz; Luo, An-cheng


    To evaluate the feasibility of using multi-soil-layer (MSL) system and subsurface flow constructed wetland to treat the wastewater of marine cultured Penaeus vannamei and to determine the suitable process for the local aquaculture wastewater pollution characteristics. In this study, MSL system and four constructed wetland systems with Spartina anglica, Phragmites australis, Typha latifolia and unplanted system were evaluated for their potentials of pollutants removal capacity. The results showed the average removal rates of chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), ammonia nitrogen (NH(4)+ -N) and nitrate (NO-(3) -N) by MSL system were 80. 38% ± 2. 14% , 68. 14% ± 3.51% , 40.79% ± 3. 10% , 42. 68% ± 2.90% and 54. 19% ± 5. 15% , respectively. Additionally, the ability of pollutants removal of other four wetland systems decreased in the order: Spartina anglica, Phragmites australis, Typha latifolia and unplanted system.

  20. Nitrogen removal in wood chip combined substrate baffled subsurface-flow constructed wetlands: impact of matrix arrangement and intermittent aeration. (United States)

    Li, Huai; Chi, Zifang; Yan, Baixing; Cheng, Long; Li, Jianzheng


    In this study, two lab-scale baffled subsurface-flow constructed wetlands (BSFCWs), including gravel-wood chips-slag and gravel-slag-wood chips, were operated at different intermittent aeration to evaluate the effect of artificial aeration and slow-released carbon source on the treatment efficiency of high-strength nitrogen wastewater. Results indicated that gravel-slag-wood chips extended aerobic/anaerobic alternating environment to gravel and slag zones and maintained anaerobic condition in the subsequent wood chip section. The order of gravel-slag-wood chip was more beneficial to pollutant removal. Sufficient carbon source supply resulted from wood-chip-framework substrate simultaneously obtained high removals of COD (97%), NH4+-N (95%), and TN (94%) in BSFCWs at 2 h aeration per day. The results suggest that intermittent aeration combined with wood chips could achieve high nitrogen removal in BSFCWs.

  1. Performance of hybrid vertical up- and downflow subsurface flow constructed wetlands in treating synthetic high-strength wastewater. (United States)

    Zhao, Yong-Jun; Cheng, Pu; Pei, Xi; Zhang, Hui; Yan, Cheng; Wang, Shou-Bing


    The performance and temporal variation of hybrid vertical-subsurface flow constructed wetlands (VFCWs) in response to two-stage combinations of vertical upflow (VUF) and vertical downflow (VDF) were analyzed in this research. The results of high carbon (C) treatment and high nitrogen (N) treatment were similar. The Lythrum salicaria treatment showed higher removal efficiency than CWs planted with Acorus calamus. Under high C- and N-loading treatments, the optimum two-stage combination was VDF-VUF VFCWs planted with A. calamus. Furthermore, the highest nutrient removal efficiencies were achieved in late summer (July and August) and early autumn (September). The chemical oxygen demand and total nitrogen removal efficiencies were significantly affected (P wetland plant.

  2. Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands. (United States)

    Fan, Jinlin; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Wu, Haiming


    The long-term enhanced removal efficiency of organics and nitrogen in subsurface flow constructed wetlands (SSF CWs) with and without intermittent aeration for decentralized domestic wastewater was evaluated, and the function of intermittent aeration on microbial community was also investigated in this study. The high and long-term 95.6% COD, 96.1% NH4(+)-N and 85.8% TN removal efficiencies were achieved in experimental intermittently aerated SSF CW compared with non-aerated SSF CW. Aerated SSF CWs also exhibited the excellent removal performance when comparatively comparing with other strategies and techniques applied in CWs. In addition, fluorescence in situ hybridization (FISH) analysis revealed that associated microbial abundance significantly increased owing to intermittent aeration. These results indicated intermittent aeration CWs might be an effective and sustainable strategy for wastewater treatment in rural areas, but require further full-scale investigation in future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The structure and spatio-temporal distribution of the Archaea in a horizontal subsurface flow constructed wetland. (United States)

    Bouali, Moez; Zrafi-Nouira, Ines; Bakhrouf, Amina; Le Paslier, Denis; Chaussonnerie, Sébastien; Ammar, Emna; Sghir, Abdelghani


    In this study, archaeal community structure and temporal dynamics were monitored, using 16S rRNA clone libraries construction from a horizontal subsurface flow constructed wetland. Phylogenetic assignation of 1026 16S rRNA gene sequences shows that 96.2% of the total operational taxonomic units (OTUs) were affiliated with Thaumarchaeota, a newly proposed archaeal phylum and 3.7% with unclassified Archaea. Among the total sequences, 42% and 40.2% were affiliated with Candidatus Nitrososphaera and unclassified Nitrosopumilus respectively with more than 99% similarity. Results suggest that several dominant and active nitrifiers may benefit from the micro-aerobic conditions around the reed roots to perform ammonia oxidation. The archaeal diversity detected in the rhizosphere zone is clearly different from that detected in the bottom basin. This engineered habitat revealed the reed root and the water composition effects on the archaeal diversity. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Field Simulation of a Drilling Mission to Mars to Search for Subsurface Life (United States)

    Stoker, C. R.; Lemke, L. G.; Cannon, H.; Glass, B.; Dunagan, S.; Zavaleta, J.; Miller, D.; Gomez-Elvira, J.


    The discovery of near surface ground ice by the Mars Odyssey mission and the abundant evidence for recent Gulley features observed by the Mars Global Surveyor mission support longstanding theoretical arguments for subsurface liquid water on Mars. Thus, implementing the Mars program goal to search for life points to drilling on Mars to reach liquid water, collecting samples and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. Searching for life in the subsurface of Mars will require drilling, sample extraction and handling, and new technologies to find and identify biomarker compounds and search for living organisms. In spite of its obvious advantages, robotic drilling for Mars exploration is in its technological infancy and has yet to be demonstrated in even a terrestrial field environment.

  5. Advantages of using subsurface flow constructed wetlands for wastewater treatment in space applications: Ground-based mars base prototype (United States)

    Nelson, M.; Alling, A.; Dempster, W. F.; van Thillo, M.; Allen, John

    Research and design of subsurface flow wetland wastewater treatment systems for a ground-based experimental prototype Mars Base facility has been carried out, using a subsurface flow approach. These systems have distinct advantages in planetary exploration scenarios: they are odorless, relatively low-labor and low-energy, assist in purification of water and recycling of atmospheric CO2, and will support some food crops. An area of 6-8 m2 may be sufficient for integration of wetland wastewater treatment with a prototype Mars Base supporting 4-5 people. Discharge water from the wetland system will be used as irrigation water for the agricultural crop area, thus ensuring complete recycling and utilization of nutrients. Since the primary requirements for wetland treatment systems are warm temperatures and lighting, such bioregenerative systems may be integrated into early Mars base habitats, since waste heat from the lights may be used for temperature maintenance in the human living environment. "Wastewater gardens ™" can be modified for space habitats to lower space and mass requirements. Many of its construction requirements can eventually be met with use of in-situ materials, such as gravel from the Mars surface. Because the technology requires little machinery and no chemicals, and relies more on natural ecological mechanisms (microbial and plant metabolism), maintenance requirements are minimized, and systems can be expected to have long operating lifetimes. Research needs include suitability of Martian soil and gravel for wetland systems, system sealing and liner options in a Mars Base, and wetland water quality efficiency under varying temperature and light regimes.

  6. Evaluation of the giant reed (Arundo donax) in horizontal subsurface flow wetlands for the treatment of recirculating aquaculture system effluent. (United States)

    Idris, Shaharah Mohd; Jones, Paul L; Salzman, Scott A; Croatto, George; Allinson, Graeme


    Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental subsurface flow, gravel-based constructed wetlands (CWs) receiving untreated recirculating aquaculture system wastewater. The hydraulic loading rate was 3.75 cm day(-1). Many of the monitored water quality parameters (biological oxygen demand [BOD], total suspended solids [TSS], total phosphorus [TP], total nitrogen [TN], total ammoniacal nitrogen [TAN], nitrate nitrogen [NO(3)], and Escherichia coli) were removed efficiently by the CWs, to the extent that the CW effluent was suitable for use on human food crops grown for raw produce consumption under Victorian state regulations and also suitable for reuse within aquaculture systems. The BOD, TSS, TP, TN, TAN, and E. coli removal in the A. donax and P. australis beds was 94%, 67%, 96%, 97%, 99.6%, and effectively 100% and 95%, 87%, 95%, 98%, 99.7%, and effectively 100%, respectively, with no significant difference (p > 0.007) in performance between the A. donax and P. australis CWs. In this study, as expected, the aboveground yield of A. donax top growth (stems + leaves) (15.0 ± 3.4 kg wet weight) was considerably more than the P. australis beds (7.4 ± 2.8 kg wet weight). The standing crop produced in this short (14-week) trial equates to an estimated 125 and 77 t  ha(-1) year(-1) biomass (dry weight) for A. donax and P. australis, respectively (assuming that plant growth is similar across a 250-day (September-April) growing season and a single-cut, annual harvest). The similarity of the performance of the A. donax- and P. australis-planted beds indicates that either may be used in horizontal subsurface flow wetlands treating aquaculture wastewater, although the planting of A. donax provides additional opportunities for secondary income streams through utilization of the energy-rich biomass produced.

  7. Traffic flow dynamics data, models and simulation

    CERN Document Server

    Treiber, Martin


    This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...

  8. Teaching Hyporheic and Groundwater Flow Concepts Using an Interactive Computer Simulation (United States)

    Stonedahl, S. H.; Stonedahl, F.


    We built an educational flow simulator with an interactive web-based interface that allows students to investigate the effects of arbitrary head functions on water flowing through various configurations of permeable/impermeable sediments. The domain consists of a 24 by 48 rectangular grid of sediments with no-flow bottom and side boundaries and a constant head surface water-groundwater (SWGW) interface boundary. The SWGW interface head function can be drawn freehand with the mouse or specified to be a step function, a sine curve, or a zig-zag function, where the amplitude and wavenumber parameters of the head functions are chosen by the user. The subsurface domain may be modified by drawing no-flow (impermeable) barriers in the sediment, changing any number of the 1152 grid cells into no flow cells. The program iteratively solves the Laplace equation to calculate head values at each grid cell within the sediment. Users can then start water particles along the SWGW interface and track their paths through the system to visualize the head-induced flow. Sediment cells can be color coded by head values or water speed. Exploring these systems with the simulator allows users to improve their understanding of the relationship between head and velocity as well as how the position of no-flow barriers impacts water flow in saturated sediments. These learning objectives are amenable to our target audience of undergraduate students, but younger (middle/high school) students may also be able to absorb key concepts by playing with the simulation. The structure of the simulation itself highlights the broader idea of simulation of natural processes through the discretization of continuous environments. The simulation was developed using the NetLogo platform and runs embedded in a webpage: The simulation source code is available and can readily be modified by other educators (or students) to create additional features and options.

  9. Conditional Stochastic Simulations of Flow and Transport with Karhunen-Loève Expansions, Stochastic Collocation, and Sequential Gaussian Simulation

    Directory of Open Access Journals (Sweden)

    Mina E. Ossiander


    Full Text Available We derive a new method of conditional Karhunen-Loève (KL expansions for stochastic coefficients in models of flow and transport in the subsurface, and in particular for the heterogeneous random permeability field. Exact values of this field are never known, and thus one must evaluate uncertainty of solutions to the flow and transport models. This is typically done by constructing independent realizations of the permeability field followed by numerical simulations of flow and transport for each realization and assembling statistical estimates of moments of desired quantities of interest. We follow the well-known framework of KL expansions and derive a new method that incorporates known values of the permeability at given locations so that the realizations of the permeability field honor this data exactly. Our method relies on projections to an appropriate subspace of random weights applied to the eigenfunctions of the covariance operator. We use the permeability realizations constructed with our stochastic simulation method in simulations of flow and transport and compare the results to those obtained when realizations are constructed with sequential Gaussian simulation (SGS. We also compare efficiency and stochastic convergence with that of stochastic collocation.

  10. TOUGH3: A new efficient version of the TOUGH suite of multiphase flow and transport simulators (United States)

    Jung, Yoojin; Pau, George Shu Heng; Finsterle, Stefan; Pollyea, Ryan M.


    The TOUGH suite of nonisothermal multiphase flow and transport simulators has been updated by various developers over many years to address a vast range of challenging subsurface problems. The increasing complexity of the simulated processes as well as the growing size of model domains that need to be handled call for an improvement in the simulator's computational robustness and efficiency. Moreover, modifications have been frequently introduced independently, resulting in multiple versions of TOUGH that (1) led to inconsistencies in feature implementation and usage, (2) made code maintenance and development inefficient, and (3) caused confusion to users and developers. TOUGH3-a new base version of TOUGH-addresses these issues. It consolidates both the serial (TOUGH2 V2.1) and parallel (TOUGH2-MP V2.0) implementations, enabling simulations to be performed on desktop computers and supercomputers using a single code. New PETSc parallel linear solvers are added to the existing serial solvers of TOUGH2 and the Aztec solver used in TOUGH2-MP. The PETSc solvers generally perform better than the Aztec solvers in parallel and the internal TOUGH3 linear solver in serial. TOUGH3 also incorporates many new features, addresses bugs, and improves the flexibility of data handling. Due to the improved capabilities and usability, TOUGH3 is more robust and efficient for solving tough and computationally demanding problems in diverse scientific and practical applications related to subsurface flow modeling.

  11. Clogging development and hydraulic performance of the horizontal subsurface flow stormwater constructed wetlands: a laboratory study. (United States)

    Tang, Ping; Yu, Bohai; Zhou, Yongchao; Zhang, Yiping; Li, Jin


    The horizontal subsurface constructed wetland (HSSF CW) is a highly effective technique for stormwater treatment. However, progressive clogging in HSSF CW is a widespread operational problem. The aim of this study was to understand the clogging development of HSSF CWs during stormwater treatment and to assess the influence of microorganisms and vegetation on the clogging. Moreover, the hydraulic performance of HSSF CWs in the process of clogging was evaluated in a tracer experiment. The results show that the HSSF CW can be divided into two sections, section I (circa 0-35 cm) and section II (circa 35-110 cm). The clogging is induced primarily by solid entrapment in section I and development of biofilm and vegetation roots in section II, respectively. The influence of vegetation and microorganisms on the clogging appears to differ in sections I and II. The tracer experiment shows that the hydraulic efficiency (λ) and the mean hydraulic retention time (t mean) increase with the clogging development; although, the short-circuiting region (S) extends slightly. In addition, the presence of vegetation can influence the hydraulic performance of the CWs, and their impact depends on the characteristics of the roots.

  12. Dynamics of phosphorus, nitrogen and carbon removal in a horizontal subsurface flow constructed wetland. (United States)

    Vohla, Christina; Alas, Reimo; Nurk, Kaspar; Baatz, Sabrina; Mander, Ulo


    The dynamics of nitrogen (N), phosphorus (P) and carbon (C) accumulation in the filter material of a horizontal subsurface constructed wetland (HSSF CW; established in 1997) and in a specially designed oil-shale ash filter (2002) for P retention have been studied. Concentrations of N, P and C in filter media (coarse sand) in the HSSF beds show an increasing trend. Both the annual accumulation of P and increasing outflow concentrations of P in the HSSF CW reflect the possible saturation of filter media with P after 8 years working. Tested ash material derived from oil-shale combustion demonstrated very high P removal efficiency in laboratory batch experiments. However, during the first 4 months of the in situ ash filter experiment, the efficiency of P removal was about 71% (an average outflow concentration of 1.9 mg L(-1) was achieved). Subsequently, the efficiency decreased to 10-20%, which might be a sign of saturation or clogging due to quick biofilm development on the ash particles. The increasing of hydraulic retention time and the improvement of design for maximal contact between material and wastewater are considered to be key factors that can provide optimal pH for the removal processes.

  13. Heat flow and subsurface temperature distributions in central and western New York. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, D.S.; Fromm, K.A.


    Existing data in western and central New York indicates the possibility of a low-temperature, direct-use geothermal resource. This report evaluates the heat flow and provides a representation of temperatures at depth in this area. This has been done by: (1) analyzing known temperature distributions, (2) measuring the thermal conductivity of sedimentary rock units. Based on this information, areas of higher-than-normal heat flow and temperatures in possible geothermal source reservoirs are described to aid in targeting areas for the exploitation of geothermal energy in New York.

  14. Enhancement of azo dye Acid Orange 7 removal in newly developed horizontal subsurface-flow constructed wetland. (United States)

    Tee, Heng-Chong; Lim, Poh-Eng; Seng, Chye-Eng; Mohd Nawi, Mohd Asri; Adnan, Rohana


    Horizontal subsurface-flow (HSF) constructed wetland incorporating baffles was developed to facilitate upflow and downflow conditions so that the treatment of pollutants could be achieved under multiple aerobic, anoxic and anaerobic conditions sequentially in the same wetland bed. The performances of the baffled and conventional HSF constructed wetlands, planted and unplanted, in the removal of azo dye Acid Orange 7 (AO7) were compared at the hydraulic retention times (HRT) of 5, 3 and 2 days when treating domestic wastewater spiked with AO7 concentration of 300 mg/L. The planted baffled unit was found to achieve 100%, 83% and 69% AO7 removal against 73%, 46% and 30% for the conventional unit at HRT of 5, 3 and 2 days, respectively. Longer flow path provided by baffled wetland units allowed more contact of the wastewater with the rhizomes, microbes and micro-aerobic zones resulting in relatively higher oxidation reduction potential (ORP) and enhanced performance as kinetic studies revealed faster AO7 biodegradation rate under aerobic condition. In addition, complete mineralization of AO7 was achieved in planted baffled wetland unit due to the availability of a combination of aerobic, anoxic and anaerobic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Improving post-wildfire hydrologic simulations with ParFlow in southern California (United States)

    Lopez, Sonya; Kinoshita, Alicia; Atchley, Adam


    Wildfires alter the natural hydrologic processes within a watershed and may impact hydrologic characteristics including surface runoff and subsurface water storage. Generally, post-fire hydrologic models are either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful in providing runoff measurements at the watershed outlet; however, do not provide distributed hydrologic simulation at each point within the watershed. This work uses ParFlow, a three-dimensional, distributed hydrologic model to represent soil burn severity and evaluate vegetation recovery rate impacts on water components. This model is developed for Devil Canyon, a watershed burned in 2003 by the Old Fire in southern California. The domain uses a 30m-cell size resolution over a 6.7 km by 6.4 km lateral extent. The subsurface reaches 30 m and is assigned a variable cell thickness, allowing an explicit consideration of the soil burn severity throughout the stages of recovery and vegetation regrowth. Vegetation regrowth is monitored using satellite-based Enhanced Vegetation Index (EVI) products. Pre- and post-fire hydrologic responses are evaluated using runoff measurements at the watershed outlet, and using water component (overland flow, lateral flow, baseflow) measurements. The long-term continuous simulations will improve our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes.

  16. Removing heavy metals from Isfahan composting leachate by horizontal subsurface flow constructed wetland. (United States)

    Bakhshoodeh, Reza; Alavi, Nadali; Soltani Mohammadi, Amir; Ghanavati, Hossein


    Composting facility leachate usually contains high concentrations of pollutants including heavy metals that are seriously harmful to the environment and public health. The main purpose of this study was to evaluate heavy metals removal from Isfahan composting facility (ICF) leachate by a horizontal flow constructed wetland (HFCWs) system. Two horizontal systems were constructed, one planted with vetiver and the other without plant as a control. They both operated at a flow rate of 24 L/day with a 5-day hydraulic retention time (HRT). The average removal efficiencies for Cr (53 %), Cd (40 %), Ni (35 %), Pb (30 %), Zn (35 %), and Cu (40 %) in vetiver constructed wetland were significantly higher than those of the control (P < 0.05). Accumulations of heavy metals in roots were higher than shoots. Cd and Zn showed the highest and the lowest bioconcentration factor (BCF), respectively. Vetiver tolerates the extreme condition in leachate including high total dissolved solids.


    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able ...

  18. Determination of the hydraulic residence time of two subsurface-flow constructed wetlands using radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Debien, Bruno R., E-mail: [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept de Geografia. Lab. de Geomorfologia; Barreto, Alberto A.; Pinto, Amenonia M.F.; Moreira, Rubens M., E-mail:, E-mail:, E-mail: [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)


    The adoption of constructed wetland systems (CW's) with subsuperficial drainage for sewage treatment is increasingly growing in places with low technological resources and available land. The efficient removal of pollutants depends on the internal flow characteristics in the CW and on its hydraulic residence time (HRT). In the present work {sup 82}Br - a gamma radiation emitter, produced from soluble potassium bromide irradiated in the TRIGA reactor at the Centre for the Development of Nuclear Energy (CDTN) - was used as a pseudo-conservative tracer for the comparative study of aqueous phase flow dynamics in two CW's: one in which plants were grown (WP) whereas the other had no plants (WNP). Experimental hydraulic residence time values were found to be very close to the theoretical one, while dispersion numbers obtained for both CW's were quite small. Besides these measured hydrodynamic parameters, the residence time distribution (RTD) curves of the tracer test and the results of modeling of experimental data also demonstrate the tendency of the units to display a plug flow-like effluent hydraulic transport within their systems, as expected from their designs, considering the large length/width ratio (L/W=8). (author)

  19. A trench study to assess transfer of pesticides in subsurface lateral flow for a soil with contrasting texture on a sloping vineyard in Beaujolais. (United States)

    Peyrard, X; Liger, L; Guillemain, C; Gouy, V


    Subsurface lateral flow in both texture-contrast soils and catchments with shallow bedrock is suspected to be a non-point source of contamination of watercourses by pesticides used in agriculture. As a case study, the north of the Beaujolais region (eastern France) provides a favorable environment for such contamination due to its agro-pedo-climatic conditions. Environments seen in the Beaujolais region include intense viticulture, permeable and shallow soils, steep hillslopes, and storms that occur during the periods of pesticide application. Watercourse contamination by pesticides has been widely observed in this region, and offsite pesticide transport by subsurface lateral flow is suspected to be involved in diffuse and chronic presence of pesticides in surface water. In order to confirm and quantify the potential role of such processes in pesticide transfer, an automated trench system has been designed. The trench was set up on a steep farmed hillslope in a texture-contrast soil. It was equipped with a tipping bucket flow meter and an automatic sampler to monitor pesticide concentrations in lateral flow at fine resolution, by means of a flow-dependent sampling strategy. Four pesticides currently used in vine growing were studied to provide a range of mobility properties: one insecticide (chlorpyrifos-methyl) and three fungicides (spiroxamine, tebuconazole, and dimethomorph). With this system, it was possible to study pesticide concentration dynamics in the subsurface lateral flow, generated by substantial rainfall events following pesticide applications. The experimental design ascertained to be a suitable method in which to monitor subsurface lateral flow and related transfer of pesticides.

  20. Modeling and simulation of turbulent multiphase flows (United States)

    Li, Zhaorui

    The atomization of liquid spray in turbulent reacting and non-reacting flows usually occurs in two successive steps, i.e., primary breakup and secondary breakup. In the primary breakup region, the evolution of the interface between the phases is usually complex and very difficult to model. In the secondary breakup region, the average droplet size and volume occupied by the droplets are relatively small but the number of droplets is usually very significant. In this study, we use different mathematical and numerical models for different regions of the spray. For dense spray simulations, a coupled Lagrangian interface-tracking and Eulerian level set method is developed and implemented. In this method, the interface is identified based on the locations of notional particles and the geometrical information concerning the interface and fluid properties are obtained from the level set function. The level set function maintains a signed distance function via the particle-based Lagrangian re-initialization technique. Numerical simulations of several 'standard interface-moving' problems and two-fluid laminar and turbulent flows are conducted to assess this new hybrid method. The results of our analysis indicate that the hybrid particle-level set method can handle interfaces with complex shape change, and can accurately predict the interface values without any significant mass loss or gain. The results obtained for isotropic two-fluid turbulence via the new particle-level set method are validated by comparison with those obtained by the 'zero Mach number', variable-density method. The two-way interactions between the turbulent velocity field and the interface are studied by the particle-level set method. Extensive analysis of vorticity and energy equations indicates that the destabilization effect of turbulence and stability effect of surface tension on the interface motion and interface's effect on turbulence are strongly dependent on the density ratio and Weber number. For

  1. Spatial Variation of Phosphorous Retention Capacity in Subsurface Flow Constructed Wetlands: Effect of Wetland Type and Inflow Loading.

    Directory of Open Access Journals (Sweden)

    Guangwei Yu

    Full Text Available For verification of spatial distribution of phosphorous retention capacity in constructed wetlands systems(CWs, two horizontal subsurface flow(HSSF CWs and two vertical subsurface flow(VSSF CWs, using sand as substrate and Typha latifolia as wetland plants, were constructed and put into use for synthetic wastewater treatment. Five months later, significant spatial variations of TP and inorganic phosphorus(Ca-P, Fe-P and Al-P were observed, which were found to be greatly affected by CWs type and hydraulic loading. The results revealed that though spatial distribution of Fe-P and Al-P displayed a similar order of substrate content as "rhizosphere" > "near-rhizosphere" > "non-rhizosphere" and "inflow section" > "outflow section" regardless of types and loading, the distribution of Ca-P was positively correlated to that of Fe-P and Al-P in HSSF CWs, while negative correlation was shown in VSSF CWs. As a result, TP spatial distribution in HSSF CWs demonstrated a greater dissimilarity than that in VSSF CWs. For HSSF CWs with low hydraulic loading, the lowest TP content was found in non-rhizosphere substrate of outflow section, while the highest one was discovered in rhizonsphere substrate of inflow section. The values in 6 parts of areas ranged from 0.138 g·kg-1 to 2.710 g·kg-1, which also were from -33.5% to 1209% compared to the control value. On contrast, spatial difference of TP content in substrates of VSSF CWs was insignificant, with a variation ranging from 0.776 g·kg-1 to 1.080 g·kg-1, that was 275% to 421% higher than the control value. In addition, when hydraulic loading was increased, TP content in VSSF CWs sharply decreased, ranging from 0.210 g·kg-1 to 0.634 g·kg-1. Meanwhile, dissimilarity of TP spatial distribution in HSSF CWs was reduced, with TP content ranging from 0.258 g·kg-1 to 2.237 g·kg-1. The results suggested that P spatial distribution should be taken into account for CWs design and operation.

  2. Subsurface lateral flow from hillslope and its contribution to nitrate loading in streams through an agricultural catchment during subtropical rainstorm events

    Directory of Open Access Journals (Sweden)

    B. Zhang


    Full Text Available Subsurface lateral flow from agricultural hillslopes is often overlooked compared with overland flow and tile drain flow, partly due to the difficulties in monitoring and quantifying. The objectives of this study were to examine how subsurface lateral flow generated through soil pedons from cropped hillslopes and to quantify its contribution to nitrate loading in the streams through an agricultural catchment in the subtropical region of China. Profiles of soil water potential along hillslopes and stream hydro-chemographs in a trenched stream below a cropped hillslope and at the catchment outlet were simultaneously recorded during two rainstorm events. The dynamics of soil water potential showed positive matrix soil water potential over impermeable soil layer at 0.6 to 1.50 m depths during and after the storms, indicating soil water saturation and drainage processes along the hillslopes irrespective of land uses. The hydro-chemographs in the streams, one trenched below a cropped hillslope and one at the catchment outlet, showed that the concentrations of particulate nitrogen and phosphorus corresponded well to stream flow during the storm, while the nitrate concentration increased on the recession limbs of the hydrographs after the end of the storm. All the synchronous data revealed that nitrate was delivered from the cropped hillslope through subsurface lateral flow to the streams during and after the end of the rainstorms. A chemical mixing model based on electricity conductivity (EC and H+ concentration was successfully established, particularly for the trenched stream. The results showed that the subsurface lateral flow accounted for 29% to 45% of total stream flow in the trenched stream, responsible for 86% of total NO3-N loss (or 26% of total N loss, and for 5.7% to 7.3% of total stream flow at the catchment outlet, responsible for about 69% of total NO3-N loss (or 28% of total N

  3. Evidence for deep sub-surface flow routing in forested upland Wales: implications for contaminant transport and stream flow generation

    Directory of Open Access Journals (Sweden)

    A. H. Haria


    Full Text Available Upland streamflow generation has traditionally been modelled as a simple rainfall-runoff mechanism. However, recent hydrochemical studies conducted in upland Wales have highlighted the potentially important role of bedrock groundwater in streamflow generation processes. To investigate these processes, a detailed and novel field study was established in the riparian zone and lower hillslopes of the Hafren catchment at Plynlimon, mid-Wales. Results from this study showed groundwater near the river behaving in a complex and most likely confined manner within depth-specific horizons. Rapid responses to rainfall in all boreholes at the study site indicated rapid recharge pathways further upslope. The different flow pathways and travel times influenced the chemical character of groundwaters with depth. Groundwaters were shown to discharge into the stream from the fractured bedrock. A lateral rapid flow horizon was also identified as a fast flow pathway immediately below the soils. This highlighted a mechanism whereby rising groundwater may pick up chemical constituents from the lower soils and transfer them quickly to the stream channel. Restrictions in this horizon resulted in groundwater upwelling into the soils at some locations indicating soil water to be sourced from both rising groundwater and rainfall. The role of bedrock groundwater in upland streamflow generation is far more complicated than previously considered, particularly with respect to residence times and flow pathways. Hence, water quality models in upland catchments that do not take account of the bedrock geology and the groundwater interactions therein will be seriously flawed. Keywords: bedrock, groundwater, Hafren, hillslope hydrology, Plynlimon, recharge, soil water, streamflow generation

  4. Partitioning of heavy metals in sub-surface flow treatment wetlands receiving high-strength wastewater. (United States)

    Wojciechowska, Ewa; Gajewska, Magdalena


    The retention of heavy metals at two pilot-scale treatment wetlands (TWs), consisting of two vertical flow beds (VSSF) followed by a horizontal flow bed (HSSF) was studied. The TWs received high-strength wastewater: reject waters from sewage sludge centrifugation (RW) and landfill leachate (LL). The concentrations of the metals Fe, Mn, Zn, Al, Pb, Cu, Cd, Co, and Ni were measured in treated wastewater, substrate of the beds and in plant material harvested from the beds (separately in above ground (ABG) parts and below ground (BG) parts). The TWs differed in metals retention. In the RW treating TW the metal removal efficiencies varied from 27% for Pb to over 97% for Fe and Al. In the LL treating system the concentrations of most metals decreased after VSSF-1 and VSSF-2 beds; however, in the outflow from the last (HSSF) bed, the concentrations of metals (apart from Al) increased again, probably due to the anaerobic conditions at the bed. A major removal pathway was sedimentation and adsorption onto soil substrate as well as precipitation and co-precipitation. In the LL treating facility the plants contained substantially higher metal concentrations in BG parts, while the upward movement of metals was restricted. In the RW treating facility the BG/ABG ratios were lower, indicating that metals were transported to shoots.

  5. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part II: Constraint methodology of hydrodynamic models. (United States)

    Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R


    Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Direct numerical simulation of turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)


    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  7. Traffic flow simulation for an urban freeway corridor (United States)


    The objective of this paper is to develop a realistic and operational macroscopic traffic flow simulation model which requires relatively less data collection efforts. Such a model should be capable of delineating the dynamics of traffic flow created...

  8. Experiments and Simulations of Fluid Flow in Heterogeneous Reservoir Models - Emphasis on Impacts from Crossbeds and Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Boerresen, Knut Arne


    Hydrocarbon recovery from subsurface reservoirs has become increasingly dependent on advanced recovery techniques that require improved understanding of the physics of fluid flow within and across geological units including small-scale heterogeneities and fractures. In this thesis, impacts from heterogeneities on local fluid flow are studied experimentally by means of imaging techniques to visualize fluid flow in two dimensions during flooding of larger reservoir models. Part 1 reflects the multi-disciplinary collaboration, by briefly introducing the relevant geology, the literature on experiments on fluid flow in bedded structures, and outlining the applied numerical simulator and imaging techniques applied to visualize fluid flow. The second part contains a synopsis of displacement experiments in naturally laminated sandstones and in crossbed laboratory models, and of the impact from incipient shear fractures on oil recovery. The detailed results obtained from the experiments and simulations are described in six papers, all included. 215 refs., 108 figs., 16 tabs.

  9. Flow Alteration and Chemical Reduction: Air Stripping to Lessen Subsurface Discharges of Mercury to Surface Water (United States)

    Brooks, S. C.; Bogle, M.; Liang, L.; Miller, C. L.; Peterson, M.; Southworth, G. R.; Spalding, B. P.


