Sample records for simulated lunar soil

  1. Geopolymers from lunar and Martian soil simulants (United States)

    Alexiadis, Alessio; Alberini, Federico; Meyer, Marit E.


    This work discusses the geopolymerization of lunar dust simulant JSC LUNAR-1A and Martian dust simulant JSC MARS-1A. The geopolymerization of JSC LUNAR-1A occurs easily and produces a hard, rock-like, material. The geopolymerization of JSC MARS-1A requires milling to reduce the particle size. Tests were carried out to measure, for both JSC LUNAR-1A and JSC MARS-1A geopolymers, the maximum compressive and flexural strengths. In the case of the lunar simulant, these are higher than those of conventional cements. In the case of the Martian simulant, they are close to those of common building bricks.

  2. Growth of plant tissue cultures in simulated lunar soil: Implications for a lunar base Controlled Ecological Life Support System (CELSS) (United States)

    Venketeswaran, S.


    Experiments to determine whether plant tissue cultures can be grown in the presence of simulated lunar soil (SLS) and the effect of simulated lunar soil on the growth and morphogenesis of such cultures, as well as the effect upon the germination of seeds and the development of seedlings were carried out . Preliminary results on seed germination and seedling growth of rice and calli growth of winged bean and soybean indicate that there is no toxicity or inhibition caused by SLS. SLS can be used as a support medium with supplements of certain major and micro elements.

  3. Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil Project (United States)

    National Aeronautics and Space Administration — Rocket plume impingement may cause significant damage and contaminate co-landed spacecraft and surrounding habitat structures during Lunar landing operations. Under...

  4. Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil Project (United States)

    National Aeronautics and Space Administration — Rocket plume impingement can cause significant damage and contaminate co-landing spacecraft and surrounding habitat structures during lunar landing operations. CFDRC...

  5. Effects of Space Weathering on Thermal Infrared Emissivity Spectra of Bulk Lunar Soils Measured Under Simulated Lunar Conditions (United States)

    Donaldson Hanna, K. L.; Bowles, N. E.; Pieters, C. M.; Greenhagen, B. T.; Glotch, T. D.; Lucey, P. G.


    In this initial study, TIR emissivity spectral measurements are made under lunar-like conditions of two highland soil samples that are similar in composition, but differing maturities to understand the effects of space weathering on TIR spectra.

  6. Growth of plant tissue cultures in simulated lunar soil: Implications for a lunar base CELSS (Controlled Ecological Life Support System) (United States)

    Venketeswaran, S.


    Experiments were carried out on plant tissue cultures, seed germination, seedling development and plants grown on Simulated Lunar Soil to evaluate the potential of future development of lunar based agriculture. The studies done to determine the effect of the placement of SLS on tissue cultures showed no adverse effect of SLS on tissue cultures. Although statistically insignificant, SLS in suspension showed a comparatively higher growth rate. Observations indicate the SLS, itself cannot support calli growth but was able to show a positive effect on growth rate of calli when supplemented with MS salts. This positive effect related to nutritive value of the SLS was found to have improved at high pH levels, than at the recommended low pH levels for standard media. Results from seed germination indicated that there is neither inhibitory, toxicity nor stimulatory effect of SLS, even though SLS contains high amounts of aluminum compounds compared to earth soil. Analysis of seeding development and growth data showed significant reduction in growth rate indicating that, SLS was a poor growth medium for plant life. This was confirmed by the studies done with embryos and direct plant growth on SLS. Further observations attributed this poor quality of SLS is due to it's lack of essential mineral elements needed for plant growth. By changing the pH of the soil, to more basic conditions, the quality of SLS for plant growth could be improved up to a significant level. Also it was found that the quality of SLS could be improved by almost twice, by external supply of major mineral elements, directly to SLS.

  7. Research on Impact Process of Lander Footpad against Simulant Lunar Soils

    Directory of Open Access Journals (Sweden)

    Bo Huang


    Full Text Available The safe landing of a Moon lander and the performance of the precise instruments it carries may be affected by too heavy impact on touchdown. Accordingly, landing characteristics have become an important research focus. Described in this paper are model tests carried out using simulated lunar soils of different relative densities (called “simulant” lunar soils below, with a scale reduction factor of 1/6 to consider the relative gravities of the Earth and Moon. In the model tests, the lander was simplified as an impact column with a saucer-shaped footpad with various impact landing masses and velocities. Based on the test results, the relationships between the footpad peak feature responses and impact kinetic energy have been analyzed. Numerical simulation analyses were also conducted to simulate the vertical impact process. A 3D dynamic finite element model was built for which the material parameters were obtained from laboratory test data. When compared with the model tests, the numerical model proved able to effectively simulate the dynamic characteristics of the axial forces, accelerations, and penetration depths of the impact column during landing. This numerical model can be further used as required for simulating oblique landing impacts.

  8. Electrolysis of simulated lunar melts (United States)

    Lewis, R. H.; Lindstrom, D. J.; Haskin, L. A.


    Electrolysis of molten lunar soil or rock is examined as an attractive means of wresting useful raw materials from lunar rocks. It requires only hat to melt the soil or rock and electricity to electrolyze it, and both can be developed from solar power. The conductivities of the simple silicate diopside, Mg CaSi2O6 were measured. Iron oxide was added to determine the effect on conductivity. The iron brought about substantial electronic conduction. The conductivities of simulated lunar lavas were measured. The simulated basalt had an AC conductivity nearly a fctor of two higher than that of diopside, reflecting the basalt's slightly higher total concentration of the 2+ ions Ca, Mg, and Fe that are the dominant charge carriers. Electrolysis was shown to be about 30% efficient for the basalt composition.

  9. Lunar Excavation Experiments in Simulant Soil Test Beds-Revisiting the Surveyor Geotechnical Data (United States)

    Agui, Juan H.; Wilkinson, R. Allen


    (1) Establishing ISRU technologies on planetary bodies is an important long-term goal of NASA; (2) Excavation is a key component of these ISRU processes; (3) Lack of flight data relevant to lunar excavation; (4) Existing models of the excavation-cutting phenomenon give varying results; (5) The lack of predictive models of the dynamic behavior of soils in excavation implements is a major driver for these studies; and (6) Objective: Need to develop robust models of excavation cutting phenomena that generate predictive capabilities to aid the designer and engineer.

  10. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications (United States)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.


    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  11. Lunar soil properties and soil mechanics (United States)

    Mitchell, J. K.; Houston, W. N.


    The long-range objectives were to develop methods of experimentation and analysis for the determination of the physical properties and engineering behavior of lunar surface materials under in situ environmental conditions. Data for this purpose were obtained from on-site manned investigations, orbiting and softlanded spacecraft, and terrestrial simulation studies. Knowledge of lunar surface material properties are reported for the development of models for several types of lunar studies and for the investigation of lunar processes. The results have direct engineering application for manned missions to the moon.

  12. Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil, Phase I (United States)

    National Aeronautics and Space Administration — Rocket plume impingement may cause significant damage and contaminate co-landed spacecraft and surrounding habitat structures during Lunar landing operations. Under...

  13. Lunar Soil Erosion Physics for Landing Rockets on the Moon (United States)

    Clegg, Ryan N.; Metzger, Philip T.; Huff, Stephen; Roberson, Luke B.


    To develop a lunar outpost, we must understand the blowing of soil during launch and landing of the new Altair Lander. For example, the Apollo 12 Lunar Module landed approximately 165 meters from the deactivated Surveyor Ill spacecraft, scouring its surfaces and creating numerous tiny pits. Based on simulations and video analysis from the Apollo missions, blowing lunar soil particles have velocities up to 2000 m/s at low ejection angles relative to the horizon, reach an apogee higher than the orbiting Command and Service Module, and travel nearly the circumference of the Moon [1-3]. The low ejection angle and high velocity are concerns for the lunar outpost.

  14. Lunar Regolith Simulant User's Guide (United States)

    Schrader, C. M.; Rickman, D. L.; McLemore, C. A.; Fikes, J. C.


    Based on primary characteristics, currently or recently available lunar regolith simulants are discussed from the perspective of potential experimental uses. The characteristics used are inherent properties of the material rather than their responses to behavioral (geomechanical, physiochemical, etc.) tests. We define these inherent or primary properties to be particle composition, particle size distribution, particle shape distribution, and bulk density. Comparable information about lunar materials is also provided. It is strongly emphasized that anyone considering either choosing or using a simulant should contact one of the members of the simulant program listed at the end of this document.

  15. Mass Production of Mature Lunar Regolith Simulant, Phase I (United States)

    National Aeronautics and Space Administration — As NASA prepares for future exploration activities on the Moon, there is a growing need to develop higher fidelity lunar soil simulants that can accurately reproduce...

  16. Mass Production of Mature Lunar Regolith Simulant Project (United States)

    National Aeronautics and Space Administration — As NASA prepares for future exploration activities on the Moon, there is a growing need to develop higher fidelity lunar soil simulants that can accurately reproduce...

  17. Production of Mature Highland Lunar Regolith Simulant, Phase I (United States)

    National Aeronautics and Space Administration — As NASA considers manned and/or unmanned return missions to the Moon and beyond, it is imperative that high fidelity lunar soil simulants be developed in order to...

  18. Developing a new controllable lunar dust simulant: BHLD20 (United States)

    Sun, Hao; Yi, Min; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin


    Identifying and eliminating the negative effects of lunar dust are of great importance for future lunar exploration. Since the available lunar samples are limited, developing terrestrial lunar dust simulant becomes critical for the study of lunar dust problem. In this work, beyond the three existing lunar dust simulants: JSC-1Avf, NU-LHT-1D, and CLDS-i, we developed a new high-fidelity lunar dust simulant named as BHLD20. And we concluded a methodology that soil and dust simulants can be produced by variations in portions of the overall procedure, whereby the properties of the products can be controlled by adjusting the feedstock preparation and heating process. The key ingredients of our innovative preparation route include: (1) plagioclase, used as a major material in preparing all kinds of lunar dust simulants; (2) a muffle furnace, applied to expediently enrich the glass phase in feedstock, with the production of some composite particles; (3) a one-step sand-milling technique, employed for mass pulverization without wasting feedstock; and (4) a particle dispersant, utilized to prevent the agglomeration in lunar dust simulant and retain the real particle size. Research activities in the development of BHLD20 can help solve the lunar dust problem.

  19. Thermal Optical Properties of Lunar Dust Simulants and Their Constituents (United States)

    Gaier, James R.; Ellis, Shaneise; Hanks, Nichole


    The total reflectance spectra of lunar simulant dusts (thermal emittance (epsilon) for the purpose of analyzing the effect of dust on the performance of thermal control surfaces. All of the simulants except one had a wavelength-dependent reflectivity (p (lambda)) near 0.10 over the wavelength range of 8 to 25 microns and so are highly emitting at room temperature and lower. The 300 K emittance (epsilon) of all the lunar simulants except one ranged from 0.78 to 0.92. The exception was Minnesota Lunar Simulant 1 (MLS-1), which has little or no glassy component. In all cases the epsilon was lower for the thermal infrared. As expected, the lunar highlands simulants were more reflective in this wavelength range than the lunar mare simulants. The integrated solar absorptance (alpha) of the simulants ranged from 0.39 to 0.75. This is lower than values reported earlier for larger particles of the same simulants (0.41 to 0.82), and for representative mare and highlands lunar soils (0.74 to 0.91). Since the of some mare simulants more closely matched that of highlands lunar soils, it is recommended that and values be the criteria for choosing a simulant for assessing the effects of dust on thermal control surfaces, rather than whether a simulant has been formulated as a highlands or a mare simulant.

  20. Lunar Soil Particle Separator, Phase I (United States)

    National Aeronautics and Space Administration — The Lunar Soil Particle Separator (LSPS) is an innovative method to beneficiate soil prior to in-situ resource utilization (ISRU). The LSPS improves ISRU oxygen...

  1. Lunar Soil Particle Separator, Phase II (United States)

    National Aeronautics and Space Administration — The Lunar Soil Particle Separator (LSPS) is an innovative method to beneficiate soil prior to in-situ resource utilization (ISRU). The LSPS can improve ISRU oxygen...

  2. Soil mechanics. [characteristics of lunar soil from Apollo 17 flight lunar landing site (United States)

    Mitchell, J. K.; Carrier, W. D., III; Costes, N. C.; Houston, W. N.; Scott, R. F.; Hovland, H. J.


    The soil mechanics experiment on the Apollo 17 mission to the Taurus-Littrow area of the moon is discussed. The objectives of the experiment were to determine the physical characteristics and mechanical properties of the lunar soil at the surface and subsurface in lateral directions. Data obtained on the lunar surface in conjunction with observations of returned samples of lunar soil are used to determine in-place density and porosity profiles and to determine strength characteristics on local and regional scales.

  3. Production of Synthetic Lunar Simulants, Phase I (United States)

    National Aeronautics and Space Administration — Zybek Advanced Products has proven the ability to produce industrial quantities of lunar simulant materials, including glass, agglutinate and melt breccias. These...

  4. Zinnia Germination and Lunar Soil Amendment (United States)

    Reese, Laura


    Germination testing was performed to determine the best method for germinating zinnias. This method will be used to attempt to germinate the zinnia seeds produced in space. It was found that seed shape may be critically important in determining whether a seed will germinate or not. The ability of compost and worm castings to remediate lunar regolith simulant for plant growth was tested. It was found that neither treatment effectively improves plant growth in lunar regolith simulant. A potential method of improving lunar regolith simulant by mixing it with arcillite was discovered.

  5. Armstrong practices in Lunar Module simulator (United States)


    Neil A. Armstrong, Commander for the Apollo 11 Moon-landing mission, practices for the historic event in a Lunar Module simulator in the Flight Crew Training building at KSC. Accompanying Armstrong on the Moon flight will be Command Module Pilot Michael Collins and Lunar Module Pilot Edwin E. Aldrin Jr.

  6. Electrostatic Separator for Beneficiation of Lunar Soil (United States)

    Quinn, Jacqueline; Arens, Ellen; Trigwell, Steve; Captain, James


    A charge separator has been constructed for use in a lunar environment that will allow for separation of minerals from lunar soil. In the present experiments, whole lunar dust as received was used. The approach taken here was that beneficiation of ores into an industrial feedstock grade may be more efficient. Refinement or enrichment of specific minerals in the soil before it is chemically processed may be more desirable as it would reduce the size and energy requirements necessary to produce the virgin material, and it may significantly reduce the process complexity. The principle is that minerals of different composition and work function will charge differently when tribocharged against different materials, and hence be separated in an electric field.

  7. Plume Mitigation: Soil Erosion and Lunar Prospecting Sensor Project (United States)

    Metzger, Philip T.


    Demonstrate feasibility of the simplest, lowest-mass method of measuring density of a cloud of lunar soil ejected by rocket exhaust, using new math techniques with a small baseline laser/camera system. Focus is on exploring the erosion process that occurs when the exhaust plume of a lunar rocket impacts the regolith. Also, predicting the behavior of the lunar soil that would be blasted from a lunar landing/launch site shall assist in better design and protection of any future lunar settlement from scouring of structures and equipment. NASA is gathering experimental data to improve soil erosion models and understand how lunar particles enter the plume flow.

  8. Carbon depth distributions for lunar soil breccias

    International Nuclear Information System (INIS)

    Spear, R.H.


    A technique is described which permits determination of the depth distribution of carbon within the first few microns of the surfaces of lunar samples. It is based upon measurement of the energy spectrum of protons from the reaction 12 C(d,p 0 ) 13 C at a bombarding energy of 1.07 MeV. Results are presented for soil breccias from the Apollo 11, 16 and 17 missions, and for a soil sample from the Apollo 14 mission. The Apollo 16 (highland) samples show surface concentrations which ae systematically lower than those for the mare samples

  9. Lunar surface vehicle model competition (United States)


    During Fall and Winter quarters, Georgia Tech's School of Mechanical Engineering students designed machines and devices related to Lunar Base construction tasks. These include joint projects with Textile Engineering students. Topics studied included lunar environment simulator via drop tower technology, lunar rated fasteners, lunar habitat shelter, design of a lunar surface trenching machine, lunar support system, lunar worksite illumination (daytime), lunar regolith bagging system, sunlight diffusing tent for lunar worksite, service apparatus for lunar launch vehicles, lunar communication/power cables and teleoperated deployment machine, lunar regolith bag collection and emplacement device, soil stabilization mat for lunar launch/landing site, lunar rated fastening systems for robotic implementation, lunar surface cable/conduit and automated deployment system, lunar regolith bagging system, and lunar rated fasteners and fastening systems. A special topics team of five Spring quarter students designed and constructed a remotely controlled crane implement for the SKITTER model.

  10. Construction material processed using lunar simulant in various environments (United States)

    Chase, Stan; Ocallaghan-Hay, Bridget; Housman, Ralph; Kindig, Michael; King, John; Montegrande, Kevin; Norris, Raymond; Vanscotter, Ryan; Willenborg, Jonathan; Staubs, Harry


    The manufacture of construction materials from locally available resources in space is an important first step in the establishment of lunar and planetary bases. The objective of the CoMPULSIVE (Construction Material Processed Using Lunar Simulant In Various Environments) experiment is to develop a procedure to produce construction materials by sintering or melting Johnson Space Center Simulant 1 (JSC-1) lunar soil simulant in both earth-based (1-g) and microgravity (approximately 0-g) environments. The characteristics of the resultant materials will be tested to determine its physical and mechanical properties. The physical characteristics include: crystalline, thermal, and electrical properties. The mechanical properties include: compressive tensile, and flexural strengths. The simulant, placed in a sealed graphite crucible, will be heated using a high temperature furnace. The crucible will then be cooled by radiative and forced convective means. The core furnace element consists of space qualified quartz-halogen incandescent lamps with focusing mirrors. Sample temperatures of up to 2200 C are attainable using this heating method.

  11. Reactivity of simulated lunar material with fluorine (United States)

    Odonnell, P. M.


    Simulated lunar surface material was caused to react with fluorine to determine the feasibility of producing oxygen by this method. The maximum total fluorine pressure used was 53.3 kilonewtons per square meter (400 torr) at temperatures up to 523 K (250 C). Postreaction analysis of both the gas and solid phases indicated that the reaction is feasible but that the efficiency is only about 4 percent of that predicted by theory.

  12. Simulations of Effects of Nanophase Iron Space Weather Products on Lunar Regolith Reflectance Spectra (United States)

    Escobar-Cerezo, J.; Penttilä, A.; Kohout, T.; Muñoz, O.; Moreno, F.; Muinonen, K.


    Lunar soil spectra differ from pulverized lunar rocks spectra by reddening and darkening effects, and shallower absorption bands. These effects have been described in the past as a consequence of space weathering. In this work, we focus on the effects of nanophase iron (npFe0) inclusions on the experimental reflectance spectra of lunar regolith particles. The reflectance spectra are computed using SIRIS3, a code that combines ray optics with radiative-transfer modeling to simulate light scattering by different types of scatterers. The imaginary part of the refractive index as a function of wavelength of immature lunar soil is derived by comparison with the measured spectra of the corresponding material. Furthermore, the effect of adding nanophase iron inclusions on the reflectance spectra is studied. The computed spectra qualitatively reproduce the observed effects of space weathered lunar regolith.

  13. Thermal conductivity of heterogeneous mixtures and lunar soils (United States)

    Vachon, R. I.; Prakouras, A. G.; Crane, R.; Khader, M. S.


    The theoretical evaluation of the effective thermal conductivity of granular materials is discussed with emphasis upon the heat transport properties of lunar soil. The following types of models are compared: probabilistic, parallel isotherm, stochastic, lunar, and a model based on nonlinear heat flow system synthesis.

  14. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure (United States)

    Dai, Shun; Su, Yan; Xiao, Yuan; Feng, Jian-Qing; Xing, Shu-Guo; Ding, Chun-Yu


    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.

  15. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    International Nuclear Information System (INIS)

    Dai Shun; Su Yan; Xiao Yuan; Feng Jian-Qing; Xing Shu-Guo; Ding Chun-Yu


    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed

  16. Astronaut Neil Armstrong participates in lunar surface simulation training (United States)


    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface simulation training on April 18, 1969 in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he is standing on Lunar Module mockup foot pad preparing to ascend steps.

  17. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith (United States)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon


    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  18. Thermal Properties of Lunar Regolith Simulants (United States)

    Street, Kenneth W., Jr.; Ray, Chandra; Rickman, Doug; Scheiman, Daniel A.


    Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the Moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Thermo-Gravimetric Analysis (TGA) with Fourier Transform Infrared (FTIR) analysis provides information on evolved gas species and their evolution temperature profiles. The DTA and TGA studies included JSC-1A fine (Johnson Space Center Mare Type 1A simulant), NU-LHT-2M (National Aeronautics and Space Administration (NASA)-- United States Geological Survey (USGS)--Lunar Highlands Type 2M simulant) and its proposed feedstocks: anorthosite; dunite; high quality (HQ) glass and the norite from which HQ glass is produced. As an example, the DTA and TGA profiles for anorthosite follow. The DTA indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water is lost accounting for approximately 0.1 percent mass loss. Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals along with other volatile oxides. Limited TGA-FTIR data is available at the time of this writing. For JSC-1A fine, the TGA-FTIR indicates at least two kinds of water are evolved in the 100 to 500 and the 700 to 900 C ranges. Evolution of carbon dioxide types occurs in the 250 to 545, 545 to 705, and 705 to 985 C ranges. Geologically, the results are consistent with the evolution of "water" in its several forms, CO2 from break down of secondary carbonates and magmatic, dissolved gas and glass

  19. Nanophase Fe0 in lunar soils

    Indian Academy of Sciences (India)

    of lunar breccias (Clanton et al 1973), trains of. Fe. 0 beads splashed (?) on surfaces of agglutinates ... BSE image (74121-139) of a polished thin sec- tion of an agglutinate especially emphasizing trains of very ..... of excess Fe metal in the lunar fines by magnetic separa- tion, Mossbauer spectroscopy, and microscopic ...

  20. Phosphorus Adsorption and Desorption Properties of Minnesota Basalt Lunar Simulant and Lunar Glass Simulant (United States)

    Sutter, Brad; Hossner, Lloyd R.; Ming, Douglas W.


    Phosphorus (P) adsorption and desorption characteristics of Minnesota Basalt Lunar Simulant (MBLS) and Lunar Glass Simulant (LGS) were evaluated. Results of P interactions with lunar simulants indicated that mineral and glass components adsorbed between 50 and 70% of the applied P and that between 85 and 100% of the applied P was desorbed. The Extended Freundlich equation best described the adsorption data (r(sup 2) = 0.92), whereas the Raven/Hossner equation best described the desorption data ((r(sup 2) = 0.97). Kinetic desorption results indicated that MBLS and LGS released most of their P within 15 h. The expanded Elovich equation fit the data best at shorter times while t/Q(sub DT) equation had a better fit at longer times. These results indicate that P does not strongly adsorb to the two simulants and that any P that was adsorbed was readily desorbed in the presence of anion exchange resin. This work suggests that multiple small applications of P (10-20 mg P/kg) should be added to the simulants to ensure adequate solution P for plant uptake and efficient use of P fertilizer.

  1. Process to Produce Iron Nanoparticle Lunar Dust Simulant Composite (United States)

    Hung, Ching-cheh; McNatt, Jeremiah


    A document discusses a method for producing nanophase iron lunar dust composite simulant by heating a mixture of carbon black and current lunar simulant types (mixed oxide including iron oxide) at a high temperature to reduce ionic iron into elemental iron. The product is a chemically modified lunar simulant that can be attracted by a magnet, and has a surface layer with an iron concentration that is increased during the reaction. The iron was found to be -iron and Fe3O4 nanoparticles. The simulant produced with this method contains iron nanoparticles not available previously, and they are stable in ambient air. These nanoparticles can be mass-produced simply.

  2. JMSS-1: a new Martian soil simulant (United States)

    Zeng, Xiaojia; Li, Xiongyao; Wang, Shijie; Li, Shijie; Spring, Nicole; Tang, Hong; Li, Yang; Feng, Junming


    It is important to develop Martian soil simulants that can be used in Mars exploration programs and Mars research. A new Martian soil simulant, called Jining Martian Soil Simulant (JMSS-1), was developed at the Lunar and Planetary Science Research Center at the Institute of Geochemistry, Chinese Academy of Sciences. The raw materials of JMSS-1 are Jining basalt and Fe oxides (magnetite and hematite). JMSS-1 was produced by mechanically crushing Jining basalt with the addition of small amounts of magnetite and hematite. The properties of this simulant, including chemical composition, mineralogy, particle size, mechanical properties, reflectance spectra, dielectric properties, volatile content, and hygroscopicity, have been analyzed. On the basis of these test results, it was demonstrated that JMSS-1 is an ideal Martian soil simulant in terms of chemical composition, mineralogy, and physical properties. JMSS-1 would be an appropriate choice as a Martian soil simulant in scientific and engineering experiments in China's Mars exploration in the future.

  3. Aluminothermic Reduction-Molten Salt Electrolysis Using Inert Anode for Oxygen and Al-Base Alloy Extraction from Lunar Soil Simulant (United States)

    Xie, Kaiyu; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen


    Aluminothermic reduction-electrolysis using an inert anode process is proposed to extract oxygen and metals from Minnesota Lunar Simulant-1 (MLS-1). Effective aluminothermic reduction between dissolved MLS-1 and dissolved metal aluminum was achieved in cryolite salt media. The product phases obtained by aluminothermic reduction at 980°C for 4 h were Al, Si, and Al5FeSi, while the chemical components were 79.71 mass% aluminum, 12.03 mass% silicon, 5.91 mass% iron, and 2.35 mass% titanium. The cryolite salt containing Al2O3 was subsequently electrolyzed with Fe0.58-Ni0.42 inert anode at 960°C for 4 h. Oxygen was evolved at the anode with an anodic current efficiency of 78.28%. The results demonstrate that this two-step process is remarkably feasible for the extraterrestrial extraction of oxygen and metals. This process will help expand the existing in situ resource utilization methods.

  4. Nanophase Fe0 in lunar soils

    Indian Academy of Sciences (India)

    The moon may have a core of primitive material or a solid Fe–Ni core that may be as much 500 km thick (Taylor 1982). The moon has neither an atmosphere nor a hydrosphere. Meteorites of all sizes, large and small, have freely bombarded the lunar crust at hypervelocity; micrometeorites continue to pound and pulverize.

  5. Reactions of atmospheric vapors with lunar soil

    International Nuclear Information System (INIS)

    Fuller, E.L. Jr.; Agron, P.A.


    Detailed experimental data have been acquired for the hydration of the surfaces of lunar fines. Inert vapor adsorption has been employed to measure the surface properties (surface energy, surface area, porosity, etc.) and changes wrought in the hydration-dehydration processes. Plausible mechanisms have been considered and the predominant process involves hydration of the metamict metallosilicate surfaces to form a hydrated laminar structure akin to terrestrial clays. Additional credence for this interpretation is obtained by comparison to existing geochemical literature concerning terrestrial weathering of primary metallosilicates. The surface properties of the hydrated lunar fines are compared favorably to those of terrestrial clay minerals. In addition, experimental results are given to show that fresh disordered surfaces of volcanic sand react with water vapor in a manner virtually identical to the majority of the lunar fines. The results show that ion track etching and/or grain boundary attack are minor contributions in the weathering of lunar fines in the realm of our microgravimetric experimental conditions. 14 references

  6. Nanophase Fe 0 in lunar soils

    Indian Academy of Sciences (India)

    Grain rinds are amorphous silicates that were deposited on grains exposed at the lunar surface from transient vapors produced by hypervelocity micrometeorite impacts. Fe0 may have dissociated from Fe-compounds in a high temperature (< 3000°C) vapor phase and then condensed as globules on grain surfaces.

  7. Thermal Properties of Lunar Regolith Simulants (United States)

    Street, Kenneth; Ray, Chandra; Rickman, Doug


    Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Themo-Gravimetric Analysis (TGA) with mass spectrometric (MS) determination of evolved gas species yields chemical information on various oxygenated volatiles (water, carbon dioxide, sulfur oxides, nitrogen oxides and phosphorus oxides) and their evolution temperature profiles. The DTA and TGAMS studies included JSC-1A fine, NU-LHT-2M and its proposed feed stocks: anorthosite; dunite; HQ (high quality) glass and the norite from which HQ glass is produced. Fig 1 is a data profile for anorthosite. The DTA (Fig 1a) indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water (Molecular Weight, MW, 18 in Fig 1c) is lost accounting for approximately 0.1% mass loss due to water removal (Fig 1b). Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals. Between 490 and the 970 transition other volatile oxides are lost including those of hydrogen (third water type), carbon (MW = 44), sulfur (MW = 64 and 80), nitrogen (MW 30 and 46) and possibly phosphorus (MW = 79, 95 or 142). Peaks at MW = 35 and 19 may be attributable to loss of chlorine and fluorine respectively. Negative peaks in the NO (MW = 30) and oxygen (MW = 32) MS profiles may indicate the production of NO2 (MW = 46). Because so many compounds are volatilized in this temperature range quantification of

  8. Lunar regolith stratigraphy analysis based on the simulation of lunar penetrating radar signals (United States)

    Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng


    The thickness of lunar regolith is an important index of evaluating the quantity of lunar resources such as 3He and relative geologic ages. Lunar penetrating radar (LPR) experiment of Chang'E-3 mission provided an opportunity of in situ lunar subsurface structure measurement in the northern mare imbrium area. However, prior work on analyzing LPR data obtained quite different conclusions of lunar regolith structure mainly because of the missing of clear interface reflectors in radar image. In this paper, we utilized finite-difference time-domain (FDTD) method and three models of regolith structures with different rock density, number of layers, shapes of interfaces, and etc. to simulate the LPR signals for the interpretation of radar image. The simulation results demonstrate that the scattering signals caused by numerous buried rocks in the regolith can mask the horizontal reflectors, and the die-out of radar echo does not indicate the bottom of lunar regolith layer and data processing such as migration method could recover some of the subsurface information but also result in fake signals. Based on analysis of simulation results, we conclude that LPR results uncover the subsurface layered structure containing the rework zone with multiple ejecta blankets of small crater, the ejecta blanket of Chang'E-3 crater, and the transition zone and estimate the thickness of the detected layer is about 3.25 m.

  9. Determination of hydrogen abundance in selected lunar soils (United States)

    Bustin, Roberta


    Hydrogen was implanted in lunar soil through solar wind activity. In order to determine the feasibility of utilizing this solar wind hydrogen, it is necessary to know not only hydrogen abundances in bulk soils from a variety of locations but also the distribution of hydrogen within a given soil. Hydrogen distribution in bulk soils, grain size separates, mineral types, and core samples was investigated. Hydrogen was found in all samples studied. The amount varied considerably, depending on soil maturity, mineral types present, grain size distribution, and depth. Hydrogen implantation is definitely a surface phenomenon. However, as constructional particles are formed, previously exposed surfaces become embedded within particles, causing an enrichment of hydrogen in these species. In view of possibly extracting the hydrogen for use on the lunar surface, it is encouraging to know that hydrogen is present to a considerable depth and not only in the upper few millimeters. Based on these preliminary studies, extraction of solar wind hydrogen from lunar soil appears feasible, particulary if some kind of grain size separation is possible.

  10. Investigating the soil removal characteristics of flexible tube coring method for lunar exploration (United States)

    Tang, Junyue; Quan, Qiquan; Jiang, Shengyuan; Liang, Jieneng; Lu, Xiangyong; Yuan, Fengpei


    Compared with other technical solutions, sampling the planetary soil and returning it back to Earth may be the most direct method to seek the evidence of extraterrestrial life. To keep sample's stratification for further analyzing, a novel sampling method called flexible tube coring has been adopted for China future lunar explorations. Given the uncertain physical properties of lunar regolith, proper drilling parameters should be adjusted immediately in piercing process. Otherwise, only a small amount of core could be sampled and overload drilling faults could occur correspondingly. Due to the fact that the removed soil is inevitably connected with the cored soil, soil removal characteristics may have a great influence on both drilling loads and coring results. To comprehend the soil removal characteristics, a non-contact measurement was proposed and verified to acquire the coring and removal results accurately. Herein, further more experiments in one homogenous lunar regolith simulant were conducted, revealing that there exists a sudden core failure during the sampling process and the final coring results are determined by the penetration per revolution index. Due to the core failure, both drilling loads and soil's removal states are also affected thereby.

  11. High-Fidelity Lunar Dust Simulant Project (United States)

    National Aeronautics and Space Administration — The severity of the lunar dust problems encountered during the Apollo missions were consistently underestimated by ground tests, illustrating the need to develop...

  12. High Fidelity Modeling of Plume-Induced Soil Erosion During Lunar and Planetary Landing (United States)

    National Aeronautics and Space Administration — During lunar and planetary landings, rocket plumes interact with the surface, ejecting soil and other particles into the surrounding environment. These particles,...

  13. A Functional Comparison of Lunar Regoliths and Their Simulants (United States)

    Rickman, D.; Edmunson, J.; McLemore, C.


    Lunar regolith simulants are essential to the development of technology for human exploration of the Moon. Any equipment that will interact with the surface environment must be tested with simulant to mitigate risk. To reduce the greatest amount of risk, the simulant must replicate the lunar surface as well as possible. To quantify the similarities and differences between simulants, the Figures of Merit were developed. The Figures of Merit software compares the simulants and regolith by particle size, particle shape, density, and bulk chemistry and mineralogy; these four properties dictate the majority of the remaining characteristics of a geologic material. There are limitations to both the current Figures of Merit approach and simulants in general. The effect of particle textures is lacking in the Figures of Merit software, and research into this topic has only recently begun with applications to simulants. In addition, not all of the properties for lunar regolith are defined sufficiently for simulant reproduction or comparison; for example, the size distribution of particles greater than 1 centimeter and the makeup of particles less than 10 micrometers is not well known. For simulants, contamination by terrestrial weathering products or undesired trace phases in feedstock material is a major issue. Vapor deposited rims have not yet been created for simulants. Fortunately, previous limitations such as the lack of agglutinates in simulants have been addressed and commercial companies are now making agglutinate material for simulants. Despite some limitations, the Figures of Merit sufficiently quantify the comparison between simulants and regolith for useful application in lunar surface technology. Over time, the compilation and analysis of simulant user data will add an advantageous predictive capability to the Figures of Merit, accurately relating Figures of Merit characteristics to simulant user parameters.

  14. Analytical modeling of structure-soil systems for lunar bases (United States)

    Macari-Pasqualino, Jose Emir


    The study of the behavior of granular materials in a reduced gravity environment and under low effective stresses became a subject of great interest in the mid 1960's when NASA's Surveyor missions to the Moon began the first extraterrestrial investigation and it was found that Lunar soils exhibited properties quite unlike those on Earth. This subject gained interest during the years of the Apollo missions and more recently due to NASA's plans for future exploration and colonization of Moon and Mars. It has since been clear that a good understanding of the mechanical properties of granular materials under reduced gravity and at low effective stress levels is of paramount importance for the design and construction of surface and buried structures on these bodies. In order to achieve such an understanding it is desirable to develop a set of constitutive equations that describes the response of such materials as they are subjected to tractions and displacements. This presentation examines issues associated with conducting experiments on highly nonlinear granular materials under high and low effective stresses. The friction and dilatancy properties which affect the behavior of granular soils with low cohesion values are assessed. In order to simulate the highly nonlinear strength and stress-strain behavior of soils at low as well as high effective stresses, a versatile isotropic, pressure sensitive, third stress invariant dependent, cone-cap elasto-plastic constitutive model was proposed. The integration of the constitutive relations is performed via a fully implicit Backward Euler technique known as the Closest Point Projection Method. The model was implemented into a finite element code in order to study nonlinear boundary value problems associated with homogeneous as well as nonhomogeneous deformations at low as well as high effective stresses. The effect of gravity (self-weight) on the stress-strain-strength response of these materials is evaluated. The calibration

  15. Measuring and distinguishing compositional and maturity properties of lunar soils by remote VIS-NIR spectroscopy (United States)

    Fischer, Erich M.; Pieters, Carle M.


    Space weathering on the lunar surface affects the spectra/optical character of an exposed lunar soil in three ways: the reflectance is reduced, absorption band depths are reduced, and a red-sloped continuum is created and increased with exposure. As a result, the spectrum of a lunar soil is dependent upon both the degree of exposure at the lunar surface and the original composition. It is critical to the remote analysis of lunar soils to differentiate between the optical effects of maturity and the effects of composition. In the laboratory, it is possible to determine and consequently distinguish the degree of exposure, or soil maturity, as measured by parameters such as I(sub s)/FeO (e.g., 1; mature defined as I(sub s)/FeO greater than or equal to 60), and the composition, as measured by various chemical and petrographical techniques. Lunar soils returned by the Apollo missions provide important ground truth for developing methods for remotely measuring the maturity and the concentration of Fe-bearing minerals in lunar soil. The ground truth spectral data analyzed are from the John Adams lunar soil spectra collection. Soils collected from or near highland terrains are emphasized in the discussion. The mineralogical makeup of mare soils results in behavior somewhat different from highland soils.

  16. Characterization of Minnesota lunar simulant for plant growth (United States)

    Oglesby, James P.; Lindsay, Willard L.; Sadeh, Willy Z.


    Processing of lunar regolith into a plant growth medium is crucial in the development of a regenerative life support system for a lunar base. Plants, which are the core of such a system, produce food and oxygen for humans and, at the same time, consume carbon dioxide. Because of the scarcity of lunar regolith, simulants must be used to infer its properties and to develop procedures for weathering and chemical analyses. The Minnesota Lunar Simulant (MLS) has been identified to date as the best available simulant for lunar regolith. Results of the dissolution studies reveal that appropriately fertilized MLS can be a suitable medium for plant growth. The techniques used in conducting these studies can be extended to investigate the suitability of actual lunar regolith as a plant growth medium. Dissolution experiments were conducted using the MLS to determine its nutritional and toxicity characteristics for plant growth and to develop weathering and chemical analysis techniques. Two weathering regimes, one with water and one with dilute organic acids simulating the root rhizosphere microenvironment, were investigated. Elemental concentrations were measured using inductively-coupled-plasma (ICP) emission spectrometry and ion chromatography (IC). The geochemical speciation model, MINTEQA2, was used to determine the major solution species and the minerals controlling them. Acidification was found to be a useful method for increasing cation concentrations to meaningful levels. Initial results indicate that MLS weathers to give neutral to slightly basic solutions which contain acceptable amounts of the essential elements required for plant nutrition (i.e., potassium, calcium, magnesium, sulfur, zinc, sodium, silicon, manganese, copper, chlorine, boron, molybdenum, and cobalt). Elements that need to be supplemented include carbon, nitrogen, and perhaps phosphorus and iron. Trace metals in solution were present at nontoxic levels.

  17. Reactive Oxygen Species (ROS) generation by lunar simulants (United States)

    Kaur, Jasmeet; Rickman, Douglas; Schoonen, Martin A.


    The current interest in human exploration of the Moon and past experiences of Apollo astronauts has rekindled interest into the possible harmful effects of lunar dust on human health. In comparison to the Apollo-era explorations, human explorers may be weeks on the Moon, which will raise the risk of inhalation exposure. The mineralogical composition of lunar dust is well documented, but its effects on human health are not fully understood. With the aim of understanding the reactivity of dusts that may be encountered on geologically different lunar terrains, we have studied Reactive Oxygen Species (ROS) generation by a suite of lunar simulants of different mineralogical-chemical composition dispersed in water and Simulated Lung Fluid (SLF). To further explore the reactivity of simulants under lunar environmental conditions, we compared the reactivity of simulants both in air and inert atmosphere. As the impact of micrometeorites with consequent shock-induced stresses is a major environmental factor on the Moon, we also studied the effect of mechanical stress on samples. Mechanical stress was induced by hand crushing the samples both in air and inert atmosphere. The reactivity of samples after crushing was analyzed for a period of up to nine days. Hydrogen peroxide (H2O2) in water and SLF was analyzed by an in situ electrochemical probe and hydroxyl radical (•OH) by Electron Spin Resonance (ESR) spectroscopy and Adenine probe. Out of all simulants, CSM-CL-S was found to be the most reactive simulant followed by OB-1 and then JSC-1A simulant. The overall reactivity of samples in the inert atmosphere was higher than in air. Fresh crushed samples showed a higher level of reactivity than uncrushed samples. Simulant samples treated to create agglutination, including the formation of zero-valent iron, showed less reactivity than untreated simulants. ROS generation in SLF is initially slower than in deionized water (DI), but the ROS formation is sustained for as long as 7

  18. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption (United States)

    Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.


    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  19. Simulating the Reiner Gamma Lunar Swirl: Solar Wind Standoff Works! (United States)

    Deca, Jan; Divin, Andrey; Lue, Charles; Ahmadi, Tara; Horányi, Mihály


    Discovered by early astronomers during the Renaissance, the Reiner Gamma formation is a prominent lunar surface feature. Observations have shown that the tadpole-shaped albedo marking, or swirl, is co-located with one of the strongest crustal magnetic anomalies on the Moon. The region therefore presents an ideal test case to constrain the kinetic solar wind interaction with lunar magnetic anomalies and its possible consequences for lunar swirl formation. All known swirls have been associated with magnetic anomalies, but the opposite does not hold. The evolutionary scenario of the lunar albedo markings has been under debate since the Apollo era. By coupling fully kinetic simulations with a surface vector mapping model based on Kaguya and Lunar Prospector magnetic field measurements, we show that solar wind standoff is the dominant process to have formed the lunar swirls. It is an ion-electron kinetic interaction mechanism that locally prevents weathering by solar wind ions and the subsequent formation of nanophase iron. The correlation between the surface weathering process and the surface reflectance is optimal when evaluating the proton energy flux, rather than the proton density or number flux. This is an important result to characterise the primary process for surface darkening. In addition, the simulated proton reflection rate is for the first time directly compared with in-orbit flux measurements from the SARA:SWIM ion sensor onboard the Chandrayaan-1 spacecraft. The agreement is found excellent. Understanding the relation between the lunar surface albedo features and the co-located magnetic anomaly is essential for our interpretation of the Moon's geological history, space weathering, and to evaluate future lunar exploration opportunities. This work was supported in part by NASA's Solar System Exploration Research Virtual Institute (SSERVI): Institute for Modeling Plasmas, Atmosphere, and Cosmic Dust (IMPACT). The work by C.L. was supported by NASA grant NNX

  20. A Review of Discrete Element Method (DEM) Particle Shapes and Size Distributions for Lunar Soil (United States)

    Lane, John E.; Metzger, Philip T.; Wilkinson, R. Allen


    As part of ongoing efforts to develop models of lunar soil mechanics, this report reviews two topics that are important to discrete element method (DEM) modeling the behavior of soils (such as lunar soils): (1) methods of modeling particle shapes and (2) analytical representations of particle size distribution. The choice of particle shape complexity is driven primarily by opposing tradeoffs with total number of particles, computer memory, and total simulation computer processing time. The choice is also dependent on available DEM software capabilities. For example, PFC2D/PFC3D and EDEM support clustering of spheres; MIMES incorporates superquadric particle shapes; and BLOKS3D provides polyhedra shapes. Most commercial and custom DEM software supports some type of complex particle shape beyond the standard sphere. Convex polyhedra, clusters of spheres and single parametric particle shapes such as the ellipsoid, polyellipsoid, and superquadric, are all motivated by the desire to introduce asymmetry into the particle shape, as well as edges and corners, in order to better simulate actual granular particle shapes and behavior. An empirical particle size distribution (PSD) formula is shown to fit desert sand data from Bagnold. Particle size data of JSC-1a obtained from a fine particle analyzer at the NASA Kennedy Space Center is also fitted to a similar empirical PSD function.

  1. The distribution in lunar soil of carbon released by pyrolysis (United States)

    Desmarais, D. J.; Hayes, J. M.; Meinschein, W. G.


    The carbon contents of various lunar soil particle types and sieve fractions of Apollo 15 and 16 samples have been determined by the pyrolysis method. The mineral, glass, and high-grade breccia fragments in the soils examined contain relatively low amounts of carbon (approximately 8, 25, and 25 microg C/g sample respectively in 149-250 micron grains). Most low-grade breccias and all agglutinates examined have high carbon contents (approximately 52 and 80 microg C/g sample respectively), and agglutinate abundance is indicative of the carbon content and maturity of a soil. The distribution of carbon with respect to particle size in mature soils generally reveals a minimum in carbon content at about 100 micron particle diameter. At smaller particle diameters, carbon content is directly proportional to particle surface area and therefore increases with the ratio (surface area)/(particle mass). A model relating the cycle of comminution and aggregation of soil particles to the redistribution of surface implanted carbon is developed.

  2. Evaluation of Tribocharged Electrostatic Beneficiation of Lunar Simulant in Lunar Gravity (United States)

    Quinn, Jacqueline W.; Captain, Jim G.; Weis, Kyle; Santiago-Maldonado, Edgardo; Trigwell, Steve


    The lunar regolith has high concentrations of aluminum, silicon, calcium, iron, sodium, and titanium oxides. Liberation of these metals would provide necessary materials for structural and building material fabrication, spare part, machine and tool production, and construction and site preparation in-situ on the moon or other extraterrestrial body (Rao et al 1979). Ilmenite (FeTi03) is a mineral of interest on the moon as a source of iron, titanium, and oxygen (Cameron 1992, Zhao and Shadman 1993) and therefore enrichment of this mineral in the feedstock before processing would be a considerable advantage in reducing energy requirements to process regolith. Not only for construction materials, but shipping oxygen and water from earth is weight prohibitive, and so investigations into the potential production of oxygen from the oxides of lunar regolith are a major research initiative by NASA (Sibille et al. 2009, Moscatello et al. 2009). In this paper, the results of electrostatic beneficiation of two sets of lunar simulants on two different reduced gravity flight series are presented.

  3. Soil stabilization mat for lunar launch/landing site (United States)

    Acord, Amy L.; Cohenour, Mark W.; Ephraim, Daniel; Gochoel, Dennis; Roberts, Jefferson G.


    Facilities which are capable of handling frequent arrivals and departures of spaceships between Earth and a lunar colony are necessary. The facility must be able to provide these services with minimal interruption of operational activity within the colony. The major concerns associated with the space traffic are the dust and rock particles that will be kicked up by the rocket exhaust. As a result of the reduced gravitation of the Moon, these particles scatter over large horizontal distances. This flying debris will not only seriously interrupt the routine operations of the colony, but could cause damage to the equipment and facilities surrounding the launch site. An approach to overcome this problem is presented. A proposed design for a lunar take-off/landing mat is presented. This proposal goes beyond dealing with the usual problems of heat and load resistances associated with take-off and landing, by solving the problem of soil stabilization at the site. Through adequate stabilization, the problem of flying debris is eliminated.

  4. Progress of the NASA/USGS Lunar Regolith Simulant Project (United States)

    Rickman, Doug; MLemore, Carole; Wilson, Steve; Stoeser, Doug; Schrader, Christian; Fikes, John; Street, Kenneth


    Beginning in 2004 personnel at MSFC began serious efforts to develop a new generation of lunar simulants. The first two products were a replication of the previous JSC-1 simulant under a contract to Orbitec and a major workshop in 2005 on future simulant development. Beginning in 2006 the project refocused its efforts and approached simulant development in a new and more comprehensive manner, examining new approaches in simulant development and ways to more accurately compare simulants to actual lunar materials. This led to a multi-year effort with five major tasks running in parallel. The five tasks are Requirements, Lunar Analysis, Process Development, Feed Stocks, and Standards. Major progress has been made in all five areas. A substantial draft of a formal requirements document now exists and has been largely stable since 2007. It does evolve as specific details of the standards and Lunar Analysis efforts proceed. Lunar Analysis has turned out to be vastly more difficult than anticipated. After great effort to mine existing published and gray literature, the team has realized the necessity of making new measurements of the Apollo samples, an effort that is currently in progress. Process development is substantially ahead of expectations in 2006. It is now practical to synthesize glasses of appropriate composition and purity. It is also possible to make agglutinate particles in significant quantities. A series of minerals commonly found on the Moon has been synthesized. Separation of mineral constituents from starting rock material is also proceeding. Customized grinding and mixing processes have been developed and tested are now being documented. Identification and development of appropriate feedstocks has been both easier and more difficult than anticipated. The Stillwater Mining Company, operating in the Stillwater layered mafic intrusive complex of Montana, has been an amazing resource for the project, but finding adequate sources for some of the components

  5. Resources for a lunar base: Rocks, minerals, and soil of the Moon (United States)

    Taylor, Lawrence A.


    The rocks and minerals of the Moon will be included among the raw materials used to construct a lunar base. The lunar regolith, the fragmental material present on the surface of the Moon, is composed mostly of disaggregated rocks and minerals, but also includes glassy fragments fused together by meteorite impacts. The finer fraction of the regolith (i.e., less than 1 cm) is informally referred to as soil. The soil is probably the most important portion of the regolith for use at a lunar base. For example, soil can be used as insulation against cosmic rays, for lunar ceramics and abodes, or for growing plants. The soil contains abundant solar-wind-implanted elements as well as various minerals, particularly oxide phases, that are of potential economic importance. For example, these components of the soil are sources of oxygen and hydrogen for rocket fuel, helium for nuclear energy, and metals such as Fe, Al, Si, and Ti.

  6. Structural, Physical, and Compositional Analysis of Lunar Simulants and Regolith (United States)

    Greenberg, Paul; Street, Kenneth W.; Gaier, James


    Relative to the prior manned Apollo and unmanned robotic missions, planned Lunar initiatives are comparatively complex and longer in duration. Individual crew rotations are envisioned to span several months, and various surface systems must function in the Lunar environment for periods of years. As a consequence, an increased understanding of the surface environment is required to engineer and test the associated materials, components, and systems necessary to sustain human habitation and surface operations. The effort described here concerns the analysis of existing simulant materials, with application to Lunar return samples. The interplay between these analyses fulfills the objective of ascertaining the critical properties of regolith itself, and the parallel objective of developing suitable stimulant materials for a variety of engineering applications. Presented here are measurements of the basic physical attributes, i.e. particle size distributions and general shape factors. Also discussed are structural and chemical properties, as determined through a variety of techniques, such as optical microscopy, SEM and TEM microscopy, Mossbauer Spectroscopy, X-ray diffraction, Raman microspectroscopy, inductively coupled argon plasma emission spectroscopy and energy dispersive X-ray fluorescence mapping. A comparative description of currently available stimulant materials is discussed, with implications for more detailed analyses, as well as the requirements for continued refinement of methods for simulant production.

  7. Plume Mitigation: Soil Erosion and Lunar Prospecting Sensor (United States)

    National Aeronautics and Space Administration — A rocket exhaust with enough thrust for a lunar landing can propel rocks, sand, and dust, which can damage nearby assets such as a lunar outpost, a mining operation,...

  8. Simulation of a Lunar Surface Base Power Distribution Network for the Constellation Lunar Surface Systems (United States)

    Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.


    The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.

  9. A pyroloysis technique for determining microamounts of hydrogen in lunar soil using the helium ionization detector (United States)

    Bustin, R.


    A method has been developed which will determine hydrogen in sub-milligram samples of lunar soil. It consists of heating the sample in a pyroprobe followed by the gas chromatographic determination of hydrogen using the helium ionization detector. Using a 7 foot, 1/8 OD stainless steel column packed with Carbosieve S, 120/140 mesh, hydrogen was well-separated from the other gases released from lunar soil. Standards of hydrogen in helium were used for calibration. The limit to detection under the conditions used was about 2 ng. The method was linear from 2 ng to 270 ng. The method was checked using some actual lunar samples. Results were typical of those obtained for lunar soils using other methods.

  10. Observing Ice Sublimation From Water-Doped Lunar Simulant at Cryogenic Temperatures (United States)

    Roush, T. L.; Teodoro, L. F. A.; Colaprete, A.; Cook, A. M.; Elphic, R.


    NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar and permanently shadowed regions. The Near-Infrared Volatile Spectrometer System (NIRVSS) observes while a drill penetrates to a maximum depth of 1 m. Any 10 cm increment of soil identified as containing water ice can be delivered to a heating crucible with the evolved gas delivered to a gas chromatograph / mass spectrometer. NIRVSS consists of two components; a spectrometer box (SB) and bracket assembly (BA), connected by two fiber optic cables. The SB contains separate short- and long-wavelength spectrometers, SW and LW respectively, that collectively span the 1600-3400 nm range. The BA contains an IR emitter (lamp), drill observation camera (DOC, 2048 x 2048 CMOS detector), 8 different wavelength LEDs, and a longwave calibration sensor (LCS) measuring the surface emissivity at four IR wavelengths. Tests of various RP sub-systems have been under-taken in a large cryo-vacuum chamber at Glenn Re-search Center. The chamber accommodates a tube (1.2 m high x 25.4 cm diameter) filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. Thermocouples are embedded at different depths, and also across the surface of the soil tube. In the chamber the tube is cooled with LN2 as the pressure is reduced to approx. 5-6x10(exp -6) Torr. For the May 2016 tests two soil tubes were prepared with initially 2.5 Wt.% water. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment. Table 1 provides a summary of experimental conditions and Figure 1 shows the nominal view of the NIRVSS components, the drill foot, and the top of the soil tube. Once the average soil temperature reached approx. 178 K, drilling commenced. During drilling activities NIRVSS was alternating between obtaining spectra and obtaining images. Here we discuss NIRVSS spectral data obtained during

  11. High-Fidelity Gas and Granular Flow Physics Models for Rocket Exhaust Interaction with Lunar Soil, Phase I (United States)

    National Aeronautics and Space Administration — Soil debris liberated by spacecraft landing on the lunar surface may damage and contaminate surrounding spacecraft and habitat structures. Current numerical...

  12. Pneumatic System for Concentration of Micrometer-Size Lunar Soil (United States)

    McKay, David; Cooper, Bonnie


    A report describes a size-sorting method to separate and concentrate micrometer- size dust from a broad size range of particles without using sieves, fluids, or other processes that may modify the composition or the surface properties of the dust. The system consists of four processing units connected in series by tubing. Samples of dry particulates such as lunar soil are introduced into the first unit, a fluidized bed. The flow of introduced nitrogen fluidizes the particulates and preferentially moves the finer grain sizes on to the next unit, a flat plate impactor, followed by a cyclone separator, followed by a Nuclepore polycarbonate filter to collect the dust. By varying the gas flow rate and the sizes of various orifices in the system, the size of the final and intermediate particles can be varied to provide the desired products. The dust can be collected from the filter. In addition, electron microscope grids can be placed on the Nuclepore filter for direct sampling followed by electron microscope characterization of the dust without further handling.

  13. Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust (United States)

    Gaier, James R.; Meador, Mary Ann; Rogers, Kerry J.; Sheehy, Brennan H.


    A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar (DuPont), Vectran (Kuraray Co., Ltd.), Orthofabric, and Tyvek (DuPont)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek, the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek. This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran and Kevlar suffering considerably more extensive filament breakage.

  14. Bagging system, soil stabilization mat, and tent frame for a lunar base (United States)


    Georgia Tech's School of Textile and Fiber Engineering and School of Mechanical Engineering participated in four cooperative design efforts this year. Each of two interdisciplinary teams designed a system consisting of a lunar regolith bag and an apparatus for filling this bag. The third group designed a mat for stabilization of lunar soil during takeoff and landing, and a method for packaging and deploying this mat. Finally, the fourth group designed a sunlight diffusing tent to be used as a lunar worksite. Summaries of these projects are given.

  15. Fluids and their Effect on Measurements on Lunar Soil Particle size Distribution (United States)

    Cooper, B. L.; McKay, D. S.; Wallace, W. T.; Gonzalex, C. P.


    From the late 1960s until now, lunar soil particle size distributions have typically been determined by sieving sometimes dry, and at other times with fluids such as water or Freon. Laser diffraction instruments allow rapid assessment of particle size distribution, and eventually may replace sieve measurements. However, when measuring lunar soils with laser diffraction instruments, care must be taken in choosing a carrier fluid that is compatible with lunar material. Distilled water is the fluid of choice for laser diffraction measurements of substances when there is no concern about adverse effects of water on the material being measured. When we began our analyses of lunar soils using laser diffraction, our first measurements were made with distilled water. Although the medians that we measured were comparable to earlier sieve data, the means tended to be significantly larger than expected. The effect of water vapor on lunar soil has been studied extensively. The particles interact strongly with water vapor, and subsequent adsorptions of nitrogen showed that the specific surface area increased as much as threefold after exposure to moisture. It was observed that significant porosity had been generated by this exposure to water vapor. The possibility of other physical changes in the surfaces of the grains was not studied.


    Energy Technology Data Exchange (ETDEWEB)

    Bamford, R. A.; Kellett, B. J. [RAL Space, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX (United Kingdom); Alves, E. P.; Cruz, F.; Silva, L. O [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon (Portugal); Fonseca, R. A. [DCTI/ISCTE—Instituto Universitário de Lisboa, 1649-026 Lisbon (Portugal); Trines, R. M. G. M. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX (United Kingdom); Halekas, J. S. [Department of Physics and Astronomy, 414 Van Allen Hall, University of Iowa, Iowa City, IA 52242 (United States); Kramer, G. [The Lunar and Planetary Institute, USRA, 3600 Bay Area Blvd, Houston, TX 77058 (United States); Harnett, E. [Department of Earth and Space Science, University of Washington, Seattle, WA 98195-1310 (United States); Cairns, R. A. [University of St Andrews, North Haugh, St. Andrews, Fife, KY16 9SS (United Kingdom); Bingham, R., E-mail: [SUPA, University of Strathclyde, Glasgow, Scotland, 4G 0NG (United Kingdom)


    Investigation of the lunar crustal magnetic anomalies offers a comprehensive long-term data set of observations of small-scale magnetic fields and their interaction with the solar wind. In this paper a review of the observations of lunar mini-magnetospheres is compared quantifiably with theoretical kinetic-scale plasma physics and 3D particle-in-cell simulations. The aim of this paper is to provide a complete picture of all the aspects of the phenomena and to show how the observations from all the different and international missions interrelate. The analysis shows that the simulations are consistent with the formation of miniature (smaller than the ion Larmor orbit) collisionless shocks and miniature magnetospheric cavities, which has not been demonstrated previously. The simulations reproduce the finesse and form of the differential proton patterns that are believed to be responsible for the creation of both the “lunar swirls” and “dark lanes.” Using a mature plasma physics code like OSIRIS allows us, for the first time, to make a side-by-side comparison between model and space observations. This is shown for all of the key plasma parameters observed to date by spacecraft, including the spectral imaging data of the lunar swirls. The analysis of miniature magnetic structures offers insight into multi-scale mechanisms and kinetic-scale aspects of planetary magnetospheres.

