WorldWideScience

Sample records for simulated waste tank

  1. Low-level tank waste simulant data base

    Lokken, R.O.

    1996-04-01

    The majority of defense wastes generated from reprocessing spent N- Reactor fuel at Hanford are stored in underground Double-shell Tanks (DST) and in older Single-Shell Tanks (SST) in the form of liquids, slurries, sludges, and salt cakes. The tank waste remediation System (TWRS) Program has the responsibility of safely managing and immobilizing these tank wastes for disposal. This report discusses three principle topics: the need for and basis for selecting target or reference LLW simulants, tanks waste analyses and simulants that have been defined, developed, and used for the GDP and activities in support of preparing and characterizing simulants for the current LLW vitrification project. The procedures and the data that were generated to characterized the LLW vitrification simulants were reported and are presented in this report. The final section of this report addresses the applicability of the data to the current program and presents recommendations for additional data needs including characterization and simulant compositional variability studies

  2. Solubilities of gases in simulated Tank 241-SY-101 wastes

    Norton, J.D.; Pederson, L.R.

    1995-09-01

    Oxygen, nitrogen, hydrogen, methane, and nitrous oxide solubilities were evaluated as a function of temperature in SYl-SIM-93B, a homogeneous simulated waste mixture containing sodium hydroxide, sodium nitrite, sodium nitrate, sodium aluminate, and sodium carbonate, the principal inorganic constituents of the wastes in Tank 241-SY-101. Ammonia solubility data for this simulated waste was obtained as a function of temperature in an earlier study. The choice of a homogeneous waste mixture in this study has the advantage of eliminating complications associated with a changing electrolyte concentration as a function of temperature that would be encountered with a slurry simulant. Dissolution is one of the means by which gases may be retained in Hanford Site wastes. While models are available to estimate gas solubilities in electrolyte solutions, few data are in existence that pertain to highly concentrated, multicomponent electrolytes such as those stored in Hanford Site waste tanks

  3. Hanford tank waste operation simulator operational waste volume projection verification and validation procedure

    HARMSEN, R.W.

    1999-01-01

    The Hanford Tank Waste Operation Simulator is tested to determine if it can replace the FORTRAN-based Operational Waste Volume Projection computer simulation that has traditionally served to project double-shell tank utilization. Three Test Cases are used to compare the results of the two simulators; one incorporates the cleanup schedule of the Tri Party Agreement

  4. Development of simulated tank wastes for the US Department of Energy's Underground Storage Tank Integrated Demonstration

    Elmore, M.R.; Colton, N.G.; Jones, E.O.

    1992-08-01

    The purpose of the Underground Storage Tank Integrated Demonstration (USTID) is to identify and evaluate technologies that may be used to characterize, retrieve, treat, and dispose of hazardous and radioactive wastes contained in tanks on US Department of Energy sites. Simulated wastes are an essential component of the evaluation process because they provide controlled samples for technology assessment, and minimize costs and risks involved when working with radioactive wastes. Pacific Northwest Laboratory has developed a recipe to simulate Hanford single-shell tank, (SST) waste. The recipe is derived from existing process recipes, and elemental concentrations are based on characterization data from 18 SSTs. In this procedure, salt cake and metal oxide/hydroxide sludge are prepared individually, and mixed together at varying ratios depending on the specific tank, waste to be simulated or the test being conducted. Elemental and physical properties of the stimulant are comparable with analyzed tank samples, and chemical speciation in the simulant is being improved as speciation data for actual wastes become available. The nonradioactive chemical waste simulant described here is useful for testing technologies on a small scale

  5. Extraction of technetium from simulated Hanford tank wastes

    Chaiko, D.J.; Vojta, Y.; Takeuchi, M.

    1993-01-01

    Aqueous biphasic separation systems are being developed for the treatment of liquid radioactive wastes. These extraction systems are based on the use of polyethylene glycols (PEGs) for the selective extraction and recovery of long-lived radionuclides, such as 129 I, 75 Se, and 99 Tc, from caustic solutions containing high concentrations of nitrate, nitrite, and carbonate. Because of the high ionic strengths of supernatant liquids in Hanford underground storage tanks, aqueous biphasic systems can be generated by simply adding aqueous PEG solutions directly to the waste solution. In the process, anionic species like I - and TcO 4 - are selectively transferred to the less dense PEG phase. The partition coefficient for a wide range of inorganic cations and anions, such as sodium, potassium, aluminum, nitrate, nitrate, and carbonate, are all less than one. The authors present experimental data on extraction of technetium from several simulated Hanford tank wastes at 25 degree and 50 degree C

  6. HANFORD TANK WASTE OPERATIONS SIMULATOR VERSION DESCRIPTION DOCUMENT

    ALLEN, G.K.

    2003-01-01

    This document describes the software version controls established for the Hanford Tank Waste Operations Simulator (HTWOS). It defines: the methods employed to control the configuration of HTWOS; the version of each of the 26 separate modules for the version 1.0 of HTWOS; the numbering rules for incrementing the version number of each module; and a requirement to include module version numbers in each case results documentation. Version 1.0 of HTWOS is the first version under formal software version control. HTWOS contains separate revision numbers for each of its 26 modules. Individual module version numbers do not reflect the major release HTWOS configured version number

  7. Ferrocyanide tank safety program: Cesium uptake capacity of simulated ferrocyanide tank waste. Final report

    Burgeson, I.E.; Bryan, S.A.

    1995-07-01

    The objective of this project is to determine the capacity for 137 Cs uptake by mixed metal ferrocyanides present in Hanford Site waste tanks, and to assess the potential for aggregation of these 137 Cs-exchanged materials to form ''hot-spots'' in the tanks. This research, performed at Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company, stems from concerns regarding possible localized radiolytic heating within the tanks. After ferrocyanide was added to 18 high-level waste tanks in the 1950s, some of the ferrocyanide tanks received considerable quantities of saltcake waste that was rich in 137 Cs. If radioactive cesium was exchanged and concentrated by the nickel ferrocyanide present in the tanks, the associated heating could cause tank temperatures to rise above the safety limits specified for the ferrocyanide-containing tanks, especially if the supernate in the tanks is pumped out and the waste becomes drier

  8. Test plan for Fauske and Associates to perform tube propagation experiments with simulated Hanford tank wastes

    Carlson, C.D.; Babad, H.

    1996-05-01

    This test plan, prepared at Pacific Northwest National Laboratory for Westinghouse Hanford Company, provides guidance for performing tube propagation experiments on simulated Hanford tank wastes and on actual tank waste samples. Simulant compositions are defined and an experimental logic tree is provided for Fauske and Associates (FAI) to perform the experiments. From this guidance, methods and equipment for small-scale tube propagation experiments to be performed at the Hanford Site on actual tank samples will be developed. Propagation behavior of wastes will directly support the safety analysis (SARR) for the organic tanks. Tube propagation may be the definitive tool for determining the relative reactivity of the wastes contained in the Hanford tanks. FAI have performed tube propagation studies previously on simple two- and three-component surrogate mixtures. The simulant defined in this test plan more closely represents actual tank composition. Data will be used to support preparation of criteria for determining the relative safety of the organic bearing wastes

  9. Electrochemical destruction of organics and nitrates in simulated and actual radioactive Hanford tank waste

    Elmore, M.R.; Lawrence, W.E.

    1996-09-01

    Pacific Northwest National Laboratory has conducted an evaluation of electrochemical processing for use in radioactive tank waste cleanup activities. An electrochemical organic destruction (ECOD) process was evaluated, with the main focus being the destruction of organic compounds (especially organic complexants of radionuclides) in simulated and actual radioactive Hanford tank wastes. A primary reason for destroying the organic species in the complexant concentrate tank waste is to decomplex/defunctionalize species that chelate radionuclides. the separations processes required to remove the radionuclides are much less efficient when chelators are present. A second objective, the destruction of nitrates and nitrites in the wastes, was also assessed. Organic compounds, nitrates, and nitrites may affect waste management and safety considerations, not only at Hanford but at other US Department of Energy sites that maintain high- level waste storage tanks

  10. Hanford tank waste simulants specification and their applicability for the retrieval, pretreatment, and vitrification processes

    GR Golcar; NG Colton; JG Darab; HD Smith

    2000-04-04

    A wide variety of waste simulants were developed over the past few years to test various retrieval, pretreatment and waste immobilization technologies and unit operations. Experiments can be performed cost-effectively using non-radioactive waste simulants in open laboratories. This document reviews the composition of many previously used waste simulants for remediation of tank wastes at the Hanford reservation. In this review, the simulants used in testing for the retrieval, pretreatment, and vitrification processes are compiled, and the representative chemical and physical characteristics of each simulant are specified. The retrieval and transport simulants may be useful for testing in-plant fluidic devices and in some cases for filtration technologies. The pretreatment simulants will be useful for filtration, Sr/TRU removal, and ion exchange testing. The vitrification simulants will be useful for testing melter, melter feed preparation technologies, and for waste form evaluations.

  11. Hanford tank waste simulants specification and their applicability for the retrieval, pretreatment, and vitrification processes

    GR Golcar; NG Colton; JG Darab; HD Smith

    2000-01-01

    A wide variety of waste simulants were developed over the past few years to test various retrieval, pretreatment and waste immobilization technologies and unit operations. Experiments can be performed cost-effectively using non-radioactive waste simulants in open laboratories. This document reviews the composition of many previously used waste simulants for remediation of tank wastes at the Hanford reservation. In this review, the simulants used in testing for the retrieval, pretreatment, and vitrification processes are compiled, and the representative chemical and physical characteristics of each simulant are specified. The retrieval and transport simulants may be useful for testing in-plant fluidic devices and in some cases for filtration technologies. The pretreatment simulants will be useful for filtration, Sr/TRU removal, and ion exchange testing. The vitrification simulants will be useful for testing melter, melter feed preparation technologies, and for waste form evaluations

  12. Numerical simulation on stir system of jet ballast in high level liquid waste storage tank

    Lu Yingchun

    2012-01-01

    The stir system of jet ballast in high level liquid waste storage tank was simulation object. Gas, liquid and solid were air, sodium nitrate liquor and titanium whitening, respectively. The mathematic model based on three-fluid model and the kinetic theory of particles was established for the stir system of jet ballast in high level liquid waste storage tank. The CFD commercial software was used for solving this model. The detail flow parameters as three phase velocity, pressure and phase loadings were gained. The calculated results agree with the experimental results, so they can well define the flow behavior in the tank. And this offers a basic method for the scale-up and optimization design of the stir system of jet ballast in high level liquid waste storage tank. (author)

  13. FRACTIONAL CRYSTALLIZATION LABORATORY TESTS WITH SIMULATED TANK WASTE

    HERTING DL

    2007-01-01

    Results are presented for several simulated waste tests related to development of the fractional crystallization process. Product salt dissolution rates were measured to support pilot plant equipment design. Evaporation tests were performed to evaluate the effects of organics on slurry behavior and to determine optimum antifoam addition levels. A loss-of-power test was performed to support pilot plant accident scenario analysis. Envelope limit tests were done to address variations in feed composition

  14. Constant extension rate testing of Type 304L stainless steel in simulated waste tank environments

    Wiersma, B.J.

    1992-01-01

    New tanks for storage of low level radioactive wastes will be constructed at the Savannah River Site (SRS) of AISI Type 304L stainless steel (304L). The presence of chlorides and fluorides in the wastes may induce Stress Corrosion Cracking (SCC) in 304L. Constant Extension Rate Tests (CERT) were performed to determine the susceptibility of 304L to SCC in simulated wastes. In five of the six tests conducted thus far 304L was not susceptible to SCC in the simulated waste environments. Conflicting results were obtained in the final test and will be resolved by further tests. For comparison purposes the CERT tests were also performed with A537 carbon steel, a material similar to that utilized for the existing nuclear waste storage tanks at SRS

  15. Physical and Liquid Chemical Simulant Formulations for Transuranic Waste in Hanford Single-Shell Tanks

    Rassat, Scot D.; Bagaasen, Larry M.; Mahoney, Lenna A.; Russell, Renee L.; Caldwell, Dustin D.; Mendoza, Donaldo P.

    2003-01-01

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is in the process of identifying and developing supplemental process technologies to accelerate the tank waste cleanup mission. A range of technologies is being evaluated to allow disposal of Hanford waste types, including transuranic (TRU) process wastes. Ten Hanford single-shell tanks (SSTs) have been identified whose contents may meet the criteria for designation as TRU waste: the B-200 series (241-B-201, -B-202, -B 203, and B 204), the T-200 series (241-T-201, T 202, -T-203, and -T-204), and Tanks 241-T-110 and -T-111. CH2M HILL has requested vendor proposals to develop a system to transfer and package the contact-handled TRU (CH-TRU) waste retrieved from the SSTs for subsequent disposal at the Waste Isolation Pilot Plant (WIPP). Current plans call for a modified ''dry'' retrieval process in which a liquid stream is used to help mobilize the waste for retrieval and transfer through lines and vessels. This retrieval approach requires that a significant portion of the liquid be removed from the mobilized waste sludge in a ''dewatering'' process such as centrifugation prior to transferring to waste packages in a form suitable for acceptance at WIPP. In support of CH2M HILL's effort to procure a TRU waste handling and packaging process, Pacific Northwest National Laboratory (PNNL) developed waste simulant formulations to be used in evaluating the vendor's system. For the SST CH-TRU wastes, the suite of simulants includes (1) nonradioactive chemical simulants of the liquid fraction of the waste, (2) physical simulants that reproduce the important dewatering properties of the waste, and (3) physical simulants that can be used to mimic important rheological properties of the waste at different points in the TRU waste handling and packaging process. To validate the simulant formulations, their measured properties were compared with the limited data for actual TRU waste samples. PNNL developed the final simulant formulations

  16. Investigation of thermolytic hydrogen generation rate of tank farm simulated and actual waste

    Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Howe, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-15

    To support resolution of Potential Inadequacies in the Safety Analysis for the Savannah River Site (SRS) Tank Farm, Savannah River National Laboratory conducted research to determine the thermolytic hydrogen generation rate (HGR) with simulated and actual waste. Gas chromatography methods were developed and used with air-purged flow systems to quantify hydrogen generation from heated simulated and actual waste at rates applicable to the Tank Farm Documented Safety Analysis (DSA). Initial simulant tests with a simple salt solution plus sodium glycolate demonstrated the behavior of the test apparatus by replicating known HGR kinetics. Additional simulant tests with the simple salt solution excluding organics apart from contaminants provided measurement of the detection and quantification limits for the apparatus with respect to hydrogen generation. Testing included a measurement of HGR on actual SRS tank waste from Tank 38. A final series of measurements examined HGR for a simulant with the most common SRS Tank Farm organics at temperatures up to 140 °C. The following conclusions result from this testing.

  17. INVESTIGATING SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A PILOT-SCALE WASTE TANK

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.

    2011-05-24

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is for the pumps to resuspend the MST, CST, and simulated sludge particles so that they can be removed from the tank, and to suspend the MST so it can contact strontium and actinides. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5, B3, and B1). Previous testing showed that three Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank, and to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The conclusions from this analysis are: (1) Three SMPs will be able to resuspend more than 99.9% of the MST and CST that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 84% of the maximum discharge velocity of the pump. (2) Three SMPs will be able to resuspend more than 99.9% of the MST, CST, and simulated sludge that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 82% of the maximum discharge velocity of the pump. (3) A contact time of 6-12 hours is needed for strontium sorption by MST in a jet mixed tank with cooling coils, which is consistent with bench-scale testing and actinide removal process (ARP) operation.

  18. Evaluation of fourier transform profilometry performance: quantitative waste volume determination under simulated Hanford waste tank conditions

    Jang, Ping-Rey; Leone, Teresa; Long, Zhiling; Mott, Melissa A.; Perry Norton, O.; Okhuysen, Walter P.; Monts, David L.

    2007-01-01

    The Hanford Site is currently in the process of an extensive effort to empty and close its radioactive single-shell and double-shell waste storage tanks. Before this can be accomplished, it is necessary to know how much residual material is left in a given waste tank and the chemical makeup of the residue. The objective of Mississippi State University's Institute for Clean Energy Technology's (ICET) efforts is to develop, fabricate, and deploy inspection tools for the Hanford waste tanks that will (1) be remotely operable; (2) provide quantitative information on the amount of wastes remaining; and (3) provide information on the spatial distribution of chemical and radioactive species of interest. A collaborative arrangement has been established with the Hanford Site to develop probe-based inspection systems for deployment in the waste tanks. ICET is currently developing an in-tank inspection system based on Fourier Transform Profilometry, FTP. FTP is a non-contact, 3-D shape measurement technique. By projecting a fringe pattern onto a target surface and observing its deformation due to surface irregularities from a different view angle, FTP is capable of determining the height (depth) distribution (and hence volume distribution) of the target surface, thus reproducing the profile of the target accurately under a wide variety of conditions. Hence FTP has the potential to be utilized for quantitative determination of residual wastes within Hanford waste tanks. We have completed a preliminary performance evaluation of FTP in order to document the accuracy, precision, and operator dependence (minimal) of FTP under conditions similar to those that can be expected to pertain within Hanford waste tanks. Based on a Hanford C-200 series tank with camera access through a riser with significant offset relative to the centerline, we devised a testing methodology that encompassed a range of obstacles likely to be encountered 'in tank'. These test objects were inspected by use

  19. Recycle Waste Collection Tank (RWCT) simulant testing in the PVTD feed preparation system

    Abrigo, G.P.; Daume, J.T.; Halstead, S.D.; Myers, R.L.; Beckette, M.R.; Freeman, C.J.; Hatchell, B.K.

    1996-03-01

    (This is part of the radwaste vitrification program at Hanford.) RWCT was to routinely receive final canister decontamination sand blast frit and rinse water, Decontamination Waste Treatment Tank bottoms, and melter off-gas Submerged Bed Scrubber filter cake. In order to address the design needs of the RWCT system to meet performance levels, the PNL Vitrification Technology (PVTD) program used the Feed Preparation Test System (FPTS) to evaluate its equipment and performance for a simulant of RWCT slurry. (FPTS is an adaptation of the Defense Waste Processing Facility feed preparation system and represents the initially proposed Hanford Waste Vitrification Plant feed preparation system designed by Fluor-Daniel, Inc.) The following were determined: mixing performance, pump priming, pump performance, simulant flow characterization, evaporator and condenser performance, and ammonia dispersion. The RWCT test had two runs, one with and one without tank baffles

  20. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  1. Composition, preparation, and gas generation results from simulated wastes of Tank 241-SY-101

    Bryan, S.A.; Pederson, L.R.

    1994-08-01

    This document reviews the preparation and composition of simulants that have been developed to mimic the wastes temporarily stored in Tank 241-SY-101 at Hanford. The kinetics and stoichiometry of gases that are generated using these simulants are also compared, considering the roles of hydroxide, chloride, and transition metal ions; the identities of organic constituents; and the effects of dilution, radiation, and temperature. Work described in this report was conducted for the Flammable Gas Safety Program at Pacific Northwest Laboratory, (a) whose purpose is to develop information that is necessary to mitigate potential safety hazards associated with waste tanks at the Hanford Site. The goal of this research and of related efforts at the Georgia Institute of Technology (GIT), Argonne National Laboratory (ANL), and Westinghouse Hanford Company (WHC) is to determine the thermal and thermal/radiolytic mechanisms by which flammable and other gases are produced in Hanford wastes, emphasizing those stored in Tank 241-SY-101. A variety of Tank 241-SY-101 simulants have been developed to date. The use of simulants in laboratory testing activities provides a number of advantages, including elimination of radiological risks to researchers, lower costs associated with experimentation, and the ability to systematically alter simulant compositions to study the chemical mechanisms of reactions responsible for gas generation. The earliest simulants contained the principal inorganic components of the actual waste and generally a single complexant such as N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA) or ethylenediaminetriacetic acid (EDTA). Both homogeneous and heterogeneous compositional forms were developed. Aggressive core sampling and analysis activities conducted during Windows C and E provided information that was used to design new simulants that more accurately reflected major and minor inorganic components

  2. Cesium uptake capacity of simulated ferrocyanide tank waste. Interim report FY 1994, Ferrocyanide Safety Project

    Burgeson, I.E.; Bryan, S.A.; Burger, L.E.

    1994-09-01

    The objective of this project is to determine the capacity for 137 CS uptake by mixed metal ferrocyanides present in Hanford waste tanks, and to assess the potential for aggregation of these 137 CS exchanged materials to form tank ''hot-spots.'' This research, performed at the Pacific Northwest Laboratory (PNL) for the Westinghouse Hanford Company (WHC), stems from concerns of possible localized radiolytic heating within the tanks. If radioactive cesium is exchanged and concentrated by the remaining nickel ferrocyanide present in the tanks, this heating could cause temperatures to rise above the safety limits specified for the ferrocyanide tanks. For the purposes of this study, two simulants, In-Farm-2 and U-Plant-2, were chosen to represent the wastes generated by the scavenging processes. These simulants were formulated using protocols from the original cesium scavenging campaign. Later additions of cesium-rich wastes from various processes also were considered. The simulants were prepared and centrifuged to obtain a moist ferrocyanide sludge. The centrifuged sludges were treated with the original supernate spiked with a known amount of cesium nitrate. After analysis by flame atomic absorption spectrometry, distribution coefficients (K d ) were calculated. The capacity of solid waste simulants to exchange radioactive cesium from solution was examined. Initial results showed that the greater the molar ratio of cesium to cesium nickel ferrocyanide, the less effective the exchange of cesium from solution. The theoretical capacity of 2 mol cesium per mol of nickel ferrocyanide was not observed. The maximum capacity under experimental conditions was 0.35 mol cesium per mol nickel ferrocyanide. Future work on this project will examine the layering tendency of the cesium nickel ferrocyanide species

  3. Status of test results of electrochemical organic oxidation of a tank 241-SY-101 simulated waste

    Colby, S.A.

    1994-06-01

    This report presents scoping test results of an electrochemical waste pretreatment process to oxidize organic compounds contained in the Hanford Site's radioactive waste storage tanks. Electrochemical oxidation was tested on laboratory scale to destroy organics that are thought to pose safety concerns, using a nonradioactive, simulated tank waste. Minimal development work has been applied to alkaline electrochemical organic destruction. Most electrochemical work has been directed towards acidic electrolysis, as in the metal purification industry, and silver catalyzed oxidation. Alkaline electrochemistry has traditionally been associated with the following: (1) inefficient power use, (2) electrode fouling, and (3) solids handling problems. Tests using a laboratory scale electrochemical cell oxidized surrogate organics by applying a DC electrical current to the simulated tank waste via anode and cathode electrodes. The analytical data suggest that alkaline electrolysis oxidizes the organics into inorganic carbonate and smaller carbon chain refractory organics. Electrolysis treats the waste without adding chemical reagents and at ambient conditions of temperature and pressure. Cell performance was not affected by varying operating conditions and supplemental electrolyte additions

  4. Simulation analysis of control strategies for a tank waste retrieval manipulator system

    Schryver, J.C.; Draper, J.V.

    1995-01-01

    A network simulation model was developed for the Tank Waste Retrieval Manipulator System, incorporating two distinct levels of control: teleoperation and supervisory control. The model included six error modes, an attentional resource model, and a battery of timing variables. A survey questionnaire administered to subject matter experts provided data for estimating timing distributions for level of control-critical tasks. Simulation studies were performed to evaluate system behavior as a function of control level and error modes. The results provide important insights for development of waste retrieval manipulators

  5. Performance evaluation of corrosion probes in simulated WVNS tank 8D-2 waste: WVNS tank farm process support

    Elmore, M.R.

    1994-07-01

    Five corrosion probes were received from West Valley Nuclear Services for evaluation in simulated tank 8D-2 3rd-stage sludge wash slurry. The same waste slurry simulated was also used in a series of ongoing corrosion studies assessing the effects of in-tank sludge washing on the integrity of tank 8D-2. Two of the corrosion probes were installed in the coupon corrosion test vessels operating at ∼150 degrees F to compare performance of the probes with that observed by coupon tests conducted in the same vessels. Corrosion rate data calculated from electrical resistance measurements of the corrosion probes were evaluated for this study using two slightly different approaches. One approach uses the total length of exposure of the probe to give a ''time-averaged'' value of the corrosion rate. The other approach uses a shorter period of time (relative to the length of the test) in the calculation of corrosion rate, and is referred to as the ''instantaneous'' rate. The interpretation of the probe data and the implications of corrosion rates calculated with either of these methods are discussed in this report

  6. Analysis Bounding Double Shell Tank (DST) Performance for the Hanford Tank Waste Operation Simulator Case 2

    SMITH, D.F.

    2002-01-01

    The purpose of this analysis is to compare the latest Tank Farm Contractor Operation and Utilization Plan (HNF-SD-WM-SP-012, Rev. 3) ''Case 2'' operating scenarios with a previous bounding analysis for the Double-Shell Tank (DST) System in order to provide a technical assessment against the current set of DST System performance requirements. A later update to HNF-SD-WM-SP-012 (i.e., Rev. 3A), released in late December 2001, did not impact the results of this analysis. This analysis provides technical support for revising the Performance Requirements for the Double-Shell Tank System, HNF-2168, Rev. 3, used as the basis for defining performance requirements noted in System Specification for the Double-Shell Tank System, HNF-SD-WM-TRD-007. Rev. 1

  7. Tank waste treatment science

    LaFemina, J.P.; Blanchard, D.L.; Bunker, B.C.; Colton, N.G.; Felmy, A.R.; Franz, J.A.; Liu, J.; Virden, J.W.

    1994-01-01

    Remediation efforts at the U.S. Department of Energy's Hanford Site require that many technical and scientific principles be combined for effectively managing and disposing the variety of wastes currently stored in underground tanks. Based on these principles, pretreatment technologies are being studied and developed to separate waste components and enable the most suitable treatment methods to be selected for final disposal of these wastes. The Tank Waste Treatment Science Task at Pacific Northwest Laboratory is addressing pretreatment technology development by investigating several aspects related to understanding and processing the tank contents. The experimental work includes evaluating the chemical and physical properties of the alkaline wastes, modeling sludge dissolution, and evaluating and designing ion exchange materials. This paper gives some examples of results of this work and shows how these results fit into the overall Hanford waste remediation activities. This work is part of series of projects being conducted for the Tank Waste Remediation System

  8. Response of ethylene propylene diene monomer rubber (EPDM) to simulant Hanford tank waste

    NIGREY,PAUL J.

    2000-02-01

    This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the author performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposures to the waste simulant at 18, 50, and 60 C. Ethylene propylene diene monomer (EPDM) rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. The author has determined that EPDM rubber has excellent resistance to radiation, this simulant, and a combination of these factors. These results suggest that EPDM is an excellent seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.

  9. Ferrocyanide tank waste stability

    Fowler, K.D.

    1993-01-01

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove 137 CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes

  10. Development of a Thermodynamic Model for the Hanford Tank Waste Operations Simulator - 12193

    Carter, Robert; Seniow, Kendra [Washington River Protection Solutions, LLC, Richland, Washington (United States)

    2012-07-01

    The Hanford Tank Waste Operations Simulator (HTWOS) is the current tool used by the Hanford Tank Operations Contractor for system planning and assessment of different operational strategies. Activities such as waste retrievals in the Hanford tank farms and washing and leaching of waste in the Waste Treatment and Immobilization Plant (WTP) are currently modeled in HTWOS. To predict phase compositions during these activities, HTWOS currently uses simple wash and leach factors that were developed many years ago. To improve these predictions, a rigorous thermodynamic framework has been developed based on the multi-component Pitzer ion interaction model for use with several important chemical species in Hanford tank waste. These chemical species are those with the greatest impact on high-level waste glass production in the WTP and whose solubility depends on the processing conditions. Starting with Pitzer parameter coefficients and species chemical potential coefficients collated from open literature sources, reconciliation with published experimental data led to a self-consistent set of coefficients known as the HTWOS Pitzer database. Using Gibbs energy minimization with the Pitzer ion interaction equations in Microsoft Excel,1 a number of successful predictions were made for the solubility of simple mixtures of the chosen species. Currently, this thermodynamic framework is being programmed into HTWOS as the mechanism for determining the solid-liquid phase distributions for the chosen species, replacing their simple wash and leach factors. Starting from a variety of open literature sources, a collection of Pitzer parameters and species chemical potentials, as functions of temperature, was tested for consistency and accuracy by comparison with available experimental thermodynamic data (e.g., osmotic coefficients and solubility). Reconciliation of the initial set of parameter coefficients with the experimental data led to the development of the self-consistent set known

  11. Modeling water retention of sludge simulants and actual saltcake tank wastes

    Simmons, C.S.

    1996-07-01

    The Ferrocyanide Tanks Safety Program managed by Westinghouse hanford Company has been concerned with the potential combustion hazard of dry tank wastes containing ferrocyanide chemical in combination with nitrate salts. Pervious studies have shown that tank waste containing greater than 20 percent of weight as water could not be accidentally ignited. Moreover, a sustained combustion could not be propagated in such a wet waste even if it contained enough ferrocyanide to burn. Because moisture content is a key critical factor determining the safety of ferrocyanide-containing tank wastes, physical modeling was performed by Pacific Northwest National laboratory to evaluate the moisture-retaining behavior of typical tank wastes. The physical modeling reported here has quantified the mechanisms by which two main types of tank waste, sludge and saltcake, retain moisture in a tank profile under static conditions. Static conditions usually prevail after a tank profile has been stabilized by pumping out any excess interstitial liquid, which is not naturally retained by the waste as a result of physical forces such as capillarity

  12. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  13. Characterization Of Actinides In Simulated Alkaline Tank Waste Sludges And Leachates

    Nash, Kenneth L.

    2008-01-01

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  14. Tank SY-102 waste retrieval assessment: Rheological measurements and pump jet mixing simulations

    Onishi, Y.; Shekarriz, R.; Recknagle, K.P.

    1996-09-01

    Wastes stored in Hanford Tank 241-SY-102 are planned to be retrieved from that tank and transferred to 200 East Area through the new pipeline Replacement Cross Site Transfer System (RCSTS). Because the planned transfer of this waste will use the RCSTS, the slurry that results from the mobilization and retrieval operations must meet the applicable waste acceptance criteria for this system. This report describes results of the second phase (the detailed assessment) of the SY-102 waste retrieval study, which is a part of the efforts to establish a technical basis for mobilization of the slurry, waste retrieval, and slurry transport. Hanford Tank 241-SY-102 is located in the SY Tank Farm in the Hanford Site's 200 West Area. It was built in 1977 to serve as a feed tank for 242-S Evaporator/Crystallizer, receiving supernatant liquid from S, SX, T, and U tank farms. Since 1981, the primary sources of waste have been from 200 West Area facilities, e.g., T-Plant decontamination operations, Plutonium Finishing Plant operations, and the 222-S Laboratory. It is the only active-service double-shell tank (DST) in the 200 West Area and is used as the staging tank for cross-site transfers to 200 East Area DSTs. The tank currently stores approximately 470 kL (125 kgal) of sludge wastes from a variety of sources including the Plutonium Finishing Plant, T-Plant, and the 222-S Laboratory. In addition to the sludge, approximately twice this amount (about 930 kL) of dilute, noncomplexed waste forms a supernatant liquid layer above the sludge

  15. Mechanisms of gas generation from simulated SY tank farm wastes: FY 1995 progress report

    Barefield, E.K.; Boatright, D.; Deshpande, A.; Doctorovich, F.; Liotta, C.L.; Neumann, H.M.; Seymore, S.

    1996-07-01

    The objective of this work is to develop a better understanding of the mechanism of formation of flammable gases in the thermal decomposition of metal complexants such as HEDTA and sodium glycolate in simulated SY tank farm waste mixtures. This report summarizes the results of work done at the Georgia Institute of Technology in fiscal year 1995. Topics discussed are (1) long-term studies of the decomposition of HEDTA in simulated waste mixtures under an argon atmosphere at 90 and 120 degrees C, including time profiles for disappearance of HEDTA and appearance of products and the quantitative analysis of the kinetic behavior; (2) considerations of hydroxylamine as an intermediate in the production of nitrogen containing gases by HEDTA decomposition; (3) some thoughts on the revision of the global mechanism for thermal decomposition of HEDTA under argon; (4) preliminary long-term studies of the decomposition of HEDTA in simulated waste under an oxygen atmosphere at 120 degrees C; (5) estimation of the amount of NH 3 in the gas phase above HEDTA reaction mixtures; and (6) further, examination of the interaction of aluminum with nitrite ion using 27 Al NMR spectroscopy. Section 2 of this report describes the work conducted over the last three years at GIT. Section 3 contains a discussion of the kinetic behavior of HEDTA under argon; Section 4 discusses the role of hydroxylamine. Thermal decomposition of HEDTA to ED3A is the subject of Section 5, and decomposition of HEDTA in simulated waste mixtures under oxygen is covered in Section 6. In Section 7 we estimate ammonia in the gas phase; the role of aluminum is discussed in Section 8

  16. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C.; Meeussen, Hans; Van der Sloot, Hans

    2013-01-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  17. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C. [Consortium for Risk Assessment with Stakeholder Participation - CRESP, Vanderbilt University, Nashville, TN (United States); Meeussen, Hans [Consortium for Risk Assessment with Stakeholder Participation - CRESP, Nuclear Research and Consultancy Group, Petten (Netherlands); Van der Sloot, Hans [Consortium for Risk Assessment with Stakeholder Participation - CRESP, Hans Van der Sloot Consultancy (Netherlands)

    2013-07-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  18. Ammonia in simulated Hanford double-shell tank wastes: Solubility and effects on surface tension

    Norton, J.D.; Pederson, L.R.

    1994-09-01

    Radioactive and wastes left from defense materials production activities are temporarily stored in large underground tanks at the Hanford Site in south central Washington State (Tank Waste Science Panel 1991). Some of these wastes are in the form of a thick slurry (''double-shell slurry'') containing sodium nitrate, sodium nitrite, sodium aluminate, sodium hydroxide, sodium carbonate, organic complexants and buffering agents, complexant fragments and other minor components (Herting et al. 1992a; Herting et al. 1992b; Campbell et al. 1994). As a result of thermal and radiolytic processes, a number of gases are known to be produced by some of these stored wastes, including ammonia, nitrous oxide, nitrogen, hydrogen, and methane (Babad et al. 1991; Ashby et al. 1992; Meisel et al. 1993; Ashby et al. 1993; Ashby et al. 1994; Bryan et al. 1993; US Department of Energy 1994). Before the emplacement of a mixer pump, these gases were retained in and periodically released from Tank 241-SY-101, a double-shell tank at the Hanford Site (Babad et al. 1992; US Department of Energy 1994). Gases are believed to be retained primarily in the form of bubbles attached to solid particles (Bryan, Pederson, and Scheele 1992), with very little actually dissolved in the liquid. Ammonia is an exception. The relation between the concentration of aqueous ammonia in such concentrated, caustic mixtures and the ammonia partial pressure is not well known, however

  19. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIFUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    Pierce, R.; Peters, T.; Crowder, M.; Caldwell, T.; Pak, D; Fink, S.; Blessing, R.; Washington, A.

    2011-09-27

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. Conclusions from this work include the following. The CSSX process is capable of reducing {sup 137}Cs in high level radioactive waste by a factor of more than 40,000 using five extraction, two scrub, and five strip stages. Tests demonstrated extraction and strip section stage efficiencies of greater than 93% for the Tank 49H waste test and greater than 88% for the simulant waste test. During a test with HLW, researchers processed 39 liters of Tank 49H solution and the waste raffinate had an average decontamination factor (DF) of 6.78E+04, with a maximum of 1.08E+05. A simulant waste solution ({approx}34.5 liters) with an initial Cs concentration of 83.1 mg/L was processed and had an average DF greater than 5.9E+03, with a maximum DF of greater than 6.6E+03. The difference may be attributable to differences in contactor stage efficiencies. Test results showed the solvent can be stripped of cesium and recycled for {approx}25 solvent turnovers without the occurrence of any measurable solvent degradation or negative effects from minor components. Based on the performance of the 12-stage 2-cm apparatus with the Tank 49H HLW, the projected DF for MCU with seven extraction, two scrub, and seven strip stages operating at a nominal efficiency of 90% is {approx}388,000. At 95% stage efficiency, the DF in MCU would be {approx}3.2 million. Carryover of organic solvent in aqueous streams (and aqueous in organic

  20. Alternative treatment for septic tank sludge: co-digestion with municipal solid waste in bioreactor landfill simulators.

    Valencia, R; den Hamer, D; Komboi, J; Lubberding, H J; Gijzen, H J

    2009-02-01

    Co-disposal of septic tank sludge had a positive effect on the municipal solid waste (MSW) stabilisation process in Bioreactor Landfill simulators. Co-disposal experiments were carried out using the Bioreactor Landfill approach aiming to solve the environmental problems caused by indiscriminate and inadequate disposal of MSW and especially of septic tank sludge. The simulator receiving septic tank sludge exhibited a 200 days shorter lag-phase as compared to the 350 days required by the control simulator to start the exponential biogas production. Additionally, the simulator with septic sludge apparently retained more moisture (>60% w/w), which enhanced the overall conversion of organic matter hence increasing the biogas production (0.60 m3 biogas kg(-1)VS(converted)) and removal efficiency of 60% for VS from the simulator. Alkaline pH values (pH>8.5) did not inhibit the biogas production; moreover it contributed to reduce partially the negative effects of NH(4)(+) (>2 g L(-1)) due to NH(3) volatilisation thus reducing the nitrogen content of the residues. Associated risks and hazards with septage disposal were practically eliminated as total coliform and faecal coliform contents were reduced by 99% and 100%, respectively at the end of the experiment. These results indicate that co-disposal has two direct benefits, including the safe and environmentally sound disposal of septic tank sludge and an improvement of the overall performance of the Bioreactor Landfill by increasing moisture retention and supplying a more acclimatised bacterial population.

  1. Computer simulation of laboratory leaching and washing of tank waste sludges

    Meng, C.D.; MacLean, G.T.; Landeene, B.C.

    1994-01-01

    The process simulator ESP (Environmental Simulation Program) was used to simulate laboratory caustic leaching and washing of core samples from Tanks B-110, C-109, and C-112. The results of the laboratory tests and the computer simulations are compared. The results from both, agreed reasonably well for elements contained in solid phases included in the ESP Public data bank. The use of the GEOCHEM data bank and/or a custom Hanford Data bank should improve the agreement, making ESP a useful process simulator for aqueous based processing

  2. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    Haller, C.S.; Dove, T.H.

    1994-01-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement

  3. Steel corrosion in radioactive waste storage tanks

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, E.; Weier, Dennis R.

    2004-01-01

    A collaborative study is being conducted by CNEA and USDOE (Department of Energy of the United States of America) to investigate the effects of tank waste chemistry on radioactive waste storage tank corrosion. Radioactive waste is stored in underground storage tanks that contain a combination of salts, consisting primarily of sodium nitrate, sodium nitrite and sodium hydroxide. The USDOE, Office of River Protection at the Hanford Site, has identified a need to conduct a laboratory study to better understand the effects of radioactive waste chemistry on the corrosion of waste storage tanks at the Hanford Site. The USDOE science need (RL-WT079-S Double-Shell Tanks Corrosion Chemistry) called for a multi year effort to identify waste chemistries and temperatures within the double-shell tank (DST) operating limits for corrosion control and operating temperature range that may not provide the expected corrosion protection and to evaluate future operations for the conditions outside the existing corrosion database. Assessment of corrosion damage using simulated (non-radioactive) waste is being made of the double-shell tank wall carbon steel alloy. Evaluation of the influence of exposure time, and electrolyte composition and/or concentration is being also conducted. (author) [es

  4. Enhanced Waste Tank Level Model

    Duignan, M.R.

    1999-06-24

    'With the increased sensitivity of waste-level measurements in the H-Area Tanks and with periods of isolation, when no mass transfer occurred for certain tanks, waste-level changes have been recorded with are unexplained.'

  5. Hanford site waste tank characterization

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  6. Evaluating Residence Time for Cesium Removal from Simulated Hanford Tank Wastes Using SuperLig(R) 644 Resin

    Hassan, N.M.

    2003-01-01

    Batch contact and column experiments were performed to evaluate the effect of residence time on cesium (Cs) removal from two simulated Hanford tank wastes using SuperLig(R) 644 resin. The two waste simulants mimic the compositions of tanks 241-AZ-102 and 241-AN-107 at the U.S. Department of Energy (DOE) Hanford site. A single column made of glass tube (2.7-cm i.d.), which contained approximately 100 mL of H-form SuperLig(R) 644 resin was used in the column experiments. The experiments each consisted of loading, elution, and regeneration steps were performed at flow rates ranging from 0.64 to 8.2 BV/h for AZ-102 and from 1.5 to 18 BV/h for AN-107 simulant. The lowest flow rates of 0.64 and 1.5 BV/h were selected to evaluate less than optimal flow conditions in the plant. The range of the flow rates is consistent with the River Protection Project design for the waste treatment plant (WTP) columns, which will operate at a flow rate between 1.5 to 3 BV/h. Batch contact experiments were also performed for two batches of SuperLig(R) 644 to determine the equilibrium distribution coefficients (Kds) as a function of Cs concentration

  7. Hanford waste tank cone penetrometer

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ''waste'' data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment

  8. Summary of tank waste physical properties at the Hanford Site

    Nguyen, Q.H.

    1994-04-01

    This report summarizes the physical parameters measured from Hanford Site tank wastes. Physical parameters were measured to determine the physical nature of the tank wastes to develop simulants and design in-tank equipment. The physical parameters were measured mostly from core samples obtained directly below tank risers. Tank waste physical parameters were collected through a database search, interviewing and selecting references from documents. This report shows the data measured from tank waste but does not describe how the analyses wee done. This report will be updated as additional data are measured or more documents are reviewed

  9. Cancrinite and sodalite formation in the presence of cesium, potassium, magnesium, calcium and strontium in Hanford tank waste simulants

    Deng Youjun; Flury, Markus; Harsh, James B.; Felmy, Andrew R.; Qafoku, Odeta

    2006-01-01

    High-level radioactive tank waste solutions that have leaked into the subsurface at the US Department of Energy Hanford Site, Washington, are chemically complex. Here, the effect of five cations, Cs + , K + , Sr 2+ , Ca 2+ and Mg 2+ , on mineral formation and transformation pathways under conditions mimicking Hanford tank leaks is investigated. Sodium silicate was used to represent the dissolved silicate from sediments. The silicate was added into a series of simulants that contained 0.5M aluminate, 1M or 16M NaOH, and the NO 3 - salts of the cations. The precipitates were monitored by X-ray diffraction, scanning electron microscopy, and X-ray energy dispersive spectroscopy. In the 1M NaOH simulants, low concentration of Cs + ( + concentration was >=250mM. An unidentified feldspathoid or zeolite intermediate phase was observed in the presence of high concentrations of Cs + (500mM). The presence of K + did not alter, but slowed, the formation of cancrinite and sodalite. The presence of divalent cations led to the formation of metastable or stable silicates, aluminates, hydroxides, or aluminosilicates. The formation of these intermediate phases slowed the formation of cancrinite and sodalite by consuming OH - , silicate, or aluminate. Compared with the concentrations used in this study, the concentrations of radioactive Cs + and Sr 2+ in the tank solutions are much lower and divalent cations (Ca 2+ and Mg 2+ ) released from sediments likely precipitate out as hydroxides, silicates or aluminates; therefore, the authors do not expect that the presence of these monovalent and divalent cations significantly affect the formation of cancrinite and sodalite in the sediments underneath the leaking waste tanks

  10. Tank waste concentration mechanism study

    Pan, L.C.; Johnson, L.J.

