WorldWideScience

Sample records for simulated bwr environments

  1. High Fidelity BWR Fuel Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 milestone THM.CFD.P13.03: High Fidelity BWR Fuel Simulation. High fidelity computational fluid dynamics (CFD) simulation for Boiling Water Reactor (BWR) was conducted to investigate the applicability and robustness performance of BWR closures. As a preliminary study, a CFD model with simplified Ferrule spacer grid geometry of NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) benchmark has been implemented. Performance of multiphase segregated solver with baseline boiling closures has been evaluated. Although the mean values of void fraction and exit quality of CFD result for BFBT case 4101-61 agreed with experimental data, the local void distribution was not predicted accurately. The mesh quality was one of the critical factors to obtain converged result. The stability and robustness of the simulation was mainly affected by the mesh quality, combination of BWR closure models. In addition, the CFD modeling of fully-detailed spacer grid geometry with mixing vane is necessary for improving the accuracy of CFD simulation.

  2. Effect of nitrogen in austenitic stainless steel on deformation behavior and stress corrosion cracking susceptibility in BWR simulated environment

    International Nuclear Information System (INIS)

    Roychowdhury, S.; Kain, V.; Dey, G.K.

    2012-01-01

    Intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel (SS) components in boiling water reactor (BWR has been a serious issue and is generic in nature. Initial cracking incidences were attributed to weld induced sensitisation and low temperature sensitisation which was mitigated by the use of low carbon grade of SS and molybdenum and nitrogen containing nuclear grade SS. However, IGSCC has occurred in these SS in the non-sensitised condition which was attributed to residual weld induced strain. Strain hardening in SS has been identified as a major cause for enhanced IGSCC susceptibility in BWR environment. Nitrogen in SS has a significant effect on the strain hardening characteristics and has potential to affect the IGSCC susceptibility in BWR environment. Type 304LN stainless steel is a candidate material for use in future reactors with long design life like the Advanced Heavy Water Reactor (AHWR), in which the operating conditions are similar to BWR. This study reports the effect of nitrogen in type 304LN stainless steel on the strain hardening behaviour and deformation characteristics and its effect on the IGSCC susceptibility in BWR/AHWR environment. Two heats of type 304LN stainless steel were used containing different levels of nitrogen, 0.08 and 0.16 wt % (SS alloys A and B, respectively). Both the SS was strain hardened by cross rolling at 200℃ to simulate the strain hardened regions having higher IGSCC susceptibility in BWRs. Tensile testing was done at both room temperature and 288℃(temperature simulating operating BWR conditions) and the effect of nitrogen on the tensile properties were established. Tensile testing was done at strain rates similar to the crack tip strain rates associated with a growing IGSCC in SS. Detailed transmission electron microscopic (TEM) studies were done to establish the effect of nitrogen on the deformation modes. Results indicated twinning was the major mode of deformation during cross rolling while

  3. The HAMBO BWR simulator of HAMMLAB

    International Nuclear Information System (INIS)

    Karlsson, Tommy; Jokstad, Haakon; Meyer, Brita D.; Nihlwing, Christer; Norrman, Sixten; Puska, Eija Karita; Raussi, Pekka; Tiihonen, Olli

    2001-02-01

    Modernisation of control rooms of the nuclear power plants has been a major issue in Sweden and Finland the last few years, and this will continue in the years to come. As an aid in the process of introducing new technology into the control rooms, the benefit of having an experimental simulator where proto typing of solutions can be performed, has been emphasised by many plants. With this as a basis, the BWR plants in Sweden and Finland decided to fund, in co-operation with the Halden Project, an experimental BWR simulator based on the Forsmark 3 plant in Sweden. The BWR simulator development project was initiated in January 1998. VTT Energy in Finland developed the simulator models with the aid of their APROS tool, while the operator interface was developed by the Halden Project. The simulator was thoroughly tested by experienced HRP personnel and professional Forsmark 3 operators, and accepted by the BWR utilities in June 2000. The acceptance tests consisted of 19 well-defined transients, as well as the running of the simulator from full power down to cold shutdown and back up again with the use of plant procedures. This report describes the HAMBO simulator, with its simulator models, the operator interface, and the underlying hardware and software infrastructure. The tools used for developing the simulator, APROS, Picasso-3 and the Integration Platform, are also briefly described. The acceptance tests are described, and examples of the results are presented, to illustrate the level of validation of the simulator. The report concludes with an indication of the short-term usage of the simulator. (Author)