    Mercury concentrations in groundwater, surface water, and biota near an industrial facility in Oak Ridge, Tennessee remain high some 50 years after the original major releases from the facility to the environment. Since the mid-1980s, various remedial and abatement actions have been implemented at the facility, including re-routing water flows, armoring contaminated stream banks, relining or cleanout of facility storm drains, and activated charcoal treatment of groundwater and sump discharges. These actions were taken to reduce inorganic mercury inputs from the facility to the stream; a strategy that assumes limiting the inorganic mercury precursor will reduce Hg methylation and its subsequent bioaccumulation. To date, such actions have reduced mercury loading from the site by approximately 90% from levels typical of the mid 1980's, but waterborne mercury at the facility boundary remains roughly 100 times the typical local background concentration and methylmercury accumulation in aquatic biota exceed standards for safe consumption by humans and wildlife. In 2008 and 2009, a series of investigations was initiated to explore innovative approaches to further control mercury concentrations in stream water. Efforts in this study focused on decreasing waterborne inorganic mercury inputs from two sources. The first, a highly localized source, is the discharge point of the enclosed stormdrain network whereas the second is a more diffuse short reach of stream where metallic Hg in streambed sediments generates a continued input of dissolved Hg to the overlying water. Moving a clean water flow management discharge point to a position downstream of the contaminated reach reduced mercury loading from the streambed source by 75% - 100%, likely by minimizing resuspension of Hg-rich fine particulates and changing characteristic hyporheic flow path length and residence time. Mercury in the stormdrain discharge exists as highly reactive dissolved Hg(II) due to residual chlorine in

  10. Continuum simulations of water flow past fullerene molecules

    DEFF Research Database (Denmark)

    Popadic, A.; Praprotnik, M.; Koumoutsakos, P.


    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow...

  11. Potential Efficiency of Riparian Vegetated Buffer Strips in Intercepting Soluble Compounds in the Presence of Subsurface Preferential Flows.

    Directory of Open Access Journals (Sweden)

    Suzanne Edith Allaire

    Full Text Available Buffer strips have been widely recognized as to promote infiltration, deposition and sorption of contaminants for protecting surface water against agricultural contamination. However, such strips do not intercept all contaminants, particularly soluble ones. Although preferential flow (PF has been suggested as one factor among several decreasing the efficiency of buffer strips, the mechanisms involved are not well understood. This project examines buffer strip efficiency at intercepting solutes when subsurface PF occurs. Two soluble sorbed tracers, FD&C Blue #1 and rhodamine WT, were applied on an agricultural sandy loam soil to evaluate the ability of a naturally vegetated buffer strip to intercept soluble contaminants. Rhodamine was applied about 15 m from the creek, while the Blue was applied 15 m to 165 m from the creek. Tracer concentration was measured over a two-year period in both the creek and the buffer strip through soil and water samples. Although the tracers traveled via different pathways, they both quickly moved toward the creek, passing beneath the buffer strip through the soil matrix. Our results demonstrate that the risk of water contamination by soluble contaminants is high in such systems, even when a well-vegetated buffer strip is used. The design of buffer strips should be modified to account for underground bypass, either by using plants that have deep, fine roots that do not favour PF or by adding a filter extending deep underground that can be regularly changed.

  12. Effects of step-feeding and intermittent aeration on organics and nitrogen removal in a horizontal subsurface flow constructed wetland. (United States)

    Patil, Sagar; Chakraborty, Saswati


    The effect of step feed strategy and intermittent aeration on removal of chemical oxygen demand (COD) and nitrogen was investigated in a laboratory scale horizontal subsurface flow constructed wetland (HSSFCW). Wetland was divided into four zones along the length (zone I to IV), and influent was introduced into first and third zones by step feeding. Continuous study was carried out in four phases. In phases I to III, 30% of influent was bypassed to zone III for denitrification along with organics removal. Intermittent aeration was provided only in zone II at 2.5 L/min for 4 h/day, during phases II, III and IV. In phase I, 87% COD and 43% NH 4 + -N (ammonia-nitrogen) removal were obtained from influents of 331 and 30 mg/L, respectively. In phase II study, external aeration resulted in 97% COD and 71% NH 4 + -N removal in the wetland. In phase IV, 40% of feed was delivered to zone III. Higher supply of organic in zone III resulted in higher denitrification, and total nitrogen removal rate increased to 70% from 56%. In the final effluent, concentration of NO 3 - -N was 9-11 mg/L in phase I to III and decreased to 4 mg/L in phase IV. Batch study showed that COD and NH 4 + -N removal followed first order kinetics in different zones of wetland.

  13. Performance evaluation of wastewater treatment using horizontal subsurface flow constructed wetlands optimized by micro-aeration and substrate selection. (United States)

    Zhong, Fei; Wu, Juan; Dai, Yanran; Xiang, Dongfang; Cheng, Shuiping; Ji, Hongjiu


    The effects of micro-aeration and substrate selection on domestic sewage treatment performance were explored using three pairs (with or without micro-aeration) of horizontal subsurface flow (HSSF) constructed wetlands (CWs) filled with zeolite, ceramsite or quartz granules. The individual and combined effects of micro-aeration and substrate selection on the purification performance of the experimental-scale HSSF CWs were evaluated. The results showed that micro-aeration significantly increased the treatment efficiencies for chemical oxygen demand, total nitrogen, total phosphorus (TP), ortho-phosphate (PO4(3-)-P) and ammonium nitrogen (NH4+-N) using HSSF CWs, while the substrate selection significantly affected the TP, PO4(3-)-P and NH4+-N removal efficiencies (p<0.05). A two-way analysis of variance (ANOVA) indicated that there was a significant interaction term (i.e. micro-aeration×substrate selection) for NH4+-N removal (p<0.05). Among the three substrates, ceramsite was the best substrate for the treatment of domestic sewage using HSSF CWs. Therefore, the results of this study suggest that a ceramsite-filled HSSF CW with micro-aeration could be the optimal configuration for decentralized domestic sewage treatment.

  14. Nitrogen removal performance in planted and unplanted horizontal subsurface flow constructed wetlands treating different influent COD/N ratios. (United States)

    Wang, Wei; Ding, Yi; Ullman, Jeffrey L; Ambrose, Richard F; Wang, Yuhui; Song, Xinshan; Zhao, Zhimiao


    Microcosm horizontal subsurface flow constructed wetlands (HSSFCWs) were used to examine the impacts of vegetation on nitrogen dynamics treating different influent COD/N ratios (1:1, 4:1, and 8:1). An increase in the COD/N ratio led to increased reductions in NO3 and total inorganic nitrogen (TIN) in planted and unplanted wetlands, but diminished removal of NH4. The HSSFCW planted with Canna indica L. exhibited a significant reduction in NH4 compared to the unplanted system, particularly in the active root zone where NH4 removal performance increased by up to 26 % at the COD/N ratio of 8:1. There was no significant difference in NO3 removal between the planted and unplanted wetlands. TIN removal efficiency in the planted wetland increased with COD/N ratios, which was likely influenced by plant uptake. NH4 reductions were greater in planted wetland at the 20- and 40-cm depths while NO3 reductions were uniformly greater with depth in all cases, but no statistical difference was impacted by depth on TIN removal. These findings show that planting a HSSFCW can provide some benefit in reducing nitrogen loads in effluents, but only when a sufficient carbon source is present.

  15. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria. (United States)

    Mustapha, Hassana Ibrahim; van Bruggen, J J A; Lens, P N L


    This study examined the performance of pilot-scale vertical subsurface flow constructed wetlands (VSF-CWs) planted with three indigenous plants, i.e. Typha latifolia, Cyperus alternifolius, and Cynodon dactylon, in removing heavy metals from secondary treated refinery wastewater under tropical conditions. The T. latifolia-planted VSF-CW had the best heavy metal removal performance, followed by the Cyperus alternifolius-planted VSF-CW and then the Cynodon dactylon-planted VSF-CW. The data indicated that Cu, Cr, Zn, Pb, Cd, and Fe were accumulated in the plants at all the three VSF-CWs. However, the accumulation of the heavy metals in the plants accounted for only a rather small fraction (0.09-16%) of the overall heavy metal removal by the wetlands. The plant roots accumulated the highest amount of heavy metals, followed by the leaves, and then the stem. Cr and Fe were mainly retained in the roots of T. latifolia, Cyperus alternifolius, and Cynodon dactylon (TF Cr and Fe were only partially transported to the leaves of these plants. This study showed that VSF-CWs planted with T. latifolia, Cyperus Alternifolius, and Cynodon dactylon can be used for the large-scale removal of heavy metals from secondary refinery wastewater.

  16. Theoretical analysis of non-Gaussian heterogeneity effects on subsurface flow and transport (United States)

    Riva, Monica; Guadagnini, Alberto; Neuman, Shlomo P.


    Much of the stochastic groundwater literature is devoted to the analysis of flow and transport in Gaussian or multi-Gaussian log hydraulic conductivity (or transmissivity) fields, Y(x)=ln\\func K(x) (x being a position vector), characterized by one or (less frequently) a multiplicity of spatial correlation scales. Yet Y and many other variables and their (spatial or temporal) increments, ΔY, are known to be generally non-Gaussian. One common manifestation of non-Gaussianity is that whereas frequency distributions of Y often exhibit mild peaks and light tails, those of increments ΔY are generally symmetric with peaks that grow sharper, and tails that become heavier, as separation scale or lag between pairs of Y values decreases. A statistical model that captures these disparate, scale-dependent distributions of Y and ΔY in a unified and consistent manner has been recently proposed by us. This new "generalized sub-Gaussian (GSG)" model has the form Y(x)=U(x)G(x) where G(x) is (generally, but not necessarily) a multiscale Gaussian random field and U(x) is a nonnegative subordinator independent of G. The purpose of this paper is to explore analytically, in an elementary manner, lead-order effects that non-Gaussian heterogeneity described by the GSG model have on the stochastic description of flow and transport. Recognizing that perturbation expansion of hydraulic conductivity K=eY diverges when Y is sub-Gaussian, we render the expansion convergent by truncating Y's domain of definition. We then demonstrate theoretically and illustrate by way of numerical examples that, as the domain of truncation expands, (a) the variance of truncated Y (denoted by Yt) approaches that of Y and (b) the pdf (and thereby moments) of Yt increments approach those of Y increments and, as a consequence, the variogram of Yt approaches that of Y. This in turn guarantees that perturbing Kt=etY to second order in σYt (the standard deviation of Yt) yields results which approach those we obtain

  17. Modelling shallow landslide susceptibility by means of a subsurface flow path connectivity index and estimates of soil depth spatial distribution

    Directory of Open Access Journals (Sweden)

    C. Lanni


    Full Text Available Topographic index-based hydrological models have gained wide use to describe the hydrological control on the triggering of rainfall-induced shallow landslides at the catchment scale. A common assumption in these models is that a spatially continuous water table occurs simultaneously across the catchment. However, during a rainfall event isolated patches of subsurface saturation form above an impeding layer and their hydrological connectivity is a necessary condition for lateral flow initiation at a point on the hillslope.

    Here, a new hydrological model is presented, which allows us to account for the concept of hydrological connectivity while keeping the simplicity of the topographic index approach. A dynamic topographic index is used to describe the transient lateral flow that is established at a hillslope element when the rainfall amount exceeds a threshold value allowing for (a development of a perched water table above an impeding layer, and (b hydrological connectivity between the hillslope element and its own upslope contributing area. A spatially variable soil depth is the main control of hydrological connectivity in the model. The hydrological model is coupled with the infinite slope stability model and with a scaling model for the rainfall frequency–duration relationship to determine the return period of the critical rainfall needed to cause instability on three catchments located in the Italian Alps, where a survey of soil depth spatial distribution is available. The model is compared with a quasi-dynamic model in which the dynamic nature of the hydrological connectivity is neglected. The results show a better performance of the new model in predicting observed shallow landslides, implying that soil depth spatial variability and connectivity bear a significant control on shallow landsliding.

  18. Operation of a horizontal subsurface flow constructed wetland--microbial fuel cell treating wastewater under different organic loading rates. (United States)

    Villaseñor, J; Capilla, P; Rodrigo, M A; Cañizares, P; Fernández, F J


    The aim of the present work is to determine whether a horizontal subsurface flow constructed wetland treating wastewater could act simultaneously as a microbial fuel cell (MFC). Specifically, and as the main variable under study, different organic loading rates were used, and the response of the system was monitored. The installation consisted of a synthetic domestic wastewater-feeding system and a pilot-scale constructed wetland for wastewater treatment, which also included coupled devices necessary to function as an MFC. The wetland worked under continuous operation for 180 d, treating three types of synthetic wastewater with increasing organic loading rates: 13.9 g COD m(-2) d(-1), 31.1 g COD m(-2) d(-1), and 61.1 g COD m(-2) d(-1). The COD removal efficiencies and the cell voltage generation were continuously monitored. The wetland worked simultaneously as an MFC generating electric power. Under low organic loading rates, the wastewater organic matter was completely oxidised in the lower anaerobic compartment, and there were slight aerobic conditions in the upper cathodic compartment, thus causing an electrical current. Under high organic loading rates, the organic matter could not be completely oxidised in the anodic compartment and flowed to the cathodic one, which entered into anaerobic conditions and caused the MFC to stop working. The system developed in this work offered similar cell voltage, power density, and current density values compared with the ones obtained in previous studies using photosynthetic MFCs, sediment-type MFCs, and plant-type MFCs. The light/darkness changes caused voltage fluctuations due to the photosynthetic activity of the macrophytes used (Phragmites australis), which affected the conditions in the cathodic compartment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Variation of dissolved oxygen and redox potential and their correlation with microbial population along a novel horizontal subsurface flow wetland. (United States)

    Zhai, Jun; Zou, Jinsong; He, Qiang; Ning, Kejia; Xiao, Haiwen


    This study was conducted to evaluate the performance of a novel horizontal subsurface flow wetland (HSFW) in naturally improving the dissolved oxygen (DO) and the impact on redox condition, microbial activity and the nitrogen removal in the HSFW bed. The HSFW, equipped with cascaded natural aeration ditches (NADs), was the second stage of a hybrid constructed wetland (CW) after vertical-baffled flow wetland beds. The performances of the HSFW for organics and nitrogen removal in a full-scale hybrid CW system treating municipal wastewater for more than three years have been analysed. The spatial distributions of the oxidation-reduction potential (ORP), DO, microbial population density and specific oxygen uptake rate were determined, and their correlations were analysed in one selected section of the HSFW bed. A 7-m-long shallow NAD increased the DO concentration from 0.28 mg O2 L(-1) to 3.80 mg O2 L(-1) and the ORP from +37.3 mV to +247.7 mV, creating an aerobic zone with a hydraulic retention time (HRT) of 0.5 h and an anoxic zone of another 0.5 h in series in the subsequent wetland bed. For the whole HSFW with three NADs, the macro aerobic and anoxic environment with a total HRT of 3 h can be created. The unique DO distribution in HSFW may contribute to an optimum environment for partial nitrification and anammox, and obtain a high performance for nitrogen removal. Correlation analysis showed that the microbial activity in the HSFW relied obviously on the redox condition.

  20. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media (United States)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu


    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  1. Modified Numerical Simulation Model of Blood Flow in Bend. (United States)

    Liu, X; Zhou, X; Hao, X; Sang, X


    The numerical simulation model of blood flow in bend is studied in this paper. The curvature modification is conducted for the blood flow model in bend to obtain the modified blood flow model in bend. The modified model is verified by U tube. By comparing the simulation results with the experimental results obtained by measuring the flow data in U tube, it was found that the modified blood flow model in bend can effectively improve the prediction accuracy of blood flow data affected by the curvature effect.

  2. Understanding casing flow in Pelton turbines by numerical simulation (United States)

    Rentschler, M.; Neuhauser, M.; Marongiu, J. C.; Parkinson, E.


    For rehabilitation projects of Pelton turbines, the flow in the casing may have an important influence on the overall performance of the machine. Water sheets returning on the jets or on the runner significantly reduce efficiency, and run-away speed depends on the flow in the casing. CFD simulations can provide a detailed insight into this type of flow, but these simulations are computationally intensive. As in general the volume of water in a Pelton turbine is small compared to the complete volume of the turbine housing, a single phase simulation greatly reduces the complexity of the simulation. In the present work a numerical tool based on the SPH-ALE meshless method is used to simulate the casing flow in a Pelton turbine. Using improved order schemes reduces the numerical viscosity. This is necessary to resolve the flow in the jet and on the casing wall, where the velocity differs by two orders of magnitude. The results are compared to flow visualizations and measurement in a hydraulic laboratory. Several rehabilitation projects proved the added value of understanding the flow in the Pelton casing. The flow simulation helps designing casing insert, not only to see their influence on the flow, but also to calculate the stress in the inserts. In some projects, the casing simulation leads to the understanding of unexpected behavior of the flow. One such example is presented where the backsplash of a deflector hit the runner, creating a reversed rotation of the runner.

  3. Numerical Simulation Of Flow Through An Artificial Heart (United States)

    Rogers, Stuart; Kutler, Paul; Kwak, Dochan; Kiris, Centin


    Research in both artificial hearts and fluid dynamics benefits from computational studies. Algorithm that implements Navier-Stokes equations of flow extended to simulate flow of viscous, incompressible blood through articifial heart. Ability to compute details of such flow important for two reasons: internal flows with moving boundaries of academic interest in their own right, and many of deficiencies of artificial hearts attributable to dynamics of flow.

  4. Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes

    Directory of Open Access Journals (Sweden)

    T. Blume


    Full Text Available Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale and binary indicator maps (for the long-term and hillslope scale. Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to

  5. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff. (United States)

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng


    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  6. Numerical simulation of flow past circular duct

    Directory of Open Access Journals (Sweden)

    Ze-gao Yin


    Full Text Available The Renormalization Group (RNG k—ɛ turbulence model and Volume of Fluid (VOF method were employed to simulate the flow past a circular duct in order to obtain and analyze hydraulic parameters. According to various upper and bottom gap ratios, the force on the duct was calculated. When the bottom gap ratio is 0, the drag force coefficient, lift force coefficient, and composite force reach their maximum values, and the azimuth reaches its minimum. With an increase of the bottom gap ratio from 0 to 1, the drag force coefficient and composite force decrease sharply, and the lift force coefficient does not decreases so much, but the azimuth increases dramatically. With a continuous increase of the bottom gap ratio from 1 upward, the drag force coefficient, lift force coefficient, composite force, and azimuth vary little. Thus, the bottom gap ratio is the key factor influencing the force on the circular duct. When the bottom gap ratio is less than 1, the upper gap ratio has a remarkable influence on the force of the circular duct. When the bottom gap ratio is greater than 1, the variation of the upper gap ratio has little influence on the force of the circular duct.

  7. Numerical simulation of flow past circular duct

    Directory of Open Access Journals (Sweden)

    Ze-gao YIN


    Full Text Available On the basis of Fluent software, Renormalization Group (RNGk-ε turbulent model and Volume of Fluid (VOF method are employed to simulate the flow past circular duct to obtain and analyze the hydraulic parameters. According to various upper and bottom gap-ratios, the force on duct is calculated. Firstly, when bottom gap-ratio is 0, drag force coefficient, lift force coefficient and composite force reach the maximum respectively and azimuth reaches the minimum. Secondly, with the increase of bottom gap-ratio from 0 to 1, drag force coefficient and composite force decrease sharply, lift force coefficient decreases a little, but azimuth increases dramatically. Thirdly, with the continuous increase of bottom gap-ratio from 1, drag force coefficient, lift force coefficient, composite force and azimuth vary little. So, bottom gap-ratio is the key factor influencing the force on circular duct. When bottom gap-ratio is less than 1, upper gap-ratio has the remarkable influence on the circular duct force. When bottom gap-ratio is greater than 1, the varation of upper gap-ratio has a little influence on the circular duct force.

  8. A Preliminary Investigation of Wastewater Treatment Efficiency and Economic Cost of Subsurface Flow Oyster-Shell-Bedded Constructed Wetland Systems

    Directory of Open Access Journals (Sweden)

    Chia-Chuan Hsu


    Full Text Available We conducted a preliminary investigation of wastewater treatment efficiency and economic cost of the oyster-shell-bedded constructed wetlands (CWs compared to the conventional gravel-bedded CW based on field monitoring data of water quality and numerical modeling. Four study subsurface (SSF CWs were built to receive wastewater from Taipei, Taiwan. Among these sites, two are vertical wetlands, filled with bagged- (VA and scattered- (VB oyster shells, and the other two horizontal wetlands were filled with scattered-oyster shells (HA and gravels (HB. The BOD, NO3−, DO and SS treatment efficiency of VA and VB were higher than HA and HB. However, VA was determined as the best option of CW design due to its highest cost-effectiveness in term of BOD removal (only 6.56 US$/kg as compared to VB, HA and HB (10.88–25.01 US$/kg. The results confirmed that oyster shells were an effective adsorption medium in CWs. Hydraulic design and arrangement of oyster shells could be important in determining their treatment efficiency and cost-effectiveness. A dynamic model was developed to simulate substance transmissions in different treatment processes in the CWS using AQUASIM 2.1 based on the water quality data. Feasible ranges of biomedical parameters involved were determined for characterizing the importance of different biochemical treatment processes in SSF CWs. Future work will involve extending the experimental period to confirm the treatment efficiency of the oyster-shell-bedded CW systems in long-term operation and provide more field data for the simulated model instead of the literature values.

  9. Computational fluid dynamics (CFD) simulation of hot air flow ...

    African Journals Online (AJOL)

    Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...

  10. Inverse Problem for 3D coupled Flow-Geomechanics Models and Induced Seismicity: Application to Subsurface Characterization and Seismicity Forecasting in Geologic CO2 Storage (United States)

    Castineira, D.; Jha, B.; Juanes, R.


    Carbon Capture and Sequestration (CCS) is regarded as a promising technology to mitigate rising CO2 concentrations in the atmosphere from industrial emissions. However, as a result of the inherent uncertainty that is present in geological structures, assessing the stability of geological faults and quantifying the potential for induced seismicity is a fundamental challenge for practical implementation of CCS. Here we present a formal framework for the solution of the inverse problem associated with coupled flow and geomechanics models of CO2 injection and subsurface storage. Our approach builds from the application of Gaussian Processes, MCMC and posterior predictive analysis to evaluate relevant earthquake attributes (earthquake time, location and magnitude) in 3D synthetic models of CO2 storage under geologic, observational and operational uncertainty. In our approach, we first conduct hundreds of simulations of a high-fidelity 3D computational model for CO2 injection into a deep saline aquifer, dominated by an anticline structure and a fault. This ensemble of realizations accounts for uncertainty in the model parameters (including fault geomechanical and rock properties) and observations (earthquake time, location and magnitude). We apply Gaussian processes (GP) to generate a valid surrogate that closely approximates the behavior of the high fidelity (and computationally intensive) model, and apply hyperparameter optimization and cross-validation techniques in the solution of this multidimensional data-fit problem. The net result of this process is the generation of a fast model that can be effectively used for Bayesian analysis. We then implement Markov chain Monte Carlo (MCMC) to determine the posterior distribution of the model uncertain parameters (given some prior distributions for those parameters and given the likelihood defined in this case by the GP model). Our results show that the resulting posterior distributions correctly converge towards the "true

  11. Reservoir simulation with MUFITS code: Extension for double porosity reservoirs and flows in horizontal wells (United States)

    Afanasyev, Andrey


    Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software ( [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation

  12. Numerical simulations and mathematical models of flows in complex geometries

    DEFF Research Database (Denmark)

    Hernandez Garcia, Anier

    The research work of the present thesis was mainly aimed at exploiting one of the strengths of the Lattice Boltzmann methods, namely, the ability to handle complicated geometries to accurately simulate flows in complex geometries. In this thesis, we perform a very detailed theoretical analysis...... and through the Chapman-Enskog multi-scale expansion technique the dependence of the kinetic viscosity on each scheme is investigated. Seeking for optimal numerical schemes to eciently simulate a wide range of complex flows a variant of the finite element, off-lattice Boltzmann method [5], which uses...... the characteristic based integration is also implemented. Using the latter scheme, numerical simulations are conducted in flows of different complexities: flow in a (real) porous network and turbulent flows in ducts with wall irregularities. From the simulations of flows in porous media driven by pressure gradients...

  13. Flow Simulation and Performance Prediction of Centrifugal Pumps ...

    African Journals Online (AJOL)

    With the aid of computational fluid dynamics, the complex internal flows in water pump impellers can be well predicted, thus facilitating the product development process of pumps. In this paper a commercial CFD code was used to solve the governing equations of the flow field. A 2-D simulation of turbulent fluid flow is ...

  14. CFD simulation of flow through an orifice plate (United States)

    Tukiman, M. M.; Ghazali, M. N. M.; Sadikin, A.; Nasir, N. F.; Nordin, N.; Sapit, A.; Razali, M. A.


    In this present paper, the commercial Computational Fluid Dynamics (CFD) is used to predict the flow features in the orifice flow meter. Outcomes of the CFD simulations in terms of profiles of velocity and pressure are discussed in detail. It is observed that the flow is jet-like flow in the core region and the presence of recirculation, reattachment and shear layer regions flow features downstream the orifice. The location of vena-contracta was also estimated from CFD simulations. These results are consistent with other published data.

  15. Simulation of dendritic growth of magnesium alloys with fluid flow

    Directory of Open Access Journals (Sweden)

    Meng-wu Wu


    Full Text Available Fluid flow has a significant impact on the microstructure evolution of alloys during solidification. Based on the previous work relating simulation of the dendritic growth of magnesium alloys with hcp (hexagonal close-packed structure, an extension was made to the formerly established CA (cellular automaton model with the purpose of studying the effect of fluid flow on the dendritic growth of magnesium alloys. The modified projection method was used to solve the transport equations of flow field. By coupling the flow field with the solute field, simulation results of equiaxed and columnar dendritic growth of magnesium alloys with fluid flow were achieved. The simulated results were quantitatively compared with those without fluid flow. Moreover, a comparison was also made between the present work and previous works conducted by others. It can be concluded that a deep understanding of the dendritic growth of magnesium alloys with fluid flow can be obtained by applying the present numerical model.

  16. 3D numerical simulation of flow field around twin piles (United States)

    Amini, Ata; Parto, Akram Asadi


    In this study to identify the flow pattern and local scour mechanism around pile groups, the flow field was simulated using FLOW-3D software. A pair of pile on a flat-bed channel with side by side and tandem arrangements was investigated. To establish Navier-Stokes equations, the RNG k- ɛ turbulence model was used and the results were verified using experimental data. In case of FLOW-3D capability, it was found that the software was able to properly simulate the expected interaction between the pile groups. The results of flow field simulation showed that Reynolds number and the pile spacing are the most influential variables in forming vortices. The flow around tandem pile and the downward flow around wake vortices were more intense and complicate in comparison with side by side arrangements and single pile.

  17. Performance of subsurface flow constructed wetland mesocosms in enhancing nutrient removal from municipal wastewater in warm tropical environments. (United States)

    Bateganya, Najib Lukooya; Kazibwe, Alex; Langergraber, Guenter; Okot-Okumu, James; Hein, Thomas


    Nutrient-rich effluents from municipal wastewater treatment plants (WWTPs) have significantly contributed to eutrophication of surface waters in East Africa. We used vertical (VF, 0.2 m(2)) and horizontal (HF, 0.45 m(2)) subsurface flow (SSF) constructed wetland (CW) configurations to design single-stage mesocosms planted with Cyperus papyrus, and operating under batch hydraulic loading regime (at a mean organic loading rate of 20 g COD m(-2) d(-1) for HF and 77 g COD m(-2) d(-1) for VF beds). The aim of the investigation was to assess the performance of SSF CWs as hotspots of nutrient transformation and removal processes between the WWTP and the receiving natural urban wetland environment in Kampala, Uganda. C. papyrus coupled with batch loading enhanced aerobic conditions and high efficiency regarding the elimination of suspended solids, organic matter, and nutrients with significant performance (P < .05) in VF mesocosms. The mean N and P elimination rates (g m(-2) d(-1)) were 9.16 N and 5.41 P in planted VF, and 1.97 N and 1.02 P in planted HF mesocosms, respectively. The lowest mean nutrient elimination rate (g m(-2) d(-1)) was 1.10 N and 0.62 P found in unplanted HF controls. Nutrient accumulation in plants and sediment retention were found to be essential processes. It can be concluded that whereas the SSF CWs may not function as independent treatment systems, they could be easily adopted as flexible and technologically less intensive options at a local scale, to increase the resilience of receiving environments by buffering peak loads from WWTPs.

  18. Multi-stage hybrid subsurface flow constructed wetlands for treating piggery and dairy wastewater in cold climate. (United States)

    Zhang, Xiaomeng; Inoue, Takashi; Kato, Kunihiko; Izumoto, Hayato; Harada, June; Wu, Da; Sakuragi, Hiroaki; Ietsugu, Hidehiro; Sugawara, Yasuhide


    This study followed three field-scale hybrid subsurface flow constructed wetland (CW) systems constructed in Hokkaido, northern Japan: piggery O (2009), dairy G (2011), and dairy S (2006). Treatment performance was monitored from the outset of operation for each CW. The ranges of overall purification efficiency for these systems were 70-86%, 40-85%, 71-90%, 91-96%, 94-98%, 84-97%, and 70-97% for total N (TN), NH4-N, total P, chemical oxygen demand (COD), biochemical oxygen demand, suspended solid, and total Coliform, respectively. The hybrid system's removal rates were highest when influent loads were high. COD removal rates were 46.4 ± 49.2, 94.1 ± 36.6, and 25.1 ± 15.5 g COD m-2 d-1 in piggery O, dairy G, and dairy S, with average influent loads of 50.5 ± 51.5, 98.9 ± 37.1, and 26.9 ± 16.0 g COD m-2 d-1, respectively. The systems had overall COD removal efficiencies of around 90%. TN removal efficiencies were 62 ± 19%, 82 ± 9%, and 82 ± 15% in piggery O, dairy G, and dairy S, respectively. NH4-N removal efficiency was adversely affected by the COD/TN ratio. Results from this study prove that these treatment systems have sustained and positive pollutant removal efficiencies, which were achieved even under extremely cold climate conditions and many years after initial construction.

  19. [Effect of intermittent artificial aeration on nitrogen and phosphorus removal in subsurface vertical-flow constructed wetlands]. (United States)

    Tang, Xian-qiang; Li, Jin-zhong; Li, Xue-Ju; Liu, Xue-gong; Huang, Sui-liang


    Shale and T. latifolia were used as subsurface vertical-flow constructed wetland substrate and vegetation for eutrophic Jin River water treatment, and investigate the effect of intermittent aeration on nitrogen and phosphorus removal. In this study, hydraulic loading rate was equal to 800 mm/d, and ratio of air and water was 5:1. During the entire running period, maximal monthly mean ammonia-nitrogen (NH4+ -N), total nitrogen (TN), soluble reactive phosphorus (SRP) and total phosphorus (TP) removal rates were observed in August 2006. In contrast to the non-aerated wetland, aeration enhanced ammonia-nitrogen, total nitrogen, soluble reactive phosphorus and total phosphorus removal: 10.1%, 4.7%, 10.2% and 8.8% for aeration in the middle, and 25.1%, 10.0%, 7.7% and 7.4% for aeration at the bottom of the substrate, respectively. However, aeration failed to improve the nitrate-nitrogen removal. During the whole experimental period, monthly mean NO3(-) -N removal rates were much lower for aerated constructed wetlands (regarding aeration in the middle and at the bottom) than those for non-aerated system. After finishing the experiment, aboveground plant biomass (stems and leaves) of T. latifolia was harvested, and its weight and nutrient content (total nitrogen and total phosphorus) were measured. Analysis of aboveground plant biomass indicated that intermittent aeration restrained the increase in biomass but stimulated assimilation of nitrogen and phosphorus into stems and leaves. Additional total nitrogen removal of 11.6 g x m(-2) and 12.6 g x m(-2) by aboveground T. latifolia biomass for intermittent artificial aeration in the middle and at the bottom of the wetland substrate, respectively, was observed.