    1994-09-01

    This study determines whether the existing 242-A Evaporator should continue to be used to concentrate the Hanford Site radioactive liquid tank wastes or be replaced by an alternative waste concentration process. Using the same philosophy, the study also determines what the waste concentration mechanism should be for the future TWRS program. Excess water from liquid DST waste should be removed to reduce the volume of waste feed for pretreatment, immobilization, and to free up storage capacity in existing tanks to support interim stabilization of SSTS, terminal cleanout of excess facilities, and other site remediation activities

  11. Mechanisms of gas bubble retention and release: results for Hanford Waste Tanks 241-S-102 and 241-SY-103 and single-shell tank simulants

    Gauglitz, P.A.; Rassat, S.D.; Bredt, P.R.; Konynenbelt, J.H.; Tingey, S.M.; Mendoza, D.P.

    1996-09-01

    Research at Pacific Northwest National Laboratory (PNNL) has probed the physical mechanisms and waste properties that contribute to the retention and release of flammable gases from radioactive waste stored in underground tanks at Hanford. This study was conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. The wastes contained in the tanks are mixes of radioactive and chemical products, and some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Because these gases are flammable, their retention and episodic release pose a number of safety concerns

  12. Mechanisms of gas bubble retention and release: results for Hanford Waste Tanks 241-S-102 and 241-SY-103 and single-shell tank simulants

    Gauglitz, P.A.; Rassat, S.D.; Bredt, P.R.; Konynenbelt, J.H.; Tingey, S.M.; Mendoza, D.P.

    1996-09-01

    Research at Pacific Northwest National Laboratory (PNNL) has probed the physical mechanisms and waste properties that contribute to the retention and release of flammable gases from radioactive waste stored in underground tanks at Hanford. This study was conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. The wastes contained in the tanks are mixes of radioactive and chemical products, and some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Because these gases are flammable, their retention and episodic release pose a number of safety concerns.

  13. 1990 waste tank inspection program

    McNatt, F.G.

    1990-01-01

    Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Tank conditions are evaluated by inspection using periscopes, still photography, and video systems for visual imagery. Inspections made in 1990 are the subject of this report

  14. Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    Morrey, E.V.; Tingey, J.M.; Elliott, M.L.

    1996-10-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  15. Comparison of simulants to actual neutralized current acid waste: Process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    Morrey, E.V.; Tingey, J.M.

    1996-04-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs have been established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste is being performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  16. Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    Morrey, E.V.; Tingey, J.M.; Elliott, M.L.

    1996-10-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions

  17. Comparison of simulants to actual neutralized current acid waste: Process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    Morrey, E.V.; Tingey, J.M.

    1996-04-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs have been established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste is being performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions

  18. Material selection for Multi-Function Waste Tank Facility tanks

    Carlos, W.C.

    1994-01-01

    This report briefly summarizes the history of the materials selection for the US Department of Energy's high-level waste carbon steel storage tanks. It also provide an evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements; assessed each requirement; and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of normalized ASME SA 516, Grade 70, carbon steel

  19. Waste tank characterization sampling limits

    Tusler, L.A.

    1994-01-01

    This document is a result of the Plant Implementation Team Investigation into delayed reporting of the exotherm in Tank 241-T-111 waste samples. The corrective actions identified are to have immediate notification of appropriate Tank Farm Operations Shift Management if analyses with potential safety impact exceed established levels. A procedure, WHC-IP-0842 Section 12.18, ''TWRS Approved Sampling and Data Analysis by Designated Laboratories'' (WHC 1994), has been established to require all tank waste sampling (including core, auger and supernate) and tank vapor samples be performed using this document. This document establishes levels for specified analysis that require notification of the appropriate shift manager. The following categories provide numerical values for analysis that may indicate that a tank is either outside the operating specification or should be evaluated for inclusion on a Watch List. The information given is intended to translate an operating limit such as heat load, expressed in Btu/hour, to an analysis related limit, in this case cesium-137 and strontium-90 concentrations. By using the values provided as safety flags, the analytical laboratory personnel can notify a shift manager that a tank is in potential violation of an operating limit or that a tank should be considered for inclusion on a Watch List. The shift manager can then take appropriate interim measures until a final determination is made by engineering personnel

  20. Tank waste remediation system tank waste retrieval risk management plan

    Klimper, S.C.

    1997-01-01

    This Risk Management Plan defines the approach to be taken to manage programmatic risks in the TWRS Tank Waste Retrieval program. It provides specific instructions applicable to TWR, and is used to supplement the guidance given by the TWRS Risk Management procedure

  1. Hanford Site Tank Waste Remediation System

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  2. WRPS Meeting The Challenge Of Tank Waste

    Britton, J.C.

    2012-01-01

    -and-a-half years to modernize the infrastructure in Hanford's tank farms. WRPS issued 850 subcontracts totaling more than $152 million with nearly 76 percent of that total awarded to small businesses. WRPS used the funding to upgrade tank farm infrastructure, develop technologies to retrieve and consolidate tank waste and extend the life of two critical operating facilities needed to feed waste to the WTP. The 222-S Laboratory analyzes waste to support waste retrievals and transfers. The laboratory was upgraded to support future WTP operations with a new computer system, new analytical equipment, a new office building and a new climate-controlled warehouse. The 242-A Evaporator was upgraded with a control-room simulator for operator training and several upgrades to aging equipment. The facility is used to remove liquid from the tank waste, creating additional storage space, necessary for continued waste retrievals and WTP operation. The One System Integrated Project Team is ajoint effort ofWRPS and Bechtel National to identify and resolve common issues associated with commissioning, feeding and operating the Waste Treatment Plant. Two new facilities are being designed to support WTP hot commlsslomng. The Interim Hanford Storage project is planned to store canisters of immobilized high-level radioactive waste glass produced by the vitrification plant. The facility will use open racks to store the 15-foot long, two-foot diameter canisters of waste, which require remote handling. The Secondary Liquid Waste Treatment Project is a major upgrade to the existing Effluent Treatment Facility at Hanford so it can treat about 10 million gallons of liquid radioactive and hazardous effluent a year from the vitrification plant. The One System approach brings the staff of both companies together to identify and resolve WTP safety issues. A questioning attitude is encouraged and an open forum is maintained for employees to raise issues. WRPS is completing its mission safely with record

  3. Steady-State Simulation of Steam Reforming of INEEL Tank Farm Waste

    Nichols, T.T.; Taylor, D.D.; Wood, R.A.; Barnes, C.M. email toddn@inel.gov

    2002-01-01

    A steady-state model of the Sodium-Bearing Waste steam reforming process at the Idaho National Engineering and Environmental Laboratory has been performed using the commercial ASPEN Plus process simulator. The preliminary process configuration and its representation in ASPEN are described. As assessment of the capability of the model to mechanistically predict product stream compositions was made, and fidelity gaps and opportunities for model enhancement were identified, resulting in the following conclusions: (1) Appreciable benefit is derived from using an activity coefficient model for electrolyte solution thermodynamics rather than assuming ideality (unity assumed for all activity coefficients). The concentrations of fifteen percent of the species present in the primary output stream were changed by more than 50%, relative to Electrolyte NRTL, when ideality was assumed; (2) The current baseline model provides a good start for estimating mass balances and performing integrated process optimization because it contains several key species, uses a mechanistic electrolyte thermodynamic model, and is based on a reasonable process configuration; and (3) Appreciable improvement to model fidelity can be realized by expanding the species list and the list of chemical and phase transformations. A path forward is proposed focusing on the use of an improved electrolyte thermodynamic property method, addition of chemical and phase transformations for key species currently absent from the model, and the combination of RGibbs and Flash blocks to simulate simultaneous phase and chemical equilibria in the off-gas treatment train

  4. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIGUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    Pierce, R.; Peters, T.; Crowder, M.; Pak, D.; Fink, S.; Blessing, R.; Washington, A.; Caldwell, T.

    2011-11-29

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. A solvent extraction system for removal of cesium from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive is used to improve stripping performance and to mitigate the effects of any surfactants present in the feed stream. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008.

  5. ICP-MS nebulizer performance for analysis of SRS high salt simulated radioactive waste tank solutions (number-sign 3053)

    Jones, V.D.

    1997-01-01

    High Level Radioactive Waste Tanks at the Savannah River Site are high in salt content. The cross-flow nebulizer provided the most stable signal for all salt matrices with the smallest signal loss/suppression due to this matrix. The DIN exhibited a serious lack of tolerance for TDS; possibly due to physical de-tuning of the nebulizer efficiency

  6. Organic Tanks Safety Program: Waste aging studies

    Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

    1994-11-01

    The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year's findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to γ radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H 2 . Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs

  7. Organic tank safety project: Preliminary results of energetics and thermal behavior studies of model organic nitrate and/or nitrite mixtures and a simulated organic waste

    Scheele, R.D.; Sell, R.L.; Sobolik, J.L.; Burger, L.L.

    1995-08-01

    As a result of years of production and recovery of nuclear defense materials and subsequent waste management at the Hanford Site, organic-bearing radioactive high-level wastes (HLW) are currently stored in large (up to 3. ML) single-shell storage tanks (SSTs). Because these wastes contain both fuels (organics) and the oxidants nitrate and nitrite, rapid energetic reactions at certain conditions could occur. In support of Westinghouse Hanford Company's (WHC) efforts to ensure continued safe storage of these organic- and oxidant-bearing wastes and to define the conditions necessary for reactions to occur, we measured the thermal sensitivities and thermochemical and thermokinetic properties of mixtures of selected organics and sodium nitrate and/or nitrite and a simulated Hanford organic-bearing waste using thermoanalytical technologies. These thermoanalytical technologies are used by chemical reactivity hazards evaluation organizations within the chemical industry to assess chemical reaction hazards

  8. Organic tank safety project: Preliminary results of energetics and thermal behavior studies of model organic nitrate and/or nitrite mixtures and a simulated organic waste

    Scheele, R.D.; Sell, R.L.; Sobolik, J.L.; Burger, L.L.

    1995-08-01

    As a result of years of production and recovery of nuclear defense materials and subsequent waste management at the Hanford Site, organic-bearing radioactive high-level wastes (HLW) are currently stored in large (up to 3. ML) single-shell storage tanks (SSTs). Because these wastes contain both fuels (organics) and the oxidants nitrate and nitrite, rapid energetic reactions at certain conditions could occur. In support of Westinghouse Hanford Company`s (WHC) efforts to ensure continued safe storage of these organic- and oxidant-bearing wastes and to define the conditions necessary for reactions to occur, we measured the thermal sensitivities and thermochemical and thermokinetic properties of mixtures of selected organics and sodium nitrate and/or nitrite and a simulated Hanford organic-bearing waste using thermoanalytical technologies. These thermoanalytical technologies are used by chemical reactivity hazards evaluation organizations within the chemical industry to assess chemical reaction hazards.

  9. Low temperature hydrothermal destruction of organics in Hanford tank wastes

    Orth, R.J.; Elmore, M.R.; Zacher, A.H.; Neuenschwander, G.G.; Schmidt, A.J.; Jones, E.O.; Hart, T.R.; Poshusta, J.C.

    1994-08-01

    The objective of this work is to evaluate and develop a low temperature hydrothermal process (HTP) for the destruction of organics that are present wastes temporarily stored in underground tanks at the Hanford Site. Organic compounds contribute to tank waste safety issues, such as hydrogen generation. Some organic compounds act as complexants, promoting the solubility of radioactive constituents such as 90 Sr and 241 Am, which is undesirable for waste pretreatment processing. HTP is thermal-chemical autogenous processing method that is typically operated between 250 degrees C and 375 degrees C and approximately 200 atm. Testing with simulated tank waste, containing a variety of organics has been performed. The distribution of strontium, cesium and bulk metals between the supernatant and solid phases as a function of the total organic content of the waste simulant will be presented. Test results using simulant will be compared with similar tests conducted using actual radioactive waste

  10. EFFECTS OF TEMPERATURE AND CONTAMINATION ON MPCMS ELECTRODES IN 241-AY-101 AND 241-AN-107 TANK WASTE SIMULANTS

    CATO DM; DAHL MM; PHILO GL; EDGEMON GL; BELL DR.JLS; MOORE CG

    2010-03-26

    This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.

  11. EFFECTS OF TEMPERATURE AND CONTAMINATION ON MPCMS ELECTRODES IN 241-AY-101 AND 241-AN-107 TANK WASTE SIMULANTS

    Cato, D.M.; Dahl, M.M.; Philo, G.L.; Edgemon, G.L.; Bell, J.L.S.; Moore, C.G.

    2010-01-01

    This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.

  12. Mathematical model of the Savannah River Site waste tank farm

    Smith, F.G. III.

    1991-01-01

    A mathematical model has been developed to simulate operation of the waste tank farm and the associated evaporator systems at the Savannah River Site. The model solves material balance equations to predict the volumes of liquid waste, salt, and sludge for all of the tanks within each of the evaporator systems. Additional logic is included to model the behavior of waste tanks not directly associated with the evaporators. Input parameters include the Material Management Plan forecast of canyon operations, specification of other waste sources for the evaporator systems, evaporator operating characteristics, and salt and sludge removal schedules. The model determines how the evaporators will operate, when waste transfers can be made, and waste accumulation rates. Output from the model includes waste tank contents, summaries of systems operations, and reports of space gain and the remaining capacity to store waste materials within the tank farm. Model simulations can be made to predict waste tank capacities on a daily basis for up to 20 years. The model is coded as a set of three computer programs designed to run on either IBM compatible or Apple Macintosh II personal computers

  13. Tank Waste Remediation System Guide

    Robershotte, M.A.; Dirks, L.L.; Seaver, D.A.; Bothers, A.J.; Madden, M.S.

    1995-06-01

    The scope, number and complexity of Tank Waste Remediation System (TWRS) decisions require an integrated, consistent, and logical approach to decision making. TWRS has adopted a seven-step decision process applicable to all decisions. Not all decisions, however, require the same degree of rigor/detail. The decision impact will dictate the appropriate required detail. In the entire process, values, both from the public as well as from the decision makers, play a key role. This document concludes with a general discussion of the implementation process that includes the roles of concerned parties

  14. Flammable gas tank waste level reconciliation tank 241-SX-105

    Brevick, C.H.; Gaddie, L.A.

    1997-01-01

    Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980

  15. Corrosion tests of 316L and Hastelloy C-22 in simulated tank waste solutions

    Danielson, M.J.; Pitman, S.G.

    2000-01-01

    Both the 316L stainless steel and Hastelloy C-22 gave satisfactory corrosion performance in the simulated test environments. They were subjected to 100 day weight loss corrosion tests and electrochemical potentiodynamic evaluation. This activity supports confirmation of the design basis for the materials of construction of process vessels and equipment used to handle the feed to the LAW-melter evaporator. BNFL process and mechanical engineering will use the information derived from this task to select material of construction for process vessels and equipment

  16. Double shell tank waste analysis plan

    Mulkey, C.H.; Jones, J.M.

    1994-01-01

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations

  17. Underground storage tank soft waste dislodging and conveyance

    Wellner, A.F.S.

    1993-01-01

    The primary objective of this task is to demonstrate potential technical solutions and to acquire engineering data and information on the retrieval technologies applicable for use in retrieving waste from underground storage tanks. This task focuses on soft waste dislodging and conveyance technologies that would be used in conjunction with a manipulator-based retrieval system. This retrieval task focuses on Hanford single-shell tanks, but the results may also have applications to other waste retrieval problems. This work is part of the U.S. Department of Energy's (DOE's) Office of Technology Development, sponsored by the DOE's Richland Operations Office under the Underground Storage Tanks Integrated Demonstration (USTID) program. This task is one element of the whole waste dislodging and conveyance system in the USTID. The tank wastes contain both hazardous and radioactive constituents. This task focuses on the processes for dislodging and retrieving soft wastes, mainly sludge. Sludge consists primarily of heavy-metal, iron, and aluminum precipitates. Sludges vary greatly in their physical properties and may contain pockets of liquid. Sludges have been described as varying in consistency from thick slurry to sticky clay and as sandy with hard chunks of material. The waste is believed to have adhesive and cohesive properties. The quantitative physical properties of the wastes have yet to be measured. The waste simulants used in the testing program emulate the physical properties of the tank waste

  18. Evaluation of tank waste transfers at 241-AW tank farm

    Willis, W.L.

    1998-01-01

    A number of waste transfers are needed to process and feed waste to the private contractors in support of Phase 1 Privatization. Other waste transfers are needed to support the 242-A Evaporator, saltwell pumping, and other ongoing Tank Waste Remediation System (TWRS) operations. The purpose of this evaluation is to determine if existing or planned equipment and systems are capable of supporting the Privatization Mission of the Tank Farms and continuing operations through the end of Phase 1B Privatization Mission. Projects W-211 and W-314 have been established and will support the privatization effort. Equipment and system upgrades provided by these projects (W-211 and W-314) will also support other ongoing operations in the tank farms. It is recognized that these projects do not support the entire transfer schedule represented in the Tank Waste Remediation system Operation and Utilization Plan. Additionally, transfers surrounding the 241-AW farm must be considered. This evaluation is provided as information, which will help to define transfer paths required to complete the Waste Feed Delivery (WFD) mission. This document is not focused on changing a particular project, but it is realized that new project work in the 241-AW Tank Farm is required

  19. Vitrification technology for Hanford Site tank waste

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy's (DOE) Hanford Site has an inventory of 217,000 m 3 of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing

  20. Hanford Site Waste Storage Tank Information Notebook

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*

  1. Radiolytic bubble formation and level changes in simulated high-level waste salts and sludges -- application to Savannah River Site and Hanford Storage tanks

    Walker, D.D.; Crawford, C.L.; Bibler, N.E.

    1993-01-01

    Radiolytically-produced bubbles of trapped gas are observed in simulated high-level waste (HLW) damp salt cake exposed to Co-60 gamma radiation. As the damp salt cake is irradiated, its volume increases due to the formation of trapped gas bubbles. Based on the increase in volume, the rate of trapped gas generation varies between 0.04 and 0.2 molecules/100 eV of energy deposited in the damp salt cake. The maximum volume of trapped gas observed in experiments is in the range 21--26 vol %. After reaching these volumes, the gas bubbles begin to escape. The generated gas includes hydrogen, oxygen, and nitrous oxide. The ratio in which these components are produced depends on the composition of the waste. Nitrous oxide production increases with the amount of sodium nitrite. Gases trapped by this mechanism may account for some of the observed level changes in Savannah River Site and Hanford waste tanks

  2. Comparison of organic and inorganic ion exchangers for removal of cesium and strontium from simulated and actual Hanford 241-AW-101 DSSF tank waste

    Brown, G.N.; Bray, L.A.; Carlson, C.D.

    1996-04-01

    A number of organic and inorganic exchangers are being developed and evaluated for cesium removal from Hanford tank wastes. The exchangers of interest that are investigated in this work include powdered (IONSIV reg-sign IE-910; referred to as IE-910) and engineered (IONSIV reg-sign IE-911; referred to as IE-911) forms of the crystalline silico-titanate (CST) inorganic sorbent developed by Sandia National Laboratories (SNL)/Texas A and M and prepared by UOP; a phenol-formaldehyde (CS-100) resin developed by Rohm and Haas; a resorcinol-formaldehyde (R-F) polymer developed at the Westinghouse Savannah River Company (WSRC) and produced by Boulder Scientific; an inorganic zeolite exchanger produced by UOP (IONSIV reg-sign TIE-96; referred to as TIE-96); an inorganic sodium titanate produced by Allied Signal/Texas A and M (NaTi); and a macrocyclic organic resin developed and produced by IBC Advanced Technologies (SuperLig reg-sign 644; referred to as SL-644). Several of these materials are still under development and may not be in the optimal form. The work described in this report involves the direct comparison of the ion exchange materials for the pretreatment of actual and simulated Hanford tank waste. Data on the performance of all of the exchangers with simulated and actual double shell slurry feed (DSSF) is included. The DSSF waste is a mixture of the supernate from tanks 101-AW (70%), 106-AP (20%) and 102-AP (10%). The comparative parameters include radionuclide removal efficiency under a variety of conditions and material properties (e.g., bed density and percent removable water). Cesium and strontium distribution (K d ), lambda (λ = K d x ρ b ), and decontamination factors (DF) are compared as a function of exchanger contact duration, solution composition (Na and Cs concentration), exchanger/waste phase ratio, and multiple sequential contacts

  3. Characterization of Hanford tank wastes containing ferrocyanides

    Tingey, J.M.; Matheson, J.D.; McKinley, S.G.; Jones, T.E.; Pool, K.H.

    1993-02-01

    Currently, 17 storage tanks on the Hanford site that are believed to contain > 1,000 gram moles (465 lbs) of ferrocyanide compounds have been identified. Seven other tanks are classified as ferrocyanide containing waste tanks, but contain less than 1,000 gram moles of ferrocyanide compounds. These seven tanks are still included as Hanford Watch List Tanks. These tanks have been declared an unreviewed safety question (USQ) because of potential thermal reactivity hazards associated with the ferrocyanide compounds and nitrate and nitrite. Hanford tanks with waste containing > 1,000 gram moles of ferrocyanide have been sampled. Extensive chemical, radiothermical, and physical characterization have been performed on these waste samples. The reactivity of these wastes were also studied using Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis. Actual tank waste samples were retrieved from tank 241-C-112 using a specially designed and equipped core-sampling truck. Only a small portion of the data obtained from this characterization effort will be reported in this paper. This report will deal primarily with the cyanide and carbon analyses, thermal analyses, and limited physical property measurements

  4. Preliminary assessment of blending Hanford tank wastes

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications

  5. Preliminary assessment of blending Hanford tank wastes

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications.

  6. Radioactive tank waste remediation focus area

    1996-08-01

    EM's Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form

  7. Radioactive tank waste remediation focus area

    NONE

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  8. Electrochemical organic destruction in support of Hanford tank waste pretreatment

    Lawrence, W.E.; Surma, J.E.; Gervais, K.L.; Buehler, M.F.; Pillay, G.; Schmidt, A.J.

    1994-10-01

    The US Department of Energy's Hanford Site in Richland, Washington, has 177 underground storage tanks that contain approximately 61 million gallons of radioactive waste. The current cleanup strategy is to retrieve the waste and separate components into high-level and low-level waste. However, many of the tanks contain organic compounds that create concerns associated with tank safety and efficiency of anticipated separation processes. Therefore, a need exists for technologies that can safely and efficiently destroy organic compounds. Laboratory-scale studies conducted during FY 93 have shown proof-of-principle for electrochemical destruction of organics. Electrochemical oxidation is an inherently safe technology and shows promise for treating Hanford complexant concentrate aqueous/ slurry waste. Therefore, in support of Hanford tank waste pretreatment needs, the development of electrochemical organic destruction (ECOD) technology has been undertaken. The primary objective of this work is to develop an electrochemical treatment process for destroying organic compounds, including tank waste complexants. Electroanalytical analyses and bench-scale flow cell testing will be conducted to evaluate the effect of anode material and process operating conditions on the rate of organic destruction. Cyclic voltammetry will be used to identify oxygen overpotentials for the anode materials and provide insight into reaction steps for the electrochemical oxidation of complexants. In addition, a bench-scale flow cell evaluation will be conducted to evaluate the influence of process operating conditions and anode materials on the rate and efficiency of organic destruction using the nonradioactive a Hanford tank waste simulant

  9. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  10. Tank Waste Remediation System optimized processing strategy

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility

  11. Tank waste remediation system: An update

    Alumkal, W.T.; Babad, H.; Dunford, G.L.; Honeyman, J.O.; Wodrich, D.D.

    1995-02-01

    The US Department of Energy's Hanford Site, located in southeastern Washington State, contains the largest amount and the most diverse collection of highly radioactive waste in the US. High-level radioactive waste has been stored at the Hanford Site in large, underground tanks since 1944. Approximately 217,000 M 3 (57 Mgal) of caustic liquids, slurries, saltcakes, and sludges have accumulated in 177 tanks. In addition, significant amounts of 90 Sr and 137 Cs were removed from the tank waste, converted to salts, doubly encapsulated in metal containers, and stored in water basins. The Tank Waste Remediation System Program was established by the US Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, significant progress has been made in resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal

  12. Tank waste remediation system program plan

    Powell, R.W.

    1998-01-01

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization

  13. Tank waste remediation system program plan

    Powell, R.W.

    1998-01-05

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  14. Annual radioactive waste tank inspection program -- 1993

    McNatt, F.G. Sr.

    1994-05-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1993 to evaluate these vessels, and evaluations based on data accrued by inspections made since the tanks were constructed, are the subject of this report. The 1993 inspection program revealed that the condition of the Savannah River Site waste tanks had not changed significantly from that reported in the previous annual report. No new leaksites were observed. No evidence of corrosion or materials degradation was observed in the waste tanks. However, degradation was observed on covers of the concrete encasements for the out-of-service transfer lines to Tanks 1 through 8

  15. Criteria: waste tank isolation and stabilization

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly

  16. Criteria: waste tank isolation and stabilization

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly. (DLC)

  17. Tank waste remediation system baseline tank waste inventory estimates for fiscal year 1995

    Shelton, L.W.

    1996-01-01

    A set of tank-by-tank waste inventories is derived from historical waste models, flowsheet records, and analytical data to support the Tank Waste Remediation System flowsheet and retrieval sequence studies. Enabling assumptions and methodologies used to develop the inventories are discussed. These provisional inventories conform to previously established baseline inventories and are meant to serve as an interim basis until standardized inventory estimates are made available

  18. Combustion modeling in waste tanks

    Mueller, C.; Unal, C.; Travis, J.R.; Forschungszentrum Karlsruhe

    1997-01-01

    This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data

  19. Response of a Type III waste tank to hydrogen deflagration

    Gong, Chung; Jerrell, J.W.; Pelfrey, J.R.; Yau, W.W.F.

    1992-01-01

    The type III waste tank is built with ASTM A516 Grade 70 steel shells in the shape of a torus with a central concrete core. The tank is buried underground and covered with a four foot thick reinforced concrete slab. The tank is enriched by 2.5 foot thick reinforced concrete wall. Between the tank surface and the wall there is a 2.5 foot annular space. The tank itself is called the ''primary liner.'' The interior surface of the concrete wall is line with steel plates, called the ''secondary liner.'' The base of the tank rests on a concrete mat. Underneath the mat the secondary liner extends from the wall to the central column surfaces. The bottom liner is attached to the reinforced concrete foundation. Based on the conditions that the tank is filled with liquid wastes to 50% of the design capacity, and that the accumulation of hydrogen becomes 20% inside its free board, the resulting deflagration would cause an overpressure of 100 psig in the tank [Wallace and Yau, 1986]. The task of this analysis is to simulate the ''hydrogen deflagration'' scenario in the Type III Waste Tank complex. During the deflagration, the stresses in the steel tank would be expected to exceed the elastic limit of the steel and the tank would then undergo large deformation. The concrete roof slab could be fractured by the expansion of the tank. The central concrete column would start to exhibit large deformation first. All the structural members in the system are expected to interact drastically during the deflagration

  20. Calcination/dissolution testing for Hanford Site tank wastes

    Colby, S.A.; Delegard, C.H.; McLaughlin, D.F.; Danielson, M.J.

    1994-07-01

    Thermal treatment by calcination offers several benefits for the treatment of Hanford Site tank wastes, including the destruction of organics and ferrocyanides and an hydroxide fusion that permits the bulk of the mostly soluble nonradioactive constituents to be easily separated from the insoluble transuranic residue. Critical design parameters were tested, including: (1) calciner equipment design, (2) hydroxide fusion chemistry, and (3) equipment corrosion. A 2 gal/minute pilot plant processed a simulated Tank 101-SY waste and produced a free flowing 700 C molten calcine with an average calciner retention time of 20 minutes and >95% organic, nitrate, and nitrite destruction. Laboratory experiments using actual radioactive tank waste and the simulated waste pilot experiments indicate that 98 wt% of the calcine produced is soluble in water, leaving an insoluble transuranic fraction. All of the Hanford Site tank wastes can benefit from calcination/dissolution processing, contingent upon blending various tank waste types to ensure a target of 70 wt% sodium hydroxide/nitrate/nitrite fluxing agent. Finally, corrosion testing indicates that a jacketed nickel liner cooled to below 400 C would corrode <2 mil/year (0.05 mm/year) from molten calcine attack

  1. Annual radioactive waste tank inspection program: 1995

    McNatt, F.G. Sr.

    1996-01-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1995 to evaluate these vessels and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

  2. Annual radioactive waste tank inspection program - 1999

    Moore, C.J.

    2000-01-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1999 to evaluate these vessels and auxiliary appurtenances along with evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

  3. Savannah River Plant waste tank inspection manual

    McNatt, F.G.

    1979-01-01

    This manual is to aid in making visual and photographic inspections and steel thickness measurements of Building 241-F and -H underground waste storage tanks. It describes the inspection program, the storage tanks, the equipment and techniques used and the results of their application, and the inspection recordkeeping methods

  4. Annual radioactive waste tank inspection program - 1992

    McNatt, F.G.

    1992-01-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1992 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report

  5. Annual radioactive waste tank inspection program - 1991

    McNatt, F.G.

    1992-01-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1991 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report

  6. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, and nitrogen in the gas phase; comparison of gas generation rates in supernate and solid fractions of Tank 241-SY-101 simulated waste

    Bryan, S.A.; Pederson, L.R.

    1995-03-01

    This report summarizes progress made in evaluating me by which flammable gases are generated in Hanford double-shell tank wastes, based on the results of laboratory tests using simulated waste mixtures. Work described in this report. was conducted at Pacific Northwest Laboratory (PNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies being performed at Georgia Institute of Technology (GIT), under subcontract to PNL, using simulated wastes, and to studies being performed at VMC using actual wastes

  7. Hanford Tank Waste Particle Atlas

    Herting, D. L. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Cooke, G. A. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Page, J S [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Valerio, J. L. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States)

    2015-08-01

    Several methods have been utilized to perform solid phase characterization. Polarized light microscopy (PLM) is used to identify individual particles based on size, shape, color, and optical properties (e.g., refractive index1, birefringence, extinction positions, and interference figures). Scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS) is used to detect which elements are present in individual particles and to infer chemical phase identification based on the metals present in combination with the size and shape of the particles. Powder X-ray diffraction (XRD) is used to identify crystalline phases present in bulk samples by matching the X-ray patterns with a library of known patterns for pure phases. Transmission electron microscopy (TEM) is used to identify individual particles by their X-ray diffraction patterns. RAMAN analysis is used to identify bulk sample compositions by matching RAMAN spectra with a library of known patterns. Other specialized techniques have not been employed routinely for Hanford tank waste samples.

  8. Disposal of Hanford site tank wastes

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  9. Dynamic bioconversion mathematical modelling and simulation of urban organic waste co-digestion in continuously stirred tank reactor

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Dorini, G.

    of this study was to apply a dynamic mathematical model to simulate the co-digestion of different urban organic wastes (UOW). The modelling was based on experimental activities, during which two reactors (R1, R2) were operated at hydraulic retention times (HRT) of 30, 20, 15, 10 days, in thermophilic conditions......The application of anaerobic digestion (AD) as process technology is increasing worldwide: the production of biogas, a versatile form of renewable energy, from biomass and organic waste materials allows mitigating greenhouse gas emission from the energy and transportation sectors while treating...... waste. However, the successful operation of AD processes is challenged by economic and technological issues. To overcome these barriers, mathematical modelling of the bioconversion process can provide support to develop strategies for controlling and optimizing the AD process. The objective...

  10. Flammable gas tank waste level reconcilliation tank 241-SX-102

    Brevick, C.H.; Gaddie, L.A.

    1997-01-01

    Fluoro Dynel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 24 1-S-1 1 1 (S-I 1 1, typical). The trapped gas evaluation document (ref 1) states that Tank SX-102 exceeds the 25% of the lower flammable limit (FL) criterion (ref 2), based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the ''Wallet Report'' is the basis for this letter report (ref 3). The Wallet Report is also a part of the trapped gas evaluation document criteria. The Wallet Report contains various tank information, including: physical information, status, levels, and dry wells, see Appendix A. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unacquainted for surface level rise. From 1973 through 1980, the Wallet Report tracked Tank S- 102 transfers and reported a net cumulative change of 19.95 in. This surface level increase is from an unknown source or is unacquainted for. Duke Engineering and Services Hanford (DASH) and Leached Martin Hanford Corporation (LMHC) are interested in determining the validity of the unexplained surface level changes reported in the 0611e Wallet Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unacquainted for surface level changes as shown in the Wallet Report from 1973 through 1980

  11. Computer modeling of forced mixing in waste storage tanks

    Eyler, L.L.; Michener, T.E.

    1992-01-01

    In this paper, numerical simulation results of fluid dynamic and physical process in radioactive waste storage tanks are presented. Investigations include simulation of jet mixing pump induced flows intended to mix and maintain particulate material uniformly distributed throughout the liquid volume. Physical effects of solids are included in the code. These are particle size through a settling velocity and mixture properties through density and viscosity. Calculations have been accomplished for centrally located, rotationally-oscillating, horizontally-directed jet mixing pump for two cases. One case is with low jet velocity an flow settling velocity. It results in uniform conditions. Results are being used to aid in experiment design and to understand mixing in the waste tanks. These results are to be used in conjunction with scaled experiments to define limits of pump operation to maintain uniformity of the mixture in the storage tanks during waste retrieval operations

  12. Computer modeling of forced mixing in waste storage tanks

    Eyler, L.L.; Michener, T.E.

    1992-04-01

    Numerical simulation results of fluid dynamic and physical processes in radioactive waste storage tanks are presented. Investigations include simulation of jet mixing pump induced flows intended to mix and maintain particulate material uniformly distributed throughout the liquid volume. Physical effects of solids are included in the code. These are particle size through a settling velocity and mixture properties through density and viscosity. Calculations have been accomplished for a centrally located, rotationally-oscillating, horizontally-directed jet mixing pump for two cases. One case is with low jet velocity and high settling velocity. It results in nonuniform distribution. The other case is with high jet velocity and low settling velocity. It results in uniform conditions. Results are being used to aid in experiment design and to understand mixing in the waste tanks. These results are to be used in conjunction with scaled experiments to define limits of pump operation to maintain uniformity of the mixture in the storage tanks during waste retrieval operations

  13. Remediation of Hanford tank waste using magnetic separation

    Worl, L.A.; Avens, L.R.; de Aguero, K.J.; Coyne Prenger, F.; Stewart, W.F.; Hill, D.D.

    1992-01-01

    Large volumes of high-level radioactive waste are stored at the Department of Energy's Hanford site. Magnetic separation, a physical separation, process, can be used to segregate actinides and certain fission products from the waste. High gradient magnetic separation (HGMS) tests have been performed successfully using a simulated, nonradioactive underground storage tank (UST) waste. Variations in HGMS test parameters included separator matrix material, magnetic field strength, slurry surfactant, and slurry solids loading. Cerium was added to the simulated tank waste to act as a uranium surrogate. Results show that over 77% of the uranium surrogate can be captured and concentrated from the original bulk with a simple procedure. The results of these tests and the feasibility of magnetic separation for pretreatment of UST waste are discussed

  14. Acoustic imaging of underground storage tank wastes

    Mech, S.J.

    1995-09-01

    Acoustics is a potential tool to determine the properties of high level wastes stored in Underground Storage Tanks. Some acoustic properties were successfully measured by a limited demonstration conducted in 114-TX. This accomplishment provides the basis for expanded efforts to qualify techniques which depend on the acoustic properties of tank wastes. This work is being sponsored by the Department of Energy under the Office of Science and Technology. In FY-1994, limited Tank Waste Remediation Systems EM-30 support was available at Hanford and Los Alamos National Laboratory. The Massachusetts Institute of Technology (MIT) and Earth Resources Laboratory (ERL) were engaged for analysis support, and Elohi Geophysics, Inc. for seismic testing services. Westinghouse-Hanford Company provided the testing and training, supplied the special engineering and safety analysis equipment and procedures, and provided the trained operators for the actual tank operations. On 11/9/94, limited in-tank tests were successfully conducted in tank 114-TX. This stabilized Single Shell Tank was reported as containing 16.8 feet of waste, the lower 6.28 feet of which contained interstitial liquid. Testing was conducted over the lower 12 feet, between two Liquid Observation Wells thirty feet apart. The ''quick-look'' data was reviewed on-site by MIT and Elohi

  15. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    Ramsey, William Gene

    2013-01-01

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper

  16. Strategy plan for management of Hanford tank wastes

    Humphreys, L.L.; Morgan, S.R.

    1993-01-01

    The Secretary of Energy in 1992 directed Hanford to plan for the retrieval and processing of all stored high level waste at Hanford for disposal at an offsite repository. This substantial change in the tank disposal program's assignment has resulted in a reevaluation of the entire Tank Waste Remediation System (TWRS) strategy. This strategic plan covers that portion of the TWRS strategy related to management of stored tank waste until it is retrieved, processed, and disposed by the disposal program and covers the responsibilities assigned to the ''manage tank waste'' function. The ''manage tank waste'' function is one of the level 2 functions as set forth in the Tank Waste Remediation System Mission Analysis Report (Baynes et al. 1993) and depicted in Figure 1. The following level 3 functions have been developed below the level 2, ''manage tank waste'' function: (1) Store waste; (2) Transfer waste; (3) Characterize, surveil and monitor waste; (4) Restore and upgrade systems; (5) Manage tank waste management system

  17. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, nitrogen, and ammonia in contact with tank 241-SY-101 simulated waste

    Bryan, S.A.; Pederson, L.R.

    1996-02-01

    Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. Described in this report are the results of tests to evaluate the rates of thermal and combined thermal and radiolytic reactions involving flammable gases in the presence of Tank 241-SY-101 simulated waste. Flammable gases generated by the radiolysis of water and by the thermal and radiolytic decomposition of organic waste constituents may themselves participate in further reactions. Examples include the decomposition of nitrous oxide to yield nitrogen and oxygen, the reaction of nitrous oxide and hydrogen to produce nitrogen and water, and the reaction of nitrogen and hydrogen to produce ammonia. The composition of the gases trapped in bubbles in the wastes might therefore change continuously as a function of the time that the gas bubbles are retained

  18. Tank waste remediation system dangerous waste training plan

    POHTO, R.E.

    1999-01-01

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench

  19. Tank waste chemistry: A new understanding of waste aging

    Babad, H.; Camaioni, D.M.; Lilga, M.A.; Samuels, W.D.; Strachan, D.M.

    1993-02-01

    There is concern about the risk of uncontrolled exothermic reactions(s) in Hanford Site waste tanks containing NO 3 minus /NO 2 minus based salts and/or metal hydroxide sludges in combination with organics or ferrocyanides. However, gradual oxidation of the waste in the tanks to less reactive species appears to have reduced the risk. In addition, wastes sampled to date contain sufficiently large quantities of water so that propagation reactions are highly unlikely. This report details an investigation into the risk of an uncontrolled exothermic reaction in Hanford Site high-activity water tanks

  20. Corrosion of steel tanks in liquid nuclear wastes

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, Eduardo

    2005-01-01

    The objective of this work is to understand how solution chemistry would impact on the corrosion of waste storage steel tanks at the Hanford Site. Future tank waste operations are expected to process wastes that are more dilute with respect to some current corrosion inhibiting waste constituents. Assessment of corrosion damage and of the influence of exposure time and electrolyte composition, using simulated (non-radioactive) wastes, of the double-shell tank wall carbon steel alloys is being conducted in a statistically designed long-term immersion experiment. Corrosion rates at different times of immersion were determined using both weight-loss determinations and electrochemical impedance spectroscopy measurements. Localized corrosion susceptibility was assessed using short-term cyclic potentiodynamic polarization curves. The results presented in this paper correspond to electrochemical and weight-loss measurements of the immersed coupons during the first year of immersion from a two year immersion plan. A good correlation was obtained between electrochemical measurements, weight-loss determinations and visual observations. Very low general corrosion rates ( -1 ) were estimated using EIS measurements, indicating that general corrosion rate of the steel in contact with liquid wastes would no be a cause of tank failure even for these out-of-chemistry limit wastes. (author) [es

  1. Rethinking the Hanford Tank Waste Program

    Parker, F. L.; Clark, D. E.; Morcos, N.

    2002-01-01

    The program to treat and dispose of the highly radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford site has been studied. A strategy/management approach to achieve an acceptable (technically sound) end state for these wastes has been developed in this study. This approach is based on assessment of the actual risks and costs to the public, workers, and the environment associated with the wastes and storage tanks. Close attention should be given to the technical merits of available waste treatment and stabilization methodologies, and application of realistic risk reduction goals and methodologies to establish appropriate tank farm cleanup milestones. Increased research and development to reduce the mass of non-radioactive materials in the tanks requiring sophisticated treatment is highly desirable. The actual cleanup activities and milestones, while maintaining acceptable safety standards, could be more focused on a risk-to-benefit cost effectiveness, as agreed to by the involved stakeholders and in accordance with existing regulatory requirements. If existing safety standards can be maintained at significant cost savings under alternative plans but with a change in the Tri-Party Agreement (a regulatory requirement), those plans should be carried out. The proposed strategy would also take advantage of the lessons learned from the activities and efforts in the first phase of the two-phased cleanup of the Hanford waste tank farms

  2. Minutes of the Tank Waste Science Panel meeting September 13--14, 1990

    Strachan, D.M.; Morgan, L.G.

    1991-02-01

    The third meeting of the Tank Waste Science Panel was held September 13--14, 1990. Science Panel members were briefed on the August 5, 1990, gas release from tank 241-101-SY (commonly denoted 101-SY), synthetic waste experiments to investigate gas generation and crust behavior in the tank, computer simulations of the thermal behavior of the waste in the tank, and calculations of gas generation based on radiolytic chemistry in alkaline solutions. Data from tanks 103-SY and 103-AN were presented, but it was decided not to divert attention from tank 101-SY at this time by taking additional samples from 103-SY or 103-AN. Science Panel members recommended that multiple groups begin a concerted experimental effort to understand the chemical and physical mechanisms involved in the tank. The understanding, along with the tank model, can then be used to determine the effectiveness of a particular mitigation method before using the method in tank 101-SY. 1 tab

  3. Waste Tank Safety Screening Module: An aspect of Hanford Site tank waste characterization

    Hill, J.G.; Wood, T.W.; Babad, H.; Redus, K.S.