  17. Characterization of Lunar Soils Using a Thermal Infrared Microscopic Spectral Imaging System (United States)

    Crites, S. T.; Lucey, P. G.


    Lunar Reconnaissance Orbiter's Diviner radiometer has provided the planetary science community with a large amount of thermal infrared spectral data. This data set offers rich opportunities for lunar science, but interpretation of the data is complicated by the limited data on lunar materials. While spectra of pure terrestrial minerals have been used effectively for Mars applications, lunar minerals and glasses have been affected by space weathering processes that may alter their spectral properties in important ways. For example, mineral grains acquire vapor deposited coatings, and agglutinate glass contains abundant nanophase iron as a result of exposure to the space environment. Producing mineral separates in sufficient quantities (at least tens of mg) for spectral characterization is painstaking, time consuming and labor intensive; as an alternative we have altered an infrared hyperspectral imaging system developed for remote sensing under funding from the Planetary Instrument Definition and Development program (PIDDP) to enable resolved microscopic spectral imaging. The concept is to characterize the spectral properties of individual grains in lunar soils, enabling a wide range of spectral behaviors of components to be measured rapidly. The instrument, sensitive from 8 to 15 microns at 15 wavenumber resolution, images a field of view of 8 millimeters at 30 micron resolution and scans at a rate of about 1 mm/second enabling relatively large areas to be scanned rapidly. Our experiments thus far use a wet-sieved 90-150 um size fraction with the samples arrayed on a heated substrate in a single layer in order to prevent spectral interactions between grains. We have begun with pure mineral separates, and unsurprisingly we find that the individual mineral grain emission spectra of a wide range of silicates are very similar to spectra of coarse grained powders. We have begun to obtain preliminary data on lunar soils as well. We plan to continue imaging of lunar soils

  18. Lunar dust simulant containing nanophase iron and method for making the same (United States)

    Hung, Chin-cheh (Inventor); McNatt, Jeremiah (Inventor)


    A lunar dust simulant containing nanophase iron and a method for making the same. Process (1) comprises a mixture of ferric chloride, fluorinated carbon powder, and glass beads, treating the mixture to produce nanophase iron, wherein the resulting lunar dust simulant contains .alpha.-iron nanoparticles, Fe.sub.2O.sub.3, and Fe.sub.3O.sub.4. Process (2) comprises a mixture of a material of mixed-metal oxides that contain iron and carbon black, treating the mixture to produce nanophase iron, wherein the resulting lunar dust simulant contains .alpha.-iron nanoparticles and Fe.sub.3O.sub.4.

  19. Agglutinates as indicators of lunar soil maturity - The rare gas evidence at Apollo 16 (United States)

    Charette, M. P.; Adams, J. B.


    The weight percent of lunar agglutinic glass (glass-welded aggregates resulting from micrometeorite impacts) in Apollo 16 bulk soils is considered with respect to quantities of trapped rare gases, e.g., He-4, Ne-20, Ar-36, Kr-84, and Xe-132, in an effort to determine the cumulative time a given soil sample has spent exposed on the lunar surface. The agglutinic glass, which reacts strongly in a magnetic field, is obtained by the standard fluid (methanol)-magnetic technique. It is noted that the absolute concentrations of trapped rare gases all show a linear relationship with increasing agglutinic glass content.

  20. Thermal Analyses of Apollo Lunar Soils Provide Evidence for Water in Permanently Shadowed Areas (United States)

    Cooper, Bonnie L.; Smith, M. C.; Gibson, E. K.


    Thermally-evolved-gas analyses were performed on the Apollo lunar soils shortly after their return to Earth [1-8]. The analyses revealed the presence of water evolving at temperatures above 200 C. Of particular interest are samples that were collected from permanently-shadowed locations (e.g., under a boulder) with a second sample collected in nearby sunlight, and pairs in which one was taken from the top of a trench, and the second was taken at the base of the trench, where the temperature would have been -10 to -20 C prior to the disturbance [9]. These samples include 63340/63500, 69941/69961, and 76240/76280. At the time that this research was first reported, the idea of hydrated minerals on the lunar surface was somewhat novel. Nevertheless, goethite was observed in lunar breccias from Apollo 14 [10], and it was shown that goethite, hematite and magnetite could originate in an equilibrium assemblage of lunar rocks

  1. Sputtering of Lunar Regolith Simulant by Protons and Multicharged Heavy Ions at Solar Wind Energies

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Fred W [ORNL; Harris, Peter R [ORNL; Taylor, C. N. [Purdue University; Meyer III, Harry M [ORNL; Barghouty, N. [NASA Marshall Space Flight Center, Huntsville, AL; Adams Jr., J. [NASA Marshall Space Flight Center, Huntsville, AL


    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.

  2. Mineralogical and Chemical Characterization of Lunar Highland Soils: Insights into the Space Weathering of Soils on Airless Bodies (United States)

    Taylor, Lawrence A.; Patchen, Allan; Taylor, Dong-Hwa S.; Pieters, Carle; Morris, Richard V.; Keller, Lindsay P.; McKay, David S.


    With reflectance spectroscopy, one is measuring only properties of the fine-grained regolith, most affected by space weathering. The Lunar Soil Characterization Consortium has undertaken the task of coordinated characterization of lunar soils, with respect to their mineralogical and chemical makeup. It is these lunar soils that are being used as "ground-truth" for all air30 less bodies. Modal abundances and chemistries of minerals and glasses in the finest size fractions (20-45, 10-20, and chemistry and IS/FeO values. Bi-directional reflectance measurements (0.3-2.6 microns) of all samples were performed in the RELAB. A significant fraction of nanophase Fe(sup 0) (np-Fe(sup 0)) appears to reside in agglutinitic glasses. However, as grain size of a soil decreases, the percentage of total iron present as np-Fe0 increases significantly, whereas the agglutinitic glass content rises only slightly; this is evidence for a large contribution to the IS/FeO values from the surface-correlated nanophase Fe(sup 0), particularly in the chemistry of that size; however, compositional trends of the glasses are not the same as those observed for mare soils. It is apparent that the glasses in the highland soils contain chemical components from outside their terrains. It is proposed that the Apollo 16 soils have been adulterated by the addition of impact-transported soil components from surrounding maria.

  3. A Method to Perform Direct Oxygen Analysis on Lunar Simulants and Other Complex Oxide Materials (United States)

    Santiago-Maldonado, Edgardo


    An essential requirement for making space travel and long term missions more efficient and affordable to NASA includes finding innovative ways to supply oxygen for life support and propulsion. In this experiment, carrier gas hot extraction was investigated as a possible method for measuring the oxygen from samples of lunar soil simulants before and after oxygen extraction. The determination of oxygen using the R0600 Oxygen Determinator is usually limited to oxides with low oxygen concentrations, but after the manipulation of certain furnace operating parameters such as analysis time and ramp rate, the R0600 was used to determine the oxygen content of high concentration oxides such as Fe 2O3 , Al2O3 , and SiO2.

  4. The Dust Management Project: Characterizing Lunar Environments and Dust, Developing Regolith Mitigation Technology and Simulants (United States)

    Hyatt, Mark J.; Straka, Sharon A.


    A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth?s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting long-term operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it?s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, plans, and accomplishments will be presented.

  5. Multiscale GasKinetics/Particle (MGP) Simulation for Rocket Plume/Lunar Dust Interactions Project (United States)

    National Aeronautics and Space Administration — An efficient and accurate software package named ZMGP (ZONA Multi-scale Gaskinetic/Particle simulation package) is proposed as a 3D tool to predict the lunar dust...

  6. Gamma-emissions of some meteorites and terrestrial rocks. Evaluation of lunar soil radioactivity

    International Nuclear Information System (INIS)

    Nordemann, D.


    The gamma-emissions of some terrestrial rocks and of the following meteorites: Bogou, Eagle-Station, Granes, and Dosso were studied by quantitative low background gamma spectrometry. These measurements and their interpretation lead to the evaluation of the possible gamma-emissions of several models of lunar soils. (author) [fr

  7. Numerical Simulations of the Lunar Penetrating Radar and Investigations of the Geological Structures of the Lunar Regolith Layer at the Chang’E 3 Landing Site

    Directory of Open Access Journals (Sweden)

    Chunyu Ding


    Full Text Available In the process of lunar exploration, and specifically when studying lunar surface structure and thickness, the established lunar regolith model is usually a uniform and ideal structural model, which is not well-suited to describe the real structure of the lunar regolith layer. The present study aims to explain the geological structural information contained in the channel 2 LPR (lunar penetrating radar data. In this paper, the random medium theory and Apollo drilling core data are used to construct a modeling method based on discrete heterogeneous random media, and the simulation data are processed and collected by the electromagnetic numerical method FDTD (finite-difference time domain. When comparing the LPR data with the simulated data, the heterogeneous random medium model is more consistent with the actual distribution of the media in the lunar regolith layer. It is indicated that the interior structure of the lunar regolith layer at the landing site is not a pure lunar regolith medium but rather a regolith-rock mixture, with rocks of different sizes and shapes. Finally, several reasons are given to explain the formation of the geological structures of the lunar regolith layer at the Chang’E 3 landing site, as well as the possible geological stratification structure.

  8. High-Fidelity Lunar Dust Simulant, Phase II (United States)

    National Aeronautics and Space Administration — The severity of the lunar dust problems encountered during the Apollo missions were consistently underestimated by ground tests, illustrating the need to develop...

  9. High-Fidelity Lunar Dust Simulant, Phase I (United States)

    National Aeronautics and Space Administration — The severity of the lunar dust problems encountered during the Apollo missions were consistently underestimated by ground tests, illustrating the need to develop...

  10. Improved Lunar and Martian Regolith Simulant Production, Phase I (United States)

    National Aeronautics and Space Administration — NASA's new exploration initiative created immediate need for materials science and technology research to enable safe human travel and work on future lunar or...

  11. The negligible chondritic contribution in the lunar soils water. (United States)

    Stephant, Alice; Robert, François


    Recent data from Apollo samples demonstrate the presence of water in the lunar interior and at the surface, challenging previous assumption that the Moon was free of water. However, the source(s) of this water remains enigmatic. The external flux of particles and solid materials that reach the surface of the airless Moon constitute a hydrogen (H) surface reservoir that can be converted to water (or OH) during proton implantation in rocks or remobilization during magmatic events. Our original goal was thus to quantify the relative contributions to this H surface reservoir. To this end, we report NanoSIMS measurements of D/H and (7)Li/(6)Li ratios on agglutinates, volcanic glasses, and plagioclase grains from the Apollo sample collection. Clear correlations emerge between cosmogenic D and (6)Li revealing that almost all D is produced by spallation reactions both on the surface and in the interior of the grains. In grain interiors, no evidence of chondritic water has been found. This observation allows us to constrain the H isotopic ratio of hypothetical juvenile lunar water to δD ≤ -550‰. On the grain surface, the hydroxyl concentrations are significant and the D/H ratios indicate that they originate from solar wind implantation. The scattering distribution of the data around the theoretical D vs. (6)Li spallation correlation is compatible with a chondritic contribution <15%. In conclusion, (i) solar wind implantation is the major mechanism responsible for hydroxyls on the lunar surface, and (ii) the postulated chondritic lunar water is not retained in the regolith.

  12. Infrared spectra of lunar soils. [using a Michelson interferometer (United States)

    Aronson, J. R.; Emslie, A. G.; Smith, E. M.


    Measured data obtained by Michelson interferometer spectrometer were stored in a computer file and smoothed by being passed forward and backward through a digital four-pole low pass filter. Infrared spectra of the 10 lunar samples are presented in the format of brightness temperature versus frequency. The mol % of feldspar, pyroxene, olivine, ilmenite and ferromagnetic silicate in each sample is presented in tables. The reflectance spectra of ilmenite and enstatite are shown in graphs.

  13. Lunar surface engineering properties experiment definition. Volume 2: Mechanics of rolling sphere-soil slope interaction (United States)

    Hovland, H. J.; Mitchell, J. K.


    The soil deformation mode under the action of a rolling sphere (boulder) was determined, and a theory based on actual soil failure mechanism was developed which provides a remote reconnaissance technique for study of soil conditions using boulder track observations. The failure mechanism was investigated by using models and by testing an instrumented spherical wheel. The wheel was specifically designed to measure contact pressure, but it also provided information on the failure mechanism. Further tests included rolling some 200 spheres down sand slopes. Films were taken of the rolling spheres, and the tracks were measured. Implications of the results and reevaluation of the lunar boulder tracks are discussed.

  14. High-Fidelity Gas and Granular Flow Physics Models for Rocket Exhaust Interaction with Lunar Soil, Phase II (United States)

    National Aeronautics and Space Administration — Current modeling of Lunar and Martian soil erosion and debris transport caused by rocket plume impingement lacks essential physics from the peculiar granular...

  15. Three-Body Abrasion Testing Using Lunar Dust Simulants to Evaluate Surface System Materials (United States)

    Kobrick, Ryan L.; Budinski, Kenneth G.; Street, Kenneth W., Jr.; Klaus, David M.


    Numerous unexpected operational issues relating to the abrasive nature of lunar dust, such as scratched visors and spacesuit pressure seal leaks, were encountered during the Apollo missions. To avoid reoccurrence of these unexpected detrimental equipment problems on future missions to the Moon, a series of two- and three-body abrasion tests were developed and conducted in order to begin rigorously characterizing the effect of lunar dust abrasiveness on candidate surface system materials. Two-body scratch tests were initially performed to examine fundamental interactions of a single particle on a flat surface. These simple and robust tests were used to establish standardized measurement techniques for quantifying controlled volumetric wear. Subsequent efforts described in the paper involved three-body abrasion testing designed to be more representative of actual lunar interactions. For these tests, a new tribotester was developed to expose samples to a variety of industrial abrasives and lunar simulants. The work discussed in this paper describes the three-body hardware setup consisting of a rotating rubber wheel that applies a load on a specimen as a loose abrasive is fed into the system. The test methodology is based on ASTM International (ASTM) B611, except it does not mix water with the abrasive. All tests were run under identical conditions. Abraded material specimens included poly(methyl methacrylate) (PMMA), hardened 1045 steel, 6061-T6 aluminum (Al) and 1018 steel. Abrasives included lunar mare simulant JSC- 1A-F (nominal size distribution), sieved JSC-1A-F (sieved version of the simulant. The lunar dust displayed abrasivity to all of the test materials, which are likely to be used in lunar landing equipment. Based on this test experience and pilot results obtained, recommendations are made for systematic abrasion testing of candidate materials intended for use in lunar exploration systems and in other environments with similar dust challenges.

  16. ISRU Soil Mechanics Vacuum Facility: Soil Bin Preparation and Simulant Strength Characterization (United States)

    Kleinhenz, Julie; Wilkinson, Allen


    Testing in relevant environments is key to exploration mission hardware development. This is true on both the component level (in early development) and system level (in late development stages). During ISRU missions the hardware will interface with the soil (digging, roving, etc) in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, conditioned simulant bed. However, in earth-based granular media, such as lunar soil simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. The Vacuum Facility #13, a mid-size chamber (3.66m tall, 1.5m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64m deep by 0.914m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types have been used. An electric cone penetrometer was used to measure simulant strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5Torr, regardless of the pump rate. However, slow off gassing of the soil lead to long test times, a full week, to reach 10-5Torr. This work highlights the need for robotic machine-simulant hardware and operations in vacuum to expeditiously perform (sub-)systems tests.

  17. Laboratory evaluation of footings for lunar telescopes (United States)

    Chua, Koon M.; Golis, Kelly M.; Johnson, Stewart W.


    Presented here are the results of laboratory experiments with diffferent footing shapes for lunar telescopes. These experiments used a variety of soils including some to simulate regolith response. Based on what is known of regolith and regolith-structure interaction, a shallow-multiple-contact points footing foundation can be adequately designed to support lunar telescopes. Plane-strain load-displacement tests were conducted with different footings and different lunar simulants in a deep transparent plexiglass container. The model footings considered include the rectangular, hemispherical, and spudcan designs. Simulants used to reproduce the mechanical properties of the lunar regolith were fly ash, crushed basalt with and without glass, and a processed lunar simulant. Load-displacement curves were obtained for the different footings in Ottawa sand and in the crushed basalt with glass. The spudcan footing was found to be self-digging and yet stiff, thus providing excellent lateral stability in a large variety of soils.

  18. Conceptual Design of Korea Aerospace Research Institute Lunar Explorer Dynamic Simulator

    Directory of Open Access Journals (Sweden)

    Dong-Young Rew


    Full Text Available In lunar explorer development program, computer simulator is necessary to provide virtual environments that vehicle confronts in lunar transfer, orbit, and landing missions, and to analyze dynamic behavior of the spacecraft under these environments. Objective of simulation differs depending on its application in spacecraft development cycle. Scope of use cases considered in this paper includes simulation of software based, processor and/or hardware in the loop, and support of ground-based flight test of developed vehicle. These use cases represent early phase in development cycle but reusability of modeling results in the next design phase is considered in defining requirements. A simulator architecture in which simulator platform is located in the middle and modules for modeling, analyzing, and three dimensional visualizing are connected to that platform is suggested. Baseline concepts and requirements for simulator development are described. Result of trade study for selecting simulation platform and approaches of defining other simulator components are summarized. Finally, characters of lunar elevation map data which is necessary for lunar terrain generation is described.

  19. Pulmonary toxicity of simulated lunar and Martian dusts in mice: II. Biomarkers of acute responses after intratracheal instillation (United States)

    Lam, Chiu-Wing; James, John T.; Latch, Judith N.; Hamilton, Raymond F Jr; Holian, Andrij


    Volcanic ashes from Arizona and Hawaii, with chemical and mineral properties similar to those of lunar and Martian soils, respectively, are used by the National Aeronautics and Space Administration (NASA) to simulate lunar and Martian environments for instrument tests. NASA needs toxicity data on these volcanic soils to assess health risks from potential exposures of workers in facilities where these soil simulants are used. In this study we investigated the acute effects of lunar soil simulant (LSS) and Martian soil simulant (MSS), as a complement to a histopathological study assessing their subchronic effects (Lam et al., 2002). Fine dust of LSS, MSS, TiO(2), or quartz suspended in saline was intratracheally instilled into C57Bl/6J mice (4/group) in single doses of 0.1 mg/mouse or 1 mg/mouse. The mice were euthanized 4 or 24 h after the dust treatment, and bronchoalveolar lavage fluid (BALF) was obtained. Statistically significant lower cell viability and higher total protein concentration in the BALF were seen only in mice treated with the high dose of quartz for 4 h and with the high dose of MSS or quartz for 24 h, compared to mice treated only with saline. A significant increase in the percentage of neutrophils was not observed with any dust-treated group at 4 h after the instillation, but was observed after 24 h in all the dust-treated groups. This observation indicates that these dusts were not acutely toxic and the effects were gradual; it took some time for neutrophils to be recruited into and accumulate significantly in the lung. A statistically significant increase in apoptosis of lavaged macrophages from mice 4 h after treatment was found only in the high-dose silica group. The overall results of this study on the acute effects of these dusts in the lung indicate that LSS is slightly more toxic than TiO(2), and that MSS is comparable to quartz. These results were consistent with the subchronic histopathological findings in that the order of severity of

  20. Characterization of Volatiles Loss from Soil Samples at Lunar Environments (United States)

    Kleinhenz, Julie; Smith, Jim; Roush, Ted; Colaprete, Anthony; Zacny, Kris; Paulsen, Gale; Wang, Alex; Paz, Aaron


    Resource Prospector Integrated Thermal Vacuum Test Program A series of ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations for RP Volatiles loss during sampling operations Hardware performance Sample removal and transfer Concept of operationsInstrumentation5 test campaigns over 5 years have been conducted with RP hardware with advancing hardware designs and additional RP subsystems Volatiles sampling 4 years Using flight-forward regolith sampling hardware, empirically determine volatile retention at lunar-relevant conditions Use data to improve theoretical predictions Determine driving variables for retention Bound water loss potential to define measurement uncertainties. The main goal of this talk is to introduce you to our approach to characterizing volatiles loss for RP. Introduce the facility and its capabilities Overview of the RP hardware used in integrated testing (most recent iteration) Summarize the test variables used thus farReview a sample of the results.

  1. Remote determination of exposure degree and iron concentration of lunar soils using VIS-NIR spectroscopic methods (United States)

    Fischer, Erich M.; Pieters, Carle M.


    On the Moon, space weathering processes such as micrometeorite bombardment alter the optical properties of lunar soils. As a consequence, lunar soil optical properties are a function not only of composition, but of degree of exposure on the lunar surface as well. In order to accurately assess the compositional properties of the lunar surface using remotely acquired visible and near-infrared spectroscopic data, it is thus necessary either (1) to compare optical properties only of soils characterized by similar degrees of exposure or (2) to otherwise normalize or remove the optical effects due to exposure. Laboratory spectroscopic data for lunar soils are used to develop and test remote spectrocopic methods for determining degree of exposure and for distinguishing between the optical effects due to exposure and those due to composition. A method employing a ratio between reflectances within and outside of the 1 micrometer Fe(2+) crystal field absorption band was developed for remotely identifying highland soils that have reached a steady-state maturity. The relative optical properties of these soils are a function solely of composition and as such can be directly compared. Spectroscopic techniques for accurate quantitative determination of iron content for lunar highland soils are investigated as well. It is shown that approximations of the 1 micrometer Fe(2+) absorption band depth using few to several channel multispectral data or spectroscopic data of inadequate spectral range cannot be used with confidence for compositional analysis. However, band depth measurements derived from continuum-removed high spectral resolution data can be used to calculate the weight percent FeO and relative proportion of iron-bearing silicates in mature lunar highland and mare/highland mixture soils. A preliminary effort to calibrate telescopic band depth to laboratory soil measurements is described.

  2. Charging of Basic Structural Shapes in a Simulated Lunar Environment (United States)

    Craven, P.; Schneider, T.; Vaughn, J.; Wang, J.; Polansky, J.


    In order to understand the effect of the charging environment on and around structures on the lunar surface, we have exposed basic structural shapes to electrons and Vacuum Ultra-Violet (VUV) radiation. The objects were, in separate runs, isolated, grounded, and placed on dielectric surfaces. In this presentation, the effects of electron energy, VUV flux, and sample orientation, on the charging of the objects will be examined. The potential of each of the object surfaces was monitored in order to determine the magnitude of the ram and wake effects under different orientations relative to the incoming beams (solar wind). This is a part of, and complementary to, the study of the group at USC under Dr. J. Wang, the purpose of which is to model the effects of the charging environment on structures on the lunar surface.

  3. Effect of Simulant Type on the Absorptance and Emittance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment (United States)

    Gaier, James R.


    During the Apollo program the effects of lunar dust on thermal control surfaces was found to be more significant than anticipated, with several systems overheating due to deposition of dust on them. In an effort to reduce risk to future missions, a series of tests has been initiated to characterize the effects of dust on these surfaces, and then to develop technologies to mitigate that risk. Given the variations in albedo across the lunar surface, one variable that may be important is the darkness of the lunar dust, and this study was undertaken to address that concern. Three thermal control surfaces, AZ-93 white paint and AgFEP and AlFEP second surface mirrors were dusted with three different lunar dust simulants in a simulated lunar environment, and their integrated solar absorptance ( ) and thermal emittance ( ) values determined experimentally. The three simulants included JSC-1AF, a darker mare simulant, NU-LHT-1D, a light highlands simulant, and 1:1 mixture of the two. The response of AZ-93 was found to be slightly more pronounced than that of AgFEP. The increased with fractional dust coverage in both types of samples by a factor of 1.7 to 3.3, depending on the type of thermal control surface and the type of dust. The of the AZ-93 decreased by about 10 percent when fully covered by dust, while that of AgFEP increased by about 10 percent. It was found that / varied by more than a factor of two depending on the thermal control surface and the darkness of the dust. Given that the darkest simulant used in this study may be lighter than the darkest dust that could be encountered on the lunar surface, it becomes apparent that the performance degradation of thermal control surfaces due to dust on the Moon will be strongly dependent on the and of the dust in the specific locality

  4. The Smallest Lunar Grains: Analytical TEM Characterization of the Sub-micron Size Fraction of a Mare Soil (United States)

    Thompson, M.; Christoffersen, R.


    The chemical composition, mineralogical type, and morphology of lunar regolith grains changes considerably with decreasing size, and below the approx.25 m size range the correlation between these parameters and remotely-sensed lunar surface properties connected to space weathering increases significantly. Although trends for these parameters across grain size intervals greater than 20 m are now well established, the 0 to 20 m size interval remains relatively un-subdivided with respect to variations in grain modal composition, chemistry and microstructure. Of particular interest in this size range are grains in the approximate fundamental properties are now the focus of lunar research pertaining to electrostatic grain transport, dusty plasmas, and lunar dust effects on crew health and exploration systems. In this study we have used analytical transmission electron microscopy (TEM) to characterize the mineralogy, microstructure and major element composition of grains below the 1 m size threshold in lunar soil 10084.

  5. Electromagnetic Particle-in-Cell Simulations of the Solar Wind Interaction with Lunar Magnetic Anomalies (United States)

    Deca, J.; Divin, A.; Lapenta, G.; Lembège, B.; Markidis, S.; Horányi, M.


    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.

  6. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption Technology (United States)

    Padilla, Sebastian A.; Bower, Chad; Iacomini, Christie S.; Paul, H.


    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA subassembly was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort is operations and testing in a simulated lunar environment. This environment was simulated in Paragon s EHF vacuum chamber. The objective of this testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. The lunar testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This had not been achieved in any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  7. An Experimental Scattering Matrix for Lunar Regolith Simulant JSC-1A at Visible Wavelengths (United States)

    Escobar-Cerezo, J.; Muñoz, O.; Moreno, F.; Guirado, D.; Gómez Martín, J. C.; Goguen, J. D.; Garboczi, E. J.; Chiaramonti, A. N.; Lafarge, T.; West, R. A.


    We present the experimental scattering matrix as a function of the scattering angle of the lunar soil simulant JSC-1A. The measurements were performed at 488, 520, and 647 nm, covering the range of scattering angles from 3^\\circ to 177^\\circ . The effect of sub-micron-sized particles on the measured phase function and degree of linear polarization has been studied. After removing particles smaller than a 1 μm radius, the forward-scattering peak becomes steeper. Furthermore, the maximum of the degree of linear polarization increases, moving toward smaller scattering angles. Interestingly, the negative branch in the backward direction disappears as the small particles are removed from the sample. Because multiple scattering calculations with polarization included require single scattering matrices throughout the scattering range (from 0^\\circ to 180^\\circ ), we computed the corresponding synthetic scattering matrix through an extrapolation method, considering theoretical boundary conditions. From the extrapolated results, the asymmetry parameter g and the back-scattering linear depolarization factor {δ }L were computed.

  8. A Study of an Unmanned Lunar Mission for the Assay of Volatile Gases from the Soil (United States)

    Wittenberg, L. J.; Sviatoslavsky, I. N.; Kulcinski, G. L.; Mogahed, E. A.


    The success of a manned lunar outpost may require that indigenous resources be utilized in order to reduce the requirements for the periodic resupply from Earth for the human inhabitants. Some indigenous lunar resources do exist. For instance, studies of the lunar regoliths, acquired by the Apollo and Luna missions from several maria, indicate that upon heating in a vacuum, these soils evolve the volatile gases: helium (He), hydrogen (H2), carbon dioxide (CO2), carbon monoxide (CO), nitrogen (N2), and sulfur dioxide (SO2). The He, H, C, and N were originally implanted by solar wind These gases would be valuable to supply life-support systems. For instance, the H2 could be used as a rocket fuel, or alternatively, reacted with the mineral ilmenite (FeTiO3), indigenous to the lunar soil, to yield water (H2O). In an enclosed structure irradiated by solar energy, the H2O, N2, and CO2 could be utilized to grow edible plants for lunar inhabitants. Alternatively, the H2O could be electrolyzed, using photovoltaic cells, yielding breathable O. The inert gas He, would be useful for filling inflatable structures. In addition, the lunar He contains a high abundance of the rare isotopic He-3, which has been identified as a potentially valuable fuel for nuclear-fusion space power systems. In order to determine the economic potential of these lunar volatiles, we need information to assess the in situ quantities of these gases and identify the most abundant sites. In order to acquire such information, a large number of soil samples must be acquired and analyzed because it is not known if these volatile gases in the soil vary widely over the distance of a few meters or several kilometers. In addition, all of the lunar soil samples were analyzed on Earth, after being contaminated by terrestrial air and water. For these reasons, therefore, a mobile, robotic vehicle has been proposed that would be landed-on a lunar maria and assay the volatiles evolved by heating the indigenous lunar

  9. Analysis of Lunar Highland Regolith Samples from Apollo 16 Drive Core 64001/2 and Lunar Regolith Simulants - An Expanding Comparative Database (United States)

    Schrader, Christian M.; Rickman, Doug; Stoeser, Doug; Wentworth, Susan J.; Botha, Pieter WSK; Butcher, Alan R.; McKay, David; Horsch, Hanna; Benedictus, Aukje; Gottlieb, Paul


    We present modal data from QEMSCAN(registered TradeMark) beam analysis of Apollo 16 samples from drive core 64001/2. The analyzed lunar samples are thin sections 64002,6019 (5.0-8.0 cm depth) and 64001,6031 (50.0-53.1 cm depth) and sieved grain mounts 64002,262 and 64001,374 from depths corresponding to the thin sections, respectively. We also analyzed lunar highland regolith simulants NU-LHT-1M, -2M, and OB-1, low-Ti mare simulants JSC-1, -lA, -1AF, and FJS-1, and high-Ti mare simulant MLS-1. The preliminary results comprise the beginning of an internally consistent database of lunar regolith and regolith simulant mineral and glass information. This database, combined with previous and concurrent studies on phase chemistry, bulk chemistry, and with data on particle shape and size distribution, will serve to guide lunar scientists and engineers in choosing simulants for their applications. These results are modal% by phase rather than by particle type, so they are not directly comparable to most previously published lunar data that report lithic fragments, monomineralic particles, agglutinates, etc. Of the highland simulants, 08-1 has an integrated modal composition closer than NU-LHT-1M to that of the 64001/2 samples, However, this and other studies show that NU-LHT-1M and -2M have minor and trace mineral (e.g., Fe-Ti oxides and phosphates) populations and mineral and glass chemistry closer to these lunar samples. The finest fractions (0-20 microns) in the sieved lunar samples are enriched in glass relative to the integrated compositions by approx.30% for 64002,262 and approx.15% for 64001,374. Plagioclase, pyroxene, and olivine are depleted in these finest fractions. This could be important to lunar dust mitigation efforts and astronaut health - none of the analyzed simulants show this trend. Contrary to previously reported modal analyses of monomineralic grains in lunar regolith, these area% modal analyses do not show a systematic increase in plagiociase

  10. Effect of Lunar Dust Simulant on Wound Healing: An In Vitro Study (United States)

    Monici, Monica; Cialdai, Francesca; Lulli, Matteo; Capaccioli, Sergio; Marziliano, Nicola; Sundaresan, Alamelu


    Lunar dust properties are partly unknown and even less known are the effects on human health. Based on reports of the Apollo astronauts and studies performed so far, it is expected that lunar dust could cause skin, ocular and respiratory diseases. Since lunar dust is very pervasive, it could easily contaminate any injuries, abrasions, burns and alter the healing process. On the basis of this hypothesis we studied the effect of a lunar dust simulant on the behavior of dermal fibroblasts, which play a crucial role in wound healing. Cell viability, morphology, proliferation, apoptosis, ability to adhere to substrate and migrate to heal a wound, gene expression profile were assessed at 1, 3 and 6 days of treatment and compared with untreated controls. The results showed strong increase in apoptosis, decrease in cell viability and proliferation, cytoskeletal and morphological alterations. The ability to adhere to a substrate as well as migrate and heal a wound decreased. The findings indicate that, in case of wounds, ulcers or burns, lunar dust contamination could impair healing since it alters the behaviour of fibroblasts.

  11. Particle simulations of electric and dust environment near the lunar vertical hole (United States)

    Miyake, Y.; Funaki, Y.; Nishino, M. N.; Usui, H.


    We study the electric and dust environment near a complex surface structure on the moon: a vertical hole. In order to model an electric field structure near the surface, we performed the particle-in-cell simulations. The simulations provide electric field and plasma current density profiles in three-dimensional space above the complex lunar surface topography. Subsequently, we applied the obtained electric field and plasma current density data to the test-particle simulation on the dynamics of submicronsized charged dust grains. We focus on an effect of a stochastic charging process of such small dust grains. Because of their small surface areas, the dusts will get/lose one elementary charge infrequently. The preliminary simulation results show an evidence of dust mobilization across the sunlight-shadow interface formed inside the lunar hole.

  12. A simulation of the Four-way lunar Lander-Orbiter tracking mode for the Chang'E-5 mission (United States)

    Li, Fei; Ye, Mao; Yan, Jianguo; Hao, Weifeng; Barriot, Jean-Pierre


    The Chang'E-5 mission is the third phase of the Chinese Lunar Exploration Program and will collect and return lunar samples. After sampling, the Orbiter and the ascent vehicle will rendezvous and dock, and both spacecraft will require high precision orbit navigation. In this paper, we present a novel tracking mode-Four-way lunar Lander-Orbiter tracking that possibly can be employed during the Chang'E-5 mission. The mathematical formulas for the Four-way lunar Lander-Orbiter tracking mode are given and implemented in our newly-designed lunar spacecraft orbit determination and gravity field recovery software, the LUnar Gravity REcovery and Analysis Software/System (LUGREAS). The simulated observables permit analysis of the potential contribution Four-way lunar Lander-Orbiter tracking could make to precision orbit determination for the Orbiter. Our results show that the Four-way lunar Lander-Orbiter Range Rate has better geometric constraint on the orbit, and is more sensitive than the traditional two-way range rate that only tracks data between the Earth station and lunar Orbiter. After combining the Four-way lunar Lander-Orbiter Range Rate data with the traditional two-way range rate data and considering the Lander position error and lunar gravity field error, the accuracy of precision orbit determination for the Orbiter in the simulation was improved significantly, with the biggest improvement being one order of magnitude, and the Lander position could be constrained to sub-meter level. This new tracking mode could provide a reference for the Chang'E-5 mission and have enormous potential for the positioning of future lunar farside Lander due to its relay characteristic.

  13. Microwave Extraction of Lunar Water for Rocket Fuel (United States)

    Ethridge, Edwin C.; Donahue, Benjamin; Kaukler, William


    Nearly 50% of the lunar surface is oxygen, present as oxides in silicate rocks and soil. Methods for reduction of these oxides could liberate the oxygen. Remote sensing has provided evidence of significant quantities of hydrogen possibly indicating hundreds of millions of metric tons, MT, of water at the lunar poles. If the presence of lunar water is verified, water is likely to be the first in situ resource exploited for human exploration and for LOX-H2 rocket fuel. In-Situ lunar resources offer unique advantages for space operations. Each unit of product produced on the lunar surface represents 6 units that need not to be launched into LEO. Previous studies have indicated the economic advantage of LOX for space tugs from LEO to GEO. Use of lunar derived LOX in a reusable lunar lander would greatly reduce the LEO mass required for a given payload to the moon. And Lunar LOX transported to L2 has unique advantages for a Mars mission. Several methods exist for extraction of oxygen from the soil. But, extraction of lunar water has several significant advantages. Microwave heating of lunar permafrost has additional important advantages for water extraction. Microwaves penetrate and heat from within not just at the surface and excavation is not required. Proof of concept experiments using a moon in a bottle concept have demonstrated that microwave processing of cryogenic lunar permafrost simulant in a vacuum rapidly and efficiently extracts water by sublimation. A prototype lunar water extraction rover was built and tested for heating of simulant. Microwave power was very efficiently delivered into a simulated lunar soil. Microwave dielectric properties (complex electric permittivity and magnetic permeability) of lunar regolith simulant, JSC-1A, were measured down to cryogenic temperatures and above room temperature. The microwave penetration has been correlated with the measured dielectric properties. Since the microwave penetration depth is a function of temperature

  14. Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F.W., E-mail: [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Harris, P.R.; Taylor, C.N. [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Meyer III, H.M. [MST Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Barghouty, A.F.; Adams, J.H. [NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States)


    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.

  15. New Measurements of the Particle Size Distribution of Apollo 11 Lunar Soil 10084 (United States)

    McKay, D.S.; Cooper, B.L.; Riofrio, L.M.


    We have initiated a major new program to determine the grain size distribution of nearly all lunar soils collected in the Apollo program. Following the return of Apollo soil and core samples, a number of investigators including our own group performed grain size distribution studies and published the results [1-11]. Nearly all of these studies were done by sieving the samples, usually with a working fluid such as Freon(TradeMark) or water. We have measured the particle size distribution of lunar soil 10084,2005 in water, using a Microtrac(TradeMark) laser diffraction instrument. Details of our own sieving technique and protocol (also used in [11]). are given in [4]. While sieving usually produces accurate and reproducible results, it has disadvantages. It is very labor intensive and requires hours to days to perform properly. Even using automated sieve shaking devices, four or five days may be needed to sieve each sample, although multiple sieve stacks increases productivity. Second, sieving is subject to loss of grains through handling and weighing operations, and these losses are concentrated in the finest grain sizes. Loss from handling becomes a more acute problem when smaller amounts of material are used. While we were able to quantitatively sieve into 6 or 8 size fractions using starting soil masses as low as 50mg, attrition and handling problems limit the practicality of sieving smaller amounts. Third, sieving below 10 or 20microns is not practical because of the problems of grain loss, and smaller grains sticking to coarser grains. Sieving is completely impractical below about 5- 10microns. Consequently, sieving gives no information on the size distribution below approx.10 microns which includes the important submicrometer and nanoparticle size ranges. Finally, sieving creates a limited number of size bins and may therefore miss fine structure of the distribution which would be revealed by other methods that produce many smaller size bins.

  16. Full-Particle Simulations on Electrostatic Plasma Environment near Lunar Vertical Holes (United States)

    Miyake, Y.; Nishino, M. N.


    The Kaguya satellite and the Lunar Reconnaissance Orbiter have observed a number of vertical holes on the terrestrial Moon [Haruyama et al., GRL, 2009; Robinson et al., PSS, 2012], which have spatial scales of tens of meters and are possible lava tube skylights. The hole structure has recently received particular attention, because the structure gives an important clue to the complex volcanic history of the Moon. The holes also have high potential as locations for constructing future lunar bases, because of fewer extra-lunar rays/particles and micrometeorites reaching the hole bottoms. In this sense, these holes are not only interesting in selenology, but are also significant from the viewpoint of electrostatic environments. The subject can also be an interesting resource of research in comparative planetary science, because hole structures have been found in other solar system bodies such as the Mars. The lunar dayside electrostatic environment is governed by electrodynamic interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. We use the three-dimensional, massively-parallelized, particle-in-cell simulation code EMSES [Miyake and Usui, POP, 2009] to simulate the near-hole plasma environment on the Moon [Miyake and Nishino, Icarus, 2015]. We took into account the solar wind plasma downflow, photoelectron emission from the sunlit part of the lunar surface, and plasma charge deposition on the surface. The simulation domain consists of 400×400×2000 grid points and contains about 25 billion plasma macro-particles. Thus, we need to use supercomputers for the simulations. The vertical wall of the hole introduces a new boundary for both photo and solar wind electrons. The current balance condition established at a hole bottom is altered by the limited solar wind electron penetration into the hole and complex photoelectron current paths inside the hole. The self

  17. Structure of the lunar wake: Two-dimensional global hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Pavel; Hellinger, Petr; Schriver, D.; Bale, S. D.


    Roč. 32, - (2005), L06102/1-L06102/4 ISSN 0094-8276 R&D Projects: GA ČR(CZ) GA205/05/1011 Grant - others:ESA(XE) PRODEX 14529; NSF(US) INT- 0010111; NASA (US) NAG5-11804 Institutional research plan: CEZ:AV0Z30420517 Keywords : hybrid simulations * lunar wake Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.491, year: 2005

  18. A Multi-Wavelength Grain-by-Grain Survey of Lunar Soils in Search of Rare Materials (United States)

    Crites, S.; Lucey, P. G.; Viti, T.


    The Moon is unique among terrestrial planets for its lack of an atmosphere and global tectonic or volcanic processes. These factors and its position in the inner solar system mean that it is a potential repository of meteoritic material from all of the terrestrial planets. The National Research Council's 2007 report on the Scientific Context for the Exploration of the Moon highlighted this unique possibility and defined the search for rare materials including those from the early Earth as a key goal for future lunar exploration. Armstrong et al. (2002) estimated that Earth material could be present at the 7 ppm level in surface lunar regolith and emphasized that since a single gram of lunar fines contains over 10 million particles, the search for terran material in lunar soils should begin with the current stock of lunar samples. Joy et al. (2012) demonstrated that mineral and lithologic relics of impactors can survive and be recognized in lunar samples, and recent work by Burchell et al. (2014) suggests that fossil fragments from Earth could survive the extreme shocks associated with transport to the Moon. Following the concept laid out by Armstrong et al. (2002), we are conducting a survey of lunar soil samples using microscopic hyperspectral imaging spectroscopy across visible, near-infrared, and thermal infrared wavelengths to conduct a search for rare particles, including those that could be sourced from the early Earth. Our system currently consists of three microscopic imaging spectrometers with ~30 micron spatial resolution, permitting resolved imaging of individual grains. Fields of view of at least 1 cm and scan rates near 1 mm/sec permit rapid processing of relatively large quantities of sample. Existing spectrometers cover the 0.5 to 2.5 micron region, permitting detection and characterization of the common iron-bearing lunar minerals olivine and pyroxene, and the 8-14 micron region, which permits detection of other, rarer minerals of interest such as

  19. Improved Lunar and Martian Regolith Simulant Production, Phase II (United States)

    National Aeronautics and Space Administration — The technical objective of the Phase II project is to provide a more complete investigation of the long-term needs of the simulant community based on the updated...

  20. Experimental Evaluation of the Scale Model Method to Simulate Lunar Vehicle Dynamics (United States)

    Johnson, Kyle; Asnani, Vivake; Polack, Jeff; Plant, Mark


    As compared to driving on Earth, the presence of lower gravity and uneven terrain on planetary bodies makes high speed driving difficult. In order to maintain ground contact and control vehicles need to be designed with special attention to dynamic response. The challenge of maintaining control on the Moon was evident during high speed operations of the Lunar Roving Vehicle (LRV) on Apollo 16, as at one point all four tires were off the ground; this event has been referred to as the Lunar Grand Prix. Ultimately, computer simulation should be used to examine these phenomena during the vehicle design process; however, experimental techniques are required for the validation and elucidation of key issues. The objectives of this study were to evaluate the methodology for developing a scale model of a lunar vehicle using similitude relationships and to test how vehicle configuration, six or eight wheel pods, and local tire compliance, soft or stiff, affect the vehicles dynamic performance. A wheel pod consists of a drive and steering transmission and wheel. The Lunar Electric Rover (LER), a human driven vehicle with a pressurized cabin, was selected as an example for which a scale model was built. The scaled vehicle was driven over an obstacle and the dynamic response was observed and then scaled to represent the full-size vehicle in lunar gravity. Loss of ground contact, in terms of vehicle travel distance with tires off the ground, was examined. As expected, local tire compliance allowed ground contact to be maintained over a greater distance. However, switching from a six-tire configuration to an eight-tire configuration with reduced suspension stiffness had a negative effect on ground contact. It is hypothesized that this was due to the increased number or frequency of impacts. The development and testing of this scale model provided practical lessons for future low-gravity vehicle development.

  1. Total Synthesis of Ionic Liquid Systems for Dissolution of Lunar Simulant (United States)

    Sharpe, Robert J.; Karr, Laurel J.; Paley, Mark S.


    For purposes of Space Resource Utilization, work in the total synthesis of a new ionic liquid system for the extraction of oxygen and metals from lunar soil is studied and described. Reactions were carried out according to procedures found in the chemical literature, analyzed via Thin-Layer Chromatography and 1H Nuclear Magnetic Resonance Spectroscopy and purified via vacuum distillation and rotary evaporation. Upon final analysis via 1H NMR, it was found that while the intermediates of the synthesis had been achieved, unexpected side products were also present. The mechanisms and constraints of the synthesis are described as well as the final results of the project and recommendations for continued study

  2. Evaluation of lunar rocks and soils for resource utilization: Detailed image analysis of raw materials and beneficiated products (United States)

    Taylor, Lawrence A.; Chambers, John G.; Patchen, Allan; Jerde, Eric A.; Mckay, David S.; Graf, John; Oder, Robin R.


    The rocks and soils of the Moon will be the raw materials for fuels and construction needs at a lunar base. This includes sources of materials for the generation of hydrogen, oxygen, metals, and other potential construction materials. For most of the bulk material needs, the regolith, and its less than 1 cm fraction, the soil, will suffice. But for specific mineral resources, it may be necessary to concentrate minerals from rocks or soils, and it is not always obvious which is the more appropriate feedstock. Besides an appreciation of site geology, the mineralogy and petrography of local rocks and soils is important for consideration of the resources which can provide feedstocks of ilmenite, glass, agglutinates, anorthite, etc. In such studies, it is very time-consuming and practically impossible to correlate particle counts (the traditional method of characterizing lunar soil petrography) with accurate modal analyses and with mineral associations in multi-mineralic grains. But x ray digital imaging, using x rays characteristic of each element, makes all this possible and much more (e.g., size and shape analysis). An application of beneficiation image analysis, in use in our lab (Oxford Instr. EDS and Cameca SX-50 EMP), was demonstrated to study mineral liberation from lunar rocks and soils. Results of x ray image analysis are presented.

  3. Electromagnetic Simulations of Ground-Penetrating Radar Propagation near Lunar Pits and Lava Tubes (United States)

    Zimmerman, M. I.; Carter, L. M.; Farrell, W. M.; Bleacher, J. E.; Petro, N. E.


    Placing an Orion capsule at the Earth-Moon L2 point (EML2) would potentially enable telerobotic operation of a rover on the lunar surface. The Human Exploration Virtual Institute (HEVI) is proposing that rover operations be carried out near one of the recently discovered lunar pits, which may provide radiation shielding for long duration human stays as well as a cross-disciplinary, science-rich target for nearer-term telerobotic exploration. Ground penetrating radar (GPR) instrumentation included onboard a rover has the potential to reveal many details of underground geologic structures near a pit, as well as characteristics of the pit itself. In the present work we employ the full-wave electromagnetic code MEEP to simulate such GPR reflections from a lunar pit and other subsurface features including lava tubes. These simulations will feed forward to mission concepts requiring knowledge of where to hide from harmful radiation and other environmental hazards such as plama charging and extreme diurnal temperatures.

  4. Electrostatic environment near lunar vertical hole: 3D plasma particle simulations (United States)

    Miyake, Yohei; Nishino, Masaki N.


    The dayside electrostatic environment near the lunar surface is governed by interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. Three-dimensional, particle-in-cell simulations are applied to recently discovered vertical holes on the Moon, which have spatial scales of tens of meters and greater depth-to-diameter ratios than typical impact craters. The vertical wall of the hole introduces a new boundary for both photo and solar wind electrons. The current balance condition established at a hole bottom is altered by the limited solar wind electron penetration into the hole due to loss at the wall and photoelectron current path connecting the hole bottom and wall surfaces. The self-consistent modeling not only reproduces intense differential charging between sunlit and shadowed surfaces, but also reveals the potential difference between sunlit surfaces inside and outside the hole, demonstrating the uniqueness of the near-hole electrostatic environment.

  5. Analysis and Testing of Load Characteristics for Rotary-Percussive Drilling of Lunar Rock Simulant with a Lunar Regolith Coring Bit

    Directory of Open Access Journals (Sweden)

    Peng Li


    Full Text Available Based on an optimized lunar regolith coring bit (LRCB configuration, the load characteristics of rotary-percussive drilling of lunar rock simulant in a laboratory environment are analyzed to determine the effects of the drilling parameters (the rotational velocity, the penetration rate, and the percussion frequency on the drilling load. The process of rotary drilling into lunar rock using an LRCB is modeled as an interaction between an elemental blade and the rock. The rock’s fracture mechanism during different stages of the percussive mechanism is analyzed to create a load forecasting model for the cutting and percussive fracturing of rock using an elemental blade. Finally, a model of the load on the LRCB is obtained from the analytic equation for the bit’s cutting blade distribution; experimental verification of the rotary-impact load characteristics for lunar rock simulant with different parameters is performed. The results show that the penetrations per revolution (PPR are the primary parameter influencing the drilling load. When the PPR are fixed, increasing the percussion frequency reduces the drilling load on the rock. Additionally, the variation pattern of the drilling load of the bit is in agreement with that predicted by the theoretical model. This provides a research basis for subsequent optimization of the drilling procedure and online recognition of the drilling process.

  6. Laser Diffraction Techniques Replace Sieving for Lunar Soil Particle Size Distribution Data (United States)

    Cooper, Bonnie L.; Gonzalez, C. P.; McKay, D. S.; Fruland, R. L.


    Sieving was used extensively until 1999 to determine the particle size distribution of lunar samples. This method is time-consuming, and requires more than a gram of material in order to obtain a result in which one may have confidence. This is demonstrated by the difference in geometric mean and median for samples measured by [1], in which a 14-gram sample produced a geometric mean of approx.52 micrometers, whereas two other samples of 1.5 grams resulted in gave means of approx.63 and approx.69 micrometers. Sample allocations for sieving are typically much smaller than a gram, and many of the sample allocations received by our lab are 0.5 to 0.25 grams in mass. Basu [2] has described how the finest fraction of the soil is easily lost in the sieving process, and this effect is compounded when sample sizes are small.

  7. Magnesium and Silicon Isotopes in HASP Glasses from Apollo 16 Lunar Soil 61241 (United States)

    Herzog, G. F.; Delaney, J. S.; Lindsay, F.; Alexander, C. M. O'D; Chakrabarti, R.; Jacobsen, S. B.; Whattam, S.; Korotev, R.; Zeigler, R. A.


    The high-Al (>28 wt %), silica-poor (<45 wt %) (HASP) feldspathic glasses of Apollo 16 are widely regarded as the evaporative residues of impacts in the lunar regolith [1-3]. By virtue of their small size, apparent homogeneity, and high inferred formation temperatures, the HASP glasses appear to be good samples in which to study fractionation processes that may accompany open system evaporation. Calculations suggest that HASP glasses with present-day Al2O3 concentrations of up to 40 wt% may have lost 19 wt% of their original masses, calculated as the oxides of iron and silicon, via evaporation [4]. We report Mg and Si isotope abundances in 10 HASP glasses and 2 impact-glass spherules from a 64-105 m grain-size fraction taken from Apollo 16 soil sample 61241.

  8. Development of construction materials like concrete from lunar soils without water (United States)

    Desai, Chandra S.; Saadatmanesh, H.; Frantziskonis, G.


    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. A unique approach is attempted that utilizes factors such as initial vacuum and then cyclic loading to enhance the mechanical properties of dry materials similar to those available on the moon. The application of such factors is expected to allow reorientation, and coming together, of particles of the materials toward the maximum theoretical density. If such a density can provide deformation and strength properties for even a limited type of construction, the approach can have significant application potential, although other factors such as heat and chemicals may be needed for specific construction objectives.

  9. Lack of chemical fractionation in major and minor elements during agglutinate formation. [in lunar soil (United States)

    Hu, H.-N.; Taylor, L. A.


    Rhodes et al. (1975, 1976) and Adams et al. (1975) have reported that the agglutinate fraction of the soils on the lunar surface displays a marked enrichment in Fe, Mg, Ti, K, and La, and a depletion in Ca, Na, Al, and Eu, relative to the bulk soils. The reported investigation is concerned with a testing of the theory of chemical fractionation involving magnetic separation which was developed in connection with these findings. Soils 64421 and 71501 were sieved and the magnetic fractions separated according to the method developed by Adams and McCord (1973). Analyses of agglutinitic glass did not indicate any appreciable chemical fractionation for the major and minor elements accompanying the agglutination process. It was found that most, if not all fractionations reported can be accounted for completely by the magnetic nonagglutinate impurities in the agglutinate fraction. It is, therefore, concluded that there appears to be no reason to make use of any chemical fractionation theory, whose validity remains to be demonstrated.

  10. Inhalation Toxicity of Ground Lunar Dust Prepared from Apollo-14 Soil (United States)

    James, John T.; Lam, Chiu-wing; Scully, Robert R.; Cooper, Bonnie L.


    Within the decade one or more space-faring nations intend to return humans to the moon for more in depth exploration of the lunar surface and subsurface than was conducted during the Apollo days. The lunar surface is blanketed with fine dust, much of it in the respirable size range (dust into habitats and rovers, it is reasonable to expect lunar dust to pollute both as operations progress. Apollo astronauts were exposed briefly to dust at nuisance levels, but stays of up to 6 months on the lunar surface are envisioned. Will repeated episodic exposures to lunar dust present a health hazard to those engaged in lunar exploration? Using rats exposed to lunar dust by nose-only inhalation, we set out to investigate that question.

  11. TEM Analyses of Itokawa Regolith Grains and Lunar Soil Grains to Directly Determine Space Weathering Rates on Airless Bodies (United States)

    Berger, Eve L.; Keller, Lindsay P.; Christoffersen, Roy


    Samples returned from the moon and Asteroid Itokawa by NASA's Apollo Missions and JAXA's Hayabusa Mission, respectively, provide a unique record of their interaction with the space environment. Space weathering effects result from micrometeorite impact activity and interactions with the solar wind. While the effects of solar wind interactions, ion implantation and solar flare particle track accumulation, have been studied extensively, the rate at which these effects accumulate in samples on airless bodies has not been conclusively determined. Results of numerical modeling and experimental simulations do not converge with observations from natural samples. We measured track densities and rim thicknesses of three olivine grains from Itokawa and multiple olivine and anorthite grains from lunar soils of varying exposure ages. Samples were prepared for analysis using a Leica EM UC6 ultramicrotome and an FEI Quanta 3D dual beam focused ion beam scanning electron microscope (FIB-SEM). Transmission electron microscope (TEM) analyses were performed on the JEOL 2500SE 200kV field emission STEM. The solar wind damaged rims on lunar anorthite grains are amorphous, lack inclusions, and are compositionally similar to the host grain. The rim width increases as a smooth function of exposure age until it levels off at approximately 180 nm after approximately 20 My (Fig. 1). While solar wind ion damage can only accumulate while the grain is in a direct line of sight to the Sun, solar flare particles can penetrate to mm-depths. To assess whether the track density accurately predicts surface exposure, we measured the rim width and track density in olivine and anorthite from the surface of rock 64455, which was never buried and has a surface exposure age of 2 My based on isotopic measurements. The rim width from 64455 (60-70nm) plots within error of the well-defined trend for solar wind amorphized rims in Fig. 1. Measured solar flare track densities are accurately reflecting the

  12. Lunar Resources Using Moderate Spectral Resolution Visible and Near-infrared Spectroscopy: Al/si and Soil Maturity (United States)

    Fischer, Erich M.; Pieters, Carle M.; Head, James W.


    Modern visible and near-infrared detectors are critically important for the accurate identification and relative abundance measurement of lunar minerals; however, even a very small number of well-placed visible and near-infrared bandpass channels provide a significant amount of general information about crucial lunar resources. The Galileo Solid State Imaging system (SSI) multispectral data are an important example of this. Al/Si and soil maturity will be discussed as examples of significant general lunar resource information that can be gleaned from moderate spectral resolution visible and near-infrared data with relative ease. Because quantitative-albedo data are necessary for these kinds of analyses, data such as those obtained by Galileo SSI are critical. SSI obtained synoptic digital multispectral image data for both the nearside and farside of the Moon during the first Galileo Earth-Moon encounter in December 1990. The data consist of images through seven filters with bandpasses ranging from 0.40 microns in the ultraviolet to 0.99 microns in the near-infrared. Although these data are of moderate spectral resolution, they still provide information for the following lunar resources: (1) titanium content of mature mare soils based upon the 0.40/0.56-micron (UV/VIS) ratio; (2) mafic mineral abundance based upon the 0.76/0.99-micron ratio; and (3) the maturity or exposure age of the soils based upon the 0.56-0.76-micron continuum and the 0.76/0.99-micron ratio. Within constraints, these moderate spectral resolution visible and near-infrared reflectance data can also provide elemental information such as Al/Si for mature highland soils.

  13. Near-Infrared Monitoring of Volatiles in Frozen Lunar Simulants While Drilling (United States)

    Roush, Ted L.; Colaprete, Anthony; Elphic, Richard C.; Forgione, Joshua; White, Bruce; McMurray, Robert; Cook, Amanda M.; Bielawski, Richard; Fritzler, Erin L.; Thompson, Sarah J.; hide


    In Situ Resource Utilization (ISRU) focuses on using local resources for mission consumables. The approach can reduce mission cost and risk. Lunar polar volatiles, e.g. water ice, have been detected via remote sensing measurements and represent a potential resource for both humans and propellant. The exact nature of the horizontal and depth distribution of the ice remains to be documented in situ. NASA's Resource Prospector mission (RP) is intended to investigate the polar volatiles using a rover, drill, and the RESOLVE science package. RP component level hardware is undergoing testing in relevant lunar conditions (cryovacuum). In March 2015 a series of drilling tests were undertaken using the Honeybee Robotics RP Drill, Near-Infrared Volatile Spectrometer System (NIRVSS), and sample capture mechanisms (SCM) inside a 'dirty' thermal vacuum chamber at the NASA Glenn Research Center. The goal of these tests was to investigate the ability of NIRVSS to monitor volatiles during drilling activities and assess delivery of soil sample transfer to the SCMs in order to elucidate the concept of operations associated with this regolith sampling method.