  20. Dynamics of antibiotic resistance genes and their relationships with system treatment efficiency in a horizontal subsurface flow constructed wetland. (United States)

    Nõlvak, Hiie; Truu, Marika; Tiirik, Kertu; Oopkaup, Kristjan; Sildvee, Teele; Kaasik, Ants; Mander, Ülo; Truu, Jaak


    Municipal wastewater treatment is one of the pathways by which antibiotic resistance genes from anthropogenic sources are introduced into natural ecosystems. This study examined the abundance and proportion dynamics of seven antibiotic resistance genes in the wetland media biofilm and in the influent and effluent of parallel horizontal subsurface flow mesocosm cells of a newly established hybrid constructed wetland treating municipal wastewater. The targeted genes (tetA, tetB, tetM, ermB, sul1, ampC, and qnrS) encode resistance to major antibiotic classes such as tetracyclines, macrolides, sulfonamides, penicillins, and fluoroquinolones, respectively. All targeted antibiotic resistance genes were detectable in the tested mesocosm environments, with the tetA, sul1, and qnrS genes being the most abundant in the mesocosm effluents. After initial fluctuation in the microbial community, target gene abundances and proportions stabilized in the wetland media biofilm. The abundance of 16S rRNA and antibiotic resistance genes, and the proportion of antibiotic resistance genes in the microbial community, were reduced during the wastewater treatment by the constructed wetland. The concentration of antibiotic resistance genes in the system effluent was similar to conventional wastewater treatment facilities; however, the mesocosms reduced sulfonamide resistance encoding sul1 concentrations more effectively than some traditional wastewater treatment options. The concentrations of antibiotic resistance genes in the wetland media biofilm and in effluent were affected by system operation parameters, especially time and temperature. The results also revealed a relationship between antibiotic resistance genes abundance and the removal efficiencies of NO2-N, NH4-N, and organic matter. Correlation analysis between the abundance of individual antibiotic resistance genes in the mesocosms influent, effluent and wetland media biofilm indicated that depending on antibiotic resistance gene

  1. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE). (United States)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R


    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  2. Visualizing Hyporheic Flow Through Bedforms Using Dye Experiments and Simulation. (United States)

    Stonedahl, Susa H; Roche, Kevin R; Stonedahl, Forrest; Packman, Aaron I


    Advective exchange between the pore space of sediments and the overlying water column, called hyporheic exchange in fluvial environments, drives solute transport in rivers and many important biogeochemical processes. To improve understanding of these processes through visual demonstration, we created a hyporheic flow simulation in the multi-agent computer modeling platform NetLogo. The simulation shows virtual tracer flowing through a streambed covered with two-dimensional bedforms. Sediment, flow, and bedform characteristics are used as input variables for the model. We illustrate how these simulations match experimental observations from laboratory flume experiments based on measured input parameters. Dye is injected into the flume sediments to visualize the porewater flow. For comparison virtual tracer particles are placed at the same locations in the simulation. This coupled simulation and lab experiment has been used successfully in undergraduate and graduate laboratories to directly visualize river-porewater interactions and show how physically-based flow simulations can reproduce environmental phenomena. Students took photographs of the bed through the transparent flume walls and compared them to shapes of the dye at the same times in the simulation. This resulted in very similar trends, which allowed the students to better understand both the flow patterns and the mathematical model. The simulations also allow the user to quickly visualize the impact of each input parameter by running multiple simulations. This process can also be used in research applications to illustrate basic processes, relate interfacial fluxes and porewater transport, and support quantitative process-based modeling.

  3. Nitrogen Removal in a Horizontal Subsurface Flow Constructed Wetland Estimated Using the First-Order Kinetic Model

    Directory of Open Access Journals (Sweden)

    Lijuan Cui


    Full Text Available We monitored the water quality and hydrological conditions of a horizontal subsurface constructed wetland (HSSF-CW in Beijing, China, for two years. We simulated the area-based constant and the temperature coefficient with the first-order kinetic model. We examined the relationships between the nitrogen (N removal rate, N load, seasonal variations in the N removal rate, and environmental factors—such as the area-based constant, temperature, and dissolved oxygen (DO. The effluent ammonia (NH4+-N and nitrate (NO3−-N concentrations were significantly lower than the influent concentrations (p < 0.01, n = 38. The NO3−-N load was significantly correlated with the removal rate (R2 = 0.96, p < 0.01, but the NH4+-N load was not correlated with the removal rate (R2 = 0.02, p > 0.01. The area-based constants of NO3−-N and NH4+-N at 20 °C were 27 ± 26 (mean ± SD and 14 ± 10 m∙year−1, respectively. The temperature coefficients for NO3−-N and NH4+-N were estimated at 1.004 and 0.960, respectively. The area-based constants for NO3−-N and NH4+-N were not correlated with temperature (p > 0.01. The NO3−-N area-based constant was correlated with the corresponding load (R2 = 0.96, p < 0.01. The NH4+-N area rate was correlated with DO (R2 = 0.69, p < 0.01, suggesting that the factors that influenced the N removal rate in this wetland met Liebig’s law of the minimum.

  4. Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: influence of redox. (United States)

    Avila, Cristina; Reyes, Carolina; Bayona, Josep María; García, Joan


    This study aimed at assessing the influence of primary treatment (hydrolytic upflow sludge blanket (HUSB) reactor vs. conventional settling) and operational strategy (alternation of saturated/unsaturated phases vs. permanently saturated) on the removal of various emerging organic contaminants (i.e. ibuprofen, diclofenac, acetaminophen, tonalide, oxybenzone, bisphenol A) in horizontal subsurface flow constructed wetlands. For that purpose, a continuous injection experiment was carried out in an experimental treatment plant for 26 days. The plant had 3 treatment lines: a control line (settler-wetland permanently saturated), a batch line (settler-wetland operated with saturate/unsaturated phases) and an anaerobic line (HUSB reactor-wetland permanently saturated). In each line, wetlands had a surface area of 2.95 m(2), a water depth of 25 cm and a granular medium D(60) = 7.3 mm, and were planted with common reed. During the study period the wetlands were operated at a hydraulic and organic load of 25 mm/d and about 4.7 g BOD/m(2)d, respectively. The injection experiment delivered very robust results that show how the occurrence of higher redox potentials within the wetland bed promotes the elimination of conventional quality parameters as well as emerging microcontaminants. Overall, removal efficiencies were always greater for the batch line than for the control and anaerobic lines, and to this respect statistically significantly differences were found for ibuprofen, diclofenac, oxybenzone and bisphenol A. As an example, ibuprofen, whose major removal mechanism has been reported to be biodegradation under aerobic conditions, showed a higher removal in the batch line (85%) than in the control (63%) and anaerobic (52%) lines. Bisphenol A showed also a great dependence on the redox status of the wetlands, finding an 89% removal rate for the batch line, as opposed to the control and anaerobic lines (79 and 65%, respectively). Furthermore, diclofenac showed a greater

  5. Simulation of Flow for an Immersed Sphere (United States)


    manufacture, use, or sell any patented invention that may relate to them. This report was cleared for public release by the 96th Air Base Wing, Public...while the latter flow field is shock wave free. In each test calculation, the physics of the flow field is examined, and the drag coefficients are...21 6. Full field slice temperature plot of the sphere flow field at Mach 2, units in

  6. Modeling of Carbon Tetrachloride Flow and Transport in the Subsurface of the 200 West Disposal Sites: Large-Scale Model Configuration and Prediction of Future Carbon Tetrachloride Distribution Beneath the 216-Z-9 Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Mart; Thorne, Paul D.; Zhang, Z. F.; Last, George V.; Truex, Michael J.


    Three-dimensional simulations considered migration of dense, nonaqueous phase liquid (DNAPL) consisting of CT and co disposed organics in the subsurface as a function of the properties and distribution of subsurface sediments and of the properties and disposal history of the waste. Simulations of CT migration were conducted using the Water-Oil-Air mode of Subsurface Transport Over Multiple Phases (STOMP) simulator. A large-scale model was configured to model CT and waste water discharge from the major CT and waste-water disposal sites.

  7. Storm event-scale nutrient attenuation in constructed wetlands experiencing a Mediterranean climate: A comparison of a surface flow and hybrid surface-subsurface flow system. (United States)

    Adyel, Tanveer M; Oldham, Carolyn E; Hipsey, Matthew R


    Among different Water Sensitive Urban Design options, constructed wetlands (CWs) are used to protect and restore downstream water quality by attenuating nutrients generated by stormwater runoff. This research compared the nutrient attenuation ability during a diverse population of storm events of two CWs: (a) a hybrid CW with multiple alternating surface flow (SF) and laterite-based subsurface flow (SSF) compartments, and (b) a single stage SF CW. Within-storm variability, nutrient concentrations were assessed at 2 to 3-h intervals at both the main inlet and outlet of each CW. Dissolved oxygen concentrations of the surface waters were also monitored at 10-min intervals using high frequency in situ sensors. Nutrient loads into the CWs were observed to be higher when a high rainfall event occurred, particularly after longer antecedent dry conditions. Longer hydraulic retention times promoted higher attenuation at both sites. However, the relative extent of nutrient attenuation differed between the CW types; the mean total nitrogen (TN) attenuation in the hybrid and SF CW was 45 and 48%, respectively. The hybrid CW attenuated 67% total phosphorus (TP) loads on average, while the SF CW acted as a net TP source. Periodic storm events transitioned the lentic CW into a lotic CW and caused riparian zone saturation; it was therefore hypothesized that such saturation of organic matter rich-riparian zones led to release of TP in the system. The hybrid CW attenuated the released TP in the downstream laterite-based SSF compartments. Diel oxygen metabolism calculated before and after the storm events was found to be strongly correlated with water temperature, solar exposure and antecedent dry condition during the pre-storm conditions. Furthermore, the SF CW showed a significant relationship between overall nutrient load attenuation and the change in oxygen metabolism during the storm perturbation, suggesting oxygen variation could be a useful proxy indicator of CW function

  8. Morphometric methods for simulation of water flow

    NARCIS (Netherlands)

    Booltink, H.W.G.


    Water flow in structured soils is strongly governed by the occurence of macropores. In this study emphasis was given to combined research of morphology of water- conducting macropores and soil physical measurements on bypass flow. Main research objectives were to: (i) develop and improve

  9. Simulation of viscoelastic flow through constrictions

    DEFF Research Database (Denmark)

    Szabo, Peter; Rallison, J. M.; Hinch, E. J.


    The flow of a FENE-fluid through a 4:1:4 constriction in a tube is computed by a split Lagrangian-Eulerian finite element method.In steady flow it is found that the upstream vortex grows with increasing Deborah number, while the downstream vortex diminishes and disappears.The steady pressure drop...

  10. Fully implicit mixed-hybrid finite-element discretization for general purpose subsurface reservoir simulation (United States)

    Abushaikha, Ahmad S.; Voskov, Denis V.; Tchelepi, Hamdi A.


    We present a new fully-implicit, mixed-hybrid, finite-element (MHFE) discretization scheme for general-purpose compositional reservoir simulation. The locally conservative scheme solves the coupled momentum and mass balance equations simultaneously, and the fluid system is modeled using a cubic equation-of-state. We introduce a new conservative flux approach for the mass balance equations for this fully-implicit approach. We discuss the nonlinear solution procedure for the proposed approach, and we present extensive numerical tests to demonstrate the convergence and accuracy of the MHFE method using tetrahedral elements. We also compare the method to other advanced discretization schemes for unstructured meshes and tensor permeability. Finally, we illustrate the applicability and robustness of the method for highly heterogeneous reservoirs with unstructured grids.

  11. Documenting Surface and Sub-surface Volatiles While Drilling in Frozen Lunar Simulant (United States)

    Roush, T. L.; Cook, A. M.; Colaprete, A.; Bielawski, R.; Fritzler, E.; Benton, J.; White, B.; Forgione, J.; Kleinhenz, J.; Smith, J.; hide


    NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar regions and permanently shadowed regions. RP is slated to carry two instruments for prospecting purposes. These include the Neutron Spectrometer System (NSS) and Near-Infrared Volatile Spectrometer System (NIRVSS). A Honybee Robotics drill (HRD) is intended to sample to depths of 1 m, and deliver a sample to a crucible that is processed by the Oxygen Volatile Extraction Node (OVEN) where the soil is heated and evolved gas is delivered to the gas chromatograph / mass spectrometer of the Lunar Advanced Volatile Analysis system (LAVA). For several years, tests of various sub-systems have been undertaken in a large cryo-vacuum chamber facility (VF-13) located at Glenn Research Center. In these tests a large tube (1.2 m high x 25.4 cm diameter) is filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. There are thermo-couples embedded at different depths, and also across the surface of the soil tube. The soil tube is placed in the chamber and cooled with LN2 as the pressure is reduced to approx.5-6x10(exp -6) Torr. Here we discuss May 2016 tests where two soil tubes were prepared and placed in the chamber. Also located in the chamber were 5 crucibles, an Inficon mass spectrometer, and a trolly permitting x-y translation, where the HRD and NIRVSS, were mounted. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment.

  12. Hydrology and simulation of ground-water flow in Juab Valley, Juab County, Utah. (United States)

    Thiros, Susan A.; Stolp, Bernard J.; Hadley, Heidi K.; Steiger, Judy I.


    Plans to import water to Juab Valley, Utah, primarily for irrigation, are part of the Central Utah Project. A better understanding of the hydrology of the valley is needed to help manage the water resources and to develop conjunctive-use plans.The saturated unconsolidated basin-fill deposits form the ground-water system in Juab Valley. Recharge is by seepage from streams, unconsumed irrigation water, and distribution systems; infiltration of precipitation; and subsurface inflow from consolidated rocks that surround the valley. Discharge is by wells, springs, seeps, evapotranspiration, and subsurface outflow to consolidated rocks. Ground-water pumpage is used to supplement surface water for irrigation in most of the valley and has altered the direction of groundwater flow from that of pre-ground-water development time in areas near and in Nephi and Levan.Greater-than-average precipitation during 1980-87 corresponds with a rise in water levels measured in most wells in the valley and the highest water level measured in some wells. Less-than average precipitation during 1988-91 corresponds with a decline in water levels measured during 1988-93 in most wells. Geochemical analyses indicate that the sources of dissolved ions in water sampled from the southern part of the valley are the Arapien Shale, evaporite deposits that occur in the unconsolidated basin-fill deposits, and possibly residual sea water that has undergone evaporation in unconsolidated basin-fill deposits in selected areas. Water discharging from a spring at Burriston Ponds is a mixture of about 70 percent ground water from a hypothesized flow path that extends downgradient from where Salt Creek enters Juab Valley and 30 percent from a hypothesized flow path from the base of the southern Wasatch Range.The ground-water system of Juab Valley was simulated by using the U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model. The numerical model was calibrated to simulate

  13. Greenhouse wastewater treatment by baffled subsurface-flow constructed wetlands supplemented with flower straws as carbon source in different modes. (United States)

    Chang, Junjun; Ma, Luyao; Chen, Jinquan; Lu, Yifeng; Wang, Xiaoyun


    Four laboratory-scale baffled subsurface-flow constructed wetlands (BSCWs) were established for the treatment of greenhouse wastewater containing high levels of nitrate and sulfate in the present study. Each BSCW microcosm involved a treatment zone and another post-treatment zone with a surface area ratio of 2:1. Evenly mixed straws of carnation and rose (w/w: 1/1), two common ornamental flowers, were supplemented as an organic carbon source into the treatment zone through a hydrolysis zone (CW 1), decentralized vertically installed perforated pipes (CW 2), and centralized pipes (CW 3 in the figures), except the blank system. Removals and transformations of nitrogen and sulfate as well as carbon release in the BSCWs were investigated and comparatively assessed. Results showed that the supplements of flower straws could greatly enhance both the nitrate and sulfate removals, and good performance was achieved during the beginning operation period of 30 days, followed by decline due to insufficient organic carbon supply. Nitrate removal efficiency was significantly higher and more stable compared to sulfate. The highest removal rates of nitrate and sulfate were achieved in the CW 3, with a mean value of 4.33 g NO3--N·m-2 d-1 and 2.74 g SO42--S·m-2 d-1, respectively, although the differences among the experimental microcosms were not statistically significant. However, almost the same TN removal rate (3.40-3.47 g N·m-2 d-1) was obtained due to the productions of NO2--N and NH4+-N and leaching of organic N from the straws. High contents of organic carbon and colored substance were leached from the straws during the initial 10 days, but dropped rapidly to low levels, and could hardly determined after 30 days operation. The post-treatment zone could further eliminate various contaminants, but the capability was limited. Inorganic carbon (IC) concentration was detected to be a highly good indicator for the estimation of nitrate and sulfate removal efficiencies

  14. Key design factors affecting microbial community composition and pathogenic organism removal in horizontal subsurface flow constructed wetlands. (United States)

    Morató, Jordi; Codony, Francesc; Sánchez, Olga; Pérez, Leonardo Martín; García, Joan; Mas, Jordi


    Constructed wetlands constitute an interesting option for wastewater reuse since high concentrations of contaminants and pathogenic microorganisms can be removed with these natural treatment systems. In this work, the role of key design factors which could affect microbial removal and wetland performance, such as granular media, water depth and season effect was evaluated in a pilot system consisting of eight parallel horizontal subsurface flow (HSSF) constructed wetlands treating urban wastewater from Les Franqueses del Vallès (Barcelona, Spain). Gravel biofilm as well as influent and effluent water samples of these systems were taken in order to detect the presence of bacterial indicators such as total coliforms (TC), Escherichia coli, fecal enterococci (FE), Clostridium perfringens, and other microbial groups such as Pseudomonas and Aeromonas. The overall microbial inactivation ratio ranged between 1.4 and 2.9 log-units for heterotrophic plate counts (HPC), from 1.2 to 2.2 log units for total coliforms (TC) and from 1.4 to 2.3 log units for E. coli. The presence of fine granulometry strongly influenced the removal of all the bacterial groups analyzed. This effect was significant for TC (p=0.009), E. coli (p=0.004), and FE (p=0.012). Shallow HSSF constructed wetlands were more effective for removing Clostridium spores (p=0.039), and were also more efficient for removing TC (p=0.011) and E. coli (p=0.013) when fine granulometry was used. On the other hand, changes in the total bacterial community from gravel biofilm were examined by using denaturing gradient gel electrophoresis (DGGE) and sequencing of polymerase chain reaction (PCR)-amplified fragments of the 16S rRNA gene recovered from DGGE bands. Cluster analysis of the DGGE banding pattern from the different wetlands showed that microbial assemblages separated according to water depth, and sequences of different phylogenetic groups, such as Alpha, Beta and Delta-Proteobacteria, Nitrospirae, Bacteroidetes

  15. [Effects of external carbon source on nitrogen and phosphorus removal in subsurface flow and free water surface integrated constructed wetland]. (United States)

    Tan, Hong-Xin; Liu, Yan-Hong; Zhou, Qi; Yang, Dian-Hai


    By adding municipal wastewater in effluent of ANOXIC-OXIC (A/O) reactor as external carbon source, effects of external carbon source on nitrogen and phosphorus removal in subsurface flow and free water surface integrated constructed wetland were studied in pilot-scale. Results indicate that, COD/TN and (NO2(-) + NO3(-))/TN in influent of wetland are 1.00 and 0.48, respectively, and load removal rates of COD, TN and TP are 1.82, 1.59 and 0.14 g (m2 x d)(-1), respectively, as directly treating effluent of A/O reactor in wetland (working condition I). COD/TN and (NO2(-) + NO3(-))/TN in influent of wetland are 3.55 and 0.44, respectively, and load removal rates of COD, TN and TP are 19.03, 5.42 and 0.29 g (m2 x d)(-1), respectively, as adding municipal wastewater in effluent of A/O reactor as external carbon source in wetland (working condition II). Compared with working condition I, load removal rates of TN and TP for working condition II increase 3.4 times and 2.1 times, respectively. Impact factors of load removal rate of TN and TP are water temperature, HRT, COD/TN and (NO2(-) + NO3(-))/TN, respectively, when ranges of influent load rates are 3.8 - 38.7 g x (m2 x d)(-1) for COD, 5.07 - 13.08 g x (m2 x d)(-1) for TN and 0.57 - 1.92 g x (m2 x d)(-1) for TP, respectively, and range of HRT is 0.5 - 1.0 d. TN load removal rate decreases by exponent function along with increase of HRT, linearly increases along with increase of water temperature and (NO2(-) + NO3(-))/TN, and increases by power function along with increase of COD/TN. TP load removal rate also increases by power function along with increase of COD/TN.

  16. Examination of the seepage face boundary condition in subsurface and coupled surface/subsurface hydrological models (United States)

    Scudeler, C.; Paniconi, C.; Pasetto, D.; Putti, M.


    A seepage face is a nonlinear dynamic boundary that strongly affects pressure head distributions, water table fluctuations, and flow patterns. Its handling in hydrological models, especially under complex conditions such as heterogeneity and coupled surface/subsurface flow, has not been extensively studied. In this paper, we compare the treatment of the seepage face as a static (Dirichlet) versus dynamic boundary condition, we assess its resolution under conditions of layered heterogeneity, we examine its interaction with a catchment outlet boundary, and we investigate the effects of surface/subsurface exchanges on seepage faces forming at the land surface. The analyses are carried out with an integrated catchment hydrological model. Numerical simulations are performed for a synthetic rectangular sloping aquifer and for an experimental hillslope from the Landscape Evolution Observatory. The results show that the static boundary condition is not always an adequate stand-in for a dynamic seepage face boundary condition, especially under conditions of high rainfall, steep slope, or heterogeneity; that hillslopes with layered heterogeneity give rise to multiple seepage faces that can be highly dynamic; that seepage face and outlet boundaries can coexist in an integrated hydrological model and both play an important role; and that seepage faces at the land surface are not always controlled by subsurface flow. The paper also presents a generalized algorithm for resolving seepage face outflow that handles heterogeneity in a simple way, is applicable to unstructured grids, and is shown experimentally to be equivalent to the treatment of atmospheric boundary conditions in subsurface flow models.

  17. Simulation of transient viscoelastic flow with second order time integration

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole


    The Lagrangian Integral Method (LIM) for the simulation of time-dependent flow of viscoelastic fluids is extended to second order accuracy in the time integration. The method is tested on the established sphere in a cylinder benchmark problem.......The Lagrangian Integral Method (LIM) for the simulation of time-dependent flow of viscoelastic fluids is extended to second order accuracy in the time integration. The method is tested on the established sphere in a cylinder benchmark problem....

  18. Simulation based engineering in fluid flow design

    CERN Document Server

    Rao, J S


    This volume offers a tool for High Performance Computing (HPC). A brief historical background on the subject is first given. Fluid Statics dealing with Pressure in fluids at rest, Buoyancy and Basics of Thermodynamics are next presented. The Finite Volume Method, the most convenient process for HPC, is explained in one-dimensional approach to diffusion with convection and pressure velocity coupling. Adiabatic, isentropic and supersonic flows in quasi-one dimensional flows in axisymmetric nozzles is considered before applying CFD solutions. Though the theory is restricted to one-dimensional cases, three-dimensional CFD examples are also given. Lastly, nozzle flows with normal shocks are presented using turbulence models. Worked examples and exercises are given in each chapter. Fluids transport thermal energy for its conversion to kinetic energy, thus playing a major role that is central to all heat engines. With the advent of rotating machinery in the 20th century, Fluid Engineering was developed in the form o...

  19. An analog simulation technique for distributed flow systems

    DEFF Research Database (Denmark)

    Jørgensen, Sten Bay; Kümmel, Mogens


    Simulation of distributed flow systems in chemical engine­ering has been applied more and more during the last decade as computer techniques have developed [l]. The applications have served the purpose of identification of process dynamics and parameter estimation as well as improving process...... and process control design. Although the conventional analog computer has been expanded with hybrid techniques and digital simulation languages have appeared, none of these has demonstrated superiority in simulating distributed flow systems in general [l]. Conventional analog techniques are expensive......, especially when flow forcing and nonlinearities are simulated. Digital methods on the other. hand are time consuming. The purpose of this application note is to describe the hardware for the analog principle proposed by {2, 3]. Using this hardware ffowforcing is readily simulated, which was not feasible...

  20. Immersed boundary simulation of flow through arterial junctions

    Indian Academy of Sciences (India)

    Dwaipayan Sarkar

    Simulations are further carried out for pulsated flows and effects of blockages near the junctions (due to stenosis or atherosclerosis). Instabilities in the flow structures near the junction and the resulting changes in the downstream pulsation frequency were observed. These changes account for the physiological heart defects ...

  1. Visualization and simulation of complex flows in biomedical engineering

    CERN Document Server

    Imai, Yohsuke; Ishikawa, Takuji; Oliveira, Mónica


    This book focuses on the most recent advances in the application of visualization and simulation methods to understand the flow behavior of complex fluids used in biomedical engineering and other related fields. It shows the physiological flow behavior in large arteries, microcirculation, respiratory systems and in biomedical microdevices.

  2. Simulations of flow induced ordering in viscoelastic fluids

    NARCIS (Netherlands)

    Santos de Oliveira, I.S.


    In this thesis we report on simulations of colloidal ordering phenomena in shearthinning viscoelastic fluids under shear flow. Depending on the characteristics of the fluid, the colloids are observed to align in the direction of the flow. These string-like structures remain stable as long as the

  3. Multiscale simulation of water flow past a C540 fullerene

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Praprotnik, Matej; Kotsalis, Evangelos M.


    We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice–Boltzmann (LB) description...... algorithms. We use this method to determine the slip length and hydrodynamic radius for water flow past a buckyball....

  4. Friction dependence of shallow granular flows from discrete particle simulations

    NARCIS (Netherlands)

    Thornton, Anthony Richard; Weinhart, Thomas; Luding, Stefan; Bokhove, Onno


    A shallow-layer model for granular flows is completed with a closure relation for the macroscopic bed friction or basal roughness obtained from micro-scale discrete particle simulations of steady flows. We systematically vary the bed friction by changing the contact friction coefficient between

  5. Direct Numerical Simulation of Multiphase flow over Realistic Superhydrophobic Surfaces (United States)

    Alame, Karim; Mahesh, Krishnan


    Direct numerical simulations are performed using the volume of fluid methodology, for turbulent channel flow of water over a realistic superhydrophobic surface, which traps air. The surface is obtained from scanned data of the real sprayed surface. Multiphase laminar Couette flow and turbulent channel cases are examined. Drag reduction for different interface heights are shown, and the effect of turbulence on multiphase flow over rough surfaces is discussed. This work is supported by the Office of Naval Research.

  6. Large Eddy Simulation for Dispersed Bubbly Flows: A Review

    Directory of Open Access Journals (Sweden)

    M. T. Dhotre


    Full Text Available Large eddy simulations (LES of dispersed gas-liquid flows for the prediction of flow patterns and its applications have been reviewed. The published literature in the last ten years has been analysed on a coherent basis, and the present status has been brought out for the LES Euler-Euler and Euler-Lagrange approaches. Finally, recommendations for the use of LES in dispersed gas liquid flows have been made.

  7. New Turbulent Multiphase Flow Facilities for Simulation Benchmarking (United States)

    Teoh, Chee Hau; Salibindla, Ashwanth; Masuk, Ashik Ullah Mohammad; Ni, Rui


    The Fluid Transport Lab at Penn State has devoted last few years on developing new experimental facilities to unveil the underlying physics of coupling between solid-gas and gas-liquid multiphase flow in a turbulent environment. In this poster, I will introduce one bubbly flow facility and one dusty flow facility for validating and verifying simulation results. Financial support for this project was provided by National Science Foundation under Grant Number: 1653389 and 1705246.

  8. Modeling organic matter and nitrogen removal from domestic wastewater in a pilot-scale vertical subsurface flow constructed wetland. (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Quiñones-Bolaños, Edgar; Castro-Faccetti, Claudia Fernanda


    Constructed wetlands have become an attractive alternative for wastewater treatment. However, there is not a globally accepted mathematical model to predict their performance. In this study, the VS2DTI software was used to predict the effluent biochemical oxygen demand (BOD) and total nitrogen (TN) in a pilot-scale vertical flow constructed wetland (VFCW) treating domestic wastewater. After a 5-week adaptation period, the pilot system was monitored for another 6 weeks. Experiments were conducted at hydraulic retention times (HRTs) in the range of 2-4 days with Typha latifolia as the vegetation. The raw wastewater concentrations ranged between 144-430 and 122-283 mg L(-1) for BOD5 and TN, respectively. A first-order kinetic model coupled with the advection/dispersion and Richards' equations was proposed to predict the removal rates of BOD5 and TN from domestic wastewater. Two main physical processes were modeled in this study, porous material water flow and solute transport through the different layers of the VFCW to simulate the constructed wetland (CW) conditions. The model was calibrated based on the BOD5 and TN degradation constants. The model indicated that most of BOD and TN (88 and 92%, respectively) were removed through biological activity followed by adsorption. It was also observed that the evapotranspiration was seen to have a smaller impact. An additional data series of effluent BOD and TN was used for model validation. The residual analysis of the calibrated model showed a relatively random pattern, indicating a decent fit. Thus, the VS2DTI was found to be a useful tool for CW simulation.

  9. Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics (United States)

    Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.


    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.

  10. Simulation, modeling and dynamical analysis of multibody flows (United States)

    Blackmore, Denis; Rosato, Anthony; Sen, Surajit; Wu, Hao


    Recent particulate flow research using a discrete element simulation-dynamical systems approach is described. The simulation code used is very efficient and the mathematical model is an integro-partial differential equation. Examples are presented to show the effectiveness of the approach.

  11. Behaviour of the biochemical demand for oxygen in wetlands with horizontal subsurface flow; Comportamiento de la demanda bioquimica de oxigeno en humedales con flujo subsuperficial horizontal

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Diaz, O.; Hernandez Marrero, J. [Centro de Investigaciones Hidraulicas. La Habana. Cuba (Cuba); Rodriguez Pastor, M.; Prats Rico, D. [Universidad de Alicante (Spain)


    The conventional wastewater treatments are expensive and required high-energy consumption. Those systems in most of the cases do not eliminate nutrients like nitrogen and phosphorous, principals agents for eutrophication in water bodies. As an alternative of conventional treatment in recent years has been develop techniques, based on the natural mechanism, those system required the same amount of energy that the conventional system, but this energy is take from the nature. The objective of the present work is to study the subsurface horizontal flow wetland and it is ability to reduce the organic loading rate expressed as BOD5 in Cuban conditions, using different emergent plants species. (Author) 29 refs.

  12. Direct numerical simulations of gas-liquid multiphase flows

    CERN Document Server

    Tryggvason, Grétar; Zaleski, Stéphane


    Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and

  13. Two critical issues in Langevin simulation of gas flows

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ, United Kingdom and State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences (China); Fan, Jing [State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)


    A stochastic algorithm based on the Langevin equation has been recently proposed to simulate rarefied gas flows. Compared with the direct simulation Monte Carlo (DSMC) method, the Langevin method is more efficient in simulating small Knudsen number flows. While it is well-known that the cell sizes and time steps should be smaller than the mean free path and the mean collision time, respectively, in DSMC simulations, the Langevin equation uses a drift term and a diffusion term to describe molecule movements, so no direct molecular collisions have to be modeled. This enables the Langevin simulation to proceed with a much larger time step than that in the DSMC method. Two critical issues in Langevin simulation are addressed in this paper. The first issue is how to reproduce the transport properties as that described by kinetic theory. Transport coefficients predicted by Langevin equation are obtained by using Green-Kubo formulae. The second issue is numerical scheme with boundary conditions. We present two schemes corresponding to small time step and large time step, respectively. For small time step, the scheme is similar to DSMC method as the update of positions and velocities are uncoupled; for large time step, we present an analytical solution of the hitting time, which is the crucial factor for accurate simulation. Velocity-Couette flow, thermal-Couette flow, Rayleigh-Bénard flow and wall-confined problem are simulated by using these two schemes. Our study shows that Langevin simulation is a promising tool to investigate small Knudsen number flows.

  14. SCORPIO: A Scalable Two-Phase Parallel I/O Library With Application To A Large Scale Subsurface Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Sreepathi, Sarat [ORNL; Sripathi, Vamsi [Intel Corporation; Mills, Richard T [ORNL; Hammond, Glenn [Pacific Northwest National Laboratory (PNNL); Mahinthakumar, Kumar [North Carolina State University


    Inefficient parallel I/O is known to be a major bottleneck among scientific applications employed on supercomputers as the number of processor cores grows into the thousands. Our prior experience indicated that parallel I/O libraries such as HDF5 that rely on MPI-IO do not scale well beyond 10K processor cores, especially on parallel file systems (like Lustre) with single point of resource contention. Our previous optimization efforts for a massively parallel multi-phase and multi-component subsurface simulator (PFLOTRAN) led to a two-phase I/O approach at the application level where a set of designated processes participate in the I/O process by splitting the I/O operation into a communication phase and a disk I/O phase. The designated I/O processes are created by splitting the MPI global communicator into multiple sub-communicators. The root process in each sub-communicator is responsible for performing the I/O operations for the entire group and then distributing the data to rest of the group. This approach resulted in over 25X speedup in HDF I/O read performance and 3X speedup in write performance for PFLOTRAN at over 100K processor cores on the ORNL Jaguar supercomputer. This research describes the design and development of a general purpose parallel I/O library, SCORPIO (SCalable block-ORiented Parallel I/O) that incorporates our optimized two-phase I/O approach. The library provides a simplified higher level abstraction to the user, sitting atop existing parallel I/O libraries (such as HDF5) and implements optimized I/O access patterns that can scale on larger number of processors. Performance results with standard benchmark problems and PFLOTRAN indicate that our library is able to maintain the same speedups as before with the added flexibility of being applicable to a wider range of I/O intensive applications.

  15. Geometric analysis and blood flow simulation of basilar artery. (United States)

    Lee, Sang Hyuk; Hur, Nahmkeon; Jeong, Seul-Ki


    The aim of this study was to find a region of low wall shear stress (WSS) in a basilar artery using 3-dimensional (3D) geometric analysis and blood flow simulation. A 61-year-old patient who underwent follow-up time-of-flight magnetic resonance angiography (TOF-MRA) of the brain was recruited as the subject of the present study. In the basilar artery, the angle of the directional vector was calculated for the region of low WSS. The subject's 3D arterial geometry and blood flow velocity from a transcranial Doppler examination were used for a blood flow simulation study. The regions of low WSS identified by both geometric analysis and blood flow simulation were compared, and these methods were repeated for the basilar arteries of various geometries from other patients. Two distinct arterial angulations along the basilar artery were identified: lateral and anterior angulations on the anteroposterior and lateral TOF-MR views, respectively. A low WSS region was observed in the distal portion along the inner curvatures of both angulations in the basilar artery. The directional vectors of the region of low WSS calculated by geometric analysis and blood flow simulation were very similar (correlation coefficient= 0.996, p flow simulation of the basilar artery identified lateral and anterior angulations which determined the low WSS region in the distal portion along the inner curvatures of the angulations.