    1994-01-01

    Forty-five (45) of the 149 Hanford single-shell tanks have been designated as Watch-List tanks for one or more high-priority safety issues, which include significant concentrations of organic materials, ferrocyanide salts, potential generation of flammable gases, high heat generation, criticality, and noxious vapor generation. While limited waste characterization data have been acquired on these wastes under the original Tri-Party Agreement, to date all of the tank-by-tank assessments involved in these safety issue designations have been based on historical data rather than waste on data. In response to guidance from the Defense Nuclear Facilities Safety Board (DNFSB finding 93-05) and related direction from the US Department of Energy (DOE), Westinghouse Hanford Company, assisted by Pacific Northwest Laboratory, designed a measurements-based screening program to screen all single-shell tanks for all of these issues. This program, designated the Tank Safety Screening Module (TSSM), consists of a regime of core, supernatant, and auger samples and associated analytical measurements intended to make first-order discriminations of the safety status on a tank-by-tank basis. The TSSM combines limited tank sampling and analysis with monitoring and tank history to provide an enhanced measurement-based categorization of the tanks relative to the safety issues. This program will be implemented beginning in fiscal year (FY) 1994 and supplemented by more detailed characterization studies designed to support safety issue resolution

  4. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-03-01

    Hanford's underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report

  5. Technology development activities supporting tank waste remediation

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy's Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation

  6. Absorption of carbon dioxide in waste tanks

    Hobbs, D.T.

    1987-01-01

    Air flow rates and carbon dioxide concentrations of air entering and exiting eight H-Area waste tanks were monitored for a period of one year. The average instanteous concentration of carbon dioxide in air is within the range reported offsite, and therefore is not affect by operation of the coal-fired power plant adjacent to the tank farm. Waste solutions in each of the tanks were observed to be continuously absorbing carbon dioxide. The rate of absorption of carbon dioxide decreased linearly with the pH of the solution. Personnel exposure associated with the routine sampling and analysis of radioactive wastes stored at SRP to determine the levels of corrosion inhibitors in solution could be reduced by monitoring the absorption of carbon dioxide and using the relationship between pH and carbon dioxide absorption to determine the free hydroxide concentration in solution

  7. Correlation models for waste tank sludges and slurries

    Mahoney, L.A.; Trent, D.S.

    1995-07-01

    This report presents the results of work conducted to support the TEMPEST computer modeling under the Flammable Gas Program (FGP) and to further the comprehension of the physical processes occurring in the Hanford waste tanks. The end products of this task are correlation models (sets of algorithms) that can be added to the TEMPEST computer code to improve the reliability of its simulation of the physical processes that occur in Hanford tanks. The correlation models can be used to augment, not only the TEMPEST code, but other computer codes that can simulate sludge motion and flammable gas retention. This report presents the correlation models, also termed submodels, that have been developed to date. The submodel-development process is an ongoing effort designed to increase our understanding of sludge behavior and improve our ability to realistically simulate the sludge fluid characteristics that have an impact on safety analysis. The effort has employed both literature searches and data correlation to provide an encyclopedia of tank waste properties in forms that are relatively easy to use in modeling waste behavior. These properties submodels will be used in other tasks to simulate waste behavior in the tanks. Density, viscosity, yield strength, surface tension, heat capacity, thermal conductivity, salt solubility, and ammonia and water vapor pressures were compiled for solutions and suspensions of sodium nitrate and other salts (where data were available), and the data were correlated by linear regression. In addition, data for simulated Hanford waste tank supernatant were correlated to provide density, solubility, surface tension, and vapor pressure submodels for multi-component solutions containing sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate

  8. Heat removal characteristics of waste storage tanks. Revision 1

    Kummerer, M.

    1995-10-01

    A topical report that examines the relationship between tank heat load and maximum waste temperatures. The passive cooling response of the tanks is examined, and loss of active cooling in ventilated tanks is investigated

  9. Waste gas combustion in a Hanford radioactive waste tank

    Travis, J.R.; Fujita, R.K.; Spore, J.W.

    1994-01-01

    It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion

  10. Tank waste remediation system mission analysis report

    Acree, C.D.

    1998-01-01

    This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors' facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission

  11. Tank farm waste characterization Technology Program Plan

    Hohl, T.M.; Schull, K.E.; Bensky, M.S.; Sasaki, L.M.

    1989-03-01

    This document presents technological and analytical methods development activities required to characterize, process, and dispose of Hanford Site wastes stored in underground waste tanks in accordance with state and federal environmental regulations. The document also lists the need date, current (fiscal year 1989) funding, and estimate of future funding for each task. Also identified are the impact(s) if an activity is not completed. The document integrates these needs to minimize duplication of effort between the various programs involved

  12. Potential for erosion corrosion of SRS high level waste tanks

    Zapp, P.E.

    1994-01-01

    SRS high-level radioactive waste tanks will not experience erosion corrosion to any significant degree during slurry pump operations. Erosion corrosion in carbon steel structures at reported pump discharge velocities is dominated by electrochemical (corrosion) processes. Interruption of those processes, as by the addition of corrosion inhibitors, sharply reduces the rate of metal loss from erosion corrosion. The well-inhibited SRS waste tanks have a near-zero general corrosion rate, and therefore will be essentially immune to erosion corrosion. The experimental data on carbon steel erosion corrosion most relevant to SRS operations was obtained at the Hanford Site on simulated Purex waste. A metal loss rate of 2.4 mils per year was measured at a temperature of 102 C and a slurry velocity comparable to calculated SRS slurry velocities on ground specimens of the same carbon steel used in SRS waste tanks. Based on these data and the much lower expected temperatures, the metal loss rate of SRS tanks under waste removal and processing conditions should be insignificant, i.e. less than 1 mil per year

  13. Conceptual models for waste tank mechanistic analysis

    Allemann, R.T.; Antoniak, Z.I.; Eyler, L.L.; Liljegren, L.M.; Roberts, J.S.

    1992-02-01

    Pacific Northwest Laboratory (PNL) is conducting a study for Westinghouse Hanford Company (Westinghouse Hanford), a contractor for the US Department of Energy (DOE). The purpose of the work is to study possible mechanisms and fluid dynamics contributing to the periodic release of gases from double-shell waste storage tanks at the Hanford Site in Richland, Washington. This interim report emphasizing the modeling work follows two other interim reports, Mechanistic Analysis of Double-Shell Tank Gas Release Progress Report -- November 1990 and Collection and Analysis of Existing Data for Waste Tank Mechanistic Analysis Progress Report -- December 1990, that emphasized data correlation and mechanisms. The approach in this study has been to assemble and compile data that are pertinent to the mechanisms, analyze the data, evaluate physical properties and parameters, evaluate hypothetical mechanisms, and develop mathematical models of mechanisms

  14. Tank waste remediation system mission analysis report

    Acree, C.D.

    1998-01-01

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces

  15. Remediating the INEL's buried mixed waste tanks

    Kuhns, D.J.; Matthern, G.E.; Reese, C.L.

    1996-01-01

    The Idaho National Engineering Laboratory (INEL), formerly the National Reactor Testing Station (NRTS), encompasses 890 square miles and is located in southeast Idaho. In 1949, the United States Atomic Energy Commission, now the Department of Energy (DOE), established the NRTS as a site for the building and testing of nuclear facilities. Wastes generated during the building and testing of these nuclear facilities were disposed within the boundaries of the site. These mixed wastes, containing radionuclides and hazardous materials, were often stored in underground tanks for future disposal. The INEL has 11 buried mixed waste storage tanks regulated under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) ranging in size from 400 to 50,000 gallons. These tanks are constructed of either stainless or carbon steel and are located at 3 distinct geographic locations across the INEL. These tanks have been grouped based on their similarities in an effort to save money and decrease the time required to complete the necessary remediation. Environmental Restoration and Technology Development personnel are teaming in an effort to address the remediation problem systematically

  16. Position paper -- Waste storage tank heat removal

    Stine, M.D.

    1995-01-01

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made

  17. Soil contamination adjacent to waste tank 8

    Odum, J.V.

    1976-11-01

    In March and April 1961, miscalibrated liquid level instrumentation resulted in an overfilling of tank 8 to about 5 in. above the fill-line entrance. The resultant liquid head caused waste to seep through an asbestos-packed sleeve to the fill-line encasement and from there into the main encasement. Most of this waste returned to primary containment (i.e., the catch tank) through a separately encased drain line. However, approximately 1500 gal of high heat waste leaked from the fill-line encasement into the ground, probably through the joint at the juncture of the fill-line encasement and the concrete encasement of the waste tank. The contamination is contained in a 1000- to 1500-ft 3 zone of soil 12 to 26 ft below grade, 18 ft above the maximum elevation of the water table, and distributed roughly symmetrically around the fill-line encasement. Estimates from a continuing monitoring program indicate that less than 5000 Ci of 137 Cs, less than 0.005 Ci of 238 239 Pu, and less than 0.5 Ci of 89 90 Sr are in the soil. Analysis indicates that the contamination presents no current or future hazard to the environment; consequently, there is no technical reason for excavation of this soil. The high cost of excavation and exposure of personnel make excavation undesirable. The contaminated soil will remain under surveillance and undisturbed at tank 8 until the tank is removed from service, at which time its disposition will be re-evaluated

  18. Waste Tank Vapor Project: Tank vapor database development

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  19. Waste behavior analysis for tank 241-SY-103

    Wilkins, N.E.

    1994-01-01

    Tank 241-SY-103 is on the Flammable Gas Watch List. The waste in this tank behaves similarly to that in tank 241-Sy-101. Both show slurry growth and periodic surface level drops. However, the surface level drops are much smaller than those in tank 101-SY. A standard hydrogen monitoring system (SHMS) was recently installed in tank 103-SY, and waste auger samples were recently taken. This document covers the characterization results to date for the auger samples, and the behavior of the tank waste during both steady state periods and gas release events

  20. Analysis of SRP waste streams for waste tank certification

    Coleman, C.J.

    1989-01-01

    The Savannah River Plant (SRP) will apply for certification from the State of South Carolina to operate the SRP High-Level Waste Tanks. The permit application will be submitted as a RCRA Part B, Volume 16, entitled ''RCRA Part B Application For the F and H-Area Radioactive Waste Farm.'' RCRA regulations require that influent and effluent streams of hazardous waste sites be characterized to obtain an operating permit. The Waste Management Technology Department requested ADD to determine 21 components (including pH and weight percent solids) in the current influent streams to SRP High-Level Waste Tanks. The analyses will be used to supplement existing data on the composition of High-Level Waste. Effluent streams, which will feed Saltstone and the DWPF, will be analyzed when they are produced. This report contains the data obtained from analyzing key influent streams to SRP High-Level Waste Tanks. The precision of the data and the analytical methods that were used are also discussed

  1. Tank waste remediation system configuration management plan

    Vann, J.M.

    1998-01-01

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents

  2. Models for recurrent gas release event behavior in hazardous waste tanks

    Anderson, D.N.; Arnold, B.C.

    1994-08-01

    Certain radioactive waste storage tanks at the United States Department of Energy Hanford facilities continuously generate gases as a result of radiolysis and chemical reactions. The congealed sludge in these tanks traps the gases and causes the level of the waste within the tanks to rise. The waste level continues to rise until the sludge becomes buoyant and ''rolls over'', changing places with heavier fluid on top. During a rollover, the trapped gases are released, resulting, in a sudden drop in the waste level. This is known as a gas release event (GRE). After a GRE, the wastes leading to another GRE. We present nonlinear time waste re-congeals and gas again accumulates leading to another GRE. We present nonlinear time series models that produce simulated sample paths that closely resemble the temporal history of waste levels in these tanks. The models also imitate the random GRE, behavior observed in the temporal waste level history of a storage tank. We are interested in using the structure of these models to understand the probabilistic behavior of the random variable ''time between consecutive GRE's''. Understanding the stochastic nature of this random variable is important because the hydrogen and nitrous oxide gases released from a GRE, are flammable and the ammonia that is released is a health risk. From a safety perspective, activity around such waste tanks should be halted when a GRE is imminent. With credible GRE models, we can establish time windows in which waste tank research and maintenance activities can be safely performed

  3. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    2015-01-01

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m 3 to 4921 m 3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated canned

  4. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    Hubbard, Mike [Savannah River Remediation, LLC., Aiken, SC (United States); Herbert, James E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scheele, Patrick W. [Savannah River Remediation, LLC., Aiken, SC (United States)

    2015-01-12

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m3 to 4921 m3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and

  5. Waste conditioning for tank heel transfer. Preliminary data and results

    Ebadian, M.A.

    1999-01-01

    This report summarizes the research carried out at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) for the fiscal year 1998 (FY98) under the Tank Focus Area (TFA) project ''Waste Conditioning for Tank Slurry Transfer.'' The objective of this project is to determine the effect of chemical and physical properties on the waste conditioning process and transfer. The focus of this research consisted in building a waste conditioning experimental facility to test different slurry simulants under different conditions, and analyzing their chemical and physical properties. This investigation would provide experimental data and analysis results that can make the tank waste conditioning process more efficient, improve the transfer system, and influence future modifications to the waste conditioning and transfer system. A waste conditioning experimental facility was built in order to test slurry simulants. The facility consists of a slurry vessel with several accessories for parameter control and sampling. The vessel also has a lid system with a shaft-mounted propeller connected to an air motor. In addition, a circulation system is connected to the slurry vessel for simulant cooling and heating. Experimental data collection and analysis of the chemical and physical properties of the tank slurry simulants has been emphasized. For this, one waste slurry simulant (Fernald) was developed, and another two simulants (SRS and Hanford) obtained from DOE sites were used. These simulants, composed of water, soluble metal salts, and insoluble solid particles, were used to represent the actual radioactive waste slurries from different DOE sites. The simulants' chemical and physical properties analyzed include density, viscosity, pH, settling rate, and volubility. These analyses were done to samples obtained from different experiments performed at room temperature but different mixing time and strength. The experimental results indicate that the

  6. Waste Tank Summary Report for Month Ending February 28 2001

    HANLON, B.M.

    2001-01-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 63 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy-Richland Operations Office Order 435.I (DOE-RL, July 1999, Radioactive Waste Management, U.S. Department of Energy-Richland Operations Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm tanks

  7. WASTE TANK SUMMARY REPORT FOR MONTH ENDING 01/2004

    HANLON, B.M.

    2004-01-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy Order 435.1 (DOE-HQ, August 28,2001, Radioactive Waste Management, U.S. Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks

  8. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers

  9. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  10. Feed Basis for Processing Relatively Low Radioactivity Waste Tanks

    Pike, J.A.

    2002-01-01

    This paper presents the characterization of potential feed for processing relatively low radioactive waste tanks. The feed characterization is based on waste characterization data extracted from the waste characterization system. This data is compared to salt cake sample results from Tanks 37, 38 and 41

  11. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option

  12. Tank farm surveillance and waste status report for July 1991

    Hanlon, B.M.

    1991-09-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. The intent of the report is to provide data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and to provide supplemental information regarding tank surveillance anomalies and ongoing investigations. 1 fig., 8 tabs

  13. Tank Farm Contractor Waste Remediation System and Utilization Plan

    KIRKBRIDE, R.A.

    1999-01-01

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy

  14. Review of Tank Lay-Up Status at US Department of Energy Radioactive Waste Tank Sites

    Elmore, Monte R.; Henderson, Colin

    2002-01-01

    During fiscal year (FY) 2001 as part of a Tanks Focus Area strategic initiative, tank lay-up options were developed and evaluated for the two high-level waste (HLW) storage tanks at the West Valley Demonstration Project. As follow-on task, a list of key waste tank contacts throughout the US Department of Energy complex was developed. Visits were then made to the primary DOE sites with radioactive waste storage tanks to discuss the concept and applicability of tank lay-up. This report documents the results of individual discussions with tank closure staff at the four DOE Sites concerning tank closure status and plans as well as lay-up options and activities

  15. Technology Successes in Hanford Tank Waste Storage and Retrieval

    Cruz, E. J.

    2002-01-01

    The U. S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP), which is responsible for dispositioning approximately 204,000 cubic meters (54 million gallons) of high-level radioactive waste that has accumulated in 177 large underground tanks at the Hanford Site since 1944. The RPP is comprised of five major elements: storage of the waste, retrieval of the waste from the tanks, treatment of the waste, disposal of treated waste, and closure of the tank facilities. Approximately 3785 cubic meters (1 million gallons) of waste have leaked from the older ''single-shell tanks.'' Sixty-seven of the 147 single shell tanks are known or assumed ''leakers.'' These leaks have resulted in contaminant plumes that extend from the tank to the groundwater in a number of tank farms. Retrieval and closure of the leaking tanks complicates the ORP technical challenge because cleanup decisions must consider the impacts of past leaks along with a strategy for retrieving the waste in the tanks. Completing the RPP mission as currently planned and with currently available technologies will take several decades and tens of billions of dollars. RPP continue to pursue the benefits from deploying technologies that reduce risk to human health and the environment, as well as, the cost of cleanup. This paper discusses some of the recent technology partnering activities with the DOE Office of Science and Technology activities in tank waste retrieval and storage

  16. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumed to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely

  17. Waste acceptance and waste loading for vitrified Oak Ridge tank waste

    Harbour, J.R.; Andrews, M.K.

    1997-01-01

    The Office of Science and Technology of the DOE has funded a joint project between the Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC) to evaluate vitrification and grouting for the immobilization of sludge from ORNL tank farms. The radioactive waste is from the Gunite and Associated Tanks (GAAT), the Melton Valley Storage Tanks (MVST), the Bethel Valley Evaporator Service Tanks (BVEST), and the Old Hydrofractgure Tanks (OHF). Glass formulation development for sludge from these tanks is discussed in an accompanying article for this conference (Andrews and Workman). The sludges contain transuranic radionuclides at levels which will make the glass waste form (at reasonable waste loadings) TRU. Therefore, one of the objectives for this project was to ensure that the vitrified waste form could be disposed of at the Waste Isolation Pilot Plant (WIPP). In order to accomplish this, the waste form must meet the WIPP Waste Acceptance Criteria (WAC). An alternate pathway is to send the glass waste forms for disposal at the Nevada Test Site (NTS). A sludge waste loading in the feed of 6 wt percent will lead to a waste form which is non-TRU and could potentially be disposed of at NTS. The waste forms would then have to meet the requirements of the NTS WAC. This paper presents SRTC''s efforts at demonstrating that the glass waste form produced as a result of vitrification of ORNL sludge will meet all the criteria of the WIPP WAC or NTS WAC

  18. Local strains in waste tank deflagration analysis

    Bryan, B.J.; Flanders, H.E. Jr.

    1993-01-01

    In recent years extensive effort has been expended to qualify buried nuclear waste storage tanks under accident conditions. One of these conditions is deflagration of the combustible gases which may build up over time. While much work has been done to calculate the general strain state, less effort has been made to address the local strains at structural discontinuities. An analytical method is presented for calculating these local strains and combining them with the general strain state. A closed form solution of the local strains is compared to a finite element solution

  19. DEVELOPMENT OF A CAST STONE FORMULATION FOR HANFORD TANK WASTES

    COOKE; ATTERIDGE; AVILA

    2005-01-01

    The U.S. Department of Energy (DOE) Hanford Site, the location of plutonium production for the US. nuclear weapons program, is the focal point of a broad range of waste remediation efforts. This presentation will describe a test program to develop a ''cast stoney'' formulation for the stabilization of certain Hanford tank wastes (Lockrem 2005). The program consisted of (1) a short series of tests with nonradioactive simulant to select preferred dry reagent formulations (DRF) and determine allowable liquid addition levels, (2) waste form performance testing on cast stone made from the DRF formulations using low-activity waste (LAW) simulant, (3) waste form performance testing on cast stone made from the preferred DRF using LAW, (4) waste form validation testing on a selected nominal cast stone formulation using the preferred DRF and LAW simulant, and (5) technetium ''getter'' testing with cast stone made with LAW simulant and with LAW. In addition, nitrate leaching observations were drawn from nitrate leachability data obtained in the course of waste form performance testing. The nitrate leachability index results are presented along with data on other performance criteria The results of this study led to the selection of a specific DRF. The key attributes of the DRF/waste loading combination considered were presence of ''bleed'' (or free) water, volume change on curing, compressive strength, maximum curing temperature, toxicity characteristic leaching testing, ANSYANS-16.1 (Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Test Procedure) leachability, and hydraulic conductivity. Important considerations included that the monoliths could be produced using readily available, low-cost reagents. The key results from each of these testing and evaluation activity categories will be summarized

  20. Standard guide for sampling radioactive tank waste

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide addresses techniques used to obtain grab samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1). Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing. 1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  1. Tank waste remediation system program plan

    Powell, R.W.

    1998-01-01

    This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste

  2. Tank waste remediation system program plan

    Powell, R.W.

    1998-01-09

    This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste.

  3. Tank Waste Remediation System Projects Document Control Plan

    Slater, G.D.; Halverson, T.G.

    1994-01-01

    The purpose of this Tank Waste Remediation System Projects Document Control Plan is to provide requirements and responsibilities for document control for the Hanford Waste Vitrification Plant (HWVP) Project and the Initial Pretreatment Module (IPM) Project

  4. Progress in evaluating the hazard of ferrocyanide waste storage tanks

    Babad, Harry; Cash, Robert J.; Postma, Arlin

    1992-01-01

    There are 177 high-level waste tanks on the Hanford site. Twenty-four single-shell tanks are identified as potential safety issues. These tanks contain quantities of ferrocyanide, nitrate, and nitrite salts that potentially could explode under certain conditions. Efforts were initiated in September 1990 to determine the reactive properties of the ferrocyanide waste and to define the criteria necessary to ensure tank safety until mitigation or remediation actions, if required, could be implemented. This paper describes the results of recent chemical and physical studies on synthetic ferrocyanide waste mixtures. Data obtained from monitoring, tank behavior modeling, and research studies on waste have provided sufficient understanding of the tank behavior. The Waste Tank Safety Program is exploring whether the waste in many of the ferrocyanide tanks actually represents an unreviewed safety question. The General Accounting Office (GAO) in October 1990 suggested that ferrocyanide tank accident scenarios exceed the bounds of the Hanford Environmental Impact Statement. Using the same assumptions Westinghouse Hanford Company (WHC) staff confirmed the consistency of the GAO report calculations. The hypothetical accident scenario in the GAO report, and in the EIS, are based on several assumptions that may, or may not reflect actual tank conditions. The Ferrocyanide Stabilization Program at Westinghouse Hanford (summarized in this paper) will provide updated and new data using scientific research with synthetic wastes and characterization of actual tank samples. This new information will replace the assumptions on tank waste chemical and physical properties allowing an improved recalculation of current safety and future risk associated with these tanks. (author)

  5. Progress in evaluating the hazards of ferrocyanide waste storage tanks

    Babad, H.; Cash, R.; Postma, A.

    1992-03-01

    There are 177 high-level waste tanks on the Hanford site. Twenty-four single-shell tanks are identified as potential safety issues. These tanks contain quantities of ferrocyanide, nitrate, and nitrite salts that potentially could explode under certain conditions. Efforts were initiated in September 1990 to determine the reactive properties of the ferrocyanide waste and to define the criteria necessary to ensure tank safety until mitigation or remediation actions, if required, could be implemented. This paper describes the results of recent chemical and physical studies on synthetic ferrocyanide waste mixtures. Data obtained from monitoring, tank behavior modeling, and research studies on waste have provided sufficient understanding of the tank behavior. The Waste Tank Safety Program is exploring to determine whether the waste in many of the ferrocyanide tanks actually represents an unreviewed safety question. The General Accounting Office (GAO) in October 1990 (1) suggested that ferrocyanide-tanks accident scenarios exceed the bounds of the Hanford Environmental Impact Statement (2). Using the same assumptions Westinghouse Hanford Company (WHC) staff confirmed the consistency of the GAO report calculations. The hypothetical accident scenario in the GAO report, and in the EIS, are based on several assumptions that may, or may not reflect actual tank conditions. The Ferrocyanide Stabilization Program at Westinghouse Hanford (summarized in this paper) will provide updated and new data using scientific research with synthetic and actual waste tank characterization. This new information will replace the assumptions on tank waste chemical and physical properties allowing an improved recalculation of current safety and future risk associated with these tanks

  6. Characterization and process technology capabilities for Hanford tank waste disposal

    Buelt, J.L.; Weimer, W.C.; Schrempf, R.E.

    1996-03-01

    The purpose of this document is to describe the Paciflc Northwest National Laboratory's (the Laboratory) capabilities in characterization and unit process and system testing that are available to support Hanford tank waste processing. This document is organized into two parts. The first section discusses the Laboratory's extensive experience in solving the difficult problems associated with the characterization of Hanford tank wastes, vitrified radioactive wastes, and other very highly radioactive and/or heterogeneous materials. The second section of this document discusses the Laboratory's radioactive capabilities and facilities for separations and waste form preparation/testing that can be used to Support Hanford tank waste processing design and operations

  7. History of waste tank 16, 1959 through 1974

    Davis, T.L.; Tharin, D.W.; Jones, D.W.; Lohr, D.R.

    1977-07-01

    Tank 16 was placed in service as a receiver of fresh high heat waste (HW) on May 9, 1959, and was filled to capacity in May 1960. Approximately half the tank contents were transferred to tanks 14 and 15 during September and October 1960 because of leakage into the annulus. Use of tank 16 was resumed in October 1967 when authorization (TA 2-603) was obtained to receive LW, and the tank was filled to capacity by June 1968. Subsequently, supernate was removed from the tank, and a blend of fresh LW and evaporator bottoms was added. In March 1972, the supernate was transferred to tank 13 because leakage had resumed. The sludge was left in the tank bottom and the use of tank 16 for any additional waste storage was discontinued. In September 1960 liquid waste overflowed the annulus pan. Leakage essentially stopped after the tank liquid level was lowered below the middle horizontal weld. After exhaustive study, tank cracking and resultant leakage was concluded to have been caused by stress corrosion due to the action of NaOH or NaNO 3 on areas of high local stress in the steel plate such as welds. Samples of sludge, supernate, tank vapors, and leaked material in the annulus were analyzed, and tank temperature and radiation profiles were taken. Two disk samples were cut from the primary tank wall for metallurgical examination. Test coupons of various metals were exposed to tank 16 waste to aid new tank design and to study stress corrosion and hydrogen embrittlement. In addition, samples of SRP bedrock were placed in tank 16 to study reactions between bedrock and HW. 18 figures, 2 tables

  8. Tank farm surveillance and waste status report for June 1991

    Hanlon, B.M.

    1991-09-01

    This report is Westinghouse Hanford Company's official inventory for radioactive stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. The intent of the report is to provide data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and to provide supplemental information regarding tank surveillance anomalies and ongoing investigations. 2 figs., 8 tabs

  9. Tank waste remediation system risk management plan

    Zimmerman, B.D.

    1998-01-01

    The purpose of the Tank Waste Remediation System (TWRS) Risk Management Plan is to describe a consistent approach to risk management such that TWRS Project risks are identified and managed to achieve TWRS Project success. The Risk Management Plan implements the requirements of the Tank Waste Remediation System Systems Engineering Management Plan in the area of risk management. Figure ES-1 shows the relationship of the TWRS Risk Management Plan to other major TWRS Project documents. As the figure indicates, the Risk Management Plan is a tool used to develop and control TWRS Project work. It provides guidance on how TWRS Project risks will be assessed, analyzed, and handled, and it specifies format and content for the risk management lists, which are a primary product of the risk management process. In many instances, the Risk Management Plan references the TWRS Risk Management Procedure, which provides more detailed discussion of many risk management activities. The TWRS Risk Management Plan describes an ongoing program within the TWRS Project. The Risk Management Plan also provides guidance in support of the TWRS Readiness To-Proceed (RTP) assessment package

  10. Recommendations for erosion-corrosion allowance for Multi-Function Waste Tank Facility tanks

    Carlos, W.C.; Brehm, W.F.; Larrick, A.P.; Divine, J.R.

    1994-10-01

    The Multi-Function Waste Tank Facility carbon steel tanks will contain mixer pumps that circulate the waste. On the basis of flow characteristics of the system and data from the literature, an erosion allowance of 0.075 mm/y (3 mil/year) was recommended for the tank bottoms, in addition to the 0.025 mm/y (1 mil/year) general corrosion allowance

  11. Low level tank waste disposal study

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  12. Low level tank waste disposal study

    Mullally, J.A.

    1994-01-01

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site

  13. History of waste tank 22, 1965--1974

    McNatt, F.G.

    1979-04-01

    Tank 22 (a 1,300,000-gallon Type IV tank) was placed in service June 6, 1965, receiving HW from tank 21. The HW was transferred back into tank 21 in September 1965 and fed to the Building 242-H evaporator. This recycled concentrate and concentrate from other waste was then received in tank 22 until the tank was filled. The HW concentrate and salt remained in the tank until November 1971 when removal was begun. The concentrated supernate was transferred from the tank followed by dissolution and removal of salt from the tank walls and bottom. The salt removal was completed in May 1974 and since that time tank 22 has served as a receiver of LW from Building 221-H. Inspections of the tank interior were made using a 40-ft optical periscope and the steel thickness of the tank bottom was measured ultrasonically. Samples of the tank vapors and liquid collected in the sidewall and bottom sumps were analyzed. Temperature and specific gravity measurements were made of waste stored in the tank. Several equipment modifications and repairs were made

  14. Decontamination Study for Mixed Waste Storage Tanks RCRA Closure

    Leaphart, D.M.; Reed, S.R.; Rankin, W.N.

    1995-01-01

    The Savannah River Site (SRS) plans to close six underground tanks storing mixed waste under RCRA regulations. In support of this closure effort, a study was performed to determine the optimal method of decontaminating these tanks to meet the closure requirements. Items consaidered in the evaluation of the decontamination methods included effectiveness, compatibility with existing waste residues, possible cleaning solution disposal methods, and cost

  15. Tank waste remediation system characterization project quality policies. Revision 1

    Trimble, D.J.

    1995-01-01

    These Quality Policies (QPs) describe the Quality Management System of the Tank Waste Characterization Project (hereafter referred to as the Characterization Project), Tank Waste Remediation System (TWRS), Westinghouse Hanford Company (WHC). The Quality Policies and quality requirements described herein are binding on all Characterization Project organizations. To achieve quality, the Characterization Project management team shall implement this Characterization Project Quality Management System

  16. Engineering report of plasma vitrification of Hanford tank wastes

    Hendrickson, D.W.

    1995-01-01

    This document provides an analysis of vendor-derived testing and technology applicability to full scale glass production from Hanford tank wastes using plasma vitrification. The subject vendor testing and concept was applied in support of the Hanford LLW Vitrification Program, Tank Waste Remediation System

  17. Cross flow filtration of aqueous radioactive tank wastes

    McCabe, D.J.; Reynolds, B.A.; Todd, T.A.; Wilson, J.H.

    1997-01-01

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Science and Technology addresses remediation of radioactive waste currently stored in underground tanks. Baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment, and (c) volume reduction of sludge and wash water. Solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. This basic process is used for decontamination of tank waste at the Savannah River Site (SRS). Ion exchange of radioactive ions has been proposed for other tank wastes, requiring removal of insoluble solids to prevent bed fouling and downstream contamination. Additionally, volume reduction of washed sludge solids would reduce the tank space required for interim storage of High Level Wastes. The scope of this multi-site task is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. Testing has emphasized cross now filtration with metal filters to pretreat tank wastes, due to tolerance of radiation and caustic

  18. Geochemical Testing And Model Development - Residual Tank Waste Test Plan

    Cantrell, K.J.; Connelly, M.P.

    2010-01-01

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  19. Comparison of organic and inorganic ion exchangers for removal of cesium and strontium from simulated and actual Hanford 241-AW-101 DSSF tank waste

    Brown, G.N.; Bray, L.A.; Carlson, C.D.

    1996-01-01

    Pacific Northwest National Laboratory (Northwest National Laboratory) conducted this study as a joint effort between the ''Develop and Test Sorbents'' task for the Efficient Separations and Processing Cross-Cutting Program (ESP) and the ''Batch Testing of Crystalline Silico-Titanates (CSTs)'' subtask, which is part of the Northwest National Laboratory Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project. The objective of the study is to investigate radionuclide uptake of the newly produced CST materials under a variety of solution conditions and to compare the results obtained for this material with those obtained for other commercial and experimental exchangers

  20. CHARACTERIZATION AND ACTUAL WASTE TEST WITH TANK 5F SAMPLES

    Fletcher, D.

    2007-01-01

    The initial phase of bulk waste removal operations was recently completed in Tank 5F. Video inspection of the tank indicates several mounds of sludge still remain in the tank. Additionally, a mound of white solids was observed under Riser 5. In support of chemical cleaning and heel removal programs, samples of the sludge and the mound of white solids were obtained from the tank for characterization and testing. A core sample of the sludge and Super Snapper sample of the white solids were characterized. A supernate dip sample from Tank 7F was also characterized. A portion of the sludge was used in two tank cleaning tests using oxalic acid at 50 C and 75 C. The filtered oxalic acid from the tank cleaning tests was subsequently neutralized by addition to a simulated Tank 7F supernate. Solids and liquid samples from the tank cleaning test and neutralization test were characterized. A separate report documents the results of the gas generation from the tank cleaning test using oxalic acid and Tank 5F sludge. The characterization results for the Tank 5F sludge sample (FTF-05-06-55) appear quite good with respect to the tight precision of the sample replicates, good results for the glass standards, and minimal contamination found in the blanks and glass standards. The aqua regia and sodium peroxide fusion data also show good agreement between the two dissolution methods. Iron dominates the sludge composition with other major contributors being uranium, manganese, nickel, sodium, aluminum, and silicon. The low sodium value for the sludge reflects the absence of supernate present in the sample due to the core sampler employed for obtaining the sample. The XRD and CSEM results for the Super Snapper salt sample (i.e., white solids) from Tank 5F (FTF-05-07-1) indicate the material contains hydrated sodium carbonate and bicarbonate salts along with some aluminum hydroxide. These compounds likely precipitated from the supernate in the tank. A solubility test showed the material

  1. History of waste tank 11, 1955 through 1974

    Davis, T.L.; Tharin, D.W.; Lohr, D.R.

    1978-10-01

    Tank 11 was placed in service as a receiver of low heat waste (LW) in July 1955. In November 1961, the supernate was decanted from the sludge to prepare tank 11 for receipt of frame waste. In July 1962, the supernate was again decanted and tank 11 was used to receive fresh high heat waste (HW) from the enriched uranium process in Building 221-H. Again, the supernate was decanted in June 1965 and July 1967 to allow the tank to be reused for waste receipt. In order to use tank 11 for solid salt storage, a sludge removal operation was conducted in October 1969. The operation was unsuccessful. Tank 11 consequently received hot concentrated supernate from tank 10 blended with dilute waste and was later returned to service as a receiver of HW. A small, apparently inactive leak site was found in April 1974. Inspections have been made of the annulus and the interior of the tank both visually and with an optical periscope. Samples of the sludge, supernate, and tank vapor have been analyzed. Top-to-bottom profiles of radiation and temperature in the tank have been taken and measurements were made of deflections in the bottom knuckle plate due to changing liquid level. One horizontal and seventeen vertical cooling coils have failed, all within one month following the sludge removal operation. Several equipment modifications and various equipment repairs were made. 14 figures, 3 tables

  2. Dynamic simulation of the in-tank precipitation process

    Hang, T.; Shanahan, K.L.; Gregory, M.V.; Walker, D.D.

    1993-01-01

    As part of the High-Level Waste Tank Farm at the Savannah River Site (SRS), the In-Tank Precipitation (ITP) facility was designed to decontaminate the radioactive waste supernate by removing cesium as precipitated cesium tetraphenylborate. A dynamic computer model of the ITP process was developed using SPEEDUP TM software to provide guidance in the areas of operation and production forecast, production scheduling, safety, air emission, and process improvements. The model performs material balance calculations in all phase (solid, liquid, and gas) for 50 key chemical constituents to account for inventory accumulation, depletion, and dilution. Calculations include precipitation, benzene radiolytic reactions, evaporation, dissolution, adsorption, filtration, and stripping. To control the ITP batch operation a customized FORTRAN program was generated and linked to SPEEDUP TM simulation This paper summarizes the model development and initial results of the simulation study

  3. Stabilization of In-Tank Residual Wastes and External-Tank Soil Contamination for the Hanford Tank Closure Program: Applications to the AX Tank Farm

    Anderson, H.L.; Dwyer, B.P.; Ho, C.; Krumhansl, J.L.; McKeen, G.; Molecke, M.A.; Westrich, H.R.; Zhang, P.

    1998-11-01

    Technical support for the Hanford Tank Closure Program focused on evaluation of concepts for immobilization of residual contaminants in the Hanford AX tanks and underlying soils, and identification of cost-effective approaches to improve long-term performance of AX tank farm cIosure systems. Project objectives are to develop materials or engineered systems that would significantly reduce the radionuclide transport to the groundwater from AX tanks containing residual waste. We pursued several studies that, if implemented, would help achieve these goals. They include: (1) tank fill design to reduce water inilltration and potential interaction with residual waste; (2) development of in-tank getter materials that would specifically sorb or sequester radionuclides; (3) evaluation of grout emplacement under and around the tanks to prevent waste leakage during waste retrieval or to minimize water infiltration beneath the tanks; (4) development of getters that will chemically fix specific radionuclides in soils under tanks; and (5) geochemical and hydrologic modeling of waste-water-soil-grout interactions. These studies differ in scope from the reducing grout tank fill employed at the Savannah River Site in that our strategy improves upon tank fill design by providing redundancy in the barriers to radionuclide migration and by modification the hydrogeochemistry external to the tanks.

  4. History of waste tank 14, 1957 through 1974

    Davis, T.L.; Tharin, D.W.; Jones, D.W.; Lohr, D.R.

    1977-08-01

    Tank 14 was placed in service as a receiver of fresh high heat waste (HW) in September 1957. Annulus leakage was discovered in April 1959 and continued until annulus ventilation was increased in January 1965. Practically all of the approximately 40 leak sites that have been identified on the tank wall are located at or below the bottom horizontal weld. Tank supernate was removed from the tank in preparation for a sludge removal operation which was performed in December 1968. The tank was then filled to its present level with blended supernate from tanks 10 and 13. In December 1972, supernate was inadvertently siphoned into the annulus through a dewatering jet, filling the annulus pan to a level of 33 in. The waste was promptly returned to the tank. Inspections of the tank interior and annulus were performed by direct observation, with a 40-ft optical periscope, and with photography and closed circuit television. Radioactive waste was first found in the annulus during visual inspection in May 1959. Samples of sludge, supernate, tank vapors, and leaked material in the annulus were analyzed, and numerous tank temperature profiles were taken. Soil and tank wall temperatures were measured in a study of tank nil ductility transition temperature. Six cooling coils failed, five of which occurred within 7 months after sludge removal. Several modifications to equipment and various equipment repairs were made. 14 figures, 3 tables

  5. History of waste tank 1, 1954 through 1974

    McNatt, F.G.; Stevens, W.E.

    1978-10-01

    Tank 1 was placed in service as a receiver of high heat waste (HW) in October 1954. The supernate was removed from the tank in October 1961 and the tank began receiving low heat waste (LW) in January 1962. The LW supernate was decanted in October 1962 and prior to beginning a second HW filling in April 1963. The supernate from this HW filling was decanted twice in 1969. Sludge removal operations were conducted in May and August 1969 in order to use tank 1 for salt storage. The first evaporator concentrate receipt was in September 1969 and tank 1 has only been used as a salt storage tank since. Leakage from the tank into the annulus was discovered in February 1969. Deposits less than 1/4 inch deep of leaked waste were found on the pan floor. However, no leak sites have been found. Inspections of the tank interior and annulus were made by direct observation and by using a 40-ft optical periscope. Samples of sludge, supernate, tank vapors, and leaked material into the annulus were analyzed and tank temperature profiles were taken. Deflection measurements were made of the primary tank bottom knuckle plate while filling the tank with salt. Two vertical cooling coils have failed. Several equipment modifications and various equipment repairs were made. 18 figures, 2 tables

  6. AN ASSESSMENT OF THE SERVICE HISTORY AND CORROSION SUSCEPTIBILITY OF TYPE IV WASTE TANKS

    Wiersma, B

    2008-01-01

    Type IV waste tanks were designed and built to store waste that does not require auxiliary cooling. Each Type IV tank is a single-shell tank constructed of a steel-lined pre-stressed concrete tank in the form of a vertical cylinder with a concrete domed roof. There are four such tanks in F-area, Tanks 17-20F, and four in H-Area, Tanks 21-24H. Leak sites were discovered in the liners for Tanks 19 and 20F in the 1980's. Although these leaks were visually observed, the investigation to determine the mechanism by which the leaks had occurred was not completed at that time. Therefore, a concern was raised that the same mechanism which caused the leak sites in the Tanks in F-area may also be operable in the H-Area tanks. Data from the construction of the tanks (i.e., certified mill test reports for the steel, no stress-relief), the service history (i.e., waste sample data, temperature data), laboratory tests on actual wastes and simulants (i.e., electrochemical testing), and the results of the visual inspections were reviewed. The following observations and conclusions were made: (1) Comparison of the compositional and microstructural features indicate that the A212 material utilized for construction of the H-Area tanks are far more resistant to SCC than the A285 materials used for construction of the F-Area tanks. (2) A review of the materials of construction, temperature history, service histories concluded that F-Area tanks likely failed by caustic stress corrosion cracking. (3) The environment in the F-Area tanks was more aggressive than that experienced by the H-Area tanks. (4) Based on a review of the service history, the H-Area tanks have not been exposed to an environment that would render the tanks susceptible to either nitrate stress corrosion cracking (i.e., the cause of failures in the Type I and II tanks) or caustic stress corrosion cracking. (5) Due to the very dilute and uninhibited solutions that have been stored in Tank 23H, vapor space corrosion has

  7. Contaminant Release from Residual Waste in Closed Single-Shell Tanks and Other Waste Forms Associated with the Tanks

    Deutsch, William J.

    2008-01-01

    This chapter describes the release of contaminants from the various waste forms that are anticipated to be associated with closure of the single-shell tanks. These waste forms include residual sludge or saltcake that will remain in the tanks after waste retrieval. Other waste forms include engineered glass and cementitious materials as well as contaminated soil impacted by previous tank leaks. This chapter also describes laboratory testing to quantify contaminant release and how the release data are used in performance/risk assessments for the tank waste management units and the onsite waste disposal facilities. The chapter ends with a discussion of the surprises and lessons learned to date from the testing of waste materials and the development of contaminant release models

  8. Resolution of the ferrocyanide safety issue for the Hanford site high-level waste tanks

    Cash, R.J.

    1996-01-01

    This paper describes the approach used to resolve the ferrocyanide safety issue, a process that began in 1990 after heightened concern was expressed by various government agencies about the safety of Hanford site high-level waste tanks. At the time, little was known about ferrocyanide-nitrate/nitrite reactions and the potential for offsite releases of radioactivity from the Hanford Site. Recent studies have shown that the combined effects of temperature, radiation, and pH during more than 38 years of storage have destroyed most of the ferrocyanide originally added to tanks. This has been proven in the laboratory using flowsheet-derived waste simulants and confirmed by waste samples obtained from the ferrocyanide tanks. The resulting tank waste sludges are too dilute to support a sustained exothermic reaction, even if dried out and heated to temperatures of at least 250 C. The US Department of Energy (DOE) has been requested to close the ferrocyanide safety issue

  9. Modeling Analysis For Grout Hopper Waste Tank

    Lee, S.