  4. Operator training simulator for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Watanabe, Tadasu

    1988-01-01

    For the operation management of nuclear power stations with high reliability and safety, the role played by operators is very important. The effort of improving the man-machine interface in the central control rooms of nuclear power stations is energetically advanced, but the importance of the role of operators does not change. For the training of the operators of nuclear power stations, simulators have been used from the early stage. As the simulator facilities for operator training, there are the full scope simulator simulating faithfully the central control room of an actual plant and the small simulator mainly aiming at learning the plant functions. For BWR nuclear power stations, two full scope simulators are installed in the BWR Operator Training Center, and the training has been carried out since 1974. The plant function learning simulators have been installed in respective electric power companies as the education and training facilities in the companies. The role of simulators in operator training, the BTC No.1 simulator of a BWR-4 of 780 MWe and the BTC No.2 simulator of a BWR-5 of 1,100 MWe, plant function learning simulators, and the design of the BTC No.2 simulator and plant function learning simulators are reported. (K.I.)

  5. Simulation of decreasing reactor power level with BWR simulator

    International Nuclear Information System (INIS)

    Suwoto; Zuhair; Rivai, Abu Khalid

    2002-01-01

    Study on characteristic of BWR using Desktop PC Based Simulator Program was analysed. This simulator is more efficient and cheaper for analyzing of characteristic and dynamic respond than full scope simulator for decreasing power level of BW. Dynamic responses of BWR reactor was investigated during the power level reduction from 100% FP (Full Power) which is 3926 MWth to 0% FP with 25% steps and 1 % FP/sec rate. The overall results for core flow rate, reactor steam flow, feed-water flow and turbine-generator power show tendency proportional to reduction of reactor power. This results show that reactor power control in BWR could be done by control of re-circulation flow that alter the density of water used as coolant and moderator. Decreasing the re-circulation flow rate will decrease void density which has negative reactivity and also affect the position of control rods

  6. BWR Full Integral Simulation Test (FIST) Phase II test results and TRAC-BWR model qualification

    International Nuclear Information System (INIS)

    Sutherland, W.A.; Alamgir, M.; Findlay, J.A.; Hwang, W.S.

    1985-10-01

    Eight matrix tests were conducted in the FIST Phase I. These tests investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. There are nine tests in Phase II of the FIST program. They include the following LOCA tests: BWR/6 LPCI line break, BWR/6 intermediate size recirculation break, and a BWR/4 large break. Steady state natural circulation tests with feedwater makeup performed at high and low pressure, and at high pressure with HPCS makeup, are included. Simulation of a transient without rod insertion, and with controlled depressurization, was performed. Also included is a simulation of the Peach Bottom turbine trip test. The final two tests simulated a failure to maintain water level during a postulated accident. A FIST program objective is to assess the TRAC code by comparisons with test data. Two post-test predictions made with TRACB04 are compared with Phase II test data in this report. These are for the BWR/6 LPCI line break LOCA, and the Peach Bottom turbine trip test simulation

  7. Advanced technology for BWR operator training simulator

    International Nuclear Information System (INIS)

    Shibuya, Akira; Fujita, Eimitsu; Nakao, Toshihiko; Nakabaru, Mitsugu; Asaoka, Kouchi.

    1991-01-01

    This paper describes an operator training simulator for BWR nuclear power plants which went into service recently. The simulator is a full scope replica type simulator which faithfully replicates the control room environment of the reference plant with six main control panels and twelve auxiliary ones. In comparison with earlier simulators, the scope of the simulation is significantly extended in both width and depth. The simulation model is also refined in order to include operator training according to sympton-based emergency procedure guidelines to mitigate the results in accident cases. In particular, the core model and the calculational model of the radiation intensity distribution, if radioactive materials were released, are improved. As for simulator control capabilities by which efficient and effective training can be achieved, various advanced designs are adopted allowing easy use of the simulators. (author)

  8. Specifications of the BWR simulator for HAMMLAB 2000

    International Nuclear Information System (INIS)