  16. Numerical simulations of seepage flow in rough single rock fractures

    Directory of Open Access Journals (Sweden)

    Qingang Zhang


    Full Text Available To investigate the relationship between the structural characteristics and seepage flow behavior of rough single rock fractures, a set of single fracture physical models were produced using the Weierstrass–Mandelbrot functions to test the seepage flow performance. Six single fractures, with various surface roughnesses characterized by fractal dimensions, were built using COMSOL multiphysics software. The fluid flow behavior through the rough fractures and the influences of the rough surfaces on the fluid flow behavior was then monitored. The numerical simulation indicates that there is a linear relationship between the average flow velocity over the entire flow path and the fractal dimension of the rough surface. It is shown that there is good a agreement between the numerical results and the experimental data in terms of the properties of the fluid flowing through the rough single rock fractures.


    African Journals Online (AJOL)


    Jun 30, 2014 ... Aerospace, our results were in good agreement with experimental data. By simulation studies predeterminations became very easy to prepare, this gain is the result of the development of computational methods and hardware remarkable revolution. So mastery of computers has become indispensable for ...

  18. Unsteady Flow Simulation of High-speed Turbopumps (United States)

    Kiris, Cetin C.; Kwak, dochan; Chan, William; Housman, Jeffrey A.


    Computation of high-speed hydrodynamics requires high-fidelity simulation to resolve flow features involving transient flow, cavitation, tip vortex and multiple scales of unsteady fluctuations. One example of this type in aerospace is related to liquid-fueled rocket turbopump. Rocket turbopumps operate under severe conditions at very high rotational speeds typically at thousands of rpm. For example, the Shuttle orbiter low-pressure-fuel-turbopump creates transient flow features associated with reverse flows, tip clearance effects, secondary flows, vortex shedding, junction flows, and cavitation effects. Flow unsteadiness originating from the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the flow liners just upstream of the LPFTP. The reverse flow generated at the tip of the inducer blades travels upstream and interacts with the bellows cavity. Simulation procedure for this type high-speed hydrodynamic problems requires a method for quantifying multi-scale and multi-phase flow as well as an efficient high-end computing strategy. The current paper presents a high-fidelity computational procedure for unsteady hydrodynamic problems using a high-speed liquid-fueled rocket turbopump.

  19. Simulation and Verificaiton of Flow in Test Methods

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Szabo, Peter; Geiker, Mette Rica


    Simulations and experimental results of L-box and slump flow test of a self-compacting mortar and a self-compacting concrete are compared. The simulations are based on a single fluid approach and assume an ideal Bingham behavior. It is possible to simulate the experimental results of both tests...... for a given set of rheological parameters. However, it is important to include boundary conditions related to the lifting procedure in the two tests....

  20. Feasibility of patient specific aortic blood flow CFD simulation. (United States)

    Svensson, Johan; Gårdhagen, Roland; Heiberg, Einar; Ebbers, Tino; Loyd, Dan; Länne, Toste; Karlsson, Matts


    Patient specific modelling of the blood flow through the human aorta is performed using computational fluid dynamics (CFD) and magnetic resonance imaging (MRI). Velocity patterns are compared between computer simulations and measurements. The workflow includes several steps: MRI measurement to obtain both geometry and velocity, an automatic levelset segmentation followed by meshing of the geometrical model and CFD setup to perform the simulations follwed by the actual simulations. The computational results agree well with the measured data.

  1. Monte Carlo simulation of gas-flow using MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Matthes, W.K. [21027 Ispra, Via Francia 146 (Italy)]. E-mail:


    The simulation of the flow of rarefied gases by Monte Carlo has been long established and goes by the name DSMC (Direct Simulation by Monte Carlo). The theory, applications and references are well documented in Monographs on this subject, e.g., Bird [Bird, G.A., 1998. Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford], Cercignani [Cercignani, C., 2000. Rarified Gas Dynamics, Cambridge University Press, Cambridge]. However, as most applications are restricted to two-dimensional flows only, we want to demonstrate that the MCNP code (see [Briesmeier, J.F., 1986. MCNP-A General Monte Carlo Code for Neutron and Photon Transport, Version 3A, Los Alamos National Laboratory]), after a few modifications, provides a very flexible tool to investigate the flow (and reactions) of multicomponent gas-mixtures in complicated three-dimensional structures.

  2. Numerical simulations of viscoelastic flows with free surfaces

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri


    We present a new methodology to simulate viscoelastic flows with free-surfaces. These simulations are motivated by the modelling of polymers manufacturing techniques, such as extrusion and injection moulding. One of the consequences of viscoelasticity is that polymeric materials have a “memory......” of their past deformations. This generates some numerical difficulties which are addressed with the log-conformation transformation. The main novelty of this work lies on the use of the volume-of-fluid method to track the free surfaces of the viscoelastic flows. We present some preliminary results of test case...... simulations where the different features of the model are tested independently....

  3. Numerical simulation of transverse jet flow field under supersonic inflow

    Directory of Open Access Journals (Sweden)

    Qian Li


    Full Text Available Transverse jet flow field under supersonic inflow is simulated numerically for studying the characteristic of fuel transverse jet and fuel mixing in scramjet combustion chamber. Comparison is performed between simulated results and the results of references and experiments. Results indicate that the CFD code in this paper is applicable for simulation of transverse jut flow field under supersonic inflow, but in order to providing more effective numerical predictive method, CFD code should be modified through increasing mesh density and adding LES module.

  4. Continuum simulations of water flow in carbon nanotube membranes

    DEFF Research Database (Denmark)

    Popadić, A.; Walther, Jens Honore; Koumoutsakos, P-


    We propose the use of the Navier–Stokes equations subject to partial-slip boundary conditions to simulate water flows in Carbon NanoTube (CNT) membranes. The finite volume discretizations of the Navier–Stokes equations are combined with slip lengths extracted from molecular dynamics (MD) simulati......We propose the use of the Navier–Stokes equations subject to partial-slip boundary conditions to simulate water flows in Carbon NanoTube (CNT) membranes. The finite volume discretizations of the Navier–Stokes equations are combined with slip lengths extracted from molecular dynamics (MD......) simulations to predict the pressure losses at the CNT entrance as well as the enhancement of the flow rate in the CNT. The flow quantities calculated from the present hybrid approach are in excellent agreement with pure MD results while they are obtained at a fraction of the computational cost. The method...... enables simulations of system sizes and times well beyond the present capabilities of MD simulations. Our simulations provide an asymptotic flow rate enhancement and indicate that the pressure losses at the CNT ends can be reduced by reducing their curvature. More importantly, our results suggest...

  5. A particle-based method for granular flow simulation

    KAUST Repository

    Chang, Yuanzhang


    We present a new particle-based method for granular flow simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the momentum governing equation to handle the friction of granular materials. Viscosity force is also added to simulate the dynamic friction for the purpose of smoothing the velocity field and further maintaining the simulation stability. Benefiting from the Lagrangian nature of the SPH method, large flow deformation can be well handled easily and naturally. In addition, a signed distance field is also employed to enforce the solid boundary condition. The experimental results show that the proposed method is effective and efficient for handling the flow of granular materials, and different kinds of granular behaviors can be well simulated by adjusting just one parameter. © 2012 Science China Press and Springer-Verlag Berlin Heidelberg.

  6. Simulation of subsurface biotransformation

    NARCIS (Netherlands)

    Bosma, T.N.P.


    Hydrophobic organic contaminants like DDT, Polychlorobiphenyls (PCB's) and polyaromatic hydrocarbons (PAH's), have been detected all over the world. They tend to accumulate in the atmosphere and in the soil as a result of their physical and chemical properties. Breakdown mainly proceeds by

  7. Simulation of dust streaming in toroidal traps: Stationary flows

    Energy Technology Data Exchange (ETDEWEB)

    Reichstein, Torben; Piel, Alexander [IEAP, Christian-Albrechts-Universitaet, D-24098 Kiel (Germany)


    Molecular-dynamic simulations were performed to study dust motion in a toroidal trap under the influence of the ion drag force driven by a Hall motion of the ions in E x B direction, gravity, inter-particle forces, and friction with the neutral gas. This article is focused on the inhomogeneous stationary streaming motion. Depending on the strength of friction, the spontaneous formation of a stationary shock or a spatial bifurcation into a fast flow and a slow vortex flow is observed. In the quiescent streaming region, the particle flow features a shell structure which undergoes a structural phase transition along the flow direction.

  8. Towards quantum simulations of biological information flow. (United States)

    Dorner, Ross; Goold, John; Vedral, Vlatko


    Recent advances in the spectroscopy of biomolecules have highlighted the possibility of quantum coherence playing an active role in biological energy transport. The revelation that quantum coherence can survive in the hot and wet environment of biology has generated a lively debate across both the physics and biology communities. In particular, it remains unclear to what extent non-trivial quantum effects are used in biology and what advantage, if any, they afford. We propose an analogue quantum simulator, based on currently available techniques in ultra-cold atom physics, to study a model of energy and electron transport based on the Holstein Hamiltonian. By simulating the salient aspects of a biological system in a tunable laboratory set-up, we hope to gain insight into the validity of several theoretical models of biological quantum transport in a variety of relevant parameter regimes.

  9. Modeling and Simulation of Wet Gas Flow in Venturi Flow Meter

    Directory of Open Access Journals (Sweden)

    Hossein SERAJ


    Full Text Available Wet gas which is a gas contains liquid, is encountered in various industrial applications such as oil and gas, power generation and mining plants. Measuring wet gas flow rate is required in many of these applications. Venturi flow meters are frequently used for wet gas flow measurement. This paper describes modeling and computer simulation of wet gas flow in the Venturi flow meters. The model used in this paper is based on an annular flow pattern. In this flow pattern, the gas is travelling in the middle of the pipe and the liquid is travelling along the pipe wall. In addition, it is assumed that some liquid droplets are entrained in the gas core. Then Simulink module of Matlab software has been used to simulate this model. This simulation has been used to compare various methods for correcting over-reading of Bernoulli formula when the same is used to measure wet gas flow rate in Venturi flow meter. By comparing the results obtained from simulation of these correction methods, it was found that some of these correction methods such as De Leeuw method are performing better than the others.

  10. Local-Scale Atmospheric Reactive Flow Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Lee, R L


    A computer model was developed to simulate the spatial and chemical evolution of gaseous and aerosol chemicals released into the atmosphere. The evolution is followed over the range of a few kilometers, in environments including terrain variability, urban features including buildings, and variable winds. Submodels for both gas phase chemicals and the chemical composition of liquid and particulate aerosols are included, and preliminary tests of the model are described.

  11. Cartesian Grid Method for Compressible Flow Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Muhammed Asif


    Euler equations.For the 2D compressible Euler equations, we test the simplified ghost point treatment for an oblique shock wave generated by a wedge. Then, we verified our approach for slender bodies, namely for supersonic flow over a circular arc airfoil and for transonic flow over a circular arc bump in a channel. In a final problem, we applied the simplified ghost point treatment to blunt body flow and considered supersonic flows over a cylinder using the 2D compressible Euler and Navier-Stokes equations. The results are good or comparable to those found in the existing literature.(Author)

  12. Use of the subsurface thermal regime as a groundwater-flow tracer in the semi-arid western Nile Delta, Egypt (United States)

    Salem, Zenhom E.; Bayumy, Dina A.


    Temperature profiles from 25 boreholes were used to understand the spatial and vertical groundwater flow systems in the Western Nile Delta region of Egypt, as a case study of a semi-arid region. The study area is located between the Nile River and Wadi El Natrun. The recharge areas, which are located in the northeastern and the northwestern parts of the study area, have low subsurface temperatures. The discharge areas, which are located in the western (Wadi El Natrun) and southern (Moghra aquifer) parts of the study area, have higher subsurface temperatures. In the deeper zones, the effects of faults and the recharge area in the northeastern direction disappear at 80 m below sea level. For that depth, one main recharge and one main discharge area are recognized. The recharge area is located to the north in the Quaternary aquifer, and the discharge area is located to the south in the Miocene aquifer. Two-dimensional groundwater-flow and heat-transport models reveal that the sealing faults are the major factor disturbing the regional subsurface thermal regime in the study area. Besides the main recharge and discharge areas, the low permeability of the faults creates local discharge areas in its up-throw side and local recharge areas in its down-throw side. The estimated average linear groundwater velocity in the recharge area is 0.9 mm/day to the eastern direction and 14 mm/day to the northwest. The average linear groundwater discharge velocities range from 0.4 to 0.9 mm/day in the southern part.

  13. Numerical Simulation of Fluidic Actuators for Flow Control Applications (United States)

    Vasta, Veer N.; Koklu, Mehti; Wygnanski, Israel L.; Fares, Ehab


    Active flow control technology is finding increasing use in aerospace applications to control flow separation and improve aerodynamic performance. In this paper we examine the characteristics of a class of fluidic actuators that are being considered for active flow control applications for a variety of practical problems. Based on recent experimental work, such actuators have been found to be more efficient for controlling flow separation in terms of mass flow requirements compared to constant blowing and suction or even synthetic jet actuators. The fluidic actuators produce spanwise oscillating jets, and therefore are also known as sweeping jets. The frequency and spanwise sweeping extent depend on the geometric parameters and mass flow rate entering the actuators through the inlet section. The flow physics associated with these actuators is quite complex and not fully understood at this time. The unsteady flow generated by such actuators is simulated using the lattice Boltzmann based solver PowerFLOW R . Computed mean and standard deviation of velocity profiles generated by a family of fluidic actuators in quiescent air are compared with experimental data. Simulated results replicate the experimentally observed trends with parametric variation of geometry and inflow conditions.

  14. A flexible open-source toolkit for lava flow simulations (United States)

    Mossoux, Sophie; Feltz, Adelin; Poppe, Sam; Canters, Frank; Kervyn, Matthieu


    Lava flow hazard modeling is a useful tool for scientists and stakeholders confronted with imminent or long term hazard from basaltic volcanoes. It can improve their understanding of the spatial distribution of volcanic hazard, influence their land use decisions and improve the city evacuation during a volcanic crisis. Although a range of empirical, stochastic and physically-based lava flow models exists, these models are rarely available or require a large amount of physical constraints. We present a GIS toolkit which models lava flow propagation from one or multiple eruptive vents, defined interactively on a Digital Elevation Model (DEM). It combines existing probabilistic (VORIS) and deterministic (FLOWGO) models in order to improve the simulation of lava flow spatial spread and terminal length. Not only is this toolkit open-source, running in Python, which allows users to adapt the code to their needs, but it also allows users to combine the models included in different ways. The lava flow paths are determined based on the probabilistic steepest slope (VORIS model - Felpeto et al., 2001) which can be constrained in order to favour concentrated or dispersed flow fields. Moreover, the toolkit allows including a corrective factor in order for the lava to overcome small topographical obstacles or pits. The lava flow terminal length can be constrained using a fixed length value, a Gaussian probability density function or can be calculated based on the thermo-rheological properties of the open-channel lava flow (FLOWGO model - Harris and Rowland, 2001). These slope-constrained properties allow estimating the velocity of the flow and its heat losses. The lava flow stops when its velocity is zero or the lava temperature reaches the solidus. Recent lava flows of Karthala volcano (Comoros islands) are here used to demonstrate the quality of lava flow simulations with the toolkit, using a quantitative assessment of the match of the simulation with the real lava flows. The

  15. Simulations of Turbulent Flows with Strong Shocks and Density Variations

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xiaolin


    In this report, we present the research efforts made by our group at UCLA in the SciDAC project Simulations of turbulent flows with strong shocks and density variations. We use shock-fitting methodologies as an alternative to shock-capturing schemes for the problems where a well defined shock is present. In past five years, we have focused on development of high-order shock-fitting Navier-Stokes solvers for perfect gas flow and thermochemical non-equilibrium flow and simulation of shock-turbulence interaction physics for very strong shocks. Such simulation has not been possible before because the limitation of conventional shock capturing methods. The limitation of shock Mach number is removed by using our high-order shock-fitting scheme. With the help of DOE and TeraGrid/XSEDE super computing resources, we have obtained new results which show new trends of turbulence statistics behind the shock which were not known before. Moreover, we are also developing tools to consider multi-species non-equilibrium flows. The main results are in three areas: (1) development of high-order shock-fitting scheme for perfect gas flow, (2) Direct Numerical Simulation (DNS) of interaction of realistic turbulence with moderate to very strong shocks using super computing resources, and (3) development and implementation of models for computation of mutli-species non-quilibrium flows with shock-fitting codes.

  16. Simulating the interaction of seagrasses with their ambient flow (United States)

    Backhaus, Jan O.; Verduin, Jennifer J.


    The interaction of seagrasses with the dynamics of an oscillatory wave induced flow is assessed with a new Lagrangian plant model. The plant model simulates moving plants in canopies and their dissipative effect on the ambient flow. Concomitantly the plant model is interactively coupled to a 3D hydrodynamic numerical model allowing for a bilateral feedback between moving plants and flow. Model results demonstrate that this interaction causes a modification of current profiles within and above a canopy as compared to an undisturbed flow. While the overall effect of submerged plant canopies is a dampening of dynamics, the flow may locally be intensified. The model predicted an intensification of the flow near the top of a canopy in concurrence with field and laboratory observations. Dissipation in the coupled model, due to the applied non-linear friction law, grows exponentially with increasing flow. As a result the permeability of a canopy to the ambient flow decreases with increasing dissipation. Consequently, at high flow velocities, while becoming increasingly impermeable, a canopy acts like an obstacle that deflects the flow above it, which causes the observed intensification. Results for canopies consisting of seagrasses with different leaf structure and plant geometry show remarkable differences in predicted plant motions, current profiles, drag forces, and velocity shear. Predictions for moving plants are compared with those for rigid, less flexible, structures and undisturbed flow.

  17. The effect of pre-aeration on the purification processes in the long-term performance of a horizontal subsurface flow constructed wetland. (United States)

    Noorvee, Alar; Põldvere, Elar; Mander, Ulo


    Different conditions (water level, oxygen supply) prevailing in both beds of the Kodijärve double-bed horizontal subsurface flow (HSSF) constructed wetland (CW) (Southern Estonia; constructed in 1996, total area 312.5 m(2), 40 pe) provide the opportunity to compare how different operational methods have altered the efficiency of the purification processes inside the HSSF CW. In summer 2002 a vertical subsurface flow (VSSF) CW (total area 37.4 m(2)) was added as the first stage of the system. Data from 18 sampling wells installed in Kodijärve HSSF CW from two periods is compared: 1st period -- January 2000-April 2002 (before the VSSF CW was built); 2nd period --October 2002-December 2004 (after the construction of the VSSF filter). The VSSF CW has remarkably improved aerobic conditions in both beds of the HSSF. Apart from total phosphorus concentrations in the right bed and nitrate nitrogen concentrations in the outflow of both beds, all of the water quality indicators (dissolved oxygen, total suspended solids, biological oxygen demand, ammonia nitrogen, nitrite nitrogen, total nitrogen and total iron) improved after the construction of the VSSF filter. Typically, purification processes in the HSSF CW were dependent on oxygen supply, which was partly influenced by the water level inside the filter beds.

  18. A comparison of results obtained with two subsurface non-isothermal multiphase reactive transport simulators, FADES-CORE and TOUGHREACT

    Energy Technology Data Exchange (ETDEWEB)

    Juncosa Rivera, Ricardo; Xu, Tianfu; Pruess, Karsten


    FADES-CORE and TOUGHREACT are codes used to model the non-isothermal multiphase flow with multicomponent reactive transport in porous media. Different flow and reactive transport problems were used to compare the FADES-CORE and TOUGHREACT codes. These problems take into account the different cases of multiphase flow with and without heat transport, conservative transport, and reactive transport. Consistent results were obtained from both codes, which use different numerical methods to solve the differential equations resulting from the various physicochemical processes. Here we present the results obtained from both codes for various cases. Some results are slightly different with minor discrepancies, which have been remedied, so that both codes would be able to reproduce the same processes using the same parameters. One of the discrepancies found is related to the different calculation for thermal conductivity in heat transport, which affects the calculation of the temperatures, as well as the pH of the reaction of calcite dissolution problem modeled. Therefore it is possible to affirm that the pH is highly sensitive to temperature. Generally speaking, the comparison was concluded to be highly satisfactory, leading to the complete verification of the FADES-CORE code. However, we must keep in mind that, as there are no analytical solutions available with which to verify the codes, the TOUGHREACT code has been thoroughly corroborated, given that the only possible way to prove that the code simulation is correct, is by comparing the results obtained with both codes for the identical problems, or to validate the simulation results with actual measured data.

  19. Potential and limits of landfill leachate treatment in a multi-stage subsurface flow constructed wetland - Evaluation of organics and nitrogen removal. (United States)

    Wojciechowska, Ewa


    Constructed wetlands have potential of treating wastewater of poor biodegradability. The performance of a multistage sub-surface flow wetland treating municipal landfill leachate was assessed during three years of operation. During the study three research periods with different operation conditions were established. The hydraulic loads, operation mode of vertical flow beds and type of treated wastewater (raw leachate - leachate mixed with municipal wastewater) were changed. Removal of organic matter and nitrogen species was evaluated in each period. The average COD removal efficiency varied from 47.8% to 86.6%. The average total nitrogen removal efficiencies were 98.5%, 68.9% and 79.6% in subsequent research periods. The main problem was too high concentration of recalcitrant organic matter. The labile organic matter was completely removed however the effluent COD remained on relatively high level. Depletion of labile organic matter also limited denitrification resulting in incomplete total nitrogen removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Simulation of Pulsatile Flow in Cerebral Aneurysms: From Medical Images to Flow and Forces

    NARCIS (Netherlands)

    Mikhal, Julia Olegivna; Slump, Cornelis H.; Geurts, Bernardus J.; Murai, Y.

    In this chapter we present a numerical model for the simulation of blood flow inside cerebral aneurysms. We illustrate the process of predicting flow and forces that arise in vessels and aneurysms starting from patient-specific data obtained using medical imaging techniques. Once the

  1. Modeling GPR data to interpret porosity and DNAPL saturations for calibration of a 3-D multiphase flow simulation (United States)

    Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.


    Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.

  2. Compressible Turbulent Flow Numerical Simulations of Tip Vortex Cavitation (United States)

    Khatami, F.; van der Weide, E.; Hoeijmakers, H.


    For an elliptic Arndt's hydrofoil numerical simulations of vortex cavitation are presented. An equilibrium cavitation model is employed. This single-fluid model assumes local thermodynamic and mechanical equilibrium in the mixture region of the flow, is employed. Furthermore, for characterizing the thermodynamic state of the system, precomputed multiphase thermodynamic tables containing data for the appropriate equations of state for each of the phases are used and a fast, accurate, and efficient look-up approach is employed for interpolating the data. The numerical simulations are carried out using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations for compressible flow. The URANS equations of motion are discretized using an finite volume method for unstructured grids. The numerical simulations clearly show the formation of the tip vortex cavitation in the flow about the elliptic hydrofoil.

  3. Large Eddy Simulation of Turbulent Flows in Wind Energy

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak

    Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number......This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite...... volume method. The study is followed by a detailed investigation of the Sub-Grid Scale (SGS) modeling. New SGS models are implemented into the computing code, and the effect of SGS models are examined for different applications. Fully developed boundary layer flows are investigated at low and high...

  4. Blood flow in the cerebral venous system: modeling and simulation. (United States)

    Miraucourt, Olivia; Salmon, Stéphanie; Szopos, Marcela; Thiriet, Marc


    The development of a software platform incorporating all aspects, from medical imaging data, through three-dimensional reconstruction and suitable meshing, up to simulation of blood flow in patient-specific geometries, is a crucial challenge in biomedical engineering. In the present study, a fully three-dimensional blood flow simulation is carried out through a complete rigid macrovascular circuit, namely the intracranial venous network, instead of a reduced order simulation and partial vascular network. The biomechanical modeling step is carefully analyzed and leads to the description of the flow governed by the dimensionless Navier-Stokes equations for an incompressible viscous fluid. The equations are then numerically solved with a free finite element software using five meshes of a realistic geometry obtained from medical images to prove the feasibility of the pipeline. Some features of the intracranial venous circuit in the supine position such as asymmetric behavior in merging regions are discussed.

  5. Direct Numerical Simulations of Reacting Fronts in Incompressible Flows (United States)

    Vladimirova, N.; Cattaneo, F.; Malagoli, A.; Oberman, A.; Ruchayskiy, 0.; Rosner, R.


    We perform direct numerical simulations of an advected scalar field which diffuses and reacts according to a nonlinear reaction law. The goal of the simulations is to study flame stability with respect to initial conditions, and to determine how the bulk burning rate of the reaction front is affected by an imposed flow. We focus for simplicity on the cases of an imposed periodic shear or cellular flow. The interaction between the reaction front and the applied flow is determined by the following parameters: (a) the ratio between the laminar front thickness and the shear length scale, (b) the ratio between the laminar flame speed and the characteristic flow velocity, and (c) the ratio between heat conductivity and material diffusion (Lewis Number). We compare the numerical results with recent work of P. Constantin and collaborators, in particularly, their prediction for flame stability and analytical upper and lower bounds for the bulk burning rate.

  6. Numerical simulations of heat transfer in plane channel flow

    CERN Document Server

    Gharbi, Najla El; Benzaoui, Ahmed


    Reynolds-averaged Navier-Stokes (RANS) turbulence models (such as k-{\\epsilon} models) are still widely used for engineering applications because of their relatively simplicity and robustness. In fully developed plane channel flow (i.e. the flow between two infinitely large plates), even if available models and near-wall treatments provide adequate mean flow velocities, they fail to predict suitable turbulent kinetic energy "TKE" profiles near walls. TKE is involved in determination of eddy viscosity/diffusivity and could therefore provide inaccurate concentrations and temperatures. In order to improve TKE a User Define Function "UDF" based on an analytical profile for TKE was developed and implemented in Fluent. Mean streamwise velocity and turbulent kinetic energy "TKE" profiles were compared to DNS data for friction Reynolds number $Re_{\\tau}$ = 150. Simulation results for TKE show accurate profiles. Simulation results for horizontal heated channel flows obtained with Fluent are presented. Numerical result...

  7. Numerical simulation of flow fields and particle trajectories

    DEFF Research Database (Denmark)

    Mayer, Stefan


    in the simulated unsteady ciliary driven flow. A fraction of particles appear to follow trajectories, that resemble experimentally observed particle capture events in the downstream feeding system of the polycheate Sabella penicillus, indicating that particles can be captured by ciliary systems without mechanical...... contact between particle and cilia. A local capture efficiency is defined and its value computed for various values of beat frequencies and other parameters. The results indicate that the simulated particle capture process is most effective when the flow field oscillates within timescales comparable......A model describing the ciliary driven flow and motion of suspended particles in downstream suspension feeders is developed. The quasi-steady Stokes equations for creeping flow are solved numerically in an unbounded fluid domain around cylindrical bodies using a boundary integral formulation...

  8. Virtual and Experimental Visualization of Flows in Packed Beds of Spheres Simulating Porous Media Flows (United States)

    Hendricks, R. C.; Athavale, M. M.; Lattime, S. B.; Braun, M. J.


    A videotape presentation of flow in a packed bed of spheres is provided. The flow experiment consisted of three principal elements: (1) an oil tunnel 76.2 mm by 76.2 mm in cross section, (2) a packed bed of spheres in regular and irregular arrays, and (3) a flow characterization methodology, either (a) full flow field tracking (FFFT) or (b) computational fluid dynamic (CFD) simulation. The refraction indices of the oil and the test array of spheres were closely matched, and the flow was seeded with aluminum oxide particles. Planar laser light provided a two-dimensional projection of the flow field, and a traverse simulated a three-dimensional image of the entire flow field. Light focusing and reflection rendered the spheres black, permitting visualization of the planar circular interfaces in both the axial and transverse directions. Flows were observed near the wall-sphere interface and within the set of spheres. The CFD model required that a representative section of a packed bed be formed and gridded, enclosing and cutting six spheres so that symmetry conditions could be imposed at all cross-boundaries. Simulations had to be made with the flow direction at right angles to that used in the experiments, however, to take advantage of flow symmetry. Careful attention to detail was required for proper gridding. The flow field was three-dimensional and complex to describe, yet the most prominent finding was flow threads, as computed in the representative 'cube' of spheres with face symmetry and conclusively demonstrated experimentally herein. Random packing and bed voids tended to disrupt the laminar flow, creating vortices.

  9. Effect of HRT on nitrogen removal in a coupled HRP and unplanted subsurface flow gravel bed constructed wetland (United States)

    Mayo, A. W.; Mutamba, J.

    This paper discusses the effect of hydraulic retention time (HRT) on nitrogen removal in a coupled high rate pond (HRP) and a gravel bed subsurface constructed wetland (SSCW) wastewater treatment plant. A pilot plant consisting of a high rate pond (HRT) coupled to an unplanted gravel bed subsurface constructed wetland (SSCW) was used to investigate nitrogen removal from domestic wastewater at the University of Dar es Salaam. The influent, which is predominantly of domestic origin, was drawn from the facultative pond unit of the university’s waste stabilisation pond system. The pilot plant’s HRP unit, which was 0.6 m deep, was designed to nitrify the influent while SSCW unit, which was filled to 10 cm above water level with 19-mm diameter aggregates, was predominantly anoxic and promoted denitrification. The study was conducted at two different operational settings. In Phase 1, both the HRP and the SSCW units had a retention time of 5 days. During Phase 2, the hydraulic retention time in HRP was increased to 8 days while the retention time of the SSCW unit was maintained at 5 days. Samples were collected daily for laboratory analysis of influent and effluent wastewater quality. All experiments were conducted in accordance with Standard Methods. The results showed that improved nitrogen removal occurred with increase in hydraulic time of the HRP unit. In Phase 1 an average nitrogen removal of 33% was achieved while removal efficiency improved to 43% in Phase 2. It was also revealed that the HRP can effectively be used to promote nitrification and the unplanted gravel bed subsurface constructed wetland can be used as a denitrifying unit.

  10. Multiscale Modeling and Simulation of Turbulent Geophysical Flows


    San, Omer


    The accurate and efficient numerical simulation of geophysical flows is of great interest in numerical weather prediction and climate modeling as well as in numerous critical areas and industries, such as agriculture, construction, tourism, transportation, weather-related disaster management, and sustainable energy technologies. Oceanic and atmospheric flows display an enormous range of temporal and spatial scales, from seconds to decades and from centimeters to thousands of kilometers, respe...

  11. Blood Pump Development Using Rocket Engine Flow Simulation Technology (United States)

    Kiris, Cetin C.; Kwak, Dochan


    This viewgraph presentation provides information on the transfer of rocket engine flow simulation technology to work involving the development of blood pumps. Details are offered regarding the design and requirements of mechanical heart assist devices, or VADs (ventricular assist device). There are various computational fluid dynamics issues involved in the visualization of flow in such devices, and these are highlighted and compared to those of rocket turbopumps.

  12. Simulation of collagen solution flow in rectangular capillary (United States)

    Kysela, Bohus; Skocilas, Jan; Zitny, Rudolf; Stancl, Jaromir; Houska, Milan; Landfeld, Ales

    The viscoelastic properties of foods and polymers can be evaluated from flow of the material in capillary with specified dimension and shape. The extrusion rheometer equipped by capillary with rectangular cross-section was used for determination of the rheological behaviour of water collagen solution. The measurements of the axial profiles in longitudinal direction of the total stresses at capillary wall were performed for various shear rates. The linear viscoelastic model of Oldroyd B type: White-Metzner model was used for simulation of fluid flow in OpenFOAM software package. The simulations describe the effect of relaxation time on wall total stress in convergent-divergent capillary.

  13. Numerical Simulation of Multiphase Flow in Solid Rocket Motors (United States)

    Attili, A.; Favini, B.; Di Giacinto, M.; Serraglia, F.


    In the paper a general mathematical description of the flow in the internal chamber of solid rocket motors is presented. The formulation adopted take into account the multi-species and multiphase, reactive, multidimensional characteristics of the flow. The grain combustion is described by a pressure dependent law; aluminum droplet are modelled by a Lagrangian approach, coupled with the Eulerian formulation adopted for the gas phase. The mathematical model has been implemented in a simulation code and several simulations have been performed; in particular in the paper the re- sults for two geometries are described: a simple cylindrical port-area rocket and the Zefiro 9 SRM.

  14. Simulation of Inviscid Compressible Multi-Phase Flow with Condensation (United States)

    Kelleners, Philip


    Condensation of vapours in rapid expansions of compressible gases is investigated. In the case of high temperature gradients the condensation will start at conditions well away from thermodynamic equilibrium of the fluid. In those cases homogeneous condensation is dominant over heterogeneous condensation. The present work is concerned with development of a simulation tool for computation of high speed compressible flows with homogeneous condensation. The resulting ow solver should preferably be accurate and robust to be used for simulation of industrial flows in general geometries.