    2012-01-01

    The Saltstone facility at Savannah River Site (SRS) has a grout hopper tank to provide agitator stirring of the Saltstone feed materials. The tank has about 300 gallon capacity to provide a larger working volume for the grout nuclear waste slurry to be held in case of a process upset, and it is equipped with a mechanical agitator, which is intended to keep the grout in motion and agitated so that it won't start to set up. The primary objective of the work was to evaluate the flow performance for mechanical agitators to prevent vortex pull-through for an adequate stirring of the feed materials and to estimate an agitator speed which provides acceptable flow performance with a 45 o pitched four-blade agitator. In addition, the power consumption required for the agitator operation was estimated. The modeling calculations were performed by taking two steps of the Computational Fluid Dynamics (CFD) modeling approach. As a first step, a simple single-stage agitator model with 45 o pitched propeller blades was developed for the initial scoping analysis of the flow pattern behaviors for a range of different operating conditions. Based on the initial phase-1 results, the phase-2 model with a two-stage agitator was developed for the final performance evaluations. A series of sensitivity calculations for different designs of agitators and operating conditions have been performed to investigate the impact of key parameters on the grout hydraulic performance in a 300-gallon hopper tank. For the analysis, viscous shear was modeled by using the Bingham plastic approximation. Steady state analyses with a two-equation turbulence model were performed. All analyses were based on three-dimensional results. Recommended operational guidance was developed by using the basic concept that local shear rate profiles and flow patterns can be used as a measure of hydraulic performance and spatial stirring. Flow patterns were estimated by a Lagrangian integration technique along the flow paths

  10. Acoustic imaging of underground storage tank wastes: A feasibility study. Final report

    Turpening, R.; Zhu, Z.; Caravana, C.; Matarese, J.

    1995-01-01

    The objectives for this underground storage tank (UST) imaging investigation are: (1) to assess the feasibility of using acoustic methods in UST wastes, if shown to be feasible, develop and assess imaging strategies; (2) to assess the validity of using chemical simulants for the development of acoustic methods and equipment. This investigation examined the velocity of surrogates, both salt cake and sludge surrogates. In addition collected seismic cross well data in a real tank (114-TX) on the Hanford Reservation. Lastly, drawing on the knowledge of the simulants and the estimates of the velocities of the waste in tank 114-TX the authors generated a hypothetical model of waste in a tank and showed that non-linear travel time tomographic imaging would faithfully image that stratigraphy

  11. Identification of potential transuranic waste tanks at the Hanford Site

    Colburn, R.P.

    1995-05-05

    The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document.

  12. Identification of potential transuranic waste tanks at the Hanford Site

    Colburn, R.P.

    1995-01-01

    The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document

  13. AX Tank Farm waste retrieval alternatives cost estimates

    Krieg, S.A.

    1998-01-01

    This report presents the estimated costs associated with retrieval of the wastes from the four tanks in AX Tank Farm. The engineering cost estimates developed for this report are based on previous cost data prepared for Project W-320 and the HTI 241-C-106 Heel Retrieval System. The costs presented in this report address only the retrieval of the wastes from the four AX Farm tanks. This includes costs for equipment procurement, fabrication, installation, and operation to retrieve the wastes. The costs to modify the existing plant equipment and systems to support the retrieval equipment are also included. The estimates do not include operational costs associated with pumping the waste out of the waste receiver tank (241-AY-102) between AX Farm retrieval campaigns or transportation, processing, and disposal of the retrieved waste

  14. Tank waste remediation system engineering plan

    Rifaey, S.H.

    1998-01-01

    This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ''as is'' condition of engineering practice, systems, and facilities to the desired ''to be'' configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively

  15. Tank waste remediation system risk management list

    Collard, L.B.

    1995-01-01

    The Tank Waste Remedation System (TWRS) Risk Management List and it's subset of critical risks, the Critical Risk Management List, provide a tool to senior RL and WHC management (Level-1 and -2) to manage programmatic risks that may significantly impact the TWRS program. The programmatic risks include cost, schedule, and performance risks. Performance risk includes technical risk, supportability risk (such as maintainability and availability), and external risk (i.e., beyond program control, for example, changes in regulations). The risk information includes a description, its impacts, as evaluation of the likelihood, consequences and risk value, possible mitigating actions, and responsible RL and WHC managers. The issues that typically form the basis for the risks are presented in a separate table and the affected functions are provided on the management lists

  16. Dynamic effects of tank waste aging on radionuclide-complexant interactions. 1998 annual progress report

    Arterburn, J.B.; Chamberlin, R.

    1998-01-01

    'The overall objective of this project is to provide a scientific basis for safely processing complexant-containing high-level tank wastes for disposal. The key goals are to identify a means to prepare realistic complexant-containing tank waste simulants, and to use those simulants to determine the relative importance of organic complexants and their breakdown products on the partitioning of important radionuclides. These goals will be accomplished by artificially aging complexant-containing tank waste simulants using microwave, ultrasound, and photolysis techniques. The simulants will be compared to samples of actual Hanford tank wastes to determine the most realistic aging method, on the basis of the organic fragmentation and the partitioning behavior of the important radionuclides 90 Sr, 99 Tc, and 239 Pu. Also, the authors will use their simulant aging process to investigate the relative effects of chelator degradation products on the partitioning of important radionuclides from the waste. Using NMR-active labels in the chelators, they will use a combinatorial approach of generating multiple chelator fragments in a single experiment and then determining which fragments have a negative effect on the separations chemistry. The successful completion of this goal will specifically identify the most problematic organic fragments in complexant-containing waste and provide the basis for developing successful treatment strategies for these wastes. This report summarizes work carried out at Los Alamos during the first 8 months of a 3-year project.'

  17. Waste tank ventilation rates measured with a tracer gas method

    Huckaby, J.L.; Evans, J.C.; Sklarew, D.S.; Mitroshkov, A.V.

    1998-08-01

    Passive ventilation with the atmosphere is used to prevent accumulation of waste gases and vapors in the headspaces of 132 of the 177 high-level radioactive waste Tanks at the Hanford Site in Southeastern Washington State. Measurements of the passive ventilation rates are needed for the resolution of two key safety issues associated with the rates of flammable gas production and accumulation and the rates at which organic salt-nitrate salt mixtures dry out. Direct measurement of passive ventilation rates using mass flow meters is not feasible because ventilation occurs va multiple pathways to the atmosphere (i.e., via the filtered breather riser and unsealed tank risers and pits), as well as via underground connections to other tanks, junction boxes, and inactive ventilation systems. The tracer gas method discussed in this report provides a direct measurement of the rate at which gases are removed by ventilation and an indirect measurement of the ventilation rate. The tracer gas behaves as a surrogate of the waste-generated gases, but it is only diminished via ventilation, whereas the waste gases are continuously released by the waste and may be subject to depletion mechanisms other than ventilation. The fiscal year 1998 tracer studies provide new evidence that significant exchange of air occurs between tanks via the underground cascade pipes. Most of the single-shell waste tanks are connected via 7.6-cm diameter cascade pipes to one or two adjacent tanks. Tracer gas studies of the Tank U-102/U-103 system indicated that the ventilation occurring via the cascade line could be a significant fraction of the total ventilation. In this two-tank cascade, air evidently flowed from Tank U-103 to Tank U-102 for a time and then was observed to flow from Tank U-102 to Tank U-103

  18. Tank waste remediation system retrieval and disposal mission waste feed delivery plan

    Potter, R.D.

    1998-01-01

    This document is a plan presenting the objectives, organization, and management and technical approaches for the Waste Feed Delivery (WFD) Program. This WFD Plan focuses on the Tank Waste Remediation System (TWRS) Project's Waste Retrieval and Disposal Mission

  19. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm

    Becker, D.L.

    1997-01-01

    This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding

  20. Remote Water Lance Technology for Cleaning Waste Tanks

    Lehr, R.M.; Owen, J.R.; Mangold, F.E.

    2006-01-01

    This paper describes the use of remote water lances for cleaning sludge or solidified heel materials from waste tanks. S.A.Robotics has developed a long arm retrieval system to deploy ultra-high pressure water lances and vacuum recovery systems for tank cleanup operations. This system uses remote-operated telescoping long arms with light weight, high strength materials, innovative high capacity joint designs, and multiple degrees of freedom to deploy tank cleaning heads to all areas within the tanks. Arm designs can be scaled and adjusted to suit even the largest tanks. (authors)

  1. Technical bases for leak detection surveillance of waste storage tanks. Revision 1

    Johnson, M.G.; Badden, J.J.

    1995-01-01

    This document provides the technical bases for specification limits, monitoring frequencies and baselines used for leak detection and intrusion (for single shell tanks only) in all single and double shell radioactive waste storage tanks, waste transfer lines, and most catch tanks and receiver tanks in the waste tank farms and associated areas at Hanford

  2. Tank waste pretreatment issues, alternatives and strategies for resolution

    Miller, W.C.; Appel, J.; Barton, W.B.; Orme, R.M.; Holton, L.K. Jr.

    1993-02-01

    The US Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the Hanford Site tank waste. The overall strategy for disposing of tank waste is evolving and initial recommendations on a course of action are expected in March, 1993. Pretreatment of these wastes may be required for one or both of the following reasons: (1) resolution of tank safety issues, and (2) preparation of low level and high level waste fractions for disposal. Pretreatment is faced with several issues that must be addressed by the deployment strategies that are being formulated. These issues are identified. There is also a discussion of several pretreatment deployment strategies and how these strategies address the issues. Finally, the technology alternatives that are being considered for the pretreatment function are briefly discussed

  3. Waste Tank Corrosion Program at Savannah River Site

    Chandler, J.R.; Hsu, T.C.; Hobbs, D.T.; Iyer, N.C.; Marra, J.E.; Zapp, P.E.

    1993-01-01

    The Savannah River Site (SRS) has approximately 30 million gallons of high level radioactive waste stored in 51 underground tanks. SRS has maintained an active corrosion research and corrosion control and monitoring program throughout the operating history of SRS nuclear waste storage tanks. This program is largely responsible for the successful waste storage experience at SRS. The program has consisted of extensive monitoring of the tanks and surrounding environment for evidence of leaks, extensive research to understand the potential corrosion processes, and development and implementation of corrosion chemistry control. Current issues associated with waste tank corrosion are primarily focused on waste processing operations and are being addressed by a number of active programs and initiatives

  4. Salt removal from tanks containing high-level radioactive waste

    Kiser, D.L.

    1981-01-01

    At the Savannah River Plant (SRP), there are 23 waste storage tanks containing high-level radioactive wastes that are to be retired. These tanks contain about 23 million liters of salt and about 10 million liters of sludge, that are to be relocated to new Type III, fully stress-relieved tanks with complete secondary containment. About 19 million liters of salt cake are to be dissolved. Steam jet circulators were originally proposed for the salt dissolution program. However, use of steam jet circulators raised the temperature of the tank contents and caused operating problems. These included increased corrosion risk and required long cooldown periods prior to transfer. Alternative dissolution concepts were investigated. Examination of mechanisms affecting salt dissolution showed that the ability of fresh water to contact the cake surface was the most significant factor influencing dissolution rate. Density driven and mechanical agitation techniques were developed on a bench scale and then were demonstrated in an actual waste tank. Actual waste tank demonstrations were in good agreement with bench-scale experiments at 1/85 scale. The density driven method utilizes simple equipment, but leaves a cake heel in the tank and is hindered by the presence of sludge or Zeolite in the salt cake. Mechanical agitation overcomes the problems found with both steam jet circulators and the density driven technique and is the best method for future waste tank salt removal

  5. Probabilistic safety assessment for Hanford high-level waste tanks

    MacFarlane, D.R.; Stack, D.S.; Kindinger, J.P.; Deremer, R.K.

    1995-01-01

    This paper gives results from the first comprehensive level-3 probabilistic safety assessment (PSA), including consideration of external events, for the Hanford tank farm (HTF). This work was sponsored by the U.S. Department of Energy/Environmental Restoration and Waste Management Division (DOE/EM). At the HTF, there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/saltcake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is ∼60 million gal, containing ∼200 million Ci of radioactivity

  6. Contaminant Release from Residual Waste in Single Shell Tanks at the Hanford Site, Washington, USA - 9276

    Cantrell, Kirk J.; Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.

    2009-01-01

    concentrations of U were likely controlled by the solubility of schoepite (UO 3 2 H 2 O). Therefore, a reactive transport model based upon solubility of schoepite and the expected composition and infiltration rates of pore water could be used to simulate future release of U from this residual tank waste. In addition to the development of release models, the residual tank waste studies completed so far have provided a number of new insights that have changed our understanding of residual tank waste. For example, the release of contaminants from different tanks, although governed by the same general chemical principles, can be very different. It has also been found that significant fractions of Tc-99 and other typically highly mobile contaminants are frequently not readily released from tank residuals and occur in recalcitrant phases that are resistant to aqueous dissolution. As these studies progress, such key cross-cutting geochemical processes and solid phase characteristics important to contaminant release from residual tank waste are becoming apparent. This may allow the grouping of tanks into general categories with certain common chemical features and contaminant release characteristics - an important goal because complete characterization of residual wastes from all 149 single-shell storage tanks is not practical

  7. Development of a computer code to predict a ventilation requirement for an underground radioactive waste storage tank

    Lee, Y.J.; Dalpiaz, E.L. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1997-08-01

    Computer code, WTVFE (Waste Tank Ventilation Flow Evaluation), has been developed to evaluate the ventilation requirement for an underground storage tank for radioactive waste. Heat generated by the radioactive waste and mixing pumps in the tank is removed mainly through the ventilation system. The heat removal process by the ventilation system includes the evaporation of water from the waste and the heat transfer by natural convection from the waste surface. Also, a portion of the heat will be removed through the soil and the air circulating through the gap between the primary and secondary tanks. The heat loss caused by evaporation is modeled based on recent evaporation test results by the Westinghouse Hanford Company using a simulated small scale waste tank. Other heat transfer phenomena are evaluated based on well established conduction and convection heat transfer relationships. 10 refs., 3 tabs.

  8. The Hanford Site Tank Waste Remediation System: An update

    Alumkal, W.T.; Babad, H.; Harmon, H.D.; Wodrich, D.D.

    1994-01-01

    The U.S. Department of Energy's Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of highly radioactive waste in the United States. High-level radioactive waste has been stored in large underground tanks since 1944. Approximately 230,000 m 3 (61 Mgal) of caustic liquids, slurries, saltcakes, and sludges have 137 Cs accumulated in 177 tanks. In addition, significant amounts of 90 Sr and were removed from the tank waste, converted to salts, doubly encapsulated in metal containers., and stored in water basins. A Tank Waste Remediation System Program was established by the U.S. Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, progress has been made resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal

  9. Organic tanks safety program, FY97 waste aging studies. Revision 1

    Camaioni, D.M.; Samuels, W.D.; Linehan, J.C.; Sharma, A.K.; Hogan, M.O.; Lilga, M.A.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

    1998-02-01

    To model tank waste aging and interpret tank waste speciation results, the authors began measuring the reactivity of organic complexants and related compounds towards radiation-induced oxidation reactions. Because of the high efficiency of scavenging of the primary radicals of water radiolysis by nitrate and nitrite ion, the major radiolytically-generated radicals in these solutions, and in Hanford tank wastes, are NO 2 , NO and O - . Prior to this effort, little quantitative information existed for the reactions of these radicals with organic compounds such as those that were used in Hanford processes. Therefore, modeling of actual waste aging, or even simulated waste aging, was not feasible without measuring reactivities and determining reaction paths. The authors have made the first rate measurements of complexant aging and determined some of their degradation products

  10. Mixed waste removal from a hazardous waste storage tank

    Geber, K.R.

    1993-01-01

    The spent fuel transfer canal at the Oak Ridge Graphite Reactor was found to be leaking 400 gallons of water per day into the surrounding soil. Sampling of the sediment layer on the floor of the canal to determine the environmental impact of the leak identified significant radiological contamination and elevated levels of cadmium and lead which are hazardous under the Resource Conservation and Recovery Act (RCRA). Under RCRA regulations and Rules of Tennessee Department of Environment and Conservation, the canal was considered a hazardous waste storage tank. This paper describes elements of the radiological control program established in support of a fast-track RCRA closure plan that involved underwater mapping of the radiation fields, vacuuming, and ultra-filtration techniques that were successfully used to remove the mixed waste sediments and close the canal in a method compliant with state and federal regulations

  11. Tank waste remediation system integrated technology plan. Revision 2

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  12. Tank waste remediation system integrated technology plan. Revision 2

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P.

    1995-01-01

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m 3 (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program

  13. Double-shell tank waste system assessment status and schedule

    Walter, E.J.

    1995-01-01

    The integrated program for completing the integrity assessments of the dangerous waste tank systems managed by the Tank Waste Remediation System (TWRS) Division of Westinghouse Hanford Company is presented in the Tank Waste Remediation System Tank System Integrity Assessments Program Plan, WHC-SD-AP017, Rev. 1. The program plan identified the assessment requirements and the general scope to which these requirements applied. Some of these assessment requirements have been met and others are either in process of completion or scheduled to be worked. To define the boundary of the double-shell tank (DST) system and the boundaries of the DST system components (or system parts) for the purpose of performing integrity assessment activities; To identify the planned activities to meet the assessment requirements for each component; Provide the status of the assessment activities; and Project a five year assessment activity schedule

  14. Characterization of selected waste tanks from the active LLLW system

    Keller, J.M.; Giaquinto, J.M.; Griest, W.H.

    1996-08-01

    From September 1989 through January of 1990, there was a major effort to sample and analyze the Active Liquid-Low Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The purpose of this report is to summarize additional analytical data collected from some of the active waste tanks from November 1993 through February 1996. The analytical data for this report was collected for several unrelated projects which had different data requirements. The overall analyte list was similar for these projects and the level of quality assurance was the same for all work reported. the new data includes isotopic ratios for uranium and plutonium and an evaluation of the denature ratios to address criticality concerns. Also, radionuclides not previously measured in these waste tanks, including 99Tc and 237Np, are provided in this report

  15. Waste Tank Organic Safety Project organic concentration mechanisms task. FY 1994 progress report

    Gerber, M.A.

    1994-09-01

    The Pacific Northwest Laboratory (PNL), Waste Tank Organic Safety Project is conducting research to support Westinghouse Hanford Company's (WHC) Waste Tank Safety Program, sponsored by the U.S. Department of Energy's Tank Farm Project Office. The goal of PNL's program is to provide a scientific basis for analyzing organics in Hanford's underground storage tanks (USTs) and for determining whether they are at concentrations that pose a potentially unsafe condition. Part of this research is directed toward determining what organic concentrations are safe by conducting research on organic aging mechanisms and waste energetics to assess the conditions necessary to produce an uncontrolled energy release in tanks due to reactions between the organics and the nitrate and nitrate salts in the tank wastes. The objective of the Organic Concentration Mechanisms Task is to assess the degree of localized enrichment of organics to be expected in the USTs due to concentration mechanisms. This report describes the progress of research conducted in FY 1994 on two concentration mechanisms of interest to the tank safety project: (1) permeation of a separate organic liquid phase into the interstitial spaces of the tank solids during the draining of free liquid from the tanks; and (2) concentration of organics on the surfaces of the solids due to adsorption. Three experiments were conducted to investigate permeation of air and solvent into a sludge simulant that is representative of single-shell tank sludge. The permeation behavior of air and solvent into the sludge simulant can be explained by the properties of the fluid pairs (air/supernate and solvent supernate) and the sludge. One important fluid property is the interfacial tension between the supernate and either the solvent or air. In general, the greater the interfacial tension between two fluids, the more difficult it will be for the air or solvent to displace the supernate during dewatering of the sludge

  16. Soil-structure interaction effects on high level waste tanks

    Miller, C.A.; Costantino, C.J.; Heymsfeld, E.

    1991-01-01

    High Level Waste Tanks consist of steel tanks located in concrete vaults which are usually completely embedded in the soil. Many of these tanks are old and were designed to seismic standards which are not compatible with current requirements. The objective if this paper is to develop simple methods of modeling SSI effects for such structures and to obtain solutions for a range of parameters that can be used to identify significant aspects of the problem

  17. Double-shell tank system dangerous waste permit application

    1991-06-01

    This Double-Shell Tank System Dangerous Waste Permit Application should be read in conjunction with the 242-A Evaporator Dangerous Waste Permit Application and the Liquid Effluent Retention Facility Dangerous Waste Permit Application, also submitted on June 28, 1991. Information contained in the Double-Shell Tank System permit application is referenced in the other two permit applications. The Double-Shell Tank System stores and treats mixed waste received from a variety of sources on the Hanford Site. The 242-A Evaporator treats liquid mixed waste received from the double-shell tanks. The 242-A Evaporator returns a mixed-waste slurry to the double-shell tanks and generates the dilute mixed-waste stream stored in the Liquid Effluent Retention Facility. This report contains information on the following topics: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report; Waste Minimization Plan; Closure and Postclosure Requirements; Reporting and Recordkeeping; other Relevant Laws; and Certification. 150 refs., 141 figs., 118 tabs

  18. Stabilization of in-tank residual wastes and external tank soil contamination for the Hanford tank closure program: application to the AX tank farm

    SONNICHSEN, J.C.

    1998-10-12

    Mixed high-level waste is currently stored in underground tanks at the US Department of Energy's (DOE's) Hanford Site. The plan is to retrieve the waste, process the water, and dispose of the waste in a manner that will provide less long-term health risk. The AX Tank Farm has been identified for purposes of demonstration. Not all the waste can be retrieved from the tanks and some waste has leaked from these tanks into the underlying soil. Retrieval of this waste could result in additional leakage. During FY1998, the Sandia National Laboratory was under contract to evaluate concepts for immobilizing the residual waste remaining in tanks and mitigating the migration of contaminants that exist in the soil column. Specifically, the scope of this evaluation included: development of a layered tank fill design for reducing water infiltration; development of in-tank getter technology; mitigation of soil contamination through grouting; sequestering of specific radionuclides in soil; and geochemical and hydrologic modeling of waste-water-soil interactions. A copy of the final report prepared by Sandia National Laboratory is attached.

  19. Extraction of long-lived radionuclides from caustic Hanford tank waste supernatants

    Chaiko, D.J.; Mertz, C.J.; Vojta, Y.

    1995-07-01

    A series of polymer-based extraction systems, based on the use of polyethylene glycols (PEGs) or polypropylene glycols (PPGs), was demonstrated to be capable of selective extraction and recovery of long-lived radionuclides, such as 99 Tc and 129 I, from Hanford SY-101 tank waste, neutralized current acid waste, and single-shell tank waste simulants. During the extraction process, anionic species like TcO 4 - and I - are selectively transferred to the less dense PEG-rich aqueous phase. The partition coefficients for a wide range of inorganic cations and anions, such as sodium, potassium, aluminum, nitrate, nitrite, and carbonate, are all less than one. The partition coefficients for pertechnetate ranged from 12 to 50, depending on the choice of waste simulant and temperature. The partition coefficient for iodide was about 5, while that of iodate was about 0.25. Irradiation of the PEG phase with gamma-ray doses up to 20 Mrad had no detectable effect on the partition coefficients. The most selective extraction systems examined were those based on PPGs, which exhibited separation factors in excess of 3000 between TcO 4 - and NO 3 - /NO 2- . An advantage of the PPG-based system is minimization of secondary waste production. These studies also highlighted the need for exercising great care in extrapolating the partitioning behavior with tank waste simulants to actual tank waste

  20. Extraction of long-lived radionuclides from caustic Hanford tank waste supernatants

    Chaiko, D.J.; Mertz, C.J.; Vojta, Y. [and others

    1995-07-01

    A series of polymer-based extraction systems, based on the use of polyethylene glycols (PEGs) or polypropylene glycols (PPGs), was demonstrated to be capable of selective extraction and recovery of long-lived radionuclides, such as {sup 99}Tc and {sup 129}I, from Hanford SY-101 tank waste, neutralized current acid waste, and single-shell tank waste simulants. During the extraction process, anionic species like TcO{sub 4}{sup {minus}} and I{sup {minus}} are selectively transferred to the less dense PEG-rich aqueous phase. The partition coefficients for a wide range of inorganic cations and anions, such as sodium, potassium, aluminum, nitrate, nitrite, and carbonate, are all less than one. The partition coefficients for pertechnetate ranged from 12 to 50, depending on the choice of waste simulant and temperature. The partition coefficient for iodide was about 5, while that of iodate was about 0.25. Irradiation of the PEG phase with gamma-ray doses up to 20 Mrad had no detectable effect on the partition coefficients. The most selective extraction systems examined were those based on PPGs, which exhibited separation factors in excess of 3000 between TcO{sub 4}{sup {minus}} and NO{sub 3}{sup {minus}}/NO{sub 2}{sub {minus}}. An advantage of the PPG-based system is minimization of secondary waste production. These studies also highlighted the need for exercising great care in extrapolating the partitioning behavior with tank waste simulants to actual tank waste.

  1. Characterization of the BVEST waste tanks located at ORNL

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1997-01-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report discusses the analytical characterization data for the supernatant and sludge in the BVEST waste tanks W-21, W-22, and W-23. The isotopic data presented in this report supports the position that fissile isotopes of uranium and plutonium were denatured as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the BVEST sludge was found to be hazardous based on RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the BVEST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP

  2. Hanford Waste Tank Bump Accident and Consequence Analysis

    BRATZEL, D.R.

    2000-01-01

    This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks

  3. Tank Bump Accident Potential and Consequences During Waste Retrieval

    BRATZEL, D.R.

    2000-01-01

    This report provides an evaluation of Hanford tank bump accident potential and consequences during waste retrieval operations. The purpose of this report is to consider the best available new information to support recommendations for safety controls. A new tank bump accident analysis for safe storage (Epstein et al. 2000) is extended for this purpose. A tank bump is a postulated event in which gases, consisting mostly of water vapor, are suddenly emitted from the waste and cause tank headspace pressurization. Tank bump scenarios, physical models, and frequency and consequence methods are fully described in Epstein et al. (2000). The analysis scope is waste retrieval from double-shell tanks (DSTs) including operation of equipment such as mixer pumps and air lift circulators. The analysis considers physical mechanisms for tank bump to formulate criteria for bump potential during retrieval, application of the criteria to the DSTs, evaluation of bump frequency, and consequence analysis of a bump. The result of the consequence analysis is the mass of waste released from tanks; radiological dose is calculated using standard methods (Cowley et al. 2000)

  4. MIXING OF INCOMPATIBLE MATERIALS IN WASTE TANKS TECHNICAL BASIS DOCUMENT

    SANDGREN, K.R.

    2006-01-01

    This document presents onsite radiological, onsite toxicological, and offsite toxicological consequences, risk binning, and control decision results for the mixing of incompatible materials in waste tanks representative accident. Revision 4 updates the analysis to consider bulk chemical additions to single shell tanks (SSTs)

  5. Decision analysis of Hanford underground storage tank waste retrieval systems

    Merkhofer, M.W.; Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-05-01

    A decision analysis approach has been proposed for planning the retrieval of hazardous, radioactive, and mixed wastes from underground storage tanks. This paper describes the proposed approach and illustrates its application to the single-shell storage tanks (SSTs) at Hanford, Washington

  6. Maximum surface level and temperature histories for Hanford waste tanks

    Flanagan, B.D.; Ha, N.D.; Huisingh, J.S.

    1994-01-01

    Radioactive defense waste resulting from the chemical processing of spent nuclear fuel has been accumulating at the Hanford Site since 1944. This waste is stored in underground waste-storage tanks. The Hanford Site Tank Farm Facilities Interim Safety Basis (ISB) provides a ready reference to the safety envelope for applicable tank farm facilities and installations. During preparation of the ISB, tank structural integrity concerns were identified as a key element in defining the safety envelope. These concerns, along with several deficiencies in the technical bases associated with the structural integrity issues and the corresponding operational limits/controls specified for conduct of normal tank farm operations are documented in the ISB. Consequently, a plan was initiated to upgrade the safety envelope technical bases by conducting Accelerated Safety Analyses-Phase 1 (ASA-Phase 1) sensitivity studies and additional structural evaluations. The purpose of this report is to facilitate the ASA-Phase 1 studies and future analyses of the single-shell tanks (SSTs) and double-shell tanks (DSTs) by compiling a quantitative summary of some of the past operating conditions the tanks have experienced during their existence. This report documents the available summaries of recorded maximum surface levels and maximum waste temperatures and references other sources for more specific data

  7. Tank waste remediation system retrieval and disposal mission infrastructure plan

    Root, R.W.

    1998-01-01

    This system plan presents the objectives, organization, and management and technical approaches for the Infrastructure Program. This Infrastructure Plan focuses on the Tank Waste Remediation System (TWRS) Project's Retrieval and Disposal Mission

  8. Organic analysis of the headspace in Hanford waste tanks

    Lucke, R.B.; McVeety, B.D.; Clauss, T.W.; Fruchter, J.S.; Goheen, S.C.

    1994-01-01

    Before radioactive mixed waste in Hanford waste tanks can be isolated and permanently stored, several safety issues need to be addressed. The headspace vapors in Hanford Tank 103-C raise two issues: (1) the potential flammability of the vapor and aerosol, and (2) the potential worker health and safety hazards associated with the toxicity of the constituents. As a result, the authors have implemented organic analysis methods to characterize the headspace vapors in Hanford waste tanks. To address the flammability issue, they have used OSHA versatile sampling (OVS) tubes as the sampling method followed by solvent extraction and GC/MS analysis. For analyzing volatile organics and organic air toxins, they have implemented SUMMA trademark canisters as the collection device followed by cryogenic trapping and GC/MS analysis. Strategies for modifying existing NIOSH and EPA methods to make them applicable to vapors in Hanford waste tanks are discussed. Identification and quantification results of volatile and semivolatile organics are presented

  9. A summary of available information on ferrocyanide tank wastes

    Burger, L.L.; Strachan, D.M.; Reynolds, D.A.; Schulz, W.W.

    1991-10-01

    Ferrocyanide wastes were generated at the Hanford site during the mid to late 1950s to make more tank space available for the storage of high level nuclear waste. The ferrocyanide process was developed as a method of removing 137 Cs from existing waste solutions and from process solutions that resulted from the recovery of valuable uranium in waste tanks. During the coarse of the research associated with the ferrocyanide process, it was discovered that ferrocyanide materials when mixed with NaNO 3 and/or NaNO 2 exploded. This chemical reactivity became an issue in the 1980s when the safety associated with the storage of ferrocyanide wastes in Hanford tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety associated with these wastes and the current research and waste management programs. Over the past three years, numerous explosive test have been carried out using milligram quantities of cyanide compounds. These tests provide information on the nature of possible tank reactions. On heating a mixture of ferrocyanide and nitrate or nitrite, an explosive reaction normally begins at about 240 degrees C, but may occur well below 200 degrees C in the presence of catalysts or organic compounds that may act as initiators. The energy released is highly dependent on the course of the reaction. Three attempts to model hot spots in local areas of the tanks indicate a very low probability of having a hot spot large enough and hot enough to be of concern. The main purpose of this document is to inform the members of the Tank Waste Science Panel of the background and issues associated with the ferrocyanide wastes. Hopefully, this document fulfills similar needs outside of the framework of the Tank Waste Science Panel. 50 refs., 9 figs., 7 tabs

  10. Mass spectrometry analysis of tank wastes at the Hanford Site

    Campbell, J.A.; Mong, G.M.; Clauss, S.A.

    1995-01-01

    Twenty-five of the 177 high-level waste storage tanks at the Hanford Site in southeastern Washington are being watched closely because of the possibility that flammable gas mixtures may be produced from the mixed wastes contained in the storage tanks. One tank in particular, Tank 241-SY-101 (Tank 101-SY), has exhibited episodic releases of flammable gas mixtures since its final filling in the early 1980s. It has been postulated that the organic compounds present in the waste may be precursors to the production of hydrogen. Mass spectrometry has proven to be an invaluable tool for the identification of organic components in wastes from Tank 101-SY and C-103. A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unresolved Safety Question concerning the potential for a floating organic layer in Hanford Waste Tank 241-C-103 to sustain a pool fire. The aqueous layer underlying the floating organic material was also analyzed for organic components

  11. Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2006-01-01

    The CH2M HILL Hanford Group, Inc. (CH2M HILL) is producing risk/performance assessments to support the closure of single-shell tanks at the U.S. Department of Energy's Hanford Site. As part of this effort, staff at Pacific Northwest National Laboratory were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. Initial work to produce release models was conducted on residual tank sludge using pure water as the leaching agent. The results were reported in an earlier report. The decision has now been made to close the tanks after waste retrieval with a cementitious grout to minimize infiltration and maintain the physical integrity of the tanks. This report describes testing of the residual waste with a leaching solution that simulates the composition of water passing through the grout and contacting the residual waste at the bottom of the tank.

  12. Effects of hydrated lime on radionuclides stabilization of Hanford tank residual waste.

    Wang, Guohui; Um, Wooyong; Cantrell, Kirk J; Snyder, Michelle M V; Bowden, Mark E; Triplett, Mark B; Buck, Edgar C

    2017-10-01

    Chemical stabilization of tank residual waste is part of a Hanford Site tank closure strategy to reduce overall risk levels to human health and the environment. In this study, a set of column leaching experiments using tank C-104 residual waste were conducted to evaluate the leachability of uranium (U) and technetium (Tc) where grout and hydrated lime were applied as chemical stabilizing agents. The experiments were designed to simulate future scenarios where meteoric water infiltrates through the vadose zones into the interior of the tank filled with layers of grout or hydrated lime, and then contacts the residual waste. Effluent concentrations of U and Tc were monitored and compared among three different packing columns (waste only, waste + grout, and waste + grout + hydrated lime). Geochemical modeling of the effluent compositions was conducted to determine saturation indices of uranium solid phases that could control the solubility of uranium. The results indicate that addition of hydrated lime strongly stabilized the uranium through transforming uranium to a highly insoluble calcium uranate (CaUO 4 ) or similar phase, whereas no significant stabilization effect of grout or hydrated lime was observed on Tc leachability. The result implies that hydrated lime could be a great candidate for stabilizing Hanford tank residual wastes where uranium is one of the main concerns. Published by Elsevier Ltd.

  13. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    HERTING, D.L.

    2006-01-01

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 222-S Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cs-137 sulfate, and sodium) were exceeded in all three of the flowsheet tests that were performed

  14. Evaluation of the integrity of existing NFS waste tanks

    1977-12-01

    Various means of investigating the integrity of the existing NFS waste tanks are presented, including: visual inspection, ultrasonic testing, acoustic-emission monitoring, radiography, and forced-vibration testing. The experience that exists in performing such investigations of high-level radioactive waste tanks is documented, including: visual inspections, photography, wall-thickness measurements, and forced-vibration testing. An evaluation is made on the relative merits of the presented inspection and testing alternatives

  15. Testing and development strategy for the tank waste remediation system

    Reddick, G.W.

    1994-12-01

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities

  16. Testing and development strategy for the tank waste remediation system

    Reddick, G.W.

    1995-01-01

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities

  17. WVNS Tank Farm Process Support: Experimental evaluation of an inert gas (nitrogen) to mitigate external corrosion of high-level waste storage tanks

    Elmore, M.R.

    1996-02-01

    Corrosion of the carbon steel waste storage tanks at West Valley Nuclear Services continues to be of concern, especially as the planned duration of waste storage time increases and sludge washing operations are conducted. The external surfaces of Tanks 8D-1 and 8D-2 have been exposed for more than 10 years to water that has intruded into the tank vaults. Visual inspection of the external tank surfaces using a remote video camera has shown indications of heavy corrosion in localized areas on the tank walls. Tests on mild steel specimens under simulated tank vault conditions showed that corrosion is related to the availability of oxygen for the corrosion reactions; consequently, removing oxygen as one of the reactants should effectively eliminate corrosion. In terms of the waste tanks, excluding oxygen from the annular vault space, such as by continuous flushing with an inert gas, should substantially decrease corrosion of the external surfaces of the mild steel tanks (100% exclusion of oxygen is probably not practicable). Laboratory corrosion testing was conducted at Pacific Northwest National Laboratory to give a preliminary assessment of the ability of nitrogen-inerting to reduce steel corrosion. This report summarizes test results obtained after 18-month corrosion tests comparing open-quotes nitrogen-inertedclose quotes corrosion with open-quotes air-equilibratedclose quotes corrosion under simulated tank vault conditions

  18. INVESTIGATING SUSPENSION OF MST SLURRIES IN A PILOT-SCALE WASTE TANK

    Poirier, M.; Restivo, M.; Steeper, T.; Williams, M.; Qureshi, Z.

    2011-01-24

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is for the pumps to suspend the MST particles so that MST can be removed from the tank. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations).

  19. Engineering development of waste retrieval end effectors for the Oak Ridge gunite waste tanks

    Mullen, O.D.

    1997-05-01

    The Gunite and Associated Tanks Treatability Study at Oak Ridge National Laboratory selected the waterjet scarifying end effector, the jet pump conveyance system, and the Modified Light Duty Utility Arm and Houdini Remotely Operated Vehicle deployment and manipulator systems for evaluation. The waterjet-based retrieval end effector had been developed through several generations of test articles targeted at deployment in Hanford underground storage tanks with a large robotic arm. The basic technology had demonstrated effectiveness at retrieval of simulants bounding the foreseen range of waste properties and indicated compatibility with the planned deployment systems. The Retrieval Process Development and Enhancements team was tasked with developing a version of the retrieval end effector tailored to the Oak Ridge tanks, waste and deployment platforms. The finished prototype was delivered to PNNL and subjected to a brief round of characterization and performance testing at the Hydraulic Testbed prior to shipment to Oak Ridge. It has undergone extensive operational testing in the Oak Ridge National Laboratory Tanks Technology Cold Test Facility and performed well, as expected. A second unit has been delivered outfitted with the high pressure manifold

  20. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume II

    1996-08-01

    This document, Volume 2, provides the inventory of waste addressed in this Final Environmental Impact Statement (EIS) for the Tank Waste Remediation System, Hanford Site, Richland, Washington. The inventories consist of waste from the following four groups: (1) Tank waste; (2) Cesium (Cs) and Strontium (Sr) capsules; (3) Inactive miscellaneous underground storage tanks (MUSTs); and (4) Anticipated future tank waste additions. The major component by volume of the overall waste is the tank waste inventory (including future tank waste additions). This component accounts for more than 99 percent of the total waste volume and approximately 70 percent of the radiological activity of the four waste groups identified previously. Tank waste data are available on a tank-by-tank basis, but the accuracy of these data is suspect because they primarily are based on historical records of transfers between tanks rather than statistically based sampling and analyses programs. However, while the inventory of any specific tank may be suspect, the overall inventory for all of the tanks combined is considered more accurate. The tank waste inventory data are provided as the estimated overall chemical masses and radioactivity levels for the single-shell tanks (SSTs) and double-shell tanks (DSTs). The tank waste inventory data are broken down into tank groupings or source areas that were developed for analyzing groundwater impacts

  1. Chemical species of plutonium in Hanford radioactive tank waste

    Barney, G.S.

    1997-01-01

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other

  2. Running scenarios using the Waste Tank Safety and Operations Hanford Site model

    Stahlman, E.J.

    1995-11-01

    Management of the Waste Tank Safety and Operations (WTS ampersand O) at Hanford is a large and complex task encompassing 177 tanks and having a budget of over $500 million per year. To assist managers in this task, a model based on system dynamics was developed by the Massachusetts Institute of Technology. The model simulates the WTS ampersand O at the Hanford Tank Farms by modeling the planning, control, and flow of work conducted by Managers, Engineers, and Crafts. The model is described in Policy Analysis of Hanford Tank Farm Operations with System Dynamics Approach (Kwak 1995b) and Management Simulator for Hanford Tank Farm Operations (Kwak 1995a). This document provides guidance for users of the model in developing, running, and analyzing results of management scenarios. The reader is assumed to have an understanding of the model and its operation. Important parameters and variables in the model are described, and two scenarios are formulated as examples

  3. Underground storage tanks soft waste dislodging and conveyance

    Wellner, A.F.

    1993-10-01

    Currently 140 million liters (37 million gallons) of waste are stored in the single shell underground storage tanks (SSTs) at Hanford. The wastes contain both hazardous and radioactive constituents. This paper focuses on the Westinghouse Hanford Company's testing program for soft waste dislodging and conveyance technology. This program was initialized to investigate methods of dislodging and conveying soft waste. The main focus was on using air jets, water jets, and/or mechanical blades to dislodge the waste and air conveyance to convey the dislodged waste. These waste dislodging and conveyance technologies would be used in conjunction with a manipulator based retrieval system

  4. Underground storage tank integrated demonstration: Evaluation of pretreatment options for Hanford tank wastes

    Lumetta, G.J.; Wagner, M.J.; Colton, N.G.; Jones, E.O.

    1993-06-01

    Separation science plays a central role inn the pretreatment and disposal of nuclear wastes. The potential benefits of applying chemical separations in the pretreatment of the radioactive wastes stored at the various US Department of Energy sites cover both economic and environmental incentives. This is especially true at the Hanford Site, where the huge volume (>60 Mgal) of radioactive wastes stored in underground tanks could be partitioned into a very small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). The cost associated with vitrifying and disposing of just the HLW fraction in a geologic repository would be much less than those associated with vitrifying and disposing of all the wastes directly. Futhermore, the quality of the LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. In this report, we present the results of an evaluation of the pretreatment options for sludge taken from two different single-shell tanks at the Hanford Site-Tanks 241-B-110 and 241-U-110 (referred to as B-110 and U-110, respectively). The pretreatment options examined for these wastes included (1) leaching of transuranic (TRU) elements from the sludge, and (2) dissolution of the sludge followed by extraction of TRUs and 90 Sr. In addition, the TRU leaching approach was examined for a third tank waste type, neutralized cladding removal waste

  5. Corrosion Evaluation of INTEC Waste Storage Tank WM-182

    Dirk, W. J.; Anderson, P. A.