  14. Soil Organic Matter (SOM): Molecular Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Amity


    Molecular simulation is a powerful tool used to gain an atomistic, molecular, and nanoscale level understanding of the structure, dynamics, and interactions from adsorption on minerals and assembly in aggregates of soil organic matter (SOM). Given the importance of SOM fate and persistence in soils and the current knowledge gaps, applications of atomistic scale simulations to study the complex compounds in SOM and their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types common in soils are few and far between. Here, we describe various molecular simulation methods that are currently in use in various areas and applicable to SOM research, followed by a brief survey of specific applications to SOM research and an illustration with our own recent efforts in this area. We conclude with an outlook and the challenges for future research in this area.

  15. Detection of macromolecules in desert cyanobacteria mixed with a lunar mineral analogue after space simulations. (United States)

    Baqué, Mickael; Verseux, Cyprien; Rabbow, Elke; de Vera, Jean-Pierre Paul; Billi, Daniela


    In the context of future exposure missions in Low Earth Orbit and possibly on the Moon, two desert strains of the cyanobacterium Chroococcidiopsis, strains CCMEE 029 and 057, mixed or not with a lunar mineral analogue, were exposed to fractionated fluencies of UVC and polychromatic UV (200-400 nm) and to space vacuum. These experiments were carried out within the framework of the BIOMEX (BIOlogy and Mars EXperiment) project, which aims at broadening our knowledge of mineral-microorganism interaction and the stability/degradation of their macromolecules when exposed to space and simulated Martian conditions. The presence of mineral analogues provided a protective effect, preserving survivability and integrity of DNA and photosynthetic pigments, as revealed by testing colony-forming abilities, performing PCR-based assays and using confocal laser scanning microscopy. In particular, DNA and pigments were still detectable after 500 kJ/m(2) of polychromatic UV and space vacuum (10(-4) Pa), corresponding to conditions expected during one-year exposure in Low Earth Orbit on board the EXPOSE-R2 platform in the presence of 0.1 % Neutral Density (ND) filter. After exposure to high UV fluencies (800 MJ/m(2)) in the presence of minerals, however, altered fluorescence emission spectrum of the photosynthetic pigments were detected, whereas DNA was still amplified by PCR. The present paper considers the implications of such findings for the detection of biosignatures in extraterrestrial conditions and for putative future lunar missions.

  16. Human Exploration Initiatives at EAC: Spaceship EAC and the Development of Large-Volume Lunar Regolith Simulant for LUNA (United States)

    Nash, V. E.; Cowley, A.; Fateri, M.; Coene, S.; Siarov, S.; Cristoforetti, S.


    In order to address analogue capability gaps previously identified by ESA GSP studies, EAC has embarked on a number of exploration enabling initiatives at the centre in Cologne, Germany. Herein, preliminary results of two of these projects are presented; the Spaceship EAC initiative and EAC-1, a large-volume lunar regolith simulant for the LUNA facility.

  17. The Lunar Regolith (United States)

    Noble, Sarah


    A thick layer of regolith, fragmental and unconsolidated rock material, covers the entire lunar surface. This layer is the result of the continuous impact of meteoroids large and small and the steady bombardment of charged particles from the sun and stars. The regolith is generally about 4-5 m thick in mare regions and 10-15 m in highland areas (McKay et al., 1991) and contains all sizes of material from large boulders to sub-micron dust particles. Below the regolith is a region of large blocks of material, large-scale ejecta and brecciated bedrock, often referred to as the "megaregolith". Lunar soil is a term often used interchangeably with regolith, however, soil is defined as the subcentimeter fraction of the regolith (in practice though, soil generally refers to the submillimeter fraction of the regolith). Lunar dust has been defined in many ways by different researchers, but generally refers to only the very finest fractions of the soil, less than approx.10 or 20 microns. Lunar soil can be a misleading term, as lunar "soil" bears little in common with terrestrial soils. Lunar soil contains no organic matter and is not formed through biologic or chemical means as terrestrial soils are, but strictly through mechanical comminution from meteoroids and interaction with the solar wind and other energetic particles. Lunar soils are also not exposed to the wind and water that shapes the Earth. As a consequence, in contrast to terrestrial soils, lunar soils are not sorted in any way, by size, shape, or chemistry. Finally, without wind and water to wear down the edges, lunar soil grains tend to be sharp with fresh fractured surfaces.

  18. Numerical Simulations of the Lunar Penetrating Radar and Investigations of the Geological Structures of the Lunar Regolith Layer at the Chang’E 3 Landing Site


    Ding, Chunyu; Su, Yan; Xing, Shuguo; Dai, Shun; Xiao, Yuan; Feng, Jianqing; Liu, Danqing; Li, Chunlai


    In the process of lunar exploration, and specifically when studying lunar surface structure and thickness, the established lunar regolith model is usually a uniform and ideal structural model, which is not well-suited to describe the real structure of the lunar regolith layer. The present study aims to explain the geological structural information contained in the channel 2 LPR (lunar penetrating radar) data. In this paper, the random medium theory and Apollo drilling core data are used to co...

  19. The Future Lunar Flora Colony (United States)

    Goel, E. G.; Guven, U. G.


    A constructional design for the primary establishment for a lunar colony using the micrometeorite rich soil is proposed. It highlights the potential of lunar regolith combined with Earth technology for water and oxygen for human outposts on the Moon.

  20. Integration of Launch Vehicle Simulation/Analysis Tools and Lunar Cargo Lander Design. Part 1/2 (United States)

    Shiue, Yeu-Sheng Paul


    Simulation and analysis of vehicle performance is essential for design of a new launch vehicle system. It is more and more demand to have an integrated, highly efficient, robust simulation tool with graphical user interface (GUI) for vehicle performance and simulations. The objectives of this project are to integrate and develop launch vehicle simulation and analysis tools in MATLAB/Simulink under PC Platform, to develop a vehicle capable of being launched on a Delta-IV Heavy Launch Vehicle which can land on the moon with the goal of pre-implanting cargo for a new lunar mission, also with the capability of selecting other launch vehicles that are capable of inserting a payload into Trans-Lunar Injection (TLI). The vehicle flight simulation software, MAVERIC-II (Marshall Aerospace VEhicle Representation In 'C'), developed by Marshall Space Flight Center was selected as a starting point for integration of simulation/analysis tools. The goals are to convert MAVERIC-II from UNIX to PC platform and build input/output GUI s in the MATLAB environment, and then integrate them under MATLAB/Simulink with other modules. Currently, MAVERIC-II has been successfully converted from UNIX to PC using Microsoft Services for UNIX subsystem on PC. Input/Output GUI's have been done for some key input/output files. Calling MAVERIC-II from Simulink has been tested. Details regarding Lunar Cargo Lander Design are described in Part 2/2 of the paper on page X-1.

  1. A PFC3D-based numerical simulation of cutting load for lunar rock simulant and experimental validation (United States)

    Li, Peng; Jiang, Shengyuan; Tang, Dewei; Xu, Bo


    For sake of striking a balance between the need of drilling efficiency and the constrains of power budget on the moon, the penetrations per revolution of drill bit are generally limited in the range around 0.1 mm, and besides the geometric angle of the cutting blade need to be well designed. This paper introduces a simulation approach based on PFC3D (particle flow code 3 dimensions) for analyzing the cutting load feature on lunar rock simulant, which is derived from different geometric-angle blades with a small cutting depth. The mean values of the cutting force of five blades in the survey region (four on the boundary points and one on the center point) are selected as the macroscopic responses of model. The method of experimental design which includes Plackett-Burman (PB) design and central composite design (CCD) method is adopted in the matching procedure of microparameters in PFC model. Using the optimization method of enumeration, the optimum set of microparameters is acquired. Then, the experimental validation is implemented by using other twenty-five blades with different geometric angles, and the results from both simulations and laboratory tests give fair agreements. Additionally, the rock breaking process cut by different blades are quantified from simulation analysis. This research provides the theoretical support for the refinement of the rock cutting load prediction and the geometric design of cutting blade on the drill bit.

  2. Lunar soil properties and soil mechanics. Flow in porous media under rarefied gas conditions. Research phase: Fluid conductivity of lunar surface materials (United States)

    Hurlbut, F. C.; Jih, C. R.


    Theoretical and experimental research on fluid conductivity of lunar surface materials is summarized. Theoretical methods were developed for the analysis of transitional and free-molecular flows, and for analysis of lunar permeability probe data in general. Experimental studies of rarefied flows under conditions of a large pressure gradient show flows in the continuum regime to be responsible for the largest portion of the pressure drop between source and sink for one dimensional flow, provided the entrance Knudsen number is sufficiently small. The concept of local similarity leading to a universal nondimensional function of Knudsen number was shown to have approximate validity; flows in all regimes may be described in terms of an area fraction and a single length parameter. Synthetic porous media prepared from glass beads exhibited flow behavior similar in many regards to that of a natural sandstone; studies using artificial stones with known pore configurations may lead to new insight concerning the structure of natural materials. The experimental method involving the use of segmented specimens of large permeability is shown to be fruitful.

  3. An Evidence-based Approach to Developing a Management Strategy for Medical Contingencies on the Lunar Surface: The NASA/Haughton-Mars Project (HMP) 2006 Lunar Medical Contingency Simulation at Devon Island (United States)

    Scheuring, R. A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chappell, S.; Rafiq, A.; Braham, S.; Hodgson, E.; Sullivan, P.; Wilkinson, N.; hide


    The lunar architecture for future sortie and outpost missions will require humans to serve on the lunar surface considerably longer than the Apollo moon missions. Although the Apollo crewmembers sustained few injuries during their brief lunar surface activity, injuries did occur and are a concern for the longer lunar stays. Interestingly, lunar medical contingency plans were not developed during Apollo. In order to develop an evidence-base for handling a medical contingency on the lunar surface, a simulation using the moon-Mars analog environment at Devon Island, Nunavut, high Canadian Arctic was conducted. Objectives of this study included developing an effective management strategy for dealing with an incapacitated crewmember on the lunar surface, establishing audio/visual and biomedical data connectivity to multiple centers, testing rescue/extraction hardware and procedures, and evaluating in suit increased oxygen consumption. Methods: A review of the Apollo lunar surface activities and personal communications with Apollo lunar crewmembers provided the knowledge base of plausible scenarios that could potentially injure an astronaut during a lunar extravehicular activity (EVA). Objectives were established to demonstrate stabilization and transfer of an injured crewmember and communication with ground controllers at multiple mission control centers. Results: The project objectives were successfully achieved during the simulation. Among these objectives were extraction from a sloped terrain by a two-member crew in a 1 g analog environment, establishing real-time communication to multiple centers, providing biomedical data to flight controllers and crewmembers, and establishing a medical diagnosis and treatment plan from a remote site. Discussion: The simulation provided evidence for the types of equipment and methods for performing extraction of an injured crewmember from a sloped terrain. Additionally, the necessary communications infrastructure to connect

  4. Mineralogy and chemistry of Ti-bearing lunar soils: Effects on reflectance spectra and remote sensing observations (United States)

    Coman, Ecaterina O.; Jolliff, Bradley L.; Carpenter, Paul


    This paper presents results of coordinated ultraviolet and visible wavelength reflectance measurements, X-ray diffraction analyses of mineral components, and micro X-ray fluorescence analyses of Ti concentrations of 13 lunar soil samples (remote sensing observations of the Moon and other airless bodies. We find that measured ilmenite weight percent correlates highly with measured TiO2 concentrations. Thus, the ilmenite content is a good predictor of TiO2 concentration. Ilmenite is the main contributor of TiO2 for soils with greater than about 2 wt.% TiO2, so we take the effects of TiO2 on reflectance spectra to be essentially those of ilmenite. Constraining the data set to eight mature Apollo soils, we find that among the UV/VIS ratios from laboratory-measured spectra, the 321/415 nm ratio shows the best correlation with TiO2 and ilmenite. Moreover, for soils with similar maturity in the submature to mature range, those with higher TiO2 have higher 321/415 UV/VIS ratios. Finally, the correlation between TiO2 content and 321/415 ratio in samples measured in the lab appears weaker than for the same relationship using the Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) spectral data for the 321/415 ratio of Apollo ground-truth sites. The correlation between lab-derived 321/415 ratios and TiO2 content for measured samples improves when low-maturity samples are excluded from the dataset, implying that the LROC WAC spectra at 400 m/pix spatial resolution senses mostly mature soil.

  5. Level of Automation and Failure Frequency Effects on Simulated Lunar Lander Performance (United States)

    Marquez, Jessica J.; Ramirez, Margarita


    A human-in-the-loop experiment was conducted at the NASA Ames Research Center Vertical Motion Simulator, where instrument-rated pilots completed a simulated terminal descent phase of a lunar landing. Ten pilots participated in a 2 x 2 mixed design experiment, with level of automation as the within-subjects factor and failure frequency as the between subjects factor. The two evaluated levels of automation were high (fully automated landing) and low (manual controlled landing). During test trials, participants were exposed to either a high number of failures (75% failure frequency) or low number of failures (25% failure frequency). In order to investigate the pilots' sensitivity to changes in levels of automation and failure frequency, the dependent measure selected for this experiment was accuracy of failure diagnosis, from which D Prime and Decision Criterion were derived. For each of the dependent measures, no significant difference was found for level of automation and no significant interaction was detected between level of automation and failure frequency. A significant effect was identified for failure frequency suggesting failure frequency has a significant effect on pilots' sensitivity to failure detection and diagnosis. Participants were more likely to correctly identify and diagnose failures if they experienced the higher levels of failures, regardless of level of automation

  6. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants.

    Directory of Open Access Journals (Sweden)

    G W Wieger Wamelink

    Full Text Available When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant; the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.

  7. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants. (United States)

    Wamelink, G W Wieger; Frissel, Joep Y; Krijnen, Wilfred H J; Verwoert, M Rinie; Goedhart, Paul W


    When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant); the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.

  8. Experimental Measurements of Heat Transfer through a Lunar Regolith Simulant in a Vibro-Fluidized Reactor Oven (United States)

    Nayagam, Vedha; Berger, Gordon M.; Sacksteder, Kurt R.; Paz, Aaron


    Extraction of mission consumable resources such as water and oxygen from the planetary environment provides valuable reduction in launch-mass and potentially extends the mission duration. Processing of lunar regolith for resource extraction necessarily involves heating and chemical reaction of solid material with processing gases. Vibrofluidization is known to produce effective mixing and control of flow within granular media. In this study we present experimental results for vibrofluidized heat transfer in lunar regolith simulants (JSC-1 and JSC-1A) heated up to 900 C. The results show that the simulant bed height has a significant influence on the vibration induced flow field and heat transfer rates. A taller bed height leads to a two-cell circulation pattern whereas a single-cell circulation was observed for a shorter height. Lessons learned from these test results should provide insight into efficient design of future robotic missions involving In-Situ Resource Utilization.

  9. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions (United States)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space

  10. Lightweight Bulldozer Attachment for Construction and Excavation on the Lunar Surface (United States)

    Mueller, Robert; Wilkinson, R. Allen; Gallo, Christopher A.; Nick, Andrew J.; Schuler, Jason M.; King, Robert H.


    A lightweight bulldozer blade prototype has been designed and built to be used as an excavation implement in conjunction with the NASA Chariot lunar mobility platform prototype. The combined system was then used in a variety of field tests in order to characterize structural loads, excavation performance and learn about the operational behavior of lunar excavation in geotechnical lunar simulants. The purpose of this effort was to evaluate the feasibility of lunar excavation for site preparation at a planned NASA lunar outpost. Once the feasibility has been determined then the technology will become available as a candidate element in the NASA Lunar Surface Systems Architecture. In addition to NASA experimental testing of the LANCE blade, NASA engineers completed analytical work on the expected draft forces using classical soil mechanics methods. The Colorado School of Mines (CSM) team utilized finite element analysis (FEA) to study the interaction between the cutting edge of the LANCE blade and the surface of soil. FEA was also used to examine various load cases and their effect on the lightweight structure of the LANCE blade. Overall it has been determined that a lunar bulldozer blade is a viable technology for lunar outpost site preparation, but further work is required to characterize the behavior in 1/6th G and actual lunar regolith in a vacuum lunar environment.

  11. Human Estimation of Slope, Distance, and Height of Terrain in Simulated Lunar Conditions

    National Research Council Canada - National Science Library

    Oravetz, Christopher


    .... These unique lunar conditions are expected to affect human perception: the lack of an atmosphere, the non-Lambertian regolith reflectance properties, the lack of familiar objects, and the physiological effects of reduced gravity...

  12. Simulation-Based Lunar Telerobotics Design, Acquisition and Training Platform for Virtual Exploration, Phase I (United States)

    National Aeronautics and Space Administration — This Phase I proposal will develop a virtual test fixture performing a high caliber 3D dynamic reproduction of an prototype lunar bucket wheel excavator prototype...

  13. Simulation-Based Lunar Telerobotics Design, Acquisition and Training Platform for Virtual Exploration, Phase II (United States)

    National Aeronautics and Space Administration — Meeting the objectives of returning to the moon by 2020 will require NASA to fly a series of telerobotic lunar orbital and surface vehicles to prove the viability of...

  14. ARTEMIS observations of lunar wake structure compared with hybrid ­kinetic simulations and an analytic model (United States)

    Gharaee, H.; Rankin, R.; Marchand, R.; Paral, J.


    The ARTEMIS mission has made extensive measurements on the density and magnetic field structure of the lunar wake under different solar wind and magnetosphere conditions. Hybrid-kinetic simulations of the lunar wake have been found to be generally in good agreement with observations [Wiehle, S., et al., Planet. Space Sci., 2011], but are not readily available as they require access to large computers and human resources with expertise using this technology. It would be very useful to have an analytic model of the lunar wake, and one such model will be presented. It is based on an approach outlined by Hutchinson [Hutchinson, I., Physics Of Plasmas, 2008], and makes assumptions of cylindrical geometry, a strong and constant magnetic field, and fixed transverse velocity and temperature. Under these approximations the ion fluid equations (with massless electrons assumed) can be solved analytically by the method of characteristics. This paper demonstrates that the analytic model under these assumptions provides excellent agreement with observations and hybrid-kinetic simulations of the lunar wake. The approach outlined by Hutchinson is generalized to include an arbitrary angle between the interplanetary magnetic field and solar wind flow. This results in two angle-dependent characteristics for the fluid flow that can be solved for the density inside the wake region. The Density profiles for different orientations of magnetic field with respect to solar wind flow are in a good qualitative agreement with 2D Hybrid simulation results of the model developed by [Paral and Rankin, Nature Comms, 2012], and with ARTEMIS observations. Refrences, -Wiehle, S., et al. (2011), First Lunar wake passage of Artemis: Discrimination of wake effects and solar wind flactuations by 3D hybrid simulations, Planet. Space Sci., 59, 661-671, doi:10.1016/j.pss.2011.01.012. -Hutchinson, I. (2008),Oblique ion collection in the drift approximation:How magnetized Mach probes really work, Physics Of

  15. Phase-dependent space weathering effects and spectroscopic identification of retained helium in a lunar soil grain (United States)

    Burgess, K. D.; Stroud, R. M.


    The solar wind is an important driver of space weathering on airless bodies. Over time, solar wind exposure alters the physical, chemical, and optical properties of exposed materials and can also impart a significant amount of helium into the surfaces of these bodies. However, common materials on the surface of the Moon, such as glass, crystalline silicates, and oxides, have highly variable responses to solar wind irradiation. We used scanning transmission electron microscopy (STEM) with electron energy loss spectroscopy (EELS) to examine the morphology and chemistry of a single grain of lunar soil that includes silicate glass, chromite and ilmenite, all present and exposed along the same surface. The exposure of the silicate glass and oxides to the same space weathering conditions allows for direct comparisons of the responses of natural materials to the complex lunar surface environment. The silicate glass shows minimal effects of solar wind irradiation, whereas both the chromite and ilmenite exhibit defect-rich rims that currently contain trapped helium. Only the weathered rim in ilmenite is rich in nanophase metallic iron (npFe0) and larger vesicles that retain helium at a range of internal pressures. The multiple exposed surfaces of the single grain of ilmenite demonstrate strong crystallographic controls of planar defects and non-spherical npFe0. The direct spectroscopic identification of helium in the vesicles and planar defects in the oxides provides additional evidence of the central role of solar wind irradiation in the formation of some common space weathering features.

  16. Kalman filter application to mitigate the errors in the trajectory simulations due to the lunar gravitational model uncertainty

    International Nuclear Information System (INIS)

    Gonçalves, L D; Rocco, E M; De Moraes, R V; Kuga, H K


    This paper aims to simulate part of the orbital trajectory of Lunar Prospector mission to analyze the relevance of using a Kalman filter to estimate the trajectory. For this study it is considered the disturbance due to the lunar gravitational potential using one of the most recent models, the LP100K model, which is based on spherical harmonics, and considers the maximum degree and order up to the value 100. In order to simplify the expression of the gravitational potential and, consequently, to reduce the computational effort required in the simulation, in some cases, lower values for degree and order are used. Following this aim, it is made an analysis of the inserted error in the simulations when using such values of degree and order to propagate the spacecraft trajectory and control. This analysis was done using the standard deviation that characterizes the uncertainty for each one of the values of the degree and order used in LP100K model for the satellite orbit. With knowledge of the uncertainty of the gravity model adopted, lunar orbital trajectory simulations may be accomplished considering these values of uncertainty. Furthermore, it was also used a Kalman filter, where is considered the sensor's uncertainty that defines the satellite position at each step of the simulation and the uncertainty of the model, by means of the characteristic variance of the truncated gravity model. Thus, this procedure represents an effort to approximate the results obtained using lower values for the degree and order of the spherical harmonics, to the results that would be attained if the maximum accuracy of the model LP100K were adopted. Also a comparison is made between the error in the satellite position in the situation in which the Kalman filter is used and the situation in which the filter is not used. The data for the comparison were obtained from the standard deviation in the velocity increment of the space vehicle. (paper)


    Directory of Open Access Journals (Sweden)

    Andrea Formato


    Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.

  18. Lunar CATALYST (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  19. Lunar Materials Handling System, Phase II (United States)

    National Aeronautics and Space Administration — The Lunar Materials Handling System (LMHS) is a method for transfer of lunar soil into and out of process equipment in support of in situ resource utilization...

  20. Lunar Sulfur Capture System, Phase I (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to recover sulfur compounds from lunar soil using sorbents derived primarily from in-situ resources....

  1. Lunar Sulfur Capture System, Phase II (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to capture greater than 90 percent of sulfur gases evolved during thermal treatment of lunar soils....

  2. Nuclear densimeter of soil simulated in MCNP-4C code

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Mario R.M.S.S.; Penna, Rodrigo; Vasconcelos, Danilo C.; Pereira, Claubia; Guerra, Bruno T., E-mail: mario@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Silva, Clemente J.G.C., E-mail: [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologicas


    The Monte Carlo code (MCNPX) was used to simulate a nuclear densimeter for measuring soil density. An Americium source (E = 60 keV) and a NaI (Tl) detector were placed on soil surface. Results from MCNP shown that scattered photon fluxes may be used to determining soil density. Linear regressions between scattered photons fluxes and soil density were calculated and shown correlation coefficients near unity. (author)

  3. Nuclear densimeter of soil simulated in MCNP-4C code

    International Nuclear Information System (INIS)

    Braga, Mario R.M.S.S.; Penna, Rodrigo; Vasconcelos, Danilo C.; Pereira, Claubia; Guerra, Bruno T.; Silva, Clemente J.G.C.


    The Monte Carlo code (MCNPX) was used to simulate a nuclear densimeter for measuring soil density. An Americium source (E = 60 keV) and a NaI (Tl) detector were placed on soil surface. Results from MCNP shown that scattered photon fluxes may be used to determining soil density. Linear regressions between scattered photons fluxes and soil density were calculated and shown correlation coefficients near unity. (author)

  4. Logistics for MoonMars Simulation Habitats: ExoHab ESTEC and LunAres Poland (United States)

    Blanc, A.; Authier, L.; Foing, B. H.; Lillo, A.; Evellin, P.; Kołodziejczyk, A.; Heinicke, C.; Harasymczuk, M.; Chahla, C.; Tomic, A.; Hettrich, S.


    ILEWG developed within EuroMoonMars research programme since 2008 a Mobile Laboratory Habitat (ExoHab) at ESTEC. Its organization led to logistic concerns our team had to work on. We contributed also to the installation of LunAres in Poland.

  5. Analytical and Radio-Histo-Chemical Experiments of Plants and Tissue Culture Cells Treated with Lunar and Terrestrial Materials (United States)

    Halliwell, R. S.


    The nature and mechanisms of the apparent simulation of growth originally observed in plants growing in contact with lunar soil during the Apollo project quarantine are examined. Preliminary experiments employing neutron activated lunar soil indicate uptake of a few elements by plants. It was found that while the preliminary neutron activation technique allowed demonstration of uptake of minerals it presented numerous disadvantages for use in critical experiments directed at elucidating possible mechanisms of stimulation.

  6. Heavy Isotope Composition of Oxygen in Zircon from Soil Sample 14163: Lunar Perspective of an Early Ocean on the Earth (United States)

    Nemchin, A. A.; Whitehouse, M. J.; Pidgeon, R. T.; Meyer, C.


    Thirty oxygen analyses of a large (sub-millimetre) zircon grain from the lunar soil sample 14163 have been determined using CAMECA 1270 ion microprobe. The sample 14163 was returned form the Fra Mauro region by Apollo 14 mission. Zircon grain of 0.6-0.8 mm in size extracted from the sample was imaged using CL detector fitted to the Philips Electron Microscope in order to reveal internal structure. Oxygen isotopes have been analysed during two sessions. The first set of data was collected using the original mount where the grain was set in the resin attached to the glass slide. This resulted in the two complications: (i) standard zircon has to be analysed from the separate mount and (ii) the lunar zircon grain was rased in the holder compared to the standard. In order to investigate, if the elevated oxygen compositions observed during this session could have resulted from this difference in geometric configuration during the standard and sample analyses, the lunar zircon was extracted from the original mount, remounted with the standard chip in the new resin disk and reanalysed during the second session. All analyses made during the first session show delta O-18 values heavier than 6.0%. The second set of data has a wider spread of delta O-18 values with some values as low as 5.6%. Nevertheless, a half of observed delta O-18 values in this set is also higher than 6.0%. Slightly lighter oxygen compositions observed during the second session indicate possible dependence of measured delta O-18 values on the geometry of analysed samples. Presence of zircons with similar heavy oxygen isotope compositions on the Moon, which neither had liquid water or felic crust similar to that on the Earth nor ever developed regime similar to plate tectonics, suggests that other mechanisms can be responsible for elevated delta O-18 values in zircons. This implies that there is no support for the presence of an ocean on the surface of the early Earth and as the ocean appears to be an

  7. Experimental Investigation of Space Radiation Processing in Lunar Soil Ilmenite: Combining Perspectives from Surface Science and Transmission Electron Microscopy (United States)

    Christoffersen, R.; Keller, L. P.; Rahman, Z.; Baragiola, R.


    Energetic ions mostly from the solar wind play a major role in lunar space weathering because they contribute structural and chemical changes to the space-exposed surfaces of lunar regolith grains. In mature mare soils, ilmenite (FeTiO3) grains in the finest size fraction have been shown in transmission electron microscope (TEM) studies to exhibit key differences in their response to space radiation processing relative to silicates [1,2,3]. In ilmenite, solar ion radiation alters host grain outer margins to produce 10-100 nm thick layers that are microstructurally complex, but dominantly crystalline compared to the amorphous radiation-processed rims on silicates [1,2,3]. Spatially well-resolved analytical TEM measurements also show nm-scale compositional and chemical state changes in these layers [1,3]. These include shifts in Fe/Ti ratio from strong surface Fe-enrichment (Fe/Ti >> 1), to Fe depletion (Fe/Ti < 1) at 40-50 nm below the grain surface [1,3]. These compositional changes are not observed in the radiation-processed rims on silicates [4]. Several mechanism(s) to explain the overall relations in the ilmenite grain rims by radiation processing and/or additional space weathering processes were proposed by [1], and remain under current consideration [3]. A key issue has concerned the ability of ion radiation processing alone to produce some of the deeper- penetrating compositional changes. In order to provide some experimental constraints on these questions, we have performed a combined X-ray photoelectron spectroscopy (XPS) and field-emission scanning transmission electron (FE-STEM) study of experimentally ion-irradiated ilmenite. A key feature of this work is the combination of analytical techniques sensitive to changes in the irradiated samples at depth scales going from the immediate surface (approx.5 nm; XPS), to deeper in the grain interior (5-100 nm; FE-STEM).

  8. A conceptual configuration of the lunar base bioregenerative life support system including soil-like substrate for growing plants (United States)

    Liu, H.; Yu, C. Y.; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu L.; Wang, J.


    The paper presents a conceptual configuration of the lunar base bioregenerative life support system (LBLSS), including soil-like substrate (SLS) for growing plants. SLS makes it possible to combine the processes of plant growth and the utilization of plant waste. Plants are to be grown on SLS on the basis of 20 kg of dry SLS mass or 100 kg of wet SLS mass per square meter. The substrate is to be delivered to the base ready-made as part of the plant growth subsystem. Food for the crew was provided by prestored stock 24% and by plant growing system 76%. Total dry weight of the food is 631 g per day (2800 kcal/day) for one crew member (CM). The list of candidate plants to be grown under lunar BLSS conditions included 14 species: wheat, rice, soybean, peanuts, sweet pepper, carrots, tomatoes, coriander, cole, lettuce, radish, squash, onion and garlic. From the prestored stock the crew consumed canned fish, iodinated salt, sugar, beef sauce and seafood sauce. Our calculations show that to provide one CM with plant food requires the area of 47.5 m 2. The balance of substance is achieved by the removal dehydrated urine 59 g, feces 31 g, food waste 50 g, SLS 134 g, and also waters 86 g from system and introduction food 236 g, liquid potassium soap 4 g and mineral salts 120 g into system daily. To reduce system setup time the first plants could be sowed and germinated to a certain age on the Earth.

  9. Lunar electrostatic effects and protection

    International Nuclear Information System (INIS)

    Sun, Yongwei; Yuan, Qingyun; Xiong, Jiuliang


    The space environment and features on the moon surface are factors in strong electrostatic electrification. Static electricity will be produced in upon friction between lunar soil and detectors or astronauts on the lunar surface. Lunar electrostatic environment effects from lunar exploration equipment are very harmful. Lunar dust with electrostatic charge may enter the equipment or even cover the instruments. It can affect the normal performance of moon detectors. Owing to the huge environmental differences between the moon and the earth, the electrostatic protection technology on the earth can not be applied. In this paper, we review the electrostatic characteristics of lunar dust, its effects on aerospace equipment and moon static elimination technologies. It was concluded that the effect of charged lunar dust on detectors and astronauts should be completely researched as soon as possible.

  10. Spatial Variability of Soil Properties and its Impact on Simulated Surface Soil Moisture Patterns (United States)

    Korres, W.; Bothe, T.; Reichenau, T. G.; Schneider, K.


    The spatial variability of soil properties (particle size distribution, PSD, and bulk density, BD) has large effects on the spatial variability of soil moisture and therefore on plant growth and surface exchange processes. In model studies, soil properties from soil maps are considered homogeneous over mapping units, which neglects the small scale variability of soil properties and leads to underestimated small scale variability of simulated soil moisture. This study focuses on the validation of spatial variability of simulated surface soil moisture (SSM) in a winter wheat field in Western Germany using the eco-hydrological simulation system DANUBIA. SSM measurements were conducted at 20 different sampling points and nine different dates in 2008. Frequency distributions of BD and PSD were derived from an independent dataset (n = 486) of soil physical properties from Germany and the USA. In the simulations, BD and PSD were parameterized according to these frequency distributions. Mean values, coefficients of variation and frequency distributions of simulated SSM were compared to the field measurements. Using the heterogeneous model parameterization, up to 76 % of the frequency distribution of the measured SSM can be explained. Furthermore, the results show that BD has a larger impact on the variability of SSM than PSD. The introduced approach can be used for simulating mean SSM and SSM variability more accurately and can form the basis for a spatially heterogeneous parameterization of soil properties in mesoscale models.

  11. Evaluation of a simulation model for predicting soil-water ...

    African Journals Online (AJOL)

    The soils particle size distribution (specifically, percent clay and sand) and organic matter contents were inputted into the model to simulate soil moisture status at ... with observed parameters from laboratory tests using root mean square error (RMSE), coefficient of variation (CV), modeling efficiency (BF) and coefficient of ...

  12. Soil Erosion Study through Simulation: An Educational Tool. (United States)

    Huber, Thomas P.; Falkenmayer, Karen


    Discusses the need for education about soil erosion and advocates the use of the Universal Soil Loss Equation (USLE) to show the impacts of human and natural action on the land. Describes the use of a computer simulated version of the USLE in several environmental and farming situations. (TW)

  13. Behaviour of herbicides in soil : simulation and experimental assessment

    NARCIS (Netherlands)

    Boesten, J.J.T.I.


    The mathematical models of the transport and the transformation rate of herbicides in soil that are available in the literature and the tests done on them are reviewed.

    A simulation model of the transport of herbicides in field soil, based on the best model available in the literature, was

  14. Decrease of the solar flare/solar wind flux ratio in the past several aeons from solar neon and tracks in lunar soil plagioclases

    International Nuclear Information System (INIS)

    Wieler, R.; Etique, Ph.; Signer, P.; Poupeau, G.


    The He, Ne, and Ar concentrations and isotopic compositions of mineral separates of six lunar subsurface samples and of two regolith breccias which were exposed to the sun as early as 2 - 3 billion years ago are determined. The results are compared with our noble gas data obtained previously on mineral separates of lunar surface soil samples most of which contain recently implanted solar gases. The mean solar flare track densities were determined on aliquots of several of the plagioclase separates analyzed for noble gases. Solar wind retentive mafic minerals and ilmenites show that a possible secular increase of the 20 Ne/ 22 Ne ratio in the solar wind during the last 2 - 3 Ga. is 20 Ne/ 22 Ne of approximately 11.3 - 11.8, reported for solar flare Ne retained in plagioclase separates from lunar soils. The solar flare track data and the Ne data independently show that plagioclases exposed to the sun over the last 10 8 years recorded a lower mean ratio of solar flare to solar wind intensities than samples exposed about 1 - 3 billion years ago. On the basis of track data these ratios are estimated to differ by a factor approximately 2. (Author) [pt

  15. Solar Wind Implantation into Lunar Regolith II: Monte Carlo Simulations of Hydrogen Retention in a Surface with Defects and the Hydrogen (H, H2) Exosphere (United States)

    Tucker, O. J.; Farrell, W. M.; Killen, R. M.; Hurley, D. M.


    Recently, the near-infrared observations of the OH veneer on the lunar surface by the Moon Mineralogy Mapper (M3) have been refined to constrain the OH content to 500-750 parts per million (ppm). The observations indicate diurnal variations in OH up to 200 ppm possibly linked to warmer surface temperatures at low latitude. We examine the M3 observations using a statistical mechanics approach to model the diffusion of implanted H in the lunar regolith. We present results from Monte Carlo simulations of the diffusion of implanted solar wind H atoms and the subsequently derived H and H2 exospheres.

  16. Developing Soil Models for Dynamic Impact Simulations (United States)

    Fasanella, Edwin L.; Lyle, Karen H.; Jackson, Karen E.


    This paper describes fundamental soils characterization work performed at NASA Langley Research Center in support of the Subsonic Rotary Wing (SRW) Aeronautics Program and the Orion Landing System (LS) Advanced Development Program (ADP). LS-DYNA(Registered TradeMark)1 soil impact model development and test-analysis correlation results are presented for: (1) a 38-ft/s vertical drop test of a composite fuselage section, outfitted with four blocks of deployable energy absorbers (DEA), onto sand, and (2) a series of impact tests of a 1/2-scale geometric boilerplate Orion capsule onto soil. In addition, the paper will discuss LS-DYNA contact analysis at the soil/structure interface, methods used to estimate frictional forces, and the sensitivity of the model to density, moisture, and compaction.

  17. Apollo experience report: A use of network simulation techniques in the design of the Apollo lunar surface experiments package support system (United States)

    Gustafson, R. A.; Wilkes, J. N.


    A case study of data-communications network modeling and simulation is presented. The applicability of simulation techniques in early system design phases is demonstrated, and the ease with which model parameters can be changed and comprehensive statistics gathered is shown. The discussion of the model design and application also yields an insight into the design and implementation of the Apollo lunar surface experiments package ground-support system.

  18. The discovery of silicon oxide nanoparticles in space-weathered of Apollo 15 lunar soil grains (United States)

    Gu, Lixin; Zhang, Bin; Hu, Sen; Noguchi, Takaaki; Hidaka, Hiroshi; Lin, Yangting


    Space weathering is an important process on the Moon and other airless celestial bodies. The most common space weathering effects are amorphization of the top surface of soil grains and formation of nanophase iron particles (npFe) within the partially amorphous rims. Hence, space weathering significantly affects optical properties of the surface of the Moon and other airless celestial bodies. Transmission electron microscope (TEM) analysis of Apollo 15 soil grains displays npFe (≤5 nm in size) embedded in the space-weathered rim (∼60 nm in thickness) of a pyroxene grain, consistent with previous studies. In contrast, submicron-sized fragments that adhere to the pyroxene grain show distinct space weathering features. Silicon oxide nanoparticles (npSiOx) were observed with npFe in a submicron-sized Mg-Fe silicate fragment. This is the first discovery of npSiOx as a product of space weathering. The npSiOx and the coexisting npFe are ∼10-25 nm in size, significantly larger than the typical npFe in the space weathered rim of the pyroxene grain. The coexisting npSiOx and npFe were probably formed directly in micrometeorite shock-induced melt, instead of in a solar-wind generated vapor deposit or irradiated rim. This new observation will shed light on space weathering processes on the Moon and airless celestial bodies.

  19. A protocol for conducting rainfall simulation to study soil runoff. (United States)

    Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B


    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.

  20. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [ORNL; Pallin, Simon B [ORNL


    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  1. Simulating soil melting with CFD [computational fluid dynamics

    International Nuclear Information System (INIS)

    Hawkes, G.L.


    Computational fluid dynamics (CFD) is being used to validate the use of thermal plasma arc vitrification for treatment of contaminated soil. Soil melting is modelled by a CFD calculation code which links electrical fields, heat transport, and natural convection. The developers believe it is the first successful CFD analysis to incorporate a simulated PID (proportional-integral-derivative) controller, which plays a vital role by following the specified electrical power curve. (Author)

  2. Mixture and method for simulating soiling and weathering of surfaces (United States)

    Sleiman, Mohamad; Kirchstetter, Thomas; Destaillats, Hugo; Levinson, Ronnen; Berdahl, Paul; Akbari, Hashem


    This disclosure provides systems, methods, and apparatus related to simulated soiling and weathering of materials. In one aspect, a soiling mixture may include an aqueous suspension of various amounts of salt, soot, dust, and humic acid. In another aspect, a method may include weathering a sample of material in a first exposure of the sample to ultraviolet light, water vapor, and elevated temperatures, depositing a soiling mixture on the sample, and weathering the sample in a second exposure of the sample to ultraviolet light, water vapor, and elevated temperatures.

  3. Evaluation of IEEE 802.11g and 802.16 for Lunar Surface Exploration Missions Using MACHETE Simulations (United States)

    Segui, John; Jennings, Esther; Vyas, Hemali


    In this paper, we investigated the suitability of terrestrial wireless networking technologies for lunar surface exploration missions. Specifically, the scenario we considered consisted of two teams of collaborating astronauts, one base station and one rover, where the base station and the rover have the capability of acting as relays. We focused on the evaluation of IEEE 802.11g and IEEE 802.16 protocols, simulating homogeneous 802.11g network, homogeneous 802.16 network, and heterogeneous network using both 802.11g and 802.16. A mix of traffic flows were simulated, including telemetry, caution and warning, voice, command and file transfer. Each traffic type had its own distribution profile, data volume, and priority. We analyzed the loss and delay trade-offs of these wireless protocols with various link-layer options. We observed that 802.16 network managed the channel better than an 802.11g network due to controlled infrastructure and centralized scheduling. However, due to the centralized scheduling, 802.16 also had a longer delay. The heterogeneous (hybrid) of 802.11/802.16 achieved a better balance of performance in terms of data loss and delay compared to using 802.11 or 802.16 alone.

  4. The Lunar Environment: Determining the Health Effects of Exposure to Moon Dusts (United States)

    Khan-Mayberry, Noreen


    The Earth s moon presents a hostile environment in which to live and work. There is no atmosphere to protect its surface from the ravages of solar wind and micrometeorite impacts. As a result, the moon s surface is covered with a thin layer of fine, charged, reactive dust capable of entering habitats and vehicle compartments, where it can result in crewmember health problems. During the Apollo missions, lunar dusts were introduced into the crew vehicle, resulting in direct exposure and occasional reports of respiratory, dermal and ocular irritation. In order to study the toxicological effects of lunar dust, NASA formed the Lunar Airborne Dust Toxicity Advisory Group (LADTAG). This interdisciplinary group is comprised of leading experts in space toxicology, lunar geology, space medicine and biomedical research. LADTAG has demonstrated that lunar soil contains several types of reactive dusts, including an extremely fine respirable component. These dusts have highly reactive surfaces in the lunar environment; the grains contain surface coatings which are generated by vapor phases formed by hypervelocity impact of micrometeorites. This unique class of dusts has surface properties that are unlike any Earth based analog. These distinctive properties are why lunar dusts are of great toxicological interest. Understanding how these reactive components behave "biochemically" in a moisture-rich pulmonary environment will aid in determining how toxic these particles are to humans. The data obtained from toxicological examination of lunar dusts will determine the human risk criteria for lunar dust exposure and produce a lunar health standard. LADTAG s analysis of lunar dusts and lunar dust simulants will include detailed lunar particle characterizations, determining the properties of particle activation, reactivation of lunar dust, the process of dust passivation and discerning the pathology of lunar dust exposure via inhalation, intratracheal instillation, cell culture

  5. Impact of modified soil thermal characteristic on the simulated ...

    Indian Academy of Sciences (India)

    In the present study, the influence of soil thermal characteristics (STC) on the simulated monsoon climate over south Asia is analyzed. The study was motivated by a common warm temperature bias over the plains of northern India that has been noticed in several global and regional climate models. To address this warm ...

  6. Simple Numerical Model to Simulate Penetration Testing in Unsaturated Soils

    Directory of Open Access Journals (Sweden)

    Jarast S. Pegah


    Full Text Available Cone penetration test in unsaturated sand is modelled numerically using Finite Element Method. Simple elastic-perfectly plastic Mohr-Coulomb constitutive model is modified with an apparent cohesion to incorporate the effect of suction on cone resistance. The Arbitrary Lagrangian-Eulerian (ALE remeshing algorithm is also implemented to avoid mesh distortion problem due to the large deformation in the soil around the cone tip. The simulated models indicate that the cone resistance was increased consistently under higher suction or lower degree of saturation. Sensitivity analysis investigating the effect of input soil parameters on the cone tip resistance shows that unsaturated soil condition can be adequately modelled by incorporating the apparent cohesion concept. However, updating the soil stiffness by including a suction-dependent effective stress formula in Mohr-Coulomb material model does not influence the cone resistance significantly.

  7. Electrostatic Screen for Transport of Martian and Lunar Regolith (United States)

    Immer, C.; Starnes, J.; Michalenko, M.; Calle, C. I.; Mazumder, M. K.


    The martian and lunar soil contains fine particulate that contaminate all surfaces. With the electrostatic screen, alternating waveforms of voltage applied to patterned grids of electrodes will transport dust. Experiments have been performed in ambient, martian, and lunar conditions.

  8. Multiscale GasKinetics/Particle (MGP) Simulation for Rocket Plume/Lunar Dust Interactions, Phase I (United States)

    National Aeronautics and Space Administration — A Multiscale GasKinetic/Particle (MGP) computational method is proposed to simulate the plume-crater-interaction/dust-impingement(PCIDI) problem. The MGP method...

  9. Lunar horticulture. (United States)

    Walkinshaw, C. H.


    Discussion of the role that lunar horticulture may fulfill in helping establish the life support system of an earth-independent lunar colony. Such a system is expected to be a hybrid between systems which depend on lunar horticulture and those which depend upon the chemical reclamation of metabolic waste and its resynthesis into nutrients and water. The feasibility of this approach has been established at several laboratories. Plants grow well under reduced pressures and with oxygen concentrations of less than 1% of the total pressure. The carbon dioxide collected from the lunar base personnel should provide sufficient gas pressure (approx. 100 mm Hg) for growing the plants.

  10. Concrete lunar base investigation (United States)

    Lin, T. D.; Senseny, Jonathan A.; Arp, Larry D.; Lindbergh, Charles


    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar base subjected to 1-atm internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design (1) during construction, (2) under pressurization, and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the airtightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the Moon.

  11. Comparing measured with simulated vertical soil stress under vehicle load

    DEFF Research Database (Denmark)

    Keller, Thomas; Lamandé, Mathieu; Arvidsson, Johan

    The load transfer within agricultural soil is typically modelled on the basis of the theory of stress transmission in elastic media, usually in the semi-empirical form that includes the “concentration factor” (v). Measurements of stress in soil are needed to evaluate model calculations, but may...... be biased because transducers do not read true stresses. The aim of this paper was to measure and simulate soil stress under defined loads. First, we investigated the accuracy of the transducers in situ by measuring stress at high spatial and temporal resolution at 0.1 m depth under a known load. Stress...... in the soil profile at 0.3, 0.5 and 0.7 m depth was measured during wheeling at field capacity on five soils (13-66% clay). Stress propagation was then simulated with the semi-analytical model, using vertical stress at 0.1 m depth estimated from tyre characteristics as upper boundary condition, and v...

  12. Lunar Flashlight (United States)

    Baker, John; Cohen, Barbara; Walden, Amy


    The Lunar Flashlight is a Jet Propulsion Laboratory project, with NASA Marshall Space Flight Center (MSFC) serving as the principal investigator and providing the solar sail propulsion system. The goal of Lunar Flashlight is to determine the presence and abundance of exposed lunar water ice within permanently shadowed regions (PSRs) at the lunar south pole, and to map its concentration at the 1-2 kilometer scale to support future exploration and use. After being ejected in cis-lunar space by the launch vehicle, Lunar Flashlight deploys solar panels and an 85-square-meter solar sail and maneuvers into a low-energy transfer to lunar orbit. The solar sail and attitude control system work to bring the satellite into an elliptical polar orbit, spiraling down over a period of 18 months to a perilune of 30-10 kilometers above the south pole for data collection. Lunar Flashlight uses its solar sail to shine reflected sunlight onto the lunar surface, measuring surface reflectance with a four-filter point spectrometer. The spectrometer measures water ice absorption features (1.5, 1.95 microns) and the continuum between them (1.1, 1.9 microns). The ratios of water ice bands to the continuum will provide a measure of the abundance of surface frost and its variability across PSRs. Water ice abundance will be correlated with other data from previous missions, such as the Lunar Reconnaissance Orbiter and Lunar Crater Observation and Sensing Satellite, to provide future human and robotic explorers with a map of potential resources. The mission is enabled by the use of an 85-square-meter solar sail being developed by MSFC.

  13. Biodegradation of trace gases in simulated landfill soil cover systems. (United States)

    Scheutz, Charlotte; Kjeldsen, Peter


    The attenuation of methane and seven volatile organic compounds (VOCs) was investigated in a dynamic methane and oxygen counter gradient system simulating a landfill soil cover. The VOCs investigated were: Tetrachloromethane (TeCM), trichloromethane (TCM), dichloromethane (DCM), trichloroethylene (TCE), vinyl chloride (VC), benzene, and toluene. Soil was sampled at Skellingsted landfill, Denmark. The soil columns showed a high capacity for methane oxidation, with oxidation rates up to 184 g/m2/d corresponding to a 77% reduction of inlet methane. Maximal methane oxidation occurred at 15-20 cm depth, in the upper part of the column where there were overlapping gradients of methane and oxygen. All the chlorinated hydrocarbons were degraded in the active soil columns with removal efficiencies higher than 57%. Soil gas concentration profiles indicated that the removal of the fully chlorinated compound TeCM was because of anaerobic degradation, whereas the degradation of lower chlorinated compounds like VC and DCM was located in the upper oxic part of the column. Benzene and toluene were also removed in the active column. This study demonstrates the complexity of landfill soil cover systems and shows that both anaerobic and aerobic bacteria may play an important role in reducing the emission of trace components into the atmosphere.

  14. Simulation of soil response to acidic deposition scenarios in Europe

    International Nuclear Information System (INIS)

    Vries, W. de; Reinds, G.J.; Posch, M.; Kaemaera, J.


    The chemical response of European forest soils to three emission-deposition scenarios for the year 1960-2050, i.e. official energy pathways (OEP), current reduction plans (CRP) and maximum feasible reductions (MFR), was evaluated with the SMART model (Simulation Model for Acidification's Regional Trends). Calculations were made for coniferous and deciduous forests on 80 soil types occurring on the FAO soil map of Europe, using a gradient of 1.0 degree C longitude x 0.5 degree latitude. Results indicated that the area with nitrogen saturated soils, i.e. soils with elevated NO 3 concentrations (>0.02 mol c m -3 ) will increase in the future for all scenarios, even for the MFR scenario. The area with acidified soils, with a high Al concentration (> 0.2 mol c m -3 ) and Al/BC ratio (>1 mol -1 ) and a low pH ( 3 and Al concentrations mainly occurred in western, central and eastern Europe. Uncertainties in the initial values of C/N ratios and base saturation, and in the description of N dynamics in the SMART model had the largest impact on the temporal development of forested areas exceeding critical parameter values. Despite uncertainties involved, predicted general trends are plausible and reliable. 61 refs., 11 figs., 10 tabs

  15. Numerical simulation of pollutant transport in soils surrounding subway infrastructure. (United States)

    Zhou, Cuihong; Liu, Chengqing; Liang, Jiahao; Wang, Shihan


    With continued urbanization, public transport infrastructure, e.g., subways, is expected to be built in historically industrial areas. To minimize the transfer of volatile organic compounds and metalloids like arsenic from industrial areas into subway environments and reduce their impact on public health, the transport of pollutants in soil was simulated in this study. During numerical simulations of a contaminated site, the pollutant (arsenic) was transported from layers of higher to lower concentration, and concentration changes were particularly evident in the early simulation stages. The pollutant was transported in soil along the direction of groundwater flow and spread from the center to the periphery of the contaminated zone without inputs from pollution sources. After approximately 400 days, the concentration of all layers became uniform, with slow decreases occurring over time. The pollutant supply rate had a major influence on the pollutant diffusion distance. When other conditions were kept constant, higher supply rates resulted in longer diffusion distances. The simulation results show that a diaphragm wall of a certain depth can effectively control the diffusion of pollutants in soil. These results can be used to improve environmental assessments and remediation efforts and inform engineering decisions during the construction of urban infrastructure at sites affected by historical pollution.

  16. Simulation of soil organic carbon in different soil size fractions using 13Carbon measurement data (United States)

    Gottschalk, P.; Bellarby, J.; Chenu, C.; Foereid, B.; Wattenbach, M.; Zingore, S.; Smith, J.


    We simulate the soil organic carbon (SOC) dynamics at a chronoseqeunce site in France, using the Rothamsted Carbon model. The site exhibits a transition from C3 plants, dominated by pine forest, to a conventional C4 maize rotation. The different 13C signatures of the forest plants and maize are used to distinguish between the woodland derived carbon (C) and the maize derived C. The model is evaluated against total SOC and C derived from forest and maize, respectively. The SOC dynamics of the five SOC pools of the model, decomposable plant material (DPM), resistant plant material (RPM), biomass, humus and inert C, are also compared to the SOC dynamics measured in different soil size fractions. These fractions are > 50 μm (particulate organic matter), 2-50 μm (silt associated SOC) and 50 μm and the sum of the other pools corresponds well to the SOC measured in the soil size fraction minor effects on the simulations results. Accounting for erosion and implementing a simple tillage routine did not improve the simulation fit to the data. We therefore hypothesize that a generic process that is not yet explicitly accounted for in the ROTHC model could explain the loss in soil C after land use change. Such a process could be the loss of the physical protection of soil organic matter as would be observed following cultivation of a previously uncultivated soil. Under native conditions a fraction of organic matter is protected in stable soil aggregates. These aggregates are physically disrupted by continuous and repeated cultivation of the soil. The underestimation of SOC loss by the model can be mainly attributed to the slow turnover of the humus pool. This pool was shown to represent mainly the SOC associated with the silt and clay soil fraction. Here, the clay associated SOC shows as similar turnover time as the humus pool in the model. We split the humus pool into a clay and a silt associated pool. The clay pool now corresponds to the clay associated SOC with the

  17. Space Weathering of Lunar Rocks (United States)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.


    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  18. Lunar Excavator Validation, Phase I (United States)

    National Aeronautics and Space Administration — Energid Technologies proposes to create a tool for simulation-based verification of lunar excavator designs. Energid will combine the best of 1) automatic control...

  19. Fundamental Problems of Lunar Research, Technical Solutions, and Priority Lunar Regions for Research (United States)

    Ivanov, M. A.; Basilevsky, A. T.; Bricheva, S. S.; Guseva, E. N.; Demidov, N. E.; Zakharova, M.; Krasil'nikov, S. S.


    In this article, we discuss four fundamental scientific problems of lunar research: (1) lunar chronology, (2) the internal structure of the Moon, (3) the lunar polar regions, and (4) lunar volcanism. After formulating the scientific problems and their components, we proceed to outlining a list of technical solutions and priority lunar regions for research. Solving the listed problems requires investigations on the lunar surface using lunar rovers, which can deliver a set of analytical equipment to places where geological conditions are known from a detailed analysis of orbital information. The most critical research methods, which can answer some of the key questions, are analysis of local geological conditions from panoramic photographs, determination of the chemical, isotopic, and mineral composition of the soil, and deep seismic sounding. A preliminary list is given of lunar regions with high scientific priority.

  20. Heat Pipe Solar Receiver for Oxygen Production of Lunar Regolith, Phase II (United States)

    National Aeronautics and Space Administration — Researchers have determined that lunar soil contains approximately 43% oxygen in the lunar soil oxides, which could be extracted to provide breathable oxygen for...

  1. Simulation of granular soil behaviour using the bullet physics library


    Izadi, Ehsan; Bezuijen, Adam


    A physics engine is computer software which provides a simulation of certain physical systems, such as rigid body dynamics, soft body dynamics and fluid dynamics. Physics engines were firstly developed for using in animation and gaming industry ; nevertheless, due to fast calculation speed they are attracting more and more attetion from researchers of the engineering fields. Since physics engines are capable of performing fast calculations on multibody rigid dynamic systems, soil particles ca...

  2. Soft Soil Impact Testing and Simulation of Aerospace Structures (United States)

    Fasanella, Edwin L.; Jackson, Karen E.; Kellas, Sotiris


    In June 2007, a 38-ft/s vertical drop test of a 5-ft-diameter, 5-ft-long composite fuselage section that was retrofitted with a novel composite honeycomb Deployable Energy Absorber (DEA) was conducted onto unpacked sand. This test was one of a series of tests to evaluate the multi-terrain capabilities of the DEA and to generate test data for model validation. During the test, the DEA crushed approximately 6-in. and left craters in the sand of depths ranging from 7.5- to 9-in. A finite element model of the fuselage section with DEA was developed for execution in LS-DYNA, a commercial nonlinear explicit transient dynamic code. Pre-test predictions were generated in which the sand was represented initially as a crushable foam material MAT_CRUSHABLE_FOAM (Mat 63). Following the drop test, a series of hemispherical penetrometer tests were conducted to assist in soil characterization. The penetrometer weighed 20-lb and was instrumented with a tri-axial accelerometer. Drop tests were performed at 16-ft/s and crater depths were measured. The penetrometer drop tests were simulated as a means for developing a more representative soil model based on a soil and foam material definition MAT_SOIL_AND FOAM (Mat 5) in LS-DYNA. The model of the fuselage with DEA was reexecuted using the updated soil model and test-analysis correlations are presented.

  3. Lunar magnetism (United States)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.


    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  4. Studies in matter antimatter separation and in the origin of lunar magnetism (United States)

    Barker, W. A.; Greeley, R.; Parkin, C.; Aggarwal, H.; Schultz, P.


    A progress report, covering lunar and planetary research is introduced. Data cover lunar ionospheric models, lunar and planetary geology, and lunar magnetism. Wind tunnel simulations of Mars aeolian problems and a comparative study of basaltic analogs of Lunar and Martial volcanic features was discussed.

  5. Soil Moisture Active/Passive (SMAP) Forward Brightness Temperature Simulator (United States)

    Peng, Jinzheng; Peipmeier, Jeffrey; Kim, Edward


    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007) [1]. It is to measure the global soil moisture and freeze/thaw from space. One of the spaceborne instruments is an L-band radiometer with a shared single feedhorn and parabolic mesh reflector. While the radiometer measures the emission over a footprint of interest, unwanted emissions are also received by the antenna through the antenna sidelobes from the cosmic background and other error sources such as the Sun, the Moon and the galaxy. Their effects need to be considered accurately, and the analysis of the overall performance of the radiometer requires end-to-end performance simulation from Earth emission to antenna brightness temperature, such as the global simulation of L-band brightness temperature simulation over land and sea [2]. To assist with the SMAP radiometer level 1B algorithm development, the SMAP forward brightness temperature simulator is developed by adapting the Aquarius simulator [2] with necessary modifications. This poster presents the current status of the SMAP forward brightness simulator s development including incorporating the land microwave emission model and its input datasets, and a simplified atmospheric radiative transfer model. The latest simulation results are also presented to demonstrate the ability of supporting the SMAP L1B algorithm development.