  15. Real-time High-fidelity Surface Flow Simulation. (United States)

    Ren, Bo; Yuan, Tailing; Li, Chenfeng; Xu, Kun; Hu, Shi-Min


    Surface flow phenomena, such as rain water flowing down a tree trunk and progressive water front in a shower room, are common in real life. However, compared with the 3D spatial fluid flow, these surface flow problems have been much less studied in the graphics community. To tackle this research gap, we present an efficient, robust and high-fidelity simulation approach based on the shallow-water equations. Specifically, the standard shallow-water flow model is extended to general triangle meshes with a feature-based bottom friction model, and a series of coherent mathematical formulations are derived to represent the full range of physical effects that are important for real-world surface flow phenomena. In addition, by achieving compatibility with existing 3D fluid simulators and by supporting physically realistic interactions with multiple fluids and solid surfaces, the new model is flexible and readily extensible for coupled phenomena. A wide range of simulation examples are presented to demonstrate the performance of the new approach.

  16. Speeding up the flash calculations in two-phase compositional flow simulations - The application of sparse grids

    KAUST Repository

    Wu, Yuanqing


    Flash calculations have become a performance bottleneck in the simulation of compositional flow in subsurface reservoirs. We apply a sparse grid surrogate model to substitute the flash calculation and thus try to remove the bottleneck from the reservoir simulation. So instead of doing a flash calculation in each time step of the simulation, we just generate a sparse grid approximation of all possible results of the flash calculation before the reservoir simulation. Then we evaluate the constructed surrogate model to approximate the values of the flash calculation results from this surrogate during the simulations. The execution of the true flash calculation has been shifted from the online phase during the simulation to the offline phase before the simulation. Sparse grids are known to require only few unknowns in order to obtain good approximation qualities. In conjunction with local adaptivity, sparse grids ensure that the accuracy of the surrogate is acceptable while keeping the memory usage small by only storing a minimal amount of values for the surrogate. The accuracy of the sparse grid surrogate during the reservoir simulation is compared to the accuracy of using a surrogate based on regular Cartesian grids and the original flash calculation. The surrogate model improves the speed of the flash calculations and the simulation of the whole reservoir. In an experiment, it is shown that the speed of the online flash calculations is increased by about 2000 times and as a result the speed of the reservoir simulations has been enhanced by 21 times in the best conditions.

  17. Toward Automatic Verification of Goal-Oriented Flow Simulations (United States)

    Nemec, Marian; Aftosmis, Michael J.


    We demonstrate the power of adaptive mesh refinement with adjoint-based error estimates in verification of simulations governed by the steady Euler equations. The flow equations are discretized using a finite volume scheme on a Cartesian mesh with cut cells at the wall boundaries. The discretization error in selected simulation outputs is estimated using the method of adjoint-weighted residuals. Practical aspects of the implementation are emphasized, particularly in the formulation of the refinement criterion and the mesh adaptation strategy. Following a thorough code verification example, we demonstrate simulation verification of two- and three-dimensional problems. These involve an airfoil performance database, a pressure signature of a body in supersonic flow and a launch abort with strong jet interactions. The results show reliable estimates and automatic control of discretization error in all simulations at an affordable computational cost. Moreover, the approach remains effective even when theoretical assumptions, e.g., steady-state and solution smoothness, are relaxed.

  18. Progress in Unsteady Turbopump Flow Simulations Using Overset Grid Systems (United States)

    Kiris, Cetin C.; Chan, William; Kwak, Dochan


    This viewgraph presentation provides information on unsteady flow simulations for the Second Generation RLV (Reusable Launch Vehicle) baseline turbopump. Three impeller rotations were simulated by using a 34.3 million grid points model. MPI/OpenMP hybrid parallelism and MLP shared memory parallelism has been implemented and benchmarked in INS3D, an incompressible Navier-Stokes solver. For RLV turbopump simulations a speed up of more than 30 times has been obtained. Moving boundary capability is obtained by using the DCF module. Scripting capability from CAD geometry to solution is developed. Unsteady flow simulations for advanced consortium impeller/diffuser by using a 39 million grid points model are currently underway. 1.2 impeller rotations are completed. The fluid/structure coupling is initiated.

  19. Numerical Simulation of Natural Gas Flow in Anisotropic Shale Reservoirs

    KAUST Repository

    Negara, Ardiansyah


    Shale gas resources have received great attention in the last decade due to the decline of the conventional gas resources. Unlike conventional gas reservoirs, the gas flow in shale formations involves complex processes with many mechanisms such as Knudsen diffusion, slip flow (Klinkenberg effect), gas adsorption and desorption, strong rock-fluid interaction, etc. Shale formations are characterized by the tiny porosity and extremely low-permeability such that the Darcy equation may no longer be valid. Therefore, the Darcy equation needs to be revised through the permeability factor by introducing the apparent permeability. With respect to the rock formations, several studies have shown the existence of anisotropy in shale reservoirs, which is an essential feature that has been established as a consequence of the different geological processes over long period of time. Anisotropy of hydraulic properties of subsurface rock formations plays a significant role in dictating the direction of fluid flow. The direction of fluid flow is not only dependent on the direction of pressure gradient, but it also depends on the principal directions of anisotropy. Therefore, it is very important to take into consideration anisotropy when modeling gas flow in shale reservoirs. In this work, the gas flow mechanisms as mentioned earlier together with anisotropy are incorporated into the dual-porosity dual-permeability model through the full-tensor apparent permeability. We employ the multipoint flux approximation (MPFA) method to handle the full-tensor apparent permeability. We combine MPFA method with the experimenting pressure field approach, i.e., a newly developed technique that enables us to solve the global problem by breaking it into a multitude of local problems. This approach generates a set of predefined pressure fields in the solution domain in such a way that the undetermined coefficients are calculated from these pressure fields. In other words, the matrix of coefficients

  20. Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation


    Panjit MUSIK; Krisanadej JAROENSUTASINEE


    This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular) Automata (LGA), which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM), known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A spec...

  1. 3D CFD simulation of Multi-phase flow separators (United States)

    Zhu, Zhiying


    During the exploitation of natural gas, some water and sands are contained. It will be better to separate water and sands from natural gas to insure favourable transportation and storage. In this study, we use CFD to analyse the effect of multi-phase flow separator, whose detailed geometrical parameters are designed in advanced. VOF model and DPM are used here. From the results of CFD, we can draw a conclusion that separated effect of multi-phase flow achieves better results. No solid and water is carried out from gas outlet. CFD simulation provides an economical and efficient approach to shed more light on details of the flow behaviour.

  2. Transonic Flow of Wet Steam — Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Jan Halama


    Full Text Available The paper presents a numerical simulation of the transonic flow of steam with a non-equilibrium phase change. The flow of steam is approximated by a mixture model complemented by transport equations for moments. Proper formulation of the problem consists of domain definition, a complete set of equations, and appropriate choice of initial and boundary conditions. This problem is then solved numerically by a numerical code, that has been developed in-house. The code is based on a fractional step method and a finite volume formulation. Important issues related to numerical solution are discussed. Results for flow in a turbine are presented.

  3. Simulation of blood flow through an artificial heart (United States)

    Kiris, Cetin; Chang, I-Dee; Rogers, Stuart E.; Kwak, Dochan


    A numerical simulation of the incompressible viscous flow through a prosthetic tilting disk heart valve is presented in order to demonstrate the current capability to model unsteady flows with moving boundaries. Both steady state and unsteady flow calculations are done by solving the incompressible Navier-Stokes equations in 3-D generalized curvilinear coordinates. In order to handle the moving boundary problems, the chimera grid embedding scheme which decomposes a complex computational domain into several simple subdomains is used. An algebraic turbulence model for internal flows is incorporated to reach the physiological values of Reynolds number. Good agreement is obtained between the numerical results and experimental measurements. It is found that the tilting disk valve causes large regions of separated flow, and regions of high shear.

  4. Wind Flow Simulation Around NASA KSC Vehicle Assembly Building (United States)

    Vu, B. T.; Verdier, M. J.


    A model of the wind flow conditions around Kennedy Space Center (KSC) Vehicle Assembly Building (VA B) is presented. An incompressible Navier-Stokes flow solver was used to compute the flow field around fixed Launch Complex 39 (LC-39) buildings and structures. The 3-D flow field. including velocity magnitude and velocity vectors, was established to simulate the localized wind speeds and directions at specified locations in and around LC-39 buildings and structures. The results of this study not only help explain the physical phenomena of the flow patterns around LC-39 buildings but also are useful to the Shuttle personnel. Current Operations and Maintenance Requirements and Specifications (OMRS) for vehicle transfer operations are based on empirically derived historical data, and no detailed mathematical analysis of wind conditions around LC-39 structures has ever been accomplished.

  5. Numerical Simulations of Canted Nozzle and Scarfed Nozzle Flow Fields (United States)

    Javed, Afroz; Chakraborty, Debasis


    Computational fluid dynamics (CFD) techniques are used for the analysis of issues concerning non-conventional (canted and scarfed) nozzle flow fields. Numerical simulations are carried out for the quality of flow in terms of axisymmetric nature at the inlet of canted nozzles of a rocket motor. Two different nozzle geometries are examined. The analysis of these simulation results shows that the flow field at the entry of the nozzles is non axisymmetric at the start of the motor. With time this asymmetry diminishes, also the flow becomes symmetric before the nozzle throat, indicating no misalignment of thrust vector with the nozzle axis. The qualitative flow fields at the inlet of the nozzles are used in selecting the geometry with lesser flow asymmetry. Further CFD methodology is used to analyse flow field of a scarfed nozzle for the evaluation of thrust developed and its direction. This work demonstrates the capability of the CFD based methods for the nozzle analysis problems which were earlier solved only approximately by making simplifying assumptions and semi empirical methods.

  6. DNSLab: A gateway to turbulent flow simulation in Matlab (United States)

    Vuorinen, V.; Keskinen, K.


    Computational fluid dynamics (CFD) research is increasingly much focused towards computationally intensive, eddy resolving simulation techniques of turbulent flows such as large-eddy simulation (LES) and direct numerical simulation (DNS). Here, we present a compact educational software package called DNSLab, tailored for learning partial differential equations of turbulence from the perspective of DNS in Matlab environment. Based on educational experiences and course feedback from tens of engineering post-graduate students and industrial engineers, DNSLab can offer a major gateway to turbulence simulation with minimal prerequisites. Matlab implementation of two common fractional step projection methods is considered: the 2d Fourier pseudo-spectral method, and the 3d finite difference method with 2nd order spatial accuracy. Both methods are based on vectorization in Matlab and the slow for-loops are thus avoided. DNSLab is tested on two basic problems which we have noted to be of high educational value: 2d periodic array of decaying vortices, and 3d turbulent channel flow at Reτ = 180. To the best of our knowledge, the present study is possibly the first to investigate efficiency of a 3d turbulent, wall bounded flow in Matlab. The accuracy and efficiency of DNSLab is compared with a customized OpenFOAM solver called rk4projectionFoam. Based on our experiences and course feedback, the main contribution of DNSLab consists of the following features. (i) The very compact Matlab implementation of present Navier-Stokes solvers provides a gateway to efficient learning of both, physics of turbulent flows, and simulation of turbulence. (ii) Only relatively minor prerequisites on fluid dynamics and numerical methods are required for using DNSLab. (iii) In 2d, interactive results for turbulent flow cases can be obtained. Even for a 3d channel flow, the solver is fast enough for nearly interactive educational use. (iv) DNSLab is made openly available and thus contributing to

  7. Performance and behaviour of planted and unplanted units of a horizontal subsurface flow constructed wetland system treating municipal effluent from a UASB reactor. (United States)

    da Costa, Jocilene Ferreira; de Paoli, André Cordeiro; Seidl, Martin; von Sperling, Marcos


    A system composed of two horizontal subsurface flow constructed wetlands operating in parallel was evaluated for the post-treatment of UASB (upflow anaerobic sludge blanket) reactor effluent, for a population equivalent of 50 inhabitants per unit. One unit was planted with cattail (Typha latifolia) and the other was unplanted. The study was undertaken over a period of 4 years, comprising monitoring of influent and effluent constituents together with a full characterization of the behaviour of the units (tracer studies, mathematical modelling of chemical oxygen demand (COD) decay, characterization of solids in the filter medium). The mean value of the surface hydraulic load was 0.11 m(3)m(-2)d(-1), and the theoretical hydraulic retention time was 1.1 d in each unit. Using tracer tests with (82)Br, dispersion number (d) values of 0.084 and 0.079 for the planted and unplanted units were obtained, indicating low to moderate dispersion. The final effluent had excellent quality in terms of organic matter and suspended solids, but the system showed low capacity for nitrogen removal. Four-year mean effluent concentration values from the planted and unplanted units were, respectively: biochemical oxygen demand (BOD(5)): 25 and 23 mg L(-1); COD: 50 and 55 mg L(-1); total suspended solids (TSS): 9 and 9 mg L(-1); N-ammonia: 27 and 28 mg L(-1). The COD decay coefficient K for the traditional plug-flow model was 0.81 and 0.84 d(-1) for the planted and unplanted units. Around 80% of the total solids present in the filter medium were inorganic, and most of them were present in the interstices rather than attached to the support medium. As an overall conclusion, horizontal subsurface flow wetlands can be a very suitable post-treatment method for municipal effluents from anaerobic reactors.

  8. BLT-EC (Breach, Leach and Transport-Equilibrium Chemistry) data input guide. A computer model for simulating release and coupled geochemical transport of contaminants from a subsurface disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    MacKinnon, R.J. [Brookhaven National Lab., Upton, NY (United States)]|[Ecodynamic Research Associates, Inc., Albuquerque, NM (United States); Sullivan, T.M.; Kinsey, R.R. [Brookhaven National Lab., Upton, NY (United States)


    The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC.

  9. Molecular dynamics simulations of oscillatory flows in microfluidic channels

    DEFF Research Database (Denmark)

    Hansen, J.S.; Ottesen, Johnny T.


    In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, high...... density and low temperature. Further simulations for high temperature and low density show that the non-slip boundary condition traditionally used in the macroscopic equation is greatly compromised when the fluid–wall interactions are the same as the fluid–fluid interactions. Simulations of a system...

  10. Interpretation SP anomaly caused by subsurface fluid flow; Chika ryudokei ni yoru shizen den`i anomaly no kaishaku ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yasukawa, K. [Geological Survey of Japan, Tsukuba (Japan); Mogi, T.; Kawahira, M. [Kyushu University, Fukuoka (Japan). Faculty of Engineering


    A PTSP simulator, developed by combining a fluid flow simulator and a simulator for computing the spontaneous potential (SP) out of flow velocity distribution, was used to investigate the impact of the distribution of terrain, permeability, and resistivity upon the ground surface SP. SP computation using simple models such as highlands or cliffs indicated that the terrain-caused SP anomaly was negatively dependent upon elevation. It was also indicated, however, that, in some types of resistivity distribution, the SP profile changes, the peak goes out of place, and even the apparent polarity may reverse in extreme cases. In the study of the SP profile for the Takeyu hot spa, Oita Prefecture, PTSP-aided modeling was carried out. It was then found that fluid flows caused by the terrain were not enough to explain the peak at the middle of the mountain, which suggested the existence of a fluid flow caused by temperature distribution. 11 refs., 5 figs.

  11. Unstructured spectral element methods of simulation of turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.D. [California Inst. of Technology, Pasadena, CA (United States); Karniadakis, G.E. [Brown Univ., Providence, RI (United States)


    In this paper we present a spectral element-Fourier algorithm for simulating incompressible turbulent flows in complex geometries using unstructured quadrilateral meshes. To this end, we compare two different interface formulations for extending the conforming spectral element method in order to allow for surgical mesh refinement and still retain spectral accuracy: the Zanolli iterative procedure and variational patching based on auxiliary {open_quotes}mortar{close_quotes} functions. We present an interpretation of the original mortar element method as a patching scheme and develop direct and iterative solution techniques that make the method efficient for simulations of turbulent flows. The properties of the new method are analyzed in detail by studying the eigenspectra of the advection and diffusion operators. We then present numerical results that illustrate the flexibility as well as the exponential convergence of the new algorithm for nonconforming discretizations. We conclude with simulation studies of the turbulent cylinder wake at Re = 1000 (external flow) and turbulent flow over riblets at Re = 3280 (internal flow). 36 refs., 29 figs., 7 tabs.

  12. Mean Line Pump Flow Model in Rocket Engine System Simulation (United States)

    Veres, Joseph P.; Lavelle, Thomas M.


    A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.

  13. Compressible Turbulent Flow Numerical Simulations of Tip Vortex Cavitation

    NARCIS (Netherlands)

    Khatami, F.; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie


    For an elliptic Arndt’s hydrofoil numerical simulations of vortex cavitation are presented. An equilibrium cavitation model is employed. This single-fluid model assumes local thermodynamic and mechanical equilibrium in the mixture region of the flow, is employed. Furthermore, for characterizing the

  14. Appropriate spatial sampling of rainfall for flow simulation

    NARCIS (Netherlands)

    Dong, Xiaohua; Dohmen-Janssen, Catarine M.; Booij, Martijn J.


    The objective of this study is to find the appropriate number and location of raingauges for a river basin for flow simulation by using statistical analyses and hydrological modelling. First, a statistical method is used to identify the appropriate number of raingauges. Herein the effect of the

  15. Water Flow Simulation using Smoothed Particle Hydrodynamics (SPH) (United States)

    Vu, Bruce; Berg, Jared; Harris, Michael F.


    Simulation of water flow from the rainbird nozzles has been accomplished using the Smoothed Particle Hydrodynamics (SPH). The advantage of using SPH is that no meshing is required, thus the grid quality is no longer an issue and accuracy can be improved.

  16. Large-Eddy-Simulation-based analysis of complex flow structures ...

    Indian Academy of Sciences (India)

    CFD offers different turbulence modelling techniques with an aim to predict realistic flow approximations. Large Eddy Simulation (LES) offers a more accurate solution to this, in which the larger eddies are resolved while smaller eddies are modelled; hence predictions using LES are more realistic. Further, in turbulence ...

  17. Immersed boundary simulation of flow through arterial junctions

    Indian Academy of Sciences (India)

    Simulations are further carried out for pulsated flows and effects of blockages near the junctions (due to stenosis or atherosclerosis). ... Department of Mechanical Engineering, National Institute of Technology, Durgapur 713209, India; Department of Mechanical Engineering, Indian Institute of Technology Patna, Bihta ...

  18. Numerical simulation of two-phase flow in offshore environments

    NARCIS (Netherlands)

    Wemmenhove, Rik


    Numerical Simulation of Two-Phase Flow in Offshore Environments Rik Wemmenhove Weather conditions on full sea are often violent, leading to breaking waves and lots of spray and air bubbles. As high and steep waves may lead to severe damage on ships and offshore structures, there is a great need for

  19. Numerical convergence improvements for porflow unsaturated flow simulations

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Greg [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    Section 3.6 of SRNL (2016) discusses various PORFLOW code improvements to increase modeling efficiency, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision. This memorandum documents interaction with Analytic & Computational Research, Inc. ( to improve numerical convergence efficiency using PORFLOW version 6.42 for unsaturated flow simulations.

  20. Flow Simulation of Solid Rocket Motors. 1; Injection Induced Water-Flow Tests from Porous Media (United States)

    Ramachandran, N.; Yeh, Y. P.; Smith, A. W.; Heaman, J. P.


    Prior to selecting a proper porous material for use in simulating the internal port flow of a solid rocket motor (SRM), in cold-flow testing, the flow emerging from porous materials is experimentally investigated. The injection-flow emerging from a porous matrix always exhibits a lumpy velocity profile that is spatially stable and affects the development of the longitudinal port flow. This flow instability, termed pseudoturbulence, is an inherent signature of the porous matrix and is found to generally increase with the wall porosity and with the injection flow rate. Visualization studies further show that the flow from porous walls made from shaving-type material (sintered stainless-steel) exhibits strong recirculation zones that are conspicuously absent in walls made from nodular or spherical material (sintered bronze). Detailed flow visualization observations and hot-film measurements are reported from tests of injection-flow and a coupled cross-flow from different porous wall materials. Based on the experimental data, discussion is provided on the choice of suitable material for SRM model testing while addressing the consequences and shortcomings from such a test.

  1. Unsteady flow simulations of Pelton turbine at different rotational speeds

    Directory of Open Access Journals (Sweden)

    Minsuk Choi


    Full Text Available This article presents numerical simulations of a small Pelton turbine suitable for desalination system. A commercial flow solver was adopted to resolve difficulties in the numerical simulation for Pelton turbine such as the relative motion of the turbine runner to the injector and two-phase flow of water and air. To decrease the numerical diffusion of the water jet, a new topology with only hexagonal mesh was suggested for the computational mesh around the complex geometry of a bucket. The predicted flow coefficient, net head coefficient, and overall efficiency showed a good agreement with the experimental data. Based on the validation of the numerical results, the pattern of wet area on the bucket inner surface has been analyzed at different rotational speeds, and an attempt to find the connection between rotational speeds, torque, and efficiency has been made.

  2. Simulation and experimental study of resin flow in fibre fabrics (United States)

    Yan, Fei; Yan, Shilin; Li, Yongjing


    Liquid Composite Moulding (LCM) is gradually becoming the most competitive manufacturing technology for producing large composite parts with complex geometry with high quality and low cost. These parts include those for airplanes, wind turbine blades and automobile components. Fibre fabrics in liquid composite moulding can be considered as dual-scale porous media. In different gap scales, an unsaturated flow is produced during the mould filling process. This particular flow behaviour deviates from the traditional Darcy’s law, which is used to calculate the filling pressure and will cause errors. According to sink theory, the unsaturated flow characteristics of this dual-scale porous media were studied in this paper, and a FEM solution program was developed. The results showed that the pressure curves against the position which simulated by sink functions were departure from the position of traditional theory. In addition, the simulation results of partially-saturated region were consistent with the experimental data.

  3. Flow Simulation of N2B Hybrid Wing Body Configuration (United States)

    Kim, Hyoungjin; Liou, Meng-Sing


    The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the subsonic fixed wing project. In this study, flow fields around the N2B configuration is simulated using a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by response surfaces of the NPSS thermodynamic engine cycle model. The present flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and nacelle-airframe interference. The N2B configuration can be a good test bed for application of multidisciplinary design optimization technology.

  4. Large-eddy simulation of turbulent circular jet flows

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S. C. [Georgia Inst. of Technology, Atlanta, GA (United States); Sotiropoulos, F. [Georgia Inst. of Technology, Atlanta, GA (United States); Sale, M. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    This report presents a numerical method for carrying out large-eddy simulations (LES) of turbulent free shear flows and an application of a method to simulate the flow generated by a nozzle discharging into a stagnant reservoir. The objective of the study was to elucidate the complex features of the instantaneous flow field to help interpret the results of recent biological experiments in which live fish were exposed to the jet shear zone. The fish-jet experiments were conducted at the Pacific Northwest National Laboratory (PNNL) under the auspices of the U.S. Department of Energy’s Advanced Hydropower Turbine Systems program. The experiments were designed to establish critical thresholds of shear and turbulence-induced loads to guide the development of innovative, fish-friendly hydropower turbine designs.

  5. Evaluating Voellmy resistance parameters for debris-flow simulation models (United States)

    Schraml, Klaus; McArdell, Brian; Graf, Christoph; Thomschitz, Barbara; Kaitna, Roland


    Gravitationally-driven processes such as debris flows constitute a major risk in alpine regions. In order to avoid damages on infrastructure and settlements, the delineation of hazardous areas is required. For this, numerical simulation tools are often applied for use in engineering hazard assessment. For model calibration, information on past events provides a basis to estimate or constrain the essential input parameters. In this study we used two numerical simulation models for evaluating model friction parameters to best-fit runout lengths and deposition patterns of observed past debris-flow events on two alpine fans in Austria with flow deposit volumes of 10,000 m³ and 25,000 m³, respectively. The RAMMS-DF (RApid Mass MovementS - Debris Flow) runout model is based on a Voellmy-type relation to describe the flow friction, and the software DAN3D (Dynamic Analysis of Landslides) allows selecting different rheologies, including a Voellmy-type friction relation. All calculations were based on the same digital elevation model with a 1 m resolution and the same initial conditions. Our results show that both models are able to satisfactorily replicate observed deposition patterns. The best-fit parameter sets of the Voellmy-Coulomb friction coefficient and turbulent coefficient for both study sites and both simulation models were in the range of 0.07-0.11 and 200-400, respectively. In case the deposition area is forested, the Coulomb friction parameter was considerably increased by a factor of around 3 to account for additional surface roughness. A sensitivity analysis shows a slightly higher sensitivity of model parameters for the DAN3D model than for the RAMMS-DF model. This study contributes to the evaluation of realistic model parameters for the simulation of small alpine debris flows on forested and non-forested fans.

  6. Material flow data for numerical simulation of powder injection molding (United States)

    Duretek, I.; Holzer, C.


    The powder injection molding (PIM) process is a cost efficient and important net-shape manufacturing process that is not completely understood. For the application of simulation programs for the powder injection molding process, apart from suitable physical models, exact material data and in particular knowledge of the flow behavior are essential in order to get precise numerical results. The flow processes of highly filled polymers are complex. Occurring effects are very hard to separate, like shear flow with yield stress, wall slip, elastic effects, etc. Furthermore, the occurrence of phase separation due to the multi-phase composition of compounds is quite probable. In this work, the flow behavior of a 316L stainless steel feedstock for powder injection molding was investigated. Additionally, the influence of pre-shearing on the flow behavior of PIM-feedstocks under practical conditions was examined and evaluated by a special PIM injection molding machine rheometer. In order to have a better understanding of key factors of PIM during the injection step, 3D non-isothermal numerical simulations were conducted with a commercial injection molding simulation software using experimental feedstock properties. The simulation results were compared with the experimental results. The mold filling studies amply illustrate the effect of mold temperature on the filling behavior during the mold filling stage. Moreover, the rheological measurements showed that at low shear rates no zero shear viscosity was observed, but instead the viscosity further increased strongly. This flow behavior could be described with the Cross-WLF approach with Herschel-Bulkley extension very well.

  7. A laboratory simulation of mesoscale flow interaction with the Alps (United States)

    Ferrero, E.; Longhetto, A.; Briatore, L.; Chabert d'Hieres, G.; Didelle, H.; Giraud, C.; Gleizon, P.


    A series of laboratory experiments, aimed at the simulation of some aspects of Alpine lee cyclogenesis has been carried out in the rotating tank of the Coriolis Laboratory of LEGI-IMG in Grenoble. Dynamic and thermodynamic processes, typical of baroclinic development triggered by the orography, were simulated. The background flow simulating the basic state of the atmosphere consisted of a stream of intermediate density fluid introduced at the interface between two fluid layers. The structure of the intermediate current was established by mixing fluid obtained from the upper layer of fresh water with fluid removed from the heavier salty layer below. The dynamical similarity parameters are the Rossby ( Ro), Burger ( Bu) and Ekman ( Ek) numbers, although this last, owing to its small values, need not be matched between model and prototype, since viscous effects are not important for small time scales. The flow in both the prototype and laboratory simulation is characterized by hydrostatics; this requires ( Ro2δ2/ Bu)≪1 (where δ= H/ L is the aspect ratio of the obstacle) which is clearly satisfied, in the atmosphere and oceans, and for the laboratory experiment. A range of experiments for various Rossby and Burger numbers were conducted which delimited the region of parameter space for which background flows akin to that found to the northwest of the Alps prior to baroclinic cyclogenesis events, were observed. One such experiment was carried out by placing a model of the Alps at the appropriate place in the flow field. The subsequent motion in the laboratory was observed and dye tracer motions were used to obtain the approximate particle trajectories. The density field was also analyzed to provide the geopotential field of the simulated atmosphere. Using standard transformations from the similarity analysis, the laboratory observations were related to the prototype atmosphere. The flow and the geopotential fields gave results compatible with the particular

  8. Density Weighted FDF Equations for Simulations of Turbulent Reacting Flows (United States)

    Shih, Tsan-Hsing; Liu, Nan-Suey


    In this report, we briefly revisit the formulation of density weighted filtered density function (DW-FDF) for large eddy simulation (LES) of turbulent reacting flows, which was proposed by Jaberi et al. (Jaberi, F.A., Colucci, P.J., James, S., Givi, P. and Pope, S.B., Filtered mass density function for Large-eddy simulation of turbulent reacting flows, J. Fluid Mech., vol. 401, pp. 85-121, 1999). At first, we proceed the traditional derivation of the DW-FDF equations by using the fine grained probability density function (FG-PDF), then we explore another way of constructing the DW-FDF equations by starting directly from the compressible Navier-Stokes equations. We observe that the terms which are unclosed in the traditional DW-FDF equations are now closed in the newly constructed DW-FDF equations. This significant difference and its practical impact on the computational simulations may deserve further studies.

  9. Large eddy simulation of water flow over series of dunes

    Directory of Open Access Journals (Sweden)

    Jun LU


    Full Text Available Large eddy simulation was used to investigate the spatial development of open channel flow over a series of dunes. The three-dimensional filtered Navier-Stokes (N-S equations were numerically solved with the fractional-step method in sigma coordinates. The subgrid-scale turbulent stress was modeled with a dynamic coherent eddy viscosity model proposed by the authors. The computed velocity profiles are in good agreement with the available experimental results. The mean velocity and the turbulent Reynolds stress affected by a series of dune-shaped structures were compared and analyzed. The variation of turbulence statistics along the flow direction affected by the wavy bottom roughness has been studied. The turbulent boundary layer in a complex geographic environment can be simulated well with the proposed large eddy simulation (LES model.

  10. Simulation of transitional flows through a turbine blade cascade with heat transfer for various flow conditions

    Directory of Open Access Journals (Sweden)

    Straka Petr


    Full Text Available The contribution deals with the simulation of the transitional flows with heat transfer by means the EARSM turbulence model of Hellsten [1] completed by the algebraic transition model of Straka and Příhoda [2] and by the three-equation model of Walters and Cokjlat [3]. The both mathematical models were tested for the flat plate flow on a heated wall measured by Sohn and Reshotko [16] and then applied to the simulation of compressible flow through the VKI turbine blade cascade according to measurements of Arts et al. [4]. The simulations were carried out for subsonic and transonic regimes at various free-stream turbulence levels. The best agreement of numerical results with experimental data was achieved by the URANS approach applied for the EARSM model with the algebraic transition model giving good results for both subsonic and transonic regimes as well.

  11. Newly Developed Empirical Correlations for Simulation of Transitional Flows

    Directory of Open Access Journals (Sweden)

    Reza Taghavi Zenouz


    Full Text Available An effective new formulation is developed for simulation of transitional flows. This formulation is based on modifications made to the latest numerical model utilizing vorticity and momentum thickness Reynolds numbers concepts. In this respect, rigorous experiments were conducted in a wind tunnel to modify the existing formulation to a more reliable form suitable for modeling of transitional flows. Test model was a linear cascade of axial compressor blades. Wind tunnel tests consisted of measurements of surface pressure distributions and velocity profiles utilizing hot film anemometry. Different freestream turbulence intensities, flow incidences, and Reynolds numbers were examined. New correlations were imposed to a commercial numerical flow solver;applying them to some standard objects produced more reliable results than those obtained from other formulations, presented so far. This attribution is more emphasized especially while dealing with modeling laminar separation bubbles, where transition occurs within the free shear layer.

  12. Analytical solution for tension-saturated and unsaturated flow from wicking porous pipes in subsurface irrigation: The Kornev-Philip legacies revisited (United States)

    Kacimov, A. R.; Obnosov, Yu. V.


    The Russian engineer Kornev in his 1935 book raised perspectives of subsurface "negative pressure" irrigation, which have been overlooked in modern soil science. Kornev's autoirrigation utilizes wicking of a vacuumed water from a porous pipe into a dry adjacent soil. We link Kornev's technology with a slightly modified Philip (1984)'s analytical solutions for unsaturated flow from a 2-D cylindrical pipe in an infinite domain. Two Darcian flows are considered and connected through continuity of pressure along the pipe-soil contact. The first fragment is a thin porous pipe wall in which water seeps at tension saturation; the hydraulic head is a harmonic function varying purely radially across the wall. The Thiem solution in this fragment gives the boundary condition for azimuthally varying suction pressure in the second fragment, ambient soil, making the exterior of the pipe. The constant head, rather than Philip's isobaricity boundary condition, along the external wall slightly modifies Philip's formulae for the Kirchhoff potential and pressure head in the soil fragment. Flow characteristics (magnitudes of the Darcian velocity, total flow rate, and flow net) are explicitly expressed through series of Macdonald's functions. For a given pipe's external diameter, wall thickness, position of the pipe above a free water datum in the supply tank, saturated conductivities of the wall and soil, and soil's sorptive number, a nonlinear equation with respect to the total discharge from the pipe is obtained and solved by a computer algebra routine. Efficiency of irrigation is evaluated by computation of the moisture content within selected zones surrounding the porous pipe.Plain Language SummarySubsurface irrigation by "automatic" gadgets like pitchers or porous pipes is a water saving technology which minimizes evaporative losses and deep percolation. Moisture is emitted by capillary suction of a relatively dry soil and "thirsty" roots just in "right quantities", spontaneously

  13. Multiphase flow modeling and simulation of explosive volcanic eruptions (United States)

    Neri, Augusto

    Recent worldwide volcanic activity, such as eruptions at Mt. St. Helens, Washington, in 1980, Mt. Pinatubo, Philippines, in 1991, as well as the ongoing eruption at Montserrat, West Indies, highlighted again the complex nature of explosive volcanic eruptions as well as the tremendous risk associated to them. In the year 2000, about 500 million people are expected to live under the shadow of an active volcano. The understanding of pyroclastic dispersion processes produced by explosive eruptions is, therefore, of primary interest, not only from the scientific point of view, but also for the huge worldwide risk associated with them. The thesis deals with an interdisciplinary research aimed at the modeling and simulation of explosive volcanic eruptions by using multiphase thermo-fluid-dynamic models. The first part of the work was dedicated to the understanding and validation of recently developed kinetic theory of two-phase flow. The hydrodynamics of fluid catalytic cracking particles in the IIT riser were simulated and compared with lab experiments. Simulation results confirm the validity of the kinetic theory approach. Transport of solids in the riser is due to dense clusters. On a time-average basis the bottom of the riser and the walls are dense, in agreement with IIT experimental data. The low frequency of oscillation (about 0.2 Hz) is also in agreement with data. The second part of the work was devoted to the development of transient two-dimensional multiphase and multicomponent flow models of pyroclastic dispersion processes. In particular, the dynamics of ground-hugging high-speed and high-temperature pyroclastic flows generated by the collapse of volcanic columns or by impulsive discrete explosions, was investigated. The model accounts for the mechanical and thermal non-equilibrium between a multicomponent gas phase and N different solid phases representative of pyroclastic particles of different sizes. Pyroclastic dispersion dynamics describes the formation

  14. Large Eddy Simulation of Flow and Sediment Transport over Dunes (United States)

    Agegnehu, G.; Smith, H. D.