    1999-01-01

    Irradiated nuclear fuel has been stored and reprocessed at the Idaho National Engineering and Environmental Laboratory since 1953 using facilities located at the Idaho Nuclear Technology and Engineering Center (INTEC). This reprocessing produced radioactive liquid waste which was stored in the Tank Farm. The INTEC Tank Farm consists of eleven vaulted 300,000-gallon underground tanks including Tank WM-182. Tank WM-182 was put into service in 1955, has been filled four times, and has contained aluminum and zirconium fuel reprocessing wastes as well as sodium bearing waste. A program to monitor corrosion in the waste tanks was initiated in 1953 when the first of the eleven Tank Farm tanks was placed in service. Austenitic stainless steel coupons representative of the materials of construction of the tanks are used to monitor internal tank corrosion. This report documents the final inspection of the WM-182 corrosion coupons. Physical examination of the welded corrosion test coupons exposed to the tank bottom conditions of Tank WM-182 revealed very light uniform corrosion. Examination of the external surfaces of the extruded pipe samples showed very light uniform corrosion with slight indications of preferential attack parallel to extrusion marks and start of end grain attack of the cut edges. These indications were only evident when examined under stereo microscope at magnifications of 20X and above. There were no definite indications of localized corrosion, such as cracking, pitting, preferential weld attack, or weld heat affected zone attack on either the welded or extruded coupons. Visual examination of the coupon support cables, where they were not encased in plastic, failed to reveal any indication of liquid-liquid interface attack of any crevice corrosion. Based on the WM-182 coupon evaluations, which have occurred throughout the life of the tank, the metal loss from the tank wall due to uniform corrosion is not expected to exceed 5.5 x 10-1 mil (0.00 055 inch

  6. Technology Evaluation for Conditioning of Hanford Tank Waste Using Solids Segregation and Size Reduction

    Restivo, Michael L.; Stone, M. E.; Herman, D. T.; Lambert, Daniel P.; Duignan, Mark R.; Smith, Gary L.; Wells, Beric E.; Lumetta, Gregg J.; Enderlin, Carl W.; Adkins, Harold E.

    2014-04-24

    The Savannah River National Laboratory and the Pacific Northwest National Laboratory team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm. The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application. Any technology selected would require testing to verify the ability to meet the High-Level Waste Feed Waste Acceptance Criteria to the Hanford Tank Waste Treatment and Immobilization Plant Pretreatment Facility.

  7. Treatment of radioactive wastes from DOE underground storage tanks

    Collins, J.L.; Egan, B.Z.; Spencer, B.B.; Chase, C.W.; Anderson, K.K.; Bell, J.T.

    1994-01-01

    Bench-scale batch tests have been conducted with sludge and supernate tank waste from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology process for use in a comprehensive sludge processing flow sheet as a means of concentrating the radionuclides and reducing the volumes of storage tank waste at national sites for final disposal. This paper discusses the separation of the sludge solids and supernate, the basic washing of the sludge solids, the acidic dissolution of the sludge solids, and the removal of the radionuclides from the supernate

  8. Nondestructive examination of DOE high-level waste storage tanks

    Bush, S.; Bandyopadhyay, K.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

    1995-01-01

    A number of DOE sites have buried tanks containing high-level waste. Tanks of particular interest am double-shell inside concrete cylinders. A program has been developed for the inservice inspection of the primary tank containing high-level waste (HLW), for testing of transfer lines and for the inspection of the concrete containment where possible. Emphasis is placed on the ultrasonic examination of selected areas of the primary tank, coupled with a leak-detection system capable of detecting small leaks through the wall of the primary tank. The NDE program is modelled after ASME Section XI in many respects, particularly with respects to the sampling protocol. Selected testing of concrete is planned to determine if there has been any significant degradation. The most probable failure mechanisms are corrosion-related so that the examination program gives major emphasis to possible locations for corrosion attack

  9. Ozone destruction of Hanford Site tank waste organics

    Colby, S.A.

    1993-04-01

    Ozone processing is one of several technologies being developed to meet the intent of the Secretary of the US Department of Energy, Decision on the Programmatic Approach and Near-Term Actions for Management and Disposal of Hanford Tank Waste Decision Statement, dated December 20, 1991, which emphasizes the need to resolve tank safety issues by destroying or modifying the constituents (e.g., organics) that cause safety concerns. As a result, the major tank treatment objectives on the Hanford Site are to resolve the tank safety issues regarding organic compounds (and accompanying flammable gas generation), which all potentially can react to evolve heat and gases. This report contains scoping test results of an alkaline ozone oxidation process to destroy organic compounds found in the Hanford Site's radioactive waste storage tanks

  10. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    WILLIS, W.L.

    2000-06-15

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  11. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    WILLIS, W.L.

    2000-01-01

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein

  12. Characterization of the MVST waste tanks located at ORNL

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1996-12-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ``denatured`` as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP.

  13. Characterization of the MVST waste tanks located at ORNL

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1996-12-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ''denatured'' as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP

  14. Hanford tank residual waste - Contaminant source terms and release models

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael L.; Jeffery Serne, R.

    2011-01-01

    Highlights: → Residual waste from five Hanford spent fuel process storage tanks was evaluated. → Gibbsite is a common mineral in tanks with high Al concentrations. → Non-crystalline U-Na-C-O-P ± H phases are common in the U-rich residual. → Iron oxides/hydroxides have been identified in all residual waste samples. → Uranium release is highly dependent on waste and leachant compositions. - Abstract: Residual waste is expected to be left in 177 underground storage tanks after closure at the US Department of Energy's Hanford Site in Washington State, USA. In the long term, the residual wastes may represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt.%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt.%, respectively. Aluminum concentrations are high (8.2-29.1 wt.%) in some tanks (C-103, C-106, and S-112) and relatively low ( 2 -saturated solution, or a CaCO 3 -saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO 3 -saturated solution than with the Ca(OH) 2 -saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH) 2 -saturated solution than by the CaCO 3 -saturated solution. In general, Tc is much less leachable (<10 wt.% of the

  15. Technetium in alkaline, high-salt, radioactive tank waste supernate: Preliminary characterization and removal

    Blanchard, D.L. Jr.; Brown, G.N.; Conradson, S.D.

    1997-01-01

    This report describes the initial work conducted at Pacific Northwest National Laboratory to study technetium (Tc) removal from Hanford tank waste supernates and Tc oxidation state in the supernates. Filtered supernate samples from four tanks were studied: a composite double shell slurry feed (DSSF) consisting of 70% from Tank AW-101, 20% from AP-106, and 10% from AP-102; and three complexant concentrate (CC) wastes (Tanks AN-107, SY-101, ANS SY-103) that are distinguished by having a high concentration of organic complexants. The work included batch contacts of these waste samples with Reillex trademark-HPQ (anion exchanger from Reilly Industries) and ABEC 5000 (a sorbent from Eichrom Industries), materials designed to effectively remove Tc as pertechnetate from tank wastes. A short study of Tc analysis methods was completed. A preliminary identification of the oxidation state of non-pertechnetate species in the supernates was made by analyzing the technetium x-ray absorption spectra of four CC waste samples. Molybdenum (Mo) and rhenium (Re) spiked test solutions and simulants were tested with electrospray ionization-mass spectrometry to evaluate the feasibility of the technique for identifying Tc species in waste samples

  16. Data quality objectives lessons learned for tank waste characterization

    Eberlein, S.J.; Banning, D.L.

    1996-01-01

    The tank waste characterization process is an integral part of the overall effort to control the hazards associated with radioactive wastes stored in underground tanks at the Hanford Reservation. The programs involved in the characterization of the waste are employing the Data Quality Objective (DQO) process in all information and data collection activities. The DQO process is used by the programs to address an issue or problem rather than a specific sampling event. Practical limits (e.g., limited number and location of sampling points) do not always allow for precise characterization of a tank or the full implementation of the DQO process. Because of the flexibility of the DQO process, it can be used as a planning tool for sampling and analysis of the underground waste storage tanks. The iterative nature of the DQO process allows it to be used as additional information is obtained or open-quotes lessons are learnedclose quotes concerning an issue or problem requiring sampling and analysis of tank waste. In addition, the application of the DQO process forces alternative actions to be considered when precise characterization of a tank or the fall implementation of the DQO process is not practical

  17. Data quality objectives lessons learned for tank waste characterization

    Eberlein, S.J.

    1996-01-01

    The tank waste characterization process is an integral part of the overall effort to control the hazards associated with radioactive wastes stored in underground tanks at the Hanford Reservation. The programs involved in the characterization of the wastes are employing Data Quality Objective (DQO) process in all information and data collection activities. The DQO process is used by the programs to address an issue or problem rather than a specific sampling event. Practical limits do not always allow for precise characterization of a tank or the implementation of the DQO process. Because of the flexibility of the DQO process, it can be used as a tool for sampling and analysis of the underground waste storage tanks. The iterative nature of the DQO process allows it to be used as additional information is claimed or lessons are learned concerning an issue or problem requiring sampling and analysis of tank waste. In addition, the application of DQO process forces alternative actions to be considered when precise characterization of a tank or the full implementation of the DQO process is not practical

  18. Chemical characterization of SRP waste tank sludges and supernates

    Gray, L.W.; Donnan, M.Y.; Okamoto, B.Y.

    1979-08-01

    Most high-level liquid wastes at the Savannah River Plant (SRP) are byproducts from plutonium and enriched uranium recovery processes. The high-level liquid wastes generated by these separations processes are stored in large, underground, carbon-steel tanks. The liquid wastes consist of: supernate (an aqueous solution containing sodium, nitrate, nitrite, hydroxyl, and aluminate ions), sludge (a gelatinous material containing insoluble components of the waste, such as ferric and aluminum hydroxides, and mercuric and manganese oxides), and salt cake (crystals, such as sodium nitrate, formed by evaporation of water from supernate). Analyses of SRP wastes by laser-Raman spectrometry, atomic absorption spectrometry, spark-source mass spectrometry, neutron activation analysis, colorimetry, ion chromatography, and various other wet-chemical and radiochemical methods are discussed. These analyses are useful in studies of waste tank corrosion and of forms for long-term waste storage

  19. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by

  20. Developing a model for moisture in saltcake waste tanks: Progress report

    Simmons, C.S.; Aimo, N.; Fayer, M.J.; White, M.D.

    1997-07-01

    This report describes a modeling effort to provide a computer simulation capability for estimating the distribution and movement of moisture in the saltcake-type waste contained in Hanford's single-shell radioactive waste storage tanks. This moisture model goes beyond an earlier version because it describes water vapor movement as well as the interstitial liquid held in a saltcake waste. The work was performed by Pacific Northwest National Laboratory to assist Duke Engineering and Services Hanford with the Organic Tank Safety Program. The Organic Tank Safety Program is concerned whether saltcake waste, when stabilized by jet pumping, will retain sufficient moisture near the surface to preclude any possibility of an accidental ignition and propagation of burning. The nitrate/nitrite saltcake, which might also potentially include combustible organic chemicals might not always retain enough moisture near the surface to preclude any such accident. Draining liquid from a tank by pumping, coupled with moisture evaporating into a tank's head space, may cause a dry waste surface that is not inherently safe. The moisture model was devised to help examine this safety question. The model accounts for water being continually cycled by evaporation into the head space and returned to the waste by condensation or partly lost through venting to the external atmosphere. Water evaporation occurs even in a closed tank, because it is driven by the transfer to the outside of the heat load generated by radioactivity within the waste. How dry a waste may become over time depends on the particular hydraulic properties of a saltcake, and the model uses those properties to describe the capillary flow of interstitial liquid as well as the water vapor flow caused by thermal differences within the porous waste

  1. Minutes of the Tank Waste Science Panel Meeting March 25--27, 1992

    Schutz, W.W.; Strachan, D.M.

    1992-08-01

    Discussions from the seventh meeting of the Tank Waste Science are presented in Colorado. The subject areas included the generation of gases in Tank 241-SY-101, the possible use of sonication as a mitigation method, and analysis for organic constituents in core samples. Results presented and discussed include: Ferrocyanides appear to be rapidly dissolved in 1M NaOH; upon standing in the laboratory at ambient conditions oxalate precipitates from simulated wastes containing HEDTA. This suggests that one of the main components in the solids in Tank 241-SY-101 is oxalate; hydrogen evolved from waste samples from Tank 241-SY-101 is five times that observed in the off gas from the tank; data suggest that mitigation of Tank 241-SY-101 will not cause a high release of dissolved N 2 O; when using a slurry for radiation studies, a portion of the generated gases is very difficult to remove. To totally recover the generated gases, the solids must first be dissolved. This result may have an impact on mitigation by mixing if the gases are not released. Using 13 C-labeled organics in thermal degradation studies has allowed researchers to illucidate much of the kinetic mechanism for the degradation of HEDTA and glycolate. In addition to some of the intermediate, more complex organic species, oxalate, formate, and CO 2 were identified; and analytic methods for organics in radioactive complex solutions such as that found in Tank 241-SY-101 have been developed and others continue to be developed

  2. HANFORD WASTE TANK BUMP ACCIDENT & CONSEQUENCE ANALYSIS

    MEACHAM, J.E.

    2005-02-22

    Postulated physical scenarios leading to tank bumps were examined. A combination of a substantial supernatant layer depth, supernatant temperatures close to saturation, and high sludge temperatures are required for a tank bump to occur. Scenarios postulated at various times for sludge layers lacking substantial supernatant, such as superheat within the layer and fumarole formation leading to a bump were ruled out.

  3. PROGRESS & CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    HEWITT, W.M.; SCHEPENS, R.

    2006-01-23

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m{sup 3} (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m{sup 3} (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We

  4. PROGRESS and CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    HEWITT, W.M.; SCHEPENS, R.

    2006-01-01

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m 3 (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m 3 (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We plan to

  5. Features and safety aspects of Additional Waste Tank Farm, Tarapur

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    Additional Waste Tank Farm (AWTF) at Tarapur is designed to store High and Intermediate Level Liquid wastes generated on an interim basis prior to treatment at TWMP for final disposal. Defence-in-depth philosophy is adopted in the design of AWTF

  6. Sodium Aluminosilicate Formation in Tank 43H Simulants

    Wilmarth, W.R.; Walker, D.D.; Fink, S.D.

    1997-11-01

    This work studied the formation of a sodium aluminosilicate, Na 8 Al 6 Si 6 O 24 (NO 3 ) 2?4 H 2 O, at 40 degree 110 degree C in simulated waste solutions with varied amounts of silicon and aluminum. The data agree well with literature solubility data for sodalite, the analogous chloride salt. The following conclusions result from this work: (1) The study shows, by calculation and experiments, that evaporation of the September 1997 Tank 43H inventory will only form minor quantities of the aluminosilicate. (2) The data indicate that the rate of formation of the nitrate enclathrated sodalite solid at these temperatures falls within the residence time (<; 4 h) of liquid in the evaporator. (3) The silicon in entrained Frit 200 transferred to the evaporator with the Tank 43H salt solution will quantitatively convert to the sodium aluminosilicate. One kilogram of Frit 200 produces 2.1 kg of the sodium aluminosilicate

  7. Technical Performance Capability of Fourier Transform Profilometry for Quantitative Waste Volume Determination under Hanford Waste Tank Condition

    Monts, D.L.; Jang, P.R.; Long, Z.; Norton, O.P.; Okhuysen, W.P.; Su, Y.; Waggoner, Ch.A.

    2009-01-01

    The Hanford Site is currently in the process of an extensive effort to empty and close its radioactive single-shell and double-shell waste storage tanks. Before this can be accomplished, it is necessary to know how much residual material is left in a given waste tank and the chemical makeup of the residue. The Institute for Clean Energy Technology (ICET) at Mississippi State University is currently developing a quantitative in-tank inspection system based on Fourier Transform Profilometry (FTP). FTP is a non-contact, 3-D shape measurement technique. By projecting a fringe pattern onto a target surface and observing its deformation due to surface irregularities from a different view angle, FTP is capable of determining the height (depth) distribution (and hence volume distribution) of the target surface, thus reproducing the profile of the target accurately under a wide variety of conditions. Hence FTP has the potential to be utilized for quantitative determination of residual wastes within Hanford waste tanks. We report the results of a technical feasibility study to document the accuracy and precision of quantitative volume determination using the Fourier transform profilometry technique under simulated Hanford waste tank conditions. (authors)

  8. Industrial thermoforming simulation of automotive fuel tanks

    Wiesche, Stefan aus der

    2004-01-01

    An industrial thermoforming simulation with regard to automotive plastic fuel tanks is presented including all relevant process stages. The radiative and conductive heat transfer during the reheat stage, the deformation and stress behaviour during the forming stage, and the final cooling stage are simulated. The modelling of the thermal and rheological behaviour of the involved material is investigated in greater detail. By means of experimental data it is found that modelling of the phase transition during the process is highly important for predicting correct wall thickness distributions

  9. Estimating retained gas volumes in the Hanford tanks using waste level measurements

    Whitney, P.D.; Chen, G.; Gauglitz, P.A.; Meyer, P.A.; Miller, N.E.

    1997-09-01

    The Hanford site is home to 177 large, underground nuclear waste storage tanks. Safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate and trap flammable gases. This report focuses on understanding and improving the quality of retained gas volume estimates derived from tank waste level measurements. While direct measurements of gas volume are available for a small number of the Hanford tanks, the increasingly wide availability of tank waste level measurements provides an opportunity for less expensive (than direct gas volume measurement) assessment of gas hazard for the Hanford tanks. Retained gas in the tank waste is inferred from level measurements -- either long-term increase in the tank waste level, or fluctuations in tank waste level with atmospheric pressure changes. This report concentrates on the latter phenomena. As atmospheric pressure increases, the pressure on the gas in the tank waste increases, resulting in a level decrease (as long as the tank waste is open-quotes softclose quotes enough). Tanks with waste levels exhibiting fluctuations inversely correlated with atmospheric pressure fluctuations were catalogued in an earlier study. Additionally, models incorporating ideal-gas law behavior and waste material properties have been proposed. These models explicitly relate the retained gas volume in the tank with the magnitude of the waste level fluctuations, dL/dP. This report describes how these models compare with the tank waste level measurements

  10. Consequence ranking of radionuclides in Hanford tank waste

    Schmittroth, F.A.; De Lorenzo, T.H.

    1995-09-01

    Radionuclides in the Hanford tank waste are ranked relative to their consequences for the Low-Level Tank Waste program. The ranking identifies key radionuclides where further study is merited. In addition to potential consequences for intrude and drinking-water scenarios supporting low-level waste activities, a ranking based on shielding criteria is provided. The radionuclide production inventories are based on a new and independent ORIGEN2 calculation representing the operation of all Hanford single-pass reactors and the N Reactor

  11. Corrosion and failure processes in high-level waste tanks

    Mahidhara, R.K.; Elleman, T.S.; Murty, K.L.

    1992-11-01

    A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted

  12. Double-shell tank waste transfer facilities integrity assessment plan

    Hundal, T.S.

    1998-01-01

    This document presents the integrity assessment plan for the existing double-shell tank waste transfer facilities system in the 200 East and 200 West Areas of Hanford Site. This plan identifies and proposes the integrity assessment elements and techniques to be performed for each facility. The integrity assessments of existing tank systems that stores or treats dangerous waste is required to be performed to be in compliance with the Washington State Department of Ecology Dangerous Waste Regulations, Washington Administrative Code WAC-173-303-640 requirements

  13. Significant volume reduction of tank waste by selective crystallization: 1994 Annual report

    Herting, D.L.; Lunsford, T.R.

    1994-01-01

    The objective of this technology task plan is to develop and demonstrate a scaleable process of reclaim sodium nitrate (NaNO 3 ) from Hanford waste tanks as a clean nonradioactive salt. The purpose of the so-called Clean Salt Process is to reduce the volume of low level waste glass by as much as 70%. During the reporting period of October 1, 1993, through May 31, 1994, progress was made on four fronts -- laboratory studies, surrogate waste compositions, contracting for university research, and flowsheet development and modeling. In the laboratory, experiments with simulated waste were done to explore the effects of crystallization parameters on the size and crystal habit of product NaNO 3 crystals. Data were obtained to allows prediction of decontamination factor as a function of solid/liquid separation parameters. Experiments with actual waste from tank 101-SY were done to determine the extent of contaminant occlusions in NaNO 3 crystals. In preparation for defining surrogate waste compositions, single shell tanks were categorized according to the weight percent NaNO 3 in each tank. A detailed process flowsheet and computer model were created using the ASPENPlus steady state process simulator. This is the same program being used by the Tank Waste Remediation System (TWRS) program for their waste pretreatment and disposal projections. Therefore, evaluations can be made of the effect of the Clean Salt Process on the low level waste volume and composition resulting from the TWRS baseline flowsheet. Calculations, using the same assumptions as used for the TWRS baseline where applicable indicate that the number of low level glass vaults would be reduced from 44 to 16 if the Clean Salt Process were incorporated into the baseline flowsheet

  14. A systematic look at Tank Waste Remediation System privatization

    Holbrook, J.H.; Duffy, M.A.; Vieth, D.L.; Sohn, C.L.

    1996-01-01

    The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, immobilize, and dispose, or prepare for disposal, the Hanford radioactive tank waste in an environmentally sound, safe, and cost effective manner. Highly radioactive Hanford waste includes current and future tank waste plus the cesium and strontium capsules. In the TWRS program, as in other Department of Energy (DOE) clean-up activities, there is an increasing gap between the estimated funding required to enable DOE to meet all of its clean-up commitments and level of funding that is perceived to be available. Privatization is one contracting/management approach being explored by DOE as a means to achieve cost reductions and as a means to achieve a more outcome-oriented program. Privatization introduces the element of competition, a proven means of establishing true cost as well as achieving significant cost reduction

  15. Organic tanks safety program FY96 waste aging studies

    Camaioni, D.M.; Samuels, W.D.; Linehan, J.C.; Clauss, S.A.; Sharma, A.K.; Wahl, K.L.; Campbell, J.A.

    1996-10-01

    Uranium and plutonium production at the Hanford Site produced large quantities of radioactive by-products and contaminated process chemicals, which are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of salt cakes, metal oxide sludges, and partially saturated aqueous brine solutions. The tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes may be at risk for fuel- nitrate combustion accidents. The purpose of the Waste Aging Task is to elucidate how chemical and radiological processes will have aged or degraded the organic compounds stored in the tanks. Ultimately, the task seeks to develop quantitative measures of how aging changes the energetic properties of the wastes. This information will directly support efforts to evaluate the hazard as well as to develop potential control and mitigation strategies

  16. Specialized video systems for use in waste tanks

    Anderson, E.K.; Robinson, C.W.; Heckendorn, F.M.

    1992-01-01

    The Robotics Development Group at the Savannah River Site is developing a remote video system for use in underground radioactive waste storage tanks at the Savannah River Site, as a portion of its site support role. Viewing of the tank interiors and their associated annular spaces is an extremely valuable tool in assessing their condition and controlling their operation. Several specialized video systems have been built that provide remote viewing and lighting, including remotely controlled tank entry and exit. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. The SRS waste tanks are nominal 4.5 million liter (1.3 million gallon) underground tanks used to store liquid high level radioactive waste generated by the site, awaiting final disposal. The typical waste tank (Figure 1) is of flattened shape (i.e. wider than high). The tanks sit in a dry secondary containment pan. The annular space between the tank wall and the secondary containment wall is continuously monitored for liquid intrusion and periodically inspected and documented. The latter was historically accomplished with remote still photography. The video systems includes camera, zoom lens, camera positioner, and vertical deployment. The assembly enters through a 125 mm (5 in) diameter opening. A special attribute of the systems is they never get larger than the entry hole during camera aiming etc. and can always be retrieved. The latest systems are easily deployable to a remote setup point and can extend down vertically 15 meters (50ft). The systems are expected to be a valuable asset to tank operations

  17. Hanford underground storage tank waste filtration process evaluation

    Walker, B.W.; McCabe, D.J.

    1997-01-01

    The purpose of this filter study was to evaluate cross-flow filtration as effective solid-liquid separation technology for treating Hanford wastes, outline operating conditions for equipment, examine the expected filter flow rates, and determine proper cleaning. Two Hanford waste processing applications have been identified as candidates for the use of cross-flow filtration. The first of the Hanford applications involves filtration of the decanted supernate from sludge leaching and washing operations. This process involves the concentration and removal of dilute (0.05 wt percent) fines from the bulk of the supernate. The second application involves filtration to wash and concentrate the sludge during out-of-tank processing. This process employs a relatively concentrated (8 wt percent) solids feed stream. Filter studies were conducted with simulants to evaluate whether 0.5 micron cross-flow sintered metal Mott filters and 0.1 micron cross-flow Graver filters can perform solid-liquid separation of the solid/liquid waste streams effectively. In cross-flow filtration the fluid to be filtered flows in parallel to the membrane surface and generates shearing forces and/or turbulence across the filter medium. This shearing influences formation of filter cake stabilizing the filtrate flow rate

  18. Tank Inspection NDE Results for Fiscal Year 2014, Waste Tanks 26, 27, 28 and 33

    Elder, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Vandekamp, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-29

    Ultrasonic nondestructive examinations (NDE) were performed on waste storage tanks 26, 27, 28 and 33 at the Savannah River Site as a part of the “In-Service Inspection (ISI) Program for High Level Waste Tanks.” No reportable conditions were identified during these inspections. The results indicate that the implemented corrosion control program continues to effectively mitigate corrosion in the SRS waste tanks. Ultrasonic inspection (UT) is used to detect general wall thinning, pitting and interface attack, as well as vertically oriented cracks through inspection of an 8.5 inch wide strip extending over the accessible height of the primary tank wall and accessible knuckle regions. Welds were also inspected in tanks 27, 28 and 33 with no reportable indications. In a Type III/IIIA primary tank, a complete vertical strip includes scans of five plates (including knuckles) so five “plate/strips” would be completed at each vertical strip location. In FY 2014, a combined total of 79 plate/strips were examined for thickness mapping and crack detection, equating to over 45,000 square inches of area inspected on the primary tank wall. Of the 79 plate/strips examined in FY 2014 all but three have average thicknesses that remain at or above the construction minimum thickness which is nominal thickness minus 0.010 inches. There were no service induced reportable thicknesses or cracking encountered. A total of 2 pits were documented in 2014 with the deepest being 0.032 inches deep. One pit was detected in Tank 27 and one in Tank 33. No pitting was identified in Tanks 26 or 28. The maximum depth of any pit encountered in FY 2014 is 5% of nominal thickness, which is less than the minimum reportable criteria of 25% through-wall for pitting. In Tank 26 two vertical strips were inspected, as required by the ISI Program, due to tank conditions being outside normal chemistry controls for more than 3 months. Tank 28 had an area of localized thinning on the exterior wall of the

  19. Scanning electron microscopic analyses of Ferrocyanide tank wastes for the Ferrocyanide safety program

    Callaway, W.S.

    1995-09-01

    This is Fiscal Year 1995 Annual Report on the progress of activities relating to the application of scanning electron microscopy in addressing the Ferrocyanide Safety Issue associated with Hanford Site high-level radioactive waste tanks. The status of the FY 1995 activities directed towards establishing facilities capable of providing SEM based micro-characterization of ferrocyanide tank wastes is described. A summary of key events in the SEM task over FY 1995 and target activities in FY 1996 are presented. A brief overview of the potential applications of computer controlled SEM analytical data in light of analyses of ferrocyanide simulants performed by an independent contractor is also presented

  20. Technology Summary Advancing Tank Waste Retreival And Processing

    Sams, T.L.

    2010-01-01

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated since it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans and methods. WRPS and the DOE are therefore developing, testing, and deploying technologies to ensure that they can meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  1. Minutes of the Tank Waste Science Panel meeting, July 20, 1990: Hanford Tank Safety Project

    Strachan, D.M.; Morgan, L.G.

    1991-02-01

    The second meeting of the Tank Waste Science Panel was held July 20, 1990. Science Panel members discussed the prioritization of various analyses to be performed on core samples from tank 101-SY, and were asked to review and comment on the draft Westinghouse Hanford Company document ''Analytical Chemistry Plan.'' They also reviewed and discussed the initial contributions to the report titled Chemical and Physical Processes in Tank 101-SY: A Preliminary Report. Science Panel members agreed that a fundamental understanding of the physical and chemical processes in the tank is essential, and strongly recommended that no remediation measures be taken until there is a better understanding of the chemical and physical phenomena that result in the episodic gas release from tank 101-SY. 1 ref

  2. Double Shell Tank (DST) Process Waste Sampling Subsystem Definition Report

    RASMUSSEN, J.H.

    2000-01-01

    This report defines the Double-Shell Tank (DST) Process Waste Sampling Subsystem (PWSS). This subsystem definition report fully describes and identifies the system boundaries of the PWSS. This definition provides a basis for developing functional, performance, and test requirements (i.e., subsystem specification), as necessary, for the PWSS. The resultant PWSS specification will include the sampling requirements to support the transfer of waste from the DSTs to the Privatization Contractor during Phase 1 of Waste Feed Delivery

  3. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    Howden, G.F.

    1994-01-01

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions

  4. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    Howden, G.F.

    1994-10-24

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  5. Organic tanks safety program FY95 waste aging studies

    Camaioni, D.M.; Samuels, W.D.; Clauss, S.A.; Lenihan, B.D.; Wahl, K.L.; Campbell, J.A.; Shaw, W.J.

    1995-09-01

    This report gives the second year's findings of a study of how thermal and radiological processes may change the composition of organic compounds in the underground tanks at Hanford. Efforts were focused on the global reaction kinetics in a simulated waste exposed to γ rays and the reactions of organic radicals with nitrite ion. The gas production is predominantly radiolytic. Decarboxylation of carboxylates is probably an aging pathway. TBP was totaly consumed in almost every run. Radiation clearly accelerated consumption of the other compounds. EDTA is more reactive than citrate. Oximes and possibly organic nitro compounds are key intermediates in the radiolytic redox reactions of organic compounds with nitrate/nitrite. Observations are consistent with organic compounds being progressively degraded to compounds with greater numbers of C-O bonds and fewer C-H and C-C bonds, resulting in an overall lower energy content. If the radwaste tanks are adequately ventilated and continually dosed by radioactivity, their total energy content should have declined. Level of risk depends on how rapidly carboxylate salts of moderate energy content (including EDTA fragments) degrade to low energy oxalate and formate

  6. Chemical compatibility of tank wastes in tanks 241-C-106, 241-AY-101, and 241-AY-102

    Sederburg, J.P.

    1994-01-01

    This report documents the chemical compatibility of waste types within tanks 241-C-106, 241-AY-101, and 241-AY-102. This information was compiled to facilitate the transfer of tank 241-C-106 waste to tank 241-AY-102 utilizing supernatant from tank 241-AY-101 as the sluicing medium. This document justifies that no chemical compatibility safety issues currently understood, or theorized from thermodynamic modeling, will result from the intended sluice transfer operation

  7. PSA results for Hanford high level waste Tank 101-SY

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W. [Los Alamos National Lab., NM (United States); Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J. [PLG, Inc., Newport Beach, CA (United States)

    1993-10-01

    Los Alamos National Laboratory has performed a comprehensive probabilistic safety assessment (PSA) that includes consideration of external events for the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases (``burps``) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is underway in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. This PSA for Tank 101-SY, which did not consider the pump experiment or future tank-remediation activities, involved three distinct tasks. First, the accident sequence analysis identified and quantified those potential accidents whose consequences result in tank material release. Second, characteristics and release paths for the airborne and liquid radioactive source terms were determined. Finally, the consequences, primarily onsite and offsite potential health effects resulting from radionuclide release, were estimated, and overall risk curves were constructed. An overview of each of these tasks and a summary of the overall results of the analysis are presented in the following sections.

  8. PSA results for Hanford high level waste Tank 101-SY

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W.; Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J.

    1993-01-01

    Los Alamos National Laboratory has performed a comprehensive probabilistic safety assessment (PSA) that includes consideration of external events for the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases (''burps'') a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is underway in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. This PSA for Tank 101-SY, which did not consider the pump experiment or future tank-remediation activities, involved three distinct tasks. First, the accident sequence analysis identified and quantified those potential accidents whose consequences result in tank material release. Second, characteristics and release paths for the airborne and liquid radioactive source terms were determined. Finally, the consequences, primarily onsite and offsite potential health effects resulting from radionuclide release, were estimated, and overall risk curves were constructed. An overview of each of these tasks and a summary of the overall results of the analysis are presented in the following sections

  9. Structural analysis of ORNL underground gunite waste storage tanks

    Fricke, K.E.

    1995-01-01

    The North Tank Farm (NTF) and the South Tank Farm (STF) located at ORNL contains 8 underground waste storage tanks which were built around 1943. The tanks were used to collect and store the liquid portion of the radioactive and/or hazardous chemical wastes produced as part of normal facility operations at ORNL, but are no longer part of the active Low Level Liquid Waste system of the Laboratory. The tanks were constructed of gunite. The six STF tanks are 50 ft in diameter, and have a 12 ft sidewall, and an arched dome rising another 6.25 ft. The sidewall are 6 in. thick and have an additional 1.5 in. gunite liner on the inside. There is a thickened ring at the wall-dome juncture. The dome consists of two 5 in. layers of gunite. The two tanks in the NTF are similar, but smaller, having a 25 ft diameter, no inner liner, and a dome thickness of 3.5 in. Both sets of tanks have welded wire mesh and vertical rebars in the walls, welded wire mesh in the domes, and horizontal reinforcing hoop bars pre-tensioned to 35 to 40 ksi stress in the walls and thickened ring. The eight tanks are entirely buried under a 6 ft layer of soil cover. The present condition of the tanks is not accurately known, since access to them is extremely limited. In order to evaluate the structural capability of the tanks, a finite element analysis of each size tank was performed. Both static and seismic loads were considered. Three sludge levels, empty, half-full, and full were evaluated. In the STF analysis, the effects of wall deterioration and group spacing were evaluated. These analyses found that the weakest element in the tanks is the steel resisting the circumferential (or hoop) forces in the dome ring, a fact verified separately by an independent reviewer. However, the hoop steel has an adequate demand/capacity ratio. Buckling of the dome and the tank walls is not a concern

  10. Tank Waste Remediation System Inactive Miscellaneous Underground Storage Tanks Program Plan

    Gustavson, R.D.

    1995-12-01

    The Program Management Plan (PMP) describes the approach that will be used to manage the Tank Waste Remediation System (TWRS) Inactive Miscellaneous Underground Storage Tank (IMUST) Program. The plan describes management, technical, and administrative control systems that will be used to plan and control the IMUSTs Program performance. The technical data to determine the IMUSTs status for inclusion in the Single Shell Tank Farm Controlled Clean and Stable (CCS) Program. The second is to identify and implement surveillance, characterization, stabilization, and modifications to support CCS prior to final closure

  11. Tank waste source term inventory validation. Volume II. Letter report

    NONE

    1995-04-01

    This document comprises Volume II of the Letter Report entitled Tank Waste Source Term Inventory Validation. This volume contains Appendix C, Radionuclide Tables, and Appendix D, Chemical Analyte Tables. The sample data for selection of 11 radionuclides and 24 chemical analytes were extracted from six separate sample data sets, were arranged in a tabular format and were plotted on scatter plots for all of the 149 single-shell tanks, the 24 double-shell tanks and the four aging waste tanks. The solid and liquid sample data was placed in separate tables and plots. The sample data and plots were compiled from the following data sets: characterization raw sample data, recent core samples, D. Braun data base, Wastren (Van Vleet) data base, TRAC and HTCE inventories.

  12. Tank waste source term inventory validation. Volume 1. Letter report

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1995-01-01

    The sample data for selection of 11 radionuclides and 24 chemical analytes were extracted from six separate sample data sets, were arranged in a tabular format and were plotted on scatter plots for all of the 149 single-shell tanks, the 24 double-shell tanks and the four aging waste tanks. The solid and liquid sample data was placed in separate tables and plots. The sample data and plots were compiled from the following data sets: characterization raw sample data, recent core samples, D. Braun data base, Wastren (Van Vleet) data base, TRAC and HTCE inventories. This document is Volume I of the Letter Report entitled Tank Waste Source Term Inventory Validation

  13. Tank waste source term inventory validation. Volume II. Letter report

    1995-04-01

    This document comprises Volume II of the Letter Report entitled Tank Waste Source Term Inventory Validation. This volume contains Appendix C, Radionuclide Tables, and Appendix D, Chemical Analyte Tables. The sample data for selection of 11 radionuclides and 24 chemical analytes were extracted from six separate sample data sets, were arranged in a tabular format and were plotted on scatter plots for all of the 149 single-shell tanks, the 24 double-shell tanks and the four aging waste tanks. The solid and liquid sample data was placed in separate tables and plots. The sample data and plots were compiled from the following data sets: characterization raw sample data, recent core samples, D. Braun data base, Wastren (Van Vleet) data base, TRAC and HTCE inventories

  14. Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103

    Pool, K.H.; Bean, R.M.

    1994-03-01

    A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices)

  15. Analysis of Organic Samples from the 5-H and 3-F Pump Tanks and Waste Tank 38H

    Swingle, R.F. II

    1999-01-01

    Analyses for organic materials in aqueous and surface floating samples taken from the 5-H Pump Tank and Waste Tank 38H and in vapor samples taken from the 5-H and 3-F Pump Tanks have been completed. The results indicate that the concentration of organic materials is extremely low in all samples. This report documents the development of sampling and analysis techniques for this sampling as well as the results of the analyses of vapor samples pulled from Pump Tanks 5-H and 3-F and liquid samples pulled from Waste Tank 38H and Pump Tank 5-H

  16. Risk assessment methodology for Hanford high-level waste tanks

    Bott, T.F.; Mac Farlane, D.R.; Stack, D.W.; Kindinger, J.

    1992-01-01

    A methodology is presented for applying Probabilistic Safety Assessment techniques to quantification of the health risks posed by the high-level waste (HLW) underground tanks at the Department of Energy's Hanford reservation. This methodology includes hazard screening development of a list of potential accident initiators, systems fault trees development and quantification, definition of source terms for various release categories, and estimation of health consequences from the releases. Both airborne and liquid pathway releases to the environment, arising from aerosol and spill/leak releases from the tanks, are included in the release categories. The proposed methodology is intended to be applied to a representative subset of the total of 177 tanks, thereby providing a baseline risk profile for the HLW tank farm that can be used for setting clean-up/remediation priorities. Some preliminary results are presented for Tank 101-SY

  17. History of waste tank 15, 1959 through 1974

    Davis, T.L.; Tharin, D.W.; Lohr, D.R.

    1978-06-01

    Tank 15 was put into service as a receiver of high heat waste (HW) supernate from leaking tank 16 on October 15, 1960, after which it also became the active receiver for fresh HW. Between June 1964 and November 1972, the supernate was decanted (leaving the sludge) five times to allow the tank to be refilled with HW. Inspections and photographs have been made in the annular space using an optical periscope. In April 1972, periscopic inspection revealed salt accumulation at two arrested leak sites on the primary tank wall. Through December 1974, fifteen leak sites had been discovered. Analytical samples of supernate and vapor have been taken. Wall thicknesses and profiles of tank temperature differences have been obtained. Several tests, primarily concerning general corrosion, have been run. Equipment modifications and various equipment repairs were made. 14 figures

  18. F/H area high level waste tank status report

    Hayes, C.R. Jr.; Wells, M.N.

    1997-03-01

    Section IX.E.3 of the SRS Federal Facility Agreement requires the DOE to submit to EPA and SCDHEC, an annual report on the status of tanks being removed from service. Tanks that are slated for removal from service either do not meet secondary containment standards or have leak sites. The attached document is intended to meet this annual report requirement. An updated status of relevant portions of the Waste Removal Plan and Schedule is also included

  19. History of waste tank 9 , 1955--1974

    Tharin, D.W.; Lohr, D.R.

    1979-01-01

    Tank 9 was placed in service as a receiver for Purex HLW on July 19, 1955. Filling was essentially completed in December 1955, and this original complement of waste remained in the tank until December 1965, when most of the liquid was decanted to allow refilling. In July 1966, the remaining liquid and approximately 15 inches of sludge were removed using 3000 to 3500 psi water introduced through nozzles to mobilize the sludge. The tank was then used as a receiver and cooler for aged HLW solution concentrated by the tank farm evaporator; the resulting crystallized salt, covered with saturated solution, is now stored in this tank. Inspections have been made of the tank interior and annulus by direct observation and with a 40-ft optical periscope. Analytical samples have been taken of the sludge, supernate, vapor, and leaked material in the annulus. Top-to-bottom profiles of radiation and temperature have been obtained in the annulus and tank, respectively, and measurements have been made of roof deflection caused by salt adhering to roof-supported cooling coils. Leaked waste was discovered in the annulus pan in October 1957. During 1958-59, the annulus pan was flushed nine times with water in 2000-gallon batches, jetting the waste and flush water into the primary tank. However, waste leakage into the annulus continued. The maximum liquid depth reached in the annulus was about 12 inches. This was jetted out in 1961., but some leakage continued theeeafter as indicated by roddings. The roddings showed no standing liquid by August 1964, but some liquid may have been present undera salt crust. In March 1972, salt depth in the annulus was measured to be 8 to 10 in., and the bottom 3 in. was quite wet. The salt remains although most of the liquid has been removed

  20. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    Shultz, M.V.

    1999-01-01

    Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis

  1. Light Duty Utility Arm System applications for tank waste remediation

    Carteret, B.A.

    1994-10-01

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy's (DOE's) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE's underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE's environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE's environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design

  2. Cleanout of waste storage tanks at Oak Ridge National Laboratory

    Weeren, H.O.; Lasher, L.C.; McDaniel, E.W.

    1984-01-01

    In 1943, six storage tanks were built at the Clinton Laboratories [later to become Oak Ridge National Laboratory (ORNL)] to contain wastes generated by wartime research and development operations. During the following years, these tanks became an integral part of the ORNL waste system and accumulated approx. 1.5 x 10 6 L (400,000 gal) of sludge containing radioactive wastes. Recently, over a period of approx. 18 months, these tanks were sluiced, the radioactive sludge resuspended, and the resuspended slurry pumped to the ORNL Hydrofracture Facility for underground disposal. In this paper, a summary of the development work is given, and the process design and constraints are described. The operating difficulties encountered and overcome included grinder blade erosion, malfunctioning instruments, pump suction plugging, and slurry settling. About 90% of the settled sludge (containing approx. 715,000 Ci) was removed from the system

  3. Data Quality Objectives for Tank Farms Waste Compatibility Program

    BANNING, D.L.

    1999-01-01

    There are 177 waste storage tanks containing over 210,000 m 3 (55 million gal) of mixed waste at the Hanford Site. The River Protection Project (RPP) has adopted the data quality objective (DQO) process used by the U.S. Environmental Protection Agency (EPA) (EPA 1994a) and implemented by RPP internal procedure (Banning 1999a) to identify the information and data needed to address safety issues. This DQO document is based on several documents that provide the technical basis for inputs and decision/action levels used to develop the decision rules that evaluate the transfer of wastes. A number of these documents are presently in the process of being revised. This document will need to be revised if there are changes to the technical criteria in these supporting documents. This DQO process supports various documents, such as sampling and analysis plans and double-shell tank (DST) waste analysis plans. This document identifies the type, quality, and quantity of data needed to determine whether transfer of supernatant can be performed safely. The requirements in this document are designed to prevent the mixing of incompatible waste as defined in Washington Administrative Code (WAC) 173-303-040. Waste transfers which meet the requirements contained in this document and the Double-Shell Tank Waste Analysis Plan (Mulkey 1998) are considered to be compatible, and prevent the mixing of incompatible waste

  4. Retrieval process development and enhancements waste simulant compositions and defensibility

    Powell, M.R.; Golcar, G.R.; Geeting, J.G.H.