  6. Lunar Flashlight (United States)

    National Aeronautics and Space Administration — Lunar Flashlight (LF) is an innovative cubesat mission sponsored by NASA’s Advanced Exploration Systems (AES) division to be launched on the Space Launch System...

  7. Lunar Plants (United States)

    National Aeronautics and Space Administration — We present an open design for a first plant growth module on the Moon (LPX). The primary science goal of lunar habitat is to investigate germination and initial...

  8. Integration Of Launch Vehicle Simulation/Analysis Tools And Lunar Cargo Lander Design. Part 2/2 (United States)

    DeJean, George Brian; Shiue, Yeu-Sheng Paul; King, Jeffrey


    Part 2, which will be discussed in this report, will discuss the development of a Lunar Cargo Lander (unmanned launch vehicle) that will transport usable payload from Trans- Lunar Injection to the moon. The Delta IV-Heavy was originally used to transport the Lunar Cargo Lander to TLI, but other launch vehicles have been studied. In order to uncover how much payload is possible to land on the moon, research was needed in order to design the sub-systems of the spacecraft. The report will discuss and compare the use of a hypergolic and cryogenic system for its main propulsion system. The guidance, navigation, control, telecommunications, thermal, propulsion, structure, mechanisms, landing gear, command, data handling, and electrical power sub-systems were designed by scaling off other flown orbiters and moon landers. Once all data was collected, an excel spreadsheet was created to accurately calculate the usable payload that will land on the moon along with detailed mass and volume estimating relations. As designed, The Lunar Cargo Lander can plant 5,400 lbm of usable payload on the moon using a hypergolic system and 7,400 lbm of usable payload on the moon using a cryogenic system.

  9. Astronaut Neil Armstrong participates in lunar surface siumlation training (United States)


    Suited Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, participates in lunar surface simulation training on April 18, 1969, in bldg 9, Manned Spacecraft Center (MSC). Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he simulates scooping up a lunar surface sample.

  10. Lunar surface structural concepts and construction studies (United States)

    Mikulas, Martin

    The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.

  11. Simulation of the «COSMONAUT-ROBOT» System Interaction on the Lunar Surface Based on Methods of Machine Vision and Computer Graphics (United States)

    Kryuchkov, B. I.; Usov, V. M.; Chertopolokhov, V. A.; Ronzhin, A. L.; Karpov, A. A.


    Extravehicular activity (EVA) on the lunar surface, necessary for the future exploration of the Moon, involves extensive use of robots. One of the factors of safe EVA is a proper interaction between cosmonauts and robots in extreme environments. This requires a simple and natural man-machine interface, e.g. multimodal contactless interface based on recognition of gestures and cosmonaut's poses. When travelling in the "Follow Me" mode (master/slave), a robot uses onboard tools for tracking cosmonaut's position and movements, and on the basis of these data builds its itinerary. The interaction in the system "cosmonaut-robot" on the lunar surface is significantly different from that on the Earth surface. For example, a man, dressed in a space suit, has limited fine motor skills. In addition, EVA is quite tiring for the cosmonauts, and a tired human being less accurately performs movements and often makes mistakes. All this leads to new requirements for the convenient use of the man-machine interface designed for EVA. To improve the reliability and stability of human-robot communication it is necessary to provide options for duplicating commands at the task stages and gesture recognition. New tools and techniques for space missions must be examined at the first stage of works in laboratory conditions, and then in field tests (proof tests at the site of application). The article analyzes the methods of detection and tracking of movements and gesture recognition of the cosmonaut during EVA, which can be used for the design of human-machine interface. A scenario for testing these methods by constructing a virtual environment simulating EVA on the lunar surface is proposed. Simulation involves environment visualization and modeling of the use of the "vision" of the robot to track a moving cosmonaut dressed in a spacesuit.

  12. Terrestrial and Lunar Geological Terminology for Non-Geoscientists (United States)

    Schrader, Christian M.


    This slide presentation reviews several geologic concepts applicable to lunar geology with particular interest in creating lunar regolith simulant. Fundamental ways in which the Moon differs from the Earth. Concepts that are described in detail are: minerals, glass, and rocks.

  13. [Simulation of cropland soil moisture based on an ensemble Kalman filter]. (United States)

    Liu, Zhao; Zhou, Yan-Lian; Ju, Wei-Min; Gao, Ping


    By using an ensemble Kalman filter (EnKF) to assimilate the observed soil moisture data, the modified boreal ecosystem productivity simulator (BEPS) model was adopted to simulate the dynamics of soil moisture in winter wheat root zones at Xuzhou Agro-meteorological Station, Jiangsu Province of China during the growth seasons in 2000-2004. After the assimilation of observed data, the determination coefficient, root mean square error, and average absolute error of simulated soil moisture were in the ranges of 0.626-0.943, 0.018-0.042, and 0.021-0.041, respectively, with the simulation precision improved significantly, as compared with that before assimilation, indicating the applicability of data assimilation in improving the simulation of soil moisture. The experimental results at single point showed that the errors in the forcing data and observations and the frequency and soil depth of the assimilation of observed data all had obvious effects on the simulated soil moisture.

  14. Lunar exploration (United States)

    Crawford, I. A.; Joy, K. H.; Anand, M.

    The Moon has historically been at the forefront of the solar system exploration. Building on early telescopic discoveries, over the past half century lunar exploration by spacecraft has taught us much about the Moon as a planetary body, the early history of the solar system (including the origin and evolution of the Earth-Moon system), the geological evolution of rocky planets more generally, and the near-Earth cosmic environment throughout the solar system history. In this chapter, we review the rich history of lunar exploration and draw attention to the advances in scientific knowledge that have resulted from it. We also review the scientific arguments for continued lunar exploration and argue that these will be maximized in the context of a renewed program of human exploration of the Moon.

  15. A mechanistic diagnosis of the simulation of soil CO2 efflux of the ACME Land Model (United States)

    Liang, J.; Ricciuto, D. M.; Wang, G.; Gu, L.; Hanson, P. J.; Mayes, M. A.


    Accurate simulation of the CO2 efflux from soils (i.e., soil respiration) to the atmosphere is critical to project global biogeochemical cycles and the magnitude of climate change in Earth system models (ESMs). Currently, the simulated soil respiration by ESMs still have a large uncertainty. In this study, a mechanistic diagnosis of soil respiration in the Accelerated Climate Model for Energy (ACME) Land Model (ALM) was conducted using long-term observations at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the central U.S. The results showed that the ALM default run significantly underestimated annual soil respiration and gross primary production (GPP), while incorrectly estimating soil water potential. Improved simulations of soil water potential with site-specific data significantly improved the modeled annual soil respiration, primarily because annual GPP was simultaneously improved. Therefore, accurate simulations of soil water potential must be carefully calibrated in ESMs. Despite improved annual soil respiration, the ALM continued to underestimate soil respiration during peak growing seasons, and to overestimate soil respiration during non-peak growing seasons. Simulations involving increased GPP during peak growing seasons increased soil respiration, while neither improved plant phenology nor increased temperature sensitivity affected the simulation of soil respiration during non-peak growing seasons. One potential reason for the overestimation of the soil respiration during non-peak growing seasons may be that the current model structure is substrate-limited, while microbial dormancy under stress may cause the system to become decomposer-limited. Further studies with more microbial data are required to provide adequate representation of soil respiration and to understand the underlying reasons for inaccurate model simulations.

  16. NASA Lunar Base Wireless System Propagation Analysis (United States)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.


    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  17. Lunar Seismology (United States)

    Latham, Gary V.


    Summarizes major findings from the passive seismic experiment on the Moon with the Apollo seismic network illustrated in a map. Concludes that human beings may have discovered something very basic about the physics of planetary interiors because of the affirmation of the presence of a warm'' lunar interior. (CC)

  18. Cogenetic Rock Fragments from a Lunar Soil: Evidence of a Ferroan Noritic-Anorthosite Pluton on the Moon (United States)

    Jolliff, B. L.; Haskin, L. A.


    The impact that produced North Ray Crater, Apollo 16 landing site, exhumed rocks that include relatively mafic members of the lunar ferroan anorthositic suite. Bulk and mineral compositions indicate that a majority of 2-4 mm lithic fragments from sample 67513, including impact breccias and monomict igneous rocks, are related to a common noritic-anorthosite precursor. Compositions and geochemical trends of these lithic fragments and of related samples collected along the rim of North Ray Crater suggest that these rocks derived from a single igneous body. This body developed as an orthocumulate from a mixture of cumulus plagioclase and mafic intercumulus melt, after the plagioclase had separated from any cogenetic mafic minerals and had become concentrated into a crystal mush (approximately 70 wt% plagioclase, 30 wt% intercumulus melt). We present a model for the crystallization of the igneous system wherein "system" is defined as cumulus plagioclase and intercumulus melt. The initial accumulation of plagioclase is analogous to the formation of thick anorthosites of the terrestrial Stillwater Complex; however, a second stage of formation is indicated, involving migration of the cumulus-plagioclase-intercumulus-melt system to a higher crustal level, analogous to the emplacement of terrestrial massif anorthosites. Compositional variations of the lithic fragments from sample 67513 are consistent with dominantly equilibrium crystallization of intercumulus melt. The highly calcic nature of orthocumulus pyroxene and plagioclase suggests some reaction between the intercumulus melt and cumulus plagioclase, perhaps facilitated by some recrystallization of cumulus plagioclase. Bulk compositions and mineral assemblages of individual rock fragments also require that most of the mafic minerals fortned in close contact with cumulus plagioclase, not as separate layers. The distribution of compositions (and by inference, modes) has a narrow peak at anorthosite and a broader, larger

  19. Lunar resources: possibilities for utilization (United States)

    Shevchenko, Vladislav

    Introduction: With the current advanced orbiters sent to the Moon by the United States, Europe, Japan, China, and India, we are opening a new era of lunar studies. The International Academy of Aeronautics (IAA) has begun a study on opportunities and challenges of developing and using space mineral resources (SRM). This study will be the first international interdisciplinary assessment of the technology, economics and legal aspects of using space mineral resources for the benefit of humanity. The IAA has approved a broad outline of areas that the study will cover including type, location and extent of space mineral resources on the Moon, asteroids and others. It will be studied current technical state of the art in the identification, recovery and use of SRM in space and on the Earth that identifies all required technical processes and systems, and that makes recommendations for specific technology developments that should be addressed near term at the system and subsystem level to make possible prospecting, mineral extraction, beneficiation, transport, delivery and use of SMR. Particular attention will be dedicated to study the transportation and retrieval options available for SRM. Lunar polar volatile: ROSCOSMOS places a high priority on studying lunar polar volatiles, and has outlined a few goals related to the study of such volatiles. Over the course of several years, NASA’s Lunar Reconnaissance Orbiter scanned the Moon’s South Pole using its Lunar Exploration Neutron Detector (LEND - IKI Russia) to measure how much hydrogen is trapped within the lunar soil. Areas exhibiting suppressed neutron activity indicate where hydrogen atoms are concentrated most, strongly suggesting the presence of water molecules. Current survey of the Moon’s polar regions integrated geospatial data for topography, temperature, and hydrogen abundances from Lunar Reconnaissance Orbiter, Chandrayaan-1, and Lunar Prospector to identify several landing sites near both the North and


    Directory of Open Access Journals (Sweden)

    H. E. Igbadun


    Full Text Available The ability of the Soil Water Characteribtics-Hydraulic Calculator (SWC-HPC model in predicting soi-water agricultural fields in Zaria, Nigeria, was tested and reprted in this study. The goal was to establish the predictability and reliability of the nodel, and hence, its use in determining water characteristics of soils in the stud/ area. Forty soil samples collected from four irrigation sites were used in the valuation. The soils particle size distribution (specifically, percent clay and sand and organic matter contents were inputted into the model to simulate soil moistur; status at saturation, field capacity and wilting point, soil bulk density and saturated hydraulic conductivity. The model outputs were statistically compared with observed parameters from laboratory tests using root mean square error (RMSE, c< ^efficient of variation (CV, modeling efficiency (EF and coefficient of residual mass (CRM. The model accurately simulated the observed bulk densities of the soil tested, satisfactorily simulated soil moisture content at field capacity, and mot lerately simulated moisture content at saturation and wilting point. The model lowever, poorly simulated saturated hydraulic conductivity of the soils tested. The SWC-HPC may therefore be used only to simulate soil bulk densities and moistui e status at saturation, field capacity and wilting point in the study locations.

  1. Impact of simulated acid rain on soil microbial community function in Masson pine seedlings

    Directory of Open Access Journals (Sweden)

    Lin Wang


    Conclusion: The results obtained indicated that the higher acid load decreased the soil microbial activity and no effects on soil microbial diversity assessed by Biolog of potted Masson pine seedlings. Simulated acid rain also changed the metabolic capability of the soil microbial community.

  2. Evaluation of NLDAS-2 Multi-Model Simulated Soil Moisture Using the Observations from North American Soil Moisture Dataset (NASMD) (United States)

    Xia, Y.; Ek, M. B.; Wu, Y.; Ford, T.; Quiring, S. M.


    The North American Land Data Assimilation System phase 2 (NLDAS-2, has generated 35-years (1979-2013) of hydrometeorological products from four state-of-the-art land surface models (Noah, Mosaic, SAC, VIC). These products include energy fluxes, water fluxes, and state variables. Soil moisture is one of the most important state variables in NLDAS-2 as it plays a key role in land-atmosphere interaction, regional climate and ecological model simulation, water resource management, and other study areas. The soil moisture data from these models have been used for US operational drought monitoring activities, water resources management and planning, initialization of regional weather and climate models, and other meteorological and hydrological research purposes. However, these data have not yet been comprehensively evaluated due to the lack of extensive soil moisture observations. In this study, observations from over 1200 sites in the North America compiled from 27 observational networks in the North American Soil Moisture Database (NASMD, were used to evaluate the model-simulated daily soil moisture for different vegetation cover varying from grassland to forest, and different soil texture varying from sand to clay. Seven states in the United States from NASMD were selected based on known measurement error estimates for the evaluation. Statistical metrics, such as anomaly correlation, root-mean-square errors (RMSE), and bias are computed to assess NLDAS-2 soil moisture products. Three sensitivity tests were performed using the Noah model to examine the effect of soil texture and vegetation type mismatch on NLDAS-2 soil moisture simulation. In the first test, site observed soil texture was used. In the second test, site observed vegetation type/land cover was used. In the third test, both site observed soil texture and vegetation type were used. The results from three sensitivity tests will be

  3. Identification of Soil Models by Simulation of Ground Anchor Tests, Using FEM


    Aliciuc, Constantin-Lucian; Muşat, Vasile


    Several types of soil models have been developed during time in order to simulate the soil behavior in finite element (FEM) analysis, so choosing the right soil model has a great importance on results. This study presents a method to establish the most suitable soil model used in FEM in order to calculate a temporary anchored retaining structure, method which is based on field tests. The test fields are simulated with FEM and are used several types of soil models, taken into consideration the...

  4. Nonlinear genetic-based simulation of soil shear strength parameters

    Indian Academy of Sciences (India)

    such as textural properties, stress history of soil, initial state, and permeability characteristics of soil. (Murthy 2008). Figure 1 shows the Mohr circles and failure envelopes in terms of the total stresses. Keywords. Soil shear strength parameters; soil physical properties; linear-based genetic programming; prediction. J. Earth ...

  5. Lunar Health Monitor (LHM) (United States)

    Lisy, Frederick J.


    Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.

  6. Understanding the Impacts of Soil, Climate and Farming Practices on Soil Organic Carbon Sequestration: a Simulation Study in Australia

    Directory of Open Access Journals (Sweden)

    Cecile Marie Godde


    Full Text Available Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical and chemical properties. The review of literature pertaining to soil organic carbon (SOC dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate and farming practices on SOC. We undertook a modeling study with the APSIM (Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates and farming practices (crop rotations, and management within rotations, such as fertilization, tillage and residue management in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model’s outputs to determinate the relative contributions of soil parameters, climate and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66%, 18% and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (Queensland on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O emissions and nitrate leaching in farming systems. The transposition of contrasting soils

  7. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia. (United States)

    Godde, Cécile M; Thorburn, Peter J; Biggs, Jody S; Meier, Elizabeth A


    Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model's outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in

  8. A smoothed particle hydrodynamics model for electrostatic transport of charged lunar dust on the moon surface (United States)

    Mao, Zirui; Liu, G. R.


    The behavior of lunar dust on the Moon surface is quite complicated compared to that on the Earth surface due to the small lunar gravity and the significant influence of the complicated electrostatic filed in the Universe. Understanding such behavior is critical for the exploration of the Moon. This work develops a smoothed particle hydrodynamics (SPH) model with the elastic-perfectly plastic constitutive equation and Drucker-Prager yield criterion to simulate the electrostatic transporting of multiple charged lunar dust particles. The initial electric field is generated based on the particle-in-cell method and then is superposed with the additional electric field from the charged dust particles to obtain the resultant electric field in the following process. Simulations of cohesive soil's natural failure and electrostatic transport of charged soil under the given electric force and gravity were carried out using the SPH model. Results obtained in this paper show that the negatively charged dust particles levitate and transport to the shadow area with a higher potential from the light area with a lower potential. The motion of soil particles finally comes to a stable state. The numerical result for final distribution of soil particles and potential profile above planar surface by the SPH method matches well with the experimental result, and the SPH solution looks sound in the maximum levitation height prediction of lunar dust under an uniform electric field compared to theoretical solution, which prove that SPH is a reliable method in describing the behavior of soil particles under a complicated electric field and small gravity field with the consideration of interactions among soil particles.

  9. Ferromagnetic phase-mass equivalence and lunar sample magnetic remanence (United States)

    Wasilewski, P. J.


    Man-made alloy spheres simulating the compositions of particles found in the lunar soil and weighting approximately 10 mg are shown to be equivalent, insofar as remanence intensity and demagnetization stability are concerned, to more than about 10 billion submicrometer spherical iron particles. The large particles not only contain large stable magnetic remanence, but when the polished surfaces of these particles are etched and carefully studied, they provide useful petrogenetic information, imply the mechanism of magnetization, the time-temperature history, and outline the format for possible paleointensity analysis. The intensity and stability of the remanence in these large spheres is related to the microstructure developed during rapid cooling.

  10. Nonlinear genetic-based simulation of soil shear strength parameters

    Indian Academy of Sciences (India)

    New nonlinear solutions were developed to estimate the soil shear strength parameters utilizing linear genetic programming (LGP). The soil cohesion intercept () and angle of shearing resistance () were formulated in terms of the basic soil physical properties. The best models were selected after developing and ...

  11. A one-dimensional model for simulating soil water movement ...

    African Journals Online (AJOL)

    ... regression analysis revealed the relati-onship to be exponential. The values of calculated and measured soil water content and total evapotranspiration decreased with number of days after rain or irrigation. The nodal soil water content also decreased with the soil depth. (Journal of Applied Science and Technology: 2001 ...

  12. Impact of soil water property parameterization on atmospheric boundary layer simulation (United States)

    Cuenca, Richard H.; Ek, Michael; Mahrt, Larry


    Both the form of functional relationships applied for soil water properties and the natural field-scale variability of such properties can significantly impact simulation of the soil-plant-atmosphere system on a diurnal timescale. Various input parameters for soil water properties including effective saturation, residual water content, anerobiosis point, field capacity, and permanent wilting point are incorporated into functions describing soil water retention, hydraulic conductivity, diffusivity, sorptivity, and the plant sink function. The perception of the meaning of these values and their variation within a natural environment often differs from the perspective of the soil physicist, plant physiologist, and atmospheric scientist. This article investigates the sensitivity of energy balance and boundary layer simulation to different soil water property functions using the Oregon State University coupled atmosphere-plant-soil (CAPS) simulation model under bare soil conditions. The soil parameterizations tested in the CAPS model include those of Clapp and Hornberger [1978], van Genuchten [1980], and Cosby et al. [1984] using initial atmospheric conditions from June 16, 1986 in Hydrologic Atmospheric Pilot Experiment-Modélisation du Bilan Hydrique (HAPEX-MOBILHY). For the bare soil case these results demonstrate unexpected model sensitivity to soil water property parameterization in partitioning all components of the diurnal energy balance and corresponding boundary layer development.

  13. A numerical simulation of soil temperature and moisture variations for a bare field (United States)

    Schieldge, J. P.; Kahle, A. B.; Alley, R. E.


    The diurnal variations of soil temperature and moisture content were simulated for a bare agricultural field in the San Joaquin Valley in California. The simulation pertained to the first 72 hours of drying, from saturation, of a sandy, clay loam soil. The results were compared with measurements of soil temperature and moisture content made at the field. Calculated and measured values of soil temperature trends agreed in general, but model results of moisture trends did not replicate observed diurnal effects evident at depths 4 centimeters or more below the surface.

  14. Measured and simulated soil water evaporation from four Great Plains soils (United States)

    The amount of soil water lost during stage one and stage two soil water evaporation is of interest to crop water use modelers. The ratio of measured soil surface temperature (Ts) to air temperature (Ta) was tested as a signal for the transition in soil water evaporation from stage one to stage two d...

  15. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw]. (United States)

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong


    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P acid and alkaline soils, respectively.

  16. Feasibility of High-Resolution Soil Erosion Measurements by Means of Rainfall Simulations and SfM Photogrammetry

    Directory of Open Access Journals (Sweden)

    Phoebe Hänsel


    Full Text Available The silty soils of the intensively used agricultural landscape of the Saxon loess province, eastern Germany, are very prone to soil erosion, mainly caused by water erosion. Rainfall simulations, and also increasingly structure-from-motion (SfM photogrammetry, are used as methods in soil erosion research not only to assess soil erosion by water, but also to quantify soil loss. This study aims to validate SfM photogrammetry determined soil loss estimations with rainfall simulations measurements. Rainfall simulations were performed at three agricultural sites in central Saxony. Besides the measured data runoff and soil loss by sampling (in mm, terrestrial images were taken from the plots with digital cameras before and after the rainfall simulation. Subsequently, SfM photogrammetry was used to reconstruct soil surface changes due to soil erosion in terms of high resolution digital elevation models (DEMs for the pre- and post-event (resolution 1 × 1 mm. By multi-temporal change detection, the digital elevation model of difference (DoD and an averaged soil loss (in mm is received, which was compared to the soil loss by sampling. Soil loss by DoD was higher than soil loss by sampling. The method of SfM photogrammetry-determined soil loss estimations also include a comparison of three different ground control point (GCP approaches, revealing that the most complex one delivers the most reliable soil loss by DoD. Additionally, soil bulk density changes and splash erosion beyond the plot were measured during the rainfall simulation experiments in order to separate these processes and associated surface changes from the soil loss by DoD. Furthermore, splash was negligibly small, whereas higher soil densities after the rainfall simulations indicated soil compaction. By means of calculated soil surface changes due to soil compaction, the soil loss by DoD achieved approximately the same value as the soil loss by rainfall simulation.

  17. Lunar-A

    Indian Academy of Sciences (India)

    tor hits the lunar surface. The final impact velocity of the penetrator will be about 285m/sec; it will encounter a shock loading of about 8000G at impact on the lunar surface. According to numerous experimen- tal impact tests (e.g., ISAS Lunar Penetrator. Team 1993) using model penetrators and a lunar- regolith analog target ...

  18. Multivariate estimation and simulation for environmental data modelling: processing of heavy metals concentration data in soil

    Directory of Open Access Journals (Sweden)

    Barbara Namyslowska-Wilczynska


    Full Text Available Results applying ordinary kriging and cokriging techniques as well as the turning bands simulation method to the survey of heavy metal pollution of the superficial layer (at the depth of 0-20 cm of soil in a selected mining region of Upper Silesia (S Poland are presented. The multivariate structural analysis, estimation and conditional simulation was performed on data coming from the regional monitoring of soils. Based on estimated and the simulated cadmium and zinc heavy metal soil concentrations, the most polluted zones and places in the Dabrowa Górnicza region, where environmental monitoring should be instituted again, were determined.

  19. Mission control team structure and operational lessons learned from the 2009 and 2010 NASA desert RATS simulated lunar exploration field tests (United States)

    Bell, Ernest R.; Badillo, Victor; Coan, David; Johnson, Kieth; Ney, Zane; Rosenbaum, Megan; Smart, Tifanie; Stone, Jeffry; Stueber, Ronald; Welsh, Daren; Guirgis, Peggy; Looper, Chris; McDaniel, Randall


    The NASA Desert Research and Technology Studies (Desert RATS) is an annual field test of advanced concepts, prototype hardware, and potential modes of operation to be used on human planetary surface space exploration missions. For the 2009 and 2010 NASA Desert RATS field tests, various engineering concepts and operational exercises were incorporated into mission timelines with the focus of the majority of daily operations being on simulated lunar geological field operations and executed in a manner similar to current Space Shuttle and International Space Station missions. The field test for 2009 involved a two week lunar exploration simulation utilizing a two-man rover. The 2010 Desert RATS field test took this two week simulation further by incorporating a second two-man rover working in tandem with the 2009 rover, as well as including docked operations with a Pressurized Excursion Module (PEM). Personnel for the field test included the crew, a mission management team, engineering teams, a science team, and the mission operations team. The mission operations team served as the core of the Desert RATS mission control team and included certified NASA Mission Operations Directorate (MOD) flight controllers, former flight controllers, and astronaut personnel. The backgrounds of the flight controllers were in the areas of Extravehicular Activity (EVA), onboard mechanical systems and maintenance, robotics, timeline planning (OpsPlan), and spacecraft communicator (Capcom). With the simulated EVA operations, mechanized operations (the rover), and expectations of replanning, these flight control disciplines were especially well suited for the execution of the 2009 and 2010 Desert RATS field tests. The inclusion of an operations team has provided the added benefit of giving NASA mission operations flight control personnel the opportunity to begin examining operational mission control techniques, team compositions, and mission scenarios. This also gave the mission operations

  20. Experimental Determination of in Situ Utilization of Lunar Regolith for Thermal Energy Storage (United States)

    Richter, Scott W.


    A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister (25.4 cm diameter by 45.7 cm length) which contains simulated lunar regolith, a heater (either radiative or conductive), 9 heat shields, a heat transfer cold jacket, and 19 type B platinum rhodium thermocouples. The simulated lunar regolith is a basalt, mined and processed by the University of Minnesota, that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith. The properties include melt temperature (range), specific heat, thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. The physical characteristics of the melt pattern, material compatibility of the molten regolith, and the volatile gas emission will be investigated by heating a portion of the lunar regolith to its melting temperature (1435 K) in a 10(exp -4) pascal vacuum chamber, equipped with a gas spectrum analyzer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The analytical results of the code will be compared with the experimental data generated by the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.

  1. Simulation of salinity effects on past, present, and future soil organic carbon stocks. (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Gottschalk, Pia; Baldock, Jeff; Verma, Vipan; Setia, Deepika; Smith, Jo


    Soil organic carbon (SOC) models are used to predict changes in SOC stocks and carbon dioxide (CO(2)) emissions from soils, and have been successfully validated for non-saline soils. However, SOC models have not been developed to simulate SOC turnover in saline soils. Due to the large extent of salt-affected areas in the world, it is important to correctly predict SOC dynamics in salt-affected soils. To close this knowledge gap, we modified the Rothamsted Carbon Model (RothC) to simulate SOC turnover in salt-affected soils, using data from non-salt-affected and salt-affected soils in two agricultural regions in India (120 soils) and in Australia (160 soils). Recently we developed a decomposition rate modifier based on an incubation study of a subset of these soils. In the present study, we introduce a new method to estimate the past losses of SOC due to salinity and show how salinity affects future SOC stocks on a regional scale. Because salinity decreases decomposition rates, simulations using the decomposition rate modifier for salinity suggest an accumulation of SOC. However, if the plant inputs are also adjusted to reflect reduced plant growth under saline conditions, the simulations show a significant loss of soil carbon in the past due to salinization, with a higher average loss of SOC in Australian soils (55 t C ha(-1)) than in Indian soils (31 t C ha(-1)). There was a significant negative correlation (p saline than in non-saline soils under future climate. The simulations of past losses of SOC due to salinity were repeated using either measured charcoal-C or the inert organic matter predicted by the Falloon et al. equation to determine how much deviation from the Falloon et al. equation affects the amount of plant inputs generated by the model for the soils used in this study. Both sets of results suggest that saline soils have lost carbon and will continue to lose carbon under future climate. This demonstrates the importance of both reduced decomposition

  2. Determination of Chemical Kinetic Rate Constants of a Model for Carbothermal Processing of Lunar Regolith Simulant Using Methane (United States)

    Balasubramaniam, R; Gokoglu, S.; Hegde, U.


    We have previously developed a chemical conversion model of the carbothermal processing of lunar regolith using methane to predict the rate of production of carbon monoxide. In this carbothermal process, gaseous methane is pyrolyzed as it flows over the hot surface of a molten zone of lunar regolith and is converted to carbon and hydrogen. Hydrogen is carried away by the exiting stream of gases and carbon is deposited on the melt surface. The deposited carbon mixes with the melt and reacts with the metal oxides in it to produce carbon monoxide that bubbles out of the melt. In our model, we assume that the flux of carbon deposited is equal to the product of the surface reaction rate constant gamma and the concentration of methane adjacent to the melt surface. Similarly, the rate of consumption of carbon per unit volume in the melt is equal to the product of the melt reaction rate constant k and the concentrations of carbon and metal oxide in the melt. In this paper, we describe our effort to determine gamma and k by comparison of the predictions from our model with test data obtained by ORBITEC (Orbital Technologies Corporation). The concentration of methane adjacent to the melt surface is a necessary input to the model. It is inferred from the test data by a mass balance of methane, adopting the usual assumptions of the continuously-stirred-tank-reactor model, whereby the average concentration of a given gaseous species equals its exit concentration. The reaction rates gamma and k have been determined by a non-linear least-squares fit to the test data for the production of carbon monoxide and the fraction of the incoming methane that is converted. The comparison of test data with our model predictions using the determined chemical kinetic rate constants provides a consistent interpretation of the process over the full range of temperatures, pressures, and methane flow rates used in the tests, thereby increasing our confidence to use the model for scale-up purposes.

  3. S-World: A high resolution global soil database for simulation modelling (Invited) (United States)

    Stoorvogel, J. J.


    There is an increasing call for high resolution soil information at the global level. A good example for such a call is the Global Gridded Crop Model Intercomparison carried out within AgMIP. While local studies can make use of surveying techniques to collect additional techniques this is practically impossible at the global level. It is therefore important to rely on legacy data like the Harmonized World Soil Database. Several efforts do exist that aim at the development of global gridded soil property databases. These estimates of the variation of soil properties can be used to assess e.g., global soil carbon stocks. However, they do not allow for simulation runs with e.g., crop growth simulation models as these models require a description of the entire pedon rather than a few soil properties. This study provides the required quantitative description of pedons at a 1 km resolution for simulation modelling. It uses the Harmonized World Soil Database (HWSD) for the spatial distribution of soil types, the ISRIC-WISE soil profile database to derive information on soil properties per soil type, and a range of co-variables on topography, climate, and land cover to further disaggregate the available data. The methodology aims to take stock of these available data. The soil database is developed in five main steps. Step 1: All 148 soil types are ordered on the basis of their expected topographic position using e.g., drainage, salinization, and pedogenesis. Using the topographic ordering and combining the HWSD with a digital elevation model allows for the spatial disaggregation of the composite soil units. This results in a new soil map with homogeneous soil units. Step 2: The ranges of major soil properties for the topsoil and subsoil of each of the 148 soil types are derived from the ISRIC-WISE soil profile database. Step 3: A model of soil formation is developed that focuses on the basic conceptual question where we are within the range of a particular soil property

  4. Gamma-emissions of some meteorites and terrestrial rocks. Evaluation of lunar soil radioactivity; Emissions gamma de quelques meteorites et roches terrestres. Evaluation de la radioactivite du sol lunaire

    Energy Technology Data Exchange (ETDEWEB)

    Nordemann, D. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)


    The gamma-emissions of some terrestrial rocks and of the following meteorites: Bogou, Eagle-Station, Granes, and Dosso were studied by quantitative low background gamma spectrometry. These measurements and their interpretation lead to the evaluation of the possible gamma-emissions of several models of lunar soils. (author) [French] Les emissions gamma des meteorites Bogou, Eagle-Station, Granes et Dosso et de quelques roches terrestres ont ete etudiees par spectrometrie gamma quantitative a faible mouvement propre. Ces mesures et leur interpretation permettent d'evaluer les principales contributions des emissions gamma du sol lunaire pour des modeles de compositions possibles variees. (auteur)

  5. Simulation of chloride transport based description soil structure

    International Nuclear Information System (INIS)

    Mahmood-ul-Hassan, M.; Akhtar, M.S.; Gill, S.M.; Nabi, G.


    There is a need of environmental implications of rapid appearance of surface by applying chemical at depths below the vadose zone (tile line or shallow groundwater) for developing better insight into solute flow mechanism through the arable lands. Transport of chloride, a representative non-adsorbing solute, through a moderately structured silty clay loam soil (Gujranwala series, Typic Ustochrepts) and an un-structured sandy loam soil (Nabipur series, Typic Camborthid) was characterized and two existing models viz. convection dispersion equation (CDE) and preferential flow models were tested. The flux average of solute concentration in the outflow as a function of cumulative drainage was fitted to the models. The CDE fitted, relatively, better in the non-structured soil than in the moderately structured soil. Dispersivity value determined by CDE was very high for the structured soil which is physically not possible. The preferential flow model fitted well in the Gujranwala soil, but not in the Nabipur soil. The breakthrough characteristics i.e. drainage to peak concentration (Dp), symmetry coefficient (SC), skewness, and kurtosis were compared. Chloride breakthrough was earlier than expected based on piston flow. It indicated preferential flow in both the soils, yet, immediate appearance of the tracer in the Gujranwala soil demonstrated even larger magnitude of the preferential flow. Breakthrough curves' parameters indicated a large amount of the solute movement through the preferred pathways by passing the soil matrix in the Gujranwala soil. The study suggests that some soil structure parameters (size/shape and degree of aggregation) should be incorporated in the solute transport models.(author)

  6. Steam remediation of contaminated soil : a simulation study.


    Schoen, William R.


    Several million underground and aboveground storage sites in the United States contain petroleum, solvents, and other hazardous chemicals. Of these storage sites, an estimated 30% are leaking their contents into the soil. While various technologies exist for the remediation of the contaminated soil, they are relatively incapable of fully cleaning the soil when the contaminant has a low water solubility or a low vapor pressure. Under these conditions, steam stripping the contaminant from the s...

  7. Temporal and spatial variability of soil hydraulic properties with implications on soil moisture simulations and irrigation scheduling (United States)

    Feki, Mouna; Ravazzani, Giovanni; Mancini, Marco


    The increase in consumption of water resources, combined with climate change impacts, calls for new sources of water supply and/or different managements of available resources in agriculture. One way to increase the quality and quantity of agricultural production is using modern technology to make farms more "intelligent", the so-called "precision agriculture" also known as 'smart farming'. To this aim hydrological models play crucial role for their ability to simulate water movement from soil surface to groundwater and to predict onset of stress condition. However, optimal use of mathematical models requires intensive, time consuming and expensive collection of soil related parameters. Typically, soils to be characterized, exhibit large variations in space and time as well during the cropping cycle, due to biological processes and agricultural management practices: tillage, irrigation, fertilization and harvest. Soil properties are subjected to diverse physical and chemical changes that lead to a non-stability in terms of water and chemical movements within the soil and to the groundwater as well. The aim of this study is to assess the variability of soil hydraulic properties over a cropping cycle. The study site is a surface irrigated Maize field located in Secugnago (45◦13'31.70" N, 9 ◦36'26.82 E), in Northern Italy-Lombardy region. The field belongs to the Consortium Muzza Bassa Lodigiana, within which meteorological data together with soil moisture were monitored during the cropping season of 2015. To investigate soil properties variations, both measurements in the field and laboratory tests on both undisturbed and disturbed collected samples were performed. Soil samples were taken from different locations within the study area and at different depths (surface, 20cm and 40cm) at the beginning and in the middle of the cropping cycle and after the harvest. During three measuring campaigns, for each soil samples several parameters were monitored (Organic

  8. Simulated soil C changes over sugarcane expansion in Brazil (United States)

    Oliveira, Dener; Williams, Stephen; Cerri, Carlos; Paustian, Keith


    In recent years, the increase in Brazilian ethanol production has been based on expansion of sugarcane cropped area, mainly by the land use change (LUC) pasture-sugarcane. However, second generation (2G) cellulosic-derived ethanol supplies are likely to increase dramatically in the next years in Brazil. Both these management changes potentially affect soil C (SOC) changes and may have a significant impact on the greenhouse gases balance of Brazilian ethanol. To evaluate these impacts, we used the Daycent model to predict the influence of the LUC native vegetation (NV) - pasture (PA) - sugarcane (SG), as well as to evaluate the effect of different management practices (straw removal, no-tillage and application of organic amendments) on long-term SOC changes in sugarcane areas in Brazil. The DayCent model estimated that the conversion of NV-PA caused SOC losses of 0.34±0.03 Mg ha-1 yr-1, whilst the conversion PA-SG resulted in SOC gains of 0.16±0.04 Mg ha-1 yr-1. Moreover, simulations showed SOC losses of 0.19±0.04 Mg ha-1yr-1 in SG areas in Brazil with straw removal. However, our analysis suggested that adoption of some best management practices can mitigate these losses, highlighting the application of organic amendments (+0.14±0.03 Mg C ha-1 yr-1). Based on the commitments made by Brazilian government in the UNFCCC, we estimated the ethanol production needed to meet the domestic demand by 2030. If the increase in ethanol production was based on the expansion of sugarcane area on degraded pasture land, the model predicted a SOC accretion of 144 Tg from 2020-2050, whilst increased ethanol production based on straw removal as a cellulosic feedstock was predicted to decrease SOC by 50 Tg over the same 30 year period in Brazil.

  9. Evapotranspiration simulated by CRITERIA and AquaCrop models in stony soils

    Directory of Open Access Journals (Sweden)

    Pasquale Campi


    Full Text Available The performance of a water balance model is also based on the ability to correctly perform simulations in heterogeneous soils. The objective of this paper is to test CRITERIA and AquaCrop models in order to evaluate their suitability in estimating evapotranspiration at the field scale in two types of soil in the Mediterranean region: non-stony and stony soil. The first step of the work was to calibrate both models under the non-stony conditions. The models were calibrated by using observations on wheat crop (leaf area index or canopy cover, and phenological stages as a function of degree days and pedo-climatic measurements. The second step consisted in the analysing the impact of the soil type on the models performances by comparing simulated and measured values. The outputs retained in the analysis were soil water content (at the daily scale and crop evapotranspiration (at two time scales: daily and crop season. The model performances were evaluated through four statistical tests: normalised difference (D% at the seasonal time scale; and relative root mean square error (RRMSE, efficiency index (EF, coefficient of determination (r2 at the daily scale. At the seasonal scale, values of D% were less than 15% in stony and on-stony soils, indicating a good performance attained by both models. At the daily scale, the RRMSE values (<30% indicate that the evapotranspiration simulated by CRITERIA is acceptable in both soil types. In the stony soil conditions, 3 out 4 statistical tests (RRMSE, EF, r2 indicate the inadequacy of AquaCrop to simulate correctly daily evapotranspiration. The higher performance of CRITERIA model to simulate daily evapotranspiration in stony soils, is due to the soil submodel, which requires the percentage skeleton as an input, while AquaCrop model takes into account the presence of skeleton by reducing the soil volume.

  10. Simulating soil-water movement through loess-veneered landscapes using nonconsilient saturated hydraulic conductivity measurements (United States)

    Williamson, Tanja N.; Lee, Brad D.; Schoeneberger, Philip J.; McCauley, W. M.; Indorante, Samuel J.; Owens, Phillip R.


    Soil Survey Geographic Database (SSURGO) data are available for the entire United States, so are incorporated in many regional and national models of hydrology and environmental management. However, SSURGO does not provide an understanding of spatial variability and only includes saturated hydraulic conductivity (Ksat) values estimated from particle size analysis (PSA). This study showed model sensitivity to the substitution of SSURGO data with locally described soil properties or alternate methods of measuring Ksat. Incorporation of these different soil data sets significantly changed the results of hydrologic modeling as a consequence of the amount of space available to store soil water and how this soil water is moved downslope. Locally described soil profiles indicated a difference in Ksat when measured in the field vs. being estimated from PSA. This, in turn, caused a difference in which soil layers were incorporated in the hydrologic simulations using TOPMODEL, ultimately affecting how soil water storage was simulated. Simulations of free-flowing soil water, the amount of water traveling through pores too large to retain water against gravity, were compared with field observations of water in wells at five slope positions along a catena. Comparison of the simulated data with the observed data showed that the ability to model the range of conditions observed in the field varied as a function of three soil data sets (SSURGO and local field descriptions using PSA-derived Ksat or field-measured Ksat) and that comparison of absolute values of soil water storage are not valid if different characterizations of soil properties are used.

  11. Dynamics of partial anaerobiosis denitrification, and water in soil : experiments and simulation

    NARCIS (Netherlands)

    Leffelaar, P.A.


    Dynamic interactions between biological respiration and denitrification, and physical transport processes that modify the abiotic soil environment in which bacteria live, were studied through the development of a new type of experimental respirometer system and an explanatory simulation

  12. A simulation test of the impact on soil moisture by agricultural ...

    African Journals Online (AJOL)

    To study the impact by agricultural machinery on changes in soil moisture, we used a simulated test method employing round iron plate based on the ground pressure ratio between the front and rear wheels of wheeled tractors and crawler tractors. We conducted soil compactions with five pressure loads (35, 98, 118, 196 ...

  13. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Stark, Sari; Tolvanen, Anne


    setup of the International Tundra Experiment (ITEX). Wounding of the dominant deciduous dwarf shrub Vaccinium myrtillus L. to simulate herbivory was carried out annually. We measured vegetation cover in 2003 and 2007, soil nutrient concentrations in 2003 and 2006, soil microbial respiration in 2003...

  14. Simulating climate change impact on soil erosion using RUSLE ...

    Indian Academy of Sciences (India)

    Climate change, particularly due to the changed precipitation trend, can have a severe impact on soil erosion. The effect is more pronounced on the higher slopes of the Himalayan region. The goal of this study was to estimate the impact of climate change on soil erosion in a watershed of the Himalayan region using ...

  15. Bacterial Utilization of Petroleum in Liquid and Simulated Soil ...

    African Journals Online (AJOL)

    ... by the weight of extracted residual oil indicated that the extents of oil removal in the stimulated and/or bioaugmented soils were significantly high in relation to unsupplemented and uninoculated controls. Keywords: Bacterial utilization, Petroleum in liquid, Petroleum in soil, Environments Bio-Research Vol. 6 (2) 2008: pp.

  16. Native temperature regime influences soil response to simulated warming (United States)

    Timothy G. Whitby; Michael D. Madritch


    Anthropogenic climate change is expected to increase global temperatures and potentially increase soil carbon (C) mineralization, which could lead to a positive feedback between global warming and soil respiration. However the magnitude and spatial variability of belowground responses to warming are not yet fully understood. Some of the variability may depend...

  17. Simulation of Soil-Plant Nitrogen Interactions for Educational Purposes. (United States)

    Huck, M. G.; Hoeft, R. G.


    Describes a computer model characterizing the balance of soil-plant Nitrogen that allows students to see the likely consequences of different biological and weather-related parameters. Proposes three uses for the model: (1) orienting beginning students to understand the soil Nitrogen cycle; (2) providing information for advanced students; and (3)…

  18. Simulating climate change impact on soil erosion using RUSLE model

    Indian Academy of Sciences (India)

    Climate change, particularly due to the changed precipitation trend, can have a severe impact on soil erosion. The effect is more pronounced on the higher slopes of the Himalayan region. The goal of this study was to estimate the impact of climate change on soil erosion in a watershed of the Himalayan region using ...

  19. A comparison of simulation models for predicting soil water dynamics in bare and vegetated lysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Link, S.O.; Kickert, R.N.; Fayer, M.J.; Gee, G.W.


    This report describes the results of simulation models used to predict soil water storage dynamics at the Field Lysimeter Test Facility (FLTF) weighing lysimeters. The objectives of this research is to develop the capability to predict soil water storage dynamics with plants in support of water infiltration control studies for the Hanford Permanent Isolation Barrier Development Program. It is important to gain confidence in one`s ability to simulate soil water dynamics over long time periods to assess the barrier`s ability to prevent drainage. Two models were compared for their ability to simulate soil water storage dynamics with and without plants in weighing lysimeters, the soil water infiltration and movement (SWIM) and the simulation of production and utilization of rangelands (SPUR-91) models. These models adequately simulated soil water storage dynamics for the weighing lysimeters. The range of root mean square error values for the two models was 7.0 to 19.8. This compares well with the range reported by Fayer et al. (1992) for the bare soil data sets of 8.1 to 22.1. Future research will test the predictive capability of these models for longer term lysimeter data sets and for historical data sets collected in various plant community types.

  20. Characterisation of soil microtopography effects on runoff and soil erosion rates under simulated rainfall (United States)

    Soil surface roughness is commonly identified as one of the dominant factors governing runoff and interrill erosion. Yet, because of difficulties in acquiring the data, most studies pay little attention to soil surface roughness. This is particularly true for soil erosion models which commonly don't...

  1. Distribution of radioiodine in soil column experiments with simulations of varying ground water levels

    International Nuclear Information System (INIS)

    Sachse, R.; Paetzold, G.


    Results of long-term experiments with 129 I-labelling under field conditions show faster migration of iodine in deeper soil layers for an orthi-eutric fluvisol adjacent to a river as compared to an orthi-humic gleysol without river vicinity. This observation suggests a possible influence of ground water level variations on radioiodine sorption to soil constituents. To verify these findings, experiments with undisturbed soil columns are carried out with controlled moisture regimes. The soil columns are labelled with 125 I and exposed to simulated rainfall or to extreme variations in ground water levels caused by daily pumping cycles. Both watering conditions affect the migration of radioiodine into deeper soil layers. After an experimental period of 25 days it could be detected down to 10 cm below the soil surface. The highest concentrations are found in the 0-2 cm layer. However, in case of the rainfall simulation the radioiodine concentrations in this layer are remarkably higher as compared to those of the experiments with ground water variations. Only the rainfall exposed soil columns show differences between the two soils with respect to tracer depth profiles. An especially fast migration of radioiodine occurs, when the tracer is applied on a water saturated soil column and the soil water is soaked from the bottom immediately after the application. (orig.) [de

  2. Influence of cracking clays on satellite estimated and model simulated soil moisture

    Directory of Open Access Journals (Sweden)

    Y. Y. Liu


    Full Text Available Vertisols are clay soils that are common in the monsoonal and dry warm regions of the world. One of the characteristics of these soil types is to form deep cracks during periods of extended dry, resulting in significant variation of the soil and hydrologic properties. Understanding the influence of these varying soil properties on the hydrological behavior of the system is of considerable interest, particularly in the retrieval or simulation of soil moisture. In this study we compare surface soil moisture (θ in m3 m−3 retrievals from AMSR-E using the VUA-NASA (Vrije Universiteit Amsterdam in collaboration with NASA algorithm with simulations from the Community Land Model (CLM over vertisol regions of mainland Australia. For the three-year period examined here (2003–2005, both products display reasonable agreement during wet periods. During dry periods however, AMSR-E retrieved near surface soil moisture falls below values for surrounding non-clay soils, while CLM simulations are higher. CLM θ are also higher than AMSR-E and their difference keeps increasing throughout these dry periods. To identify the possible causes for these discrepancies, the impacts of land use, topography, soil properties and surface temperature used in the AMSR-E algorithm, together with vegetation density and rainfall patterns, were investigated. However these do not explain the observed θ responses. Qualitative analysis of the retrieval model suggests that the most likely reason for the low AMSR-E θ is the increase in soil porosity and surface roughness resulting from cracking of the soil. To quantitatively identify the role of each factor, more in situ measurements of soil properties that can represent different stages of cracking need to be collected. CLM does not simulate the behavior of cracking soils, including the additional loss of moisture from the soil continuum during drying and the infiltration into cracks during rainfall events

  3. [Possibility of exacerbation of allergy by lunar regolith]. (United States)

    Horie, Masanori; Kambara, Tatsunori; Kuroda, Etsushi; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo


    Japan, U.S.A. and other foreign space agencies have plans for the construction of a lunar base and long-term stay of astronauts on the moon. The surface of the moon is covered by a thick layer of soil that includes fine particles called "lunar regolith", which is formed by meteorite impact and space weathering. Risk assessment of particulate matter on the moon is important for astronauts working in microgravity on the moon. However, there are few investigations about the biological influences of lunar regolith. Especially, there is no investigation about allergic activity to lunar regolith. The main chemical components of lunar regolith are SiO2, Al2O3, CaO, FeO, etc. Of particular interest, approximately 50% of lunar regolith consists of SiO2. There is a report that the astronauts felt hay fever-like symptoms from the inhalation of the lunar regolith. Yellow sand, whose chemical components are similar to lunar regolith, enhances allergenic reactions, suggesting the possibility that lunar regolith has an adjuvant-like activity. Although intraperitoneal administration of lunar regolith with ovalbumin to mouse did not show enhancement of allergenic reactions, further evaluation of lunar regolith's potential to exacerbate the effects of allergies is essential for development of the moon.

  4. Liquid Oxygen/Liquid Methane Test Summary of the RS-18 Lunar Ascent Engine at Simulated Altitude Conditions at NASA White Sands Test Facility (United States)

    Melcher, John C., IV; Allred, Jennifer K.


    Tests were conducted with the RS18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propellant systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to approx.120,000 ft (approx.37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. Propellant flow rate was measured using a coriolis-style mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup. LO2 flow ranged from 5.9-9.5 lbm/sec (2.7-4.3 kg/sec), and LCH4 flow varied from 3.0-4.4 lbm/sec (1.4-2.0 kg/sec) during the RS-18 hot-fire test series. Thrust was measured using three load cells in parallel. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Data was obtained at multiple chamber pressures, and calculations were performed for specific impulse, C* combustion efficiency, and thrust vector alignment. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes.

  5. [Effect of lunar dust on humans: -lunar dust: regolith-]. (United States)

    Morimoto, Yasuo; Miki, Takeo; Higashi, Toshiaki; Horie, Seichi; Tanaka, Kazunari; Mukai, Chiaki


    We reviewed the effect of lunar dust (regolith) on humans by the combination of the hazard/exposure of regolith and microgravity of the moon. With regard to the physicochemical properties of lunar dust, the hazard-related factors are its components, fibrous materials and nanoparticles. Animal exposure studies have been performed using a simulant of lunar dust, and it was speculated that the harmful effects of the simulant lies between those of crystalline silica and titanium dioxide. Fibrous materials may not have a low solubility judging from their components. The nanoparticles in lunar dust may have harmful potentials from the view of the components. As for exposure to regolith, there is a possibility that particles larger than ones in earth (1 gravity) are respirable. In microgravity, 1) the deposition of particles of less than 1 µm in diameter in the human lung did not decrease, 2) the functions of macrophages including phagocytosis were suppressed, 3) pulmonary inflammation was changed. These data on hazard/exposure and microgravity suggest that fine and ultrafine particles in regolith may have potential hazards and risks for humans.

  6. A Study of Soil Line Simulation from Landsat Images in Mixed Grassland

    Directory of Open Access Journals (Sweden)

    Xulin Guo


    Full Text Available The mixed grassland in Canada is characterized by low to medium green vegetation cover, with a large amount of canopy background, such as non-photosynthetic vegetation residuals (litter, bare soil, and ground level biological crust. It is a challenge to extract the canopy information from satellite images because of the influence of canopy background. Therefore, this study aims to extract a soil line, a representation of bare soil with litter and soil crust in the surface, from Landsat images to reduce the background effect. Field work was conducted in the West Block of Grasslands National Park (GNP in Canada, which represents the northern mixed grassland from late June to early July 2005. Six TM images with either no or only a small amount of cloud content were collected in 2005. In this study, soil lines were extracted directly from images by quantile regression and the (R, NIRmin method. The results show that, (1 both cloud and cloud shadow have obvious influence on simulating soil line automatically from images; (2 green up and late senescence seasons are relatively better for soil line simulation; (3 the (R, NIRmin method is better for soil line simulation than quantile regression to extract green biomass or green cover information.

  7. Improving simulation of soil moisture in China using a multiple meteorological forcing ensemble approach

    Directory of Open Access Journals (Sweden)

    J.-G. Liu


    Full Text Available The quality of soil-moisture simulation using land surface models depends largely on the accuracy of the meteorological forcing data. We investigated how to reduce the uncertainty arising from meteorological forcings in a simulation by adopting a multiple meteorological forcing ensemble approach. Simulations by the Community Land Model version 3.5 (CLM3.5 over mainland China were conducted using four different meteorological forcings, and the four sets of soil-moisture data related to the simulations were then merged using simple arithmetical averaging and Bayesian model averaging (BMA ensemble approaches. BMA is a statistical post-processing procedure for producing calibrated and sharp predictive probability density functions (PDFs, which is a weighted average of PDFs centered on the bias-corrected forecasts from a set of individual ensemble members based on their probabilistic likelihood measures. Compared to in situ observations, the four simulations captured the spatial and seasonal variations of soil moisture in most cases with some mean bias. They performed differently when simulating the seasonal phases in the annual cycle, the interannual variation and the magnitude of observed soil moisture over different subregions of mainland China, but no individual meteorological forcing performed best for all subregions. The simple arithmetical average ensemble product outperformed most, but not all, individual members over most of the subregions. The BMA ensemble product performed better than simple arithmetical averaging, and performed best for all fields over most of the subregions. The BMA ensemble approach applied to the ensemble simulation reproduced anomalies and seasonal variations in observed soil-moisture values, and simulated the mean soil moisture. It is presented here as a promising way for reproducing long-term, high-resolution spatial and temporal soil-moisture data.

  8. Lunar Flashlight and Other Lunar Cubesats (United States)

    Cohen, Barbara


    Water is a human-exploitable resource. Lunar Flashlight is a Cubesat mission to detect and map lunar surface ice in permanently-shadowed regions of the lunar south pole. EM-1 will carry 13 Cubesat-class missions to further smallsat science and exploration capabilities; much room to infuse LEO cubesat methodology, models, and technology. Exploring the value of concurrent measurements to measure dynamical processes of water sources and sinks.

  9. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations. (United States)

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank


    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.

  10. Nonlinear soil-structure interaction calculations simulating the SIMQUAKE experiment using STEALTH 2D (United States)

    Tang, H. T.; Hofmann, R.; Yee, G.; Vaughan, D. K.


    Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences.


    National Aeronautics and Space Administration — This archive bundle includes data taken by the Lunar Dust Experiment (LDEX) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft....

  12. Lunar Sample Atlas (United States)

    National Aeronautics and Space Administration — The Lunar Sample Atlas provides pictures of the Apollo samples taken in the Lunar Sample Laboratory, full-color views of the samples in microscopic thin-sections,...

  13. Lunar Sample Compendium (United States)

    National Aeronautics and Space Administration — The purpose of the Lunar Sample Compendium is to inform scientists, astronauts and the public about the various lunar samples that have been returned from the Moon....

  14. Lunar Orbiter Photo Gallery (United States)

    National Aeronautics and Space Administration — The Lunar Orbiter Photo Gallery is an extensive collection of over 2,600 high- and moderate-resolution photographs produced by all five of the Lunar Orbiter...

  15. Endogenous Lunar Volatiles (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.


    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  16. Effects of simulated acid rain on microbial characteristics in a lateritic red soil. (United States)

    Xu, Hua-qin; Zhang, Jia-en; Ouyang, Ying; Lin, Ling; Quan, Guo-ming; Zhao, Ben-liang; Yu, Jia-yu


    A laboratory experiment was performed to examine the impact of simulated acid rain (SAR) on nutrient leaching, microbial biomass, and microbial activities in a lateritic red soil in South China. The soil column leaching experiment was conducted over a 60-day period with the following six SAR pH treatments (levels): 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 and one control treatment (pH = 7). Compared with the control treatment, the concentrations of soil organic matter, total nitrogen, total phosphorus, total potassium, soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN), and average well color density (AWCD) in the Ecoplates were all significantly decreased by leaching with SAR at different pH levels. The decrease in MBC and MBN indicated that acid rain reduced the soil microbial population, while the decrease in AWCD revealed that acid rain had a negative effect on soil bacterial metabolic function. Soil basal respiration increased gradually from pH 4.0 to 7.0 but decreased dramatically from pH 2.5 to 3.0. The decrease in soil nutrient was the major reason for the change of soil microbial functions. A principal component analysis showed that the major carbon sources used by the bacteria were carbohydrates and carboxylic acids.

  17. Liquid Oxygen/Liquid Methane Test Results of the RS-18 Lunar Ascent Engine at Simulated Altitude Conditions at NASA White Sands Test Facility (United States)

    Melcher, John C., IV; Allred, Jennifer K.


    Tests were conducted with the RS-18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA's Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to 122,000 ft (37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. LO2 flow ranged from 5.9 - 9.5 lbm/sec (2.7 - 4.3 kg/sec), and LCH4 flow varied from 3.0 - 4.4 lbm/sec (1.4 - 2.0 kg/sec) during the RS-18 hot-fire test series. Propellant flow rate was measured using a coriolis mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup due to two-phase flow effects. Subsequent cold-flow testing demonstrated that the propellant manifolds must be adequately flushed in order for the coriolis flow meters to give accurate data. The coriolis flow meters were later shown to provide accurate steady-state data, but the turbine flow meter data should be used in transient phases of operation. Thrust was measured using three load cells in parallel, which also provides the capability to calculate thrust vector alignment. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes. All of these objectives were

  18. Integrated lunar materials manufacturing process (United States)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)


    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about, C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at, C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  19. Simulating Climate Change Impact on Soil Erosion using RUSLE ...