    Understanding the nature of flow over bedforms has a great importance in fluvial and coastal environments. For example, a bedform is one source of energy dissipation in water waves outside the surf zone in coastal environments. In rivers, the migration of dunes often affects the stability of the river bed and banks. In general, when a fluid flows over a sediment bed, the sediment transport generated by the interaction of the flow field with the bed results in the periodic deformation of the bed in the form of dunes. Dunes generally reach an equilibrium shape, and slowly propagate in the direction of the flow, as sand is lifted in the high shear regions, and redeposited in the separated flow areas. Different numerical approaches have been used in the past to study the flow and sediment transport over bedforms. In most research works, Reynolds Averaged Navier Stokes (RANS) equations are employed to study fluid motions over ripples and dunes. However, evidences suggests that these models can not represent key turbulent quantities in unsteady boundary layers. The use of Large Eddy Simulation (LES) can resolve a much larger range of smaller scales than RANS. Moreover, unsteady simulations using LES give vital turbulent quantities which can help to study fluid motion and sediment transport over dunes. For this steady, we use a three-dimensional, non-hydrostatic model, OpenFOAM. It is a freely available tool which has different solvers to simulate specific problems in engineering and fluid mechanics. Our objective is to examine the flow and sediment transport from numerical stand point for bed geometries that are typical of fixed dunes. At the first step, we performed Large Eddy Simulation of the flow over dune geometries based on the experimental data of Nelson et al. (1993). The instantaneous flow field is investigated with special emphasis on the occurrence of coherent structures. To assess the effect of bed geometries on near bed turbulence, we considered different

  15. Insights in time dependent cross compartment sensitivities from ensemble simulations with the fully coupled subsurface-land surface-atmosphere model TerrSysMP (United States)

    Schalge, Bernd; Rihani, Jehan; Haese, Barbara; Baroni, Gabriele; Erdal, Daniel; Haefliger, Vincent; Lange, Natascha; Neuweiler, Insa; Hendricks-Franssen, Harrie-Jan; Geppert, Gernot; Ament, Felix; Kollet, Stefan; Cirpka, Olaf; Saavedra, Pablo; Han, Xujun; Attinger, Sabine; Kunstmann, Harald; Vereecken, Harry; Simmer, Clemens


    Currently, an integrated approach to simulating the earth system is evolving where several compartment models are coupled to achieve the best possible physically consistent representation. We used the model TerrSysMP, which fully couples subsurface, land surface and atmosphere, in a synthetic study that mimicked the Neckar catchment in Southern Germany. A virtual reality run at a high resolution of 400m for the land surface and subsurface and 1.1km for the atmosphere was made. Ensemble runs at a lower resolution (800m for the land surface and subsurface) were also made. The ensemble was generated by varying soil and vegetation parameters and lateral atmospheric forcing among the different ensemble members in a systematic way. It was found that the ensemble runs deviated for some variables and some time periods largely from the virtual reality reference run (the reference run was not covered by the ensemble), which could be related to the different model resolutions. This was for example the case for river discharge in the summer. We also analyzed the spread of model states as function of time and found clear relations between the spread and the time of the year and weather conditions. For example, the ensemble spread of latent heat flux related to uncertain soil parameters was larger under dry soil conditions than under wet soil conditions. Another example is that the ensemble spread of atmospheric states was more influenced by uncertain soil and vegetation parameters under conditions of low air pressure gradients (in summer) than under conditions with larger air pressure gradients in winter. The analysis of the ensemble of fully coupled model simulations provided valuable insights in the dynamics of land-atmosphere feedbacks which we will further highlight in the presentation.

  16. Direct Simulations of Turbulent Particle-Laden Flows (United States)

    Wang, Lian-Ping


    Turbulent particle-laden flows had traditionally been treated with empirical and phenomenological approaches and advances in fundamental understanding were limited. In the last 15 years, direct simulations and advanced measurement techniques have provided much needed, first-principle based field data from which new insights and better modeling strategies could be developed. In this talk, I will first provide an overview of using direct simulations as an independent research tool for turbulent particle-laden flows. Applications to particle transport, dispersion, sedimentation, collision/coalescence, and flow modulation will be briefly discussed. The second part of the talk will focus on an on-going study in which direct simulations of turbulent particle-laden flow is being used to address several effects of air turbulence on warm rain formation in the atmosphere, including effects of turbulence on droplet-droplet relative motion, preferential concentration, droplet settling velocity and how these may enhance the geometric collision rates and collision efficiencies of cloud droplets.

  17. Modeling of internal carotid artery aneurysm and blood flow simulation. (United States)

    Xu, Bingqiang; Zhong, Hua; Duan, Shaoyin


    The rupture of aneurysm is quite common in the clinics, and is hazardous to patients. Its occurrence is considered to be related to the hemodynamic abnormalities. To construct the model of internal carotid artery aneurysm (ICA-A), and have a simulation of blood flow. Based on the CTA data from spiral CT scan, the ICA-A model was constructed, and the types of blood flow, wall shear stress (WSS), Von Mises stress (VMS) and pressure were simulated and calculated. ICA-A model has been built and shape is the same morphology as CT 3D-image. In the whole cardiac cycle, the blood flow of aneurysm body is swirl, its velocity is slower than that of aneurysm neck; the maximum deformation, wall shear stress, pressure and von mises stress of aneurysm wall is at the neck, the minimum is at the top. The highest value appeared at 0.52 s in the cardiac cycle of 0.74 s, the lowest is at 0.21 s. It is effective and practical to construct the model of ICA-A base on CTA data. Blood flow simulation of ICA-A will provide new basis for the study on the occurrence and development of aneurysm.

  18. A new approach to flow simulation using hybrid models (United States)

    Solgi, Abazar; Zarei, Heidar; Nourani, Vahid; Bahmani, Ramin


    The necessity of flow prediction in rivers, for proper management of water resource, and the need for determining the inflow to the dam reservoir, designing efficient flood warning systems and so forth, have always led water researchers to think about models with high-speed response and low error. In the recent years, the development of Artificial Neural Networks and Wavelet theory and using the combination of models help researchers to estimate the river flow better and better. In this study, daily and monthly scales were used for simulating the flow of Gamasiyab River, Nahavand, Iran. The first simulation was done using two types of ANN and ANFIS models. Then, using wavelet theory and decomposing input signals of the used parameters, sub-signals were obtained and were fed into the ANN and ANFIS to obtain hybrid models of WANN and WANFIS. In this study, in addition to the parameters of precipitation and flow, parameters of temperature and evaporation were used to analyze their effects on the simulation. The results showed that using wavelet transform improved the performance of the models in both monthly and daily scale. However, it had a better effect on the monthly scale and the WANFIS was the best model.

  19. Large Eddy Simulation of isothermal cruciform jet flow: Preliminary results

    Directory of Open Access Journals (Sweden)

    B.T. Kannan


    Full Text Available The present work is a numerical study of a turbulent isothermal jet issuing from cruciform nozzle into still air at a high Reynolds number of 1.7 × 105. The numerical simulation was carried out by using open source CFD tool OpenFOAM®. Three-dimensional cuboid shaped domain was used to simulate the unsteady turbulent flow field. The simulation was carried out by solving the filtered Navier–Stokes equations along with Smagorinsky sub-grid scale model. The Large Eddy Simulation (LES solutions are compared with experimental data for validation of the jet flow physics. The flow field of turbulent jet from cruciform nozzle are described in terms of inverse mean axial velocity decay and visualizations. The vortical structures are visualized using iso-surface contours of vorticity magnitude. The vortical structures develop from the cruciform nozzle is significantly different from axisymmetric nozzles. The vortical structures show changes in shape as they move downstream from the nozzle. The cruciform jet shows complex vorticity dynamics in the near field region.

  20. Anisotropy effects in LES simulation of turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Abba, A.; Cercignani, C.; Valdettaro, L. [Dipt. di Matematica, Politecnico di Milano (Italy)


    We present Large Eddy Simulations (LES) of turbulent anisotropic flows. We consider first turbulent coaxial jets, separated by a thick wall. The simulation has been performed at a Reynolds number of 2000, based on the diameter and on the velocity of the inner jet. The diffusion of the external jet, the effect of the thick wall and the mixing of the two jets are derived from the analysis of the mean velocity profiles, of the root mean squares of the longitudinal velocity components, and of the skewness. We then present visualizations which show the instabilities in the shear layers, their development and the presence of the backscatter. We next consider Large Eddy Simulation of turbulent Rayleigh-Benard convection flow in an infinite horizontal fluid layer heated from below. The dynamic SGS closure is extended to take into account anisotropy of eddy thermal diffusivity. Average properties of the resulting flow are compared with experimental and numerical data in the literature. An a priori test is made, that allows to compare the models. The largest Rayleigh number successfully simulated is 10{sup 8} with an aspect ratio of 7. Probability distribution functions of temperature fluctuations at different Rayleigh numbers are compared. (orig.)

  1. Direct Numerical Simulation of Disperse Multiphase High-Speed Flows

    Energy Technology Data Exchange (ETDEWEB)

    Nourgaliev, R R; Dinh, T N; Theofanous, T G; Koning, J M; Greenman, R M; Nakafuji, G T


    A recently introduced Level-Set-based Cartesian Grid (LSCG) Characteristics-Based Matching (CBM) method is applied for direct numerical simulation of shock-induced dispersal of solid material. The method incorporates the latest advancements in the level set technology and characteristics-based numerical methods for solution of hyperbolic conservation laws and boundary treatment. The LSCG/CBM provides unique capabilities to simulate complex fluid-solid (particulate) multiphase flows under high-speed flow conditions and taking into account particle-particle elastic and viscoelastic collisions. The particular emphasis of the present study is placed on importance of appropriate modeling of particle-particle collisions, which are demonstrated to crucially influence the global behavior of high-speed multiphase particulate flows. The results of computations reveal the richness and complexity of flow structures in compressible disperse systems, due to dynamic formation of shocks and contact discontinuities, which provide an additional long-range interaction mechanism in dispersed high-speed multiphase flows.

  2. Algebraic dynamic multilevel (ADM) method for fully implicit simulations of multiphase flow in porous media (United States)

    Cusini, Matteo; van Kruijsdijk, Cor; Hajibeygi, Hadi


    This paper presents the development of an algebraic dynamic multilevel method (ADM) for fully implicit simulations of multiphase flow in homogeneous and heterogeneous porous media. Built on the fine-scale fully implicit (FIM) discrete system, ADM constructs a multilevel FIM system describing the coupled process on a dynamically defined grid of hierarchical nested topology. The multilevel adaptive resolution is determined at each time step on the basis of an error criterion. Once the grid resolution is established, ADM employs sequences of restriction and prolongation operators in order to map the FIM system across the considered resolutions. Several choices can be considered for prolongation (interpolation) operators, e.g., constant, bilinear and multiscale basis functions, all of which form partition of unity. The adaptive multilevel restriction operators, on the other hand, are constructed using a finite-volume scheme. This ensures mass conservation of the ADM solutions, and as such, the stability and accuracy of the simulations with multiphase transport. For several homogeneous and heterogeneous test cases, it is shown that ADM applies only a small fraction of the full FIM fine-scale grid cells in order to provide accurate solutions. The sensitivity of the solutions with respect to the employed fraction of grid cells (determined automatically based on the threshold value of the error criterion) is investigated for all test cases. ADM is a significant step forward in the application of dynamic local grid refinement methods, in the sense that it is algebraic, allows for systematic mapping across different scales, and applicable to heterogeneous test cases without any upscaling of fine-scale high resolution quantities. It also develops a novel multilevel multiscale method for FIM multiphase flow simulations in natural subsurface formations.

  3. The 2005 MARTE Robotic Drilling Experiment in Río Tinto, Spain: objectives, approach, and results of a simulated mission to search for life in the Martian subsurface. (United States)

    Stoker, Carol R; Cannon, Howard N; Dunagan, Stephen E; Lemke, Lawrence G; Glass, Brian J; Miller, David; Gomez-Elvira, Javier; Davis, Kiel; Zavaleta, Jhony; Winterholler, Alois; Roman, Matt; Rodriguez-Manfredi, Jose Antonio; Bonaccorsi, Rosalba; Bell, Mary Sue; Brown, Adrian; Battler, Melissa; Chen, Bin; Cooper, George; Davidson, Mark; Fernández-Remolar, David; Gonzales-Pastor, Eduardo; Heldmann, Jennifer L; Martínez-Frías, Jesus; Parro, Victor; Prieto-Ballesteros, Olga; Sutter, Brad; Schuerger, Andrew C; Schutt, John; Rull, Fernando


    The Mars Astrobiology Research and Technology Experiment (MARTE) simulated a robotic drilling mission to search for subsurface life on Mars. The drill site was on Peña de Hierro near the headwaters of the Río Tinto river (southwest Spain), on a deposit that includes massive sulfides and their gossanized remains that resemble some iron and sulfur minerals found on Mars. The mission used a fluidless, 10-axis, autonomous coring drill mounted on a simulated lander. Cores were faced; then instruments collected color wide-angle context images, color microscopic images, visible-near infrared point spectra, and (lower resolution) visible-near infrared hyperspectral images. Cores were then stored for further processing or ejected. A borehole inspection system collected panoramic imaging and Raman spectra of borehole walls. Life detection was performed on full cores with an adenosine triphosphate luciferin-luciferase bioluminescence assay and on crushed core sections with SOLID2, an antibody array-based instrument. Two remotely located science teams analyzed the remote sensing data and chose subsample locations. In 30 days of operation, the drill penetrated to 6 m and collected 21 cores. Biosignatures were detected in 12 of 15 samples analyzed by SOLID2. Science teams correctly interpreted the nature of the deposits drilled as compared to the ground truth. This experiment shows that drilling to search for subsurface life on Mars is technically feasible and scientifically rewarding.

  4. Large-eddy simulation of atmospheric flow over complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    Bechmann, A.


    The present report describes the development and validation of a turbulence model designed for atmospheric flows based on the concept of Large-Eddy Simulation (LES). The background for the work is the high Reynolds number k - epsilon model, which has been implemented on a finite-volume code of the incompressible Reynolds-averaged Navier-Stokes equations (RANS). The k - epsilon model is traditionally used for RANS computations, but is here developed to also enable LES. LES is able to provide detailed descriptions of a wide range of engineering flows at low Reynolds numbers. For atmospheric flows, however, the high Reynolds numbers and the rough surface of the earth provide difficulties normally not compatible with LES. Since these issues are most severe near the surface they are addressed by handling the near surface region with RANS and only use LES above this region. Using this method, the developed turbulence model is able to handle both engineering and atmospheric flows and can be run in both RANS or LES mode. For LES simulations a time-dependent wind field that accurately represents the turbulent structures of a wind environment must be prescribed at the computational inlet. A method is implemented where the turbulent wind field from a separate LES simulation can be used as inflow. To avoid numerical dissipation of turbulence special care is paid to the numerical method, e.g. the turbulence model is calibrated with the specific numerical scheme used. This is done by simulating decaying isotropic and homogeneous turbulence. Three atmospheric test cases are investigated in order to validate the behavior of the presented turbulence model. Simulation of the neutral atmospheric boundary layer, illustrates the turbulence model ability to generate and maintain the turbulent structures responsible for boundary layer transport processes. Velocity and turbulence profiles are in good agreement with measurements. Simulation of the flow over the Askervein hill is also

  5. Flow simulation and topological rearrangements of ordered foams (United States)

    Espinoza Ortiz, J. S.; Belich, H., Jr.


    Flow through a narrow bent channel may induce topological rearrangements in a two-dimensional monodispersed dry liquid foam. We use the Cellular Potts Model to simulate a foam under a variable driving force in order to investigate the strain-rate response from these rearrangements. We observe a set of foams' behaviors ranging from elastic, viscoelastic to fluid regime. Bubble's topological rearrangements are localized and their cumulative rearrangements change linearly with time, thus non avalanches critical behavior is found. The strain-rate affects the rate of topological rearrangements, its dependence on the drag force is nonlinear, obeying a Herschel-Bulkley like relationship below the foam's flow point.

  6. [Residence time distributions and spatial variation of N, P in the subsurface-flow constructed wetlands for purification of eutrophic aquaculture water]. (United States)

    Yang, Chang-Ming; Gu, Guo-Quan; Li, Jian-Hua; Deng, Huan-Huan


    Hydraulic residence time distributions (RTD) and spatial variations of N, P were studied in a small-scale horizontal subsurface-flow constructed wetlands (HSFCWs) planted with Cyperous alternifolius and Typha angustifolia respectively for purification of eutrophic aquaculture water. The results show that the residence time distribution curves of the investigated HSFCWs lie between plug-flow and completely mixed model with characteristic values (sigma2) of 0.3246 and 0.4108, respectively. Compared with Typha angustifolia, Cyperous alternifolius wetland shows fine flow pattern with characteristics of smoother RTD curve and weaker vertical mixed flow. Total nitrogen (TN) and ammonia nitrogen (NH4+-N) show stratified distributions in the two HSFCWs, especially in the front end of the wetland beds. TN in the lower layer is higher than that in the upper, while NH4+-N in the middle layer is the lowest in all the sampling layers. Total phosphorus (TP) and phosphate (PO4(3-)-P) increases with sampling depth. Differences in TP and PO4(3-)-P between the layers decrease gradually along distance. Cyperous alternifolius wetland shows better stratification distributions of N, P, as compared with Typha angustifolia, which is mainly contributed to the difference in flow patterns between the two HSFCWs. On average, concentrations of TN and TP in the rear end of the Cyperous alternifolius wetland are 19.3% and 12.5% lower, respectively, as compared to the Typha angustifolia wetland, suggesting that removal efficiencies of the Cyperous alternifolius wetland for purification of eutrophic aquaculture water is higher than those of the Typha angustifolia.

  7. Identification and Simulation of Subsurface Soil patterns using hidden Markov random fields and remote sensing and geophysical EMI data sets (United States)

    Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan


    Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the

  8. CFD simulation of horizontal oil-water flow with matched density and medium viscosity ratio in different flow regimes


    Shi, Jing; Gourma, Mustapha; Yeung, Hoi


    Simulation of horizontal oil-water flow with matched density and medium viscosity ratio (μo/μw=18.8) in several different flow regimes (core annular flow, oil plugs/bubbles in water and dispersed flow) was performed with the CFD package FLUENT in this study. The volume of fluid (VOF) multiphase flow modeling method in conjunction with the SST k-ω scheme was applied to simulate the oil-water flow. The influences of the turbulence schemes and wall contact angles on the simulation results were i...

  9. Impact of aneurysmal geometry on intraaneurysmal flow: a computerized flow simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Szikora, Istvan [National Institute of Neurosurgery, Budapest (Hungary); National Institute of Neurosurgery, Interventional Neuroradiology, Budapest (Hungary); Paal, Gyorgy; Ugron, Adam; Nasztanovics, Ferenc; Bojtar, Imre [University of Technology and Economics, Budapest (Hungary); Marosfoi, Miklos; Berentei, Zsolt; Kulcsar, Zsolt; Lee, Wickly; Nyary, Istvan [National Institute of Neurosurgery, Budapest (Hungary)


    This study was performed to assess the effect of aneurysm geometry on parameters that may have an impact on the natural history of intracranial aneurysms, such as intraaneurysmal flow pressure and shear stress. Flow was simulated in 21 randomly selected aneurysms using finite volume modeling. Ten aneurysms were classified as side-wall aneurysms, with either single-sided or circumferential involvement of the parent artery wall, and 11 as bifurcation aneurysms (symmetric or asymmetric), with an axis either perpendicular or parallel to the parent artery. The flow patterns were classified as either jet or vortex types (with regular or irregular vortex flow). Pressures and shear stresses were characterized as evenly or unevenly distributed over the aneurysm wall and neck. All side-wall and four of the bifurcation aneurysms with a perpendicular axis had a vortex type flow pattern and seven bifurcation aneurysms with a parallel axis (four symmetric and two asymmetric) had a jet flow pattern. Jet type flow was associated with an uneven pressure distribution in seven out of seven aneurysms. Vortex type flow resulted in an even pressure distribution in five out of six aneurysms with an irregular flow pattern and six out of eight with a regular flow pattern. No firm relationship could be established between any geometrical type and shear stress distribution. Only 1 of 14 aneurysms with a perpendicular axis, but 4 of 7 aneurysms with a parallel axis, had ruptured. Aneurysm geometry does have an impact on flow conditions. Aneurysms with a main axis parallel to the parent artery have a tendency to have a jet flow pattern and uneven distribution of unsteady pressure. These aneurysms may have a higher rate of rupture as than those with a main axis perpendicular to the parent artery. (orig.)

  10. Volumetric lattice Boltzmann simulation for blood flow in aorta arteries (United States)

    Deep, Debanjan; Yu, Huidan (Whitney); Teague, Shawn


    Complicated moving boundaries pose a major challenge in computational fluid dynamics for complex flows, especially in the biomechanics of both blood flow in the cardiovascular system and air flow in the respiratory system where the compliant nature of the vessels can have significant effects on the flow rate and wall shear stress. We develop a computation approach to treat arbitrarily moving boundaries using a volumetric representation of lattice Boltzmann method, which distributes fluid particles inside lattice cells. A volumetric bounce-back procedure is applied in the streaming step while momentum exchange between the fluid and moving solid boundary are accounted for in the collision sub-step. Additional boundary-induced migration is introduced to conserve fluid mass as the boundary moves across fluid cells. The volumetric LBM (VLBM) is used to simulate blood flow in both normal and dilated aorta arteries. We first compare flow structure and pressure distribution in steady state with results from Navier-Stokes based solver and good agreements are achieved. Then we focus on wall stress within the aorta for different heart pumping condition and present quantitative measurement of wall shear and normal stress.

  11. High Definition Graphics Application In Fluid Flow Simulations (United States)

    Bancroft, Gordon; Merritt, Fergus; Buning, Pieter; Watson, Val


    The Fluid Dynamics Division of the NASA Ames Research Center is using high definition (high spatial and color resolution) computer graphics to help visualize flow fields from computer simulations of air flow about vehicles such as the Space Shuttle. Computational solutions of the flow field are obtained from Cray supercomputers. These solutions are then transferred to Silicon Graphics Workstations for creation and interactive viewing of dynamic 3D displays of the flow fields. The scientist's viewing position in the 3D space can be interactively changed while the fluid flow is either frozen in time or moving in time. Specific animated sequences can be created for viewing on the workstation or for recording on video tape or 16mm movies with the aid of specialized software that permits easy editing and automatic "tweening" of the sequences. This paper will describe the software developed for creating the 3D flow field displays and for creating the animation sequences. It will also specify the hardware required to generate these displays, to record them on video tape, and to record them on 16mm film. A video tape will be shown to illustrate the capabilities of the hardware and software with examples.

  12. Simulations of ductile flow in brittle material processing

    Energy Technology Data Exchange (ETDEWEB)

    Luh, M.H.; Strenkowski, J.S.


    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  13. Moving least squares simulation of free surface flows

    DEFF Research Database (Denmark)

    Felter, C. L.; Walther, Jens Honore; Henriksen, Christian


    point. Then a boundary condition for pressure (or density) is developed. This condition is applicable at interfaces between different media such as fluid–solid or fluid–void. The effect of surface tension is included. The equations are discretized by a moving least squares method for the spatial......In this paper a Moving Least Squares method (MLS) for the simulation of 2D free surface flows is presented. The emphasis is on the governing equations, the boundary conditions, and the numerical implementation. The compressible viscous isothermal Navier–Stokes equations are taken as the starting...... derivatives and a Runge–Kutta method for the time derivatives. The computational frame is Lagrangian, which means that the computational nodes are convected with the flow. The method proposed here is benchmarked using the standard lid driven cavity problem, a rotating free surface problem, and the simulation...

  14. Validation of Blood Flow Simulations in Intracranial Aneurysms (United States)

    Yu, Yue; Anor, Tomer; Baek, Hyoungsu; Jayaraman, Mahesh; Madsen, Joseph; Karniadakis, George


    Catheter-based digital subtraction angiography (DSA) is the most accurate diagnostic procedure for investigating vascular anomalies and cerebral blood flow. Here we describe utilization of DSA in a patient with an intracranial aneursysm to validate corresponding spectral element simulations. Subsequently, we examine via visualization the structure of flow in internal carotid arteries laden with three different types of aneurysms: (1) a wide-necked saccular aneurysm, (2) a narrower-necked saccular aneurysm, and (3) a case with two adjacent saccular aneurysms. We have found through high resolution simulations that in cases (1) and (3) in physiological conditions a hydrodynamic instability occurs during the decelerating systolic phase resulting in a high frequency oscillation (20-50 Hz). We use the in-silico dye visualization to discriminate among different physical mechanisms causing the instability and contrast their effect with case (2) for which an instability arises only at much higher flowrates.

  15. Numerical simulation of draft tube flow of a bulb turbine

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, J.G. [Federal University of Triangulo Mineiro, Institute of Technological and Exact Sciences, Avenida Doutor Randolfo Borges Junior, 1250 – Uberaba – MG (Brazil); Brasil, A.C.P. Jr. [University of Brasilia, Department of Mechanical Engineering, Campus Darcy Ribeiro, Brasilia – DF (Brazil)


    In this work a numerical study of draft tube of a bulb hydraulic turbine is presented, where a new geometry is proposed. This new proposal of draft tube has the unaffected ratio area, a great reduction in his length and approximately the same efficiency of the draft tube conventionally used. The numerical simulations were obtained in commercial software of calculation of flow (CFX-14), using the turbulence model SST, that allows a description of the field fluid dynamic near to the wall. The simulation strategy has an intention of identifying the stall of the boundary layer precisely limits near to the wall and recirculations in the central part, once those are the great causes of the decrease of efficiency of a draft tube. Finally, it is obtained qualitative and quantitative results about the flow in draft tubes.

  16. Numerical simulation of lava flow using a GPU SPH model

    Directory of Open Access Journals (Sweden)

    Eugenio Rustico


    Full Text Available A smoothed particle hydrodynamics (SPH method for lava-flow modeling was implemented on a graphical processing unit (GPU using the compute unified device architecture (CUDA developed by NVIDIA. This resulted in speed-ups of up to two orders of magnitude. The three-dimensional model can simulate lava flow on a real topography with free-surface, non-Newtonian fluids, and with phase change. The entire SPH code has three main components, neighbor list construction, force computation, and integration of the equation of motion, and it is computed on the GPU, fully exploiting the computational power. The simulation speed achieved is one to two orders of magnitude faster than the equivalent central processing unit (CPU code. This GPU implementation of SPH allows high resolution SPH modeling in hours and days, rather than in weeks and months, on inexpensive and readily available hardware.

  17. Unsteady Simulation of a Landing-Gear Flow Field (United States)

    Li, Fei; Khorrami, Mehdi R.; Malik, Mujeeb R.


    This paper presents results of an unsteady Reynolds-averaged Navier-Stokes simulation of a landing-gear flow field. The geometry of the four-wheel landing gear assembly consists of several of the fine details including the oleo-strut, two diagonal struts, a door, yokes/pin and a flat-plate simulating the wing surface. The computational results, obtained by using 13.3 million grid points, are presented with an emphasis on the characteristics of the unsteadiness ensuing from different parts of the landing-gear assembly, including vortex shedding patterns and frequencies of dominant oscillations. The results show that the presence of the diagonal struts and the door significantly influence the flow field. Owing to the induced asymmetry, vortices are shed only from one of the rear wheels and not the other. Present computations also capture streamwise vortices originating from the upstream corners of the door.

  18. [Numerical flow simulation : A new method for assessing nasal breathing]. (United States)

    Hildebrandt, T; Osman, J; Goubergrits, L


    The current options for objective assessment of nasal breathing are limited. The maximum they can determine is the total nasal resistance. Possibilities to analyze the endonasal airstream are lacking. In contrast, numerical flow simulation is able to provide detailed information of the flow field within the nasal cavity. Thus, it has the potential to analyze the nasal airstream of an individual patient in a comprehensive manner and only a computed tomography (CT) scan of the paranasal sinuses is required. The clinical application is still limited due to the necessary technical and personnel resources. In particular, a statistically based referential characterization of normal nasal breathing does not yet exist in order to be able to compare and classify the simulation results.

  19. Air-Flow Simulation in Realistic Models of the Trachea

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, T; Schwartz, P; Trebotich, D


    In this article we present preliminary results from a new technique for flow simulation in realistic anatomical airways. The airways are extracted by means of Level-Sets methods that accurately model the complex and varying surfaces of anatomical objects. The surfaces obtained are defined at the sub-pixel level where they intersect the Cartesian grid of the image domain. It is therefore straightforward to construct embedded boundary representations of these objects on the same grid, for which recent work has enabled discretization of the Navier- Stokes equations for incompressible fluids. While most classical techniques require construction of a structured mesh that approximates the surface in order to extrapolate a 3D finite-element gridding of the whole volume, our method directly simulates the air-flow inside the extracted surface without losing any complicated details and without building additional grids.

  20. Three-dimensional simulation of square jets in cross-flow:the near field flow structure (United States)

    Hwang, Robert R.; Sau, Amalendu; Sheu, Tony W. H.


    Direct numerical simulations are performed to predict the three-dimensional unsteady flow interaction around a square jet issuing normal to a cross-flow. The near field flow features investigated here include, the presence of a horseshoe vortex system originating upstream of the jet orifice, a sequence of instability induced shear layer rollers formed around the front side of the jet, and the inception process of the counter rotating vortex pair from the folded lateral jet shear. The issue of origin of the counter rotating votex pair and its evolution process starting from inception has been investigated to a complete detail. The results obtained from the present simulation also confirm the fact that the upright wake vortices, which form downstream of the jet orifice, actually originate on the cross-flow boundary layer where they spiral in and lift away from the wall shear layer. Moreover, the near-wall flow topology as extracted from the simulated data is observed to be closely consistent with the existing experimental findings.

  1. Simulations of droplet coalescence in simple shear flow. (United States)

    Shardt, Orest; Derksen, J J; Mitra, Sushanta K


    Simulating droplet coalescence is challenging because small-scale (tens of nanometers) phenomena determine the behavior of much larger (micrometer- to millimeter-scale) droplets. In general, liquid droplets colliding in a liquid medium coalesce when the capillary number is less than a critical value. We present simulations of droplet collisions and coalescence in simple shear flow using the free-energy binary-liquid lattice Boltzmann method. In previous simulations of low-speed collisions, droplets coalesced at unrealistically high capillary numbers. Simulations of noncoalescing droplets have not been reported, and therefore, the critical capillary number for simulated collisions was unknown. By simulating droplets with radii up to 100 lattice nodes, we determine the critical capillary number for coalescence and quantify the effects of several numerical and geometric parameters. The simulations were performed with a well-resolved interface, a Reynolds number of one, and capillary numbers from 0.01 to 0.2. The ratio of the droplet radius and interface thickness has the greatest effect on the critical capillary number. As in experiments, the critical capillary number decreases with increasing droplet size. A second numerical parameter, the interface diffusivity (Péclet number) also influences the conditions for coalescence: coalescence occurs at higher capillary numbers with lower Péclet numbers (higher diffusivity). The effects of the vertical offset between the droplets and the confinement of the droplets were also studied. Physically reasonable results were obtained and provide insight into the conditions for coalescence. Simulations that match the conditions of experiments reported in the literature remain computationally impractical. However, the scale of the simulations is now sufficiently large that a comparison with experiments involving smaller droplets (≈10 μm) and lower viscosities (≈10(-6) m(2)/s, the viscosity of water) may be possible

  2. DEM simulation of granular flows in a centrifugal acceleration field (United States)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei


    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  3. Numerical simulations of flux flow in stacked Josephson junctions

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Pedersen, Niels Falsig


    We numerically investigate Josephson vortex flux flow states in stacked Josephson junctions, motivated by recent experiments trying to observe the vortices in a square vortex lattice when a magnetic field is applied to layered high-Tc superconductors of the Bi2Sr2CaCu2Ox type. By extensive...... numerical simulations, we are able to clearly distinguish between triangular and square vortex lattices and to identify the parameters leading to an in-phase vortex configuration....