    1997-09-01

    The purpose of this report is to document the physical waste simulant development efforts of the EM-50 Tanks Focus Area at the Hanford Site. Waste simulants are used in the testing and development of waste treatment and handling processes because performing such tests using actual tank waste is hazardous and prohibitively expensive. This document addresses the simulant development work that supports the testing of waste retrieval processes using simulants that mimic certain key physical properties of the tank waste. Development and testing of chemical simulants are described elsewhere. This work was funded through the EM-50 Tanks Focus Area as part of the Retrieval Process Development and Enhancements (RPD ampersand E) Project at the Pacific Northwest National Laboratory (PNNL). The mission of RPD ampersand E is to understand retrieval processes, including emerging and existing processes, gather performance data on those processes, and relate the data to specific tank problems to provide end users with the requisite technical bases to make retrieval and closure decisions. Physical simulants are prepared using relatively nonhazardous and inexpensive materials rather than the chemicals known to be in tank waste. Consequently, only some of the waste properties are matched by the simulant. Deciding which properties need to be matched and which do not requires a detailed knowledge of the physics of the process to be tested using the simulant. Developing this knowledge requires reviews of available literature, consultation with experts, and parametric tests. Once the relevant properties are identified, waste characterization data are reviewed to establish the target ranges for each property. Simulants are then developed that possess the desired ranges of properties

  5. Continuosly Stirred Tank Reactor Parameters That Affect Sludge Batch 6 Simulant Properties

    Newell, J.; Lambert, D.; Stone, M.; Fernandez, A.

    2010-01-01

    The High Level Radioactive Waste (HLW) Sludge in Savannah River Site (SRS) waste tanks was produced over a period of over 60 years by neutralizing the acidic waste produced in the F and H Separations Canyons with sodium hydroxide. The HLW slurries have been stored at free hydroxide concentrations above 1 M to minimize the corrosion of the carbon steel waste tanks. Sodium nitrite is periodically added as a corrosion inhibitor. The resulting waste has been subjected to supernate evaporation to minimize the volume of the stored waste. In addition, some of the waste tanks experienced high temperatures so some of the waste has been at elevated temperatures. Because the waste is radioactive, the waste is transforming through the decay of shorter lived radioactive species and the radiation damage that the decay releases. The goal of the Savannah River National Laboratory (SRNL) simulant development program is to develop a method to produce a sludge simulant that matches both the chemical and physical characteristics of the HLW without the time, temperature profile, chemical or radiation exposure of that of the real waste. Several different approaches have been taken historically toward preparing simulated waste slurries. All of the approaches used in the past dozen years involve some precipitation of the species using similar chemistry to that which formed the radioactive waste solids in the tank farm. All of the approaches add certain chemical species as commercially available insoluble solid compounds. The number of species introduced in this manner, however, has varied widely. All of the simulant preparation approaches make the simulated aqueous phase by adding the appropriate ratios of various sodium salts. The simulant preparation sequence generally starts with an acidic pH and ends up with a caustic pH (typically in the 10-12 range). The current method for making sludge simulant involves the use of a temperature controlled continuously stirred tank reactor (CSTR

  6. Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval

    Yuen, D.A.; Onishi, Y.

    2001-01-01

    In the U.S. Department of Energy (DOE) complex, 100 million gallons of radioactive and chemical wastes from plutonium production are stored in 281 underground storage tanks. Retrieval of the wastes from the tanks is the first step in its ultimate treatment and disposal. Because billions of dollars are being spent on this effort, waste retrieval demands a strong scientific basis for its successful completion. As will be discussed in Section 4.2, complex interactions among waste chemical reactions, rheology, and mixing of solid and liquid tank waste (and possibly with a solvent) will occur in DSTs during the waste retrieval (mixer pump) operations. The ultimate goal of this study was to develop the ability to simulate the complex chemical and rheological changes that occur in the waste during processing for retrieval. This capability would serve as a scientific assessment tool allowing a priori evaluation of the consequences of proposed waste retrieval operations. Hanford tan k waste is a multiphase, multicomponent, high-ionic strength, and highly basic mixture of liquids and solids. Wastes stored in the 4,000-m3 DSTs will be mixed by 300-hp mixer pumps that inject high-speed (18.3 m/s) jets to stir up the sludge and supernatant liquid for retrieval. During waste retrieval operations, complex interactions occur among waste mixing, chemical reactions, and associated rheology. Thus, to determine safe and cost-effective operational parameters for waste retrieval, decisions must rely on new scientific knowledge to account for physical mixing of multiphase flows, chemical reactions, and waste rheology. To satisfy this need, we integrated a computational fluid dynamics code with state-of-the-art equilibrium and kinetic chemical models and non-Newtonian rheology (Onishi (and others) 1999). This development is unique and holds great promise for addressing the complex phenomena of tank waste retrieval. The current model is, however, applicable only to idealized tank waste

  7. Technology Summary Advancing Tank Waste Retrieval And Processing

    Sams, T.L.; Mendoza, R.E.

    2010-01-01

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. This technology overview provides a high-level summary of technologies being investigated, developed, and deployed by WRPS to advance Hanford Site tank waste retrieval and processing. Transformational technologies are needed to complete Hanford tank waste retrieval and treatment by 12/31/2047. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated because it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans, and methods. WRPS and the DOE are developing, testing, and deploying technologies to meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them. DOE's Office of Environmental Management (EM) identifies the environmental management technology needs and the activities necessary to address them. The U.S. Congress then funds these activities through EM or the DOE field offices. Finally, an array of entities that include DOE site prime contractors and

  8. Technical performance characterization of fourier transform profilometry for quantitative waste volume determination under Hanford waste tank conditions - 16281

    Monts, David L.; Jang, Ping-Rey; Long, Zhiling; Norton, Olin P.; Gresham, Lawrence L.; Su, Yi; Lindner, Jeffrey S.

    2009-01-01

    The Hanford Site in western Washington state is currently in the process of an extensive effort to empty and close its radioactive single-shell and double-shell waste storage tanks. Before this can be accomplished, it is necessary to know how much residual material is left in a given waste tank and the chemical makeup of the residue. The Institute for Clean Energy Technology (ICET) at Mississippi State University is currently developing an quantitative in-tank inspection system based on Fourier Transform Profilometry, FTP. FTP is a non-contact, 3-D shape measurement technique. By projecting a fringe pattern onto a target surface and observing its deformation due to surface irregularities from a different view angle, FTP is capable of determining the height (depth) distribution (and hence volume distribution) of the target surface, thus reproducing the profile of the target accurately under a wide variety of conditions. Hence FTP has the potential to be utilized for quantitative determination of residual wastes within Hanford waste tanks. We report the results of a technical feasibility study to document the accuracy and precision of quantitative volume determination using the Fourier transform profilometry technique under simulated Hanford waste tank conditions. We have initiated a technical feasibility assessment of the Fourier transform profilometry (FTP) technique for determining the volume of residual waste in Hanford radioactive waste tanks; preliminary results to date are presented in this paper. We find that we achieve FTP volume determinations with relatively small errors under conditions corresponding to the most challenging within a Hanford waste tank-viewing non-descript targets at a distance of 16.1 m (53 ft) and an angle of 62 deg.. We have determined that we can minimize measurement uncertainty by maximizing the camera-to-projector distance d, using an optical zoom of at least 5x, and ensuring that FTP images are only recorded after instrumental warm

  9. Baseline monitoring and simulated liquid release test report for Tank W-9, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    1997-08-01

    This document provides the Environmental Restoration Program with the baseline dry well conductivity monitoring data and simulated liquid release tests to support the use of Gunite and Associated Tank (GAAT) W-9 as a temporary consolidation tank during waste removal operations. Information provided in this report forms part of the technical basis for criticality safety, systems safety, engineering design and waste management as they apply to the GAAT treatability study and waste removal actions

  10. Hanford low-level tank waste interim performance assessment

    Mann, F.M.

    1997-01-01

    The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and performance early in the disposal system project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives

  11. Solvent extraction of radionuclides from aqueous tank waste

    Bonnesen, P.; Sachleben, R.; Moyer, B.

    1996-01-01

    The purpose of this task is to develop an efficient solvent-extraction and stripping process to remove the fission products 99 Tc, 90 Sr, and 137 Cs from alkaline tank waste, such as those stored at Hanford and Oak Ridge. As such, this task expands on FY 1995's successful development of a solvent-extraction and stripping process for technetium separation from alkaline tank-waste solutions. This process now includes the capability of removing both technetium and strontium simultaneously. In this form, the process has been named SRTALK and will be developed further in this program as a prelude to developing a system capable of removing technetium, strontium, and cesium

  12. Tank farm surveillance and waste status summary report for May 1993

    Hanlon, B.M.

    1993-08-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations

  13. Tank Farm surveillance and waste status summary report for April 1993

    Hanlon, B.M.

    1993-07-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations

  14. Organic carbon in Hanford single-shell tank waste

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-07-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTS) obtained from a review of the laboratory analytical data. This activity was undertaken at the request of Westinghouse Hanford Company (WHC). The objective of this study is to provide a best estimate, including confidence levels, of total organic carbon (TOC) in each of the 149 SSTs at Hanford. The TOC analyte information presented in this report is useful as part of the criteria to identify SSTs for additional measurements or monitoring for the organic safety program. This report is a precursor to an investigation of TOC and moisture in Hanford SSTS, in order to provide best estimates for each together in one report. Measured laboratory data were obtained for 75 of the 149 SSTS. The data represent a thorough investigation of data from 224 tank characterization datasets, including core-sampling and process laboratory data. Liquid and solid phase TOC values were investigated by examining selected tanks with both reported TOC values in solid and liquid phases. Some relationships were noted, but there was no clustering of data or significance between the solid and liquid phases. A methodology was developed for estimating the distribution and levels of TOC in SSTs using a logarithmic scale and an analysis of variance (ANOVA) technique. The methodology grouped tanks according to waste type using the Sort On Radioactive Waste Type (SORWT) grouping method. The SORWT model categorizes Hanford SSTs into groups of tanks expected to exhibit similar characteristics based on major waste types and processing histories. The methodology makes use of laboratory data for the particular tank and information about the SORWT group of which the tank is a member. Recommendations for a simpler tank grouping strategy based on organic transfer records were made

  15. Effect of viscosity on seismic response of waste storage tanks

    Tang, Yu; Uras, R.A.; Chang, Yao-Wen.

    1992-06-01

    The dynamic response of liquid-storage tanks subjected to harmonic excitations and earthquake ground motions has been studied. A rigid tank of negligible mass, rigidly supported at the base having a diameter of 50 ft. and fluid height of 20.4 ft. was used in the computer analysis. The liquid is assumed to have a density of 1.5 g/ml. Viscosity values, μ = 60, 200, 100, and 10,000 cP, were used in the numerical analyses to study the effects of viscosity on sloshing wave height, impulsive and convective pressure on the tank wall, base shear and base moments. Harmonic excitations as well as earthquake ground motions were used as input motions. The harmonic excitations used in the analyses covers a wide range of frequencies, including both the resonant and non-resonant frequencies. Two earthquake motions were used. One matches the Newmark-Hall median response spectrum and is anchored at 0.24 g for a rock site with a damping of 2% and a time duration of 10 s. The other is the 1978 Tabas earthquake which had a peak ZPA of 0.81 g and a time duration of 29 s. A small tank, about 1/15 the size of the typical waste storage tank, was used in the harmonic excitation study to investigate the effect of viscosity on the response of liquid-storage tanks and how the viscosity effect is affected by the size of the storage tank. The results of this study show that for the typical waste storage tank subjected to earthquake motions, the effect of viscosity on sloshing wave height and impulsive and convective pressures is very small and can be neglected. For viscosity effect to become noticeable in the response of the typical waste storage tank, the waste viscosity must be greater than 10,000 cP. This value is far greater than the estimated viscosity value of the high level wastes, which may range from 60 to 200 cP for some tanks

  16. Application of value of information of tank waste characterization: A new paradigm for defining tank waste characterization requirements

    Fassbender, L.L.; Brewster, M.E.; Brothers, A.J.

    1996-11-01

    This report presents the rationale for adopting a recommended characterization strategy that uses a risk-based decision-making framework for managing the Tank Waste Characterization program at Hanford. The risk-management/value-of-information (VOI) strategy that is illustrated explicitly links each information-gathering activity to its cost and provides a mechanism to ensure that characterization funds are spent where they can produce the largest reduction in risk. The approach was developed by tailoring well-known decision analysis techniques to specific tank waste characterization applications. This report illustrates how VOI calculations are performed and demonstrates that the VOI approach can definitely be used for real Tank Waste Remediation System (TWRS) characterization problems

  17. Application of value of information of tank waste characterization: A new paradigm for defining tank waste characterization requirements

    Fassbender, L.L.; Brewster, M.E.; Brothers, A.J. [and others

    1996-11-01

    This report presents the rationale for adopting a recommended characterization strategy that uses a risk-based decision-making framework for managing the Tank Waste Characterization program at Hanford. The risk-management/value-of-information (VOI) strategy that is illustrated explicitly links each information-gathering activity to its cost and provides a mechanism to ensure that characterization funds are spent where they can produce the largest reduction in risk. The approach was developed by tailoring well-known decision analysis techniques to specific tank waste characterization applications. This report illustrates how VOI calculations are performed and demonstrates that the VOI approach can definitely be used for real Tank Waste Remediation System (TWRS) characterization problems.

  18. Potential radiation damage: Storage tanks for liquid radioactive waste

    Caskey, G.R. Jr.

    1992-01-01

    High level waste at SRS is stored in carbon steel tanks constructed during the period 1951 to 1981. This waste contains radionuclides that decay by alpha, beta, or gamma emission or are spontaneous neutronsources. Thus, a low intensity radiation field is generated that is capable of causing displacement damage to the carbon steel. The potential for degradation of mechanical properties was evaluated by comparing the estimated displacement damage with published data relating changes in Charpy V-notch (CVN) impact energy to neutron exposure. Experimental radiation data was available for three of the four grades of carbonsteel from which the tanks were constructed and is applicable to all four steels. Estimates of displacement damage arising from gamma and neutron radiation have been made based on the radionuclide contents for high level waste that are cited in the Safety Analysis Report (SAR) for the Liquid Waste Handling Facilities in the 200-Area. Alpha and beta emissions do not penetrate carbon steel to a sufficient depth to affect the bulk properties of the tank walls but may aggravate corrosion processes. The damage estimates take into account the source of the waste (F- or H-Area), the several types of tank service, and assume wateras an attenuating medium. Estimates of displacement damage are conservative because they are based on the highest levels of radionuclide contents reported in the SAR and continuous replenishment of the radionuclides

  19. Tank Waste Remediation System decisions and risk assessment

    Johnson, M.E.

    1994-09-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize the highly radioactive Hanford Site tank wastes and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost effective manner. Additionally, the TWRS conducts, as part of this mission, resolution of safety issues associated with the wastes within the 177 underground radioactive waste tanks. Systems engineering principles are being applied to determine the functions and establish requirements necessary for accomplishing the TWRS mission (DOE 1994 draft). This systematic evaluation of the TWRS program has identified key decisions that must be executed to establish mission scope, determine requirements, or select a technical solution for accomplishing identified functions and requirements. Key decisions identified through the systematic evaluation of the TWRS mission are presented in this document. Potential alternative solutions to each decision are discussed. After-discussion and evaluation of each decision with effected stakeholder groups, the US Department of Energy (DOE) will select a solution from the identified alternatives for implementation. In order to proceed with the development and execution of the tank waste remediation program, the DOE has adopted a planning basis for several of these decisions, until a formal basis is established. The planning bases adopted by the DOE is continuing to be discussed with stakeholder groups to establish consensus for proceeding with proposed actions. Technical and programmatic risks associated with the planning basis adopted by the DOE are discussed

  20. Soil load above Hanford waste storage tanks (2 volumes)

    Pianka, E.W.

    1995-01-01

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs

  1. Process chemistry for the pretreatment of Hanford tank wastes

    Lumetta, G.J.; Swanson, J.L.; Barker, S.A.

    1992-08-01

    Current guidelines for disposing radioactive wastes stored in underground tanks at the US Department of Energy's Hanford Site call for the vitrification of high-level waste in borosilicate glass and disposal of the glass canisters in a deep geologic repository. Low-level waste is to be cast in grout and disposed of on site in shallow burial vaults. Because of the high cost of vitrification and geologic disposal, methods are currently being developed to minimize the volume of high-level waste requiring disposal. Two approaches are being considered for pretreating radioactive tank sludges: (1) leaching of selected components from the sludge and (2) acid dissolution of the sludge followed by separation of key radionuclides. The leaching approach offers the advantage of simplicity, but the acid dissolution/radionuclide extraction approach has the potential to produce the least number of glass canisters. Four critical components (Cr, P, S, and Al) were leached from an actual Hanford tank waste-Plutonium Finishing Plant sludge. The Al, P, and S were removed from the sludge by digestion of the sludge with 0.1 M NaOH at 100 degrees C. The Cr was leached by treating the sludge with alkaline KMnO 4 at 100 degrees C. Removing these four components from the sludge will dramatically lower the number of glass canisters required to dispose of this waste. The transuranic extraction (TRUEX) solvent extraction process has been demonstrated at a bench scale using an actual Hanford tank waste. The process, which involves extraction of the transuranic elements with octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), separated 99.9% of the transuranic elements from the bulk components of the waste. Several problems associated with the TRUEX processing of this waste have been addressed and solved

  2. TANK WASTE RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    DODD, R.A.

    2006-01-01

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the US Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60% of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring the waste to the DST system since 1997 as part of the interim stabilization program. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. This paper presents lessons learned from retrieval of tank waste at the Hanford Site and discusses how this information is used to optimize retrieval system efficiency, improve overall cost effectiveness of retrieval operations, and ensure that HFFACO requirements are met

  3. ENGINEERING SPECIALTY ASSESSMENT OF TANK WASTE COMPATIBILITY REPORTING

    KNIGHT, M.A.

    2003-01-01

    This Engineering Specialty Assessment was conducted to review the Tank Farm Waste Transfer Compatibility Program to assess whether the program meets the needs of accelerated retrieval and closure and waste feed delivery and to identify areas and methods for streamlining the program. The assessment was conducted in June 2003 and resulted in two findings and thirteen observations. The assessment results indicate that significant opportunities exist for streamlining the program by reducing the number of criteria requiring evaluation from 21 to 11, with only six of the criteria requiring evaluation for the majority of transfers. The assessment identified areas where existing criteria require strengthening to ensure that the risks of undesirable solids precipitation, from either waste mixing or waste transfer, are minimized. The assessment further identified opportunities for using existing engineering tools to simplify the calculations involved with preparation of waste compatibility assessments. The need to ensure that a revision to the waste compatibility program is prepared to align the program criteria with those that will be implemented with the DSA approval was also identified. Finally, the assessment identified that corrective actions are required to implement a tank-by-tank PCB inventory within the Best Basis Inventory and to ensure that sample data from external waste generators is entered into the TWINS database

  4. Prevention of stress corrosion cracking in nuclear waste storage tanks

    Ondrejcin, R.S.

    1983-01-01

    At the Savannah River Plant, stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste is prevented by stress relief and specification of limits on waste composition and temperature. Actual cases of cracking have occurred in the primary steel shell of tanks designed and built before 1960 and were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also, as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh wastes, concentrations of the inhibitor ions are maintained within specific ranges to protect against nitrate cracking. The concentration and temperature range limits to prevent cracking were determined by a series of statistically designed experiments

  5. Criticality safety of high-level tank waste

    Rogers, C.A.

    1995-01-01

    Radioactive waste containing low concentrations of fissile isotopes is stored in underground storage tanks on the Hanford Site in Washington State. The goal of criticality safety is to ensure that this waste remains subcritical into the indefinite future without supervision. A large ratio of solids to plutonium provides an effective way of ensuring a low plutonium concentration. Since the first waste discharge, a program of audits and appraisals has ensured that operations are conducted according to limits and controls applied to them. In addition, a program of surveillance and characterization maintains watch over waste after discharge

  6. Draft Environmental Impact Statement for the tank waste remediation system. Volume 4

    1996-04-01

    This appendix describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS)

  7. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1987-01-01

    At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assess the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition

  8. Organic tanks safety program waste aging studies. Final report, Revision 1

    Camaioni, D.M.; Samuels, W.D.; Linehan, J.C.

    1998-09-01

    Uranium and plutonium production at the Hanford Site produced large quantities of radioactive byproducts and contaminated process chemicals that are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of saltcakes, metal oxide sludges, and aqueous brine solutions. Tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes might be at risk for fuel-nitrate combustion accidents. This project started in fiscal year 1993 to provide information on the chemical fate of stored organic wastes. While historical records had identified the organic compounds originally purchased and potentially present in wastes, aging experiments were needed to identify the probable degradation products and evaluate the current hazard. The determination of the rates and pathways of degradation have facilitated prediction of how the hazard changes with time and altered storage conditions. Also, the work with aged simulated waste contributed to the development of analytical methods for characterizing actual wastes. Finally, the results for simulants provide a baseline for comparing and interpreting tank characterization data

  9. Organic tanks safety program waste aging studies. Final report, Revision 1

    Camaioni, D.M.; Samuels, W.D.; Linehan, J.C. [and others

    1998-09-01

    Uranium and plutonium production at the Hanford Site produced large quantities of radioactive byproducts and contaminated process chemicals that are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of saltcakes, metal oxide sludges, and aqueous brine solutions. Tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes might be at risk for fuel-nitrate combustion accidents. This project started in fiscal year 1993 to provide information on the chemical fate of stored organic wastes. While historical records had identified the organic compounds originally purchased and potentially present in wastes, aging experiments were needed to identify the probable degradation products and evaluate the current hazard. The determination of the rates and pathways of degradation have facilitated prediction of how the hazard changes with time and altered storage conditions. Also, the work with aged simulated waste contributed to the development of analytical methods for characterizing actual wastes. Finally, the results for simulants provide a baseline for comparing and interpreting tank characterization data.

  10. In-situ nitrite analysis in high level waste tanks

    O'Rourke, P.E.; Prather, W.S.; Livingston, R.R.

    1992-01-01

    The Savannah River Site produces special nuclear materials used in the defense of the United States. Most of the processes at SRS are primarily chemical separations and purifications. In-situ chemical analyses help improve the safety, efficiency and quality of these operations. One area where in situ fiberoptic spectroscopy can have a great impact is the management of high level radioactive waste. High level radioactive waste at SRS is stored in more than 50 large waste tanks. The waste exists as a slurry of nitrate salts and metal hydroxides at pH's higher than 10. Sodium Nitrite is added to the tanks as a corrosion inhibitor. In-situ fiberoptic probes are being developed to measure the nitrate, nitrite and hydroxide concentrations in both liquid and solid fractions. Nitrite levels can be measured between 0.01M and 1M in a 1mm pathlength optical cell

  11. Colloidal agglomerates in tank sludge: Impact on waste processing

    Bunker, B.C.; Martin, J.E.

    1998-01-01

    'Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control of agglomeration phenomena. Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control

  12. Radioactive Tank Waste Remediation Focus Area. Technology summary

    1995-06-01

    In February 1991, DOE's Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina

  13. Using Photogrammetry to Estimate Tank Waste Volumes from Video

    Field, Jim G. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2013-03-27

    Washington River Protection Solutions (WRPS) contracted with HiLine Engineering & Fabrication, Inc. to assess the accuracy of photogrammetry tools as compared to video Camera/CAD Modeling System (CCMS) estimates. This test report documents the results of using photogrammetry to estimate the volume of waste in tank 241-C-I04 from post-retrieval videos and results using photogrammetry to estimate the volume of waste piles in the CCMS test video.

  14. Using Photogrammetry to Estimate Tank Waste Volumes from Video

    Field, Jim G.

    2013-01-01

    Washington River Protection Solutions (WRPS) contracted with HiLine Engineering and Fabrication, Inc. to assess the accuracy of photogrammetry tools as compared to video Camera/CAD Modeling System (CCMS) estimates. This test report documents the results of using photogrammetry to estimate the volume of waste in tank 241-C-I04 from post-retrieval videos and results using photogrammetry to estimate the volume of waste piles in the CCMS test video

  15. Evaluation of Technologies for Retrieval of Waste from Leaking Tanks

    Bamberger, Judith A.; Hatchell, Brian K.; Lewis, Benjamin E.; Randolph, John D.; Killough, Stephen M.

    2000-01-01

    The US Department of Energy Environmental and Waste Management Tanks Focus Area selected as a strategic initiative the need to identify and develop technologies for remediation of tanks that are known or are suspected to leak. This investigation identified and evaluated technical options for single-shell tank waste retrieval applicable to retrieve waste from potentially leaking tanks. Technologies that minimize leakage use minimal water, and dry retrieval technologies were evaluated. Safety, cost, authorization basis, and schedule risks were identified for each technology to provide River Protection Program with information to evaluate technical and programmatic risk. A workshop was held to identify technology needs and solutions. These approaches grouped into five categories: those related to waste dislodging, waste conveyance, both waste dislodging and conveyance, the deployment platform, and technologies related to leak detection, monitoring, and mitigation. Based on the ranking, six technologies were selected as potential candidates for further evaluation. These items were prioritized into four technologies to recommend for further evaluation (1) Air assisted TORE(R). The TORE(R) produces a processing vortex core with the ability to convey solids at pre-determined slurry concentrations over great distances. The dry TORE(R) concept uses air to develop the vortex to fluidize dry solids. The TORE(R)the solids in a slurry transport line. (2) Sonication for waste dislodging utilizes ultrasonic energy to fracture and dislodge hard waste types such as salt cake and sludge. (3) Novel long-reach manipulators concept is to investigate novel cost effective approaches for long-reach manipulator technology. (4) Next generation crawler technology envisions a non-umbilical dislodger, possibly radio controlled and powered remotely to provide a deployment platform not affected by path, or the need to retrace steps

  16. Minutes of the Tank Waste Science Panel meeting, November 11--13, 1991. Hanford Tank Safety Project

    Strachan, D.M. [comp.

    1992-04-01

    The sixth meeting of the Tank Waste Science Panel was held November 11--13, 1991, in Pasco and Richland, Washington. Participating scientists presented the results of recent work on various aspects of issues relating to the generation and release of gases from Tank 241-SY-101 and the presence of ferrocyanide in other tanks at Hanford. Results are discussed.

  17. Computer modeling of jet mixing in INEL waste tanks

    Meyer, P.A.

    1994-01-01

    The objective of this study is to examine the feasibility of using submerged jet mixing pumps to mobilize and suspend settled sludge materials in INEL High Level Radioactive Waste Tanks. Scenarios include removing the heel (a shallow liquid and sludge layer remaining after tank emptying processes) and mobilizing and suspending solids in full or partially full tanks. The approach used was to (1) briefly review jet mixing theory, (2) review erosion literature in order to identify and estimate important sludge characterization parameters (3) perform computer modeling of submerged liquid mixing jets in INEL tank geometries, (4) develop analytical models from which pump operating conditions and mixing times can be estimated, and (5) analyze model results to determine overall feasibility of using jet mixing pumps and make design recommendations

  18. History of waste tank 12, 1956 through 1974

    Davis, T.L.; Tharin, D.W.; Lohr, D.R.

    1978-09-01

    Tank 12 was placed in service as a receiver for high heat waste (HW) in September 1956 and continued in this service through 1974. From August 1963 through December 1974, the supernate was decanted (leaving the sludge) five times to allow the tank to be refilled with HW. Inspections have been made and photographs taken in the annular space with an optical periscope and a lead-shielded camera. A salt-encrusted leak site was discovered in May 1974. No other leak sites have been found. Analytical samples have been taken of sludge, supernate, and vapor. Primary tank wall thickness, heat transfer coefficient measurements, and profiles of tank temperature differences have been obtained. Several modifications to equipment and various equipment repairs were made

  19. PILOT-SCALE TESTING OF THE SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A SLUDGE TANK

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.; Herman, D.

    2011-08-02

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Following strontium, actinide, and cesium removal, the concentrated solids will be transported to a sludge tank (i.e., monosodium titanate (MST)/sludge solids to Tank 42H or Tank 51H and crystalline silicotitanate (CST) to Tank 40H) for eventual transfer to the Defense Waste Processing Facility (DWPF). Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for mixing MST, CST, and simulated sludge. The purpose of this pilot scale testing is to determine the pump requirements for mixing MST and CST with sludge in a sludge tank and to determine whether segregation of particles occurs during settling. Tank 40H and Tank 51H have four Quad Volute pumps; Tank 42H has four standard pumps. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 40H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 40H. The pump locations correspond to the current locations in Tank 40H (Risers B2, H, B6, and G). The pumps are pilot-scale Quad Volute pumps. Additional settling tests were conducted in a 30 foot tall, 4 inch inner diameter clear column to investigate segregation of MST, CST, and simulated sludge particles during settling.

  20. DOUBLE SHELL TANK INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    WASHENFELDER DJ

    2008-01-01

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  1. Heat pipe cooling system for underground, radioactive waste storage tanks

    Cooper, K.C.; Prenger, F.C.

    1980-02-01

    An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70 0 F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle

  2. Application of Epoxy Based Coating Instacote on Waste Tank Tops

    Pike, J.A.

    1998-01-01

    This evaluation examines the compatibility of coating Instacote with existing High-Level Waste facilities and safety practices. No significant incompatibilities are identified. The following actions need to be completed as indicated when applying Instacote on waste tank tops:(1) Prior to application in ITP facilities, the final product should be tested for chemical resistance to sodium tetraphenylborate solutions or sodium titanate slurries.(2) Any waste contaminated with Part A or B that can not be removed by the vendor such as for radiological contamination, HLW must hold the waste until HLW completes a formal assessment of the waste, disposal criteria, and impact.(3) Prior to the start of any application of the coating, each riser needs to be evaluated for masking and masking applied if needed.(4) At the conclusion of an application actual total weight of material applied to a waste tank needs to documented and sent to the tank top loading files for reference purposes.(5) Verify that the final product contains less than 250 ppm chloride

  3. Tank Farm Waste Transfer Compatibility Program

    FOWLER, K.D.

    2001-01-01

    The compatibility program described in this document formalizes the process for determining waste compatibility. The primary goal of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures during future operations. The process described involves characterizing waste, comparing characteristics with criteria, resolving potential incompatibilities and documenting the process

  4. Tank Farm Waste Transfer Compatibility Program

    FOWLER, K.D.

    2000-01-01

    The compatibility program described in this document formalizes the process for determining waste compatibility. The primary goal of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures during future operations. The process described involves characterizing waste, comparing characteristics with criteria, resolving potential incompatibilities and documenting the process

  5. Waste Tank Vapor Characterization Project: Annual status report for FY 1995

    Ligotke, M.W.; Fruchter, J.S.; Huckaby, J.L.; Birn, M.B.; McVeety, B.D.; Evans, J.C. Jr.; Pool, K.H.; Silvers, K.L.; Goheen, S.C.

    1995-11-01

    This report compiles information collected during the Fiscal Year 1995 pertaining to the waste tank vapor characterization project. Information covers the following topics: project management; organic sampling and analysis; inorganic sampling and analysis; waste tank vapor data reports; and the waste tanks vapor database

  6. First generation long-reach manipulator for retrieval of waste from Hanford single-shell tanks

    Gibbons, P.W.; McDaniel, L.B.

    1994-10-01

    The US Department of Energy, Richland Operations Office, has established the Tank Waste Remediation System to resolve environmental and safety issues related to underground waste-storage tanks at the Hanford Site. The Tank Waste Remediation System has identified the use of an advanced-technology, long-reach manipulator system as a low-water-addition retrieval alternative to past-practice sluicing

  7. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  8. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  9. 241-TX acoustic monitoring 114TX tank waste

    Hurley, J.V.

    1995-01-01

    This test will involve raising and lowering a sound transmitter in one low and receiver hydrophones in another low at 0.5 ft. intervals over a 12 ft. depth, which is the depth of the waste. The soundings are recorded by equipment outside the tank farm fence

  10. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    Wyrwas, R. B.

    2016-01-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  11. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  12. FY 1993 Ferrocyanide Tank Safety Project: Effects of Aging on Ferrocyanide Wastes test plan for the remainder of FY 1993

    Lilga, M.A.; Schiefelbein, G.F.

    1993-06-01

    Researchers in the Hanford Ferrocyanide Task Team are studying safety issues associated with ferrocyanide precipitates in single shell waste storage tanks (SST). Ferrocyanide is a stable complex of ferrous, ion and cyanide ion that is considered nontoxic because it does not dissociate readily in aqueous solutions. However, in the laboratory at temperatures in excess of 180 degrees C and in the presence of oxidizers such as nitrates and nitrites, dry ferrocyanide and ferrocyanide waste stimulants can be made to react exothermically. The Ferrocyanide Safety Project at the Pacific Northwest Laboratory (PNL) is part of the Waste Tank Safety Program at Westinghouse Hanford Company (WHC). The purpose of the WHC program is to (1) maintain the ferrocyanide tanks with minimal risk of an accident, (2) select one or more strategies to assure safe storage, and (3) close out the unreviewed safety question (USQ). Tank ferrocyanide wastes were exposed to highly alkaline wastes from subsequent processing operations. Chemical reactions with caustic may have changed the ferrocyanide materials during 40 years of storage in the SSTs. Research in the open-quotes Effects of Aging on Ferrocyanide Wastesclose quotes task is targeted at studying aging of ferrocyanide tank simulants and other ferrocyanide materials to obtain a better understanding of how tank materials may have changed over the years. The research objective in this project is to determine the solubility and hydrolysis characteristics of simulated ferrocyanide tank wastes in alkaline media. The behavior of ferrocyanide simulant wastes is being determined by performing chemical reactions under conditions that might mimic the potential ranges in SST environments. Experiments are conducted at high pH, at high ionic strength, and in the presence of gamma radiation. Verification of simulant study findings by comparison with results with actual waste will also be required

  13. Geochemical evolution of highly alkaline and saline tank waste plumes during seepage through vadose zone sediments

    Wan, Jiamin; Tokunaga, Tetsu K.; Larsen, Joern T.; Serne, R. JEFFREY

    2004-01-01

    Leakage of highly saline and alkaline radioactive waste from storage tanks into underlying sediments is a serious environmental problem at the Hanford Site in Washington State. This study focuses on geochemical evolution of tank waste plumes resulting from interactions between the waste solution and sediment. A synthetic tank waste solution was infused into unsaturated Hanford sediment columns (0.2, 0.6, and 2 m) maintained at 70C to simulate the field contamination process. Spatially and temporally resolved geochemical profiles of the waste plume were obtained. Thorough OH neutralization (from an initial pH 14 down to 6.3) was observed. Three broad zones of pore solutions were identified to categorize the dominant geochemical reactions: the silicate dissolution zone (pH > 10), pH-neutralized zone (pH 10 to 6.5), and displaced native sediment pore water (pH 6.5 to 8). Elevated concentrations of Si, Fe, and K in plume fluids and their depleted concentrations in plume sediments reflected dissolution of primary minerals within the silicate dissolution zone. The very high Na concentrations in the waste solution resulted in rapid and complete cation exchange, reflected in high concentrations of Ca and Mg at the plume front. The plume-sediment profiles also showed deposition of hydrated solids and carbonates. Fair correspondence was obtained between these results and analyses of field borehole samples from a waste plume at the Hanford Site. Results of this study provide a well-defined framework for understanding waste plumes in the more complex field setting and for understanding geochemical factors controlling transport of contaminant species carried in waste solutions that leaked from single-shell storage tanks in the past

  14. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Actual Waste Testing with SRS Tank 5F Sludge

    King, William D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, Michael S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had been pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.

  15. Screening for organic solvents in Hanford waste tanks using organic vapor concentrations

    Huckaby, J.L.; Sklarew, D.S.

    1997-09-01

    The potential ignition of organic liquids stored in the Hanford Site high-level radioactive waste tanks has been identified as a safety issue because expanding gases could potentially affect tank dome integrity. Organic liquid waste has been found in some of the waste tanks, but most are thought to contain only trace amounts. Due to the inhomogeneity of the waste, direct sampling of the tank waste to locate organic liquids may not conclusively demonstrate that a given tank is free of risk. However, organic vapors present above the organic liquid waste can be detected with a high degree of confidence and can be used to identify problem tanks. This report presents the results of a screening test that has been applied to 82 passively ventilated high-level radioactive waste tanks at the Hanford Site to identify those that might contain a significant amount of organic liquid waste. It includes seven tanks not addressed in the previous version of this report, Screening for Organic Solvents in Hanford Waste Tanks Using Total Non-Methane Organic Compound Vapor Concentrations. The screening test is based on a simple model of the tank headspace that estimates the effective surface area of semivolatile organic liquid waste in a tank. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Thirteen tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Most of the tanks identified as containing potentially significant quantities of organic liquid waste are in the 241-BY and 241-C tank farms, which agrees qualitatively with the fact that these tank farms received the majority of the PUREX process organic wash waste and waste organic liquids

  16. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    Harp, Benton; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations

  17. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-09-25

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The

  18. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-01-01

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The

  19. Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313

    Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L. [Savannah River Nuclear Solutions, Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities

  20. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    BARKER, S.A.

    2006-07-27

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  1. 3-D Mapping Technologies For High Level Waste Tanks

    Marzolf, A.; Folsom, M.

    2010-01-01

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame

  2. The Retrieval Knowledge Center Evaluation Of Low Tank Level Mixing Technologies For DOE High Level Waste Tank Retrieval 10516

    Fellinger, A.

    2009-01-01

    The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation and Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation and Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same

  3. FERRATE TREATMENT FOR REMOVING CHROMIUM FROM HIGH-LEVEL RADIOACTIVE TANK WASTE

    Sylvester, Paul; Rutherford, Andy; Gonzalez-Martin, Anuncia; Kim, J.; Rapko, Brian M.; Lumetta, Gregg J.

    2000-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(III) molar ratio, but the chromium removal tends to level out for Fe(VI)/Cr(III) greater than 10. Increasing temperature leads to better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be handled as low-activity waste

  4. Laboratory testing of ozone oxidation of Hanford Site waste from Tank 241-SY-101

    Delegard, C.H.; Stubbs, A.M.; Bolling, S.D.

    1993-01-01

    Ozone was investigated as a reagent to oxidize and destroy organic species present in simulated and genuine waste from Hanford Site Tank 241-SY-101 (Tank 101-SY). Two high-shear mixing apparatus were tested to perform the gas-to-solution mass transfer necessary to achieve efficient use of the ozone reagent. Oxidations of nitrite (to form nitrate) and organic species were observed. The organics oxidized to form carbonate and oxalate as well as nitrate and nitrogen gas from nitrogen associated with the organic. oxidations of metal species also were observed directly or inferred by solubilities. The chemical reaction stoichiometries were consistent with reduction of one oxygen atom per ozone molecule. Acetate, oxalate, and formate were found to comprise about 40% of the genuine waste's total organic carbon (TOC) concentration. Ozonation was found to be chemically feasible for destroying organic species (except oxalate) present in the wastes in Tank 101-SY. The simulated waste formulation used in these studies credibly modelled the ozonation behavior of the genuine waste

  5. Ferrate treatment for removing chromium from high-level radioactive tank waste.

    Sylvester, P; Rutherford, L A; Gonzalez-Martin, A; Kim, J; Rapko, B M; Lumetta, G J

    2001-01-01

    A method has been developed for removing chromium from alkaline high-level radioactive tank waste. Removing chromium from these wastes is critical in reducing the volume of waste requiring expensive immobilization and deep geologic disposition. The method developed is based on the oxidation of insoluble chromium(III) compounds to soluble chromate using ferrate. This method could be generally applicable to removing chromium from chromium-contaminated solids, when coupled with a subsequent reduction of the separated chromate back to chromium(III). The tests conducted with a simulated Hanford tank sludge indicate that the chromium removal with ferrate is more efficient at 5 M NaOH than at 3 M NaOH. Chromium removal increases with increasing Fe(VI)/Cr(II) molar ratio, but the chromium removal tends to level out for Fe(VI)/ Cr(III) greaterthan 10. Increasingtemperature leadsto better chromium removal, but higher temperatures also led to more rapid ferrate decomposition. Tests with radioactive Hanford tank waste generally confirmed the simulant results. In all cases examined, ferrate enhanced the chromium removal, with a typical removal of around 60-70% of the total chromium present in the washed sludge solids. The ferrate leachate solutions did not contain significant concentrations of transuranic elements, so these solutions could be disposed as low-activity waste.

  6. Alkaline-side extraction of technetium from tank waste using crown ethers and other extractants

    Bonnesen, P.V.; Moyer, B.A.; Presley, D.J.; Armstrong, V.S.; Haverlock, T.J.; Counce, R.M.; Sachleben, R.A.

    1996-06-01

    The chemical development of a new crown-ether-based solvent-extraction process for the separation of (Tc) from alkaline tank-waste supernate is ready for counter-current testing. The process addresses a priority need in the proposed cleanup of Hanford and other tank wastes. This need has arisen from concerns due to the volatility of Tc during vitrification, as well as 99 Tc's long half-life and environmental mobility. The new process offers several key advantages that direct treatability--no adjustment of the waste composition is needed; economical stripping with water; high efficiency--few stages needed; non-RCRA chemicals--no generation of hazardous or mixed wastes; co-extraction of 90 Sr; and optional concentration on a resin. A key concept advanced in this work entails the use of tandem techniques: solvent extraction offers high selectivity, while a subsequent column sorption process on the aqueous stripping solution serves to greatly concentrate the Tc. Optionally, the stripping solution can be evaporated to a small volume. Batch tests of the solvent-extraction and stripping components of the process have been conducted on actual melton Valley Storage Tank (MVST) waste as well as simulants of MVST and Hanford waste. The tandem process was demonstrated on MVST waste simulants using the three solvents that were selected the final candidates for the process. The solvents are 0.04 M bis-4,4'(5')[(tert-butyl)cyclohexano]-18-crown-6 (abbreviated di-t-BuCH18C6) in a 1:1 vol/vol blend of tributyl phosphate and Isopar reg-sign M (an isoparaffinic kerosene); 0.02 M di-t-BuCH18C6 in 2:1 vol/vol TBP/Isopar M and pure TBP. The process is now ready for counter-current testing on actual Hanford tank supernates

  7. Preventing Buoyant Displacement Gas Release Events in Hanford Double-Shell Waste Tanks

    Meyer, Perry A.; Stewart, Charles W.

    2001-01-01

    This report summarizes the predictive methods used to ensure that waste transfer operations in Hanford waste tanks do not create waste configurations that lead to unsafe gas release events. The gas release behavior of the waste in existing double-shell tanks has been well characterized, and the flammable gas safety issues associated with safe storage of waste in the current configuration are being formally resolved. However, waste is also being transferred between double-shell tanks and from single-shell tanks into double-shell tanks by saltwell pumping and sluicing that create new wastes and waste configurations that have not been studied as well. Additionally, planning is underway for various waste transfer scenarios to support waste feed delivery to the proposed vitrification plant. It is critical that such waste transfers do not create waste conditions with the potential for dangerous gas release events.

  8. Aluminum Removal And Sodium Hydroxide Regeneration From Hanford Tank Waste By Lithium Hydrotalcite Precipitation Summary Of Prior Lab-Scale Testing

    Sams, T.L.; Guillot, S.