    Indian Academy of Sciences (India)


    station). This projected rainfall data was used to compute projected rainfall erosivity and further estimate the soil erosion employing RUSLE model over the three periods: 2020 (2011-2040),. 2050 (2041-2070), 2080 (2071-2099). The study will provide a preliminary evaluation of the potential impact of future climate change ...

  20. Simulated and measured soil wetting patterns for overlap zone ...

    African Journals Online (AJOL)



    Oct 17, 2011 ... Key words: Drip irrigation, HYDRUS, intersection, soil wetting pattern. INTRODUCTION. Improving water use efficiency is very important for agriculture in arid and semi-arid region. Xinjiang is a typical arid region in China, with water resource only 7.93. × 108 m3, severe evaporation and less rainfall. High.

  1. Simulation of consolidation in partially saturated soil materials

    International Nuclear Information System (INIS)

    Narasimhan, T.N.


    Partially saturated soil materials undergo consolidation, heave, collapse and failure due to changes in pore fluid pressure. The precise nature of the mechanics of such deformations is only poorly understood at present. Experimental evidence has shown that the volume change behavior of unsaturated soils cannot be adequately explained through changes in effective stress, even when a saturation dependent parameter is incorporated into the definition of effective stress. Two independent stress-state variables, involving combinations of total stress, pore air pressure and pore water pressure, are required to characterize volume changes and saturation changes in the partially saturated state. In general, two coupled conservation equations, one for the water-phase and the other for the air-phase need to be solved in order to predict the deformation behavior of unsaturated soils. If directional displacements and changes in the stress-field are required, then the conservation equations are to be integrated with an additional set of multi-dimensional force balance equations. For lack of a sufficient understanding of elastic constants such as Poisson's Ratio and Lame's constants as applied to unsaturated soils, little has been achieved so far in integrating the conservation equations and the force balance equations. For the long-term modeling of consolidation with respect to uranium mill tailings, it may be acceptable and economical to solve a single conservation equation for water, assuming that the air-phase is continuous and is at atmospheric pressure everywhere in the soil. The greatest challenge to modeling consolidation in the unsaturated zone at the presnt time is to develop enough experimental data defining the variation of void ratio and saturation with reference to the two chosen stress-state variables

  2. Molten Materials Transfer and Handling on the Lunar Surface (United States)

    Stefanescu, Doru M.; Curreri, Peter A.; Sen, Subhayu


    Electrolytic reduction processes as a means to provide pure elements for lunar resource utilization have many advantages. Such processes have. the potential of removing all the oxygen from the lunar soil for use in life support and for propellant. Electrochemical reduction also provides a direct path for the. production of pure metals and silicon which can be utilized for in situ manufacturing and power production. Some of the challenges encountered in the electrolytic reduction processes include the feeding of the electrolytic cell (the transfer of electrolyte containing lunar soil), the withdrawal of reactants and refined products such as the liquidironsiliconalloy with a number of impurities, and the spent regolith slag, produced in the hot electrolytic cell for the reduction of lunar regolith. The paper will discuss some of the possible solutions to the challenges of handling molten materials on the lunar surface, as well as the path toward the construction and testing of a proof-of-concept facility.

  3. Numerical simulation of electro-osmotic consolidation coupling non-linear variation of soil parameters (United States)

    Wu, Hui; Hu, Liming; Wen, Qingbo


    Electro-osmotic consolidation is an effective method for soft ground improvement. A main limitation of previous numerical models on this technique is the ignorance of the non-linear variation of soil parameters. In the present study, a multi-field numerical model is developed with the consideration of the non-linear variation of soil parameters during electro-osmotic consolidation process. The numerical simulations on an axisymmetric model indicated that the non-linear variation of soil parameters showed remarkable impact on the development of the excess pore water pressure and degree of consolidation. A field experiment with complex geometry, boundary conditions, electrode configuration and voltage application was further simulated with the developed numerical model. The comparison between field and numerical data indicated that the numerical model coupling of the non-linear variation of soil parameters gave more reasonable results. The developed numerical model is capable to analyze engineering cases with complex operating conditions.

  4. Characterization of Fillite as a planetary soil simulant in support of rover mobility assessment in high-sinkage/high-slip environments (United States)

    Edwards, Michael

    This thesis presents the results of a research program characterizing a soil simulant called Fillite, which is composed of alumino-silicate hollow microspheres harvested from the pulverized fuel ash of coal-fired power plants. Fillite is available in large quantities at a reasonable cost and it is chemically inert. Fillite has been selected by the National Aeronautics and Space Administration (NASA) Glenn Research Center to simulate high-sinkage/high-slip environment in a large test bed such as the ones encountered by the Spirit rover on Mars in 2009 when it became entrapped in a pocket of soft, loose regolith on Mars. The terms high-sinkage and high-slip used here describe the interaction of soils with typical rover wheels. High-sinkage refers to a wheel sinking with little to no applied force while high-slip refers to a spinning wheel with minimal traction. Standard material properties (density, specific gravity, compression index, Young's modulus, and Poisson's ratio) of Fillite were determined from a series of laboratory tests conducted in general accordance with ASTM standards. Tests were also performed to determine some less standard material properties of Fillite such as the small strain shear wave velocity, maximum shear modulus, and several pressure-sinkage parameters for use in pressure-sinkage models. The experiments include an extensive series of triaxial compression tests, bender element tests, and normal and shear bevameter tests. The unit weight of Fillite on Earth ranges between 3.9 and 4.8 kN/m 3, which is similar to that of Martian regolith (about 3.7 -- 5.6 kN/m3) on Mars and close to the range of the unit weight of lunar regolith (about 1.4 -- 2.9 kN/m3) on the Moon. The data presented here support that Fillite has many physical and mechanical properties that are similar to what is known about Martian regolith. These properties are also comparable to lunar regolith. Fillite is quite dilatant; its peak and critical angles of internal friction are

  5. A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil (United States)

    Peche, Aaron; Graf, Thomas; Fuchs, Lothar; Neuweiler, Insa


    In urban water pipe networks, pipe leakage may lead to subsurface contamination or to reduced waste water treatment efficiency. The quantification of pipe leakage is challenging due to inaccessibility and unknown hydraulic properties of the soil. A novel physically-based model for three-dimensional numerical simulation of pipe leakage in variably saturated soil is presented. We describe the newly implemented coupling between the pipe flow simulator HYSTEM-EXTRAN and the groundwater flow simulator OpenGeoSys and its validation. We further describe a novel upscaling of leakage using transfer functions derived from numerical simulations. This upscaling enables the simulation of numerous pipe defects with the benefit of reduced computation times. Finally, we investigate the response of leakage to different time-dependent pipe flow events and conclude that larger pipe flow volume and duration lead to larger leakage while the peak position in time has a small effect on leakage.

  6. Electrochemical characterization of corrosion in materials of grounding systems, simulating conditions of synthetic soils with characteristics of local soils (United States)

    Salas, Y.; Guerrero, L.; Vera-Monroy, S. P.; Blanco, J.; Jimenez, C.


    The integrity of structures buried in earthing becomes relevant when analysing maintenance and replacement costs of these systems, as the deterioration is mainly due to two factors, namely: the failures caused in the electrical systems, which are due to the system. Failure in earthing due to corrosion at the interface cause an alteration in the structure of the component material and generates an undesirable resistivity that cause malfunction in this type of protection systems. Two local soils were chosen that were categorized as sandy loam and clay loam type, whose chemical characteristics were simulated by means of an electrolyte corresponding to the amount of ions present determined by a soil characterization based on the CICE (effective cation exchange coefficient), which allows us to deduce the percentage of chloride and sulphate ions present for the different levels established in the experimental matrix. The interaction of these soils with grounding electrodes is a complex problem involving many factors to consider. In this study, the rates and corrosion currents of the different soils on two types of electrodes, one copper and the other AISI 304 stainless steel, were approximated by electrochemical techniques such as potentiodynamic curves and electrochemical impedance spectra. Considerably higher speeds were determined for copper-type electrodes when compared to those based on steel. However, from the Nyquist diagrams, it was noted that copper electrodes have better electrical performance than steel ones. The soil with the highest ionic activity turned out to be the sandy loam. The clay loam soil presents a tendency to water retention and this may be the reason for the different behaviour with respect to ionic mobility. The diffusion control in the steel seems to alter the ionic mobility because its corrosion rates proved to be very similar regardless of the type of soil chemistry. In general, corrosion rates fell since tenths of a millimetre every year to

  7. Soil moisture simulations using two different modelling approaches

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Tesař, Miroslav


    Roč. 64, 3-4 (2013), s. 99-103 ISSN 0006-5471 R&D Projects: GA AV ČR IAA300600901; GA ČR GA205/08/1174 Institutional research plan: CEZ:AV0Z20600510 Keywords : soil moisture modelling * SWIM model * box modelling approach Subject RIV: DA - Hydrology ; Limnology

  8. A Coupling Simulation Between Soil Scour and Seepage Flow by Using a Stabilized ISPH Method

    Directory of Open Access Journals (Sweden)

    Nogami Tomotaka


    Full Text Available In 2011, the example that breakwaters collapsed because of the basic ground’s destabilization was reported by Tohoku-Kanto earthquake tsunami. Fluid-Structure-Soil coupling simulation is desired for a systematic comprehension of the breakwater collapse mechanism, and it may help to develop next disaster prevention method. In this study, A particle simulation tool based on the SPH has been modified and improved to analyze seepage flow and soil scouring. In seepage flow analysis, as a first step, this simulation treat the surface flow and seepage flow interactions by using governing equation. In the scouring analysis, soil scour is judged by an empirical criteria based on quicksand quantity formula.

  9. Simulation of pollutants transfer in soils - State-of-the-art. State-of-the-art of the simulation of pollutants transfer in soils - Final report

    International Nuclear Information System (INIS)

    Bourgois, J.; Vaillant, Herve; Moszkowicz, P.; Alimi Ichola, Ibrahim; Foret, Suzanne


    Industrial companies use and produce numerous substances which can induce a pollution of our environment and especially of soil and groundwater. Thus, it's necessary to estimate the risk of an environmental impact from an accidental or chronic, real or potential pollution. Modelling, which allow the simulation of pollutant migration, can be used as a decision support system, either for the pollution control and prevention of the resource, or for the monitoring of the remediation of polluted sites. In the first part of this study, we established a state of the art on modelling of pollutant migration in soils. In the second part, we focused on the main simulation tools currently available on the market, and on the main agencies or laboratories working on this subject, especially in France. At the end of this study, we drew some conclusions concerning modelling of pollutant migration in soils and the main points which will form the subject of further studies: - sensitivity analysis of model to input parameters and ranking of the main parameters, - achievement of a database on the state of the art of the results on modelling realized on case studies, - development of a mobility indicator of pollutant in soil, - application field and relevance of the models. (authors)

  10. [Simulation of effects of soil properties and plants on soil water-salt movement with reclaimed water irrigation by ENVIRO-GRO model]. (United States)

    Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E


    In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this study. The accumulation trends and profile distribution of soil salinity were predicted. Simultaneously, the effects of different soil properties and plants on soil water-salt movement and salt accumulation were investigated. Results indicated that soil salinity in the profiles reached uniform equilibrium conditions by repeated simulation, with different initial soil salinity. Under the conditions of loam and clay loam soil, salinity in the profiles increased over time until reaching equilibrium conditions, while under the condition of sandy loam soil, salinity in the profiles decreased over time until reaching equilibrium conditions. The saturated soil salinity (EC(e)) under equilibrium conditions followed an order of sandy loam soil salinity were also different in these three types of plants. In addition, the growth of the plants was not influenced by soil salinity (except clay loam), but mild soil salinization occurred under all conditions (except sandy loam).

  11. Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil

    DEFF Research Database (Denmark)

    Johnsen, Anders R; de Lipthay, Julia R; Sørensen, Søren J


    Diffuse pollution with polycyclic aromatic hydrocarbons (PAHs) of topsoil in urban regions has caused increasing concerns in recent years. We simulated diffuse pollution of soil in microcosms by spiking sandy topsoil (A-horizon) and coarse, mineral subsoil (C-horizon) with street dust (PM63...... for the persistence and low bioaccessibility of 5- and 6-ring PAHs in diffusely polluted soil.......) isolated from municipal street sweepings from central Copenhagen. The microbial communities adapted to PAH degradation in microcosms spiked with street dust in both A-horizon and C-horizon soils, in spite of low PAH-concentrations. The increased potential for PAH degradation was demonstrated on several...


    Directory of Open Access Journals (Sweden)

    Elói Panachuki


    Full Text Available Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols. In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT, conventional tillage (CT, and minimum tillage (MT with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.. Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.

  13. Simulation of Tillage Systems Impact on Soil Biophysical Properties Using the SALUS Model

    Directory of Open Access Journals (Sweden)

    Luigi Sartori


    Full Text Available A sustainable land management has been defined as the management system that allows for production, while minimizing risk, maintaining quality of soil and water. Tillage systems can significantly decrease soil carbon storage and influence the soil environment of a crop. Crop growth models can be useful tools in evaluating the impact of different tillage systems on soil biophysical properties and on the growth and final yield of the crops. The objectives of this paper were i to illustrate the SALUS model and its tillage component; ii to evaluate the effects of different tillage systems on water infiltration and time to ponding, iii to simulate the effect of tillage systems on some soil biophysical properties. The SALUS (System Approach to Land Use Sustainability model is designed to simulate continuous crop, soil, water and nutrient conditions under different tillage and crop residues management strategies for multiple years. Predictions of changes in surface residue, bulk density, runoff, drainage and evaporation were consistent with expected behaviours of these parameters as described in the literature. The experiment to estimate the time to ponding curve under different tillage system confirmed the theory and showed the beneficial effects of the residue on soil surface with respect to water infiltration. It also showed that the no-tillage system is a more appropriate system to adopt in areas characterized by high intensity rainfall.

  14. Improving streamflow simulations and forecasting performance of SWAT model by assimilating remotely sensed soil moisture observations (United States)

    Patil, Amol; Ramsankaran, RAAJ


    This article presents a study carried out using EnKF based assimilation of coarser-scale SMOS soil moisture retrievals to improve the streamflow simulations and forecasting performance of SWAT model in a large catchment. This study has been carried out in Munneru river catchment, India, which is about 10,156 km2. In this study, an EnkF based new approach is proposed for improving the inherent vertical coupling of soil layers of SWAT hydrological model during soil moisture data assimilation. Evaluation of the vertical error correlation obtained between surface and subsurface layers indicates that the vertical coupling can be improved significantly using ensemble of soil storages compared to the traditional static soil storages based EnKF approach. However, the improvements in the simulated streamflow are moderate, which is due to the limitations in SWAT model in reflecting the profile soil moisture updates in surface runoff computations. Further, it is observed that the durability of streamflow improvements is longer when the assimilation system effectively updates the subsurface flow component. Overall, the results of the present study indicate that the passive microwave-based coarser-scale soil moisture products like SMOS hold significant potential to improve the streamflow estimates when assimilating into large-scale distributed hydrological models operating at a daily time step.

  15. Pulmonary Toxicity Studies of Lunar Dusts in Rodents (United States)

    Lam, Chiu-wing; James, John T.


    NASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. Because the toxicity of lunar dust is not known, NASA has tasked its toxicology laboratory to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal/intrapharyngeal instillation. This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies are in progress to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated (ground) lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The results from the instillation studies will be useful for choosing exposure concentrations for the animal inhalation study. The animal inhalation exposure will be conducted with lunar dust simulant prior to the study with the lunar dust. The experiment with the simulate will ensure that the study techniques used with actual lunar dust will be successful. The results of instillation and inhalation studies will reveal the toxicological risk of exposures and are essential for setting exposure limits on lunar dust for astronauts living in the lunar habitat.

  16. Effects of soil moisture on the diurnal pattern of pesticide emission: Comparison of simulations with field measurements (United States)

    Reichman, Rivka; Yates, Scott R.; Skaggs, Todd H.; Rolston, Dennis E.


    Pesticide volatilization from agricultural soils is one of the main pathways in which pesticides are dispersed in the environment and affects ecosystems including human welfare. Thus, it is necessary to have accurate knowledge of the various physical and chemical mechanisms that affect volatilization rates from field soils. A verification of the influence of soil moisture modeling on the simulated volatilization rate, soil temperature and soil-water content is presented. Model simulations are compared with data collected in a field study that measured the effect of soil moisture on diazinon volatilization. These data included diurnal changes in volatilization rate, soil-water content, and soil temperature measured at two depths. The simulations were performed using a comprehensive non-isothermal model, two water retention functions, and two soil surface resistance functions, resulting in four tested models. Results show that the degree of similarity between volatilization curves simulated using the four models depended on the initial water content. Under fairly wet conditions, the simulated curves mainly differ in the magnitude of their deviation from the measured values. However, under intermediate and low moisture conditions, the simulated curves also differed in their pattern (shape). The model prediction accuracy depended on soil moisture. Under normal practices, where initial soil moisture is about field capacity or higher, a combination of Brooks and Corey water retention and the van de Grind and Owe soil surface resistance functions led to the most accurate predictions. However, under extremely dry conditions, when soil-water content in the top 1 cm is below the volumetric threshold value, the use of a full-range water retention function increased prediction accuracy. The different models did not affect the soil temperature predictions, and had a minor effect on the predicted soil-water content of Yolo silty clay soil.

  17. Lunar Dust Analysis Package - LDAP (United States)

    Chalkley, S. A.; Richter, L.; Goepel, M.; Sovago, M.; Pike, W. T.; Yang, S.; Rodenburg, J.; Claus, D.


    The Lunar Dust Analysis package (L-DAP) is a suite of payloads which have been designed to operate in synergy with each other at the Lunar Surface. The benefits of combining these payloads in a single package allow very precise measurements of a particular regolith sample. At the same time the integration allows mass savings since common resources are shared and this also means that interfaces with the Lander are simplified significantly leading to benefits of integration and development of the overall mission. Lunar Dust represents a real hazard for lunar exploration due to its invasive, fine microscopic structure and toxic properties. However it is also valuable resource which could be exploited for future exploration if the characteristics and chemical composition is well known. Scientifically, the regolith provides an insight into the moon formation process and there are areas on the Moon which have never been ex-plored before. For example the Lunar South Pole Aitken Basin is the oldest and largest on the moon, providing excavated deep crust which has not been found on the previous lunar landing missions. The SEA-led team has been designing a compact package, known as LDAP, which will provide key data on the lunar dust properties. The intention is for this package to be part of the payload suite deployed on the ESA Lunar Lander Mission in 2018. The LDAP has a centralised power and data electronics, including front end electronics for the detectors as well as sample handling subsystem for the following set of internal instruments : • Optical Microscope - with a 1μm resolution to provide context of the regolith samples • Raman and LIBS spectrographic instrumentation providing quantification of mineral and elemental composition information of the soil at close to grain scale. This includes the capability to detect (and measure abundance of) crystalline and adsorbed volatile phases, from their Raman signature. The LIBS equipment will also allow chemical

  18. In-Situ Strain Analysis of Potential Habitat Composites Exposed to a Simulated Long-Term Lunar Radiation Exposure (United States)

    Rojdev, Kristina; O'Rourke, Mary Jane; Hill, Charles; Nutt, Steven; Atwell, William


    NASA is studying the effects of long-term space radiation on potential multifunctional composite materials for habitats to better determine their characteristics in the harsh space environment. Two composite materials were selected for the study and were placed in a test stand that simulated the stresses of a pressure vessel wall on the material. The samples in the test stand were exposed to radiation at either a fast dose rate or a slow dose rate, and their strain and temperature was recorded during the exposure. It was found that during a fast dose rate exposure the materials saw a decreased strain with time, or a shrinking of the materials. Given previous radiation studies of polymers, this is believed to be a result of crosslinking occurring in the matrix material. However, with a slow dose rate, the materials saw an increase in strain with time, or a stretching of the materials. This result is consistent with scission or degradation of the matrix occurring, possibly due to oxidative degradation.

  19. Numerical and experimental approaches to simulate soil clogging in porous media (United States)

    Kanarska, Yuliya; LLNL Team


    Failure of a dam by erosion ranks among the most serious accidents in civil engineering. The best way to prevent internal erosion is using adequate granular filters in the transition areas where important hydraulic gradients can appear. In case of cracking and erosion, if the filter is capable of retaining the eroded particles, the crack will seal and the dam safety will be ensured. A finite element numerical solution of the Navier-Stokes equations for fluid flow together with Lagrange multiplier technique for solid particles was applied to the simulation of soil filtration. The numerical approach was validated through comparison of numerical simulations with the experimental results of base soil particle clogging in the filter layers performed at ERDC. The numerical simulation correctly predicted flow and pressure decay due to particle clogging. The base soil particle distribution was almost identical to those measured in the laboratory experiment. To get more precise understanding of the soil transport in granular filters we investigated sensitivity of particle clogging mechanisms to various aspects such as particle size ration, the amplitude of hydraulic gradient, particle concentration and contact properties. By averaging the results derived from the grain-scale simulations, we investigated how those factors affect the semi-empirical multiphase model parameters in the large-scale simulation tool. The Department of Homeland Security Science and Technology Directorate provided funding for this research.

  20. Subsurface flow in a soil-mantled subtropical dolomite karst slope: A field rainfall simulation study (United States)

    Fu, Z. Y.; Chen, H. S.; Zhang, W.; Xu, Q. X.; Wang, S.; Wang, K. L.


    Soil and epikarst co-evolve resulting in complex structures, but their coupled structural effects on hydrological processes are poorly understood in karst regions. This study examined the plot-scale subsurface flow characteristics from an integrated soil-epikarst system perspective in a humid subtropical cockpit karst region of Southwest China. A trench was excavated to the epikarst lower boundary for collecting individual subsurface flows in five sections with different soil thicknesses. Four field rainfall simulation experiments were carried out under different initial moisture conditions (dry and wet) and rainfall intensities (114 mm h- 1 (high) and 46 mm h- 1 (low) on average). The soil-epikarst system was characterized by shallow soil overlaying a highly irregular epikarst surface with a near-steady infiltration rate of about 35 mm h- 1. The subsurface flows occurred mainly along the soil-epikarst interface and were dominated by preferential flow. The subsurface flow hydrographs showed strong spatial variability and had high steady-state coefficients (0.52 and 0.36 for high and low rainfall intensity events). Irregular epikarst surface combining with high vertical drainage capacity resulted in high threshold rainfall depths for subsurface flows: 67 mm and 263 mm for initial wet and dry conditions, respectively. The above results evidenced that the irregular and permeable soil-epikarst interface was a crucial component of soil-epikarst architecture and consequently should be taken into account in the hydrological modeling for karst regions.

  1. Dust emission and soil loss due to anthropogenic activities by wind erosion simulations (United States)

    Katra, Itzhak; Swet, Nitzan; Tanner, Smadar


    Wind erosion is major process of soil loss and air pollution by dust emission of clays, nutrients, and microorganisms. Many soils throughout the world are currently or potentially associated with dust emissions, especially in dryland zones. The research focuses on wind erosion in semi-arid soils (Northern Negev, Israel) that are subjected to increased human activities of urban development and agriculture. A boundary-layer wind tunnel has been used to study dust emission and soil loss by simulation and quantification of high-resolution wind processes. Field experiments were conducted in various surface types of dry loess soils. The experimental plots represent soils with long-term and short term influences of land uses such as agriculture (conventional and organic practices), grazing, and natural preserves. The wind tunnel was operated under various wind velocities that are above the threshold velocity of aeolian erosion. Total soil sediment and particulate matter (PM) fluxes were calculated. Topsoil samples from the experimental plots were analysed in the laboratory for physical and chemical characteristics including aggregation, organic matter, and high-resolution particle size distribution. The results showed variations in dust emission in response to surface types and winds to provide quantitative estimates of soil loss over time. Substantial loss of particulate matter that is management strategies as well as for PM loading to the atmosphere and air pollution.

  2. Numerical simulation of liquefaction susceptibility of soil interacting by single pile

    Directory of Open Access Journals (Sweden)

    Ahmad Asaadi


    Full Text Available Previous case histories have shown that soil liquefaction severely damaged many structures supported on pile foundations during earthquakes. As a result, evaluating the potential for instability is an important consideration for the safe and resistant design of deep foundation against earthquakes. In this study, the liquefaction susceptibility of saturated sand interacting by single concrete pile was simulated by means of finite difference method. A nonlinear effective stress analysis was used to evaluate soil liquefaction, and the soil-pile interaction was considered using interface elements. The parameter Ru was defined as the pore water pressure ratio to investigate liquefaction in the soil mass during time. A set of numerical models were carried out by three types of soil mass with various condensation (loose, semi-dense and dense under three ground motion with different predominant frequencies and peak accelerations. The effect of these parameters was studied using excess pore pressure, lateral movement and settlement time histories. It was found that the pile can affect the liquefaction susceptibility of soil by comparing the near pile and free field responses. However, for various soil and earthquake characteristics, it was found that the depth of soil liquefaction and triggering, varies.

  3. Influence of the Choice of Lunar Gravity Model on Orbit Determination for Lunar Orbiters

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim


    Full Text Available We examine the influence of the lunar gravity model on the orbit determination (OD of a lunar orbiter operating in a 100 km high, lunar polar orbit. Doppler and sequential range measurements by three Deep Space Network antennas and one Korea Deep Space Antenna were used. For measurement simulation and OD analysis, STK11 and ODTK6 were utilized. GLGM2, LP100K, LP150Q, GRAIL420A, and GRAIL660B were used for investigation of lunar gravity model selection effect. OD results were assessed by position and velocity uncertainties with error covariance and an external orbit comparison using simulated true orbit. The effect of the lunar gravity models on the long-term OD, degree and order level, measurement-acquisition condition, and lunar altitude was investigated. For efficiency verification, computational times for the five lunar gravity models were compared. Results showed that significant improvements to OD accuracy are observed by applying a GRAIL-based model; however, applying a full order and degree gravity modeling is not always the best strategy, owing to the computational burden. Consequently, we consider that OD using GRAIL660B with 70 × 70 degree and order is the most efficient strategy for mission preanalysis. This study provides useful guideline for KPLO OD analysis during nominal mission operation.

  4. Micro-mechanical Simulations of Soils using Massively Parallel Supercomputers

    Directory of Open Access Journals (Sweden)

    David W. Washington


    Full Text Available In this research a computer program, Trubal version 1.51, based on the Discrete Element Method was converted to run on a Connection Machine (CM-5,a massively parallel supercomputer with 512 nodes, to expedite the computational times of simulating Geotechnical boundary value problems. The dynamic memory algorithm in Trubal program did not perform efficiently in CM-2 machine with the Single Instruction Multiple Data (SIMD architecture. This was due to the communication overhead involving global array reductions, global array broadcast and random data movement. Therefore, a dynamic memory algorithm in Trubal program was converted to a static memory arrangement and Trubal program was successfully converted to run on CM-5 machines. The converted program was called "TRUBAL for Parallel Machines (TPM." Simulating two physical triaxial experiments and comparing simulation results with Trubal simulations validated the TPM program. With a 512 nodes CM-5 machine TPM produced a nine-fold speedup demonstrating the inherent parallelism within algorithms based on the Discrete Element Method.

  5. Simulation and video software development for soil consolidation testing

    NARCIS (Netherlands)

    Karim, Usama F.A.


    The development techniques and file structures of CTM, a novel multi-media (computer simulation and video) package on consolidation and laboratory consolidation testing, are presented in this paper. A courseware tool called Authorware proved to be versatile for building the package and the paper

  6. [Simulation of soil water dynamics in triploid Populus tomentosa root zone under subsurface drip irrigation]. (United States)

    Xi, Ben-Ye; Jia, Li-Ming; Wang, Ye; Li, Guang-De


    Based on the observed data of triploid Populus tomentosa root distribution, a one-dimensional root water uptake model was proposed. Taking the root water uptake into account, the soil water dynamics in triploid P. tomentosa root zone under subsurface drip irrigation was simulated by using HYDRUS model, and the results were validated with field experiment. Besides, the HYDRUS model was used to study the effects of various irrigation technique parameters on soil wetting patterns. The RMAE for the simulated soil water content by the end of irrigation and approximately 24 h later was 7.8% and 6.0%, and the RMSE was 0.036 and 0.026 cm3 x cm(-3), respectively, illustrating that the HYDRUS model performed well in simulating the short-term soil water dynamics in triploid P. tomentosa root zone under drip irrigation, and the root water uptake model was reasonable. Comparing with 2 and 4 L x h(-1) of drip discharge and continuous irrigation, both the 1 L x h(-1) of drip discharge and the pulsed irrigation with water applied intermittently in 30 min periods could increase the volume of wetted soil and reduce deep percolation. It was concluded that the combination of 1 L x h(-1) of drip discharge and pulsed irrigation should be the first choice when applying drip irrigation to triploid P. tomentosa root zone at the experiment site.

  7. Development of a simulated earthworm gut for determining bioaccessible arsenic, copper, and zinc from soil. (United States)

    Ma, Wai K; Smith, Ben A; Stephenson, Gladys L; Siciliano, Steven D


    Soil physicochemical characteristics and contamination levels alter the bioavailability of metals to terrestrial invertebrates. Current laboratory-derived benchmark concentrations used to estimate risk do not take into account site-specific conditions, such as contaminant sequestration, and site-specific risk assessment requires a battery of time-consuming and costly toxicity tests. The development of an in vitro simulator for earthworm bioaccessibility would significantly shorten analytical time and enable site managers to focus on areas of greatest concern. The simulated earthworm gut (SEG) was developed to measure the bioaccessibility of metals in soil to earthworms by mimicking the gastrointestinal fluid composition of earthworms. Three formulations of the SEG (enzymes, microbial culture, enzymes and microbial culture) were developed and used to digest field soils from a former industrial site with varying physicochemical characteristics and contamination levels. Formulations containing enzymes released between two to 10 times more arsenic, copper, and zinc from contaminated soils compared with control and 0.01 M CaCl2 extractions. Metal concentrations in extracts from SEG formulation with microbial culture alone were not different from values for chemical extractions. The mechanism for greater bioaccessible metal concentrations from enzyme-treated soils is uncertain, but it is postulated that enzymatic digestion of soil organic matter might release sequestered metal. The relevance of these SEG results will need validation through further comparison and correlation with bioaccumulation tests, alternative chemical extraction tests, and a battery of chronic toxicity tests with invertebrates and plants.

  8. Simulating emissions of 1,3-dichloropropene after soil fumigation under field conditions. (United States)

    Yates, S R; Ashworth, D J


    Soil fumigation is an important agricultural practice used to produce many vegetable and fruit crops. However, fumigating soil can lead to atmospheric emissions which can increase risks to human and environmental health. A complete understanding of the transport, fate, and emissions of fumigants as impacted by soil and environmental processes is needed to mitigate atmospheric emissions. Five large-scale field experiments were conducted to measure emission rates for 1,3-dichloropropene (1,3-D), a soil fumigant commonly used in California. Numerical simulations of these experiments were conducted in predictive mode (i.e., no calibration) to determine if simulation could be used as a substitute for field experimentation to obtain information needed by regulators. The results show that the magnitude of the volatilization rate and the total emissions could be adequately predicted for these experiments, with the exception of a scenario where the field was periodically irrigated after fumigation. In addition, the timing of the daily peak 1,3-D emissions was not accurately predicted for these experiments due to the peak emission rates occurring during the night or early-morning hours. This study revealed that more comprehensive mathematical models (or adjustments to existing models) are needed to fully describe emissions of soil fumigants from field soils under typical agronomic conditions. Published by Elsevier B.V.

  9. Simulation of water movement and isoproturon behaviour in a heavy clay soil using the MACRO model

    Directory of Open Access Journals (Sweden)

    T. J. Besien


    Full Text Available In this paper, the dual-porosity MACRO model has been used to investigate methods of reducing leaching of isoproturon from a structured heavy clay soil. The MACRO model was applied to a pesticide leaching data-set generated from a plot scale experiment on a heavy clay soil at the Oxford University Farm, Wytham, England. The field drain was found to be the most important outflow from the plot in terms of pesticide removal. Therefore, this modelling exercise concentrated on simulating field drain flow. With calibration of field-saturated and micropore saturated hydraulic conductivity, the drain flow hydrographs were simulated during extended periods of above average rainfall, with both the hydrograph shape and peak flows agreeing well. Over the whole field season, the observed drain flow water budget was well simulated. However, the first and second drain flow events after pesticide application were not simulated satisfactorily. This is believed to be due to a poor simulation of evapotranspiration during a period of low rainfall around the pesticide application day. Apart from an initial rapid drop in the observed isoproturon soil residue, the model simulated isoproturon residues during the 100 days after pesticide application reasonably well. Finally, the calibrated model was used to show that changes in agricultural practice (deep ploughing, creating fine consolidated seed beds and organic matter applications could potentially reduce pesticide leaching to surface waters by up to 60%.

  10. Lunar Landing Training vehicle piloted by Neil Armstrong during training (United States)


    A Lunar Landing Training Vehicle, piloted by Astronaut Neil Armstrong, goes through a checkout flight at Ellington Air Force Base on June 16, 1969. The total duration of the lunar simulation flight was five minutes and 59 seconds. Maximum altitude attained was about 300 feet.

  11. Lunar Prospector Extended Mission (United States)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken


    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and

  12. Simulating soybean canopy temperature as affected by weather variables and soil water potential (United States)

    Choudhury, B. J.


    Hourly weather data for several clear sky days during summer at Phoenix and Baltimore which covered a wide range of variables were used with a plant atmosphere model to simulate soybean (Glycine max L.) leaf water potential, stomatal resistance and canopy temperature at various soil water potentials. The air and dew point temperatures were found to be the significant weather variables affecting the canopy temperatures. Under identical weather conditions, the model gives a lower canopy temperature for a soybean crop with a higher rooting density. A knowledge of crop rooting density, in addition to air and dew point temperatures is needed in interpreting infrared radiometric observations for soil water status. The observed dependence of stomatal resistance on the vapor pressure deficit and soil water potential is fairly well represented. Analysis of the simulated leaf water potentials indicates overestimation, possibly due to differences in the cultivars.

  13. Erosive Wear Characterization of Materials for Lunar Construction (United States)

    Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III


    NASA s Apollo missions revealed that exhaust from the retrorockets of landing spacecraft may act to significantly accelerate lunar dust on the surface of the Moon. A recent study by Immer et al. (C. Immer, P.T. Metzger, P.E. Hintze, A. Nick, and R. Horan, Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III, Icarus, Vol. 211, pp. 1089-1102, 2011) investigated coupons returned to Earth from the Surveyor III lunar probe which were subjected to lunar dust impingement by the Apollo 12 Lunar Module landing. Their study revealed that even with indirect impingement, the spacecraft sustained erosive damage from the fast-moving lunar dust particles. In this work, results are presented from a series of erosive wear experiments performed on 6061 Aluminum using the JSC-1AF lunar dust simulant. Optical profilometry was used to investigate the surface after the erosion process. It was found that even short durations of lunar dust simulant impacting at low velocities produced substantial changes in the surface.

  14. Scale issues in soil hydrology related to measurement and simulation: A case study in Colorado (United States)

    State variables, such as soil water content (SWC), are typically measured or inferred at very small scales while being simulated at larger scales relevant to spatial management or hillslope areas. Thus there is an implicit spatial disparity that is often ignored. Surface runoff, on the other hand, ...

  15. Simulation of phosphate leaching in catchments with phosphate-saturated soils in the Netherlands

    NARCIS (Netherlands)

    Groenenberg, J.E.; Reinds, G.J.; Breeuwsma, A.


    The effects on phosphate leaching to surface waters of two scenarios for net phosphate input to sandy agricultural soils were estimated. WATBAL and ANIMO simulations for manure surplus areas in the Netherlands were used. The methodology and models were verified by comparing model results with

  16. Effect of Root Density on Erosion and Erodibility of a Loamy Soil Under Simulated Rain

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Vermang, Jan; Cornelis, Wim M.


    . With increasing root density, splash erosion decreased linearly and wash decreased exponentially. There was 67% reduction in total soil loss in 12 weeks as compared to control, mainly due to increase in soil’s shear strength and aggregate stability with roots. No influence of roots on bulk density and saturated......Though both above- and belowground components of vegetation act together in reducing soil erosion, mainly the aboveground component has received attention in past research. Therefore, the aim of this research was to evaluate the contribution of roots in soil erosion control. Perennial ryegrass...... (Lolium perenne L. Hugo) was grown in soil pans and laboratory rainfall simulation experiments were conducted after 4, 8, 12 weeks of their growth with seeding density of 50 kg ha-1, after 4 weeks for seeding density of 100 kg ha-1 and on a control. The experiments with ryegrass were done (1) in presence...

  17. Orbital studies of lunar magnetism (United States)

    Mcleod, M. G.; Coleman, P. J., Jr.


    Limitations of present lunar magnetic maps are considered. Optimal processing of satellite derived magnetic anomaly data is also considered. Studies of coastal and core geomagnetism are discussed. Lunar remanent and induced lunar magnetization are included.

  18. Lunar based massdriver applications (United States)

    Ehresmann, Manfred; Gabrielli, Roland Atonius; Herdrich, Georg; Laufer, René


    The results of a lunar massdriver mission and system analysis are discussed and show a strong case for a permanent lunar settlement with a site near the lunar equator. A modular massdriver concept is introduced, which uses multiple acceleration modules to be able to launch large masses into a trajectory that is able to reach Earth. An orbital mechanics analysis concludes that the launch site will be in the Oceanus Procellarum a flat, Titanium rich lunar mare area. It is further shown that the bulk of massdriver components can be manufactured by collecting lunar minerals, which are broken down into its constituting elements. The mass to orbit transfer rates of massdriver case study are significant and can vary between 1.8 kt and 3.3 megatons per year depending on the available power. Thus a lunar massdriver would act as a catalyst for any space based activities and a game changer for the scale of feasible space projects.

  19. Astronaut Neil Armstrong participates in simulation of moon's surface (United States)


    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, deploys a lunar surface television camera during lunar surface simulation training in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission.

  20. The consumption of atmospheric methane by soil in a simulated future climate

    Directory of Open Access Journals (Sweden)

    C. L. Curry


    Full Text Available A recently developed model for the consumption of atmospheric methane by soil (Curry, 2007 is used to investigate the global magnitude and distribution of methane uptake in a simulated future climate. In addition to solving the one-dimensional diffusion-reaction equation, the model includes a parameterization of biological CH4 oxidation that is sensitive to soil temperature and moisture content, along with specified reduction factors for land cultivation and wetland fractional coverage. Under the SRES emission scenario A1B, the model projects an 8% increase in the global annual mean CH4 soil sink by 2100, over and above the 15% increase expected from increased CH4 concentration alone. While the largest absolute increases occur in cool temperate and subtropical forest ecosystems, the largest relative increases in consumption (>40% are seen in the boreal forest, tundra and polar desert environments of the high northern latitudes. Methane uptake at mid- to high northern latitudes increases year-round in 2100, with a 68% increase over present-day values in June. This increase is primarily due to enhanced soil diffusivity resulting from lower soil moisture produced by increased evaporation and reduced snow cover. At lower latitudes, uptake is enhanced mainly by elevated soil temperatures and/or reduced soil moisture stress, with the dominant influence determined by the local climate.

  1. Impacts of simulated acid rain on recalcitrance of two different soils. (United States)

    Dai, Zhongmin; Liu, Xingmei; Wu, Jianjun; Xu, Jianming


    Laboratory experiments were conducted to estimate the impacts of simulated acid rain (SAR) on recalcitrance in a Plinthudult and a Paleudalfs soil in south China, which were a variable and a permanent charge soil, respectively. Simulated acid rains were prepared at pH 2.0, 3.5, 5.0, and 6.0, by additions of different volumes of H2SO4 plus HNO3 at a ratio of 6 to 1. The leaching period was designed to represent 5 years of local annual rainfall (1,200 mm) with a 33 % surface runoff loss. Both soils underwent both acidification stages of (1) cation exchange and (2) mineral weathering at SAR pH 2.0, whereas only cation exchange occurred above SAR pH 3.5, i.e., weathering did not commence. The cation exchange stage was more easily changed into that of mineral weathering in the Plinthudult than in the Paleudalfs soil, and there were some K(+) and Mg(2+) ions released on the stages of mineral weathering in the Paleudalfs soil. During the leaching, the release of exchangeable base cations followed the order Ca(2+) >K(+) >Mg(2+) >Na(+) for the Plinthudult and Ca(2+) >Mg(2+) >Na(+) >K(+) for the Paleudalfs soil. The SARs above pH 3.5 did not decrease soil pH or pH buffering capacity, while the SAR at pH 2.0 decreased soil pH and the buffering capacity significantly. We conclude that acid rain, which always has a pH from 3.5 to 5.6, only makes a small contribution to the acidification of agricultural soils of south China in the short term of 5 years. Also, Paleudalfs soils are more resistant to acid rain than Plinthudult soils. The different abilities to prevent leaching by acid rain depend upon the parent materials, types of clay minerals, and soil development degrees.

  2. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin


    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  3. Synthesis and Stability of Iron Nanoparticles for Lunar Environment Studies (United States)

    Hung, Ching-cheh; McNatt, Jeremiah


    Simulant of lunar dust is needed when researching the lunar environment. However, unlike the true lunar dust, today s simulants do not contain nanophase iron. Two different processes have been developed to fabricate nanophase iron to be used as part of the lunar dust simulant: (1) Sequentially treating a mixture of ferric chloride, fluorinated carbon, and soda lime glass beads at about 300 C in nitrogen, at room temperature in air, and then at 1050 C in nitrogen. The product includes glass beads that are grey in color, can be attracted by a magnet, and contain alpha-iron nanoparticles (which seem to slowly lose their lattice structure in ambient air during a period of 12 months). This product may have some similarity to the lunar glassy regolith that contains Fe(sup 0). (2) Heating a mixture of carbon black and a lunar simulant (a mixed metal oxide that includes iron oxide) at 1050 C in nitrogen. This process simulates lunar dust reaction to the carbon in a micrometeorite at the time of impact. The product contains a chemically modified simulant that can be attracted by a magnet and has a surface layer whose iron concentration increased during the reaction. The iron was found to be alpha-iron and Fe3O4 nanoparticles, which appear to grow after the fabrication process, but stabilizes after 6 months of ambient air storage.

  4. Solid-support substrates for plant growth at a lunar base (United States)

    Ming, D. W.; Galindo, C.; Henninger, D. L.


    Zeoponics is only in its developmental stages at the Johnson Space Center and is defined as the cultivation of plants in zeolite substrates that contain several essential plant growth cations on their exchange sites, and have minor amounts of mineral phases and/or anion-exchange resins that supply essential plant growth anions. Zeolites are hydrated aluminosilicates of alkali and alkaline earth cations with the ability to exchange most of their constituent exchange cations as well as hydrate/dehydrate without change to their structural framework. Because zeolites have extremely high cation exchange capabilities, they are very attractive media for plant growth. It is possible to partially or fully saturate plant-essential cations on zeolites. Zeoponic systems will probably have their greatest applications at planetary bases (e.g., lunar bases). Lunar raw materials will have to be located that are suited for the synthesis of zeolites and other exchange resings. Lunar 'soil' simulants have been or are being prepared for zeolite/smectite synthesis and 'soil' dissolution studies.

  5. In situ soil COS exchange of a temperate mountain grassland under simulated drought. (United States)

    Kitz, Florian; Gerdel, Katharina; Hammerle, Albin; Laterza, Tamara; Spielmann, Felix M; Wohlfahrt, Georg


    During recent years, carbonyl sulfide (COS), a trace gas with a similar diffusion pathway into leaves as carbon dioxide (CO 2 ), but with no known "respiration-like" leaf source, has been discussed as a promising new approach for partitioning net ecosystem-scale CO 2 fluxes into photosynthesis and respiration. The utility of COS for flux partitioning at the ecosystem scale critically depends on the understanding of non-leaf sources and sinks of COS. This study assessed the contribution of the soil to ecosystem-scale COS fluxes under simulated drought conditions at temperate grassland in the Central Alps. We used transparent steady-state flow-through chambers connected to a quantum cascade laser spectrometer to measure the COS and CO 2 gas exchange between the soil surface and the atmosphere. Soils were a source of COS during the day, emissions being mainly driven by incoming solar radiation and to a lesser degree soil temperature. Soil water content had a negligible influence on soil COS exchange and thus the drought and control treatment were statistically not significantly different. Overall, daytime fluxes were large (12.5 ± 13.8 pmol m -2  s -1 ) in their magnitude and consistently positive compared to the previous studies, which predominantly used dark chambers. Nighttime measurements revealed soil COS fluxes around zero, as did measurements with darkened soil chambers during daytime reinforcing the importance of incoming solar radiation. Our results suggest that abiotic drivers play a key role in controlling in situ soil COS fluxes of the investigated grassland.

  6. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils

    International Nuclear Information System (INIS)

    Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun


    Highlights: • We modify natural diatomite using the facile acid treatment and ultrasonication. • Modification add pore volume, surface area and electronegativity of natural diatomite. • Modified diatomite is superior to natural diatomite in soil heavy metal remediation. • Modified diatomite can be promising for in-situ immobilization of heavy metal in soil. - Abstract: Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm 3 g −1 and 76.9 m 2 g −1 , respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl 2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P < 0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments

  7. Dynamic changes in water and salinity in saline-alkali soils after simulated irrigation and leaching.

    Directory of Open Access Journals (Sweden)

    Shutao Wang

    Full Text Available Soil salinization is a global problem that limits agricultural development and impacts human life. This study aimed to understand the dynamic changes in water and salinity in saline-alkali soil based on an indoor soil column simulation. We studied the changes in the water and salt contents of soils with different degrees of salinization under various irrigation conditions. The results showed that after seven irrigations, the pH, conductivity and total soluble salt content of the percolation samples after irrigation generally increased initially then decreased with repeated irrigation. The soil moisture did not change significantly after irrigation. The pH, conductivity, and total soluble salt content of each layer of the soil profile exhibited general declining trends. In the soil profile from Changguo Township (CG, the pH decreased from 8.21-8.35 to 7.71-7.88, the conductivity decreased from 0.95-1.14 ms/cm to 0.45-0.68 ms/cm, and the total soluble salt content decreased from 2.63-2.81 g/kg to 2.28-2.51 g/kg. In the soil profile from Zhongjie Industrial Park (ZJ, the pH decreased from 8.36-8.54 to 7.73-7.96, the conductivity decreased from 1.58-1.68 ms/cm to 1.45-1.54 ms/cm, and the total soluble salt decreased from 2.81-4.03 g/kg to 2.56-3.28 g/kg. The transported salt ions were primarily K+, Na+ and Cl-. After several irrigations, a representative desalination effect was achieved. The results of this study can provide technical guidance for the comprehensive management of saline-alkali soils.

  8. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xinxin, E-mail: [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Kang, Shenghong; Wang, Huimin [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Hongying [Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230031 (China); Zhang, Yunxia [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Guozhong, E-mail: [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhao, Huijun [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222 (Australia)


    Highlights: • We modify natural diatomite using the facile acid treatment and ultrasonication. • Modification add pore volume, surface area and electronegativity of natural diatomite. • Modified diatomite is superior to natural diatomite in soil heavy metal remediation. • Modified diatomite can be promising for in-situ immobilization of heavy metal in soil. - Abstract: Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm{sup 3} g{sup −1} and 76.9 m{sup 2} g{sup −1}, respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl{sub 2} extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P < 0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments.

  9. Space Weathering of Lunar Rocks and Regolith Grains (United States)

    Keller, L. P.


    The exposed surfaces of lunar soil grains and lunar rocks become modified and coated over time with a thin rind of material (patina) through complex interactions with the space environment. These interactions encompass many processes including micrometeorite impacts, vapor and melt deposition, and solar wind implantation/sputtering effects that collectively are referred to as "space weathering". Studies of space weathering effects in lunar soils and rocks provide important clues to understanding the origin and evolution of the lunar regolith as well as aiding in the interpretation of global chemical and mineralogical datasets obtained by remote-sensing missions. The interpretation of reflectance spectra obtained by these missions is complicated because the patina coatings obscure the underlying rock mineralogy and compositions. Much of our understanding of these processes and products comes from decades of work on remote-sensing observations of the Moon, the analysis of lunar samples, and laboratory experiments. Space weathering effects collectively result in a reddened continuum slope, lowered albedo, and attenuated absorption features in reflectance spectra of lunar soils as compared to finely comminuted rocks from the same Apollo sites. Space weathering effects are largely surface-correlated, concentrated in the fine size fractions, and occur as amorphous rims on individual soil grains. Rims on lunar soil grains are highly complex and span the range between erosional surfaces modified by solar wind irradiation to depositional surfaces modified by the condensation of sputtered ions and impact-generated vapors. The optical effects of space weathering effects are directly linked to the production of nanophase Fe metal in lunar materials]. The size of distribution of nanophase inclusions in the rims directly affect optical properties given that large Fe(sup o) grains (approx 10 nm and larger) darken the sample (lower albedo) while the tiny Fe(sup o) grains (rock

  10. DEM Solutions Develops Answers to Modeling Lunar Dust and Regolith (United States)

    Dunn, Carol Anne; Calle, Carlos; LaRoche, Richard D.


    With the proposed return to the Moon, scientists like NASA-KSC's Dr. Calle are concerned for a number of reasons. We will be staying longer on the planet's surface, future missions may include dust-raising activities, such as excavation and handling of lunar soil and rock, and we will be sending robotic instruments to do much of the work for us. Understanding more about the chemical and physical properties of lunar dust, how dust particles interact with each other and with equipment surfaces and the role of static electricity build-up on dust particles in the low-humidity lunar environment is imperative to the development of technologies for removing and preventing dust accumulation, and successfully handling lunar regolith. Dr. Calle is currently working on the problems of the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces, particularly to those of Mars and the Moon, and is heavily involved in developing instrumentation for future planetary missions. With this end in view, the NASA Kennedy Space Center's Innovative Partnerships Program Office partnered with OEM Solutions, Inc. OEM Solutions is a global leader in particle dynamics simulation software, providing custom solutions for use in tackling tough design and process problems related to bulk solids handling. Customers in industries such as pharmaceutical, chemical, mineral, and materials processing as well as oil and gas production, agricultural and construction, and geo-technical engineering use OEM Solutions' EDEM(TradeMark) software to improve the design and operation of their equipment while reducing development costs, time-to-market and operational risk. EDEM is the world's first general-purpose computer-aided engineering (CAE) tool to use state-of-the-art discrete element modeling technology for the simulation and analysis of particle handling and manufacturing operations. With EDEM you'can quickly and easily create a parameterized model of your granular solids

  11. Modification of the RothC model to simulate soil C mineralization of exogenous organic matter (United States)

    Mondini, Claudio; Cayuela, Maria Luz; Sinicco, Tania; Fornasier, Flavio; Galvez, Antonia; Sánchez-Monedero, Miguel Angel


    The development of soil organic C (SOC) models capable of producing accurate predictions for the long-term decomposition of exogenous organic matter (EOM) in soils is important for the effective management of organic amendments. However, reliable C modeling in amended soils requires specific optimization of current C models to take into account the high variability in EOM origin and properties. The aim of this work was to improve the prediction of C mineralization rates in amended soils by modifying the RothC model to encompass a better description of EOM quality. The standard RothC model, involving C input to the soil only as decomposable (DPM) or resistant (RPM) organic material, was modified by introducing additional pools of decomposable (DEOM), resistant (REOM) and humified (HEOM) EOM. The partitioning factors and decomposition rates of the additional EOM pools were estimated by model fitting to the respiratory curves of amended soils. For this task, 30 EOMs from 8 contrasting groups (compost, anaerobic digestates, sewage sludge, agro-industrial waste, crop residues, bioenergy by-products, animal residues and meat and bone meals) were added to 10 soils and incubated under different conditions. The modified RothC model was fitted to C mineralization curves in amended soils with great accuracy (mean correlation coefficient 0.995). In contrast to the standard model, the EOM-optimized RothC was able to better accommodate the large variability in EOM source and composition, as indicated by the decrease in the root mean square error of the simulations for different EOMs (from 29.9 to 3.7 % and 20.0 to 2.5 % for soils amended with bioethanol residue and household waste compost, respectively). The average decomposition rates for DEOM and REOM pools were 89 and 0.4 yr-1, higher than the standard model coefficients for DPM (10 yr-1) and RPM (0.3 yr-1). The results indicate that the explicit treatment of EOM heterogeneity enhances the model ability to describe amendment

  12. Modification of the RothC model to simulate soil C mineralization of exogenous organic matter

    Directory of Open Access Journals (Sweden)

    C. Mondini


    Full Text Available The development of soil organic C (SOC models capable of producing accurate predictions for the long-term decomposition of exogenous organic matter (EOM in soils is important for the effective management of organic amendments. However, reliable C modeling in amended soils requires specific optimization of current C models to take into account the high variability in EOM origin and properties. The aim of this work was to improve the prediction of C mineralization rates in amended soils by modifying the RothC model to encompass a better description of EOM quality. The standard RothC model, involving C input to the soil only as decomposable (DPM or resistant (RPM organic material, was modified by introducing additional pools of decomposable (DEOM, resistant (REOM and humified (HEOM EOM. The partitioning factors and decomposition rates of the additional EOM pools were estimated by model fitting to the respiratory curves of amended soils. For this task, 30 EOMs from 8 contrasting groups (compost, anaerobic digestates, sewage sludge, agro-industrial waste, crop residues, bioenergy by-products, animal residues and meat and bone meals were added to 10 soils and incubated under different conditions. The modified RothC model was fitted to C mineralization curves in amended soils with great accuracy (mean correlation coefficient 0.995. In contrast to the standard model, the EOM-optimized RothC was able to better accommodate the large variability in EOM source and composition, as indicated by the decrease in the root mean square error of the simulations for different EOMs (from 29.9 to 3.7 % and 20.0 to 2.5 % for soils amended with bioethanol residue and household waste compost, respectively. The average decomposition rates for DEOM and REOM pools were 89 and 0.4 yr−1, higher than the standard model coefficients for DPM (10 yr−1 and RPM (0.3 yr−1. The results indicate that the explicit treatment of EOM heterogeneity enhances the model

  13. Seismic simulation analysis of nuclear reactor building by soil-building interaction model

    International Nuclear Information System (INIS)

    Muto, K.; Kobayashi, T.; Motohashi, S.; Kusano, N.; Mizuno, N.; Sugiyama, N.


    Seismic simulation analysis were performed for evaluating soil-structure interaction effects by an analytical approach using a 'Lattice Model' developed by the authors. The purpose of this paper is to check the adequacy of this procedure for analyzing soil-structure interaction by means of comparing computed results with recorded ones. The 'Lattice Model' approach employs a lumped mass interactive model, in which not only the structure but also the underlying and/or surrounding soil are modeled as descretized elements. The analytical model used for this study extends about 310 m in the horizontal direction and about 103 m in depth. The reactor building is modeled as three shearing-bending sticks (outer wall, inner wall and shield wall) and the underlying and surrounding soil are divided into four shearing sticks (column directly beneath the reactor building, adjacent, near and distant columns). A corresponding input base motion for the 'Lattice Model' was determined by a deconvolution analysis using a recorded motion at elevation -18.5 m in the free-field. The results of this simulation analysis were shown to be in reasonably good agreement with the recorded ones in the forms of the distribution of ground motions and structural responses, acceleration time histories and related response spectra. These results showed that the 'Lattice Model' approach was an appropriate one to estimate the soil-structure interaction effects. (orig./HP)

  14. Hydrological simulation in a basin of typical tropical climate and soil using the SWAT Model Part II: Simulation of hydrological variables and soil use scenarios

    Directory of Open Access Journals (Sweden)

    Donizete dos R. Pereira


    New hydrological insights for the region: It was observed that the values of maximum and minimum annual daily streamflows with different return times, and of minimum reference streamflows for water rights simulated by the SWAT did not statistically differ from the values observed according to T-test at 5% probability level. When assessing the effects of changes in soil use, a mean annual reduction in runoff from 13.6, 4.0, and 6.5 mm was observed for scenarios S1, S2, and S3, respectively.

  15. Hanford Sludge Simulant Selection for Soil Mechanics Property Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Russell, Renee L.; Mahoney, Lenna A.; Brown, Garrett N.; Rinehart, Donald E.; Buchmiller, William C.; Golovich, Elizabeth C.; Crum, Jarrod V.


    The current System Plan for the Hanford Tank Farms uses relaxed buoyant displacement gas release event (BDGRE) controls for deep sludge (i.e., high level waste [HLW]) tanks, which allows the tank farms to use more storage space, i.e., increase the sediment depth, in some of the double-shell tanks (DSTs). The relaxed BDGRE controls are based on preliminary analysis of a gas release model from van Kessel and van Kesteren. Application of the van Kessel and van Kesteren model requires parametric information for the sediment, including the lateral earth pressure at rest and shear modulus. No lateral earth pressure at rest and shear modulus in situ measurements for Hanford sludge are currently available. The two chemical sludge simulants will be used in follow-on work to experimentally measure the van Kessel and van Kesteren model parameters, lateral earth pressure at rest, and shear modulus.

  16. Computer simulation of a space SAR using a range-sequential processor for soil moisture mapping (United States)

    Fujita, M.; Ulaby, F. (Principal Investigator)


    The ability of a spaceborne synthetic aperture radar (SAR) to detect soil moisture was evaluated by means of a computer simulation technique. The computer simulation package includes coherent processing of the SAR data using a range-sequential processor, which can be set up through hardware implementations, thereby reducing the amount of telemetry involved. With such a processing approach, it is possible to monitor the earth's surface on a continuous basis, since data storage requirements can be easily met through the use of currently available technology. The Development of the simulation package is described, followed by an examination of the application of the technique to actual environments. The results indicate that in estimating soil moisture content with a four-look processor, the difference between the assumed and estimated values of soil moisture is within + or - 20% of field capacity for 62% of the pixels for agricultural terrain and for 53% of the pixels for hilly terrain. The estimation accuracy for soil moisture may be improved by reducing the effect of fading through non-coherent averaging.