    Grini, Rolf-Einar; Miettinen, Jaakko; Nurmilaukas, Pekka; Raussi; Pekka; Saarni, Ray; Stokke; Egil; Soerensen, Aimar; Tiihonen, Olli

    1998-02-01

    The Boiling Water Reactor (BWR) simulator for HAMMLAB 2000 will be a model of the Swedish plant Forsmark-3. This report gives the specifications of the BWR simulator. The bulk of the report is a copy of the relevant addendum to the contract with the developer, and to the contract with the group of utilities and with ABB Atom. After a general overview, each plant system is described one after the other (using the reference plant system coding), and the simulation of each system is specified. Even the systems that shall not be simulated are included; in those cases the specification is: It is not required that ... is simulated. A list of malfunctions is given, as well as a list of validation transients. Finally the operator interface is specified. (author)

  9. An A BWR demonstration simulator for training and developing technical staff

    International Nuclear Information System (INIS)

    Powers, J.; Yonezawa, H.; Aoyagi, Y.; Kataoka, K.

    2015-09-01

    The US-Advanced Boiling Water Reactor (A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. Toshiba has developed a Demonstration Simulator of the A BWR control room that provides a realistic experience for training and education on BWR principles and operations fundamentals. The Demonstration Simulator is located in the Toshiba America Nuclear Energy (Tane) office in Charlotte, North Carolina and is composed of standard office computer equipment set up in a specific arrangement that is representative of the layout of an A BWR control room. The Demonstration Simulator is not intended for licensed operator training, but can provide a framework for encouraging entry level technically oriented nuclear workers to enter the operations field; strengthening the linkage between university energy field curricula and real-life application of theory; and, improving understanding of integrated plant operations for developing station technical staff. This paper describes the A BWR Demonstration Simulator and its applications for training and educating future nuclear workers. (Author)

  10. An A BWR demonstration simulator for training and developing technical staff

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Yonezawa, H.; Aoyagi, Y.; Kataoka, K., E-mail: jim.powers@toshiba.com [Toshiba Corporation, Kawasaki, Kanagawa (Japan)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. Toshiba has developed a Demonstration Simulator of the A BWR control room that provides a realistic experience for training and education on BWR principles and operations fundamentals. The Demonstration Simulator is located in the Toshiba America Nuclear Energy (Tane) office in Charlotte, North Carolina and is composed of standard office computer equipment set up in a specific arrangement that is representative of the layout of an A BWR control room. The Demonstration Simulator is not intended for licensed operator training, but can provide a framework for encouraging entry level technically oriented nuclear workers to enter the operations field; strengthening the linkage between university energy field curricula and real-life application of theory; and, improving understanding of integrated plant operations for developing station technical staff. This paper describes the A BWR Demonstration Simulator and its applications for training and educating future nuclear workers. (Author)

  11. TEM/STEM study of Zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure

    Science.gov (United States)

    Park, Donghee; Mouche, Peter A.; Zhong, Weicheng; Mandapaka, Kiran K.; Was, Gary S.; Heuser, Brent J.

    2018-04-01

    FeAl(Cr) thin-film depositions on Zircaloy-2 were studied using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) with respect to oxidation behavior under simulated boiling water reactor (BWR) conditions and high-temperature steam. Columnar grains of FeAl with Cr in solid solution were formed on Zircaloy-2 coupons using magnetron sputtering. NiFe2O4 precipitates on the surface of the FeAl(Cr) coatings were observed after the sample was exposed to the simulated BWR environment. High-temperature steam exposure resulted in grain growth and consumption of the FeAl(Cr) layer, but no delamination at the interface. Outward Al diffusion from the FeAl(Cr) layer occurred during high-temperature steam exposure (700 °C for 3.6 h) to form a 100-nm-thick alumina oxide layer, which was effective in mitigating oxidation of the Zircaloy-2 coupons. Zr intermetallic precipitates formed near the FeAl(Cr) layer due to the inward diffusion of Fe and Al. The counterflow of vacancies in response to the Al and Fe diffusion led to porosity within the FeAl(Cr) layer.