    2011-01-01

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  9. Evaluation of pressure transducers to measure surface level in the waste storage tanks

    Peters, T.J.; Colson, J.B.

    1994-06-01

    This report describes the results of tests conducted at the Pacific Northwest Laboratory (PNL) to determine if pressure transducers can be used to measure the surface level in the waste tanks. A survey was first conducted to evaluate which, if any, commercially available pressure transducers were available that could meet the requirements for use in the waste tanks. More than 35 companies were contacted to determine if they manufactured a pressure transducer that could be used in the 101-SY waste tank. The three basic requirements for a pressure transducer for this application were that they were radiation-hardened, could withstand a caustic environment, and were certified to be intrinsically safe. No manufacturer was able to meet all three of these requirements with a commercially available product. Seven companies were able to meet the requirements for being radiation-hardened and being able to withstand the caustic environment. However, only two of the nine companies were willing to supply a pressure transducer for laboratory testing. The two pressure transducers that were tested in this program were the VEGA D36-38 from HiTech Technologies, Inc., and the KP-1911-A from Kaman Instrumentation Corporation. Pressure transducers operate on the principle that the pressure at the location of a sensor increases directly with the depth of the liquid above it. A liquid is required in order for these devices to operate. For these tests, water was first used to determine the ideal operation of the devices, then the devices were placed in a 101-SY waste tank simulant. The simulant had a specific gravity of 1.96 and had the consistency similar to the convective layer in the 101-SY waste tank. In order to determine the surface level with pressure transducers, the density of the material needs to be known

  10. Hanford immobilized low-activity tank waste performance assessment

    Mann, F.M.

    1998-01-01

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  11. Hanford immobilized low-activity tank waste performance assessment

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  12. Unit cell modeling in support of interim performance assessment for low level tank waste disposal

    Kline, N.W.

    1996-01-01

    A unit cell model is used to simulate the base analysis case and related sensitivity cases for the interim performance assessment of low level tank waste disposal. Simulation case results are summarized in terms of fractional contaminant release rates to the vadose zone and to the water table at the unconfined aquifer. Results suggest that the crushed glass water conditioning layer at the top of the facility and the chemical retardation pad at the bottom of the facility can be important components of the facility. Results also suggest that the release rates to the water table are dominated by the release rate from the waste form

  13. A risk management approach to double-shell tank waste volume versus storage capacity

    Coles, G.A.; Thurkow, T.J.; Fritz, R.L.; Nuhlestein, L.O.; Allen, M.R.; Stuart, R.J.

    1996-01-01

    A risk-based assessment of the overall waste volume versus double-shell tank storage capacity was conducted to develop fallback positions for projections where the waste volume was at a high risk of exceeding capacity. This study was initiated to provide that assessment. A working simulation model was the primary deliverable of this study. The model validates the approach and demonstrates that simulation analysis can provide a method of tracking uncertainties in available data, assessing probabilities, and serves as a tool to be used by management to determine the consequences of various off-normal occurrences

  14. A risk management approach to double-shell tank waste volume versus storage capacity

    Coles, G.A. [Westinghouse Hanford Co., Richland, WA (United States); Thurkow, T.J.; Fritz, R.L.; Nuhlestein, L.O.; Allen, M.R.; Stuart, R.J. [ARES Corp. (United States)

    1996-01-01

    A risk-based assessment of the overall waste volume versus double-shell tank storage capacity was conducted to develop fallback positions for projections where the waste volume was at a high risk of exceeding capacity. This study was initiated to provide that assessment. A working simulation model was the primary deliverable of this study. The model validates the approach and demonstrates that simulation analysis can provide a method of tracking uncertainties in available data, assessing probabilities, and serves as a tool to be used by management to determine the consequences of various off-normal occurrences.

  15. Oxidative Stability of Tc(I) Tricarbonyl Species Relevant to the Hanford Tank Waste

    Chatterjee, Sayandev [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hall, Gabriel B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walter, Eric D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washton, Nancy M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-17

    Technetium (Tc), which exists predominately in the liquid supernatant and salt cake fractions of the nuclear tank waste stored at the U.S. DOE Hanford Site, is one of the most difficult contaminants to dispose of and/or remediate. In the strongly alkaline environments prevalent in the tank waste, its dominant chemical form is pertechnetate (TcO4-, oxidation state +7). However, based on experimentation to-date, a significant fraction of the soluble Tc cannot be effectively separated from the wastes and may be present as a non-pertechnetate species. The presence of a non pertechnetate species significantly complicates disposition of low-activity waste (LAW), and the development of methods to either convert them to pertechnetate or to separate the non-pertechnetate species directly is needed. The challenge is the uncertainty regarding the nature and stability of the alkaline-soluble, low-valence, non pertechnetate species in the liquid tank waste. One objective of the Tc management project is to address this knowledge gap. This fiscal year (FY) 2015 report summarizes experimental work exploring the oxidative stability of model low-valence Tc(I) tricarbonyl species, derived from the [Tc(CO)3]+ moiety. These compounds are of interest due to their implied presence in several Hanford tank waste supernatants. Work in part was initiated in FY 2014, and a series of samples containing non-pertechnetate Tc generated ex situ or in situ in pseudo-Hanford tank supernatant simulant solutions was prepared and monitored for oxidation to Tc(VII) (Levitskaia et al. 2014). This experimentation continued in FY 2015, and new series of samples containing Tc(I) as [Tc(CO)3]+•Ligand was tested. The monitoring method used for these studies was a combination of 99Tc NMR and EPR spectroscopies.

  16. Nondestructive examination technologies for inspection of radioactive waste storage tanks

    Anderson, M.T.; Kunerth, D.C.; Davidson, J.R.

    1995-08-01

    The evaluation of underground radioactive waste storage tank structural integrity poses a unique set of challenges. Radiation fields, limited access, personnel safety and internal structures are just some of the problems faced. To examine the internal surfaces a sensor suite must be deployed as an end effector on a robotic arm. The purpose of this report is to examine the potential failure modes of the tanks, rank the viability of various NDE technologies for internal surface evaluation, select a technology for initial EE implementation, and project future needs for NDE EE sensor suites

  17. Technical basis for a minimum hydroxide concentration in tanks containing dilute waste

    Zapp, P.E.

    1995-05-01

    Laboratory tests were performed to address the protection of waste tank steel from corrosion in situations of elevated temperatures up to 75 C (hot spots) in the sludge layer of Extended Sludge Processing (ESP) tanks. Coupon immersion tests were conducted at 75 C in two ESP simulants at four hydroxide (or pH) levels. The nitrite concentrations of the simulants were calculated from the ESP technical standards based on a temperature of 40 C. The results showed that a hydroxide concentration of at least 0.01 M prevented significant corrosion of the steel at the elevated temperature. This conclusion provides the technical basis for the revised minimum hydroxide concentration of 0.01 M in the draft WSRC 241-82H Control Room Process Requirements, for the ESP tanks

  18. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  19. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    Groth, B.D.

    1995-01-01

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements

  20. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    ROGERS, C.A.

    2000-01-01

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  1. Solvent extraction of radionuclides from aqueous tank waste

    Bonnesen, P.V.; Sachleben, R.A.; Moyer, B.A.

    1996-01-01

    The purpose of this task is to develop an efficient solvent-extraction and stripping process for the removal of the fission products Tc-99, Sr-90, and Cs-137 from alkaline tank wastes, such as those stored at Hanford and Oak Ridge. As such, this task expands upon FY 1995's successful development of a solvent-extraction and stripping process for technetium separation from at sign e tank-waste solutions. This process has in fact already been extended to include the capability of removing both Tc and Sr simultaneously. In this form, the process has been given the name SRTALK and will be developed further in this program as a prelude to developing a system capable of removing Tc, Sr, and Cs together. Such a system could potentially simplify and improve fission-product removal from tank waste. In addition, it would possess the advantages already inherent in our Tc solvent-extraction process: No required feed adjustment, economical water stripping, low consumption of materials, and low waste volume

  2. Hanford site tank waste remediation system programmatic environmental review report

    Haass, C.C.

    1998-01-01

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE's plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations

  3. A MODERN INTERPRETATION OF THE BARNEY DIAGRAM FOR ALUMINUM SOLUBILITY IN TANK WASTE

    Reynolds, J.G.; Reynolds, D.A.

    2009-01-01

    Experimental and modeling studies of aluminum solubility in Hanford tank waste have been developed and refined for many years in efforts to resolve new issues or develop waste treatment flowsheets. The earliest of these studies was conducted by G. Scott Barney, who performed solubility studies in highly concentrated electrolyte solutions to support evaporator campaign flowsheets in the 1970's. The 'Barney Diagram', a term still widely used at Hanford today, suggested gibbsite (γ-Al(OH) 3 ) was much more soluble in tank waste than in simple sodium hydroxide solutions. These results, which were highly surprising at the time, continue to be applied to new situations where aluminum solubility in tank waste is of interest. Here, we review the history and provide a modern explanation for the large gibbsite solubility observed by Barney, an explanation based on basic research that has been performed and published in the last 30 years. This explanation has both thermodynamic and kinetic aspects. Thermodynamically, saturated salt solutions stabilize soluble aluminate species that are minor components in simple sodium hydroxide solutions. These species are the aluminate dimer and the sodium-aluminate ion-pair. Ion-pairs must be present in the Barney simulants because calculations showed that there was insufficient space between the highly concentrated ions for a water molecule. Thus, most of the ions in the simulants have to be ion-paired. Kinetics likely played a role as well. The simulants were incubated for four to seven days, and more recent data indicate that this was unlikely sufficient time to achieve equilibrium from supersaturation. These results allow us to evaluate applications of the Barney results to current and future tank waste issues or flowsheets.

  4. DEWATERING TREATMENT SCALE-UP TESTING RESULTS OF HANFORD TANK WASTES

    TEDESCHI AR

    2008-01-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low-activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualified the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process

  5. Simulant Development for Hanford Tank Farms Double Valve Isolation (DVI) Valves Testing

    Wells, Beric E.

    2012-12-21

    Leakage testing of a representative sample of the safety-significant isolation valves for Double Valve Isolation (DVI) in an environment that simulates the abrasive characteristics of the Hanford Tank Farms Waste Transfer System during waste feed delivery to the Waste Treatment and Immobilization Plant (WTP) is to be conducted. The testing will consist of periodic leak performed on the DVI valves after prescribed numbers of valve cycles (open and close) in a simulated environment representative of the abrasive properties of the waste and the Waste Transfer System. The valve operations include exposure to cycling conditions that include gravity drain and flush operation following slurry transfer. The simulant test will establish the performance characteristics and verify compliance with the Documented Safety Analysis. Proper simulant development is essential to ensure that the critical process streams characteristics are represented, National Research Council report “Advice on the Department of Energy's Cleanup Technology Roadmap: Gaps and Bridges”

  6. Large underground radioactive waste storage tanks successfully cleaned at Oak Ridge National Laboratory

    Billingsley, K.; Burks, B.L.; Johnson, M.; Mims, C.; Powell, J.; Hoesen, D. van

    1998-05-01

    Waste retrieval operations were successfully completed in two large underground radioactive waste storage tanks in 1997. The US Department of Energy (DOE) and the Gunite Tanks Team worked cooperatively during two 10-week waste removal campaigns and removed approximately 58,300 gallons of waste from the tanks. About 100 gallons of a sludge and liquid heel remain in each of the 42,500 gallon tanks. These tanks are 25 ft. in diameter and 11 ft. deep, and are located in the North Tank Farm in the center of Oak Ridge National Laboratory. Less than 2% of the radioactive contaminants remain in the tanks, proving the effectiveness of the Radioactive Tank Cleaning System, and accomplishing the first field-scale cleaning of contaminated underground storage tanks with a robotic system in the DOE complex

  7. Measurements of waste tank passive ventilation rates using tracer gases

    Huckaby, J.L.; Olsen, K.B.; Sklarew, D.S.; Evans, J.C.; Remund, K.M.

    1997-09-01

    This report presents the results of ventilation rate studies of eight passively ventilated high-level radioactive waste tanks using tracer gases. Head space ventilation rates were determined for Tanks A-101, AX-102, AX-103, BY-105, C-107, S-102, U-103, and U-105 using sulfur hexafluoride (SF 6 ) and/or helium (He) as tracer gases. Passive ventilation rates are needed for the resolution of several key safety issues. These safety issues are associated with the rates of flammable gas production and ventilation, the rates at which organic salt-nitrate salt mixtures dry out, and the estimation of organic solvent waste surface areas. This tracer gas study involves injecting a tracer gas into the tank headspace and measuring its concentration at different times to establish the rate at which the tracer is removed by ventilation. Tracer gas injection and sample collection were performed by SGN Eurisys Service Corporation and/or Lockheed Martin Hanford Corporation, Characterization Project Operations. Headspace samples were analyzed for He and SF 6 by Pacific Northwest National Laboratory (PNNL). The tracer gas method was first demonstrated on Tank S-102. Tests were conducted on Tank S-102 to verify that the tracer gas was uniformly distributed throughout the tank headspace before baseline samples were collected, and that mixing was sufficiently vigorous to maintain an approximately uniform distribution of tracer gas in the headspace during the course of the study. Headspace samples, collected from a location about 4 in away from the injection point and 15, 30, and 60 minutes after the injection of He and SF 6 , indicated that both tracer gases were rapidly mixed. The samples were found to have the same concentration of tracer gases after 1 hour as after 24 hours, suggesting that mixing of the tracer gas was essentially complete within 1 hour

  8. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    WEBER RA

    2009-01-16

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as

  9. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    FOWLER KD

    2007-12-27

    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient

  10. Performance evaluation of rotating pump jet mixing of radioactive wastes in Hanford Tanks 241-AP-102 and -104

    Onishi, Y.; Recknagle, K.P.

    1998-07-01

    The purpose of this study was to confirm the adequacy of a single mixer pump to fully mix the wastes that will be stored in Tanks 241-AP-102 and -104. These Hanford double-shell tanks (DSTs) will be used as staging tanks to receive low-activity wastes from other Hanford storage tanks and, in turn, will supply the wastes to private waste vitrification facilities for eventual solidification. The TEMPEST computer code was applied to Tanks AP-102 and -104 to simulate waste mixing generated by the 60-ft/s rotating jets and to determine the effectiveness of the single rotating pump to mix the waste. TEMPEST simulates flow and mass/heat transport and chemical reactions (equilibrium and kinetic reactions) coupled together. Section 2 describes the pump jet mixing conditions the authors evaluated, the modeling cases, and their parameters. Section 3 reports model applications and assessment results. The summary and conclusions are presented in Section 4, and cited references are listed in Section 5

  11. Evaluation of bubbler/diaphragm techniques to measure surface level in the waste storage tanks

    Peters, T.J.; Hickman, B.J.; Colson, J.B.

    1993-10-01

    This report describes the results of tests conducted at the Pacific Northwest Laboratory (PNL) to determine if a bubbler technique can be used to determine the surface level in the waste tanks. Two techniques were evaluated. The first technique is a standard bubbler system in which a tube is placed below the surface of the liquid to be measured and air pressure inside a tube is increased until bubbles begin to become emitted from the tube. The air pressure then is a function of the pressure at the bottom of the tube. The second technique involves a system similar to the standard bubbler technique, but instead of bubbles being released into the material to be gauged, air pressure is increased against a diaphragm until enough pressure is applied to overcome the pressure of the liquid at the given depth, at which time the air then flows in a return loop back to a vent. The advantage of the diaphragm system is that it is a sealed system; thus no air is released into the waste tank materials, and it is not possible for the waste tank materials to get into the air flow. Based on the results of the tests conducted in this program, it appears that the bubbler and diaphragm systems that were tested could not be used for accurate measurements of the level in the waste tanks. Both exhibited deposits of simulated waste tank material at the end of the devices which affected the ability of the gauge to accurately determine changes in the surface level even though the measured value of the level was inaccurate. Further investigations into the cause of this inaccuracy may be warranted. Alternate diaphragm materials may improve the performance of this gauge

  12. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    SHULTZ, M.V.

    1999-01-01

    Tank 241-SY-101 (SY-101) waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from SY-101 to 241-SY-102 (SY-102). The results of the hazards evaluation will be compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. This document is not intended to authorize the activity or determine the adequacy of controls; it is only intended to provide information about the hazardous conditions associated with this activity. The Unreviewed Safety Question (USQ) process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis

  13. Decontamination system study for the Tank Waste Retrieval System

    Reutzel, T.; Manhardt, J.

    1994-05-01

    This report summarizes the findings of the Idaho National Engineering Laboratory's decontamination study in support of the Tank Waste Retrieval System (TWRS) development program. Problems associated with waste stored in existing single shell tanks are discussed as well as the justification for the TWRS program. The TWRS requires a decontamination system. The subsystems of the TWRS are discussed, and a list of assumptions pertinent to the TWRS decontamination system were developed. This information was used to develop the functional and operational requirements of the TWRS decontamination system. The requirements were combined with a comprehensive review of currently available decontamination techniques to produced a set of evaluation criteria. The cleaning technologies and techniques were evaluated, and the CO 2 blasting decontamination technique was chosen as the best technology for the TWRS

  14. Organic carbon in Hanford single-shell tank waste

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-04-01

    Safety of Hanford single-shell tanks (SSTs) containing organic carbon is a concern because the carbon in the presence of oxidizers (NO 3 or NO 2 ) is combustible when sufficiently concentrated and exposed to elevated temperatures. A propagating chemical reaction could potentially occur at high temperature (above 200 C). The rapid increase in temperature and pressure within a tank might result in the release of radioactive waste constituents to the environment. The purpose of this study is to gather available laboratory information about the organic carbon waste inventories stored in the Hanford SSTs. Specifically, the major objectives of this investigation are: Review laboratory analytical data and measurements for SST composite core and supernatant samples for available organic data; Assess the correlation of organic carbon estimated utilizing the TRAC computer code compared to laboratory measurements; and From the laboratory analytical data, estimate the TOC content with confidence levels for each of the 149 SSTs

  15. Chemical and chemically-related considerations associated with sluicing tank C-106 waste to tank AY-102

    Reynolds, D.A.

    1997-01-01

    New data on tank 241-C-106 were obtained from grab sampling and from compatibility testing of tank C-106 and tank AY-102 wastes. All chemistry-associated and other compatibility Information compiled in this report strongly suggests that the sluicing of the contents of tank C-106, in accord with appropriate controls, will pose no unacceptable risk to workers, public safety, or the environment. In addition, it is expected that the sluicing operation will successfully resolve the High-Heat Safety Issue for tank C-106

  16. Remote installation of risers on underground nuclear waste storage tanks

    Jackson, J.P.; Gessner, R.F.

    1988-03-01

    The West Valley Demonstration Project was established to solidify 2120 m 3 (560,000) gallons of high-level nuclear waste generated during six years of commercial nuclear fuel reprocessing. This liquid will be processed to remove radioactive elements which, with the remaining sludge, will be combined with glass formers and be converted into borosilicate glass. Risers were installed on the high-level tank for installation of pumps which will be used to remove the liquid and sludge. The extensive use of remote technology was required to install the risers and to minimize operator exposure to high levels of radiation and contamination. The riser installation required remotely: drilling through two feet of concrete shielding; installing pump access pipes which are welded to the tank top; and cutting holes in tanks located 3658 mm (12) feet below ground. These operations were successfully completed 13 times without exposing personnel to high-level radiation or contamination. Specially designed remote equipment was developed for each step of this operation. Extensive operator training in the use of this equipment was performed on a tank with low radiation prior to work on the high-level tank. This paper discusses the application of remote technology that assured a quality job was safely accomplished. 3 refs., 18 figs., 2 tabs

  17. The effect of dilution on the gas retention behavior of Tank 241-SY- 103 waste

    Bredt, P.R.; Tingey, S.M.

    1996-01-01

    Twenty-five of the 177 underground waste storage tanks on the Hanford Site have been placed on the Flammable Gas watch list. These 25 tanks, containing high-level waste generated during plutonium and uranium processing, have been identified as potentially capable of accumulating flammable gases above the lower flammability limit (Babad et al. 1991). In the case of Tanks 241-SY-101 and 241-SY-103, it has been proposed that diluting the tank waste may mitigate this hazard (Hudson et al. 1995; Stewart et al. 1994). The effect of dilution on the ability of waste from Tank 241-SY-103 to accumulate gas was studied at Pacific Northwest National Laboratory. A similar study has been completed for waste from Tank 241-SY-101 (Bredt et al. 1995). Because of the additional waste-storage volume available in Tank 241-SY-103 and because the waste is assumed to be similar to that currently in Tank 241-SY-101, Tank 241-SY-103 became the target for a demonstration of passive mitigation through in-tank dilution. In 1994, plans for the in-tank dilution demonstration were deferred pending a decision on whether to pursue dilution as a mitigation strategy. However, because Tank 241-SY-103 is an early retrieval target, determination of how waste properties vary with dilution will still be required

  18. Tank waste remediation system fiscal year 1998 multi-year work plan WBS 1.1

    Lenseigne, D. L.

    1997-09-15

    The TWRS Project Mission is to manage and immobilize for disposal the Hanford Site radioactive tank waste and cesium (Cs)/strontium (Sr) capsules in a safe, environmentally sound, and cost-effective manner. The scope includes all activities needed to (1) resolve safety issues; (2) operate, maintain, and upgrade the tank farms and supporting infrastructure; (3) characterize, retrieve, pretreat, and immobilize the waste for disposal and tank farm closure; and (4) use waste minimization and evaporation to manage tank waste volumes to ensure that the tank capacities of existing DSTs are not exceeded. The TWRS Project is responsible for closure of assigned operable units and D&D of TWRS facilities.

  19. Decision Document for Heat Removal from High-Level Waste Tanks

    WILLIS, W.L.

    2000-01-01

    This document establishes the combination of design and operational configurations that will be used to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. The chosen method--to use the primary and annulus ventilation systems to remove heat from the high-level waste tanks--is documented herein

  20. Preliminary performance assessment strategy for single-shell tank waste disposal

    Sonnichsen, J.C. Jr.

    1991-10-01

    The disposal of the waste stored in single-shell tanks at the Hanford Site is recognized as a major environmental concern. A comprehensive program has been initiated to evaluate the various alternatives available for disposal of these wastes. Theses wastes will be disposed of in a manner consistent with applicable laws and regulations. Long-term waste isolation is one measure of performance that will be used for purposes of selection. The performance of each disposal alternative will be simulated using numerical models. Contained herein is a discussion of the strategy that has and continues to evolve to establish a general analytical framework to evaluate this performance. This general framework will be used to construct individual models of each waste disposal alternative selected for purposes of evaluation. 30 refs., 3 figs

  1. Thermocouple placement and hot spots in radioactive waste tanks

    Barker, J.J.

    1991-06-01

    Analytical solutions available in Carslaw and Jaeger's Conduction of Heat in Solids for continuous point sources and for continuous finite sources are used to demonstrate that placement of thermocouples on a fine enough grid to detect a hot spot is impracticable for existing waste tanks but fortunately not necessary. Graphs covering ranges of diffusivities, times, temperatures and heat generation rates are included. 2 refs., 8 figs., 5 tabs

  2. Mixing Processes in High-Level Waste Tanks - Final Report

    Peterson, P.F.

    1999-01-01

    The mixing processes in large, complex enclosures using one-dimensional differential equations, with transport in free and wall jets is modeled using standard integral techniques. With this goal in mind, we have constructed a simple, computationally efficient numerical tool, the Berkeley Mechanistic Mixing Model, which can be used to predict the transient evolution of fuel and oxygen concentrations in DOE high-level waste tanks following loss of ventilation, and validate the model against a series of experiments

  3. Tank waste remediation system nuclear criticality safety program management review

    BRADY RAAP, M.C.

    1999-01-01

    This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999

  4. Hanford Site organic waste tanks: History, waste properties, and scientific issues

    Strachan, D.M.; Schulz, W.W.; Reynolds, D.A.

    1993-01-01

    Eight Hanford single-shell waste tanks are included on a safety watch list because they are thought to contain significant concentrations of various organic chemical. Potential dangers associated with the waste in these tanks include exothermic reaction, combustion, and release of hazardous vapors. In all eight tanks the measured waste temperatures are in the range 16 to 46 degree C, far below the 250 to 380 degree C temperatures necessary for onset of rapid exothermic reactions and initiation of deflagration. Investigation of the possibility of vapor release from Tank C-103 has been elevated to a top safety priority. There is a need to obtain an adequate number of truly representative vapor samples and for highly sensitive and capable methods and instruments to analyze these samples. Remaining scientific issues include: an understanding of the behavior and reaction of organic compounds in existing underground tank environments knowledge of the types and amounts of organic compounds in the tanks knowledge of selected physical and chemical properties of organic compounds source, composition, quality, and properties of the presently unidentified volatile organic compound(s) apparently evolving from Tank C-103

  5. Phase chemistry and radionuclide retention from simulated tank sludges

    KRUMHANSL, JAMES L.; LIU, J.; ARTHUR, SARA E.; HUTCHERSON, SHEILA K.; QIAN, MORRIS; ANDERSON, HOWARD L.

    2000-01-01

    Decommissioning high level nuclear waste tanks will leave small amounts of residual sludge clinging to the walls and floor of the structures. The permissible amount of material left in the tanks depends on the radionuclide release characteristics of the sludge. At present, no systematic process exists for assessing how much of the remaining inventory will migrate, and which radioisotopes will remain relatively fixed. Working with actual sludges is both dangerous and prohibitively expensive. Consequently, methods were developed for preparing sludge simulants and doping them with nonradioactive surrogates for several radionuclides and RCRA metals of concern in actual sludges. The phase chemistry of these mixes was found to be a reasonable match for the main phases in actual sludges. Preliminary surrogate release characteristics for these sludges were assessed by lowering the ionic strength and pH of the sludges in the manner that would occur if normal groundwater gained access to a decommissioned tank. Most of the Se, Cs and Tc in the sludges will be released into the first pulse of groundwater passing through the sludge. A significant fraction of the other surrogates will be retained indefinitely by the sludges. This prolonged sequestration results from a combination coprecipitated and sorbed into or onto relatively insoluble phases such as apatite, hydrous oxides of Fe, Al, Bi and rare earth oxides and phosphates. The coprecipitated fraction cannot be released until the host phase dissolves or recrystallizes. The sorbed fraction can be released by ion exchange processes as the pore fluid chemistry changes. However, these releases can be predicted based on a knowledge of the fluid composition and the surface chemistry of the solids. In this regard, the behavior of the hydrous iron oxide component of most sludges will probably play a dominant role for many cationic radionuclides while the hydrous aluminum oxides may be more important in governing anion releases

  6. Chemical Equilibrium of Aluminate in Hanford Tank Waste Originating from Tanks 241-AN-105 and 241-AP-108

    McCoskey, Jacob K. [Washington River Protection Solutions LLC, Richland, WA (United States); Cooke, Gary A. [Washington River Protection Solutions LLC, Richland, WA (United States); Herting, Daniel L. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2015-09-23

    The purposes of the study described in this document follow; Determine or estimate the thermodynamic equilibrium of gibbsite in contact with two real tank waste supernatant liquids through both dissolution of gibbsite (bottom-up approach) and precipitation of aluminum-bearing solids (top-down approach); determine or estimate the thermodynamic equilibrium of a mixture of gibbsite and real tank waste saltcake in contact with real tank waste supernatant liquid through both dissolution of gibbsite and precipitation of aluminum-bearing solids; and characterize the solids present after equilibrium and precipitation of aluminum-bearing solids.

  7. Hanford tank initiative vehicle/based waste retrieval demonstration report phase II, track 2

    Berglin, E.J.

    1997-01-01

    Using the versatile TracPUMpTm, Environmental Specialties Group, LLC (ES) performed a successful Phase 11 demonstration of a Vehicle- Based Waste Retrieval System (VWRS) for removal of waste material and residual liquid found in the Hanford Underground Storage Tanks (ousts). The purpose of this demonstration was to address issues pertaining to the use of a VWRS in OUSTS. The demonstration also revealed the waste removal capabilities of the TracPumpTm and the most effective techniques and equipment to safely and effectively remove waste simulants. ES successfully addressed the following primary issues: I . Dislodge and convey the waste forms present in the Hanford OUSTS; 2. Access the UST through tank openings as small as twenty-four inches in diameter; 3. Traverse a variety of terrains including slopes, sludges, rocks and hard, slippery surfaces without becoming mired; 4. Dislodge and convey waste within the confinement of the Decontamination Containment Capture Vessel (DCCV) and with minimal personnel exposure; 5. Decontaminate equipment to acceptable limits during retrieval from the UST; 6. Perform any required maintenance within the confinement of the DCCV; and 7. Maintain contaminate levels ''as low as reasonably achievable'' (ALARA) within the DCCV due to its crevice and comer-free design. The following materials were used to simulate the physical characteristics of wastes found in Hanford's OUSTS: (1) Hardpan: a clay-type material that has high shear strength; (2) Saltcake: a fertilizer-based material that has high compressive strength; and (3) Wet Sludge.- a sticky, peanut- butter- like material with low shear strength. Four test beds were constructed of plywood and filled with a different simulant to a depth of eight to ten inches. Three of the test beds were of homogenous simulant material, while the fourth bed consisted of a mixture of all three simulant types

  8. Optimization of quantitative waste volume determination technique for hanford waste tank closure

    Monts, David L.; Jang, Ping-Rey; Long, Zhiling; Okhuysen, Walter P.; Norton, Olin P.; Gresham, Lawrence L.; Su, Yi; Lindner, Jeffrey S.

    2011-01-01

    The Hanford Site is currently in the process of an extensive effort to empty and close its radioactive single-shell and double-shell waste storage tanks. Before this can be accomplished, it is necessary to know how much residual material is left in a given waste tank and the uncertainty with which that volume is known. The Institute for Clean Energy Technology (ICET) at Mississippi State University is currently developing a quantitative in-tank imaging system based on Fourier Transform Profilometry, FTP. FTP is a non-contact, 3-D shape measurement technique. By projecting a fringe pattern onto a target surface and observing its deformation due to surface irregularities from a different view angle, FTP is capable of determining the height (depth) distribution (and hence volume distribution) of the target surface, thus reproducing the profile of the target accurately under a wide variety of conditions. Hence FTP has the potential to be utilized for quantitative determination of residual wastes within Hanford waste tanks. In this paper, efforts to characterize the accuracy and precision of quantitative volume determination using FTP and the use of these results to optimize the FTP system for deployment within Hanford waste tanks are described. (author)

  9. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

  10. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board's view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program

  11. Chemistry of application of calcination/dissolution to the Hanford tank waste inventory

    Delegard, C.H.; Elcan, T.D.; Hey, B.E.

    1994-05-01

    Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel are stored in underground tanks at the Hanford Site in Washington State. Fractionation of the waste into low-level waste (LLW) and high-level waste (HLW) streams is envisioned via partial water dissolution and limited radionuclide extraction operations. Under optimum conditions, LLW would contain most of the chemical bulk while HLW would contain virtually all of the transuranic and fission product activity. Calcination at around 850 C, followed by water dissolution, has been proposed as an alternative initial treatment of Hanford Site waste to improve waste dissolution and the envisioned LLW/HLW split. Results of literature and laboratory studies are reported on the application of calcination/dissolution (C/D) to the fractionation of the Hanford Site tank waste inventory. Both simulated and genuine Hanford Site waste materials were used in the lab tests. To evaluation confirmed that C/D processing reduced the amount of several components from the waste. The C/D dissolutions of aluminum and chromium allow redistribution of these waste components from the HLW to the LLW fraction. Comparisons of simple water-washing with C/D processing of genuine Hanford Site waste are also reported based on material (radionuclide and chemical) distributions to solution and solid residue phases. The lab results show that C/D processing yielded superior dissolution of aluminum and chromium sludges compared to simple water dissolution. 57 refs., 26 figs., 18 tabs

  12. Chemistry of application of calcination/dissolution to the Hanford tank waste inventory

    Delegard, C.H.; Elcan, T.D.; Hey, B.E.

    1994-05-01

    Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel are stored in underground tanks at the Hanford Site in Washington State. Fractionation of the waste into low-level waste (LLW) and high-level waste (HLW) streams is envisioned via partial water dissolution and limited radionuclide extraction operations. Under optimum conditions, LLW would contain most of the chemical bulk while HLW would contain virtually all of the transuranic and fission product activity. Calcination at around 850 C, followed by water dissolution, has been proposed as an alternative initial treatment of Hanford Site waste to improve waste dissolution and the envisioned LLW/HLW split. Results of literature and laboratory studies are reported on the application of calcination/dissolution (C/D) to the fractionation of the Hanford Site tank waste inventory. Both simulated and genuine Hanford Site waste materials were used in the lab tests. To evaluation confirmed that C/D processing reduced the amount of several components from the waste. The C/D dissolutions of aluminum and chromium allow redistribution of these waste components from the HLW to the LLW fraction. Comparisons of simple water-washing with C/D processing of genuine Hanford Site waste are also reported based on material (radionuclide and chemical) distributions to solution and solid residue phases. The lab results show that C/D processing yielded superior dissolution of aluminum and chromium sludges compared to simple water dissolution. 57 refs., 26 figs., 18 tabs.

  13. Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114

    Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G. [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States); Adamson, Duane J.; Herman, Connie C.; Peeler, David K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

  14. Tank farm surveillance and waste status summary report for October 1992

    Hanlon, B.M.

    1993-01-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks

  15. Tank farm surveillance and waste status summary report for January 1993

    Hanlon, B.M.

    1993-03-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks

  16. Tank farm surveillance and waste status summary report for November 1992

    Hanlon, B.M.

    1993-02-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks

  17. Tank Farm surveillance and waste status summary report for September 1993

    Hanlon, B.M.

    1994-01-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks

  18. Tank farm surveillance and waste status summary report for May 1994

    Hanlon, B.M.

    1994-08-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks

  19. Tank farm surveillance and waste status summary report for May 1994

    Hanlon, B.M.

    1994-08-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  20. Tank farm surveillance and waste status summary report for October 1992

    Hanlon, B.M.

    1993-01-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  1. Tank farm surveillance and waste status summary report for June 1993

    Hanlon, B.M.

    1993-10-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks

  2. Waste Tank Summary Report for Month Ending 04/30/2002

    HANLON, B.M.

    2002-01-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, US. Department of Energy-Washington, D.C.) requiring the reporting of waste inventories and space utilization for the Hanford Site Tank Farm tanks

  3. Tank farm surveillance and waste status summary report for December 1992

    Hanlon, B.M.

    1993-02-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks

  4. Tank farm surveillance and waste status summary report for December 1993

    Hanlon, B.M.

    1994-05-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special 9 surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, U.S. Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  5. Tank farm surveillance and waste status summary report for December 1992

    Hanlon, B.M.

    1993-02-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  6. Study of physical properties, gas generation and gas retention in simulated Hanford waste

    Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

    1993-04-01

    The purpose of this study was to establish the chemical and physical processes responsible for the generation and retention of gases within high-level waste from Tank 101-SY on the Hanford Site. This research, conducted using simulated waste on a laboratory scale, supports the development of mitigation/remediation strategies for Tank 101-SY. Simulated waste formulations are based on actual waste compositions. Selected physical properties of the simulated waste are compared to properties of actual Tank 101-SY waste samples. Laboratory studies using aged simulated waste show that significant gas generation occurs thermally at current tank temperatures (∼60 degrees C). Gas compositions include the same gases produced in actual tank waste, primarily N 2 , N 2 O, and H 2 . Gas stoichiometries have been shown to be greatly influenced by several organic and inorganic constituents within the simulated waste. Retention of gases in the simulated waste is in the form of bubble attachment to solid particles. This attachment phenomenon is related to the presence of organic constituents (HEDTA, EDTA, and citrate) of the simulated waste. A mechanism is discussed that relates the gas bubble/particle interactions to the partially hydrophobic surface produced on the solids by the organic constituents

  7. Simulation model of stratified thermal energy storage tank using finite difference method

    Waluyo, Joko

    2016-06-01

    Stratified TES tank is normally used in the cogeneration plant. The stratified TES tanks are simple, low cost, and equal or superior in thermal performance. The advantage of TES tank is that it enables shifting of energy usage from off-peak demand for on-peak demand requirement. To increase energy utilization in a stratified TES tank, it is required to build a simulation model which capable to simulate the charging phenomenon in the stratified TES tank precisely. This paper is aimed to develop a novel model in addressing the aforementioned problem. The model incorporated chiller into the charging of stratified TES tank system in a closed system. The model was developed in one-dimensional type involve with heat transfer aspect. The model covers the main factors affect to degradation of temperature distribution namely conduction through the tank wall, conduction between cool and warm water, mixing effect on the initial flow of the charging as well as heat loss to surrounding. The simulation model is developed based on finite difference method utilizing buffer concept theory and solved in explicit method. Validation of the simulation model is carried out using observed data obtained from operating stratified TES tank in cogeneration plant. The temperature distribution of the model capable of representing S-curve pattern as well as simulating decreased charging temperature after reaching full condition. The coefficient of determination values between the observed data and model obtained higher than 0.88. Meaning that the model has capability in simulating the charging phenomenon in the stratified TES tank. The model is not only capable of generating temperature distribution but also can be enhanced for representing transient condition during the charging of stratified TES tank. This successful model can be addressed for solving the limitation temperature occurs in charging of the stratified TES tank with the absorption chiller. Further, the stratified TES tank can be

  8. Identification of the non-pertechnetate species in Hanford waste tanks, Tc(I) carbonyl complexes

    Lukens, Wayne W.; Shuh, David K.; Schroeder, Norman C.; Ashley, Kenneth R.

    2003-10-16

    Immobilization of the high-level nuclear waste stored at the Hanford Reservation has been complicated by the presence of soluble, lower-valent technetium species. Previous work by Schroeder and Blanchard has shown that these species cannot be removed by ion-exchange and are difficult to oxidize. The Tc-K edge XANES spectra of the species in Tanks SY-101 and SY-103 were reported by Blanchard, but they could not be assigned to any known technetium complex. We report that the XANES spectra are most likely those of Tc(I) carbonyl species, especially fac-Tc(CO){sub 3}(gluconate){sup 2-}. This is further supported by EXAFS and {sup 99}Tc-NMR studies in nonradioactive simulants of these tank wastes.

  9. High performance gamma measurements of equipment retrieved from Hanford high-level nuclear waste tanks

    Troyer, G.L.

    1997-03-17

    The cleanup of high level defense nuclear waste at the Hanford site presents several progressive challenges. Among these is the removal and disposal of various components from buried active waste tanks to allow new equipment insertion or hazards mitigation. A unique automated retrieval system at the tank provides for retrieval, high pressure washing, inventory measurement, and containment for disposal. Key to the inventory measurement is a three detector HPGe high performance gamma spectroscopy system capable of recovering data at up to 90% saturation (200,000 counts per second). Data recovery is based on a unique embedded electronic pulser and specialized software to report the inventory. Each of the detectors have different shielding specified through Monte Carlo simulation with the MCNP program. This shielding provides performance over a dynamic range of eight orders of magnitude. System description, calibration issues and operational experiences are discussed.

  10. High performance gamma measurements of equipment retrieved from Hanford high-level nuclear waste tanks

    Troyer, G.L.

    1997-01-01

    The cleanup of high level defense nuclear waste at the Hanford site presents several progressive challenges. Among these is the removal and disposal of various components from buried active waste tanks to allow new equipment insertion or hazards mitigation. A unique automated retrieval system at the tank provides for retrieval, high pressure washing, inventory measurement, and containment for disposal. Key to the inventory measurement is a three detector HPGe high performance gamma spectroscopy system capable of recovering data at up to 90% saturation (200,000 counts per second). Data recovery is based on a unique embedded electronic pulser and specialized software to report the inventory. Each of the detectors have different shielding specified through Monte Carlo simulation with the MCNP program. This shielding provides performance over a dynamic range of eight orders of magnitude. System description, calibration issues and operational experiences are discussed

  11. Hanford Double Shell Waste Tank Corrosion Studies - Final Report FY2015

    Fuentes, R. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    During FY15, SRNL performed corrosion testing that supported Washington River Protection Solutions (WRPS) with their double shell tank (DST) integrity program. The testing investigated six concerns including, 1) the possibility of corrosion of the exterior of the secondary tank wall; 2) the effect of ammonia on vapor space corrosion (VSC) above waste simulants; 3) the determination of the minimum required nitrite and hydroxide concentrations that prevent pitting in concentrated nitrate solutions (i.e., waste buffering); 4) the susceptibility to liquid air interface (LAI) corrosion at proposed stress corrosion cracking (SCC) inhibitor concentrations; 5) the susceptibility of carbon steel to pitting in dilute solutions that contain significant quantities of chloride and sulfate; and 6) the effect of different heats of A537 carbon steel on the corrosion response. For task 1, 2, and 4, the effect of heat treating and/ or welding of the materials was also investigated.

  12. Mixing processes in high-level waste tanks. Progress report, September 15, 1996 - September 14, 1997

    Peterson, P.F.

    1997-01-01

    useful codes for predicting stratification and mixing due to fires in enclosures, but these codes are not supported by appropriate experiments for waste tanks, and do not consider mixing induced by injected jets, or the detailed distribution of fuel and oxygen concentration. The UCB Thermal Hydraulics Group model BMIX (Berkeley Mechanistic Mixing Model) is being developed to mechanistically predict mixing processes in large waste-tank volumes, where mixing processes can be driven by hot and cold vertical and horizontal surfaces and injected buoyant jets. The author is supporting the model with scaled experiments using water/salt solutions, as well as separate experiments using air with simulant fuels (helium and refrigerant-22 for hydrogen and benzene) to study the specific mixing processes which occur in waste tanks, and will also support the implementation of the code for use in waste tank operations. This year''s experimental efforts have focused on scaled water systems to study the exchange flows which occur through tank ceiling openings following loss of ventilation, as well the mixing processes that occur below the ceiling. These water experiments are providing data and insight for the modeling effort while construction of the larger air/benzene simulant experiment is underway.'

  13. Nuclear waste inventory characterization for mixer pumps and long length equipment removed from Hanford waste tanks

    Troyer, G.L.

    1998-01-01

    The removal and disposition of contaminated equipment from Hanford high-level nuclear waste tanks presents many challenges. One of which is the characterization of radioactive contaminants on components after removal. A defensible assessment of the radionuclide inventory of the components is required for disposal packaging and classification. As examples of this process, this paper discusses two projects: the withdrawal of thermocouple instrument tubes from Tank 101-AZ, and preparation for eventual replacement of the hydrogen mitigation mixer pump in Tank 101-SY. Emphasis is on the shielding analysis that supported the design of radiation detection systems and the interpolation of data recorded during the equipment retrieval operations

  14. Screening for organic solvents in Hanford waste tanks using total non- methane organic compound vapor concentrations

    Huckaby, J.L.; Glissmeyer, J.A.; Sklarew, D.S.