  17. Element soil behaviour during pile installation simulated by 2D-DEM (United States)

    Ji, Xiaohui; Cheng, Yi Pik; Liu, Junwei


    The estimation of the skin friction of onshore or offshore piles in sand is still a difficult problem for geotechnical engineers. It has been accepted by many researchers that the mechanism of driving piles in the soil has shared some similarities with that of an element shear test under the constant normal stiffness (CNS) condition. This paper describes the behaviour of an element of soil next to a pile during the process of pile penetration into dense fine sand using the 2D-DEM numerical simulation software. A new CNS servo was added to the horizontal boundary while maintaining the vertical stress constant. This should simulate the soil in a similar manner to that of a CNS pile-soil interface shear test, but allowing the vertical stress to remain constant which is more realistic to the field situation. Shear behaviours observed in these simulations were very similar to the results from previous researchers' lab shearing tests. With the normal stress and shear stress obtained from the virtual models, the friction angle and the shaft friction factor β mentioned in the API-2007 offshore pile design guideline were calculated and compared with the API recommended values.

  18. Element soil behaviour during pile installation simulated by 2D-DEM

    Directory of Open Access Journals (Sweden)

    Ji Xiaohui


    Full Text Available The estimation of the skin friction of onshore or offshore piles in sand is still a difficult problem for geotechnical engineers. It has been accepted by many researchers that the mechanism of driving piles in the soil has shared some similarities with that of an element shear test under the constant normal stiffness (CNS condition. This paper describes the behaviour of an element of soil next to a pile during the process of pile penetration into dense fine sand using the 2D-DEM numerical simulation software. A new CNS servo was added to the horizontal boundary while maintaining the vertical stress constant. This should simulate the soil in a similar manner to that of a CNS pile-soil interface shear test, but allowing the vertical stress to remain constant which is more realistic to the field situation. Shear behaviours observed in these simulations were very similar to the results from previous researchers’ lab shearing tests. With the normal stress and shear stress obtained from the virtual models, the friction angle and the shaft friction factor β mentioned in the API-2007 offshore pile design guideline were calculated and compared with the API recommended values.

  19. Methods, Computational Platform, Verification, and Application of Earthquake-Soil-Structure-Interaction Modeling and Simulation (United States)

    Tafazzoli, Nima

    Seismic response of soil-structure systems has attracted significant attention for a long time. This is quite understandable with the size and the complexity of soil-structure systems. The focus of three important aspects of ESSI modeling could be on consistent following of input seismic energy and a number of energy dissipation mechanisms within the system, numerical techniques used to simulate dynamics of ESSI, and influence of uncertainty of ESSI simulations. This dissertation is a contribution to development of one such tool called ESSI Simulator. The work is being done on extensive verified and validated suite for ESSI Simulator. Verification and validation are important for high fidelity numerical predictions of behavior of complex systems. This simulator uses finite element method as a numerical tool to obtain solutions for large class of engineering problems such as liquefaction, earthquake-soil-structure-interaction, site effect, piles, pile group, probabilistic plasticity, stochastic elastic-plastic FEM, and detailed large scale parallel models. Response of full three-dimensional soil-structure-interaction simulation of complex structures is evaluated under the 3D wave propagation. Domain-Reduction-Method is used for applying the forces as a two-step procedure for dynamic analysis with the goal of reducing the large size computational domain. The issue of damping of the waves at the boundary of the finite element models is studied using different damping patterns. This is used at the layer of elements outside of the Domain-Reduction-Method zone in order to absorb the residual waves coming out of the boundary layer due to structural excitation. Extensive parametric study is done on dynamic soil-structure-interaction of a complex system and results of different cases in terms of soil strength and foundation embedment are compared. High efficiency set of constitutive models in terms of computational time are developed and implemented in ESSI Simulator

  20. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils. (United States)

    Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun


    Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm(3) g(-1) and 76.9 m(2) g(-1), respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (Psoils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Lunar and Meteorite Sample Disk for Educators (United States)

    Foxworth, Suzanne; Luckey, M.; McInturff, B.; Allen, J.; Kascak, A.


    NASA Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation and distribution of samples for research, education and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core and regolith samples, from the lunar surface. JSC also curates meteorites collected from a US cooperative effort among NASA, the National Science Foundation (NSF) and the Smithsonian Institution that funds expeditions to Antarctica. The meteorites that are collected include rocks from Moon, Mars, and many asteroids including Vesta. The sample disks for educational use include these different samples. Active relevant learning has always been important to teachers and the Lunar and Meteorite Sample Disk Program provides this active style of learning for students and the general public. The Lunar and Meteorite Sample Disks permit students to conduct investigations comparable to actual scientists. The Lunar Sample Disk contains 6 samples; Basalt, Breccia, Highland Regolith, Anorthosite, Mare Regolith and Orange Soil. The Meteorite Sample Disk contains 6 samples; Chondrite L3, Chondrite H5, Carbonaceous Chondrite, Basaltic Achondrite, Iron and Stony-Iron. Teachers are given different activities that adhere to their standards with the disks. During a Sample Disk Certification Workshop, teachers participate in the activities as students gain insight into the history, formation and geologic processes of the moon, asteroids and meteorites.

  2. Simulating the impact of land use and climate change on the German soil-carbon, -nitrogen- and -water balance (United States)

    Gottschalk, P.; Lasch, P.; Suckow, F.; Hattermann, F.; Luettger, A.; Wechsung, F.


    The regional application of state-of-the-art soil organic matter models usually lack an explicit representation of landscape hydrology. While the soil water status is generally simulated along the horizontal soil profile, lateral fluxes are not taken into account. Here, we present the coupling of the semi-distributed eco-hydrological model SWIM (Soil and Water Integrated Model) and a soil carbon and nitrogen module. The modelling framework allows the simulation of the impact of process-based simulated hydrological fluxes on soil carbon and soil nitrogen dynamics at landscape scale. While forest and grassland ecosystem remain to a greater or lesser extent constant over time in terms of vegetation cover type and human management arable systems are subject to a high, year-to-year dynamic in terms of soil disturbances, bare or covered soil conditions, different crops and different fertilizer regimes. To account for the variable environmental and human induced conditions of arable soils a crop-sequence generator approach is implemented. The generation of realistic crop rotations is based on statistical distribution of crops in time and space within a reference area (e.g. county). Regionalised climate change scenarios are provided by the statistical climate model STAR. This integrated approach is applied to the whole territory of Germany to assess the impact of climate and land use change scenarios on the soil-carbon, -nitrogen- and -water household of Germany. In respect of sustainability different land management strategies can thus be evaluated and optimised.

  3. Simulation of over-winter soil water and soil temperature with SHAW and RZ-SHAW (United States)

    Correct simulation of over-winter condition is important for the growth of winter crops and for initial growth of spring crops. RZ-SHAW (RZWQM-SHAW) is a newly developed model by coupling the Root Zone Water Quality Model (RZWQM) and the Simultaneous Heat and Water (SHAW) model. The objective of thi...

  4. A lunar venture (United States)

    Lee, Joo Ahn; Trinh, Lu X.


    As the Earth's space station is in its final stages of design, the dream of a permanent manned space facility is now a reality. Despite this monumental achievement, however, man's quest to extend human habitation further out into space is far from being realized. The next logical step in space exploration must be the construction of a permanent lunar base. This lunar infrastucture can, in turn, be used as a staging ground for further exploration of the remote regions of the solar system. As outlined by the National Aeronautics and Space Administration, the lunar base program consists of three exploratory and implementation phases. In response to the technological and facility requirements of Phase 1 and 2 of this program, the Aerospace Vehicle Design Program of the University of Virgina (UVA) is proud to present a preliminary design for such a lunar infrastructure. This study is a comprehensive evaluation of the mission requirements as well as the design criteria for space vehicles and facilities. The UVA Lunar Venture is a dual system that consists of a lunar space station and a fleet of lunar landers/transporters. With such a design, it is demonstrated that all initial exploratory and construction requirements for the lunar base can be efficiently satisfied. Additionally, the need for such a dual system is justified both from a logistic and economic standpoint.

  5. Lunar Lava Tube Sensing (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas


    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  6. Lunar Balance and Locomotion (United States)

    Paloski, William H.


    Balance control and locomotor patterns were altered in Apollo crewmembers on the lunar surface, owing, presumably, to a combination of sensory-motor adaptation during transit and lunar surface operations, decreased environmental affordances associated with the reduced gravity, and restricted joint mobility as well as altered center-of-gravity caused by the EVA pressure suits. Dr. Paloski will discuss these factors, as well as the potential human and mission impacts of falls and malcoordination during planned lunar sortie and outpost missions. Learning objectives: What are the potential impacts of postural instabilities on the lunar surface? CME question: What factors affect balance control and gait stability on the moon? Answer: Sensory-motor adaptation to the lunar environment, reduced mechanical and visual affordances, and altered biomechanics caused by the EVA suit.

  7. Sensitivity of soil water content simulation to different methods of soil hydraulic parameter characterization as initial input values (United States)

    Rezaei, Meisam; Seuntjens, Piet; Shahidi, Reihaneh; Joris, Ingeborg; Boënne, Wesley; Cornelis, Wim


    Genuchten parameters αvG and n as αG ≈ αvG n. The laboratory measurement of Kls yielded 2 - 30 times higher values than the field method Kfs from top to subsoil layers, while there was a significant correlation between both Ks values (r = 0.75). We found significant differences of MVG parameters θs, n and α values between laboratory and field measurements, but again a significant correlation was observed between laboratory and field MVG parameters Ks, n, θs (r≥0.59). Assessment of the parameter relevance in 1-D model simulations, illustrated a better simulation performance when using laboratory data set from middle to deeper depths (30 to 60 cm). In contrast, field experiment parameter sets, which were achieved in a fast and simple way (less time consuming and labor intensive), resulted in slightly better soil-water content simulation performance in the topsoil (10 and 20 cm) where the plant roots are concentrated. Generally, in view of precision agriculture, field measurements and inverse optimization approaches are preferred to determine soil hydraulic properties. But based on the results, it is not possible to judge whether laboratory or field methods should be preferred and what is the most appropriate data set to predict soil water fluctuations in a complete soil profile.

  8. Biological in situ treatment of soil contaminated with petroleum - Laboratory scale simulations

    International Nuclear Information System (INIS)

    Palvall, B.


    Laboratory scale simulations of biological in situ treatment of soil contaminated with petroleum compounds have been made in order to get a practical concept in the general case. The work was divided into seven distinct parts. Characterisation, leaching tests and introductory microbiological investigations were followed by experiments in suspended phases and in situ simulations of solid phase reactors. For the suspensions, ratios L/S 3/1 and shaking for a couple of hours were enough to detach organic compounds in colloid or dissolved form. When testing for a time of one month anaerobic environment and cold temperatures of 4 centigrade as well gave acceptable reductions of the actual pollution levels. The range of variation in the soil tests performed showed that at least triple samples are needed to get satisfactory statistical reliability. It was shown that adequate experimental controls demand very high concentrations of e.g. sodium azide when dealing with soil samples. For triple samples in suspended phase without inoculation the weight ratios of oxygen consumption/biological degradation of aliphatic compounds were 2.41 to 2.96. For the complex overall reduction no exact rate constants could be found. The reduction of hydrocarbons were in the interval 27 to 95 % in suspension tests. Solid phase simulations with maximum water saturation showed the highest degree of reduction of hydrocarbons when using dissolved peroxide of hydrogen as electron acceptor while the effect of an active sludge reactor in series was little - reductions of aliphatic compounds were between 21 and 33 % and of aromatic compounds between 32 and 65 %. The influence of different contents of water was greater than adding inoculum or shaking the soil at different intervals in the unsaturated cylinders. The starting level of hydrocarbons was 2400 mg/kg dry weight soil and the end analyses were made after 100 days. The reduction was between 32 and 80 %. 82 refs

  9. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments

    NARCIS (Netherlands)

    Zhao, Longshan; Hou, Rui; Wu, Faqi; Keesstra, Saskia


    Agriculture has a large effect on the properties of the soil and with that on soil hydrology. The partitioning of rainfall into infiltration and runoff is relevant to understand runoff generation, infiltration and soil erosion. Tillage manages soil surface properties and generates soil surface

  10. Astronaut Neil Armstrong participates in simulation training (United States)


    Astronaut Neil A. Armstrong, Apollo 11 commander, participates in simulation training in preparation for the scheduled lunar landing mission. He is in the Apollo Lunar Module Mission SImulator in the Kennedy Space Center's Flight Crew Training Building.

  11. Simulation of unsaturated flow and nonreactive solute transport in a heterogeneous soil at the field scale

    International Nuclear Information System (INIS)

    Rockhold, M.L.


    A field-scale, unsaturated flow and solute transport experiment at the Las Cruces trench site in New Mexico was simulated as part of a ''blind'' modeling exercise to demonstrate the ability or inability of uncalibrated models to predict unsaturated flow and solute transport in spatially variable porous media. Simulations were conducted using a recently developed multiphase flow and transport simulator. Uniform and heterogeneous soil models were tested, and data from a previous experiment at the site were used with an inverse procedure to estimate water retention parameters. A spatial moment analysis was used to provide a quantitative basis for comparing the mean observed and simulated flow and transport behavior. The results of this study suggest that defensible predictions of waste migration and fate at low-level waste sites will ultimately require site-specific data for model calibration

  12. Comparison between SAR Soil Moisture Estimates and Hydrological Model Simulations over the Scrivia Test Site

    Directory of Open Access Journals (Sweden)

    Alberto Pistocchi


    Full Text Available In this paper, the results of a comparison between the soil moisture content (SMC estimated from C-band SAR, the SMC simulated by a hydrological model, and the SMC measured on ground are presented. The study was carried out in an agricultural test site located in North-west Italy, in the Scrivia river basin. The hydrological model used for the simulations consists of a one-layer soil water balance model, which was found to be able to partially reproduce the soil moisture variability, retaining at the same time simplicity and effectiveness in describing the topsoil. SMC estimates were derived from the application of a retrieval algorithm, based on an Artificial Neural Network approach, to a time series of ENVISAT/ASAR images acquired over the Scrivia test site. The core of the algorithm was represented by a set of ANNs able to deal with the different SAR configurations in terms of polarizations and available ancillary data. In case of crop covered soils, the effect of vegetation was accounted for using NDVI information, or, if available, for the cross-polarized channel. The algorithm results showed some ability in retrieving SMC with RMSE generally <0.04 m3/m3 and very low bias (i.e., <0.01 m3/m3, except for the case of VV polarized SAR images: in this case, the obtained RMSE was somewhat higher than 0.04 m3/m3 (≤0.058 m3/m3. The algorithm was implemented within the framework of an ESA project concerning the development of an operative algorithm for the SMC retrieval from Sentinel-1 data. The algorithm should take into account the GMES requirements of SMC accuracy (≤5% in volume, spatial resolution (≤1 km and timeliness (3 h from observation. The SMC estimated by the SAR algorithm, the SMC estimated by the hydrological model, and the SMC measured on ground were found to be in good agreement. The hydrological model simulations were performed at two soil depths: 30 and 5 cm and showed that the 30 cm simulations indicated, as expected, SMC

  13. WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method (United States)

    Crevoisier, David; Voltz, Marc


    To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute

  14. Experimental and molecular dynamic simulation study of perfluorooctane sulfonate adsorption on soil and sediment components. (United States)

    Zhang, Ruiming; Yan, Wei; Jing, Chuanyong


    Soil and sediment play a crucial role in the fate and transport of perfluorooctane sulfonate (PFOS) in the environment. However, the molecular mechanisms of major soil/sediment components on PFOS adsorption remain unclear. This study experimentally isolated three major components in soil/sediment: humin/kerogen, humic/fulvic acid (HA/FA), and inorganic component after removing organics, and explored their contributions to PFOS adsorption using batch adsorption experiments and molecular dynamic simulations. The results suggest that the humin/kerogen component dominated the PFOS adsorption due to its aliphatic features where hydrophobic effect and phase transfer are the primary adsorption mechanism. Compared with the humin/kerogen, the HA/FA component contributed less to the PFOS adsorption because of its hydrophilic and polar characteristics. The electrostatic repulsion between the polar groups of HA/FA and PFOS anions was attributable to the reduced PFOS adsorption. When the soil organic matter was extracted, the inorganic component also plays a non-negligible role because PFOS molecules might form surface complexes on SiO2 surface. The findings obtained in this study illustrate the contribution of organic matters in soils and sediments to PFOS adsorption and provided new perspective to understanding the adsorption process of PFOS on micro-interface in the environment. Copyright © 2014. Published by Elsevier B.V.

  15. Simulation study of soil water and heat dynamics at two sites with significant preferential flow (United States)

    Votrubova, J.; Vogel, T.; Dohnal, M.; Tesar, M.


    Numerical models based on two hydraulically contrasting flow domains coupled through a simple transfer formula have become a useful tool for modeling both water flow and associated substance transport in structured soils. A comparative numerical study focused on the preferential flow effects on the soil heat transport is presented. Sites located in two different headwater catchments were included. Experimental catchment Liz is situated in a forested mountain area of Sumava Mts. in the southern part of the Czech Republic (altitude: 830 m, mean annual temperature: 6.3°C, mean annual precipitation: 861 mm). Uhlirska catchment is located in the north-west of the Czech Republic in Jizera Mts. and is currently undergoing reforestation (altitude: 820 m, mean annual temperature: 4.6°C, mean annual precipitation: 1400 mm). Both sites are instrumented for monitoring of the relevant meteorological and hydrological variables, as well as the soil moisture and temperature distribution. Changes of the soil water content and temperature during vegetation season were simulated. Model performance was qualitatively evaluated and shown to replicate the field measurements. The soils' heat budgets and the preferential flow effect thereon was compared and analyzed.

  16. Simulating sunflower canopy temperatures to infer root-zone soil water potential (United States)

    Choudhury, B. J.; Idso, S. B.


    A soil-plant-atmosphere model for sunflower (Helianthus annuus L.), together with clear sky weather data for several days, is used to study the relationship between canopy temperature and root-zone soil water potential. Considering the empirical dependence of stomatal resistance on insolation, air temperature and leaf water potential, a continuity equation for water flux in the soil-plant-atmosphere system is solved for the leaf water potential. The transpirational flux is calculated using Monteith's combination equation, while the canopy temperature is calculated from the energy balance equation. The simulation shows that, at high soil water potentials, canopy temperature is determined primarily by air and dew point temperatures. These results agree with an empirically derived linear regression equation relating canopy-air temperature differential to air vapor pressure deficit. The model predictions of leaf water potential are also in agreement with observations, indicating that measurements of canopy temperature together with a knowledge of air and dew point temperatures can provide a reliable estimate of the root-zone soil water potential.

  17. Numerical Simulation Of The Treatment Of Soil Swelling Using Grid Geocell Columns (United States)

    Fattah, Mohammed Y.; Al-Omari, Raid R.; Ali, Haifaa A.


    In this paper, a method for the treatment of the swelling of expansive soil is numerically simulated. The method is simply based on the embedment of a geogrid (or a geomesh) in the soil. The geogrid is extended continuously inside the volume of the soil where the swell is needed to be controlled and orientated towards the direction of the swell. Soils with different swelling potentials are employed: bentonite base-Na and bentonite base-Ca samples in addition to kaolinite mixed with bentonite. A numerical analysis was carried out by the finite element method to study the swelling soil's behavior and investigate the distribution of the stresses and pore water pressures around the geocells beneath the shallow footings. The ABAQUS computer program was used as a finite element tool, and the soil is represented by the modified Drucker-Prager/cap model. The geogrid surrounding the geocell is assumed to be a linear elastic material throughout the analysis. The soil properties used in the modeling were experimentally obtained. It is concluded that the degree of saturation and the matric suction (the negative pore water pressure) decrease as the angle of friction of the geocell column material increases due to the activity of the sand fill in the dissipation of the pore water pressure and the acceleration of the drainage through its function as a drain. When the plasticity index and the active depth (the active zone is considered to be equal to the overall depth of the clay model) increase, the axial movement (swelling movement) and matric suction, as a result of the increase in the axial forces, vary between this maximum value at the top of the layer and the minimum value in the last third of the active depth and then return to a consolidation at the end of the depth layer.

  18. Divergent taxonomic and functional responses of microbial communities to field simulation of aeolian soil erosion and deposition. (United States)

    Ma, Xingyu; Zhao, Cancan; Gao, Ying; Liu, Bin; Wang, Tengxu; Yuan, Tong; Hale, Lauren; Nostrand, Joy D Van; Wan, Shiqiang; Zhou, Jizhong; Yang, Yunfeng


    Aeolian soil erosion and deposition have worldwide impacts on agriculture, air quality and public health. However, ecosystem responses to soil erosion and deposition remain largely unclear in regard to microorganisms, which are the crucial drivers of biogeochemical cycles. Using integrated metagenomics technologies, we analysed microbial communities subjected to simulated soil erosion and deposition in a semiarid grassland of Inner Mongolia, China. As expected, soil total organic carbon and plant coverage were decreased by soil erosion, and soil dissolved organic carbon (DOC) was increased by soil deposition, demonstrating that field simulation was reliable. Soil microbial communities were altered (p erosion and deposition, with dramatic increase in Cyanobacteria related to increased stability in soil aggregates. amyA genes encoding α-amylases were specifically increased (p = .01) by soil deposition and positively correlated (p = .02) to DOC, which likely explained changes in DOC. Surprisingly, most of microbial functional genes associated with carbon, nitrogen, phosphorus and potassium cycling were decreased or unaltered by both erosion and deposition, probably arising from acceleration of organic matter mineralization. These divergent responses support the necessity to include microbial components in evaluating ecological consequences. Furthermore, Mantel tests showed strong, significant correlations between soil nutrients and functional structure but not taxonomic structure, demonstrating close relevance of microbial function traits to nutrient cycling. © 2017 John Wiley & Sons Ltd.

  19. Evaluation of land surface model simulations of evapotranspiration over a 12 year crop succession: impact of the soil hydraulic properties (United States)

    Garrigues, S.; Olioso, A.; Calvet, J.-C.; Martin, E.; Lafont, S.; Moulin, S.; Chanzy, A.; Marloie, O.; Desfonds, V.; Bertrand, N.; Renard, D.


    Evapotranspiration has been recognized as one of the most uncertain term in the surface water balance simulated by land surface models. In this study, the SURFEX/ISBA-A-gs simulations of evapotranspiration are assessed at local scale over a 12 year Mediterranean crop succession. The model is evaluated in its standard implementation which relies on the use of the ISBA pedotransfer estimates of the soil properties. The originality of this work consists in explicitly representing the succession of crop cycles and inter-crop bare soil periods in the simulations and assessing its impact on the dynamic of simulated and measured evapotranspiration over a long period of time. The analysis focuses on key soil parameters which drive the simulation of evapotranspiration, namely the rooting depth, the soil moisture at saturation, the soil moisture at field capacity and the soil moisture at wilting point. The simulations achieved with the standard values of these parameters are compared to those achieved with the in situ values. The portability of the ISBA pedotransfer functions is evaluated over a typical Mediterranean crop site. Various in situ estimates of the soil parameters are considered and distinct parametrization strategies are tested to represent the evapotranspiration dynamic over the crop succession. This work shows that evapotranspiration mainly results from the soil evaporation when it is continuously simulated over a Mediterranean crop succession. The evapotranspiration simulated with the standard surface and soil parameters of the model is largely underestimated. The deficit in cumulative evapotranspiration amounts to 24% over 12 years. The bias in daily daytime evapotranspiration is -0.24 mm day-1. The ISBA pedotransfer estimates of the soil moisture at saturation and at wilting point are overestimated which explains most of the evapotranspiration underestimation. The overestimation of the soil moisture at wilting point causes the underestimation of

  20. Soils (United States)

    Emily Moghaddas; Ken Hubbert


    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  1. Impact of Sub-grid Soil Textural Properties on Simulations of Hydrological Fluxes at the Continental Scale Mississippi River Basin (United States)

    Kumar, R.; Samaniego, L. E.; Livneh, B.


    Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked

  2. Improving Simulated Soil Moisture Fields Through Assimilation of AMSR-E Soil Moisture Retrievals with an Ensemble Kalman Filter and a Mass Conservation Constraint (United States)

    Li, Bailing; Toll, David; Zhan, Xiwu; Cosgrove, Brian


    Model simulated soil moisture fields are often biased due to errors in input parameters and deficiencies in model physics. Satellite derived soil moisture estimates, if retrieved appropriately, represent the spatial mean of soil moisture in a footprint area, and can be used to reduce model bias (at locations near the surface) through data assimilation techniques. While assimilating the retrievals can reduce model bias, it can also destroy the mass balance enforced by the model governing equation because water is removed from or added to the soil by the assimilation algorithm. In addition, studies have shown that assimilation of surface observations can adversely impact soil moisture estimates in the lower soil layers due to imperfect model physics, even though the bias near the surface is decreased. In this study, an ensemble Kalman filter (EnKF) with a mass conservation updating scheme was developed to assimilate the actual value of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture retrievals to improve the mean of simulated soil moisture fields by the Noah land surface model. Assimilation results using the conventional and the mass conservation updating scheme in the Little Washita watershed of Oklahoma showed that, while both updating schemes reduced the bias in the shallow root zone, the mass conservation scheme provided better estimates in the deeper profile. The mass conservation scheme also yielded physically consistent estimates of fluxes and maintained the water budget. Impacts of model physics on the assimilation results are discussed.

  3. Prediction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation (United States)


    response measures, which will allow for independent testing and validation of the model components such as soil type, tire/track, powertrain system...material parameters considered in this study are the soil cohesive strength and the internal friction angle. Following the NRMM practice, we will measure...SOFT- SOIL TERRAIN MAPS USING PHYSICS-BASED SIMULATION Tamer Wasfy*, Paramsothy Jayakumar**, Dave Mechergui**, and Srinivas Sanikommu** *Advanced

  4. Simulation of pesticide dissipation in soil at the catchment scale over 23 years (United States)

    Queyrel, Wilfried; Florence, Habets; Hélène, Blanchoud; Céline, Schott; Laurine, Nicola


    Pesticide applications lead to contamination risks of environmental compartments causing harmful effects on water resource used for drinking water. Pesticide fate modeling is assumed to be a relevant approach to study pesticide dissipation at the catchment scale. Simulations of five herbicides (atrazine, simazine, isoproturon, chlortoluron, metolachor) and one metabolite (DEA) were carried out with the crop model STICS over a 23-year period (1990-2012). The model application was performed using real agricultural practices over a small rural catchment (104 km²) located at 60km east from Paris (France). Model applications were established for two crops: wheat and maize. The objectives of the study were i) to highlight the main processes implied in pesticide fate and transfer at long-term; ii) to assess the influence of dynamics of the remaining mass of pesticide in soil on transfer; iii) to determine the most sensitive parameters related to pesticide losses by leaching over a 23-year period. The simulated data related to crop yield, water transfer, nitrates and pesticide concentrations were first compared to observations over the 23-year period, when measurements were available at the catchment scale. Then, the evaluation of the main processes related to pesticide fate and transfer was performed using long-term simulations at a yearly time step and monthly average variations. Analyses of the monthly average variations were oriented on the impact of pesticide application, water transfer and pesticide transformation on pesticide leaching. The evolution of the remaining mass of pesticide in soil, including the mobile phase (the liquid phase) and non-mobile (adsorbed at equilibrium and non-equilibrium), was studied to evaluate the impact of pesticide stored in soil on the fraction available for leaching. Finally, a sensitivity test was performed to evaluate the more sensitive parameters regarding the remaining mass of pesticide in soil and leaching. The findings of the

  5. Changes in soil hydraulic properties caused by construction of a simulated waste trench at the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Shakofsky, S.


    In order to assess the effect of filled waste disposal trenches on transport-governing soil properties, comparisons were made between profiles of undisturbed soil and disturbed soil in a simulated waste trench. The changes in soil properties induced by the construction of a simulated waste trench were measured near the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL) in the semiarid southeast region of Idaho. The soil samples were collected, using a hydraulically-driven sampler to minimize sample disruption, from both a simulated waste trench and an undisturbed area nearby. Results show that the undisturbed profile has distinct layers whose properties differ significantly, whereas the soil profile in the simulated waste trench is, by comparison, homogeneous. Porosity was increased in the disturbed cores, and, correspondingly, saturated hydraulic conductivities were on average three times higher. With higher soil-moisture contents (greater than 0.32), unsaturated hydraulic conductivities for the undisturbed cores were typically greater than those for the disturbed cores. With lower moisture contents, most of the disturbed cores had greater hydraulic conductivities. The observed differences in hydraulic conductivities are interpreted and discussed as changes in the soil pore geometry

  6. Evaluating the Potential Use of Remotely-Sensed and Model-Simulated Soil Moisture for Agricultural Drought Risk Monitoring (United States)

    Yan, Hongxiang; Moradkhani, Hamid


    Current two datasets provide spatial and temporal resolution of soil moisture at large-scale: the remotely-sensed soil moisture retrievals and the model-simulated soil moisture products. Drought monitoring using remotely-sensed soil moisture is emerging, and the soil moisture simulated using land surface models (LSMs) have been used operationally to monitor agriculture drought in United States. Although these two datasets yield important drought information, their drought monitoring skill still needs further quantification. This study provides a comprehensive assessment of the potential of remotely-sensed and model-simulated soil moisture data in monitoring agricultural drought over the Columbia River Basin (CRB), Pacific Northwest. Two satellite soil moisture datasets were evaluated, the LPRM-AMSR-E (unscaled, 2002-2011) and ESA-CCI (scaled, 1979-2013). The USGS Precipitation Runoff Modeling System (PRMS) is used to simulate the soil moisture from 1979-2011. The drought monitoring skill is quantified with two indices: drought area coverage (the ability of drought detection) and drought severity (according to USDM categories). The effects of satellite sensors (active, passive), multi-satellite combined, length of climatology, climate change effect, and statistical methods are also examined in this study.

  7. Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China. (United States)

    Qiu, Qingyan; Wu, Jianping; Liang, Guohua; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang


    Acid rain is an environmental problem of increasing concern in China. In this study, a laboratory leaching column experiment with acid forest soil was set up to investigate the responses of soil and soil solution chemistry to simulated acid rain (SAR). Five pH levels of SAR were set: 2.5, 3.0, 3.5, 4.0, and 4.5 (as a control, CK). The results showed that soil acidification would occur when the pH of SAR was ≤3.5. The concentrations of NO₃(-)and Ca(2+) in the soil increased significantly when the pH of SAR fell 3.5. The concentration of SO₄(2-) in the soil increased significantly when the pH of SAR was acidity of SAR. The releases of soluble Al and Fe were SAR pH dependent, and their net exports under pH 2.5 treatment were 19.6 and 5.5 times, respectively, higher than that under CK. The net export of DOC was reduced by 12-29% under SAR treatments as compared to CK. Our results indicate the chemical constituents in the soil are more sensitive to SAR than those in the soil solution, and the effects of SAR on soil solution chemistry depend not only on the intensity of SAR but also on the duration of SAR addition. The soil and soil solution chemistry in this region may not be affected by current precipitation (pH≈4.5) in short term, but the soil and soil leachate chemistry may change dramatically if the pH of precipitation were below 3.5 and 3.0, respectively.

  8. Lunar Orbit Stability for Small Satellite Mission Design (United States)

    Dono, Andres


    The irregular nature of the lunar gravity field will severely affect the orbit lifetime and behavior of future lunar small satellite missions. These spacecraft need stable orbits that do not require large deltaV budgets for station-keeping maneuvers. The initial classical elements of any lunar orbit are critical to address its stability and to comply with mission requirements. This publication identifies stable regions according to different initial conditions at the time of lunar orbit insertion (LOI). High fidelity numerical simulations with two different gravity models were performed. We focus in low altitude orbits where the dominant force in orbit propagation is the existence of unevenly distributed lunar mass concentrations. These orbits follow a periodic oscillation in some of the classical elements that is particularly useful for mission design. A set of orbital maintenance strategies for various mission concepts is presented.

  9. Constraining Parameter Uncertainty in Simulations of Water and Heat Dynamics in Seasonally Frozen Soil Using Limited Observed Data

    Directory of Open Access Journals (Sweden)

    Mousong Wu


    Full Text Available Water and energy processes in frozen soils are important for better understanding hydrologic processes and water resources management in cold regions. To investigate the water and energy balance in seasonally frozen soils, CoupModel combined with the generalized likelihood uncertainty estimation (GLUE method was used. Simulation work on water and heat processes in frozen soil in northern China during the 2012/2013 winter was conducted. Ensemble simulations through the Monte Carlo sampling method were generated for uncertainty analysis. Behavioral simulations were selected based on combinations of multiple model performance index criteria with respect to simulated soil water and temperature at four depths (5 cm, 15 cm, 25 cm, and 35 cm. Posterior distributions for parameters related to soil hydraulic, radiation processes, and heat transport indicated that uncertainties in both input and model structures could influence model performance in modeling water and heat processes in seasonally frozen soils. Seasonal courses in water and energy partitioning were obvious during the winter. Within the day-cycle, soil evaporation/condensation and energy distributions were well captured and clarified as an important phenomenon in the dynamics of the energy balance system. The combination of the CoupModel simulations with the uncertainty-based calibration method provides a way of understanding the seasonal courses of hydrology and energy processes in cold regions with limited data. Additional measurements may be used to further reduce the uncertainty of regulating factors during the different stages of freezing–thawing.

  10. Root Development of Transplanted Cotton and Simulation of Soil Water Movement under Different Irrigation Methods

    Directory of Open Access Journals (Sweden)

    Hao Zhang


    Full Text Available Winter wheat and cotton are the main crops grown on the North China Plain (NCP. Cotton is often transplanted after the winter wheat harvest to solve the competition for cultivated land between winter wheat and cotton, and to ensure that both crops can be harvested on the NCP. However, the root system of transplanted cotton is distorted due to the restrictions of the seedling aperture disk before transplanting. Therefore, the investigation of the deformed root distribution and water uptake in transplanted cotton is essential for simulating soil water movement under different irrigation methods. Thus, a field experiment and a simulation study were conducted during 2013–2015 to explore the deformed roots of transplanted cotton and soil water movement using border irrigation (BI and surface drip irrigation (SDI. The results showed that SDI was conducive to root growth in the shallow root zone (0–30 cm, and that BI was conducive to root growth in the deeper root zone (below 30 cm. SDI is well suited for producing the optimal soil water distribution pattern for the deformed root system of transplanted cotton, and the root system was more developed under SDI than under BI. Comparisons between experimental data and model simulations showed that the HYDRUS-2D model described the soil water content (SWC under different irrigation methods well, with root mean square errors (RMSEs of 0.023 and 0.029 cm3 cm−3 and model efficiencies (EFs of 0.68 and 0.59 for BI and SDI, respectively. Our findings will be very useful for designing an optimal irrigation plan for BI and SDI in transplanted cotton fields, and for promoting the wider use of this planting pattern for cotton transplantation.

  11. Comparative analysis of the sensitivity of metagenomic sequencing and PCR to detect a biowarfare simulant (Bacillus atrophaeus in soil samples.

    Directory of Open Access Journals (Sweden)

    Delphine Plaire

    Full Text Available To evaluate the sensitivity of high-throughput DNA sequencing for monitoring biowarfare agents in the environment, we analysed soil samples inoculated with different amounts of Bacillus atrophaeus, a surrogate organism for Bacillus anthracis. The soil samples considered were a poorly carbonated soil of the silty sand class, and a highly carbonated soil of the silt class. Control soil samples and soil samples inoculated with 10, 103, or 105 cfu were processed for DNA extraction. About 1% of the DNA extracts was analysed through the sequencing of more than 108 reads. Similar amounts of extracts were also studied for Bacillus atrophaeus DNA content by real-time PCR. We demonstrate that, for both soils, high-throughput sequencing is at least equally sensitive than real-time PCR to detect Bacillus atrophaeus DNA. We conclude that metagenomics allows the detection of less than 10 ppm of DNA from a biowarfare simulant in complex environmental samples.

  12. Comparative analysis of the sensitivity of metagenomic sequencing and PCR to detect a biowarfare simulant (Bacillus atrophaeus) in soil samples. (United States)

    Plaire, Delphine; Puaud, Simon; Marsolier-Kergoat, Marie-Claude; Elalouf, Jean-Marc


    To evaluate the sensitivity of high-throughput DNA sequencing for monitoring biowarfare agents in the environment, we analysed soil samples inoculated with different amounts of Bacillus atrophaeus, a surrogate organism for Bacillus anthracis. The soil samples considered were a poorly carbonated soil of the silty sand class, and a highly carbonated soil of the silt class. Control soil samples and soil samples inoculated with 10, 103, or 105 cfu were processed for DNA extraction. About 1% of the DNA extracts was analysed through the sequencing of more than 108 reads. Similar amounts of extracts were also studied for Bacillus atrophaeus DNA content by real-time PCR. We demonstrate that, for both soils, high-throughput sequencing is at least equally sensitive than real-time PCR to detect Bacillus atrophaeus DNA. We conclude that metagenomics allows the detection of less than 10 ppm of DNA from a biowarfare simulant in complex environmental samples.

  13. Oxygen isotopic composition of the Luna 20 soil. (United States)

    Clayton, R. N.


    Comparison of the oxygen isotopic composition in the Luna 20 soil sample with the oxygen isotopic abundances of the Apollo 11, 12, 14, and 15 lunar soil samples. The Luna 20 soil is found to have a relatively low delta 0-18 content (0.57%) in comparison to the other lunar soils (0.58 to 0.63%).

  14. Soil organic carbon redistribution by water erosion: An experimental rainfall simulation approach (United States)

    Wang, Xiang; Cammeraat, Erik; Romeijn, Paul; Kalbitz, Karsten


    Water erosion influences the redistribution of soil organic carbon (SOC) in landscapes and there is a strong need to better understand these processes with respect to the carbon (C) budget, from local to global scales. We present a study in which the total carbon budget of a loess soil under erosion was determined in an experimental set-up. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a climate controlled pseudo-replicated rainfall-simulation laboratory experiment. This approach has been rarely followed to integrate all components of the C budget in one experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in a significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m-2 yr-1) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 27% at the deposition zone in comparison to non-eroded soils. Overall, CO2 emission was the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment. However, only 1.5 % of redistributed C was mineralized highlighting that the C sink induced by deposition is much larger than previously assumed. Our study also underlines the importance of C losses by particles and as DOC for understanding effects of water erosion on the C balance at the interface of terrestrial and aquatic systems. Furthermore our study revealed that the sediment

  15. The wildgeographer avatar shows how to measure soil erosion rates by means of a rainfall simulator (United States)

    Cerdà, Artemi; González Pelayo, Óscar; Pereira, Paulo; Novara, Agata; Iserloh, Thomas; Prosdocimi, Massimo


    This contribution to the immersed worlds wish to develop the avatar that will teach the students and other scientists how to develop measurements of soil erosion, surface runoff and wetting fronts by means of simulated rainfall experiments. Rainfall simulation is a well established and knows methodology to measure the soil erosion rates and soil hydrology under controlled conditions (Cerdà 1998a; Cerdà, 1998b; Cerdà and Jurgensen, 2011; Dunkerley, 2012; Iserloh et al., 2012; Iserloh et al., 2013; Ziadat and Taimeh, 2013; Butzen et al., 2014). However, is a method that requires a long training and expertise to avoid mismanagement and mistaken. To use and avatar can help in the teaching of the technique and the dissemination of the findings. This contribution will show to other avatars how to develop an experiment with simulated rainfall and will help to take the right decision in the design of the experiments. Following the main parts of the experiments and measurements the Wildgeographer avatar must develop: 1. Determine the objectives and decide which rainfall intensity and distribution, and which plot size to be used. Choose between a laboratory or a field rainfall simulation. 2. Design of the rainfall simulator to achieve the objectives: type of rainfall simulator (sprayer or drop former) and calibrate. 3. The experiments are carried out. 4. The results are show. Acknowledgements To the "Ministerio de Economía and Competitividad" of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R). The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Butzen, V., Seeger, M., Wirtz, S., Huemann, M., Mueller, C., Casper, M., Ries, J. B. 2014. Quantification of Hortonian overland flow generation and soil erosion in a Central European low mountain range using rainfall experiments. Catena, 113, 202-212. Cerdà, A

  16. Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil. (United States)

    Johnsen, Anders R; de Lipthay, Julia R; Sørensen, Søren J; Ekelund, Flemming; Christensen, Peter; Andersen, Ole; Karlson, Ulrich; Jacobsen, Carsten S


    Diffuse pollution with polycyclic aromatic hydrocarbons (PAHs) of topsoil in urban regions has caused increasing concerns in recent years. We simulated diffuse pollution of soil in microcosms by spiking sandy topsoil (A-horizon) and coarse, mineral subsoil (C-horizon) with street dust (PM63) isolated from municipal street sweepings from central Copenhagen. The microbial communities adapted to PAH degradation in microcosms spiked with street dust in both A-horizon and C-horizon soils, in spite of low PAH-concentrations. The increased potential for PAH degradation was demonstrated on several levels: by slowly diminishing PAH-concentrations, increased mineralization of 14C-PAHs, increasing numbers of PAH degraders and increased prevalence of nah and pdo1 PAH degradation genes, i.e. the microbial communities quickly adapted to PAH degradation. Three- and 4-ring PAHs from the street dust were biodegraded to some extent (10-20%), but 5- and 6-ring PAHs were not biodegraded in spite of frequent soil mixing and high PAH degradation potentials. In addition to biodegradation, leaching of 2-, 3- and 4-ring PAHs from the A-horizon to the C-horizon seems to reduce PAH-levels in surface soil. Over time, levels of 2-, 3- and 4-ring PAHs in surface soil may reach equilibrium between input and the combination of biodegradation and leaching. However, levels of the environmentally critical 5- and 6-ring PAHs will probably continue to rise. We presume that sorption to black carbon particles is responsible for the persistence and low bioaccessibility of 5- and 6-ring PAHs in diffusely polluted soil.

  17. Soil nitrogen balance under wastewater management: Field measurements and simulation results (United States)

    Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, Liwang; KC, A.


    The use of treated wastewater for irrigation of crops could result in high nitrate-nitrogen (NO3-N) concentrations in the vadose zone and ground water. The goal of this 2-yr field-monitoring study in the deep silty clay loam soils south of Dodge City, Kansas, was to assess how and under what circumstances N from the secondary-treated, wastewater-irrigated corn reached the deep (20-45 m) water table of the underlying High Plains aquifer and what could be done to minimize this problem. We collected 15.2-m-deep soil cores for characterization of physical and chemical properties; installed neutron probe access tubes to measure soil-water content and suction lysimeters to sample soil water periodically; sampled monitoring, irrigation, and domestic wells in the area; and obtained climatic, crop, irrigation, and N application rate records for two wastewater-irrigated study sites. These data and additional information were used to run the Root Zone Water Quality Model to identify key parameters and processes that influence N losses in the study area. We demonstrated that NO3-N transport processes result in significant accumulations of N in the vadose zone and that NO3-N in the underlying ground water is increasing with time. Root Zone Water Quality Model simulations for two wastewater-irrigated study sites indicated that reducing levels of corn N fertilization by more than half to 170 kg ha-1 substantially increases N-use efficiency and achieves near-maximum crop yield. Combining such measures with a crop rotation that includes alfalfa should further reduce the accumulation and downward movement of NO3-N in the soil profile. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  18. Simple additive simulation overestimates real influence: altered nitrogen and rainfall modulate the effect of warming on soil carbon fluxes. (United States)

    Ni, Xiangyin; Yang, Wanqin; Qi, Zemin; Liao, Shu; Xu, Zhenfeng; Tan, Bo; Wang, Bin; Wu, Qinggui; Fu, Changkun; You, Chengming; Wu, Fuzhong


    Experiments and models have led to a consensus that there is positive feedback between carbon (C) fluxes and climate warming. However, the effect of warming may be altered by regional and global changes in nitrogen (N) and rainfall levels, but the current understanding is limited. Through synthesizing global data on soil C pool, input and loss from experiments simulating N deposition, drought and increased precipitation, we quantified the responses of soil C fluxes and equilibrium to the three single factors and their interactions with warming. We found that warming slightly increased the soil C input and loss by 5% and 9%, respectively, but had no significant effect on the soil C pool. Nitrogen deposition alone increased the soil C input (+20%), but the interaction of warming and N deposition greatly increased the soil C input by 49%. Drought alone decreased the soil C input by 17%, while the interaction of warming and drought decreased the soil C input to a greater extent (-22%). Increased precipitation stimulated the soil C input by 15%, but the interaction of warming and increased precipitation had no significant effect on the soil C input. However, the soil C loss was not significantly affected by any of the interactions, although it was constrained by drought (-18%). These results implied that the positive C fluxes-climate warming feedback was modulated by the changing N and rainfall regimes. Further, we found that the additive effects of [warming × N deposition] and [warming × drought] on the soil C input and of [warming × increased precipitation] on the soil C loss were greater than their interactions, suggesting that simple additive simulation using single-factor manipulations may overestimate the effects on soil C fluxes in the real world. Therefore, we propose that more multifactorial experiments should be considered in studying Earth systems. © 2016 John Wiley & Sons Ltd.

  19. Lunar Map Catalog (United States)

    National Aeronautics and Space Administration — The Lunar Map Catalog includes various maps of the moon's surface, including Apollo landing sites; earthside, farside, and polar charts; photography index maps; zone...

  20. Consolidated Lunar Atlas (United States)

    National Aeronautics and Space Administration — The Consolidated Lunar Atlas is a collection of the best photographic images of the moon, including low-oblique photography, full-moon photography, and tabular and...

  1. Lunar outpost agriculture (United States)

    Hossner, Lloyd R.; Ming, Douglas W.; Henninger, Donald L.; Allen, Earl R.

    The development of a CELSS for a lunar outpost is discussed. It is estimated that a lunar outpost life support system with a crew of four that produces food would break even in terms of mass and cost to deliver the system to the lunar surface after 2.5 years when compared to the cost of resupply from earth. A brief review is made of research on life support systems and NASA projects for evaluating CELSS components. The use of on-site materials for propellants, construction materials, and agriculture is evaluated, and the use of microbes for waste decomposition and stabilization of ecological balance is touched upon. Areas for further investigation include the behavior of organisms in microgravity, genetic alteration, gas exchange capabilities of organisms, integration of biological and physicochemical components, and automation. The development stages leading to lunar deployment are outlined.

  2. Lunar Reconnaissance Orbiter (United States)

    Morgan, T.; Chin, G.


    NASA's Lunar Reconnaissance Orbiter (LRO) plans to launch in October 2008 with a companion secondary impactor mission, LCROSS, as the inaugural missions for the Exploration System Mission Directorate. LRO is a pathfinder whose objective is to obtain the needed information to prepare for eventual human return to the Moon. LRO will undertake at least one baseline year of operation with additional extended mission phase sponsored by NASA's Science Mission Directorate. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions; Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources; Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration; Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits; Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only

  3. Raman Spectroscopy as a Method for Mineral Identification on Lunar Robotic Exploration Missions (United States)

    Wang, Alian; Jolliff, Bradley L.; Haskin, Larry A.


    The sharp, nonoverlapping Raman bands for plagioclase, pyroxene, and olivine would be advantageous for on-surface, active mineralogical analysis of lunar materials. A robust, light-weight, low-power, rover-based Raman spectrometer with a laser exciting source, entirely transmission-mode holographic optics, and a charge-coupled device (CCD) detector could fit within a less than 20 cm cube. A sensor head on the end of an optical fiber bundle that carried the laser beam and returned the scattered radiation could be placed against surfaces at any desired angle by a deployment mechanism; otherwise, the instrument would need no moving parts. A modem micro-Raman spectrometer with its beam broadened (to expand the spot to 50-micrometer diameter) and set for low resolution (7/cm in the 100-1400/cm region relative to 514.5-nm excitation), was used to simulate the spectra anticipated from a rover instrument. We present spectra for lunar mineral grains, less than 1 mm soil fines, breccia fragments, and glasses. From frequencies of olivine peaks, we derived sufficiently precise forsterite contents to correlate the analyzed grains to known rock types and we obtained appropriate forsterite contents from weak signals above background in soil fines and breccias. Peak positions of pyroxenes were sufficiently well determined to distinguish among orthorhombic, monoclinic, and triclinic (pyroxenoid) structures; additional information can be obtained from pyroxene spectra, but requires further laboratory calibration. Plagioclase provided sharp peaks in soil fines and most breccias even when the glass content was high.

  4. Quantification of Model Uncertainty in Modeling Mechanisms of Soil Microbial Respiration Pulses to Simulate Birch Effect (United States)

    Elshall, A. S.; Ye, M.; Niu, G. Y.; Barron-Gafford, G.


    A Bayesian framework is developed to quantify predictive uncertainty in environmental modeling caused by uncertainty in modeling scenarios, model structures, model parameters, and data. An example of using the framework to quantify model uncertainty is presented to simulate soil microbial respiration pulses in response to episodic rainfall pulses (the "Birch effect"). A total of five models are developed; they evolve from an existing four-carbon (C) pool model to models with additional C pools and recently developed models with explicit representations of soil moisture controls on C degradation and microbial uptake rates. Markov chain Monte Carlo (MCMC) methods with generalized likelihood function (not Gaussian) are used to estimate posterior parameter distributions of the models, and the posterior parameter samples are used to evaluate probabilities of the models. The models with explicit representations of soil moisture controls outperform the other models. The models with additional C pools for accumulation of degraded C in the dry zone of the soil pore space result in a higher probability of reproducing the observed Birch pulses. A cross-validation is conducted to explore predictive performance of model averaging and of individual models. The Bayesian framework is mathematically general and can be applied to a wide range of environmental problems.

  5. An Approach for Simulating Soil Loss from an Agro-Ecosystem Using Multi-Agent Simulation: A Case Study for Semi-Arid Ghana

    Directory of Open Access Journals (Sweden)

    Biola K. Badmos


    Full Text Available Soil loss is not limited to change from forest or woodland to other land uses/covers. It may occur when there is agricultural land-use/cover modification or conversion. Soil loss may influence loss of carbon from the soil, hence implication on greenhouse gas emission. Changing land use could be considered actually or potentially successful in adapting to climate change, or may be considered maladaptation if it creates environmental degradation. In semi-arid northern Ghana, changing agricultural practices have been identified amongst other climate variability and climate change adaptation measures. Similarly, some of the policies aimed at improving farm household resilience toward climate change impact might necessitate land use change. The heterogeneity of farm household (agents cannot be ignored when addressing land use/cover change issues, especially when livelihood is dependent on land. This paper therefore presents an approach for simulating soil loss from an agro-ecosystem using multi-agent simulation (MAS. We adapted a universal soil loss equation as a soil loss sub-model in the Vea-LUDAS model (a MAS model. Furthermore, for a 20-year simulation period, we presented the impact of agricultural land-use adaptation strategy (maize cultivation credit i.e., maize credit scenario on soil loss and compared it with the baseline scenario i.e., business-as-usual. Adoption of maize as influenced by maize cultivation credit significantly influenced agricultural land-use change in the study area. Although there was no significant difference in the soil loss under the tested scenarios, the incorporation of human decision-making in a temporal manner allowed us to view patterns that cannot be seen in single step modeling. The study shows that opening up cropland on soil with a high erosion risk has implications for soil loss. Hence, effective measures should be put in place to prevent the opening up of lands that have high erosion risk.

  6. Scientific objectives and the payloads of Chang'E-1 lunar satellite

    Indian Academy of Sciences (India) ... the lunar surface,; to determine distribution of some useful elements and to estimate their abundance,; to survey the thickness of lunar soil and to evaluate resource of 3He and; to explore the ...

  7. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.


    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  8. Development and testing of the pneumatic lunar drill for the emplacement of the corner cube reflector on the Moon (United States)

    Zacny, K.; Currie, D.; Paulsen, G.; Szwarc, T.; Chu, P.


    Lunar Laser Ranging provides a highly accurate measurement of the distance between ground stations on Earth and reflectors on the surface of the Moon. Since retroreflectors were initially placed during the Apollo missions, the ground stations improved the ranging accuracy by a factor of 200 and now the Apollo-era arrays on the Moon pose a significant limitation to the ranging accuracy. The new Lunar Laser Ranging Retroreflector (i.e. the Lunar Laser Ranging retroreflector for the 21st century or LLRRA-21) would provide extensive new information on the lunar interior, general relativity, and cosmology. During the day/night lunar cycle, when the thermal variation of the surface is approximately 300 °C, the regolith will rise and fall by almost 500 μm. Yet, it is estimated that the thermal variation 0.5 m to 1 m below the surface is less than much 1 °C. Thus for the lunar emplacement to support 10s of microns ranging accuracy, the reflectors must be anchored to that thermally stable mass at 0.5 m or greater depth. In this paper, we present a novel method of deploying LLRRA-21 with a Corner Cube Reflector (CCR) on the Moon. The emplacement approach uses a gas-powered drill consisting of a >50 cm long, slim, hollow rod with a perforated anchor-cone at its lower end and the CCR mounted to the top. Gas supplied from a small tank is directed into and down the rod and out through the cone, lofting the soil out of the hole and allowing the rod to sink under its own weight to a depth of 0.5 m. To determine the system performance, we conducted several tests in compacted JSC-1a lunar soil simulant and inside a vacuum chamber. In several tests, the rod successfully sunk under its own weight of 16 N to a depth of 50 cm in 4-6 min. The pneumatic system is the game-changer for subsurface access. The extremely low mass and volume required to reach 50 cm, along with very simple penetration method allow the CCR to remain in a variety of payload architectures.

  9. Independent principal component analysis for simulation of soil water content and bulk density in a Canadian Watershed

    Directory of Open Access Journals (Sweden)

    Alaba Boluwade


    Full Text Available Accurate characterization of soil properties such as soil water content (SWC and bulk density (BD is vital for hydrologic processes and thus, it is importance to estimate θ (water content and ρ (soil bulk density among other soil surface parameters involved in water retention and infiltration, runoff generation and water erosion, etc. The spatial estimation of these soil properties are important in guiding agricultural management decisions. These soil properties vary both in space and time and are correlated. Therefore, it is important to find an efficient and robust technique to simulate spatially correlated variables. Methods such as principal component analysis (PCA and independent component analysis (ICA can be used for the joint simulations of spatially correlated variables, but they are not without their flaws. This study applied a variant of PCA called independent principal component analysis (IPCA that combines the strengths of both PCA and ICA for spatial simulation of SWC and BD using the soil data set from an 11 km2 Castor watershed in southern Quebec, Canada. Diagnostic checks using the histograms and cumulative distribution function (cdf both raw and back transformed simulations show good agreement. Therefore, the results from this study has potential in characterization of water content variability and bulk density variation for precision agriculture.

  10. Detecting Volatiles Deep in the Lunar Regolith (United States)

    Crotts, A.; Heggy, E.; Ciarletti, V.; Colaprete, A.; Moghaddam, M.; Siegler, M. A.


    There is increasing theoretical and empirical evidence, from the Apollo era and after, of volatiles deep in the lunar interior, in the crust and deeper, both hydrogen-rich and otherwise. This comes in the form of fire fountain samples from Apollo 15 and Apollo 17, of hydrated minerals excavated by impacts which reach the base of the lunar crust e.g., crater Bullialdus, of hydration of apatite and other minerals, as well as predictions of a water-concentrated layer along with the KREEP material at the base of the lunar crust. We discuss how the presence of these volatiles might be directly explored. In particular water vapor molecules percolating to the surface through lunar regolith might be expected to stick and freeze into the regolith, at depths of several meters depending on the regolith temperature profile, porosity and particle size distribution, quantities that are not well known beyond two meters depth. To explore these depths in the regolith we use and propose several modes of penetrating radar. We will present results using the SELENE/Kaguya's Lunar Sounding RADAR (LSR) to probe the bulk volatile dielectric and loss structure properties of the regolith in various locations, both within permanently shadowed regions (PSRs) and without, and within neutron suppression regions (NSRs) as traced by epithermal neutrons and without. We also propose installation of ground penetrating RADAR (GPR) on a roving lunar platform that should be able to probe between 0.2 and 1.6 GHz, which will provide a probe of the entire depth of the lunar regolith as well as a high-resolution (about 4 cm FWHM) probe of the upper meter or two of the lunar soil, where other probes of volatiles such as epithermal neutron absorption or drilling might be employed. We discuss predictions for what kinds of volatile density profiles might be distinguished in this way, and whether these will be detected from orbit as NSRs, whether these must be restricted to PSRs, and how these might appear in

  11. Radioactivity in returned lunar materials (United States)


    The H-3, Ar-37, and Ar-39 radioactivities were measured at several depths in the large documented lunar rocks 14321 and 15555. The comparison of the Ar-37 activities from similar locations in rocks 12002, 14321, and 15555 gives direct measures of the amount of Ar-37 produced by the 2 November 1969 and 24 January 1971 solar flares. The tritium contents in the documented rocks decreased with increasing depths. The solar flare intensity averaged over 30 years obtained from the tritium depth dependence was approximately the same as the flare intensity averaged over 1000 years obtained from the Ar-37 measurements. Radioactivities in two Apollo 15 soil samples, H-3 in several Surveyor 3 samples, and tritium and radon weepage were also measured.

  12. Simulating maize yield and bomass with spatial variability of soil field capacity (United States)

    Ma, Liwang; Ahuja, Lajpat; Trout, Thomas; Nolan, Bernard T.; Malone, Robert W.