  4. Vortex-Blob Simulation Of Two-Dimensional Flows (United States)

    Spalart, Philippe


    Software package includes two programs: KPD12 and KPD12P. Both programs use vortex-blob method to simulate flow around solid bodies. KPD12 treats unbounded domain, while KPD12P treats domain having periodicity in one direction. Main advantage, ability to handle situations involving arbitrary shapes, including multiple bodies. User supplies only points on solid boundaries; no grid. Source code in Cray FORTRAN.

  5. Optimal Results and Numerical Simulations for Flow Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Tao Ren


    Full Text Available This paper considers the m-machine flow shop problem with two objectives: makespan with release dates and total quadratic completion time, respectively. For Fm|rj|Cmax, we prove the asymptotic optimality for any dense scheduling when the problem scale is large enough. For Fm‖ΣCj2, improvement strategy with local search is presented to promote the performance of the classical SPT heuristic. At the end of the paper, simulations show the effectiveness of the improvement strategy.

  6. Numerical simulation of flow in the wet scrubber for desulfurization

    Directory of Open Access Journals (Sweden)

    Novosád Jan


    Full Text Available This article deals with numerical simulation of flow and chemical reactions in absorber for desulfurization of flue-gas. The objective of the work is the investigation of effect of different nozzles types and their placement in spray layers. These nozzles distribute lime suspension into flue gas stream. The research includes two types of nozzles and four different arrangements of nozzles and spray layers. Conclusion describes the effect of nozzle types and their arrangements on the suspension concentration in absorber.

  7. Assessing continuum postulates in simulations of granular flow


    Rycroft, Chris


    Continuum mechanics relies on the fundamental notion of a mesoscopic volume "element" in which properties averaged over discrete particles obey deterministic relationships. Recent work on granular materials suggests a continuum law may be inapplicable, revealing inhomogeneities at the particle level, such as force chains and slow cage breaking. Here, we analyze large-scale three-dimensional Discrete-Element Method (DEM) simulations of different granular flows and show that an approximate "gra...

  8. Simulation of partially saturated - saturated flow in the Caspar Creek E-road groundwater system (United States)

    Jason C. Fisher


    Abstract - Over the past decade, the U.S. Forest Service has monitored the subsurface hillslope flow of the E-road swale. The swale is located in the Caspar Creek watershed near Fort Bragg, California. In hydrologic year 1990 a logging road was built across the middle section of the hillslope followed by a total clearcut of the area during the following year....

  9. Level-set simulations of soluble surfactant driven flows (United States)

    Cleret de Langavant, Charles; Guittet, Arthur; Theillard, Maxime; Temprano-Coleto, Fernando; Gibou, Frédéric


    We present an approach to simulate the diffusion, advection and adsorption-desorption of a material quantity defined on an interface in two and three spatial dimensions. We use a level-set approach to capture the interface motion and a Quad/Octree data structure to efficiently solve the equations describing the underlying physics. Coupling with a Navier-Stokes solver enables the study of the effect of soluble surfactants that locally modify the parameters of surface tension on different types of flows. The method is tested on several benchmarks and applied to three typical examples of flows in the presence of surfactant: a bubble in a shear flow, the well-known phenomenon of tears of wine, and the Landau-Levich coating problem.

  10. Simulation of uncompressible fluid flow through a porous media

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A. [Instituto Politecnico Nacional (SEPI-ESIQIE-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met. (Edif. ' Z' y Edif. ' 6' P.B.), Mexico City (Mexico)], E-mail:; Gonzalez, J.L. [Instituto Politecnico Nacional (SEPI-ESIQIE-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met. (Edif. ' Z' y Edif. ' 6' P.B.), Mexico City (Mexico); Carrillo, F. [Instituto Politecnico Nacional (SEPI-CICATA-IPN), Unidad Altamira Tamaulipas, Mexico (Mexico); Lopez, S. [Instituto Mexicano del Petroleo (I.M.P.-D.F.), Mexico (Mexico)


    Recently, a great interest has been focused for investigations about transport phenomena in disordered systems. One of the most treated topics is fluid flow through anisotropic materials due to the importance in many industrial processes like fluid flow in filters, membranes, walls, oil reservoirs, etc. In this work is described the formulation of a 2D mathematical model to simulate the fluid flow behavior through a porous media (PM) based on the solution of the continuity equation as a function of the Darcy's law for a percolation system; which was reproduced using computational techniques reproduced using a random distribution of the porous media properties (porosity, permeability and saturation). The model displays the filling of a partially saturated porous media with a new injected fluid showing the non-defined advance front and dispersion of fluids phenomena.

  11. Estimation of flow accumulation uncertainty by Monte Carlo stochastic simulations

    Directory of Open Access Journals (Sweden)

    Višnjevac Nenad


    Full Text Available Very often, outputs provided by GIS functions and analysis are assumed as exact results. However, they are influenced by certain uncertainty which may affect the decisions based on those results. It is very complex and almost impossible to calculate that uncertainty using classical mathematical models because of very complex algorithms that are used in GIS analyses. In this paper we discuss an alternative method, i.e. the use of stochastic Monte Carlo simulations to estimate the uncertainty of flow accumulation. The case study area included the broader area of the Municipality of Čačak, where Monte Carlo stochastic simulations were applied in order to create one hundred possible outputs of flow accumulation. A statistical analysis was performed on the basis of these versions, and the "most likely" version of flow accumulation in association with its confidence bounds (standard deviation was created. Further, this paper describes the most important phases in the process of estimating uncertainty, such as variogram modelling and chooses the right number of simulations. Finally, it makes suggestions on how to effectively use and discuss the results and their practical significance.

  12. An Improved Simulation of the Diurnally Varying Street Canyon Flow (United States)

    Yaghoobian, Neda; Kleissl, Jan; Paw U, Kyaw Tha


    The impact of diurnal variation of temperature distribution over building and ground surfaces on the wind flow and scalar transport in street canyons is numerically investigated using the PArallelized LES Model (PALM). The Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES) is used for predicting urban surface heat fluxes as boundary conditions for a modified version of PALM. TUF-IOBES dynamically simulates indoor and outdoor building surface temperatures and heat fluxes in an urban area taking into account weather conditions, indoor heat sources, building and urban material properties, composition of the building envelope (e.g. windows, insulation), and HVAC equipment. Temperature (and heat flux) distribution over urban surfaces of the 3-D raster-type geometry of TUF-IOBES makes it possible to provide realistic, high resolution boundary conditions for the numerical simulation of flow and scalar transport in an urban canopy. Compared to some previous analyses using uniformly distributed thermal forcing associated with urban surfaces, the present analysis shows that resolving non-uniform thermal forcings can provide more detailed and realistic patterns of the local air flow and pollutant dispersion in urban canyons.

  13. Framework for simulating droplet vaporization in turbulent flows (United States)

    Palmore, John; Desjardins, Olivier


    A framework for performing direct numerical simulations of droplet vaporization is presented. The work is motivated by spray combustion in engines wherein fuel droplets vaporize in a turbulent gas flow. The framework is built into a conservative finite volume code for simulating low Mach number turbulent multiphase flows. Phase tracking is performed using a discretely conservative geometric volume of fluid method, while the transport of mass fraction and temperature is performed using the BQUICK scheme. Special attention is given to the implementation of transport equations near the interface to ensure the consistency between fluxes of mass, momentum, and scalars. The effect of evaporation on the flow appears as a system of coupled source terms which depend on the local thermodynamic equilibrium between the phases. The sources are implemented implicitly using an unconditionally stable, monotone scheme. Two methodologies for resolving the system's thermodynamic equilibrium are compared for their accuracy, robustness, and computational expense. Verification is performed by comparing results to known solutions in one and three dimensions. Finally, simulations of droplets vaporizing in turbulence are demonstrated, and trends for mass fraction and temperature fields are discussed.

  14. Construction and simulation of a novel continuous traffic flow model (United States)

    Hwang, Yao-Hsin; Yu, Jui-Ling


    In this paper, we aim to propose a novel mathematical model for traffic flow and apply a newly developed characteristic particle method to solve the associate governing equations. As compared with the existing non-equilibrium higher-order traffic flow models, the present one is put forward to satisfy the following three conditions: Preserve the equilibrium state in the smooth region. Yield an anisotropic propagation of traffic flow information. Expressed with a conservation law form for traffic momentum. These conditions will ensure a more practical simulation in traffic flow physics: The current traffic will not be influenced by the condition in the behind and result in unambiguous condition across a traffic shock. Through analyses of characteristics, stability condition and steady-state solution adherent to the equation system, it is shown that the proposed model actually conform to these conditions. Furthermore, this model can be cast into its characteristic form which, incorporated with the Rankine-Hugoniot relation, is appropriate to be simulated by the characteristic particle method to obtain accurate computational results.

  15. SIPSON--simulation of interaction between pipe flow and surface overland flow in networks. (United States)

    Djordjević, S; Prodanović, D; Maksimović, C; Ivetić, M; Savić, D


    The new simulation model, named SIPSON, based on the Preissmann finite difference method and the conjugate gradient method, is presented in the paper. This model simulates conditions when the hydraulic capacity of a sewer system is exceeded, pipe flow is pressurized, the water flows out from the piped system to the streets, and the inlets cannot capture all the runoff. In the mathematical model, buried structures and pipelines, together with surface channels, make a horizontally and vertically looped network involving a complex interaction of flows. In this paper, special internal boundary conditions related to equivalent inlets are discussed. Procedures are described for the simulation of manhole cover loss, basement flooding, the representation of street geometry, and the distribution of runoff hydrographs between surface and underground networks. All these procedures are built into the simulation model. Relevant issues are illustrated on a set of examples, focusing on specific parameters and comparison with field measurements of flooding of the Motilal ki Chal catchment (Indore, India). Satisfactory agreement of observed and simulated hydrographs and maximum surface flooding levels is obtained. It is concluded that the presented approach is an improvement compared to the standard "virtual reservoir" approach commonly applied in most of the models.

  16. Flow Simulations of The Dynamics of a Perturbed Solid-Body Rotation Flow (United States)

    Wang, Shixiao; Feng, Chunjuan; Liu, Feng; Rusak, Zvi


    DNS is conducted to study the 3-D flow dynamics of a base solid-body rotation flow with a uniform axial velocity in a finite-length pipe. The simulation results describe the neutral stability line in response to either axisymmetric or 3-dimensional perturbations in a diagram of Reynolds number (Re , based on inlet axial velocity and pipe radius) versus the incoming flow swirl ratio (ω). This line is in good agreement with the neutral stability line recently predicted by the linear stability theory of Wang et al. (2016). The Wang & Rusak (1996) axisymmetric instability mechanism and evolution to an axisymmetric breakdown state is recovered in the simulations at certain operational conditions in terms of Re and ω. However, at other operational conditions there exists a dominant, 3-dimensional spiral type of instability mode that agrees with the linear stability theory of Wang et al. (2016). The growth of this mode leads to a spiral type of flow roll-up that subsequently nonlinearly saturates on a rotating spiral type of vortex breakdown. The computed time history of the velocity components at a certain point in the flow is used to describe 3-dimensional phase portraits of the flow global dynamics and its long-term behavior.

  17. CFD simulation of neutral ABL flows; Atmospheric Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong Zhang


    This work is to evaluate the CFD prediction of Atmospheric Boundary Layer flow field over different terrains employing Fluent 6.3 software. How accurate the simulation could achieve depend on following aspects: viscous model, wall functions, agreement of CFD model with inlet wind velocity profile and top boundary condition. Fluent employ wall function roughness modifications based on data from experiments with sand grain roughened pipes and channels, describe wall adjacent zone with Roughness Height (Ks) instead of Roughness Length (z{sub 0}). In a CFD simulation of ABL flow, the mean wind velocity profile is generally described with either a logarithmic equation by the presence of aerodynamic roughness length z{sub 0} or an exponential equation by the presence of exponent. As indicated by some former researchers, the disagreement between wall function model and ABL velocity profile description will result in some undesirable gradient along flow direction. There are some methods to improve the simulation model in literatures, some of them are discussed in this report, but none of those remedial methods are perfect to eliminate the streamwise gradients in mean wind speed and turbulence, as EllipSys3D could do. In this paper, a new near wall treatment function is designed, which, in some degree, can correct the horizontal gradients problem. Based on the corrected model constants and near wall treatment function, a simulation of Askervein Hill is carried out. The wind condition is neutrally stratified ABL and the measurements are best documented until now. Comparison with measured data shows that the CFD model can well predict the velocity field and relative turbulence kinetic energy field. Furthermore, a series of artificial complex terrains are designed, and some of the main simulation results are reported. (au)

  18. Role of vegetation (Typha latifolia) on nutrient removal in a horizontal subsurface-flow constructed wetland treating UASB reactor-trickling filter effluent. (United States)

    da Costa, Jocilene Ferreira; Martins, Weber Luiz Pinto; Seidl, Martin; von Sperling, Marcos


    The main objective of the work is to characterize the role of plants in a constructed wetland in the removal of nitrogen (N) and phosphorus (P). The experiments were carried out in a full-scale system in the city of Belo Horizonte, Brazil, with two parallel horizontal subsurface-flow constructed wetland units (one planted with Typha latifolia and one unplanted) treating the effluent from a system composed of an upflow anaerobic sludge blanket reactor and a trickling filter (TF). Each wetland unit received a mean flow of approximately 8.5 m³ d⁻¹ (population equivalent around 60 inhabitants each), with a surface hydraulic loading rate 0.12 m³m⁻²d⁻¹. The experiments were conducted from September 2011 to July 2013. Mean effluent concentrations from the wetlands were: (a) planted unit total nitrogen (TN) 22 mg L⁻¹, ammonia-N 19 mg L⁻¹, nitrite-N 0.10 mg L⁻¹, nitrate-N 0.25 mg L⁻¹, P-total 1.31 mg L⁻¹; and (b) unplanted unit TN 24 mg L⁻¹, ammonia-N 20 mg L⁻¹, nitrite-N 0.54 mg mL⁻¹, nitrate-N 0.15 mg L⁻¹, P-total 1.31 mg L⁻¹. The aerial part of the plant contained mean values of 24.1 gN (kg dry matter)⁻¹ and 4.4 gP (kg dry matter)⁻¹, and the plant root zone was composed of 16.5 gN (kg dry matter)⁻¹ and 4.1 gP (kg dry matter)⁻¹. The mean extraction of N by the plant biomass was 726 kgN ha⁻¹y⁻¹, corresponding to 17% of the N load removed. For P, the extraction by the plant biomass was 105 kgP ha⁻¹y⁻¹, corresponding to 9% of the P load removed. These results reinforce the reports that N and P removal due to plant uptake is a minor mechanism in horizontal subsurface-flow constructed wetlands operating under similar loading rates, typical for polishing of sanitary effluent.

  19. Simulation of dry granular flows using discrete element methods (United States)

    Martin, Hugo; Lefebvre, Aline; Maday, Yvon; Mangeney, Anne; Maury, Bertrand; Sainte-Marie, Jacques


    Granular flows are composed of interacting particles (for instance sand grains). While natural flow simulations at the field scale are generally based on continuum models, discrete element methods are very useful to get insight into the detailed contact interactions between the particles involved. We shall consider here both well known molecular dynamics (MD) and contact dynamics (CD) methods to simulate granular particle interaction. The difference between these methods is the linearisation of contact forces in MD. We are interested to compare these methods, and especially the effects of the linearisation in simulations. In the present work, we introduce a new rigid bodies model at the scale of the particles and its resolution by contact dynamics. The interesting aspect of our CD method is to treat the contacts in all the material system in one step without any iterative process required when the contacts are dealt with one after the other. All contacts are calculated here at the same time in just one iteration and the normal and tangential constraints are treated simultaneously. The present model follows from a convex optimization problem presented in [1] by B. Maury in which we add a frictional behaviour to the contact law between the particles. To analyse the behaviour of this model, we compare our results to analytical solutions when we can compute them and otherwise to simulations with molecular dynamics method. [1] A time-stepping scheme for inelastic collisions. Numerical handling of the nonoverlapping constraint, B. Maury, Numerische Mathematik, 17 january 2006.

  20. Influence of rheology on debris-flow simulation

    Directory of Open Access Journals (Sweden)

    M. Arattano


    Full Text Available Systems of partial differential equations that include the momentum and the mass conservation equations are commonly used for the simulation of debris flow initiation, propagation and deposition both in field and in laboratory research. The numerical solution of the partial differential equations can be very complicated and consequently many approximations that neglect some of their terms have been proposed in literature. Many numerical methods have been also developed to solve the equations. However we show in this paper that the choice of a reliable rheological model can be more important than the choice of the best approximation or the best numerical method to employ. A simulation of a debris flow event that occurred in 2004 in an experimental basin on the Italian Alps has been carried out to investigate this issue. The simulated results have been compared with the hydrographs recorded during the event. The rheological parameters that have been obtained through the calibration of the mathematical model have been also compared with the rheological parameters obtained through the calibration of previous events, occurred in the same basin. The simulation results show that the influence of the inertial terms of the Saint-Venant equation is much more negligible than the influence of the rheological parameters and the geometry. A methodology to quantify this influence has been proposed.

  1. Simulation of flow in dual-scale porous media (United States)

    Tan, Hua

    Liquid composite molding (LCM) is one of the most effective processes for manufacturing near net-shaped parts from fiber-reinforced polymer composites. The quality of LCM products and the efficiency of the process depend strongly on the wetting of fiber preforms during the mold-filling stage of LCM. Mold-filling simulation is a very effective approach to optimize the LCM process and mold design. Recent studies have shown that the flow modeling for the single-scale fiber preforms (made from random mats) has difficulties in accurately predicting the wetting in the dual-scale fiber preforms (made from woven and stitched fabrics); the latter are characterized by the presence of unsaturated flow created due to two distinct length-scales of pores (i.e., large pores outside the tows and small pores inside the tows) in the same media. In this study, we first develop a method to evaluate the accuracy of the permeability-measuring devices for LCM, and conduct a series of 1-D mold-filling experiments for different dual-scale fabrics. The volume averaging method is then applied to derive the averaged governing equations for modeling the macroscopic flow through the dual-scale fabrics. The two sets of governing equations are coupled with each other through the sink terms representing the absorptions of mass, energy, and species (degree of resin cure) from the global flow by the local fiber tows. The finite element method (FEM) coupled with the control volume method, also known as the finite element/control volume (FE/CV) method, is employed to solve the governing equations and track the moving boundary signifying the moving liquid-front. The numerical computations are conducted with the help of an in-house developed computer program called PORE-FLOW(c). We develop the flux-corrected transport (FCT) based FEM to stabilize the convection-dominated energy and species equations. A fast methodology is proposed to simulate the dual-scale flow under isothermal conditions, where flow

  2. Numerical Simulation of Real Debris-Flow Events (United States)

    Fraccarollo, L.; Papa, M.


    A one-dimensional model is presented to predict debris-flow runouts. The model is based on shallow water type assumptions. The fluid is assumed to be homogeneous and the original bed of the flow domain to be unerodible. The fluid is characterized by a rheology of Bingham type. A numerical tool able to cope with the nature of debris flows has been worked out. It represents an extension of a second order accurate and conservative method of Godunov type. Special care has been devoted to the influence of the source terms and of the geometrical representation of the natural cross sections, which play a fundamental role. The application concerns a monitored event in the Dolomites in Italy, where field analyses allowed a characterization of the behavior of solid-liquid mixture as a yield stress material. The comparison between numerical simulations and field observations highlights the impossibility of representing all phases of the flow with constant values of the rheological parameters. Nevertheless the results show that it is possible to separately represent the phase of the flow in the upstream reach and the phase of the deposition in the alluvial fan, with a good agreement with field observations.

  3. Numerical simulation of transient flows in a rocket propulsion nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lijo, Vincent [School of Mechanical Engineering, Andong National University, Andong 760-749 (Korea, Republic of); Kim, Heuy Dong, E-mail: [School of Mechanical Engineering, Andong National University, Andong 760-749 (Korea, Republic of); Setoguchi, Toshiaki; Matsuo, Shigeru [Department of Mechanical Engineering, Saga University, 1 Honjo, Saga (Japan)


    A numerical investigation of transient flows in an axisymmetric over-expanded thrust-optimized contour nozzle is presented. These nozzles experience side-loads during start-up and shut-down operations, because of the flow separation at nozzle walls. Two types of flow separations such as free shock separation (FSS) and restricted shock separation (RSS) shock structure occur. A two-dimensional axisymmetric numerical simulation has been carried for a thrust-optimized contour nozzle to validate present results and investigate oscillatory flow characteristics during the start-up processes. Reynolds-Averaged Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Governing equations are solved by coupled implicit scheme. The present work is concerned with comprehensive assessment of the flow features by using Reynolds stress turbulence model. Computed pressure at the nozzle wall closely matched with the experimental data. A hysteresis phenomenon has been observed between these two shock structures. The transition from FSS to RSS pattern during start-up process has shown maximum nozzle wall pressure. Nozzle wall pressure and shear stress values have shown fluctuations during the FSS to RSS transition. The oscillatory pressure has been observed on the nozzle wall for high pressure ratio. Present results have shown that magnitude of the nozzle wall pressure variation is high for the oscillatory phenomenon.

  4. dfnWorks: A HPC Workflow for Discrete Fracture Network Modeling with Subsurface Flow and Transport Applications (United States)

    Gable, C. W.; Hyman, J.; Karra, S.; Makedonska, N.; Painter, S. L.; Viswanathan, H. S.


    dfnWorks generates discrete fracture networks (DFN) of planar polygons, creates a high quality conforming Delaunay triangulation of the intersecting DFN polygons, assigns properties (aperture, permeability) using geostatistics, sets boundary and initial conditions, solves pressure/flow in single or multi-phase fluids (water, air, CO2) using the parallel PFLOTRAN or serial FEHM, and solves for transport using Lagrangian particle tracking. We outline the dfnWorks workflow and present applications from a range of fractured rock systems. dfnWorks ( is composed of three main components, all of which are freely available. dfnGen generates a distribution of fracture polygons from site characterization data (statistics or deterministic fractures) and utilizes the FRAM (Feature Rejection Algorithm for Meshing) to guarantee the mesh generation package LaGriT ( will generate a high quality conforming Delaunay triangular mesh. dfnWorks links the mesh to either PFLOTRAN ( or FEHM ( for solving flow and transport. The various physics options available in FEHM and PFLOTRAN such as single and multi-phase flow and reactive transport are all available with appropriate initial and boundary conditions and material property models. dfnTrans utilizes explicit Lagrangian particle tracking on the DFN using a velocity field reconstructed from the steady state pressure/flow field solution obtained in PFLOTRAN or FEHM. Applications are demonstrated for nuclear waste repository in fractured granite, CO2 sequestration and extraction of unconventional hydrocarbon resources.

  5. Large Eddy Simulation of Engineering Flows: A Bill Reynolds Legacy. (United States)

    Moin, Parviz


    The term, Large eddy simulation, LES, was coined by Bill Reynolds, thirty years ago when he and his colleagues pioneered the introduction of LES in the engineering community. Bill's legacy in LES features his insistence on having a proper mathematical definition of the large scale field independent of the numerical method used, and his vision for using numerical simulation output as data for research in turbulence physics and modeling, just as one would think of using experimental data. However, as an engineer, Bill was pre-dominantly interested in the predictive capability of computational fluid dynamics and in particular LES. In this talk I will present the state of the art in large eddy simulation of complex engineering flows. Most of this technology has been developed in the Department of Energy's ASCI Program at Stanford which was led by Bill in the last years of his distinguished career. At the core of this technology is a fully implicit non-dissipative LES code which uses unstructured grids with arbitrary elements. A hybrid Eulerian/ Largangian approach is used for multi-phase flows, and chemical reactions are introduced through dynamic equations for mixture fraction and reaction progress variable in conjunction with flamelet tables. The predictive capability of LES is demonstrated in several validation studies in flows with complex physics and complex geometry including flow in the combustor of a modern aircraft engine. LES in such a complex application is only possible through efficient utilization of modern parallel super-computers which was recognized and emphasized by Bill from the beginning. The presentation will include a brief mention of computer science efforts for efficient implementation of LES.

  6. Hydrodynamic simulations of accretion flows with time-varying viscosity (United States)

    Roy, Abhishek; Chakrabarti, Sandip K.


    X-ray outbursts of stellar-mass black hole candidates are believed to be due to a sudden rise in viscosity, which transports angular momentum efficiently and increases the accretion rates, causing higher X-ray flux. After the viscosity is reduced, the outburst subsides and the object returns back to the pre-outburst quiescence stage. In the absence of a satisfactory understanding of the physical mechanism leading to such a sharp time dependence of viscous processes, we perform numerical simulations where we include the rise and fall of a viscosity parameter at an outer injection grid, assumed to be located at the accumulation radius where matter from the companion is piled up before being released by enhanced viscosity. We use a power-law radial dependence of the viscosity parameter (α ˜ rɛ), but the exponent (ɛ) is allowed to vary with time to mimic a fast rise and decay of the viscosity parameter. Since X-ray spectra of a black hole candidate can be explained by a Keplerian disc component in the presence of a post-shock region of an advective flow, our goal here is also to understand whether the flow configurations required to explain the spectral states of an outbursting source could be obtained by a time-varying viscosity. We present the results of our simulations to prove that low-angular-momentum (sub-Keplerian) advective flows do form a Keplerian disc in the pre-shock region when the viscosity is enhanced, which disappears on a much longer time-scale after the viscosity is withdrawn. From the variation of the Keplerian disc inside an advective halo, we believe that our result, for the first time, is able to simulate the two-component advective flow dynamics during an entire X-ray outburst and explain the observed hysteresis effects in the hardness-intensity diagram.

  7. Parallel discrete vortex methods for viscous flow simulation (United States)

    Takeda, Kenji

    In this thesis a parallel discrete vortex method is developed in order to investigate the long-time behaviour of bluff body wakes. The method is based on inviscid theory, and its extension to include viscous effects is a far from trivial problem. In this work four grid-free viscous models are directly compared to assess their accuracy and efficiency. The random walk, diffusion velocity, corrected core-spreading and vorticity redistribution methods are compared for simulating unbounded fluid flows, and for flows past an impulsively started cylinder at Reynolds numbers between 550 and 9500. The code uses a common core, so that the only free parameters are those directly related to the viscous models. The vorticity redistribution method encompasses all of the advantages of a purely Lagrangian method and incorporates a dynamic regridding scheme to maintain accurate discretisation of the vorticity field. This is used to simulate long-time flow past an impulsively started cylinder for Reynolds numbers 100, 150 and 1000. The code is fully parallel and achieves good speedup on both commodity and proprietary supercomputer systems. At Reynolds numbers below 150 the breakdown of the primary vortex street has been simulated. Results reveal a merging process, causing relaxation to a parallel shear flow. This itself sheds vortices, creating a secondary wake of increased wavelength. At Reynolds number 1000 the cylinder wake becomes chaotic, forming distinct vortex couples. These couples self-convect and can travel upstream. This has a destabilising effect on the vortex street, inducing merging, formation of tripolar and quadrupolar structures and, ultimately, spontaneous ejection of vortex couples upstream of the initial disturbance.

  8. Laboratory Simulation of Flow through Single Fractured Granite (United States)

    Singh, K. K.; Singh, D. N.; Ranjith, P. G.


    Laboratory simulation on fluid flow through fractured rock is important in addressing the seepage/fluid-in-rush related problems that occur during the execution of any civil or geological engineering projects. To understand the mechanics and transport properties of fluid through a fractured rock in detail and to quantify the sources of non-linearity in the discharge and base pressure relationship, fluid flow experiments were carried out on a cylindrical sample of granite containing a `single rough walled fracture'. These experiments were performed under varied conditions of confining pressures, σ 3 (5-40 MPa), which can simulate the condition occurring about 1,000 m below in the earth crust, with elevated base pressure, b p (up to 25 MPa) and by changing fracture roughness. The details of the methodologies involved and the observations are discussed here. The obtained results indicate that most of the data in the Q verses b p plot, fall on the straight line and the flow through the single fracture in granite obeys Darcy's law or the well-known "cubic law" even at high value of b p (=4 MPa) and σ 3 (=5 MPa) combination. The Reynolds number is quite sensitive to the b p, σ 3 and fracture roughness, and there is a critical b p, beyond which transition in flow occurs from laminar to turbulent. It is believed that such studies will be quite useful in identifying the limits of applicability of well know `cubic law', which is required for precise calculation of discharge and/or aperture in any practical issues and in further improving theoretical/numerical models associated with fluid flow through a single fracture.

  9. Flow-induced noise simulation using detached eddy simulation and the finite element acoustic analogy method

    Directory of Open Access Journals (Sweden)

    Kai Liu


    Full Text Available Signals in long-distance pipes are complex due to flow-induced noise generated in special structure, and the computation of these noise sources is difficult and time-consuming. To address this problem, a hybrid method based on computational fluid dynamics and Lighthill’s acoustic analogy theory is proposed to simulate flow-induced noise, with the results showing that the method is sufficient for noise predictions. The proposed method computes the turbulent flow field using detached eddy simulation and then calculates turbulence-generated sound using the finite element acoustic analogy method, which solves acoustic sources as volume sources. The velocity field obtained in the detached eddy simulation computation provides the sound source through interpolation between the computational fluid dynamics and acoustic meshes. The hybrid method is validated and assessed by comparing data from the cavity in pipe and large eddy simulation results. The peak value of flow-induced noise calculated at the monitor point is in good agreement with experimental data available in the literature.

  10. Flow structure interaction around an axial-flow hydrokinetic turbine: Experiments and CFD simulations (United States)

    Kang, S.; Chamorro, L.; Hill, C.; Arndt, R.; Sotiropoulos, F.


    We carry out large-eddy simulation of turbulent flow past a complete hydrokinetic turbine mounted on the bed of a straight rectangular open channel. The complex turbine geometry, including the rotor and all stationary components, is handled by employing the curvilinear immersed boundary (CURVIB) method [1], and velocity boundary conditions near all solid surfaces are reconstructed using a wall model based on solving the simplified boundary layer equations [2]. In this study we attempt to directly resolve flow-blade interactions without introducing turbine parameterization methods. The computed wake profiles of velocities and turbulent stresses agree well with the experimentally measured values.

  11. Large-eddy simulation of supercritical fluid flow and combustion (United States)

    Huo, Hongfa

    The present study focuses on the modeling and simulation of injection, mixing, and combustion of real fluids at supercritical conditions. The objectives of the study are: (1) to establish a unified theoretical framework that can be used to study the turbulent combustion of real fluids; (2) to implement the theoretical framework and conduct numerical studies with the aim of improving the understanding of the flow and combustion dynamics at conditions representative of contemporary liquid-propellant rocket engine operation; (3) to identify the key design parameters and the flow variables which dictate the dynamics characteristics of swirl- and shear- coaxial injectors. The theoretical and numerical framework is validated by simulating the Sandia Flame D. The calculated axial and radial profiles of velocity, temperature, and mass fractions of major species are in reasonably good agreement with the experimental measurements. The conditionally averaged mass fraction profiles agree very well with the experimental results at different axial locations. The validated model is first employed to examine the flow dynamics of liquid oxygen in a pressure swirl injector at supercritical conditions. Emphasis is placed on analyzing the effects of external excitations on the dynamic response of the injector. The high-frequency fluctuations do not significantly affect the flow field as they are dissipated shortly after being introduced into the flow. However, the lower-frequency fluctuations are amplified by the flow. As a result, the film thickness and the spreading angle at the nozzle exit fluctuate strongly for low-frequency external excitations. The combustion of gaseous oxygen/gaseous hydrogen in a high-pressure combustion chamber for a shear coaxial injector is simulated to assess the accuracy and the credibility of the computer program when applied to a sub-scale model of a combustor. The predicted heat flux profile is compared with the experimental and numerical studies. The

  12. Numerical simulations of groundwater flow at New Jersey Shallow Shelf (United States)

    Fehr, Annick; Patterson, Fabian; Lofi, Johanna; Reiche, Sönke


    During IODP Expedition 313, three boreholes were drilled in the so-called New Jersey transect. Hydrochemical studies revealed the groundwater situation as more complex than expected, characterized by several sharp boundaries between fresh and saline groundwater. Two conflicting hypotheses regarding the nature of these freshwater reservoirs are currently debated. One hypothesis is that these reservoirs are connected with onshore aquifers and continuously recharged by seaward-flowing groundwater. The second hypothesis is that fresh groundwater was emplaced during the last glacial period. In addition to the petrophysical properties measured during IODP 313 expedition, Nuclear Magnetic Resonance (NMR) measurements were performed on samples from boreholes M0027, M0028 and M0029 in order to deduce porosities and permeabilities. These results are compared with data from alternative laboratory measurements and with petrophysical properties inferred from downhole logging data. We incorporate these results into a 2D numerical model that reflects the shelf architecture as known from drillings and seismic data to perform submarine groundwater flow simulations. In order to account for uncertainties related to the spatial distribution of physical properties, such as porosity and permeability, systematic variation of input parameters was performed during simulation runs. The target is to test the two conflicting hypotheses of fresh groundwater emplacements offshore New Jersey and to improve the understanding of fluid flow processes at marine passive margins.