    1997-02-01

    The potential ignition of organic liquids stored in the Hanford high-level radioactive waste tanks is a safety issue because expanding gases could affect tank dome integrity. This report presents results of a screening test that was applied to 75 passively ventilated waste tanks at Hanford to determine those that might contain a significant amount of organic liquid waste. The screening test is based on a simple model of tank headspace, headspace organic vapor concentrations, and certain tank physical parameters. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Twelve tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Tank head space organic vapor concentrations and physical parameters required by the screening test have been compiled and are presented for each of the tanks studied. Estimates of the ventilation rates of the waste tanks were revised to reflect recent information obtained from hydrogen monitoring data. A simple analysis of the uncertainty in the test results suggests that the largest current uncertainty in the estimation of organic liquid surface area is that associated with knowledge of the tank ventilation rate. The uncertainty analysis is applied to determine 95% confidence limits for the estimated organic waste surface area in each tank

  15. The effects of lead on multi-function waste tank facility carbon steels

    Carlos, W.C.

    1994-01-01

    Work previously reported in the literature suggests the presence of lead in boiling caustic can crack carbon steel. Further, most of the single-shell tanks presumed to be leakers contain lead from past fuel reprocessing work. While the Multi-Function Waste Tank Facility will be operating at temperatures far below those in which cracking occurred and the waste will have other components including inhibitors, there is a possibility that the lead concentration in some of the waste will exceed that found earlier to cause cracking. Consequently it is recommended that tests be performed on simulated wastes to better define the solubility and to determine whether cracking under proposed operating conditions is a serious concern. However, the experimental evaluation does not need to be performed immediately. The waste believed to have the largest lead concentration, B-Farm, is not shown in the current processing schedule which goes to the year 2011. The wastes scheduled for processing have less than about one-tenth of one percent of the lead concentration found in B-Farm

  16. 78 FR 75913 - Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site...

    2013-12-13

    ... site, including the disposal of Hanford's low-level radioactive waste (LLW) and mixed low-level... would be processed for disposal in Low- Level Radioactive Waste Burial Grounds (LLBGs) Trenches 31 and... treating radioactive waste from 177 underground storage tanks (149 Single-Shell Tanks [SSTs] and 28 Double...

  17. Tank waste remediation system vadose zone program plan

    Fredenburg, E.A.

    1998-01-01

    The objective of the vadose zone characterization under this program is to develop a better conceptual geohydrologic model of identified tank farms which will be characterized so that threats to human health and the environment from past leaks and spills, intentional liquid discharges, potential future leaks during retrieval, and from residual contaminants that may remain in tank farms at closure can be explicitly addressed in decision processes. This model will include geologic, hydrologic, and hydrochemical parameters as defined by the requirements of each of the TWRS programs identified here. The intent of this TWRS Vadose Zone Program Plan is to provide justification and an implementation plan for the following activities: Develop a sufficient understanding of subsurface conditions and transport processes to support decisions on management, cleanup, and containment of past leaks, spills, and intentional liquid discharges; Develop a sufficient understanding of transport processes to support decisions on controlling potential retrieval leaks; Develop a sufficient understanding of transport processes to support decisions on tank farm closure, including allowable residual waste that may remain at closure; and Provide new information on geotechnical properties in the 200 Area to supplement data used for design and performance assessment for immobilized low-activity waste disposal facilities

  18. Tank waste remediation system vadose zone program plan

    Fredenburg, E.A.

    1998-07-27

    The objective of the vadose zone characterization under this program is to develop a better conceptual geohydrologic model of identified tank farms which will be characterized so that threats to human health and the environment from past leaks and spills, intentional liquid discharges, potential future leaks during retrieval, and from residual contaminants that may remain in tank farms at closure can be explicitly addressed in decision processes. This model will include geologic, hydrologic, and hydrochemical parameters as defined by the requirements of each of the TWRS programs identified here. The intent of this TWRS Vadose Zone Program Plan is to provide justification and an implementation plan for the following activities: Develop a sufficient understanding of subsurface conditions and transport processes to support decisions on management, cleanup, and containment of past leaks, spills, and intentional liquid discharges; Develop a sufficient understanding of transport processes to support decisions on controlling potential retrieval leaks; Develop a sufficient understanding of transport processes to support decisions on tank farm closure, including allowable residual waste that may remain at closure; and Provide new information on geotechnical properties in the 200 Area to supplement data used for design and performance assessment for immobilized low-activity waste disposal facilities.

  19. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a

  20. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    Winkel, B.V.

    1995-01-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in 2 mix and a 4.5 kip/in 2 mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in 2 . In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F

  1. Characterization and reaction behavior of ferrocyanide simulants and Hanford Site high-level ferrocyanide waste

    Jeppson, D.W.; Simpson, B.C.

    1994-02-01

    Nonradioactive waste simulants and initial ferrocyanide tank waste samples were characterized to assess potential safety concerns associated with ferrocyanide high-level radioactive waste stored at the Hanford Site in underground single-shell tanks (SSTs). Chemical, physical, thermodynamic, and reaction properties of the waste simulants were determined and compared to properties of initial samples of actual ferrocyanide wastes presently in the tanks. The simulants were shown to not support propagating reactions when subjected to a strong ignition source. The simulant with the greatest ferrocyanide concentration was shown to not support a propagating reaction that would involve surrounding waste because of its high water content. Evaluation of dried simulants indicated a concentration limit of about 14 wt% disodium mononickel ferrocyanide, below which propagating reactions could not occur in the ambient temperature bulk tank waste. For postulated localized hot spots where dried waste is postulated to be at an initial temperature of 130 C, a concentration limit of about 13 wt% disodium mononickel ferrocyanide was determined, below which propagating reactions could not occur. Analyses of initial samples of the presently stored ferrocyanide waste indicate that the waste tank ferrocyanide concentrations are considerably lower than the limit for propagation for dry waste and that the water content is near that of the as-prepared simulants. If the initial trend continues, it will be possible to show that runaway ferrocyanide reactions are not possible under present tank conditions. The lower ferrocyanide concentrations in actual tank waste may be due to tank waste mixing and/or degradation from radiolysis and/or hydrolysis, which may have occurred over approximately 35 years of storage

  2. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    Freeman-Pollard, J.R.

    1994-01-01

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970's and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D ampersand RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program

  3. Material Balance Assessment for Double-Shell Tank Waste Pipeline Transfer

    Onishi, Yasuo; Wells, Beric E; Hartley, Stacey A; Enderlin, Carl W

    2001-01-01

    PNNL developed a material balance assessment methodology based on conservation of mass for detecting leaks and mis-routings in pipeline transfer of double-shell tank waste at Hanford. The main factors causing uncertainty in these transfers are variable property and tank conditions of density, existence of crust, and surface disturbance due to mixer pump operation during the waste transfer. The methodology was applied to three waste transfers from Tanks AN-105 and AZ-102

  4. Tank waste processing analysis: Database development, tank-by-tank processing requirements, and examples of pretreatment sequences and schedules as applied to Hanford Double-Shell Tank Supernatant Waste - FY 1993

    Colton, N.G.; Orth, R.J.; Aitken, E.A.

    1994-09-01

    This report gives the results of work conducted in FY 1993 by the Tank Waste Processing Analysis Task for the Underground Storage Tank Integrated Demonstration. The main purpose of this task, led by Pacific Northwest Laboratory, is to demonstrate a methodology to identify processing sequences, i.e., the order in which a tank should be processed. In turn, these sequences may be used to assist in the development of time-phased deployment schedules. Time-phased deployment is implementation of pretreatment technologies over a period of time as technologies are required and/or developed. The work discussed here illustrates how tank-by-tank databases and processing requirements have been used to generate processing sequences and time-phased deployment schedules. The processing sequences take into account requirements such as the amount and types of data available for the tanks, tank waste form and composition, required decontamination factors, and types of compact processing units (CPUS) required and technology availability. These sequences were developed from processing requirements for the tanks, which were determined from spreadsheet analyses. The spreadsheet analysis program was generated by this task in FY 1993. Efforts conducted for this task have focused on the processing requirements for Hanford double-shell tank (DST) supernatant wastes (pumpable liquid) because this waste type is easier to retrieve than the other types (saltcake and sludge), and more tank space would become available for future processing needs. The processing requirements were based on Class A criteria set by the U.S. Nuclear Regulatory Commission and Clean Option goals provided by Pacific Northwest Laboratory

  5. Technology Evaluation Workshop Report for Tank Waste Chemical Characterization

    Eberlein, S.J.

    1994-04-01

    A Tank Waste Chemical Characterization Technology Evaluation Workshop was held August 24--26, 1993. The workshop was intended to identify and evaluate technologies appropriate for the in situ and hot cell characterization of the chemical composition of Hanford waste tank materials. The participants were asked to identify technologies that show applicability to the needs and good prospects for deployment in the hot cell or tanks. They were also asked to identify the tasks required to pursue the development of specific technologies to deployment readiness. This report describes the findings of the workshop. Three focus areas were identified for detailed discussion: (1) elemental analysis, (2) molecular analysis, and (3) gas analysis. The technologies were restricted to those which do not require sample preparation. Attachment 1 contains the final workshop agenda and a complete list of attendees. An information package (Attachment 2) was provided to all participants in advance to provide information about the Hanford tank environment, needs, current characterization practices, potential deployment approaches, and the evaluation procedure. The participants also received a summary of potential technologies (Attachment 3). The workshop opened with a plenary session, describing the background and issues in more detail. Copies of these presentations are contained in Attachments 4, 5 and 6. This session was followed by breakout sessions in each of the three focus areas. The workshop closed with a plenary session where each focus group presented its findings. This report summarizes the findings of each of the focus groups. The evaluation criteria and information about specific technologies are tabulated at the end of each section in the report. The detailed notes from each focus group are contained in Attachments 7, 8 and 9

  6. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    TU, T.A.

    2007-01-04

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  7. Dynamic Effects of Tank Waste Aging on Radionuclide-Complexant Interactions - Final Report - 10/01/1997 - 10/01/2000

    Chamberlin, Rebecca M.; Arterburn, Jeffrey B. rmchamberlin@lanl.gov; jarterbu@nmsu.edu

    2000-10-01

    The long-range objective of this project is to provide a scientific basis for safely processing high-level nuclear tanks wastes for disposal. Our goals are to identify a means to prepare realistic simulant formulations for complexant-containing Hanford tank wastes, and then use those simulants to determine the relative importance of various organic complexants and their breakdown products on the partitioning of important radionuclides. The harsh chemical and radiolytic environment in high-level waste tanks alters both the organic complexants and the metal species, producing radionuclide-chelator complexes that resist standard separation methods. A detailed understanding of the complexation reactions of the key radionuclides in tank wastes would allow for reliable, science-based solutions for high-level waste processing, but a key problem is that tank waste samples are exceedingly difficult to obtain, transport and handle in the laboratory. In contrast, freshly-prepared simulated wastes are safe and readily obtained, but they do not reproduce the partitioning behavior of actual tank waste samples. For this project, we will first artificially age complexant-containing tank waste simulants using microwave, ultrasound, and photolysis techniques that can be applied in any standard laboratory. The aged samples will be compared to samples of actual Hanford tank wastes to determine the most realistic aging method, on the basis of the organic fragments present, and the oxidation states and partitioning behavior of important radionuclides such as 90Sr, 99Tc, and 239Pu. Our successful completion of this goal will make it possible for scientists in academic and industrial laboratories to address tank waste remediation problems without the enormous costs and hazards associated with handling actual tank waste samples. Later, we will use our simulant aging process to investigate the relative effects of chelator degradation products on the partitioning of important radionuclides

  8. Dynamic Effects of Tank Waste Aging on Radionuclide-Complexant Interactions - Final Report - 10/01/1997 - 10/01/2000

    Chamberlin, Rebecca M.; Arterburn, Jeffrey B.

    2000-01-01

    The long-range objective of this project is to provide a scientific basis for safely processing high-level nuclear tanks wastes for disposal. Our goals are to identify a means to prepare realistic simulant formulations for complexant-containing Hanford tank wastes, and then use those simulants to determine the relative importance of various organic complexants and their breakdown products on the partitioning of important radionuclides. The harsh chemical and radiolytic environment in high-level waste tanks alters both the organic complexants and the metal species, producing radionuclide-chelator complexes that resist standard separation methods. A detailed understanding of the complexation reactions of the key radionuclides in tank wastes would allow for reliable, science-based solutions for high-level waste processing, but a key problem is that tank waste samples are exceedingly difficult to obtain, transport and handle in the laboratory. In contrast, freshly-prepared simulated wastes are safe and readily obtained, but they do not reproduce the partitioning behavior of actual tank waste samples. For this project, we will first artificially age complexant-containing tank waste simulants using microwave, ultrasound, and photolysis techniques that can be applied in any standard laboratory. The aged samples will be compared to samples of actual Hanford tank wastes to determine the most realistic aging method, on the basis of the organic fragments present, and the oxidation states and partitioning behavior of important radionuclides such as 90Sr, 99Tc, and 239Pu. Our successful completion of this goal will make it possible for scientists in academic and industrial laboratories to address tank waste remediation problems without the enormous costs and hazards associated with handling actual tank waste samples. Later, we will use our simulant aging process to investigate the relative effects of chelator degradation products on the partitioning of important radionuclides

  9. M.A. Streicher findings regarding high-level waste tank corrosion issues

    Husa, E.I.

    1994-01-01

    Dr. Michael A. Streicher is a nationally recognized metallurgist and corrosion scientist. He has served on the Department of Energy, Headquarters Tank Structural Integrity panel as the primary corrosion technical expert since the panel's inception in October 1991. Attachments 3 through 13 are Dr. Streicher's correspondence and presentations to the panel between November 1991 and May 1994. This compilation addresses Dr. Streicher's findings on High-Level Waste tank corrosion issues such as: corrosion mechanisms in carbon steels; hydrogen generation from waste tank corrosion; stress corrosion cracking in carbon steel tanks; water line attack in Hanford's single-shell tanks; stress corrosion cracking of austenitic stainless steels; and materials selection for new Hanford waste tanks. These papers discuss both generic and specific corrosion issues associated with waste tanks and transfer systems at Hanford, Savannah River, Idaho National Engineering Laboratory, and West Valley Demonstration Project

  10. Removing Phosphate from Hanford High-Phosphate Tank Wastes: FY 2010 Results

    Lumetta, Gregg J.; Braley, Jenifer C.; Edwards, Matthew K.; Qafoku, Odeta; Felmy, Andrew R.; Carter, Jennifer C.; MacFarlan, Paul J.

    2010-09-22

    The U.S. Department of Energy (DOE) is responsible for environmental remediation at the Hanford Site in Washington State, a former nuclear weapons production site. Retrieving, processing, immobilizing, and disposing of the 2.2 × 105 m3 of radioactive wastes stored in the Hanford underground storage tanks dominates the overall environmental remediation effort at Hanford. The cornerstone of the tank waste remediation effort is the Hanford Tank Waste Treatment and Immobilization Plant (WTP). As currently designed, the capability of the WTP to treat and immobilize the Hanford tank wastes in the expected lifetime of the plant is questionable. For this reason, DOE has been pursuing supplemental treatment options for selected wastes. If implemented, these supplemental treatments will route certain waste components to processing and disposition pathways outside of WTP and thus will accelerate the overall Hanford tank waste remediation mission.

  11. Removal of salt from high-level waste tanks by density-driven circulation or mechanical agitation

    Kiser, D.L.

    1981-01-01

    Twenty-two high-level waste storage tanks at the Savannah River Plant are to be retired in the tank replacement/waste transfer program. The salt-removal portion of this program requires dissolution of about 19 million liters of salt cake. Steam circulation jets were originally proposed to dissolve the salt cake. However, the jets heated the waste tank to 80 to 90 0 C. This high temperature required a long cooldown period before transfer of the supernate by jet, and increased the risk of stress-corrosion cracking in these older tanks. A bench-scale investigation at the Savannah River Laboratory developed two alternatives to steam-jet circulation. One technique was density-driven circulation, which in bench tests dissolved salt at the same rate as a simulated steam circulation jet but at a lower temperature. The other technique was mechanical agitation, which dissolved the salt cake faster and required less fresh water than either density-driven circulation or the simulated steam circulation jet. Tests in an actual waste tank verified bench-scale results and demonstrated the superiority of mechanical agitation

  12. Development and testing of single-shell tank waste retrieval technologies: Milestone M-45-01 summary report

    Shen, E.J.

    1994-08-01

    This report summarizes the activities undertaken to develop single-shell tank (SST) waste retrieval technology and complete scale-model testing. Completion of these activities fulfills the commitment of Milestone M-45-01 of the Hanford Federal Facility Agreement and Consent Order (the Tri-Party Agreement). Initial activities included engineering studies that compiled and evaluated data on all known retrieval technologies. Based on selection criteria incorporating regulatory, safety, and operational issues, several technologies were selected for further evaluation and testing. The testing ranged from small-scale, bench-top evaluations of individual technologies to full-scale integrated tests of multiple subsystems operating concurrently as a system using simulated wastes. The current baseline retrieval method for SSTs is hydraulic sluicing. This method has been used successfully in the past to recover waste from SSTs. Variations of this hydraulic or ''past practice'' sluicing may be used to retrieve the waste from the majority of the SSTs. To minimize the potential for releases to the soil, arm-based retrieval systems may be used to recover waste from tanks that are known or suspected to have leaked. Both hydraulic sluicing and arm-based retrieval will be demonstrated in the first SST. Hydraulic sluicing is expected to retrieve most of the waste, and arm-based retrieval will retrieve wastes that remain after sluicing. Subsequent tanks will be retrieved by either hydraulic sluicing or arm-based methods, but not both. The method will be determined by waste characterization, tank integrity (leak status), and presence of in-tank hardware. Currently, it is assumed that approximately 75% of all SSTs will be retrieved by hydraulic sluicing and the remaining tanks by arm-based methods

  13. Structural analysis of Hanford's single-shell 241-C-106 tank: A first step toward waste-tank remediation

    Harris, J.P.; Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.; Jagadish, P.; Shulman, J.S.

    1993-10-01

    The buried single-shell waste tank 241-C-106, located at the US Department of Energy's Hanford Site, has been a repository for various liquid radioactive waste materials since its construction in 1943. A first step toward waste tank remediation is demonstrating that remediation activities can be performed safely. Determination of the current structural capacity of this high-heat tank is an important element in this assessment. A structural finite-element model of tank 241-C-106 has been developed to assess the tank's structural integrity with respect to in situ conditions and additional remediation surface loads. To predict structural integrity realistically, the model appropriately addresses two complex issues: (1) surrounding soil-tank interaction associated with thermal expansion cycling and surcharge load distribution and (2) concrete-property degradation and creep resulting from exposure to high temperatures generated by the waste. This paper describes the development of the 241-C-106 structural model, analysis methodology, and tank-specific structural acceptance criteria

  14. CRUCIBLE TESTING OF TANK 48 RADIOACTIVE WASTE SAMPLE USING FBSR TECHNOLOGY FOR ORGANIC DESTRUCTION

    Hammond, C; William Pepper, W

    2008-01-01

    The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble

  15. Quantitative measurement of cyanide complexes in simulated and actual Hanford ferrocyanide wastes

    Bryan, S.A.; Pool, K.H.; Sell, R.L.; Bryan, S.L.

    1994-01-01

    Cyanide-containing radioactive waste from radiocesium scavenging processes conducted during the 1950's at Hanford is currently stored in 24 single shell tanks. As part of ongoing tank characterization efforts, the quantity and chemical form of cyanide in these tanks need to be determined. This report summarizes the results of studies conducted at Pacific Northwest Laboratory (PNL) under contract to Westinghouse Hanford Company (WHC) to develop methods for the quantification of total cyanide and identification of major cyanide-containing species in Ferrocyanide Tank Waste. Results from the application of FTIR, IC, and microdistillation procedures to simulated and actual Hanford waste are presented and compared where applicable

  16. Precipitation of Aluminum Containing Species in Tank Wastes

    Mattigod, Shas V.; Hobbs, David; Parker, Kent E.; McCready, David E.

    2001-01-01

    Aluminisilicate deposit buildup experienced during the tank waste volume-reduction process at the Savannah River Site (SRS) required an evaporator to be shut down in October 1999. The Waste Processing Technology Section (WPTS) of Westinghouse Savannah River Company at SRS is now collaborating with team members from Pacific Northwest National Laboratory (PNNL) to verify the steady-state thermodynamic stability of aluminosilicate compounds under waste tank conditions in an attempt to eliminate the deposition and clogging problems. The data obtained at 40?C showed that formation and persistence of crystalline phases was dependent on the initial hydroxide concentrations. The formation and persistence of zeolite A occurred only at lower hydroxide concentrations, whereas increasing hydroxide concentrations appeared to promote the formation of sodalite and cancrinite. The data also showed that although zeolite A forms initially, it is a metastable phase that converts to more stable crystalline materials such as sodalite and cancrinite. Additionally, the rate of transformation of zeolite A appeared to increase with increasing hydroxide concentration. The data from tests conducted at 80?C revealed relatively rapid formation of sodalite and cancrinite. Although minor amounts of zeolite A were initially detected in some cases, the higher reaction temperatures seemed to promote very rapid transformation of this phase into more stable phases. Also, the higher temperature and hydroxide concentrations appeared to initiate kinetically fast crystallization of sodalite and cancrinite. More recent testing at SRS in support of the HLW evaporator plugging issue has shown similar trends in the formation of aluminosilicate phases. These tests were carried out under conditions more similar to those that occur in HLW tanks and evaporators. Comparison of our results with those reported above show very similar trends

  17. Tank Waste Remediation System Characterization Project Programmatic Risk Management Plan

    Baide, D.G.; Webster, T.L.

    1995-12-01

    The TWRS Characterization Project has developed a process and plan in order to identify, manage and control the risks associated with tank waste characterization activities. The result of implementing this process is a defined list of programmatic risks (i.e. a risk management list) that are used by the Project as management tool. This concept of risk management process is a commonly used systems engineering approach which is being applied to all TWRS program and project elements. The Characterization Project risk management plan and list are subset of the overall TWRS risk management plan and list

  18. TWRS tank waste pretreatment process development hot test siting report

    Howden, G.F.; Banning, D.L.; Dodd, D.A.; Smith, D.A.; Stevens, P.F.; Hansen, R.I.; Reynolds, B.A.

    1995-02-01

    This report is the sixth in a series that have assessed the hot testing requirements for TWRS pretreatment process development and identified the hot testing support requirements. This report, based on the previous work, identifies specific hot test work packages, matches those packages to specific hot cell facilities, and provides recommendations of specific facilities to be employed for the pretreatment hot test work. Also identified are serious limitations in the tank waste sample retrieval and handling infrastructure. Recommendations are provided for staged development of 500 mL, 3 L, 25 L and 4000 L sample recovery systems and specific actions to provide those capabilities

  19. Long-reach manipulation for waste storage tank remediation

    Jansen, J.F.; Burks, B.L.; Babcock, S.M.; Kress, R.L.; Hamel, W.R.

    1991-01-01

    Remediation of large underground storage tanks containing hazardous waste provides an application for state-of-the-art technology in flexible link manipulator design and control and a need for additional research and development. Application requirements are described, and preliminary analyses associated with this problem are summarized. Inherent physical limitations of flexible manipulators are discussed. Potential kinematic configurations, drive-train elements, and control issues for both free-space motion and damping of forced vibration are addressed. Also included are future directions for research and development in mechanical components and control strategies. 21 refs., 4 figs., 4 tabs

  20. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    BOOMER, K.D.

    2007-01-01

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed

  1. Tank Farm surveillance and waste status summary report for March 1993

    Hanlon, B.M.

    1993-05-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are Contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding flank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks

  2. Cesium sorption from concentrated acidic tank wastes using ammonium molybdophosphate-polyacrylonitrile composite sorbents

    Todd, T.A.; Mann, N.R.; Tranter, T.J.; Sebesta, F.; John, J.; Motl, A.

    2002-01-01

    Ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) composite sorbents have been evaluated for the removal of cesium from Idaho National Engineering and Environmental Laboratory (INEEL) concentrated acidic tank waste. Batch contacts were performed to qualitatively evaluate the effects of increased nitric acid, sodium and potassium. An equilibrium isotherm was generated with simulated concentrated tank waste solutions and fit to the Langmuir equation. Additional batch contact experiments were performed to determine if mercury, plutonium and americium would sorb onto AMP-PAN. Dynamic sorption was evaluated in column tests employing 1.5 cm 3 columns operating at 5, 10 and 20 bed volumes of flow per hour. Results indicate, as expected, that dynamic cesium sorption capacity is reduced as the flowrate is increased. Calculated dynamic capacities for cesium were 22.5, 19.8 and 19.6 mg Cs/g sorbent, for 5, 10 and 20 bed volume per hour flows, respectively. The thermal stability of loaded AMP-PAN was evaluated by performing thermogravimetric analysis (TGA) on samples of AMP, PAN (polymer), and AMP-PAN. Results indicate that AMP-PAN is stable to 400 deg C, with less than a 10% loss of weight, which is at least partially due to loss of water of hydration. The evaluation of AMP-PAN indicates that it will effectively remove cesium from concentrated acidic tank waste solutions. (author)

  3. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1986-12-01

    At the US Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assess the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 molar nitrite required for reactor fuel reprocessing wastes. Periodic agitation, to keep the organic phase suspended, or cathodic protection are possible alternatives to higher nitrite inhibitor concentrations

  4. The Continued Need for Modeling and Scaled Testing to Advance the Hanford Tank Waste Mission

    Peurrung, Loni M.; Fort, James A.; Rector, David R.

    2013-09-03

    Hanford tank wastes are chemically complex slurries of liquids and solids that can exhibit changes in rheological behavior during retrieval and processing. The Hanford Waste Treatment and Immobilization Plant (WTP) recently abandoned its planned approach to use computational fluid dynamics (CFD) supported by testing at less than full scale to verify the design of vessels that process these wastes within the plant. The commercial CFD tool selected was deemed too difficult to validate to the degree necessary for use in the design of a nuclear facility. Alternative, but somewhat immature, CFD tools are available that can simulate multiphase flow of non-Newtonian fluids. Yet both CFD and scaled testing can play an important role in advancing the Hanford tank waste mission—in supporting the new verification approach, which is to conduct testing in actual plant vessels; in supporting waste feed delivery, where scaled testing is ongoing; as a fallback approach to design verification if the Full Scale Vessel Testing Program is deemed too costly and time-consuming; to troubleshoot problems during commissioning and operation of the plant; and to evaluate the effects of any proposed changes in operating conditions in the future to optimize plant performance.

  5. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL DYNAMIC RESPONSE TO THE WASTE ELASTIC PROPERTIES

    MACKEY TC; ABATT FG; JOHNSON KI

    2009-01-16

    The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10{sup 3} Pa and 4.135 x 10{sup 9} Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks

  6. Optimization of the Retrieval of Waste from Hanford Tank S-109 through Numerical Modeling

    Patel, R.; Tachiev, G.; Mulchandani, A.; Roelant, D.

    2009-01-01

    This report covers 10 different retrieval scenarios to support the U.S. Department of Energy's Office of River Protection in its mission to facilitate the retrieval and treatment of high-level radioactive waste stored in underground tanks at the Hanford site by investigating the transport properties of the salt-cake. Salt-cake consists of salts precipitated out of the brines during evaporation and storage. The main objective of this study is to gain a better understanding of the dissolution process that will occur in Tank 241-S-109 as it is retrieved to provide waste for Vitrification at the Demonstration Bulk Vitrification System Facility (DBVS). Double Shell Tank (DST) space is extremely limited and will continue to be until the Waste Treatment Plant becomes operational. Maximizing the utilization of DST space is the goal of the S-109 Partial Waste Retrieval Project that will provide waste feed to the Demonstration Bulk Vitrification System (DBVS). Florida International University, FIU has developed a 2-D axisymmetric numerical model which will assist the Department of Energy (DOE) and Savannah River Site (SRS) in evaluating the potential of selective salt-cake retrieval for schedule acceleration and significant cost savings by analyzing the performance of different retrieval scenarios with the prediction of Cs breakthrough curves in the resulting salt-cake brine and to determine the displacement patterns of Cs. This predictive information is critical for scheduling and operational purposes. Ten retrieval scenarios which include addition of flushing liquid at the entire surface of the tank or at a side peripheral channel were simulated. All retrieval scenarios were analyzed for incremental retrieval (saturation of the tank with flushing liquid followed by complete drainage at the central well) versus continuous retrieval (water is continuously added at the top and retrieved at a central well). Furthermore, the specifics of the tank hydrology were approximated

  7. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    Fritz, R.L.

    1995-01-01

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities

  8. High-level waste tank farm set point document

    Anthony, J.A. III.

    1995-01-01

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope

  9. High-level waste tank farm set point document

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

  10. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    Fritz, R.L.

    1995-01-11

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities.

  11. Maintenance Plan for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment

    MANN, F.M.

    2000-01-01

    The plan for maintaining the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (PA) is described. The plan includes expected work on PA reviews and revisions, waste reports, monitoring, other operational activities, etc

  12. Minutes of the Tank Waste Science Panel meeting, November 11--13, 1991

    Strachan, D.M.

    1992-04-01

    The sixth meeting of the Tank Waste Science Panel was held November 11--13, 1991, in Pasco and Richland, Washington. Participating scientists presented the results of recent work on various aspects of issues relating to the generation and release of gases from Tank 241-SY-101 and the presence of ferrocyanide in other tanks at Hanford. Results are discussed

  13. Minutes of the Tank Waste Science Panel meeting, November 11--13, 1991

    Strachan, D.M. (comp.)

    1992-04-01

    The sixth meeting of the Tank Waste Science Panel was held November 11--13, 1991, in Pasco and Richland, Washington. Participating scientists presented the results of recent work on various aspects of issues relating to the generation and release of gases from Tank 241-SY-101 and the presence of ferrocyanide in other tanks at Hanford. Results are discussed.

  14. Multi-Function Waste Tank Facility phase out basis. Revision 2

    Awadalla, N.G.

    1995-01-01

    Additional double-shell tank storage capacity is not needed until FY 2004 or later. The waste volume in the current baseline program can be managed within the existing tank capacity. However, this requires implementation of some risk management actions and significant investment in software and hardware to accomplish the actions necessary to maximize use of existing storage tank space

  15. Multi-Function Waste Tank Facility phase out basis. Revision 1

    Awadalla, N.G.

    1995-01-01

    Additional double-shell tank storage capacity is not needed until FY 2004 or later. The waste volume in the current baseline program can be managed within the existing tank capacity. However, this requires implementation of some risk management actions and significant investment in software and hardware to accomplish the actions necessary to maximize use of existing storage tank space.''

  16. Tank waste remediation system multi-year work plan

    1994-09-01

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsection for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging open-quotes out sourcingclose quotes of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders

  17. Tank waste remediation system multi-year work plan

    1994-09-01

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsection for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.

  18. Evaluation Of The Integrated Solubility Model, A Graded Approach For Predicting Phase Distribution In Hanford Tank Waste

    Pierson, Kayla L.; Belsher, Jeremy D.; Seniow, Kendra R.

    2012-01-01

    The mission of the DOE River Protection Project (RPP) is to store, retrieve, treat and dispose of Hanford's tank waste. Waste is retrieved from the underground tanks and delivered to the Waste Treatment and Immobilization Plant (WTP). Waste is processed through a pretreatment facility where it is separated into low activity waste (LAW), which is primarily liquid, and high level waste (HLW), which is primarily solid. The LAW and HLW are sent to two different vitrification facilities and glass canisters are then disposed of onsite (for LAW) or shipped off-site (for HLW). The RPP mission is modeled by the Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulator and mass balance model that is used for mission analysis and strategic planning. The integrated solubility model (ISM) was developed to improve the chemistry basis in HTWOS and better predict the outcome of the RPP mission. The ISM uses a graded approach to focus on the components that have the greatest impact to the mission while building the infrastructure for continued future improvement and expansion. Components in the ISM are grouped depending upon their relative solubility and impact to the RPP mission. The solubility of each group of components is characterized by sub-models of varying levels of complexity, ranging from simplified correlations to a set of Pitzer equations used for the minimization of Gibbs Energy

  19. Evaluation Of The Integrated Solubility Model, A Graded Approach For Predicting Phase Distribution In Hanford Tank Waste

    Pierson, Kayla L.; Belsher, Jeremy D.; Seniow, Kendra R.

    2012-10-19

    The mission of the DOE River Protection Project (RPP) is to store, retrieve, treat and dispose of Hanford's tank waste. Waste is retrieved from the underground tanks and delivered to the Waste Treatment and Immobilization Plant (WTP). Waste is processed through a pretreatment facility where it is separated into low activity waste (LAW), which is primarily liquid, and high level waste (HLW), which is primarily solid. The LAW and HLW are sent to two different vitrification facilities and glass canisters are then disposed of onsite (for LAW) or shipped off-site (for HLW). The RPP mission is modeled by the Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulator and mass balance model that is used for mission analysis and strategic planning. The integrated solubility model (ISM) was developed to improve the chemistry basis in HTWOS and better predict the outcome of the RPP mission. The ISM uses a graded approach to focus on the components that have the greatest impact to the mission while building the infrastructure for continued future improvement and expansion. Components in the ISM are grouped depending upon their relative solubility and impact to the RPP mission. The solubility of each group of components is characterized by sub-models of varying levels of complexity, ranging from simplified correlations to a set of Pitzer equations used for the minimization of Gibbs Energy.

  20. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1996-09-01

    Some of Hanford's underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford's organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes' future storage. This work focused on the equilibrium water content and did not investigate the various factors such as at sign ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures

  1. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1996-09-01

    Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

  2. Monitoring Volatile Organic Tank Waste Using Cermet Microsensors

    Edward G. Gatliff, Ph.D.; Laura R. Skubal, Ph.D.; Michael C. Vogt, Ph.D.

    2006-03-13

    Presently, very few inexpensive technologies exist in the marketplace that can determine the contents of tank waste or monitor the chemistry of tank constituents in near-real time. The research addressed this problem by developing and assessing ceramic-metallic based microsensors for determining the constituents of a liquid organic storage tank by examining the gases in the headspace of the tank. Overall, the WBO and YSZ sensors responded well to the chemicals in this study. Responses to various concentrations were distinguishable visually. This is a clear indication that pattern recognition tools will be effective in resolving the constituents and concentrations. In tests, such as the test with acetophenone, one sensor, the WBO sensor is not extremely effective. However, the other sensor, the YSZ sensor, is effective in resolving the concentrations. This supports the need to use an array of sensors, as one sensor may be reactive to a compound while another may not. In the course of this research, several interesting phenomena surfaced. New sensors, that were fabricated but not used in a contaminant gas, seemed to function more effectively and predictably if a ?conditioning? step was imposed upon them prior to use in square wave voltammetry. A conditioning step consists of running cyclic voltammetry prior to running square wave voltammetry. This step tends to ?cleanse? the sensor surface by providing a full -1.0 V to +1.0V sweep and both oxidizing and reducing compounds on the sensor surface. [Note: squarewave voltammetry will simply oxidize or reduce compounds ? it will not induce both reactions.] This sweep is essential for recovery between samples.

  3. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust

  4. Use Of Stream Analyzer For Solubility Predictions Of Selected Hanford Tank Waste

    Pierson, Kayla; Belsher, Jeremy; Ho, Quynh-dao

    2012-01-01

    The Hanford Tank Waste Operations Simulator (HTWOS) models the mission to manage, retrieve, treat and vitrify Hanford waste for long-term storage and disposal. HTWOS is a dynamic, flowsheet, mass balance model of waste retrieval and treatment activities. It is used to evaluate the impact of changes on long-term mission planning. The project is to create and evaluate the integrated solubility model (ISM). The ISM is a first step in improving the chemistry basis in HTWOS. On principal the ISM is better than the current HTWOS solubility. ISM solids predictions match the experimental data well, with a few exceptions. ISM predictions are consistent with Stream Analyzer predictions except for chromium. HTWOS is producing more realistic results with the ISM

  5. Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis.

    Han, Wei; Hu, Yun Yi; Li, Shi Yi; Li, Fei Fei; Tang, Jun Hong

    2016-12-01

    Biohydrogen production from waste bread in a continuous stirred tank reactor (CSTR) was techno-economically assessed. The treating capacity of the H 2 -producing plant was assumed to be 2 ton waste bread per day with lifetime of 10years. Aspen Plus was used to simulate the mass and energy balance of the plant. The total capital investment (TCI), total annual production cost (TAPC) and annual revenue of the plant were USD931020, USD299746/year and USD639920/year, respectively. The unit hydrogen production cost was USD1.34/m 3 H 2 (or USD14.89/kg H 2 ). The payback period and net present value (NPV) of the plant were 4.8years and USD1266654, respectively. Hydrogen price and operators cost were the most important variables on the NPV. It was concluded that biohydrogen production from waste bread in the CSTR was feasible for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Functions and requirements for subsurface barriers used in support of single-shell tank waste retrieval

    Lowe, S.S.

    1993-01-01

    The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Program includes project and program activities for receiving, storing, maintaining, treating, and disposing onsite, or packaging for offsite disposal, all Hanford tank waste. Hanford tank waste includes the contents of 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs), plus any new waste added to these facilities, and all encapsulated cesium and strontium stored onsite and returned from offsite users. A key element of the TWRS Program is retrieval of the waste in the SSTs. The waste stored in these underground tanks must be removed in order to minimize environmental, safety, and health risks associated with continuing waste storage. Subsurface barriers are being considered as a means to mitigate the effects of tank leaks including those occurring during SST waste retrieval. The functions to be performed by subsurface barriers based on their role in retrieving waste from the SSTs are described, and the requirements which constrain their application are identified. These functions and requirements together define the functional baseline for subsurface barriers

  7. The effect of dilution on the gas-retention behavior of Tank 241-SY-101 waste

    Bredt, P.R.; Tingey, S.M.; Shade, E.H.

    1995-09-01

    The effect of dilution on gas retention in waste from Tank 241-SY-101 was investigated. A composite sample was prepared from material collected during the Window ''C'' and Window ''E'' sampling events. The composite contained material from both the convective and nonconvective layer in the proportions existing in the tank. Operation of the mixer pump in Tank 241-SY-101 has homogenized the tank material, and dilution of the current waste would require additional mixing; therefore, no attempt was made to use unhomogenized tank waste to prepare the composite. The composite was diluted with 2 M NaOH at ratios of 0.5:1, 0.75: 1, 1:1, and 3:1 per volume (2 M NaOH:tank waste)

  8. Waste Tank Organic Safety Program: Analytical methods development. Progress report, FY 1994

    Campbell, J.A.; Clauss, S.A.; Grant, K.E.

    1994-09-01

    The objectives of this task are to develop and document extraction and analysis methods for organics in waste tanks, and to extend these methods to the analysis of actual core samples to support the Waste Tank organic Safety Program. This report documents progress at Pacific Northwest Laboratory (a) during FY 1994 on methods development, the analysis of waste from Tank 241-C-103 (Tank C-103) and T-111, and the transfer of documented, developed analytical methods to personnel in the Analytical Chemistry Laboratory (ACL) and 222-S laboratory. This report is intended as an annual report, not a completed work

  9. Development of a hot water tank simulation program with improved prediction of thermal stratification in the tank

    Fan, Jianhua; Furbo, Simon; Yue, Hongqiang

    2015-01-01

    A simulation program SpiralSol was developed in previous investigations to calculate thermal performance of a solar domestic hot water (SDHW) system with a hot water tank with a built-in heat exchanger spiral [1]. The simulation program is improved in the paper in term of prediction of thermal...... stratification in the tank. The transient fluid flow and heat transfer in the hot water tank during cooling caused by standby heat loss are investigated by validated computational fluid dynamics (CFD) calculations. Detailed CFD investigations are carried out to determine the influence of thickness and material...... property of the tank wall on thermal stratification in the tank. It is elucidated how thermal stratification in the tank is influenced by the natural convection and how the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions. The existing...

  10. Methodology for completing Hanford 200 Area tank waste physical/chemical profile estimations

    Kruger, A.A.

    1996-01-01

    The purpose of the Methodology for Completing Hanford 200 Area Tank Waste Physical/Chemical Profile Estimations is to capture the logic inherent to completing 200 Area waste tank physical and chemical profile estimates. Since there has been good correlation between the estimate profiles and actual conditions during sampling and sub-segment analysis, it is worthwhile to document the current estimate methodology

  11. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume IV

    1996-08-01

    This document, Volume 4, describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington

  12. Removal of floating organic in Hanford Waste Tank 241-C-103 restart plan

    Wilson, T.R.; Hanson, C.

    1994-10-03

    The decision whether or not to remove the organic layer from Waste Tank 241-C-103 was deferred until May, 1995. The following restart plan was prepared for removal of the organic if the decision is to remove the organic from the waste tank 241-C-103.

  13. Removal of floating organic in Hanford Waste Tank 241-C-103 restart plan

    Wilson, T.R.; Hanson, C.

    1994-01-01

    The decision whether or not to remove the organic layer from Waste Tank 241-C-103 was deferred until May, 1995. The following restart plan was prepared for removal of the organic if the decision is to remove the organic from the waste tank 241-C-103

  14. Minutes of the Tank Waste Science Panel meeting July 9--1, 1991

    Strachan, D.M.

    1992-04-01

    The fifth meeting of the Tank Waste Science Panel was held July 9--11, 1991, in Atlanta, Georgia. The subject areas included the generation, retention, and release of gases from Tank 241-SY-101 and the chemistry of ferrocyanide wastes

  15. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update

    Washenfelder, Dennis J.

    2015-01-01

    The presentation outline is: Briefly review leak integrity status of tank AY-102 and current leak behavior; Summarize recent initiatives to understand leak mechanism and to verify integrity of remaining waste confinement structures; describe planned waste recovery activities; and, introduce other papers on tank AY-102 topics.

  16. Tank 241-C-106 past-practice sluicing waste retrieval, Hanford Site, Richland, Washington. Environmental Assessment

    1995-02-01

    The US Department of Energy (DOE) needs to take action to eliminate safety concerns with storage of the high-heat waste in Tank 241-C-106 (Tank C-106), and demonstrate a tank waste retrieval technology. This Environmental Assessment (EA) was prepared to analyze the potential impacts associated with the proposed action, past-practice sluicing of Tank C-106, an underground single-shell tank (SST). Past-practice sluicing is defined as the mode of waste retrieval used extensively in the past at the Hanford Site on the large underground waste tanks, and involves introducing a high-volume, low-pressure stream of liquid to mobilize sludge waste prior to pumping. It is proposed to retrieve the waste from Tank C-106 because this waste is classified not only as transuranic and high-level, but also as high-heat, which is caused by the radioactive decay of strontium. This waste characteristic has led DOE to place Tank C-106 on the safety ''Watchlist.''

  17. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    Swita, W.R.

    1998-01-01

    This document provides a summary of the proposed Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost) developed to demonstrate the Tank Waste Remediation System contractor's Readiness-to-Proceed in support of the Phase 1B mission

  18. Glass Science tutorial lecture No. 5: Historical review of USDOE tank waste management

    McDaniel, E.W.

    1995-02-01

    This is a two day course whose objective is to present an unbiased historical overview of the DOE tank waste activities. World events which impacted the US nuclear program (or vise versa) will be presented. Liquid, mostly tank