    Spatial variability in field soil properties is a challenge for system modelers who use single representative values, such as means, for model inputs, rather than their distributions. In this study, the root zone water quality model (RZWQM2) was first calibrated for 4 yr of maize (Zea mays L.) data at six irrigation levels in northern Colorado and then used to study spatial variability of soil field capacity (FC) estimated in 96 plots on maize yield and biomass. The best results were obtained when the crop parameters were fitted along with FCs, with a root mean squared error (RMSE) of 354 kg ha–1 for yield and 1202 kg ha–1 for biomass. When running the model using each of the 96 sets of field-estimated FC values, instead of calibrating FCs, the average simulated yield and biomass from the 96 runs were close to measured values with a RMSE of 376 kg ha–1 for yield and 1504 kg ha–1 for biomass. When an average of the 96 FC values for each soil layer was used, simulated yield and biomass were also acceptable with a RMSE of 438 kg ha–1 for yield and 1627 kg ha–1 for biomass. Therefore, when there are large numbers of FC measurements, an average value might be sufficient for model inputs. However, when the ranges of FC measurements were known for each soil layer, a sampled distribution of FCs using the Latin hypercube sampling (LHS) might be used for model inputs.

  13. Hazard Detection Software for Lunar Landing (United States)

    Huertas, Andres; Johnson, Andrew E.; Werner, Robert A.; Montgomery, James F.


    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing a system for safe and precise manned lunar landing that involves novel sensors, but also specific algorithms. ALHAT has selected imaging LIDAR (light detection and ranging) as the sensing modality for onboard hazard detection because imaging LIDARs can rapidly generate direct measurements of the lunar surface elevation from high altitude. Then, starting with the LIDAR-based Hazard Detection and Avoidance (HDA) algorithm developed for Mars Landing, JPL has developed a mature set of HDA software for the manned lunar landing problem. Landing hazards exist everywhere on the Moon, and many of the more desirable landing sites are near the most hazardous terrain, so HDA is needed to autonomously and safely land payloads over much of the lunar surface. The HDA requirements used in the ALHAT project are to detect hazards that are 0.3 m tall or higher and slopes that are 5 or greater. Steep slopes, rocks, cliffs, and gullies are all hazards for landing and, by computing the local slope and roughness in an elevation map, all of these hazards can be detected. The algorithm in this innovation is used to measure slope and roughness hazards. In addition to detecting these hazards, the HDA capability also is able to find a safe landing site free of these hazards for a lunar lander with diameter .15 m over most of the lunar surface. This software includes an implementation of the HDA algorithm, software for generating simulated lunar terrain maps for testing, hazard detection performance analysis tools, and associated documentation. The HDA software has been deployed to Langley Research Center and integrated into the POST II Monte Carlo simulation environment. The high-fidelity Monte Carlo simulations determine the required ground spacing between LIDAR samples (ground sample distances) and the noise on the LIDAR range measurement. This simulation has also been used to determine the effect of

  14. Evaluation of a simple, point-scale hydrologic model in simulating soil moisture using the Delaware environmental observing system (United States)

    Legates, David R.; Junghenn, Katherine T.


    Many local weather station networks that measure a number of meteorological variables (i.e. , mesonetworks) have recently been established, with soil moisture occasionally being part of the suite of measured variables. These mesonetworks provide data from which detailed estimates of various hydrological parameters, such as precipitation and reference evapotranspiration, can be made which, when coupled with simple surface characteristics available from soil surveys, can be used to obtain estimates of soil moisture. The question is Can meteorological data be used with a simple hydrologic model to estimate accurately daily soil moisture at a mesonetwork site? Using a state-of-the-art mesonetwork that also includes soil moisture measurements across the US State of Delaware, the efficacy of a simple, modified Thornthwaite/Mather-based daily water balance model based on these mesonetwork observations to estimate site-specific soil moisture is determined. Results suggest that the model works reasonably well for most well-drained sites and provides good qualitative estimates of measured soil moisture, often near the accuracy of the soil moisture instrumentation. The model exhibits particular trouble in that it cannot properly simulate the slow drainage that occurs in poorly drained soils after heavy rains and interception loss, resulting from grass not being short cropped as expected also adversely affects the simulation. However, the model could be tuned to accommodate some non-standard siting characteristics.

  15. A modeling approach to simulate the role of anecic and endogeic earthworms in soil structure dynamics of two agricultural systems (United States)

    Le Couteulx, Alexis; Wolf, Cédric; Pérès, Guénola; Hallaire, Vincent


    In agriculture, one of the main purposes of innovative systems is to preserve and improve soil quality and noticeably their physical quality. This physical quality of a soil is intimately linked with its structure, i.e. the spatial arrangement of voids and solids. It is well-known that agricultural systems may deeply impact on soil structure through their effect on various structuring processes, in particular (i) the mechanical action of soil tillage and (ii) the burrowing activity and casts production of earthworms. As the assessment of agricultural systems needs long term experiments, it is not feasible to assess them all. However, the modeling approach has been used seldom despite it seems promising. As a first step towards the modeling of agricultural systems, we propose a model that simulates the impact of earthworm bioturbation and several tillage practices on soil structure dynamics. The proposed model accounts for two earthworm ecological categories: anecics and endogeics. Anecics are split into epi-anecics and true anecics and endogeics are kept at the specific level. The model takes into account their physiological and morphological features such as their diapause period, their gut transit time or their body size. In order to simulate the bioturbation activity of earthworms, they can make six different actions: (i) burrow new paths by ingesting soil particles, (ii) move inside existing paths, (iii) move to soil surface, (iv) wait, (v) produce a subsurface cast or (vi) produce a surface cast. For the various species and groups of earthworms, the probability of these actions was adjusted from experiments and published results. This part of the model dedicated to earthworms allows to build and study their network of burrows but also the position and volume of their subsurface and surface casts. This network may be couple with models of water conductivity to assess the role of earthworm on this soil functional property. To better simulate soil structure

  16. Simulating soil carbon and greenhouse gas dynamics in grasslands amended with compost (United States)

    Ryals, R.; Hartman, M.; Parton, W. J.; DeLonge, M. S.; Silver, W. L.


    Compost amendment to grasslands has been proposed as a way to mitigate climate change through carbon (C) sequestration, yet little research has been done exploring the source-sink potential of this management strategy. We used the ecosystem biogeochemical model, DAYCENT, to investigate the climate change mitigation potential of compost amendments to three grassland sites in California, including a valley grassland in the Sierra foothills and two coastal grasslands that differed in soil texture (e.g. sandy loam and loam texture) in northern California. The model was parameterized using site-specific characteristics, including long-term weather records and edaphic characteristics. Model validation was conducted by comparing simulated above- and belowground net primary production (NPP) and soil C with that from a three-year field experiment at each site and iteratively adjusting crop parameters. We then used the model to test ecosystem responses and source-sink potential of a variety of compost qualities and application rates. We found that ecosystem C and N responded rapidly to amendments, but the effects tended to be down-regulated by higher compost C:N ratios. Carbon sequestration rates were greater with low C:N compost, but soils amended with low C:N ratio compost experienced greater N2O fluxes relative to composts with higher C:N ratios. These results suggest a trade-off between maximizing plant production and minimizing N2O losses. We also found that the source-sink potential varied greatly when considered over short (10 year), medium (30 year), or long (100 year) time periods. We conclude that compost amendments to rangeland soils can result in significant C sinks, but that the full suite of soil greenhouse gas emissions and timeframes for C sequestration must be explicitly considered.

  17. Toxicodynamics of copper and cadmium in Folsomia candida exposed to simulated soil solutions. (United States)

    Ardestani, Masoud M; van Gestel, Cornelis A M


    To improve our understanding of metal bioavailability to soil-living invertebrates, the effect of porewater composition on the toxicodynamics of copper and cadmium in Folsomia candida (Collembola) was investigated. Assuming that porewater is the main exposure route, F. candida was exposed to simulated soil solutions of different composition. Toxicity of copper was slightly lower in a calcium-only solution than in a multication solution. With increasing copper concentrations from 0.005 mM to 1.37 mM, internal copper concentrations similarly increased in both exposure solutions, suggesting that a single cation nutrient solution is suitable for testing F. candida. In the second experiment, animals were exposed for 7 d to copper and cadmium in simplified soil solutions with different calcium (0.2 mM, 0.8 mM, 3.2 mM, 12.8 mM) and pH (5.0, 6.0, 7.0) levels. The median lethal concentration (LC50) values decreased with time in both the calcium and pH series. A hormetic-type effect was observed for copper in the second test, as well as in the calcium-only solution in the first experiment. Because of stronger hormesis, LC50s for copper were higher at lower calcium concentrations. For cadmium, LC50 values were higher at higher calcium concentrations, suggesting competition of calcium with the free cadmium ion. Toxicity of cadmium increased with decreasing pH, while copper was more toxic at intermediate pH. The results show that a toxicodynamics approach can help to improve the interpretation of metal toxicity to soil invertebrates, taking into account soil solution properties. © 2013 SETAC.

  18. Assessment of SMAP soil moisture for global simulation of gross primary production (United States)

    He, Liming; Chen, Jing M.; Liu, Jane; Bélair, Stéphane; Luo, Xiangzhong


    In this study, high-quality soil moisture data derived from the Soil Moisture Active Passive (SMAP) satellite measurements are evaluated from a perspective of improving the estimation of the global gross primary production (GPP) using a process-based ecosystem model, namely, the Boreal Ecosystem Productivity Simulator (BEPS). The SMAP soil moisture data are assimilated into BEPS using an ensemble Kalman filter. The correlation coefficient (r) between simulated GPP from the sunlit leaves and Sun-induced chlorophyll fluorescence (SIF) measured by Global Ozone Monitoring Experiment-2 is used as an indicator to evaluate the performance of the GPP simulation. Areas with SMAP data in low quality (i.e., forests), or with SIF in low magnitude (e.g., deserts), or both are excluded from the analysis. With the assimilated SMAP data, the r value is enhanced for Africa, Asia, and North America by 0.016, 0.013, and 0.013, respectively (p r appears in single-cropping agricultural land where the irrigation is not considered in the model but well captured by SMAP (e.g., 0.09 in North America, p < 0.05). With the assimilation of SMAP, areas with weak model performances are identified in double or triple cropping cropland (e.g., part of North China Plain) and/or mountainous area (e.g., Spain and Turkey). The correlation coefficient is enhanced by 0.01 in global average for shrub, grass, and cropland. This enhancement is small and insignificant because nonwater-stressed areas are included.

  19. Investigation of biochar effects as a non-structural BMP on soil erosional properties using a rainfall simulator

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Kuhn, Nikolaus J; Hu, Yaxian

    Recent studies have shown the potential of biochar for improving overall soil quality including soil aggregation and structure. Erodibility is an inherent soil property that amongst others is highly dependent on soil organic matter content which affects aggregate stability and crusting during...... runoff events. We hypothesized that erodibility is reduced in biochar-amended soils and tested this in controlled rainfall-runoff simulations. The specific objectives of our study were (1) to compare runoff and sediment generation between a biochar and an unamended control treatment on an arable sandy...... loam soil and (2) to determine the effect of the biochar treatment on SOC erodibility. A field experiment with eight plots was established at Risø, Denmark, in 2011; four biochar-amended and four unamended control plots. Biochar produced from birch wood at 500 ºC was applied at a rate of 2 kg m-2...

  20. Investigation of dust particles with future Russian lunar missions: achievements of further development of PmL instrument. (United States)

    Kuznetsov, Ilya; Zakharov, Alexander; Afonin, Valeri; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Lyash, Andrey; Dolnikov, Gennady; Popel, Sergey; Lisin, Evgeny


    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On the day side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution of dust particles by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind

  1. Specific heats of lunar surface materials from 90 to 350 degrees Kelvin (United States)

    Robie, R.A.; Hemingway, B.S.; Wilson, W.H.


    The specific heats of lunar samples 10057 and 10084 returned by the Apollo 11 mission have been measured between 90 and 350 degrees Kelvin by use of an adiabatic calorimeter. The samples are representative of type A vesicular basalt-like rocks and of finely divided lunar soil. The specific heat of these materials changes smoothly from about 0.06 calorie per gram per degree at 90 degrees Kelvin to about 0.2 calorie per gram per degree at 350 degrees Kelvin. The thermal parameter ??=(k??C)-1/2 for the lunar surface will accordingly vary by a factor of about 2 between lunar noon and midnight.

  2. Simulation of Creep Phenomenon in Clay Soils Using Rheology and Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Hermosillo-Arteaga Armando Rafael


    Full Text Available In this paper, basic concepts about fractional calculus and fractional rheology used in the study of viscoelastic behavior of materials and the application of this methodology in modeling the creep phenomenon are presented; also the solution of a differential equation fractional modeling this phenomenon is commented. The curves obtained experimentally were adequately reproduced using the solution of fractional differential equation that models the phenomenon of creep. Finally, conclusions and comments about the benefit to use fractional differential equations in the simulation of phenomena and problems that arise in engineering are presented. Keywords: fractional calculus, fractional derivative, fractional rheology, creep, viscoelasticity, clayey soils.

  3. Effects of earthquake rupture shallowness and local soil conditions on simulated ground motions

    International Nuclear Information System (INIS)

    Apsel, Randy J.; Hadley, David M.; Hart, Robert S.


    The paucity of strong ground motion data in the Eastern U.S. (EUS), combined with well recognized differences in earthquake source depths and wave propagation characteristics between Eastern and Western U.S. (WUS) suggests that simulation studies will play a key role in assessing earthquake hazard in the East. This report summarizes an extensive simulation study of 5460 components of ground motion representing a model parameter study for magnitude, distance, source orientation, source depth and near-surface site conditions for a generic EUS crustal model. The simulation methodology represents a hybrid approach to modeling strong ground motion. Wave propagation is modeled with an efficient frequency-wavenumber integration algorithm. The source time function used for each grid element of a modeled fault is empirical, scaled from near-field accelerograms. This study finds that each model parameter has a significant influence on both the shape and amplitude of the simulated response spectra. The combined effect of all parameters predicts a dispersion of response spectral values that is consistent with strong ground motion observations. This study provides guidelines for scaling WUS data from shallow earthquakes to the source depth conditions more typical in the EUS. The modeled site conditions range from very soft soil to hard rock. To the extent that these general site conditions model a specific site, the simulated response spectral information can be used to either correct spectra to a site-specific environment or used to compare expected ground motions at different sites. (author)

  4. Lunar impact flux distribution and global asymmetry revisited (United States)

    Pinet, P.


    The author reinvestigates the hypothesis of an early lunar bombardment (≡4 aeons ago) by geocentric projectiles. These projectiles may have originated either as Earth satellites or as heliocentric planetoids later captured by the Earth's gravitational field and possibly fragmented by tidal forces inside the Roche limit. A 3-d numerical simulation is used to compute the trajectories of an initial set of projectiles, under the attraction of Earth and Moon, and to determine the loci of impacts, on the lunar surface, of colliding bodies. The simulation end-product is the local flux of impacts, normalized to the mean total flux over the whole lunar surface. The computed distributions meet main features of the observed lunar distribution of large craters and might give a mechanical explanation to the reported polar impact excess.

  5. Soil and glass surface photodegradation of etofenprox under simulated california rice growing conditions. (United States)

    Vasquez, Martice; Cahill, Thomas; Tjeerdema, Ronald


    Photolysis is an important degradation process to consider when evaluating a pesticide's persistence in a rice field environment. To simulate both nonflooded and flooded California rice field conditions, the photolytic degradation of etofenprox, an ether pyrethroid, was characterized on an air-dried rice soil and a flooded rice soil surface by determination of its half-life (t(1/2)), dissipation rate constant (k) and identification and quantitation of degradation products using LC/MS/MS. Photodegradation was also characterized on a glass surface alone to rule out confounding soil factors. Measured photolytic dissipation rates were used as input parameters into a multimedia environmental fate model to predict etofenprox persistence in a rice field environment. Photolytic degradation proceeded at a faster rate (0.23/day, t(1/2) = 3.0 days) on the flooded soil surface compared to the air-dried surface (0.039/day, t(1/2) = 18 days). Etofenprox degradation occurred relatively quickly on the glass surface (3.1/day, t(1/2) = 0.23 days or 5.5 h) compared to both flooded and air-dried soil layers. Oxidation of the ether moiety to the ester was the major product on all surfaces (max % yield range = 0.2 ± 0.1% to 9.3 ± 2.3%). The hydroxylation product at the 4' position of the phenoxy phenyl ring was detected on all surfaces (max % yield range = 0.2 ± 0.1% to 4.1 ± 1.0%). The air-dried soil surface did not contain detectable residues of the ester cleavage product, whereas it was quantitated on the flooded soil (max % yield = 0.6 ± 0.3%) and glass surface (max % yield = 3.6 ± 0.6%). Dissipation of the insecticide in dark controls was significantly different (p < 0.05) compared to the light-exposed surfaces indicating that degradation was by photolysis. Laboratory studies and fate model predictions suggest photolysis will be an important process in the overall degradation of etofenprox in a rice field environment.

  6. Magnetic hysteresis classification of the lunar surface and the interpretation of permanent remanence in lunar surface samples (United States)

    Wasilewski, P.


    A magnetic hysteresis classification of the lunar surface is presented. It was found that there is a distinct correlation between natural remanence (NRM), saturation magnetization, and the hysteresis ratios for the rock samples. The hysteresis classification is able to explain some aspects of time dependent magnetization in the lunar samples and relates the initial susceptibility to NRM, viscous remanence, and to other aspects of magnetization in lunar samples. It is also considered that since up to 60% of the iron in the lunar soil may be super paramagnetic at 400 K, and only 10% at 100 K, the 50% which becomes ferromagnetic over the cycle has the characteristics of thermoremanence and may provide for an enhancement in measurable field on the dark side during a subsatellite magnetometer circuit.

  7. The combined effects of urea application and simulated acid rain on soil acidification and microbial community structure. (United States)

    Liu, Xingmei; Zhou, Jian; Li, Wanlu; Xu, Jianming; Brookes, Philip C


    Our aim was to test the effects of simulated acid rain (SAR) at different pHs, when applied to fertilized and unfertilized soils, on the leaching of soil cations (K, Ca, Mg, Na) and Al. Their effects on soil pH, exchangeable H(+) and Al(3+) and microbial community structure were also determined. A Paleudalfs soil was incubated for 30 days, with and without an initial application of urea (200 mg N kg(-1)soil) as nitrogen (N) fertilizer. The soil was held in columns and leached with SAR at three pH levels. Six treatments were tested: SAR of pH 2.5, 4.0 and 5.6 leaching on unfertilized soil (T1, T2 and T3), and on soils fertilized with urea (T4, T5 and T6). Increasing acid inputs proportionally increased cation leaching in both unfertilized and fertilized soils. Urea application increased the initial Ca and Mg leaching, but had no effect on the total concentrations of Ca, Mg and K leached. There was no significant difference for the amount of Na leached between the different treatments. The SAR pH and urea application had significant effects on soil pH, exchangeable H(+) and Al(3+). Urea application, SAR treated with various pH, and the interactions between them all had significant impacts on total phospholipid fatty acids (PLFAs). The highest concentration of total PLFAs occurred in fertilized soils with SAR pH5.6 and the lowest in soils leached with the lowest SAR pH. Soils pretreated with urea then leached with SARs of pH 4.0 and 5.6 had larger total PLFA concentrations than soil without urea. Bacterial, fungal, actinomycete, Gram-negative and Gram-positive bacterial PLFAs had generally similar trends to total PLFAs.

  8. Lunar Surface Navigation, Phase I (United States)

    National Aeronautics and Space Administration — To support extended lunar operations, precision localization and route mapping is required for planetary EVA, manned rovers and lunar surface mobility units. A...

  9. Soil moisture characterization of the Valencia anchor station. Ground, aircraft measurements and simulations

    DEFF Research Database (Denmark)

    Lopez-Baeza, E; Antolin, M C; Balling, Jan E.


    , soil type, lithology, geology, elevation, slope and vegetation cover conditions. Complementary to the ground measurements, flight operations were performed over this control area using the Helsinki University of Technology TKK Short Skyvan research aircraft which contained onboard a payload constituted......). Together with the ground SM measurements, other ground and meteorological measurements from the VAS area, kindly provided by other institutions, are currently been used to simulate passive microwave brightness temperature to obtain satellite "match ups" for validation purposes and to test the retrieval...... algorithms. The spatialization of the ground measurements up to a SMOS pixel is carried out by using the SURFace EXternalisee (SURFEX) model from Meteo France. Output data, particularly SM, are then used to simulate L-band surface emission through the use of the L-MEB (L-band Microwave Emission...

  10. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet (United States)

    Ticoş, C. M.; Scurtu, A.; Toader, D.; Banu, N.


    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  11. Simulated biomass and soil carbon of loblolly pine and cottonwood plantations across a thermal gradient in southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, Robert J [ORNL; Tharp, M Lynn [ORNL; Post, Wilfred M [ORNL


    Changes in biomass and soil carbon with nitrogen fertilization were simulated for a 25-year loblolly pine (Pinus taeda) plantation and for three consecutive 7-year short-rotation cottonwood (Populus deltoides) stands. Simulations were conducted for 17 locations in the southeastern United States with mean annual temperatures ranging from 13.1 to 19.4 C. The LINKAGES stand growth model, modified to include the "RothC" soil C and soil N model, simulated tree growth and soil C status. Nitrogen fertilization significantly increased cumulative cottonwood aboveground biomass in the three rotations from a site average of 106 to 272 Mg/ha in 21 years, whereas the equivalent site averages for loblolly pine were unchanged at 176 and 184 Mg/ha in 25 years. Location results, compared on the annual sum of daily mean air temperatures above 5.5 C (growing-degree-days), showed contrasts. Loblolly pine biomass increased whereas cottonwood decreased with increasing growing-degree-days, particularly in cottonwood stands receiving N fertilization. The increment of biomass due to N addition per unit of control biomass (relative response) declined in both plantations with increase in growing-degree-days. Average soil C in loblolly pine stands increased from 24.3 to 40.4 Mg/ha in 25 years and in cottonwood soil C decreased from 14.7 to 13.7 Mg/ha after three 7-year rotations. Soil C did not decrease with increasing growing-degree-days in either plantation type suggesting that global warming may not initially affect soil C. Nitrogen fertilizer increased soil C slightly in cottonwood plantations and had no significant effect on the soil C of loblolly stands.

  12. On the Critical Behaviour of Observed and Simulated Spatial Soil Moisture Fields during SGP97

    Directory of Open Access Journals (Sweden)

    Mekonnen Gebremichael


    Full Text Available The aircraft-based ESTAR soil moisture fields from the Southern Great Plains 1997 (SGP97 Hydrology Experiment are compared to the simulated ones obtained by Bertoldi et al. [1] with the GEOtop model [2], with a particular focus on their capability in capturing the critical point behaviour in their space-time dynamics (see [3]. The critical point behaviour should denote the transition of soil moisture spatial patterns from an unorganized to organized appearance, as conditions become wetter. The study region is the Little Washita watershed, located in the southwest Oklahoma, in the Southern Great Plains region of the USA. The case study takes place from June 27 to July 16 and encompasses wetting and drying cycles allowing for exploring the behaviour under transient conditions. Results show that the critical probability value is 0.85 for GEOtop, and 0.80 for ESTAR. The GEOtop patterns appear more fragmented, being more reluctant to organization, as confirmed by the higher value of critical probability. Such behaviour is probably inherited by the model’s parameterization: land use and soil classes impose additional spatial structures to those related to the meteorological forcings and the hillslope morphology, driving to higher degrees of heterogeneity.

  13. Crash Testing and Simulation of a Cessna 172 Aircraft: Pitch Down Impact Onto Soft Soil (United States)

    Fasanella, Edwin L.; Jackson, Karen E.


    During the summer of 2015, NASA Langley Research Center conducted three full-scale crash tests of Cessna 172 (C-172) aircraft at the NASA Langley Landing and Impact Research (LandIR) Facility. The first test represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test, which is the focus of this paper, represented a controlled-flight-into-terrain (CFIT) with a nose-down pitch attitude of the aircraft, which impacted onto soft soil. The third test, also conducted onto soil, represented a CFIT with a nose-up pitch attitude of the aircraft, which resulted in a tail strike condition. These three crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters (ELTs) and to generate impact test data for model validation. LS-DYNA finite element models were generated to simulate the three test conditions. This paper describes the model development and presents test-analysis comparisons of acceleration and velocity time-histories, as well as a comparison of the time sequence of events for Test 2 onto soft soil.

  14. The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents. (United States)

    Zhu, Hao; Wu, Chunfa; Wang, Jun; Zhang, Xumei


    Stabilization technology is one of widely used remediation technologies for cadmium (Cd)-contaminated agricultural soils, but stabilized Cd in soil may be activated again when external conditions such as acid rain occurred. Therefore, it is necessary to study the effect of acid rain on the performance of different stabilizing agents on Cd-polluted agriculture soils. In this study, Cd-contaminated soils were treated with mono-calcium phosphate (MCP), mono-ammonium phosphate (MAP), and artificial zeolite (AZ) respectively and incubated 3 months. These treatments were followed by two types of simulated acid rain (sulfuric acid rain and mixed acid rain) with three levels of acidity (pH = 3.0, 4.0, and 5.6). The chemical forms of Cd in the soils were determined by Tessier's sequential extraction procedure, and the leaching toxicities of Cd in the soils were assessed by toxicity characteristic leaching procedure (TCLP). The results show that the three stabilizing agents could decrease the mobility of Cd in soil to some degree with or without simulated acid rain (SAR) treatment. The stabilization performances followed the order of AZ Acid rain soaking promoted the activation of Cd in stabilized soil, and both anion composition and pH of acid rain were two important factors that influenced the stabilization effect of Cd.

  15. Powerful Software to Simulate Soil Consolidation Problems with Prefabricated Vertical Drains

    Directory of Open Access Journals (Sweden)

    Gonzalo García-Ros


    Full Text Available The present work describes the program Simulation of Consolidation with Vertical Drains (SICOMED_2018, a tool for the solution of consolidation processes in heterogeneous soils, with totally or partially penetrating prefabricated vertical drains (PVD and considering both the effects of the smear zone, generated when introducing the drain into the ground, and the limitation in the discharge capacity of the drain. In order to provide a completely free program, the code Next-Generation Simulation Program with Integrated Circuit Emphasis (Ngspice has been used as a numerical tool while the Matrix Laboratory (MATLAB code was used to program and create an interface with the user through interactive screens. In this way, SICOMED_2018 is presented as an easy-to-use and intuitive program, with a simple graphical interface that allows the user to enter all the soil properties and geometry of the problem without having to resort to a complex software package that requires programming. Illustrative applications describe both the versatility of the program and the reliability of its numerical solutions.

  16. Simulated Effects of Soil Temperature and Salinity on Capacitance Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Timothy R. Green


    Full Text Available Dielectric measurement techniques are used widely for estimation of water contentin environmental media. However, factors such as temperature and salinity affecting thereadings require further quantitative investigation and explanation. Theoretical sensitivities ofcapacitance sensors to liquid salinity and temperature of porous media were derived andcomputed using a revised electrical circuit analogue model in conjunction with a dielectricmixing model and a finite element model of Maxwell’s equation to compute electrical fielddistributions. The mixing model estimates the bulk effective complex permittivities of solid-water-air media. The real part of the permittivity values were used in electric field simulations,from which different components of capacitance were calculated via numerical integration forinput to the electrical circuit analogue. Circuit resistances representing the dielectric losses werecalculated from the complex permittivity of the bulk soil and from the modeled fields. Resonantfrequencies from the circuit analogue were used to update frequency-dependent variables in aniterative manner. Simulated resonant frequencies of the capacitance sensor display sensitivitiesto both temperature and salinity. The gradients in normalized frequency with temperatureranged from negative to positive values as salinity increased from 0 to 10 g L-1. The modeldevelopment and analyses improved our understanding of processes affecting the temperatureand salinity sensitivities of capacitance sensors in general. This study provides a foundation forfurther work on inference of soil water content under field conditions.

  17. Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo (Phyllostachys edulis) plantations under simulated nitrogen deposition (United States)

    Li, Quan; Lei, Zhaofeng; Song, Xinzhang; Zhang, Zhiting; Ying, Yeqing; Peng, Changhui


    Biochar amendment has been proposed as a strategy to improve acidic soils after overuse of nitrogen fertilizers. However, little is known of the role of biochar in soil microbial biomass carbon (MBC) and bacterial community structure and diversity after soil acidification induced by nitrogen (N) deposition. Using high-throughput sequencing of the 16S rRNA gene, we determined the effects of biochar amendment (BC0, 0 t bamboo biochar ha‑1 BC20, 20 t bamboo biochar ha‑1 and BC40, 40 t bamboo biochar ha‑1) on the soil bacterial community structure and diversity in Moso bamboo plantations that had received simulated N deposition (N30, 30 kg N ha‑1 yr‑1 N60, 60 kg N ha‑1 yr‑1 N90, 90 kg N ha‑1 yr‑1 and N-free) for 21 months. After treatment of N-free plots, BC20 significantly increased soil MBC and bacterial diversity, while BC40 significantly decreased soil MBC but increased bacterial diversity. When used to amend N30 and N60 plots, biochar significantly decreased soil MBC and the reducing effect increased with biochar amendment amount. However, these significant effects were not observed in N90 plots. Under N deposition, biochar amendment largely increased soil bacterial diversity, and these effects depended on the rates of N deposition and biochar amendment. Soil bacterial diversity was significantly related to the soil C/N ratio, pH, and soil organic carbon content. These findings suggest an optimal approach for using biochar to offset the effects of N deposition in plantation soils and provide a new perspective for understanding the potential role of biochar amendments in plantation soil.

  18. Estimation of soil salinity by using Markov Chain Monte Carlo simulation for multi-configuration electromagnetic induction measurements (United States)

    Jadoon, K. Z.; Altaf, M. U.; McCabe, M. F.; Hoteit, I.; Moghadas, D.


    In arid and semi-arid regions, soil salinity has a major impact on agro-ecosystems, agricultural productivity, environment and sustainability. High levels of soil salinity adversely affect plant growth and productivity, soil and water quality, and may eventually result in soil erosion and land degradation. Being essentially a hazard, it's important to monitor and map soil salinity at an early stage to effectively use soil resources and maintain soil salinity level below the salt tolerance of crops. In this respect, low frequency electromagnetic induction (EMI) systems can be used as a noninvasive method to map the distribution of soil salinity at the field scale and at a high spatial resolution. In this contribution, an EMI system (the CMD Mini-Explorer) is used to estimate soil salinity using a Bayesian approach implemented via a Markov chain Monte Carlo (MCMC) sampling for inversion of multi-configuration EMI measurements. In-situ and EMI measurements were conducted across a farm where Acacia trees are irrigated with brackish water using a drip irrigation system. The electromagnetic forward model is based on the full solution of Maxwell's equation, and the subsurface is considered as a three-layer problem. In total, five parameters (electrical conductivity of three layers and thickness of top two layers) were inverted and modeled electrical conductivities were converted into the universal standard of soil salinity measurement (i.e. using the method of electrical conductivity of a saturated soil paste extract). Simulation results demonstrate that the proposed scheme successfully recovers soil salinity and reduces the uncertainties in the prior estimate. Analysis of the resulting posterior distribution of parameters indicates that electrical conductivity of the top two layers and the thickness of the first layer are well constrained by the EMI measurements. The proposed approach allows for quantitative mapping and monitoring of the spatial electrical conductivity

  19. Lunar Regolith Excavation Competition (United States)

    Liles, Cassandra


    The Lunar Regolith Excavation Competition is a new competition that needs graphics, logos, rules, as well as an arena. Although this is the first year of the competition, the competition is modeled after an existing competition, the Centennial Lunar Excavator Challenge. This competition however is aimed at college students. This makes the challenge identifying key aspects of the original competition and modeling them to fit into an easier task, and creating exciting advertisement that helps encourage participation. By using a youth focus group, young insight, as well as guiding advice from experts in the field, hopefully an arena can be designed and built, rules can be molded and created to fit, and alluring graphics can be printed to bring about a successful first year of the Lunar Regolith Excavation Competition.

  20. Lunar crane hook (United States)

    Cash, John Wilson, III; Cone, Alan E.; Garolera, Frank J.; German, David; Lindabury, David Peter; Luckado, Marshall Cleveland; Murphey, Craig; Rowell, John Bryan; Wilkinson, Brad


    The base and ball hook system is an attachment that is designed to be used on the lunar surface as an improved alternative to the common crane hook and eye system. The design proposed uses an omni-directional ball hook and base to overcome the design problems associated with a conventional crane hook. The base and ball hook is not sensitive to cable twist which would render a robotic lunar crane useless since there is little atmospheric resistance to dampen the motion of an oscillating member. The symmetric characteristics of the ball hook and base eliminates manual placement of the ball hook into the base; commonly associated with the typical hook and eye stem. The major advantage of the base and ball hook system is it's ease of couple and uncouple modes that are advantages during unmanned robotic lunar missions.

  1. The lunar apatite paradox. (United States)

    Boyce, J W; Tomlinson, S M; McCubbin, F M; Greenwood, J P; Treiman, A H


    Recent discoveries of water-rich lunar apatite are more consistent with the hydrous magmas of Earth than the otherwise volatile-depleted rocks of the Moon. Paradoxically, this requires H-rich minerals to form in rocks that are otherwise nearly anhydrous. We modeled existing data from the literature, finding that nominally anhydrous minerals do not sufficiently fractionate H from F and Cl to generate H-rich apatite. Hydrous apatites are explained as the products of apatite-induced low magmatic fluorine, which increases the H/F ratio in melt and apatite. Mare basalts may contain hydrogen-rich apatite, but lunar magmas were most likely poor in hydrogen, in agreement with the volatile depletion that is both observed in lunar rocks and required for canonical giant-impact models of the formation of the Moon.

  2. Lunar lander conceptual design (United States)

    Stecklein, J. M.; Petro, A. J.; Stump, W. R.; Adorjan, A. S.; Chambers, T. V.; Donofrio, M.; Hirasaki, J. K.; Morris, O. G.; Nudd, G.; Rawlings, R. P.


    This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers.

  3. A lunar polar expedition (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas


    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  4. A Novel Teleoperated Hybrid Wheel-Limb Hexapod for Lunar Craters' Exploration (United States)

    Rohmer, Eric; Collins, Matthew; Reina, Giulio; Yoshida, Kazuya

    Successful robotic planetary exploration missions are not without technical and scientific challenges. Appropriate control and mobility of the robot is critical for successful exploration in unstructured environments. We address these problems through an overview of an under development telerobotic platform for exploration missions to the lunar craters. The platform is based on a novel transforming hybrid walking/roving Lunar Exploration Omnidirectional Netbot (LEON). We describe a versatile dynamic engine based simulator/teleoperation platform called ERode (Eric Rohmer Open Dynamic Engine), which allows developing, simulating and teleoperation of LEON. We also introduce the novel hybrid wheel/limb design of LEON, whereby two of its six limbs fold into themselves transforming into wheels. This possibility of transformation results in increased mobility in the environment, by adapting to different soil conditions. Furthermore, this system has a limited bulkiness compared to hybrid systems owning both wheels and legs, and it has an increased wheel diameter compared to hybrid systems having wheels at the tip of their legs. Preliminary experimental or simulated results are also presented, showing the performance of the hybrid system dealing with different types of terrain.

  5. The responses of soil and rhizosphere respiration to simulated climatic changes vary by season. (United States)

    Suseela, Vidya; Dukes, Jeffrey S


    Responses of soil respiration (Rs) to anthropogenic climate change will affect terrestrial carbon storage and, thus, feed back to warming. To provide insight into how warming and changes in precipitation regimes affect the rate and temperature sensitivity of Rs and rhizosphere respiration (Rr) across the year, we subjected a New England old-field ecosystem to four levels of warming and three levels of precipitation (ambient, drought, and wet treatments). We measured Rs and heterotrophic respiration (Rh) monthly (in areas of the plots with and without plants, respectively) and estimated Rr by calculating the difference in respiration between Rs and Rh. Even in this mesic ecosystem, Rs and Rr responded strongly to the precipitation treatments. Drought reduced Rs and Rr, both annually and during the growing season. Annual cumulative Rs responded nonlinearly to precipitation treatments; both drought and supplemental precipitation suppressed Rs compared to the ambient treatment. Warming increased Rs and Rr in spring and winter when soil moisture was optimal but decreased these rates in summer when moisture was limiting. Cumulative winter Rr increased by about 200% in the high warming (approximately 3.5 degrees C) treatment. The effect of climate treatments on the temperature sensitivity of Rs depended on the season. In the fall, the drought treatment decreased apparent Q10 relative to the other precipitation treatments. The responses of Rs to warming and altered precipitation were largely driven by changes in Rr. We emphasize the importance of incorporating realistic soil moisture responses into simulations of soil carbon fluxes; the long-term effects of warming on carbon--climate feedback will depend on future precipitation regimes. Our results highlight the nonlinear responses of soil respiration to soil moisture and, to our knowledge, quantify for the first time the loss of carbon through winter rhizosphere respiration due to warming. While this additional loss is

  6. Characteristic of Soil Nutrients Loss in Beiyunhe Reservoir Under the Simulated Rainfall

    Directory of Open Access Journals (Sweden)

    LIU Cao


    Full Text Available Field nutrient loss from soil became the major factor of the water pollution control in countryside in China. Beiyunhe reservoir is located in semiarid zone, where field nutrient loss distributed in summer. To assess the flied nutrient loss in Beiyunhe reservoir, we conducted experiments to study the characteristic of soil nutrients loss by analysis of the content of runoff water, soil nutrients and runoff water sediment under simulated rainfall. The results showed that the runoff happened in the rainstorm. In runoff water, the content of TN was 4.7~11.3 mg·L-1, ammonia nitrogen and nitrate nitrogen accounted for 44.51% of TN; the content of P was 0.66~1.35 mg·L-1, water soluble phosphorus accounted for 54.08% of TP. And the main loss of nutrients was in the surface soil, the loss of TN, NH4+-N, NO3--N, TP and DP were 29.79%, 52.09%, 10.21%, 16.48% and 5.27%, respectively. However, the most of field nutrient loss were in runoff sediment, the content of TN and TP were 0.66~1.27 mg·g-1 and 14.73~20 mg·g-1 in sediment, and TN and TP account for 82.28% and 99.89% of total loss of nutrient. After the rainstorm, the macro-aggregates were reduced 8.8%, and the micro-aggregates increased 9.5%.

  7. From Experiments to Simulations: Downscaling Measurements of Na+ Distribution at the Root-Soil Interface (United States)

    Perelman, A.; Guerra, H. J.; Pohlmeier, A. J.; Vanderborght, J.; Lazarovitch, N.


    When salinity increases beyond a certain threshold, crop yield will decrease at a fixed rate, according to the Maas and Hoffman model (1976). Thus, it is highly important to predict salinization and its impact on crops. Current models do not consider the impact of the transpiration rate on plant salt tolerance, although it affects plant water uptake and thus salt accumulation around the roots, consequently influencing the plant's sensitivity to salinity. Better model parametrization can improve the prediction of real salinity effects on crop growth and yield. The aim of this research is to study Na+ distribution around roots at different scales using different non-invasive methods, and to examine how this distribution is affected by the transpiration rate and plant water uptake. Results from tomato plants that were grown on rhizoslides (a capillary paper growth system) showed that the Na+ concentration was higher at the root-substrate interface than in the bulk. Also, Na+ accumulation around the roots decreased under a low transpiration rate, supporting our hypothesis. The rhizoslides enabled the root growth rate and architecture to be studied under different salinity levels. The root system architecture was retrieved from photos taken during the experiment, enabling us to incorporate real root systems into a simulation. Magnetic resonance imaging (MRI) was used to observe correlations between root system architectures and Na+ distribution. The MRI provided fine resolution of the Na+ accumulation around a single root without disturbing the root system. With time, Na+ accumulated only where roots were found in the soil and later around specific roots. Rhizoslides allow the root systems of larger plants to be investigated, but this method is limited by the medium (paper) and the dimension (2D). The MRI can create a 3D image of Na+ accumulation in soil on a microscopic scale. These data are being used for model calibration, which is expected to enable the prediction

  8. Endogenous Lunar Volatiles (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Boyce, J. W.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Magna, T.; Ni, P.; Tartese, R.; hide


    The chapter will begin with an introduction that defines magmatic volatiles (e.g., H, F, Cl, S) versus geochemical volatiles (e.g., K, Rb, Zn). We will discuss our approach of understanding both types of volatiles in lunar samples and lay the ground work for how we will determine the overall volatile budget of the Moon. We will then discuss the importance of endogenous volatiles in shaping the "Newer Views of the Moon", specifically how endogenous volatiles feed forward into processes such as the origin of the Moon, magmatic differentiation, volcanism, and secondary processes during surface and crustal interactions. After the introduction, we will include a re-view/synthesis on the current state of 1) apatite compositions (volatile abundances and isotopic compositions); 2) nominally anhydrous mineral phases (moderately to highly volatile); 3) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar pyroclastic glass beads; 4) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar basalts; 5) volatile (moderately to highly volatile) abundances in and isotopic compositions of melt inclusions; and finally 6) experimental constraints on mineral-melt partitioning of moderately to highly volatile elements under lunar conditions. We anticipate that each section will summarize results since 2007 and focus on new results published since the 2015 Am Min review paper on lunar volatiles [9]. The next section will discuss how to use sample abundances of volatiles to understand the source region and potential caveats in estimating source abundances of volatiles. The following section will include our best estimates of volatile abundances and isotopic compositions (where permitted by available data) for each volatile element of interest in a number of important lunar reservoirs, including the crust, mantle, KREEP, and bulk Moon. The final section of the chapter will focus upon future work, outstanding questions

  9. Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment (United States)

    Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.


    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.

  10. Effects of Regolith Properties on UV/VIS Spectra and Implications for Lunar Remote Sensing (United States)

    Coman, Ecaterina Oana

    Lunar regolith chemistry, mineralogy, various maturation factors, and grain size dominate the reflectance of the lunar surface at ultraviolet (UV) to visible (VIS) wavelengths. These regolith properties leave unique fingerprints on reflectance spectra in the form of varied spectral shapes, reflectance intensity values, and absorption bands. With the addition of returned lunar soils from the Apollo and Luna missions as ground truth, these spectral fingerprints can be used to derive maps of global lunar chemistry or mineralogy to analyze the range of basalt types on the Moon, their spatial distribution, and source regions for clues to lunar formation history and evolution. The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) is the first lunar imager to detect bands at UV wavelengths (321 and 360 nm) in addition to visible bands (415, 566, 604, 643, and 689 nm). This dissertation uses a combination of laboratory and remote sensing studies to examine the relation between TiO2 concentration and WAC UV/VIS spectral ratios and to test the effects of variations in lunar chemistry, mineralogy, and soil maturity on ultraviolet and visible wavelength reflectance. Chapter 1 presents an introduction to the dissertation that includes some background in lunar mineralogy and remote sensing. Chapter 2 covers coordinated analyses of returned lunar soils using UV-VIS spectroscopy, X-ray diffraction, and micro X-ray fluorescence. Chapter 3 contains comparisons of local and global remote sensing observations of the Moon using LROC WAC and Clementine UVVIS TiO2 detection algorithms and Lunar Prospector (LP) Gamma Ray Spectrometer (GRS)-derived FeO and TiO2 concentrations. While the data shows effects from maturity and FeO on the UV/VIS detection algorithm, a UV/VIS relationship remains a simple yet accurate method for TiO2 detection on the Moon.

  11. DREAM Center for Lunar Science: Three Year Summary Report (United States)

    Farrell, W. M.; Killen, R. M.; Delory, G. T.


    In early 2009, the Dynamic Response of the Environment At the Moon (DREAM) lunar science center became a supporting team of NASA's Lunar Science Institute specifically to study the solar-lunar connection and understand the response of the lunar plasma, exosphere, dust, and surface environments to solar variations. We especially emphasize the effect extreme events like solar storms and impacts have on the plasma-surface-gas dynamic system. One of the center's hallmark contribution is the solar storm - lunar atmosphere modeling (SSLAM) study that cross-integrated a large number of the center's models to determine the effect a strong solar storm has at the Moon. The results from this intramural event will be described herein. A number of other key studies were performed, including a unique ground-based observation of the LCROSS impact-generated sodium plume, LADEE dust and atmosphere expectation studies, ARTEMIS data and model synthesis, polar crater ambipolar modeling, dust transport simulations, and focused studies on the formation and distribution of lunar water. DREAM successfully advanced the understanding of the solar-driven lunar environment from the Apollo era, through the Altair era, to the new flexible era of exploration.

  12. Lunar Eclipse Analysis For KOMPSAT

    Directory of Open Access Journals (Sweden)

    Eunghyun Kim


    Full Text Available The Korea Muliti-Purpose Satellite(KOMPSAT uses a sun-synchronous orbit with an altitude 685km as mission orbit and undergoes earth eclipses and infrequently lunar eclipses. Lunar eclipses occur when the moon is located between the sun and the satellite and blocks partially or fully the sunlight. The eclipse causes the satellite to increase battery discharge times and affects satellite lifetime and mission operation. The KOMPSAT lunar eclipses can cause additional effects to energy balance and battery disc of the KOMPSAT lunar eclipse for 3 year mission lifetime. Also mission planning scenario is presented for lunar eclipses at the KOMPSAT Grouns Station(KGS.

  13. Implementation of Controlled Traffic in the Canadian Prairies: Soil and Plant Dynamics under Simulated and Field Conditions (United States)

    Guenette, Kris; Hernandez-Ramirez, Guillermo


    Achieving resiliency in agroecosystems may be accomplished through the incorporation of contemporary management systems and the diversification of crop rotations with pulse crops, such as controlled traffic farming (CTF) and faba beans (Vicia faba L.). As these practices become more common in the Canadian Prairies, it is imperative to have a well-rounded understanding of how faba beans interact with the soil-plant-atmosphere continuum in conditions found in contemporary management systems. Simulated field conditions emulated soil compaction found in both the trafficked and un-trafficked areas of a CTF system, in which the presence of high water availability was shown to offset the negative results of large applications of compactive effort. Furthermore, low water availability exacerbated differences in plant responses between compaction treatments. The simulated treatment of 1.2 gcm-3 coupled with high water content yielded the most optimal results for most measured parameters, with a contrasting detrimental treatment of 1.4 gcm-3 at low water availability. The simulated field conditions were further bridged through an analysis of two commercial sites in Alberta, Canada that compared both trafficked and un-trafficked soil properties. Soil properties such as available nitrogen (AN), pH, soil total nitrogen (STN), soil organic carbon (SOC), bulk density, macroporosity, soil quality S-Index, plant available water capacity (PAWC) and unsaturated hydraulic conductivity (Km) were analysed and compared among trafficked and un-trafficked areas. The measured soil physical and hydraulic properties of bulk density, macroporosity, S-Index, PAWC and Km were shown to be heavily influenced by the CTF traffic regime, while soil nutrient properties of AN, pH, STN SOC were determined to be dependent on both management and landscape features.

  14. Applicability of five models to simulate water infiltration into soil with added biochar (United States)

    As a soil amendment, biochar can reduce soil bulk density, increase soil porosity, and alter soil aggregates and thus affect the infiltration. Researchers have proposed and revised several theoretical models to describe the process of soil infiltration. Although these models have been successfully u...

  15. Surface Roughness effects on Runoff and Soil Erosion Rates Under Simulated Rainfall (United States)

    Soil surface roughness is identified as one of the controlling factors governing runoff and soil loss yet, most studies pay little attention to soil surface roughness. In this study, we analyzed the influence of random soil surface roughness on runoff and soil erosion rates. Bulk samples of a silt l...

  16. Enhanced simulations of CH4 and CO2 production in permafrost-affected soils address soil moisture controls on anaerobic decomposition (United States)

    Graham, D. E.; Zheng, J.; Moon, J. W.; Painter, S. L.; Thornton, P. E.; Gu, B.; Wullschleger, S. D.


    Rapid warming of Arctic ecosystems exposes soil organic carbon (SOC) to accelerated microbial decomposition, leading to increased emissions of carbon dioxide (CO2) and methane (CH4) that have a positive feedback on global warming. The magnitude, timing, and form of carbon release will depend not only on changes in temperature, but also on biogeochemical and hydrological properties of soils. In this synthesis study, we assessed the decomposability of thawed organic carbon from active layer soils and permafrost from the Barrow Environmental Observatory across different microtopographic positions under anoxic conditions. The main objectives of this study were to (i) examine environmental conditions and soil properties that control anaerobic carbon decomposition and carbon release (as both CO2 and CH4); (ii) develop a common set of parameters to simulate anaerobic CO2 and CH4 production; and (iii) evaluate uncertainties generated from representations of pH and temperature effects in the current model framework. A newly developed anaerobic carbon decomposition framework simulated incubation experiment results across a range of soil water contents. Anaerobic CO2 and CH4 production have different temperature and pH sensitivities, which are not well represented in current biogeochemical models. Distinct dynamics of CH4 production at -2° C suggest methanogen biomass and growth rate limit activity in these near-frozen soils, compared to warmer temperatures. Anaerobic CO2 production is well constrained by the model using data-informed labile carbon pool and fermentation rate initialization to accurately simulate its temperature sensitivity. On the other hand, CH4 production is controlled by water content, methanogenesis biomass, and the presence of alternative electron acceptors, producing a high temperature sensitivity with large uncertainties for methanogenesis. This set of environmental constraints to methanogenesis is likely to undergo drastic changes due to permafrost

  17. The Sooner Lunar Schooner: Lunar engineering education (United States)

    Miller, D. P.; Hougen, D. F.; Shirley, D.


    The Sooner Lunar Schooner is a multi-disciplinary ongoing project at the University of Oklahoma to plan, design, prototype, cost and (when funds become available) build/contract and fly a robotic mission to the Moon. The goal of the flight will be to explore a small section of the Moon; conduct a materials analysis of the materials left there by an Apollo mission thirty years earlier; and to perform a selenographic survey of areas that were too distant or considered too dangerous to be done by the Apollo crew. The goal of the Sooner Lunar Schooner Project is to improve the science and engineering educations of the hundreds of undergraduate and graduate students working on the project. The participants, while primarily from engineering and physics, will also include representatives from business, art, journalism, law and education. This project ties together numerous existing research programs at the University, and provides a framework for the creation of many new research proposals. The authors were excited and motivated by the Apollo missions to the Moon. When we asked what we could do to similarly motivate students we realized that nothing is as exciting as going to the Moon. The students seem to agree.

  18. Construction of the 16 meter Large Lunar Telescope (LLT) (United States)

    Omar, Husam Anwar


    The different materials that could be used to design the pedestal for a Moon based 16 meter telescope are discussed. The material that should be used has a low coefficient of thermal expansion, high modulus of elasticity, and high compressive and tensile strengths. For the model developed in this study, an aluminum-manganese alloy was used because of its low coefficient of thermal expansion. Due to variations in lunar soil conditions, both vertically and horizontally, three foundation systems are presented. The spudcan footing can be used in the case where dense soil is more than three meters. The spread footing is recommended where the dense soil is between one and three meters. Finally, in the third system, the Lunar Excursion Vehicle (LEV) is used as a base support for the telescope's pedestal. The LEV support requires a prepared site. The soil should be compacted and stabilized, if necessary, to reduce settlement.

  19. Evidence of weak land-atmosphere coupling under varying bare soil conditions: Are fully coupled Darcy/Navier-Stokes models necessary for simulating soil moisture dynamics? (United States)

    Illangasekare, T. H.; Trautz, A. C.; Howington, S. E.; Cihan, A.


    It is a well-established fact that the land and atmosphere form a continuum in which the individual domains are coupled by heat and mass transfer processes such as bare-soil evaporation. Soil moisture dynamics can be simulated at the representative elementary volume (REV) scale using decoupled and fully coupled Darcy/Navier-Stokes models. Decoupled modeling is an asynchronous approach in which flow and transport in the soil and atmosphere is simulated independently; the two domains are coupled out of time-step via prescribed flux parameterizations. Fully coupled modeling in contrast, solves the governing equations for flow and transport in both domains simultaneously with the use of coupling interface boundary conditions. This latter approach, while being able to provide real-time two-dimensional feedbacks, is considerably more complex and computationally intensive. In this study, we investigate whether fully coupled models are necessary, or if the simpler decoupled models can sufficiently capture soil moisture dynamics under varying land preparations. A series of intermediate-scale physical and numerical experiments were conducted in which soil moisture distributions and evaporation estimates were monitored at high spatiotemporal resolutions for different heterogeneous packing and soil roughness scenarios. All experimentation was conducted at the newly developed Center for Experimental Study of Subsurface Environmental Processes (CESEP) wind tunnel-porous media user test-facility at the Colorado School of. Near-surface atmospheric measurements made during the experiments demonstrate that the land-atmosphere coupling was relatively weak and insensitive to the applied edaphic and surface conditions. Simulations with a decoupled multiphase heat and mass transfer model similarly show little sensitivity to local variations in atmospheric forcing; a single, simple flux parameterization can sufficiently capture the soil moisture dynamics (evaporation and redistribution

  20. Lunar troilite: Crystallography (United States)

    Evans, H.T.


    Fine, euhedral crystals of troilite from lunar sample 10050 show a hexagonal habit consistent with the high-temperature NiAs-type structure. Complete three-dimensional counter intensity data have been measured and used to confirm and refine Bertaut's proposed low-temperature crystal structure.

  1. The Lunar orbit paradox

    Directory of Open Access Journals (Sweden)

    Tomić Aleksandar S.


    Full Text Available Newton's formula for gravity force gives greather force intensity for atraction of the Moon by the Sun than atraction by the Earth. However, central body in lunar (primary orbit is the Earth. So appeared paradox which were ignored from competent specialist, because the most important problem, determination of lunar orbit, was inmediately solved sufficiently by mathematical ingeniosity - introducing the Sun as dominant body in the three body system by Delaunay, 1860. On this way the lunar orbit paradox were not canceled. Vujičić made a owerview of principles of mechanics in year 1998, in critical consideration. As an example for application of corrected procedure he was obtained gravity law in some different form, which gave possibility to cancel paradox of lunar orbit. The formula of Vujičić, with our small adaptation, content two type of acceleration - related to inertial mass and related to gravity mass. So appears carried information on the origin of the Moon, and paradox cancels.

  2. Lunar science: An overview

    Indian Academy of Sciences (India)

    Before spacecraft exploration,facts about the Moon were restricted to information about the lunar orbit,angular momentum and density.Speculations about composition and origin were unconstrained.Naked eye and telescope observations revealed two major terrains,the old heavily cratered highlands and the younger ...

  3. Simulating the volatilization of solvents in unsaturated soils during laboratory and field infiltration experiments (United States)

    Cho, H. Jean; Jaffe, Peter R.; Smith, James A.


    This paper describes laboratory and field experiments which were conducted to study the dynamics of trichloroethylene (TCE) as it volatilized from contaminated groundwater and diffused in the presence of infiltrating water through the unsaturated soil zone to the land surface. The field experiments were conducted at the Picatinny Arsenal, which is part of the United States Geological Survey Toxic Substances Hydrology Program. In both laboratory and field settings the gas and water phase concentrations of TCE were not in equilibrium during infiltration. Gas-water mass transfer rate constants were calibrated to the experimental data using a model in which the water phase was treated as two phases: a mobile water phase and an immobile water phase. The mass transfer limitations of a volatile organic compound between the gas and liquid phases were described explicitly in the model. In the laboratory experiment the porous medium was nonsorbing, and water infiltration rates ranged from 0.076 to 0.28 cm h−1. In the field experiment the water infiltration rate was 0.34 cm h−1, and sorption onto the soil matrix was significant. The laboratory-calibrated gas-water mass transfer rate constant is 3.3×10−4 h−1 for an infiltration rate of 0.076 cm h−1 and 1.4×10−3 h−1 for an infiltration rate of 0.28 cm h−1. The overall mass transfer rate coefficients, incorporating the contribution of mass transfer between mobile and immobile water phases and the variation of interfacial area with moisture content, range from 3×10−4 h−1 to 1×10−2 h−1. A power law model relates the gas-water mass transfer rate constant to the infiltration rate and the fraction of the water phase which is mobile. It was found that the results from the laboratory experiments could not be extrapolated to the field. In order to simulate the field experiment the very slow desorption of TCE from the soil matrix was incorporated into the mathematical model. When desorption from the

  4. Simulation models: a current indispensable tool in studies of the continuous water-soil-plant - atmosphere

    International Nuclear Information System (INIS)

    Lopez Seijas, Teresa; Gonzalez, Felicita; Cid, G.; Osorio, Maria de los A.; Ruiz, Maria Elena


    Full text: This work assesses the current use of simulation models as a tool useful and indispensable for the advancement in the research and study of the processes related to the continuous water-soil - plant-atmosphere. In recent years they have reported in the literature many jobs where these modeling tools are used as a support to the decision-making process of companies or organizations in the agricultural sphere and in Special for the design of optimal management of irrigation and fertilization strategies of the crops. Summarizes some of the latest applications reported with respect to the use of water transfers and solutes, such simulation models mainly to nitrate leaching and groundwater contamination problems. On the other hand also summarizes important applications of simulation models of growth of cultivation for the prediction of effects on the performance of different conditions of water stress, and finally some other applications on the management of the different irrigation technologies as kingpins, superfiail irrigation and drip irrigation. Refer also the main work carried out in Cuba. (author)

  5. Indigenous lunar construction materials (United States)

    Rogers, Wayne P.; Sture, Stein


    The utilization of local resources for the construction and operation of a lunar base can significantly reduce the cost of transporting materials and supplies from Earth. The feasibility of processing lunar regolith to form construction materials and structural components is investigated. A preliminary review of potential processing methods such as sintering, hot-pressing, liquification, and cast basalt techniques, was completed. The processing method proposed is a variation on the cast basalt technique. It involves liquification of the regolith at 1200-1300 C, casting the liquid into a form, and controlled cooling. While the process temperature is higher than that for sintering or hot-pressing (1000-1100 C), this method is expected to yield a true engineering material with low variability in properties, high strength, and the potential to form large structural components. A scenario for this processing method was integrated with a design for a representative lunar base structure and potential construction techniques. The lunar shelter design is for a modular, segmented, pressurized, hemispherical dome which could serve as habitation and laboratory space. Based on this design, estimates of requirements for power, processing equipment, and construction equipment were made. This proposed combination of material processing method, structural design, and support requirements will help to establish the feasibility of lunar base construction using indigenous materials. Future work will refine the steps of the processing method. Specific areas where more information is needed are: furnace characteristics in vacuum; heat transfer during liquification; viscosity, pouring and forming behavior of molten regolith; design of high temperature forms; heat transfer during cooling; recrystallization of basalt; and refinement of estimates of elastic moduli, compressive and tensile strength, thermal expansion coefficient, thermal conductivity, and heat capacity. The preliminary

  6. Discoveries from Revisiting Apollo Direct Active Measurements of Lunar Dust (United States)

    O'Brien, Brian


    New missions to the moon being developed by China, Japan, India, USA, Russia and Europe and possibilities of human missions about 2020 face the reality that 6 Apollo expeditions did not totally manage or mitigate effects of easily-mobilised and very "sticky" lunar dust on humans and hardware. Laboratory and theoretical modelling cannot reliably simulate the complex lunar environments that affect dynamical movements of lunar dust. The only direct active measurements of lunar dust during Apollo were made by matchbox-sized minimalist Dust Detector Experiments (DDEs) deployed to transmit some 30 million digital measurements from Apollo 11, 12, 14 and 15. These were misplaced or relatively ignored until 2009, when a self-funded suite of discoveries (O'Brien Geophys. Research Letters FIX 6 May 2099) revealed unexpected properties of lunar dust, such as the adhesive force being stronger as illumination increased. We give the first reports of contrasting effects, contamination or cleansing, from rocket exhausts of Apollo 11, 12, 14 and 15 Lunar Modules leaving the moon. We further strengthen the importance of collateral dust inadvertently splashed on Apollo hardware by human activities. Dust management designs and mission plans require optimum use of such in situ measurements, extended by laboratory simulations and theoretical modelling.