  12. TLTA/6431, Two-Loop-Test-Apparatus, BWR/6 Simulator, Small-Break LOCA

    International Nuclear Information System (INIS)

    1992-01-01

    1 - Description of test facility: The Two-Loop-Test-Apparatus (TLTA) is a 1:624 volume scaled BWR/6 simulator. It was the predecessor of the better-scaled FIST facility. The facility is capable of full BWR system pressure and has a simulated core with a full size 8 x 8, full power single bundle of indirect electrically heated rods. All major BWR systems are simulated including lower plenum, guide tube, core region (bundle and bypass), upper plenum, steam separator, steam dome, annular downcomer, recirculation loops and ECC injection systems. The fundamental scaling consideration was to achieve real-time response. A number of the scaling compromises present in TLTA were corrected in the FIST configuration. These compromises include a number of regional volumes and component elevations. 2 - Description of test: 64.45 sqcm small break LOCA with activation of the full emergency core cooling system, but without activation of the automatic decompression system

  13. General model for Pc-based simulation of PWR and BWR plant components

    Energy Technology Data Exchange (ETDEWEB)

    Ratemi, W M; Abomustafa, A M [Faculty of enginnering, alfateh univerity Tripoli, (Libyan Arab Jamahiriya)

    1995-10-01

    In this paper, we present a basic mathematical model derived from physical principles to suit the simulation of PWR-components such as pressurizer, intact steam generator, ruptured steam generator, and the reactor component of a BWR-plant. In our development, we produced an NMMS-package for nuclear modular modelling simulation. Such package is installed on a personal computer and it is designed to be user friendly through color graphics windows interfacing. The package works under three environments, namely, pre-processor, simulation, and post-processor. Our analysis of results using cross graphing technique for steam generator tube rupture (SGTR) accident, yielded a new proposal for on-line monitoring of control strategy of SGTR-accident for nuclear or conventional power plant. 4 figs.

  14. Sophistication of operator training using BWR plant simulator

    International Nuclear Information System (INIS)

    Ohshiro, Nobuo; Endou, Hideaki; Fujita, Eimitsu; Miyakita, Kouji

    1986-01-01

    In Japanese nuclear power stations, owing to the improvement of fuel management, thorough maintenance and inspection, and the improvement of facilities, high capacity ratio has been attained. The thorough training of operators in nuclear power stations also contributes to it sufficiently. The BWR operator training center was established in 1971, and started the training of operators in April, 1974. As of the end of March, 1986, more than 1800 trainees completed training. At present, in the BWR operator training center, No.1 simulator of 800 MW class and No.2 simulator of 1100 MW class are operated for training. In this report, the method, by newly adopting it, good result was obtained, is described, that is, the method of introducing the feeling of being present on the spot into the place of training, and the new testing method introduced in retraining course. In the simulator training which is apt to place emphasis on a central control room, the method of stimulating trainees by playing the part of correspondence on the spot and heightening the training effect of multiple monitoring was tried, and the result was confirmed. The test of confirmation on the control board was added. (Kako, I.)

  15. Low cycle corrosion fatigue properties of F316Ti in simulated LWR primary environment

    International Nuclear Information System (INIS)

    Xu Xuelian; Ding Yaping; Katada, Y.; Sato, S.

    1998-11-01

    Environment effect on fatigue performance of materials used for Pressurized boundary, including fatigue life and crack growth rate, are of importance to nuclear safety. To predict the fatigue life of nuclear materials and to improve the design of nuclear materials, it is necessary to investigated the material fatigue performances in corrosive environment and to get the fatigue data under its environment to be used in. Low cycle corrosion fatigue (CF) performance investigation of domestic F316Ti in simulated BWR and PWR primary environment was carried out. The result shows that the high temperature water environment is one of the most important factors on CF properties. For the same material, the low cycle fatigue life in high temperature air is longer than that in simulated BWR and PWR primary environments. In high temperature water, domestic F316Ti has almost the same low cycle corrosion fatigue performance as F316 (made in Japan). All of the fatigue data are scattered within ASME best-fit curve and ASME design fatigue curve. In high strain range, there is no significant difference of the CF performance for F316Ti in both of BWR and PWR primary environments. With the decrease of strain amplitude, the difference appears gradually. The data is located at the short life side of the fatigue data in simulated BWR primary environment. Titanium is distributed uniformly in F316Ti manufactured in Fushun Steel Factory. Ni, Cr, Mo in this material are located at the high side of the alloy chemical composition range. So, F316Ti has a better CF property in high temperature water