  13. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations. (United States)

    Di Staso, G; Clercx, H J H; Succi, S; Toschi, F


    Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  14. Fluid Flow Simulation and Energetic Analysis of Anomalocarididae Locomotion (United States)

    Mikel-Stites, Maxwell; Staples, Anne


    While an abundance of animal locomotion simulations have been performed modeling the motions of living arthropods and aquatic animals, little quantitative simulation and reconstruction of gait parameters has been done to model the locomotion of extinct animals, many of which bear little physical resemblance to their modern descendants. To that end, this project seeks to analyze potential swimming patterns used by the anomalocaridid family, (specifically Anomalocaris canadensis, a Cambrian Era aquatic predator), and determine the most probable modes of movement. This will serve to either verify or cast into question the current assumed movement patterns and properties of these animals and create a bridge between similar flexible-bodied swimmers and their robotic counterparts. This will be accomplished by particle-based fluid flow simulations of the flow around the fins of the animal, as well as an energy analysis of a variety of sample gaits. The energy analysis will then be compared to the extant information regarding speed/energy use curves in an attempt to determine which modes of swimming were most energy efficient for a given range of speeds. These results will provide a better understanding of how these long-extinct animals moved, possibly allowing an improved understanding of their behavioral patterns, and may also lead to a novel potential platform for bio-inspired underwater autonomous vehicles (UAVs).

  15. Rheology of dense granular chute flow: simulations to experiments

    Directory of Open Access Journals (Sweden)

    Bharathraj S


    Full Text Available Granular chute flow simulations reveal an interesting transition from a random disordered structure to an ordered one with hexagonally ordered sheets of spherical particles, when the base roughness is modulated. Two types of base roughness are considered. The first is a fixed base, where glued spherical particles form the base, and the base roughness is varied by changing the ratio of diameters of the base and flowing particles. In the second sinusoidal base, a smooth wall with sinusoidal height variation is used; the amplitude and wavelength of the base modulation determine the base roughness. The transition is studied as a function of these roughness parameters. For the fixed base, there is a critical base particle diameter below which ordered states are observed. For the sinusoidal base, the critical amplitude increases linearly with the wavelength at lower wavelengths, reaches a maximum depending on the height of the flowing layer, and then decreases as the wavelength is further increased. There is flow for angles of inclination from 15 ° ≤ θ ≤ 25 ° for the ordered state and 20 ° ≤ θ ≤ 25 ° for the disordered state. Flow confinement by sidewalls also influences the rheology of the system and we see that the ordering is induced by the sidewalls as well. Experiments on chute flow at low angles indicate the presence of two types of rheology depending on the system height. A transition is observed from an erodible base configuration, where a dead zone at the bottom supports a free surface reposing at the top, to a Bagnold rheology with considerable slip at the bottom.

  16. Macro-Micro Simulation for Polymer Crystallization in Couette Flow

    Directory of Open Access Journals (Sweden)

    Chunlei Ruan


    Full Text Available Polymer crystallization in manufacturing is a process where quiescent crystallization and flow-induced crystallization coexists, and heat/mass transfer on a macroscopic level interacts with crystal morphology evolution on a microscopic level. Previous numerical studies on polymer crystallization are mostly concentrated at a single scale; they only calculate macroscale parameters, e.g., temperature and relative crystallinity, or they only predict microstructure details, e.g., crystal morphology and mean size of crystals. The multi-scale numerical works that overcome these disadvantages are unfortunately based on quiescent crystallization, in which flow effects are neglected. The objective of this work is to build up a macro-micro model and a macro-micro algorithm to consider both the thermal and flow effects on the crystallization. Our macro-micro model couples two parts: mass and heat transfer of polymeric flow at the macroscopic level, and nucleation and growth of spherulites and shish-kebabs at the microscopic level. Our macro-micro algorithm is a hybrid finite volume/Monte Carlo method, in which the finite volume method is used at the macroscopic level to calculate the flow and temperature fields, while the Monte Carlo method is used at the microscopic level to capture the development of spherulites and shish-kebabs. The macro-micro model and the macro-micro algorithm are applied to simulate polymer crystallization in Couette flow. The effects of shear rate, shear time, and wall temperature on the crystal morphology and crystallization kinetics are also discussed.

  17. Multiphase hemodynamic simulation of pulsatile flow in a coronary artery. (United States)

    Jung, Jonghwun; Lyczkowski, Robert W; Panchal, Chandrakant B; Hassanein, Ahmed


    A multiphase transient non-Newtonian three-dimensional (3-D) computational fluid dynamics (CFD) simulation has been performed for pulsatile hemodynamics in an idealized curved section of a human coronary artery. We present the first prediction, to the authors' knowledge, of particulate buildup on the inside curvature using the multiphase theory of dense suspension hemodynamics. In this study, the particulates are red blood cells (RBCs). The location of RBC buildup on the inside curvature correlates with lower wall shear stress (WSS) relative to the outside curvature. These predictions provide insight into how blood-borne particulates interact with artery walls and hence, have relevance for understanding atherogenesis since clinical observations show that atherosclerotic plaques generally form on the inside curvatures of arteries. The buildup of RBCs on the inside curvature is driven by the secondary flow and higher residence times. The higher viscosity in the central portion of the curved vessel tends to block their flow, causing them to migrate preferentially through the boundary layer. The reason for this is the nearly neutrally buoyant nature of the dense two-phase hemodynamic flow. The two-phase non-Newtonian viscosity model predicts greater shear thinning than the single-phase non-Newtonian model. Consequently, the secondary flow induced in the curvature is weaker. The waveforms for computed hemodynamic parameters, such as hematocrit, WSS, and viscosity, follow the prescribed inlet velocity waveforms. The lower oscillatory WSS produced on the inside curvature has implications for understanding thickening of the intimal layer.

  18. Large-eddy simulation of flow past a circular cylinder (United States)

    Cheng, Wan; Pullin, Dale; Samtaney, Ravi; Zhang, Wei


    Wall-modeled, large-eddy simulations (LES) about a smooth-walled circular cylinder are described. The cylinder is of diameter D and is of extent 3 D in the span-wise direction. The stretched-vortex sub-grid scale model is used away from the cylinder wall, including regions of large-scale separated flow. At the wall this is coupled directly to an extended version of the virtual-wall model (VWM) of Chung & Pullin (2009). Here the wall-adjacent flow is modeled by wall-normal integration of both components of the wall-parallel momentum equation across a thin wall-layer whose thickness is small compared to that of the local boundary layer. This provides a wall-parallel, cell-scale estimate of the surface stress-vector field across the entire cylinder surface, and, with further assumptions, gives a slip-velocity boundary condition for the outer-flow LES. Flow separation is captured. The LES are done with a fourth-order accurate finite-difference method with span-wise periodic boundary conditions. A third-order semi-implicit Runge-Kutta method is used for temporal discretization. The LES methodology is verified by comparison with DNS at ReD = 3 , 900 . LES at larger Reynolds number will be discussed. Supported partially by KAUST OCRF Award No. URF/1/1394-01 and partially by NSF award CBET 1235605.

  19. Transient simulation in interior flow field of lobe pump (United States)

    Li, Y. B.; Sang, X. H.; Meng, Q. W.; Shen, H.; Jia, K.


    The subject of this paper is mainly focused on the development and control of the double folium and trifolium lobe pump profiles by using the principle of involute engagement and use CAD to get an accurate involute profile. We use the standard k-ε turbulence model and PISO algorithm based on CFD software FLUENT. The dynamic mesh and UDF technology is introduced to simulate the interior flow field inside a lobe pump, and the variation of interior flow field under the condition of the lobe rotating is analyzed. We also analyse the influence produced by the difference in lobes, and then reveal which lobe is best. The results show that dynamic variation of the interior flow field is easily obtained by dynamic mesh technology and the distribution of its pressure and velocity. Because of the small gaps existing between the rotors and pump case, the higher pressure area will flow into the lower area though the small gaps which cause the working area keep with higher pressure all the time. Both of the double folium and trifolium are existing the vortex during the rotting time and its position, size and shape changes all the time. The vortexes even disappear in a circle period and there are more vortexes in double folium lobe pump. The velocity and pressure pulsation of trifolium pump are lower than that of the double folium.

  20. Periodic transonic flow simulation using fourier-based algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Mohaghegh, Mohammad Reza [Islamic Azad University, Tehran (Iran, Islamic Republic of); Malekjafarian, Majid [University of Birjand, Birjand (Iran, Islamic Republic of)


    The present research simulates time-periodic unsteady transonic flow around pitching airfoils via the solution of unsteady Euler and Navier-Stokes equations, using time spectral method (TSM) and compares it with the traditional methods like BDF and explicit structured adaptive grid method. The TSM uses a Fourier representation in time and hence solves for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). Mathematical tools used here are discrete Fourier transformations. The TSM has been validated with 2D external aerodynamics test cases. These test cases are NACA 64A010 (CT6) and NACA 0012 (CT1 and CT5) pitching airfoils. Because of turbulent nature of flow, Baldwin-Lomax turbulence model has been used in viscous flow analysis with large oscillation amplitude (CT5 type). The results presented by the TSM are compared with experimental data and the two other methods. By enforcing periodicity and using Fourier representation in time that has a spectral accuracy, tremendous reduction of computational cost has been obtained compared to the conventional time-accurate methods. Results verify the small number of time intervals per pitching cycle (just four time intervals) required to capture the flow physics with small oscillation amplitude (CT6) and large oscillation amplitude (CT5) as compared to the other two methods.

  1. Simulation of branching blood flows on parallel computers. (United States)

    Yue, Xue; Hwang, Feng-Nan; Shandas, Robin; Cai, Xiao-Chuan


    We present a fully parallel nonlinearly implicit algorithm for the numerical simulation of some branching blood flow problems, which require efficient and robust solver technologies in order to handle the high nonlinearity and the complex geometry. Parallel processing is necessary because of the large number of mesh points needed to accurately discretize the system of differential equations. In this paper we introduce a parallel Newton-Krylov-Schwarz based implicit method, and software for distributed memory parallel computers, for solving the nonlinear algebraic systems arising from a Q2-Q1 finite element discretization of the incompressible Navier-Stokes equations that we use to model the blood flow in the left anterior descending coronary artery.

  2. Simulation of groundwater and surface-water flow in the upper Deschutes Basin, Oregon (United States)

    Gannett, Marshall W.; Lite, Kenneth E.; Risley, John C.; Pischel, Esther M.; La Marche, Jonathan L.


    representation of subsurface geology and explicitly simulates the effects of hydrologically important fault zones not included in the previous model.The upper Deschutes Basin GSFLOW model was calibrated using an iterative trial and error approach using measured water-level elevations (water levels) from 800 wells, 144 of which have time series of 10 or more measurements. Streamflow was calibrated using data from 21 gage locations. At 14 locations where measured flows are heavily influenced by reservoir operations and irrigation diversions, so called “naturalized” flows, with the effects of reservoirs and diversion removed, developed by the Bureau of Reclamation, were used for calibration. Surface energy and moisture processes such as solar radiation, snow accumulation and melting, and evapotranspiration were calibrated using national datasets as well as data from long-term measurement sites in the basin. The calibrated Deschutes GSFLOW model requires daily precipitation, minimum and maximum air temperature data, and monthly data describing groundwater pumping and artificial recharge from leaking irrigation canals (which are a significant source of groundwater recharge).The calibrated model simulates the geographic distribution of hydraulic head over the 5,000 ft range measured in the basin, with a median absolute residual of about 53 ft. Temporal variations in head resulting from climate cycles, pumping, and canal leakage are well simulated over the model area. Simulated daily streamflow matches gaged flows or calculated naturalized flows for streams including the Crooked and Metolius Rivers, and lower parts of the mainstem Deschutes River. Seasonal patterns of runoff are less well fit in some upper basin streams. Annual water balances of streamflow are good over most of the model domain. Model fit and overall capabilities are appropriate for the objectives of the project.The integrated model results confirm findings from other studies and models indicating that most

  3. Control algorithm for multiscale flow simulations of water

    DEFF Research Database (Denmark)

    Kotsalis, E. M.; Walther, Jens Honore; Kaxiras, E.


    We present a multiscale algorithm to couple atomistic water models with continuum incompressible flow simulations via a Schwarz domain decomposition approach. The coupling introduces an inhomogeneity in the description of the atomistic domain and prevents the use of periodic boundary conditions....... The use of a mass conserving specular wall results in turn to spurious oscillations in the density profile of the atomistic description of water. These oscillations can be eliminated by using an external boundary force that effectively accounts for the virial component of the pressure. In this Rapid...

  4. The simulation analysis for cartridge proportional flow valve

    Directory of Open Access Journals (Sweden)

    Dong Peng


    Full Text Available Mechanical and electrical integration is an important direction for future development of the industry. There are many products in hydraulic filed. By connecting electrical and mechanical, we can obtain more precise displacement, velocity and force of controlled object. The simulation can reduct the model and evaluate the performance of the controlled system. The overall development time and costs saved. The aim of the paper is to build a model of cartridge proportional flow valve with LMS Imagine.lab -AMESim and validate the accuracy of the built model by comparing with products catalogue.

  5. Simulation of turbulent flow and temperature separation in a uni-flow vortex tube

    Directory of Open Access Journals (Sweden)

    Promvonge, P.


    Full Text Available The vortex tube is a mechanical device operating as a refrigerating machine without refrigerants, by separating a compressed gas stream into two streams; the cold air stream at the tube core while the hot airstream near the tube wall. Such a separation of the flow into regions of low and high total temperature is referred to as the temperature separation effect. In this paper, simulation of the turbulent compressible flowand temperature separation in a uni-flow vortex tube with the turbulence model and the algebraic Reynolds stress model (ASM is described. Steady, compressible and two-dimensional flows are assumed through outthe calculation. It has been found that the predicted results of velocity, pressure, and temperature fields are generally in good agreement with available experiment data. Moreover, it can be indicated that the highest temperature separation occurs near the inlet nozzle while the lowest temperature separation is found at the downstream near the control valve.

  6. Numerical simulation of cavitation surge and vortical flows in a diffuser with swirling flow

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Bin; Wang, Jiong; Xiao, L. Z.; Long, X. [Wuhan University, Hubei (China); Luo, X. [Tsinghua University, Beijing (China); Miyagawa, K. [Waseda University, Tokyo (Japan); Tsujimoto, Yoshinobu [Osaka University, Osaka (Japan)


    The strong swirling flow at the exit of the runner of a Francis turbine at part load causes flow instabilities and cavitation surges in the draft tube, deteriorating the performance of the hydraulic power system. The unsteady cavitating turbulent flow in the draft tube is simplified and modeled by a diffuser with swirling flow using the Scale-adaptive simulation method. Unsteady characteristics of the vortex rope structure and the underlying mechanisms for the interactions between the cavitation and the vortices are both revealed. The generation and evolution of the vortex rope structures are demonstrated with the help of the iso-surfaces of the vapor volume fraction and the Qcriterion. Analysis based on the vorticity transport equation suggests that the vortex dilatation term is much larger along the cavity interface in the diffuser inlet and modifies the vorticity field in regions with high density and pressure gradients. The present work is validated by comparing two types of cavitation surges observed experimentally in the literature with further interpretations based on simulations.

  7. Application of Horizontal Subsurface Flow Constructed Wetland Systems for Domestic Wastewater Treatment: A Case Study, Kızılcaören

    Directory of Open Access Journals (Sweden)

    Fulya Aydın Temel


    Full Text Available Constructed wetlands (CWs are a green technology that have been used to treat several types of wastewater such as domestic, industrial, agricultural wastewaters and landfill leachate. CWs have several advantages included land intensive, low energy, easy operation and maintenance, low investment/operational costs, landscape esthetics, reuse of waters, and increased wildlife habitat compared to conventional systems. CWs are alternative treatment technologies due to these properties especially for rural settlements, industries, and hotels that are remote locations from central treatment plants. Physical, chemical, and biological treatment mechanisms can employ together in CWs. In the present study, two parallel full scale horizontal subsurface flow constructed wetlands were designed to treat domestic wastewater of Kızılcaören village in Samsun, Turkey. Juncus acutus and Cortaderia selloana were selected and the removal performance of each species were evaluated. During 7 months operation, the mean removal efficiencies of Juncus acutus and Cortaderia selloana were found as 33% and 32% for Mg2+; 62% and 55% for Fe2+; 64% and 56% for Fe3+; 46% and 37% for Cl2; 48% and 39% for total Cl2; 26% and 37% for Ca2+; 28% and 23% for SAA, respectively. Also, the Two-way ANOVA between groups was applied to determine any difference for the removal of all parameters between the plant types and months on the mean values of pollutants removal.

  8. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland - microbial fuel cell systems. (United States)

    Liu, Shentan; Song, Hailiang; Wei, Size; Yang, Fei; Li, Xianning


    To optimize the performance of a vertical subsurface flow constructed wetland-microbial fuel cell (CW-MFC), studies of bio-cathode materials and reactor configurations were carried out. Three commonly used bio-cathode materials including stainless steel mesh (SSM), carbon cloth (CC) and granular activated carbon (GAC) were compared and evaluated. GAC-SSM bio-cathode achieved the highest maximum power density of 55.05 mWm(-2), and it was most suitable for CW-MFCs application because of its large surface area and helpful capillary water absorption. Two types of CW-MFCs with roots were constructed, one was placed in the anode and the other was placed in the cathode. Both planted CW-MFCs obtained higher power output than non-planted CW-MFC. Periodic voltage fluctuations of planted CW-MFCs were caused by light/dark cycles, and the influent substrate concentration significantly affected the amplitude of oscillation. The coulombic efficiencies of CW-MFCs decreased greatly with the increase of the influent substrate concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effect of operational and design parameters on performance of pilot-scale horizontal subsurface flow constructed wetlands treating university campus wastewater. (United States)

    Papaevangelou, Vassiliki; Gikas, Georgios D; Tsihrintzis, Vassilios A


    Three horizontal subsurface flow (HSF) pilot-scale constructed wetland (CW) units operated for 3 years treating municipal wastewater originating from a university campus. The main objective of the study was the evaluation of the performance of these systems under several operational, design, and climatic conditions. Several parameters and factors were investigated, including the influence of temperature, vegetation, and hydraulic residence time. The results were compared to those of a previous study conducted in the same pilot-scale units and under the same operational conditions where synthetic municipal wastewater was used. Results show the satisfying overall performance of the CW units. Performance seems to be influenced by vegetation, temperature, and hydraulic residence time (HRT). The planted units produced better results than the unplanted one while, generally, all units operated better under warmer conditions. In addition, longer HRTs contributed to higher removal efficiencies. Finally, the systems showed higher removal efficiencies in the previous study (synthetic wastewater) regarding organic matter removal, while for the other pollutants, the present study (real wastewater) showed higher or comparable performance in most cases and especially in the planted units. The study also shows the overall good, continuous, and long-term operation of CW systems, since these systems operate for about 13 years.

  10. [Effect of the subsurface constructed wetland evolution into free surface flow constructed wetland on the removal of organic matter, nitrogen, and phosphor in wastewater]. (United States)

    Wei, Ze-Jun; Xie, Jian-Ping; Huang, Yu-Ming


    Many previous studies demonstrated that the performance of the subsurface constructed wetlands (SSCW) for wastewater treatment was superior to that of the free flow surface constructed wetlands (FFSCW). However, our results indicated that the performance of FFSCW derived from the evolution of SSCW due to clogging for COD, TOC, total nitrogen (TN), and total phosphor (TP) removal was higher than those of SSCW with the same substrate and plant. The laboratory culture experiments were adopted to evaluate the effect of the constructed wetland evolution on the organic matter mineralization, nitrification/denitrification as well as removal of nitrogen and phosphor. It was shown that, after evolution of SSCW into FFSCW, the mineralization rate for organic matter (as TOC) was 1.82 mg x h(-1), and it was 1.49 mg x h(-1) for SSCW. The removal efficiency for NO3(-) was 96.8%, and it was 58.1% for SSCW. The abiotic denitrification removal efficiency was 40%, and it was 28.2% for SSCW. In addition, the maximum equilibrium adsorption capacity of the substrate after evolution for phosphor (as P) was 160 mg x kg(-1), and it was 140 mg x kg(-1) for SSCW substrate. The organic coverage of the substrate was found to be beneficial to phosphor removal. The nitrification ability decreased after evolution. These results suggest the important effect of constructed wetland evolution on its performance.

  11. Enhancement of the complete autotrophic nitrogen removal over nitrite process in a modified single-stage subsurface vertical flow constructed wetland: Effect of saturated zone depth. (United States)

    Huang, Menglu; Wang, Zhen; Qi, Ran


    This study was conducted to explore enhancement of the complete autotrophic nitrogen removal over nitrite (CANON) process in a modified single-stage subsurface vertical flow constructed wetland (VSSF) with saturated zone, and nitrogen transformation pathways in the VSSF treating digested swine wastewater were investigated at four different saturated zone depths (SZDs). SZD significantly affected nitrogen transformation pathways in the VSSF throughout the experiment. As the SZD was 45cm, the CANON process was enhanced most effectively in the system owing to the notable enhancement of anammox. Correspondingly, the VSSF had the best TN removal performance [(76.74±7.30)%] and lower N 2 O emission flux [(3.50±0.22)mg·(m 2 ·h) - 1 ]. It could be concluded that autotrophic nitrogen removal via CANON process could become a primary route for nitrogen removal in the VSSF with optimized microenvironment that developed as a result of the appropriate SZD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. UASB followed by Sub-Surface Horizontal Flow Phytodepuration for the Treatment of the Sewage Generated by a Small Rural Community

    Directory of Open Access Journals (Sweden)

    Massimo Raboni


    Full Text Available The paper presents the results of an experimental process designed for the treatment of the sewage generated by a rural community located in the north-east of Brazil. The process consists of a preliminary mechanical treatment adopting coarse screens and grit traps, followed by a biological treatment in a UASB reactor and a sub-surface horizontal flow phytodepuration step. The use of a UASB reactor equipped with a top cover, as well as of the phytodepuration process employing a porous medium, showed to present important health advantages. In particular, there were no significant odor emissions and there was no evidence of the proliferation of insects and other disease vectors. The plant achieved the following mean abatement efficiencies: 92.9% for BOD5, 79.2% for COD and 94% for Suspended Solids. With regard to fecal indicators average efficiencies of 98.8% for fecal coliforms and 97.9% for fecal enterococci were achieved. The UASB reactor showed an important role in achieving this result. The research was also aimed at evaluating the optimal operating conditions for the UASB reactor in terms of hydraulic load and organic volumetric loading. The achieved results hence indicated that the process may be highly effective for small rural communities in tropical and sub-tropical areas.

  13. Nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands with different design parameters. (United States)

    Chen, Jun; Ying, Guang-Guo; Liu, You-Sheng; Wei, Xiao-Dong; Liu, Shuang-Shuang; He, Liang-Ying; Yang, Yong-Qiang; Chen, Fan-Rong


    This study aims to investigate nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands (CWs) with different design parameters. Twelve mesocosm-scale CWs with four substrates and three hydraulic loading rates were set up in the outdoor. The result showed the CWs with zeolite as substrate and HLR of 20 cm/d were selected as the best choice for the TN and NH3-N removal. It was found that the single-stage mesocosm-scale CWs were incapable to achieve high removals of TN and NH3-N due to inefficient nitrification process in the systems. This was demonstrated by the lower abundance of the nitrification genes (AOA and AOB) than the denitrification genes (nirK and nirS), and the less diverse nitrification microorganisms than the denitrification microorganisms in the CWs. The results also show that microorganism community structure including nitrogen-cycle microorganisms in the constructed wetland systems was affected by the design parameters especially the substrate type. These findings show that nitrification is a limiting factor for the nitrogen removal by CWs.

  14. Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: a case study of the Juja sewage treatment works. (United States)

    Mburu, Njenga; Tebitendwa, Sylvie M; van Bruggen, Johan J A; Rousseau, Diederik P L; Lens, Piet N L


    The performance, effluent quality, land area requirement, investment and operation costs of a full-scale waste stabilization pond (WSP) and a pilot scale horizontal subsurface flow constructed wetland (HSSF-CW) at Jomo Kenyatta University of Agriculture and Technology (JKUAT) were investigated between November 2010 to January 2011. Both systems gave comparable medium to high levels of organic matter and suspended solids removal. However, the WSP showed a better removal for Total Phosphorus (TP) and Ammonium (NH4(+)-N). Based on the population equivalent calculations, the land area requirement per person equivalent of the WSP system was 3 times the area that would be required for the HSSF-CW to treat the same amount of wastewater. The total annual cost estimates consisting of capital, operation and maintenance (O&M) costs were comparable for both systems. However, the evaluation of the capital cost of either system showed that it is largely influenced by the size of the population served, local cost of land and the construction materials involved. Hence, one can select either system in terms of treatment efficiency. When land is available other factor including the volume of wastewater or the investment, and O&M costs determine the technology selection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Difficulties and modifications in the use of available methods for hydraulic conductivity measurements in highly clogged horizontal subsurface flow constructed wetlands. (United States)

    Matos, Mateus Pimentel; Barreto, André Baxter; Vasconcellos, Gabriel Rodrigues; Matos, Antonio Teixeira; Simões, Gustavo Ferreira; von Sperling, Marcos


    Despite the fact that several authors consider the available measurement methods of hydraulic conductivity (ks) suitable for a good representation of the bed condition and clogging potential in horizontal subsurface flow constructed wetlands, others have questioned their adequacy. In this work, hydraulic conductivity measurements with conventional and modified methods were undertaken in two small full-scale units, one planted with cattail (Typha latifolia) and the other unplanted. Both units had already been operating for seven years and showed a high degree of clogging. It was observed that the use of the falling head method, with the introduction of the tubes during the test, provided results without a clear spatial trend. On the other hand, tests done on monitoring wells inserted during construction time showed, as expected, ks increasing with the horizontal distance from the inlet, but without reflecting actual field conditions. It was observed that, as the bed became more clogged, the use of the reported methods became more complex, suggesting the need of other methodologies. The use of planted fixed reactors (removable baskets installed in the bed) with evaluation of ks at constant head in the laboratory showed potential for the characterization of the hydrodynamic properties of the porous medium.

  16. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction (United States)

    Swain, Eric D.; Wexler, Eliezer J.


    Ground-water and surface-water flow models traditionally have been developed separately, with interaction between subsurface flow and streamflow either not simulated at all or accounted for by simple formulations. In areas with dynamic and hydraulically well-connected ground-water and surface-water systems, stream-aquifer interaction should be simulated using deterministic responses of both systems coupled at the stream-aquifer interface. Accordingly, a new coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH; the interfacing code is referred to as MODBRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference ground-water model, and BRANCH is a one-dimensional numerical model commonly used to simulate unsteady flow in open- channel networks. MODFLOW was originally written with the River package, which calculates leakage between the aquifer and stream, assuming that the stream's stage remains constant during one model stress period. A simple streamflow routing model has been added to MODFLOW, but is limited to steady flow in rectangular, prismatic channels. To overcome these limitations, the BRANCH model, which simulates unsteady, nonuniform flow by solving the St. Venant equations, was restructured and incorporated into MODFLOW. Terms that describe leakage between stream and aquifer as a function of streambed conductance and differences in aquifer and stream stage were added to the continuity equation in BRANCH. Thus, leakage between the aquifer and stream can be calculated separately in each model, or leakages calculated in BRANCH can be used in MODFLOW. Total mass in the coupled models is accounted for and conserved. The BRANCH model calculates new stream stages for each time interval in a transient simulation based on upstream boundary conditions, stream properties, and initial estimates of aquifer heads. Next, aquifer heads are calculated in MODFLOW based on stream

  17. Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems (United States)

    Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok


    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.

  18. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing


    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  19. Approaches to the simulation of unconfined flow and perched groundwater flow in MODFLOW (United States)

    Bedekar, Vivek; Niswonger, Richard G.; Kipp, Kenneth; Panday, Sorab; Tonkin, Matthew


    Various approaches have been proposed to manage the nonlinearities associated with the unconfined flow equation and to simulate perched groundwater conditions using the MODFLOW family of codes. The approaches comprise a variety of numerical techniques to prevent dry cells from becoming inactive and to achieve a stable solution focused on formulations of the unconfined, partially-saturated, groundwater flow equation. Keeping dry cells active avoids a discontinuous head solution which in turn improves the effectiveness of parameter estimation software that relies on continuous derivatives. Most approaches implement an upstream weighting of intercell conductance and Newton-Raphson linearization to obtain robust convergence. In this study, several published approaches were implemented in a stepwise manner into MODFLOW for comparative analysis. First, a comparative analysis of the methods is presented using synthetic examples that create convergence issues or difficulty in handling perched conditions with the more common dry-cell simulation capabilities of MODFLOW. Next, a field-scale three-dimensional simulation is presented to examine the stability and performance of the discussed approaches in larger, practical, simulation settings.

  20. PFLOTRAN User Manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, Peter C. [OFM Research, Redmond, WA (United States); Hammond, Glenn E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lu, Chuan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bisht, Gautam [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andre, Benjamin [National Center for Atmospheric Research, Boulder, CO (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Richard [Intel Corporation, Portland, OR (United States); Univ. of Tennessee, Knoxville, TN (United States); Kumar, Jitendra [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    PFLOTRAN solves a system of generally nonlinear partial differential equations describing multi-phase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Parallelization is achieved through domain decomposition using the PETSc (Portable Extensible Toolkit for Scientific Computation) libraries for the parallelization framework (Balay et al., 1997). PFLOTRAN has been developed from the ground up for parallel scalability and has been run on up to 218 processor cores with problem sizes up to 2 billion degrees of freedom. Written in object oriented Fortran 90, the code requires the latest compilers compatible with Fortran 2003. At the time of this writing this requires gcc 4.7.x, Intel 12.1.x and PGC compilers. As a requirement of running problems with a large number of degrees of freedom, PFLOTRAN allows reading input data that is too large to fit into memory allotted to a single processor core. The current limitation to the problem size PFLOTRAN can handle is the limitation of the HDF5 file format used for parallel IO to 32 bit integers. Noting that 232 = 4; 294; 967; 296, this gives an estimate of the maximum problem size that can be currently run with PFLOTRAN. Hopefully this limitation will be remedied in the near future.

  1. Flow simulations in porous media with immersed intersecting fractures (United States)

    Berrone, Stefano; Pieraccini, Sandra; Scialò, Stefano


    A novel approach for fully 3D flow simulations in porous media with immersed networks of fractures is presented. The method is based on the discrete fracture and matrix model, in which fractures are represented as two-dimensional objects in a three-dimensional porous matrix. The problem, written in primal formulation on both the fractures and the porous matrix, is solved resorting to the constrained minimization of a properly designed cost functional that expresses the matching conditions at fracture-fracture and fracture-matrix interfaces. The method, originally conceived for intricate fracture networks in impervious rock matrices, is here extended to fractures in a porous permeable rock matrix. The purpose of the optimization approach is to allow for an easy meshing process, independent of the geometrical complexity of the domain, and for a robust and efficient resolution tool, relying on a strong parallelism. The present work is devoted to the presentation of the new method and of its applicability to flow simulations in poro-fractured domains.

  2. Teaching Introductory Hydrology Courses: From Basic Fluid Mechanics to Surface, Subsurface and Oceanic Flows, With a Little Help From Mathematics (United States)

    Fedele, J. J.


    Effectively teaching basic physical principles along with necessary quantitative skills in introductory Earth Science undergraduate courses is often challenging. Instructors of introductory courses who include more than elementary mathematics in their classes are especially concerned not only about achieving satisfactory learning goals but also with student retention. Inevitable diverse mathematics background levels in classrooms and, on occasion, students' fear of mathematics, can negatively affect student interest in the subject and consequently, student learning and permanence in the field. I use a combination of in-class activities in an introductory course in Hydrology in order to encourage positive attitudes towards the use of quantitative methods. Students that will major in Meteorology, Geology or Hydrology are introduced to the ideas of scaling and rudimentary dimensional analysis, along with basic fluid mechanics principles, early in the course. In each class, the aid of visualization in the form of small experiments or short video clips is used to motivate group discussion about the physical nature of their observations and the connections to the natural world. The goal is that students will recognize all these basic principles in action in nature: from underground fluid flows, to rivers, to atmospheric and ocean circulation. Students are encouraged to work either individually or in groups during fixed periods of time on developing their own predictive expressions. They then discuss their results and findings with observations and known theories and formulas. Throughout the course, students become aware of the importance and advantages of the scientific approach in understanding our natural environment by directly experiencing each of its components: observation, inquiring, experimentation, quantification, verification. Maintenance of good levels of student interest in class topics is pursued by a constant going back-and-forth from the fundamentals of

  3. Area Estimation and Distribution Analysis of Subsurface Flow Constructed Wetlands at Regional Scale--Take Guangzhou City for Example