  7. An investigation of the implications of lunar illumination spectral changes for Day/Night Band-based cloud property retrieval due to lunar phase transition (United States)

    Min, Min; Deng, Jianbo; Liu, Chao; Guo, Jianping; Lu, Naimeng; Hu, Xiuqing; Chen, Lin; Zhang, Peng; Lu, Qifeng; Wang, Ling


    The Moon reflects sunlight like a huge mirror hanging in the sky at night, which presents the obviously periodical changes in its luminance or irradiance due to Sun-Earth-Moon geometry variation. The potential effect of the periodical changes in lunar phase angle on nighttime Day/Night Band (DNB) radiative transfer simulation in the presence of cloud has seldom been reported thus far. In this study, a radiative transfer model is developed by coupling the lunar light source with various Sun-Earth-Moon geometries. To elucidate the stability of DNB-averaged cloud bulk scattering properties, we simulate nighttime reflectance and radiances under four typical lunar phase angles (0°, 45°, 90°, and 135°) from 7 April 2016 to 8 May 2016 (e.g., two lunar cycles). Explicit simulation analyses indicated that DNB-averaged cloud bulk scattering properties exhibit weak sensitivity to lunar phase angles. The maximum DNB reflectance differences between any and 90° lunar phase angles are less than 0.05% (0.01%) in the presence of water (ice) clouds, indicating a negligible effect of periodically changes on lunar spectral irradiances. Our findings suggest that the differences of reflectance at lunar phase angle = 90° are less than approximately 0.05% (water cloud)/0.01% (ice cloud), much smaller than 11% radiometric calibration uncertainties of DNB. This means that these differences could be ignored in both nighttime cloud property retrieval and DNB radiative transfer modeling.

  8. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.


    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  9. Variability in soil-water retention properties and implications for physics-based simulation of landslide early warning criteria (United States)

    Thomas, Matthew A.; Mirus, Benjamin B.; Collins, Brian D.; Lu, Ning; Godt, Jonathan W.


    Rainfall-induced shallow landsliding is a persistent hazard to human life and property. Despite the observed connection between infiltration through the unsaturated zone and shallow landslide initiation, there is considerable uncertainty in how estimates of unsaturated soil-water retention properties affect slope stability assessment. This source of uncertainty is critical to evaluating the utility of physics-based hydrologic modeling as a tool for landslide early warning. We employ a numerical model of variably saturated groundwater flow parameterized with an ensemble of texture-, laboratory-, and field-based estimates of soil-water retention properties for an extensively monitored landslide-prone site in the San Francisco Bay Area, CA, USA. Simulations of soil-water content, pore-water pressure, and the resultant factor of safety show considerable variability across and within these different parameter estimation techniques. In particular, we demonstrate that with the same permeability structure imposed across all simulations, the variability in soil-water retention properties strongly influences predictions of positive pore-water pressure coincident with widespread shallow landsliding. We also find that the ensemble of soil-water retention properties imposes an order-of-magnitude and nearly two-fold variability in seasonal and event-scale landslide susceptibility, respectively. Despite the reduced factor of safety uncertainty during wet conditions, parameters that control the dry end of the soil-water retention function markedly impact the ability of a hydrologic model to capture soil-water content dynamics observed in the field. These results suggest that variability in soil-water retention properties should be considered for objective physics-based simulation of landslide early warning criteria.

  10. The impact of soil moisture variability on seasonal convective precipitation simulations. Part I: validation, feedbacks, and realistic initialisation

    Directory of Open Access Journals (Sweden)

    Samiro Khodayar


    Full Text Available To assess how well and with what uncertainties the components of the regional water cycle, such as soil moisture, evapotranspiration, and precipitation, can be modelled especially in complex orographic areas and to investigate possible relationships among these parameters, numerical experiments were performed using the COSMO-CLM model in climate mode and observations from the field campaign 'Convective and Orographically-induced Precipitation Study' (COPS, including a unique soil moisture monitoring network. Additionally, the soil moisture observations were utilised for the initialisation of model simulations to investigate the impact on the precipitation field. The simulated summer season showed a clear relation of the different parameters of the process chain between soil moisture and precipitation. Deficiencies in the external model data, such as the soil type inventory, were pointed out. The simulated precipitation field showed an overestimation mainly in the valley and at lower altitudes. However, the analysis of the soil moisture distribution revealed a major underestimation in the valley and windward Black Forest areas, i.e. (a too much rain was converted into runoff and (b the forcing data were too dry. Differences in the surface fluxes could be attributed to a wrong soil type and an inappropriate land use type. The atmospheric water vapour content was overestimated in the valley and at windward sites, but underestimated in the high orographic areas, probably because thermally induced circulation systems were not represented well by the model. These model discrepancies may partly explain the biases observed in the precipitation field. Using COPS soil moisture observations for a model initialisation, an impact on precipitation was observed until the first strong precipitation event occurred.

  11. Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. (United States)

    Prosdocimi, Massimo; Burguet, Maria; Di Prima, Simone; Sofia, Giulia; Terol, Enric; Rodrigo Comino, Jesús; Cerdà, Artemi; Tarolli, Paolo


    Soil water erosion is a serious problem, especially in agricultural lands. Among these, vineyards deserve attention, because they constitute for the Mediterranean areas a type of land use affected by high soil losses. A significant problem related to the study of soil water erosion in these areas consists in the lack of a standardized procedure of collecting data and reporting results, mainly due to a variability among the measurement methods applied. Given this issue and the seriousness of soil water erosion in Mediterranean vineyards, this works aims to quantify the soil losses caused by simulated rainstorms, and compare them with each other depending on two different methodologies: (i) rainfall simulation and (ii) surface elevation change-based, relying on high-resolution Digital Elevation Models (DEMs) derived from a photogrammetric technique (Structure-from-Motion or SfM). The experiments were carried out in a typical Mediterranean vineyard, located in eastern Spain, at very fine scales. SfM data were obtained from one reflex camera and a smartphone built-in camera. An index of sediment connectivity was also applied to evaluate the potential effect of connectivity within the plots. DEMs derived from the smartphone and the reflex camera were comparable with each other in terms of accuracy and capability of estimating soil loss. Furthermore, soil loss estimated with the surface elevation change-based method resulted to be of the same order of magnitude of that one obtained with rainfall simulation, as long as the sediment connectivity within the plot was considered. High-resolution topography derived from SfM revealed to be essential in the sediment connectivity analysis and, therefore, in the estimation of eroded materials, when comparing them to those derived from the rainfall simulation methodology. The fact that smartphones built-in cameras could produce as much satisfying results as those derived from reflex cameras is a high value added for using Sf

  12. Simulation of a precision irrigation-system based on a pedo-specific calibrated wireless soil moisture sensor network (United States)

    Grashey-Jansen, S.; Timpf, S.


    In many climatic regions, the availability of water in soils determines to a large extent their agricultural productiveness. The hydrologic balance in soils is the result of complex physical processes, which are influenced by diverse geo-parameters with enormous spatial-temporal variations. Therefore, the measurement and quantitative based monitoring of the soil moisture dynamics has always been in the focus of soil physics and soil ecology. Especially in irrigated agricultural areas information about the actual soil water dynamics can deliver valuable data to optimize the irrigation practice with regard to volume and duration of irrigation. Novel irrigation equipment requires a fine control of the water distribution in the soil. One solution would be to have sensors near the plants' roots controlling the water inflow depending on the particular demand. Regarding the aspects of climatic change and the decrease of water resources, the term "precision irrigation" is being increasingly discussed. Only in this way we can meet the requirements due to the small-scale heterogeneities in soils. Such a precision irrigation must be based on objective and quantitative criteria, which focus primarily on the physical soil properties and hydrologic balances. This requires measuring arrangements with high spatial resolution in the horizontal and vertical directions. Such a dense soil-hydrological measuring network should ideally be composed of wireless micro-sensors, which are distributed in the investigated soil section and thereby collect data of relevant parameters in the pedosphere using a high temporal resolution and transmitting the information to a central logger-unit. This contribution will present a simulation-based approach of a precision irrigation-system with particular consideration of pedo-specific properties.

  13. Simulated long-term changes in river discharge and soil moisture due to global warming (United States)

    Manabe, S.; Milly, P.C.D.; Wetherald, R.


    By use of a coupled ocean atmosphere-land model, this study explores the changes of water availability, as measured by river discharge and soil moisture, that could occur by the middle of the 21st century in response to combined increases of greenhouse gases and sulphate aerosols based upon the "IS92a" scenario. In addition, it presents the simulated change in water availability that might be realized in a few centuries in response to a quadrupling of CO2 concentration in the atmosphere. Averaging the results over extended periods, the radiatively forced changes, which are very similar between the two sets of experiments, were successfully extracted. The analysis indicates that the discharges from Arctic rivers such as the Mackenzie and Ob' increase by up to 20% (of the pre-Industrial Period level) by the middle of the 21st century and by up to 40% or more in a few centuries. In the tropics, the discharges from the Amazonas and Ganga-Brahmaputra rivers increase substantially. However, the percentage changes in runoff from other tropical and many mid-latitude rivers are smaller, with both positive and negative signs. For soil moisture, the results of this study indicate reductions during much of the year in many semiarid regions of the world, such as the southwestern region of North America, the northeastern region of China, the Mediterranean coast of Europe, and the grasslands of Australia and Africa. As a percentage, the reduction is particularly large during the dry season. From middle to high latitudes of the Northern Hemisphere, soil moisture decreases in summer but increases in winter.

  14. Soil organic carbon loss and selective transportation under field simulated rainfall events.

    Directory of Open Access Journals (Sweden)

    Xiaodong Nie

    Full Text Available The study on the lateral movement of soil organic carbon (SOC during soil erosion can improve the understanding of global carbon budget. Simulated rainfall experiments on small field plots were conducted to investigate the SOC lateral movement under different rainfall intensities and tillage practices. Two rainfall intensities (High intensity (HI and Low intensity (LI and two tillage practices (No tillage (NT and Conventional tillage (CT were maintained on three plots (2 m width × 5 m length: HI-NT, LI-NT and LI-CT. The rainfall lasted 60 minutes after the runoff generated, the sediment yield and runoff volume were measured and sampled at 6-min intervals. SOC concentration of sediment and runoff as well as the sediment particle size distribution were measured. The results showed that most of the eroded organic carbon (OC was lost in form of sediment-bound organic carbon in all events. The amount of lost SOC in LI-NT event was 12.76 times greater than that in LI-CT event, whereas this measure in HI-NT event was 3.25 times greater than that in LI-NT event. These results suggest that conventional tillage as well as lower rainfall intensity can reduce the amount of lost SOC during short-term soil erosion. Meanwhile, the eroded sediment in all events was enriched in OC, and higher enrichment ratio of OC (ERoc in sediment was observed in LI events than that in HI event, whereas similar ERoc curves were found in LI-CT and LI-NT events. Furthermore, significant correlations between ERoc and different size sediment particles were only observed in HI-NT event. This indicates that the enrichment of OC is dependent on the erosion process, and the specific enrichment mechanisms with respect to different erosion processes should be studied in future.

  15. Development of near-zero water consumption cement materials via the geopolymerization of tektites and its implication for lunar construction (United States)

    Wang, Kai-Tuo; Tang, Qing; Cui, Xue-Min; He, Yan; Liu, Le-Ping


    The environment on the lunar surface poses some difficult challenges to building long-term lunar bases; therefore, scientists and engineers have proposed the creation of habitats using lunar building materials. These materials must meet the following conditions: be resistant to severe lunar temperature cycles, be stable in a vacuum environment, have minimal water requirements, and be sourced from local Moon materials. Therefore, the preparation of lunar building materials that use lunar resources is preferred. Here, we present a potential lunar cement material that was fabricated using tektite powder and a sodium hydroxide activator and is based on geopolymer technology. Geopolymer materials have the following properties: approximately zero water consumption, resistance to high- and low-temperature cycling, vacuum stability and good mechanical properties. Although the tektite powder is not equivalent to lunar soil, we speculate that the alkali activated activity of lunar soil will be higher than that of tektite because of its low Si/Al composition ratio. This assumption is based on the tektite geopolymerization research and associated references. In summary, this study provides a feasible approach for developing lunar cement materials using a possible water recycling system based on geopolymer technology.

  16. Development of near-zero water consumption cement materials via the geopolymerization of tektites and its implication for lunar construction. (United States)

    Wang, Kai-Tuo; Tang, Qing; Cui, Xue-Min; He, Yan; Liu, Le-Ping


    The environment on the lunar surface poses some difficult challenges to building long-term lunar bases; therefore, scientists and engineers have proposed the creation of habitats using lunar building materials. These materials must meet the following conditions: be resistant to severe lunar temperature cycles, be stable in a vacuum environment, have minimal water requirements, and be sourced from local Moon materials. Therefore, the preparation of lunar building materials that use lunar resources is preferred. Here, we present a potential lunar cement material that was fabricated using tektite powder and a sodium hydroxide activator and is based on geopolymer technology. Geopolymer materials have the following properties: approximately zero water consumption, resistance to high- and low-temperature cycling, vacuum stability and good mechanical properties. Although the tektite powder is not equivalent to lunar soil, we speculate that the alkali activated activity of lunar soil will be higher than that of tektite because of its low Si/Al composition ratio. This assumption is based on the tektite geopolymerization research and associated references. In summary, this study provides a feasible approach for developing lunar cement materials using a possible water recycling system based on geopolymer technology.

  17. Numerical simulations of Holocene salt-marsh dynamics under the hypothesis of large soil deformations (United States)

    Zoccarato, C.; Teatini, P.


    Salt marshes are vulnerable environments hosting complex interactions between physical and biological processes. The prediction of the elevation dynamics of a salt-marsh platform is crucial to forecast its future behavior under potential changing scenarios. An original finite-element (FE) numerical model accounting for the long-term marsh accretion and compaction linked to relative sea level rise is proposed. The accretion term considers the material sedimentation over the marsh surface, whereas the compaction reflects the progressive consolidation of the porous medium under the increasing load of the overlying younger deposits. The modeling approach is based on a 2D groundwater flow simulator coupled to a 1D vertical geomechanical module, where the soil properties may vary with the effective intergranular stress. The model takes also into account the geometric non-linearity arising from the consideration of large solid grain movements by using a Lagrangian approach with an adaptive FE mesh. The numerical experiments show the potentiality of the proposed 2D model, which consistently integrates in modeling framework the behavior of spatially distributed model parameters. High sedimentation rates and low permeabilities largely impact on the mechanism of soil compaction following the overpressure dissipation.

  18. hree-Dimensional Finite Element Simulation of the Buried Pipe Problem in Geogrid Reinforced Soil

    Directory of Open Access Journals (Sweden)

    Mohammed Yousif Fattah


    Full Text Available Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures. This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results of vertical crown deflection for the model without geogrid obtained from PLAXIS-3D are higher than those obtained by two-dimensional plane strain by about 21.4% while this percent becomes 12.1 for the model with geogrid, but in general, both have the same trend. The two dimensional finite elements analysis predictions of pipe-soil system behavior indicate an almost linear displacement of pipe deflection with applied pressure while 3-D analysis exhibited non-linear behavior especially at higher loads.

  19. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau (United States)

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A.D.


    Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to

  20. The International Lunar Decade Declaration (United States)

    Beldavs, V.; Foing, B.; Bland, D.; Crisafulli, J.


    The International Lunar Decade Declaration was discussed at the conference held November 9-13, 2014 in Hawaii "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space" - and accepted by a core group that forms the International Lunar Decade Working Group (ILDWG) that is seeking to make the proposed global event and decade long process a reality. The Declaration will be updated from time to time by members of the ILDWreflecting new knowledge and fresh perspectives that bear on building a global consortium with a mission to progress from lunar exploration to the transformation of the Moon into a wealth gene rating platform for the expansion of humankind into the solar system. When key organizations have endorsed the idea and joined the effort the text of the Declaration will be considered final. An earlier International Lunar Decade proposal was issued at the 8th ICEUM Conference in 2006 in Beijing together with 13 specific initiatives for lunar exploration[1,2,3]. These initiatives have been largely implemented with coordination among the different space agencies involved provided by the International Lunar Exploration Working Group[2,3]. The Second International Lunar Decade from 2015 reflects current trends towards increasing involvement of commercial firms in space, particularly seeking opportunities beyond low Earth orbit. The central vision of the International Lunar Decade is to build the foundations for a sustainable space economy through international collaboration concurrently addressing Lunar exploration and building a shared knowledge base;Policy development that enables collabo rative research and development leading to lunar mining and industrial and commercial development;Infrastructure on the Moon and in cislunar space (communications, transport, energy systems, way-stations, other) that reduces costs, lowers risks and speeds up the time to profitable operations;Enabling technologies

  1. Improved Calibration of Reflectance Data from the LRO Lunar Orbiter Laser Altimeter (LOLA) and Implications for Space Weathering (United States)

    Lemelin, M.; Lucey, P. G.; Neumann, G. A.; Mazarico, E. M.; Barker, M. K.; Kakazu, A.; Trang, D.; Smith, D. E.; Zuber, M. T.


    for the lunar samples may be due to mixing of soils from distinct latitudes.

  2. Plant performance and soil nitrogen mineralization in response to simulation climate change in subarctic dwarf shrub heath

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, A.E.; Neill, C.; Melillo, J.M.; Crabtree, R.; Bowles, F.P. [Marine Biological Lab., Ecosystems Center, Woods Hole, MA (United States)


    To simulate a future, warmer climate, we subjected subarctic dwarf shrub heath to 5 deg. C direct soil warming for five consecutive growing seasons (1993-1997). Supplemental air warming treatments vere imposed on warmed soil by plastic tents in 1994 and open-top chambers in 1995. Plant responses to warming were assessed by changes in: (1) shrub phenology. (2) current-year aboveground biomass in the dominant shrubs (Empetrum hermaphroditum, Vaccinium myrtillus, V. uliginosum and V. vitis-idaea), and (3) vascular and nonvascular plant cover. We estimated warming effects on soil nitrogen (N) availability by in situ buried bag incubation of soils. Soil warming stimulated soil N cycling and shrub growth and development in the short term (2-3 yr). In the second lear, net N mineralization rates doubled in warmed soil (4.3 kg N ha{sup -1} season{sup -1} in untreated soil vs 9.2 kg ha{sup -1} season{sup -1}). Greater N availability likely contributed to the observed 62% increase in current-year growth of V. myrtillus the dominant deciduous shrub. In the third year, soil and air warming increased shoot production by > 80% in the evergreen shrubs V. vitis-idaea and E. hermaphroditum. Soil warming had no detectable effects on plant growth or soil N cycling in the fifth year, suggesting that the long-term response may be less dramatic than short-term changes. Past fertilization studies in arctic and subarctic tundra reported an increase in the abundance of graminoids. Despite enhanced soil N mineralization in the second year we found that warming had little effect on plant community composition after five years. Even in an extreme climate warming scenario, it appears that subarctic soils mineralize an order of magnitude less N than was applied in fertilization experiments. High-dose fertilization studies provide insight into controls on plant communities, but do not accurately simulate increases in N availability predicted for a warmer climate. (au)

  3. Modelling of Lunar Dust and Electrical Field for Future Lunar Surface Measurements (United States)

    Lin, Yunlong

    Modelling of the lunar dust and electrical field is important to future human and robotic activities on the surface of the moon. Apollo astronauts had witnessed the maintaining of micron- and millimeter sized moon dust up to meters level while walked on the surface of the moon. The characterizations of the moon dust would enhance not only the scientific understanding of the history of the moon but also the future technology development for the surface operations on the moon. It has been proposed that the maintaining and/or settlement of the small-sized dry dust are related to the size and weight of the dust particles, the level of the surface electrical fields on the moon, and the impaction and interaction between lunar regolith and the solar particles. The moon dust distributions and settlements obviously affected the safety of long term operations of future lunar facilities. For the modelling of the lunar dust and the electrical field, we analyzed the imaging of the legs of the moon lander, the cover and the footwear of the space suits, and the envelope of the lunar mobiles, and estimated the size and charges associated with the small moon dust particles, the gravity and charging effects to them along with the lunar surface environment. We also did numerical simulation of the surface electrical fields due to the impaction of the solar winds in several conditions. The results showed that the maintaining of meters height of the micron size of moon dust is well related to the electrical field and the solar angle variations, as expected. These results could be verified and validated through future on site and/or remote sensing measurements and observations of the moon dust and the surface electrical field.

  4. Impact of land use and soil data specifications on COSMO-CLM simulations in the CORDEX-MED area

    Directory of Open Access Journals (Sweden)

    Gerhard Smiatek


    Full Text Available The impact of the ECOCLIMAP land use and the Harmonized World Soil Database (HWSD data on simulations with the Consortium for Small-scale Modeling model in CLimate Mode (CCLM regional climate model is investigated. ECOCLIMAP has information about vegetation characteristics as monthly data for 215 climatic units. With the HWSD implementation in CCLM, the spatial resolution of the soil data has been increased to 30 arc seconds and has an improved texture definition and handling in the soil model TERRA_ML. Simulations in the MED-CORDEX modeling domain over the period 1986–2000 reveal that differences of up to 1.8 K in the area monthly mean temperature as well as of up to 21 % in the area monthly mean precipitation can be attributed to the differences in the soil data time-invariant boundary input. Differences related to changes in land use are with 0.4 K and 5 % moderate. Differences resulting from the soil data and its processing in CCLM indicate that regional climate model simulations might benefit from further improvements in this area.

  5. Evaluation and simulation of nitrogen mineralization of paddy soils in Mollisols area of Northeast China under waterlogged incubation.

    Directory of Open Access Journals (Sweden)

    Yuling Zhang

    Full Text Available Understanding the nitrogen (N mineralization process and applying appropriate model simulation are key factors in evaluating N mineralization. However, there are few studies of the N mineralization characteristics of paddy soils in Mollisols area of Northeast China.The soils were sampled from the counties of Qingan and Huachuan, which were located in Mollisols area of Northeast China. The sample soil was incubated under waterlogged at 30°C in a controlled temperature cabinet for 161 days (a 2: 1 water: soil ratio was maintained during incubation. Three models, i.e. the single first-order kinetics model, the double first-order kinetics model and the mixed first-order and zero-order kinetics model were used to simulate the cumulative mineralised N (NH4+-N and TSN in the laboratory and waterlogged incubation.During 161 days of waterlogged incubation, the average cumulative total soluble N (TSN, ammonium N (NH4+-N, and soluble organic N (SON was 122.2 mg kg-1, 85.9 mg kg-1, and 36.3 mg kg-1, respectively. Cumulative NH4+-N was significantly (P 0.05 correlated with C/N ratio, cation exchange capacity (CEC, extractable iron (Fe, clay, and sand. When the cumulative NH4+-N and TSN were simulated, the single first-order kinetics model provided the least accurate simulation. The parameter of the double first-order kinetics model also did not represent the actual data well, but the mixed first-order and zero-order kinetics model provided the most accurate simulation, as demonstrated by the estimated standard error, F statistic values, parameter accuracy, and fitting effect.Overall, the results showed that SON was involved with N mineralization process, and the mixed first-order and zero-order kinetics model accurately simulates the N mineralization process of paddy soil in Mollisols area of Northeast China under waterlogged incubation.

  6. Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region (United States)

    Wang, Wenli; Rinke, Annette; Moore, John C.; Ji, Duoying; Cui, Xuefeng; Peng, Shushi; Lawrence, David M.; McGuire, A. David; Burke, Eleanor J.; Chen, Xiaodong; Delire, Christine; Koven, Charles; MacDougall, Andrew; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Decharme, Bertrand; Gouttevin, Isabelle; Hajima, Tomohiro; Krinner, Gerhard; Lettenmaier, Dennis P.; Miller, Paul A.; Smith, Benjamin; Sueyoshi, Tetsuo


     A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyze simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models and compare them with observations from 268 Russian stations. There are large across-model differences as expressed by simulated differences between near-surface soil and air temperatures, (ΔT), of 3 to 14 K, in the gradients between soil and air temperatures (0.13 to 0.96°C/°C), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, and hence guide improvements to the model’s conceptual structure and process parameterizations. Models with better performance apply multi-layer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (12–16 million km2). However, there is not a simple relationship between the quality of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, likely because several other factors such as differences in the treatment of soil organic matter, soil hydrology, surface energy calculations, and vegetation also provide important controls on simulated permafrost distribution.

  7. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan; Scheibe, Timothy D.


    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to farming, forest management and climate change. X-ray computed tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and our own code was used to noninvasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure at 31µm resolution, and extract quantitative information (root volume and surface area) from the 3D data, respectively. Based on the mesh generated from the root structure, computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soil hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. The flow variability and soil water distributions under different scenarios were investigated. Parameterizations were evaluated to show their impacts on the average conductivity. The pore-scale modeling approach provides realistic simulations of rhizosphere flow processes and provides useful information that can be linked to upscaled models.

  8. Lunar crane system (United States)

    Mikulas, Martin M., Jr.


    In many lunar construction scenarios, mechanical cranes in some form will be indispensible in moving large masses around with various degrees of fine positioning. While thorough experience exists in the use of terrestrial cranes new thinking is required about the design of cranes to be used in extraterrestrial construction. The primary driving force for this new thinking is the need to automate the crane system so that space cranes can be operated as telerobotic machines with a large number of automatic capabilities. This is true because in extraterrestrial construction human resources will need to be critically rationed. The design problems of mechanisms and control systems for a lunar crane must deal with at least two areas of performance. First, the automated crane must be capable of maneuvering a large mass, so that when the mass arrives at the target position there are only small vibrations. Secondly, any residue vibrations must be automatically damped out and a fine positioning must be achieved. For extraterrestrial use there are additional challenges to a crane design - for example, to design a crane system so that it can be transformed for other construction uses. This initial project in crane design does not address such additional issues, although they may be the subject of future CSC research. To date the Center has designed and analyzed many mechanisms. The fundamental problem of trade-offs between passively stabilizing the load and actively controlling the load by actuators was extensively studied. The capability of 3D dynamics modeling now exists for such studies. A scaled model of a lunar crane was set up and it has been most fruitful in providing basic understanding of lunar cranes. Due to an interesting scaling match-up, this scaled model exhibits the load vibration frequencies one would expect in the real lunar case. Using the analytical results achieved to date, a laboratory crane system is now being developed as a test bed for verifying a wide

  9. Assimilation of SMOS observations to improve soil moisture and streamflow simulations in the Murray Darling Basin, Australia (United States)

    Lievens, Hans; Bitar, Ahmad Al; Cabot, Francois; De Lannoy, Gabrielle; Drusch, Matthias; Dumedah, Gift; Hendricks Franssen, Harrie-Jan; Kerr, Yann; Tomer, Sat Kumar; Martens, Brecht; Merlin, Olivier; Pan, Ming; Roundy, Joshua; van den Berg, Martinus Johannes; Vereecken, Harry; Verhoest, Niko; Walker, Jeff; Wood, Eric; Pauwels, Valentijn


    Soil Moisture and Ocean Salinity (SMOS) retrievals hold a large potential for improving hydrologic model simulations through data assimilation. However, the soil moisture retrievals are often provided at coarser spatial resolution than the model grid. To resolve the mismatch in spatial resolution between SMOS retrievals and simulations by VIC (i.e. the Variable Infiltration Capacity model), two approaches are investigated. The first approach is to downscale the remote sensing data prior to their use in the model. This renders the development of the data assimilation algorithm more straightforward, but requires a significant amount of satellite data processing. In the second approach, this processing is circumvented by directly assimilating the coarse scale satellite soil moisture retrievals into the model through the use of the observation operator. Recently, an increasing interest has also been drawn to the assimilation of level 1 data, i.e. the satellite-observed brightness temperatures. To accommodate for the assimilation of SMOS brightness temperature data, VIC is coupled with the Community Microwave Emission Model (CMEM), which allows the forward simulation of TOA brightness temperatures observed by SMOS. The main advantage of this approach is that it allows for using consistent parameter sets in the land surface and radiative transfer model. The objectives of this study are to investigate the potential of assimilating SMOS data, either as downscaled soil moisture, coarse scale soil moisture or brightness temperature products, into a coupled land surface and radiative transfer model for improving flood forecasts, and to provide recommendations on the optimal assimilation strategy. The merit of SMOS data assimilation for water management applications is studied by comparing simulated soil moisture and streamflow predictions with in situ measurements of soil moisture from OzNet and stream gauge data from 169 stations across the Murray Darling Basin. The study

  10. Searching for the right scale in catchment hydrology: the effect of soil spatial variability in simulated states and fluxes (United States)

    Baroni, Gabriele; Zink, Matthias; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine


    The advances in computer science and the availability of new detailed data-sets have led to a growing number of distributed hydrological models applied to finer and finer grid resolutions for larger and larger catchment areas. It was argued, however, that this trend does not necessarily guarantee better understanding of the hydrological processes or it is even not necessary for specific modelling applications. In the present study, this topic is further discussed in relation to the soil spatial heterogeneity and its effect on simulated hydrological state and fluxes. To this end, three methods are developed and used for the characterization of the soil heterogeneity at different spatial scales. The methods are applied at the soil map of the upper Neckar catchment (Germany), as example. The different soil realizations are assessed regarding their impact on simulated state and fluxes using the distributed hydrological model mHM. The results are analysed by aggregating the model outputs at different spatial scales based on the Representative Elementary Scale concept (RES) proposed by Refsgaard et al. (2016). The analysis is further extended in the present study by aggregating the model output also at different temporal scales. The results show that small scale soil variabilities are not relevant when the integrated hydrological responses are considered e.g., simulated streamflow or average soil moisture over sub-catchments. On the contrary, these small scale soil variabilities strongly affect locally simulated states and fluxes i.e., soil moisture and evapotranspiration simulated at the grid resolution. A clear trade-off is also detected by aggregating the model output by spatial and temporal scales. Despite the scale at which the soil variabilities are (or are not) relevant is not universal, the RES concept provides a simple and effective framework to quantify the predictive capability of distributed models and to identify the need for further model improvements e

  11. Simulating soil erosion risk for Pan-European land use and climate scenarios

    NARCIS (Netherlands)

    Mantel, S.; Kirby, M.; Daroussin, J.; Jones, R.J.A.


    Soil is a vital resource with multiple functions and with high regional and internal variability. Accelerated soil erosion is a cause for decline in soil quality and is increasingly being recognized as a serious environmental problem. Soil erosion is a function of factors such as: land use and

  12. Advanced and Intelligent Robotics for Lunar Exploration (United States)

    Richter, L.

    Future unmanned (and later again, manned) missions to the Moon will require several critical technologies from the realm of space robotics, that is electromechanical systems with several degrees of freedom and a limited amount of on-board autonomy. Prime examples of relevance for lunar missions are roving vehicles, manipulator arms and sample acquisition systems. This paper gives an overview of applicable technologies and their readiness that have been studied for lunar landing mission opportunities during this decade. Rovers that have been suggested for Europe's Euromoon lander initiative of the late 1990's were tethered short-range vehicles of less than 5 kg mass for deployment of geochemical instruments and so-called `Regional Rovers' of masses between 10 and 30 kg that on lunar Mare-like terrain could cover several 100 m range during mission durations of 5 to 10 Earth days and which would not be able to survive the lunar night. If deployed at high latitude regions, the Regional Rovers were conceived to be able to spend short times (several h) in shaded areas for measurements there. Development of both the tethered and the regional class has been funded by ESA and is still on-going. A much larger rover of the 300-500 kg class modeled after the Russian-French IARES prototype was proposed for the European LEDA lander scenario and could offer superior range capability and nighttime survival if nuclear power or at least a nuclear heat source were used. The Japanese Selene-B mission is planning to deploy a surface rover of the regional rover class of several 10's of kg mass. Sampling devices for lunar landing missions, generally also part of robotics technologies, are gaining renewed interest, in the context of lunar sample return missions (e.g. SPA-SR) but also for possible missions to elucidate the nature of the anomalous hydrogen concentrations in permanently shaded craters in the polar regions into which short-lived landers could be deployed which are tasked to

  13. Bioregenerative life support system for a lunar base (United States)

    Liu, H.; Wang, J.; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu. L.

    We have studied a modular approach to construction of bioregenerative life support system BLSS for a lunar base using soil-like substrate SLS for plant cultivation Calculations of massflow rates in BLSS were based mostly on a vegetarian diet and biological conversion of plant residues in SLS Plant candidate list for lunar BLSS includes the following basic species rice Oryza sativa soy Glycine max sweet potato Ipomoea batatas and wheat Triticum aestivum To reduce the time necessary for transition of the system to steady state we suggest that the first seeding and sprouting could be made on Earth

  14. Evolution of Shock Melt Compositions in Lunar Agglutinates (United States)

    Vance, A. M.; Christoffersen, R.; Keller, L. P.


    Lunar agglutinates are aggregates of regolith grains fused together in a glassy matrix of shock melt produced during smaller-scale (mostly micrometeorite) impacts. Agglutinate formation is a key space weathering process under which the optically-active component of nanophase metallic Fe (npFe(sup 0)) is added to the lunar regolith. Here we have used energy-dispersive X-ray (EDX) compositional spectrum imaging in the SEM to quantify the chemical homogeneity of agglutinitic glass, correlate its homogeneity to its parent soil maturity, and identify the principle chemical components contributing to the shock melt compositional variations.

  15. Integrating models to simulate emergent behaviour: effects of organic matter on soil hydraulics in the ICZ-1D soil-vegetation model (United States)

    Valstar, Johan; Rowe, Ed; Konstantina, Moirogiorgou; Giannakis, Giorgos; Nikolaidis, Nikolaos


    explore the complex interactions involved in soil development and change. We were unable to identify appropriately-detailed existing models for plant productivity and for the dynamics of soil aggregation and porosity, and so developed the PROSUM and CAST models, respectively, to simulate these subsystems. Moreover, we applied the BRNS generator to obtain a chemical equilibrium model. These were combined with HYDRUS-1D (water and solute transport), a weathering model (derived from the SAFE model) and a simple bioturbation model. The model includes several feedbacks, such as the effect of soil organic matter on water retention and hydraulic conductivity. We encountered several important challenges when building the integrated model. First, a mechanism was developed that initiates the execution of a single time step for an individual sub-model and accounts for the relevant mass transfers between sub-models. This allows for different and sometimes variable time step duration in the submodels. Secondly, we removed duplicated processes and identified and included relevant solute production terms that had been neglected. The model is being tested against datasets obtained from several Soil Critical Zone Observatories in Europe. This contribution focuses on the design strategy for the model.

  16. Simulating soybean productivity under rainfed conditions for major soil types using APEX model in East Central Mississippi (United States)

    Bangbang Zhang; Gary Feng; John J. Read; Xiangbin Kong; Ying Ouyang; Ardeshir Adeli; Johnie N. Jenkins


    Knowledge of soybean yield constraints under rainfed conditions on major soil types in East CentralMississippi would assist growers in the region to effectively utilize the benefits of water/irrigation man-agement. The objectives of this study were to use the Agricultural Policy/Environmental eXtender (APEX)agro-ecosystem model to simulate rainfed soybean grain yield (...

  17. Laser-powered lunar base

    International Nuclear Information System (INIS)

    Costen, R.; Humes, D.H.; Walker, G.H.; Williams, M.D.; Deyoung, R.J.


    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized

  18. Spectroscopic observations of the Moon at the lunar surface (United States)

    Wu, Yunzhao; Hapke, Bruce


    The Moon's reflectance spectrum records many of its important properties. However, prior to Chang'E-3 (CE-3), no spectra had previously been measured on the lunar surface. Here we show the in situ reflectance spectra of the Moon acquired on the lunar surface by the Visible-Near Infrared Spectrometer (VNIS) onboard the CE-3 rover. The VNIS detected thermal radiation from the lunar regolith, though with much shorter wavelength range than typical thermal radiometer. The measured temperatures are higher than expected from theoretical model, indicating low thermal inertia of the lunar soil and the effects of grain facet on soil temperature in submillimeter scale. The in situ spectra also reveal that 1) brightness changes visible from orbit are related to the reduction in maturity due to the removal of the fine and weathered particles by the lander's rocket exhaust, not the smoothing of the surface and 2) the spectra of the uppermost soil detected by remote sensing exhibit substantial differences with that immediately beneath, which has important implications for the remote compositional analysis. The reflectance spectra measured by VNIS not only reveal the thermal, compositional, and space-weathering properties of the Moon but also provide a means for the calibration of optical instruments that view the surface remotely.

  19. Effects of modified soil water-heat physics on RegCM4 simulations of climate over the Tibetan Plateau (United States)

    Wang, Xuejia; Pang, Guojin; Yang, Meixue; Wan, Guoning


    To optimize the description of land surface processes and improve climate simulations over the Tibetan Plateau (TP), a modified soil water-heat parameterization scheme (SWHPS) is implemented into the Community Land Model 3.5 (CLM3.5), which is coupled to the regional climate model 4 (RegCM4). This scheme includes Johansen's soil thermal conductivity scheme together with Niu's groundwater module. Two groups of climate simulations are then performed using the original RegCM4 and revised RegCM4 to analyze the effects of the revised SWHPS on regional climate simulations. The effect of the revised RegCM4 on simulated air temperature is relatively small (with mean biases changing by less than 0.1°C over the TP). There are overall improvements in the simulation of winter and summer air temperature but increased errors in the eastern TP. It has a significant effect on simulated precipitation. There is also a clear improvement in simulated annual and winter precipitation, particularly over the northern TP, including the Qilian Mountains and the source region of the Yellow River. There are, however, increased errors in precipitation simulation in parts of the southern TP. The precipitation difference between the two models is caused mainly by their convective precipitation difference, particularly in summer. Overall, the implementation of the new SWHPS into the RegCM4 has a significant effect not only on land surface variables but also on the overlying atmosphere through various physical interactions.

  20. Simulation of soil water balance and partitioning of evapotranspiration of maize grown in two growing seasons in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Viviane Schons de Ávila


    Full Text Available ABSTRACT: The objective of this study was to simulate the variation of the available soil water during maize crop growth, in two different sowing times (first and second growing season, using a drip irrigation system. The treatments consisted of different irrigation strategies (full to deficit. The SIMDualKc simulation model was used to determine the daily soil water balance and crop evapotranspiration using the dual crop coefficient approach. Soil, climate, crop and irrigation parameters were used as input data. Two experiments were carried out in a rainout shelter composed of two metallic structures (16x10m in the city of Santa Maria, Rio Grande do Sul, Brazil, during 2010/11 (second crop, season 1 and 2011/12 (first crop, season 2 growing seasons, under no-tillage system. The simulations showed that all the irrigation management strategies used in season 2 resulted in soil water deficit, while only two strategies showed deficit in season 1. Results showed good agreement between observed and simulated soil water data, with an R2 ranging from 0.86 to 0.99 and the root mean square error ranging from 2.7 to 5.6% of the total available water for seasons 1 and 2, respectively. The observed results of water balance showed that maize grown in season 2 presented higher water consumption compared to season 1, due to the higher atmospheric demand of season 2. The SIMDualKc model allowed the partitioning of crop evapotranspiration into soil evaporation and crop transpiration, demonstrating that the vegetative growth subperiod presented the greatest differences between the two seasons compared to the others growth phases.

  1. Effect of Downscaled Forcings and Soil Texture Properties on Hyperresolution Hydrologic Simulations in a Regional Basin in Northwest Mexico (United States)

    Ko, A.; Mascaro, G.; Vivoni, E. R.


    Hyper-resolution ( 10 km) scales. In this study, we address some of the challenges by applying a parallel version of the Triangulated Irregular Network (TIN)-based Real Time Integrated Basin Simulator (tRIBS) to the Rio Sonora Basin (RSB) in northwest Mexico. The RSB is a large, semiarid watershed ( 21,000 km2) characterized by complex topography and a strong seasonality in vegetation conditions, due to the North American monsoon. We conducted simulations at an average spatial resolution of 88 m over a decadal (2004-2013) period using spatially-distributed forcings from remotely-sensed and reanalysis products. Meteorological forcings were derived from the North American Land Data Assimilation System (NLDAS) at the original resolution of 12 km and were downscaled at 1 km with techniques accounting for terrain effects. Two grids of soil properties were created from different sources, including: (i) CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) at 6 km resolution; and (ii) ISRIC (International Soil Reference Information Centre) at 250 m. Time-varying vegetation parameters were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) composite products. The model was first calibrated and validated through distributed soil moisture data from a network of 20 soil moisture stations during the monsoon season. Next, hydrologic simulations were conducted with five different combinations of coarse and downscaled forcings and soil properties. Outputs in the different configurations were then compared with independent observations of soil moisture, and with estimates of land surface temperature (1 km, daily) and evapotranspiration (1 km, monthly) from MODIS. This study is expected to support the community involved in hyper-resolution hydrologic modeling by identifying the crucial factors that, if available at higher resolution, lead to the largest improvement of the simulation prognostic capability.

  2. [Observations of spectral data and characteristics analysis of snow-bare soil mixed pixel generated by micro-simulation]. (United States)

    Liu, Yan; Li, Yang


    To explore the differences of mixed-pixel in spectral mixing mechanism at micro-and macro -scale, the micro- simulation of snow-bare soil mixed pixel was taken as the object of study in an artificial test environment. Reflectance spectra of mixed pixel and snow, bare soil endmember with different area ratio were collected by full-band spectrometer with fixed probe distance. Qualitative and quantitative analysis of original reflectance spectra was done, and reflectance spectra form 350 to 2 500 nm and normalized reflectance spectral data of 350 to 1 815 nm excluding noise were normalized. At the same time, we collected EOS/MODIS and Environment and Disaster Monitoring Satellites data of the same period over the same area and analyzed the correlation of channels in visible, near-infrared and shortwave infrared wavelength range at different resolution scales and the relationship between spectrum of mixed snow-soil and endmember pixel in MODIS image was analyzed. The results showed that, (1) At the micro scale, non-linear relationship existed between mixed pixel and endmember within the scope of the full-wave and linear relationship existed in sub-band wavelength range; (2) At the macro scale, linear relationship existed between mixed pixel and endmember. (3) In statistics of spectral values, the correlation between snow-soil mixture and endmember is positive for snow-soil mixture and snow endmember, and is negative for snow-soil mixture and soil endmember.

  3. Reducing the Influence of Soil Moisture on the Estimation of Clay from Hyperspectral Data: A Case Study Using Simulated PRISMA Data

    Directory of Open Access Journals (Sweden)

    Fabio Castaldi


    Full Text Available Soil moisture hampers the estimation of soil variables such as clay content from remote and proximal sensing data, reducing the strength of the relevant spectral absorption features. In the present study, two different strategies have been evaluated for their ability to minimize the influence of soil moisture on clay estimation by using soil spectra acquired in a laboratory and by simulating satellite hyperspectral data. Simulated satellite data were obtained according to the spectral characteristics of the forthcoming hyperspectral imager on board of the Italian PRISMA satellite mission. The soil datasets were split into four groups according to the water content. For each soil moisture level a prediction model was applied, using either spectral indices or partial least squares regression (PLSR. Prediction models were either specifically developed for the soil moisture level or calibrated using synthetically dry soil spectra, generated from wet soil data. Synthetically dry spectra were obtained using a new technique based on the effects caused by soil moisture on the optical spectrum from 400 to 2400 nm. The estimation of soil clay content, when using different prediction models according to soil moisture, was slightly more accurate as compared to the use of synthetically dry soil spectra, both employing clay indices and PLSR models. The results obtained in this study demonstrate that the a priori knowledge of the soil moisture class can reduce the error of clay estimation when using hyperspectral remote sensing data, such as those that will be provided by the PRISMA satellite mission in the near future.

  4. Lunar Dust Mitigation Screens (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  5. Lunar Core and Tides (United States)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.


    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  6. International Lunar Decade Status (United States)

    Beldavs, VZ; Crisafulli, J.; Dunlop, D.; Foing, B.


    The International Lunar Decade is a global decadal event designed to provide a framework for strategically directed international cooperation for permanent return to the Moon. To be launched July 20, 2019, the 50th anniversary of the giant leap for mankind marked by Neil Armstrong's first step on the Moon, the ILD launch will include events around the world to celebrate space exploration, science, and the expansion of humanity into the Solar System. The ILD framework links lunar exploration and space sciences with the development of enabling technologies, infrastructure, means of financing, laws and policies aimed at lowering the costs and risks of venturing into space. Dramatically reduced costs will broaden the range of opportunities available in space and widen access to space for more states, companies and people worldwide. The ILD is intended to bring about the efflorescence of commercial business based on space resources from the Moon, asteroids, comets and other bodies in the Solar System.

  7. The Lunar Sample Compendium (United States)

    Meyer, Charles


    The Lunar Sample Compendium is a succinct summary of the data obtained from 40 years of study of Apollo and Luna samples of the Moon. Basic petrographic, chemical and age information is compiled, sample-by-sample, in the form of an advanced catalog in order to provide a basic description of each sample. The LSC can be found online using Google. The initial allocation of lunar samples was done sparingly, because it was realized that scientific techniques would improve over the years and new questions would be formulated. The LSC is important because it enables scientists to select samples within the context of the work that has already been done and facilitates better review of proposed allocations. It also provides back up material for public displays, captures information found only in abstracts, grey literature and curatorial databases and serves as a ready access to the now-vast scientific literature.

  8. Simulating effects of changing climate and CO(2) emissions on soil carbon pools at the Hubbard Brook experimental forest. (United States)

    Dib, Alain E; Johnson, Chris E; Driscoll, Charles T; Fahey, Timothy J; Hayhoe, Katharine


    Carbon (C) sequestration in forest biomass and soils may help decrease regional C footprints and mitigate future climate change. The efficacy of these practices must be verified by monitoring and by approved calculation methods (i.e., models) to be credible in C markets. Two widely used soil organic matter models - CENTURY and RothC - were used to project changes in SOC pools after clear-cutting disturbance, as well as under a range of future climate and atmospheric carbon dioxide (CO(2) ) scenarios. Data from the temperate, predominantly deciduous Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, were used to parameterize and validate the models. Clear-cutting simulations demonstrated that both models can effectively simulate soil C dynamics in the northern hardwood forest when adequately parameterized. The minimum postharvest SOC predicted by RothC occurred in postharvest year 14 and was within 1.5% of the observed minimum, which occurred in year 8. CENTURY predicted the postharvest minimum SOC to occur in year 45, at a value 6.9% greater than the observed minimum; the slow response of both models to disturbance suggests that they may overestimate the time required to reach new steady-state conditions. Four climate change scenarios were used to simulate future changes in SOC pools. Climate-change simulations predicted increases in SOC by as much as 7% at the end of this century, partially offsetting future CO(2) emissions. This sequestration was the product of enhanced forest productivity, and associated litter input to the soil, due to increased temperature, precipitation and CO(2) . The simulations also suggested that considerable losses of SOC (8-30%) could occur if forest vegetation at HBEF does not respond to changes in climate and CO(2) levels. Therefore, the source/sink behavior of temperate forest soils likely depends on the degree to which forest growth is stimulated by new climate and CO(2) conditions. © 2013 John Wiley & Sons Ltd.

  9. Religion and Lunar Exploration (United States)

    Pop, V.

    1969: The Eagle lands on the Moon. A moment that would not only mark the highest scientific achievement of all times, but would also have significant religious impli- cations. While the island of Bali lodges a protest at the United Nations against the US for desecrating a sacred place, Hopi Indians celebrate the fulfilment of an ancient prophecy that would reveal the "truth of the Sacred Ways". The plaque fastened to the Eagle - "We Came in Peace for All Mankind" would have contained the words "under God" as directed by the US president, if not for an assistant administrator at NASA that did not want to offend any religion. In the same time, Buzz Aldrin takes the Holy Communion on the Moon, and a Bible is left there by another Apollo mission - not long after the crew of Apollo 8 reads a passage from Genesis while circling the Moon. 1998: Navajo Indians lodge a protest with NASA for placing human ashes aboard the Lunar Prospector, as the Moon is a sacred place in their religion. Past, present and fu- ture exploration of the Moon has significant religious and spiritual implications that, while not widely known, are nonetheless important. Is lunar exploration a divine duty, or a sacrilege? This article will feature and thoroughly analyse the examples quoted above, as well as other facts, as for instance the plans of establishing lunar cemeteries - welcomed by some religions, and opposed by others.

  10. Modeling lunar volcanic eruptions (United States)

    Housley, R. M.


    Simple physical arguments are used to show that basaltic volcanos on different planetary bodies would fountain to the same height if the mole fraction of gas in the magma scaled with the acceleration of gravity. It is suggested that the actual eruption velocities and fountain heights are controlled by the velocities of sound in the two phase gas/liquid flows. These velocities are in turn determined by the gas contents in the magma. Predicted characteristics of Hawaiian volcanos are in excellent accord with observations. Assuming that the only gas in lunar volcano is the CO which would be produced if the observed Fe metal in lunar basalts resulted from graphite reduction, lunar volcanos would fountain vigorously, but not as spectacularly as their terrestrial counterparts. The volatile trace metals, halogens, and sulfur released would be transported over the entire moon by the transient atmosphere. Orange and black glass type pyroclastic materials would be transported in sufficient amounts to produce the observed dark mantle deposits.

  11. Towards a lunar base programme (United States)

    Duke, M. B.; Mendell, W. W.; Roberts, B. B.


    When the requisite technlogy exists, the U.S. political process will inevitably include lunar surface activities as a major space objective. This article examines a manned lunar base in terms of three distinct functions: the scientific investigation of the moon and its environment; development of the capability to use lunar resources for beneficial purposes throughout the earth-moon system; and conduct of R and D leading to a self-sufficient and self-supporting manned lunar base. Three scenarios are outlined with respect to each possible function.

  12. Evolution of Shock Melt Compositions in Lunar Regoliths (United States)

    Vance, A. M.; Christoffersen, R.; Keller, L. P.; Berger, E. L.; Noble, S. K.


    Space weathering processes - driven primarily by solar wind ion and micrometeorite bombardment, are constantly changing the surface regoliths of airless bodies, such as the Moon. It is essential to study lunar soils in order to fully under-stand the processes of space weathering, and how they alter the optical reflectance spectral properties of the lunar surface relative to bedrock. Lunar agglutinates are aggregates of regolith grains fused together in a glassy matrix of shock melt produced during micrometeorite impacts into the lunar regolith. The formation of the shock melt component in agglutinates involves reduction of Fe in the target material to generate nm-scale spherules of metallic Fe (nanophase Fe0 or npFe0). The ratio of elemental Fe, in the form of npFe0, to FeO in a given bulk soil indicates its maturity, which increases with length of surface exposure as well as being typically higher in the finer-size fraction of soils. The melting and mixing process in agglutinate formation remain poorly understood. This includes incomplete knowledge regarding how the homogeneity and overall compositional trends of the agglutinate glass portions (agglutinitic glass) evolve with maturity. The aim of this study is to use sub-micrometer scale X-ray compositional mapping and image analysis to quantify the chemical homogeneity of agglutinitic glass, correlate its homogeneity to its parent soil maturity, and identify the principal chemical components contributing to the shock melt composition variations. An additional focus is to see if agglutinitic glass contains anomalously high Fe sub-micron scale compositional domains similar to those recently reported in glassy patina coatings on lunar rocks.

  13. Facing the scaling problem: A multi-methodical approach to simulate soil erosion at hillslope and catchment scale (United States)

    Schmengler, A. C.; Vlek, P. L. G.


    Modelling soil erosion requires a holistic understanding of the sediment dynamics in a complex environment. As most erosion models are scale-dependent and their parameterization is spatially limited, their application often requires special care, particularly in data-scarce environments. This study presents a hierarchical approach to overcome the limitations of a single model by using various quantitative methods and soil erosion models to cope with the issues of scale. At hillslope scale, the physically-based Water Erosion Prediction Project (WEPP)-model is used to simulate soil loss and deposition processes. Model simulations of soil loss vary between 5 to 50 t ha-1 yr-1 dependent on the spatial location on the hillslope and have only limited correspondence with the results of the 137Cs technique. These differences in absolute soil loss values could be either due to internal shortcomings of each approach or to external scale-related uncertainties. Pedo-geomorphological soil investigations along a catena confirm that estimations by the 137Cs technique are more appropriate in reflecting both the spatial extent and magnitude of soil erosion at hillslope scale. In order to account for sediment dynamics at a larger scale, the spatially-distributed WaTEM/SEDEM model is used to simulate soil erosion at catchment scale and to predict sediment delivery rates into a small water reservoir. Predicted sediment yield rates are compared with results gained from a bathymetric survey and sediment core analysis. Results show that specific sediment rates of 0.6 t ha-1 yr-1 by the model are in close agreement with observed sediment yield calculated from stratigraphical changes and downcore variations in 137Cs concentrations. Sediment erosion rates averaged over the entire catchment of 1 to 2 t ha-1 yr-1 are significantly lower than results obtained at hillslope scale confirming an inverse correlation between the magnitude of erosion rates and the spatial scale of the model. The

  14. Development of a Modified Vacuum Cleaner for Lunar Surface Systems (United States)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.


    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has

  15. An evaluation of a combined scanning probe and optical microscope for lunar regolith studies (United States)

    Yang, S.; Pike, W. T.; Staufer, U.; Claus, D.; Rodenburg, J. M.


    ability of LOM for illuminating the details about the lunar particles sample, is demonstrated. The analysis of SEM and SPM images of the same particles of JSC-LunarA analogue soil reveals the potential of the SPM to obtain reliable microscopic images of lunar dusts including detailed morphology with the help of the micromachined Si substrates. [1] J. D. Carpenter, O. Angerer, M. Durante, D. Linnarson, W. T. Pike, "Life Sciences Investigations for ESA's First Lunar Lander," Earth, Moon, and Planets, Vol.107, pp. 11-23, 2010. [2] S. Vijendran, H.Sykulska, and W. T. Pike, "AFM investigation of Martian soil simulant on micromachined Si substrates," Journal of Microscopy, Vol.227, pp.236-245, Sep. 2007. [3] J.M. Rodenburg, "Ptychography and related diffractive imaging techniques," Advances in Imaging and Electron Physics, Vol.150, pp. 87-184, 2008

  16. Study of recrystallization and devitrification of lunar glass (United States)

    Ulrich, D. R.


    The technique of differential thermal analysis (DTA) was applied to the study of the Apollo 17 orange soil (74220,63) and the Apollo 16 glass coated anorthite (64455,21). These glasses show accentuated exotherms of strain relief in the annealing range which is indicative of rapid cooling. These are amenable to interpretation by comparison to the known history of synthetic glasses. Synthetic glasses were prepared whose similarity in behavior between the lunar glasses and their synthetic analogs is striking. Approximate rates of cooling of the lunar glasses were determined from comparative DTA of lunar and synthetic glasses and from the determination of the relation of strain relief in the annealing range to quench rate. At higher temperatures the glasses show exotherms of crystallization. The crystallization products associated with the exothermic reactions have been identified by X-ray diffraction and the surface morphologies developed by strain relief and crystallization have been characterized with scanning electron microscopy.

  17. Global Maps of Lunar Neutron Fluxes from the LEND Instrument (United States)

    Litvak, M. L.; Mitrofanov, I. G.; Sanin, A.; Malakhov, A.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Golovin, D. V.; hide


    The latest neutron spectrometer measurements with the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) are presented. It covers more than 1 year of mapping phase starting on 15 September 2009. In our analyses we have created global maps showing regional variations in the flux of thermal (energy range neutrons (>0.5 MeV), and compared these fluxes to variances in soil elemental composition, and with previous results obtained by the Lunar Prospector Neutron Spectrometer (LPNS). We also processed data from LEND collimated detectors and derived a value for the collimated signal of epithermal neutrons based on the comparative analysis with the LEND omnidirectional detectors. Finally, we have compared our final (after the data reduction) global epithermal neutron map with LPNS data.

  18. Lunar materials for construction of space manufacturing facilities (United States)

    Criswell, D. R.


    Development of industrial operations in deep space would be prohibitively expensive if most of the construction and expendable masses had to be transported from earth. Use of lunar materials reduces the needed investments by a factor of 15 to 20. It is shown in this paper that judicious selection of lunar materials will allow one to obtain hydrogen, nitrogen, carbon, helium and othe