  16. Hybrid Reactor Simulation and 3-D Information Display of BWR Out-of-Phase Oscillation

    International Nuclear Information System (INIS)

    Edwards, Robert; Huang, Zhengyu

    2001-01-01

    The real-time hybrid reactor simulation (HRS) capability of the Penn State TRIGA reactor has been expanded for boiling water reactor (BWR) out-of-phase behavior. During BWR out-of-phase oscillation half of the core can significantly oscillate out of phase with the other half, while the average power reported by the neutronic instrumentation may show a much lower amplitude for the oscillations. A description of the new HRS is given; three computers are employed to handle all the computations required, including real-time data processing and graph generation. BWR out-of-phase oscillation was successfully simulated. By adjusting the reactivity feedback gains from boiling channels to the TRIGA reactor and to the first harmonic mode power simulation, limit cycle can be generated with both reactor power and the simulated first harmonic power. A 3-D display of spatial power distributions of fundamental mode, first harmonic, and total powers over the reactor cross section is shown

  17. Effect of yield strength on stress corrosion crack propagation under PWR and BWR environments of hardened stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Castano, M.L.; Garcia, M.S.; Diego, G. de; Gomez-Briceno, D. [CIEMAT, Nuclear Fission Department, Structural Materials Program, Avda. Complutense 22, 28040 Madrid (Spain)

    2004-07-01

    Core components of light water reactor (LWR), mainly made of austenitic stainless steels (SS), subjected to stress and exposed to relatively high fast neutron flux may suffer a cracking process termed as Irradiation Assisted Stress Corrosion Cracking (IASCC). Neutron radiation leads to critical modifications in material characteristics, which can modify their stress corrosion cracking (SCC) response. Current knowledge highlights three fundamental factors, induced by radiation, as primary contributors to IASCC of core materials: Radiation Induced Segregation (RIS) at grain boundaries, Radiation Hardening and Radiolysis. Most of the existing literature on IASCC is focussed on the influence of RIS, mainly chromium depletion, which can promote IASCC in oxidizing environments, such a Boiling Water Reactor (BWR) under normal water chemistry. However, in non-oxidizing environments, such as primary water of Pressurized Water Reactor (PWR) or BWR hydrogen water chemistry, the role played by chromium depletion at grain boundary on IASCC behaviour of highly irradiated material is irrelevant. One important issue with limited study is the effect of radiation induced hardening. The role of hardening on IASCC is became stronger considered, especially for environments where other factors, like micro-chemistry, have no significant influence. To formulate the mechanism of IASCC, a well-established method is to isolate and quantify the effect of individual parameters. The use of unirradiated material and the simulation of the irradiation effects is a procedure used with success for evaluating the influence of irradiation effects. Radiation hardening can be simulated by mechanical deformation and, although some differences exist in the types of defects produced, it is believed that the study of the SCC behaviour of unirradiated materials with different hardening levels would contribute to the understanding of IASCC mechanism. In order to evaluate the influence of hardening on the

  18. BWR full integral simulation test (FIST) pretest predictions with TRACBO2

    International Nuclear Information System (INIS)

    Sutherland, W.A.; Alamgir, M.

    1984-01-01

    The Full Integral Simulation Test program is a three pronged approach to the development of best-estimate analysis capability for BWR systems. An analytical method development program is underway to extend the BWR-TRAC computer code to model reactor kinetics and major interfacing systems, including balance-of-plant, to improve application modeling flexibility, and to reduce computer running time. An experimental program is underway in a new single bundle system test facility to extend the large break loss-of-coolant accident LOCA data base to small breaks and operational transients. And a method qualification program is underway to test TRACBO2 against experiments in the FIST facility. The recently completed Phase 1 period included a series of LOCA and power transient tests, and successful pretest analysis of the large and small break LOCA tests with TRACBO2. These comparisons demonstrate BWR-TRAC capability for small and large break analysis, and provide detailed understanding of the phenomena

  19. On the fast estimation of transit times application to BWR simulated data

    International Nuclear Information System (INIS)

    Antonopoulos-Domis, M.; Marseguerra, M.; Padovani, E.

    1996-01-01

    Real time estimators of transit times are proposed. BWR noise is simulated including a global component due to rod vibration. The time obtained form the simulation is used to investigate the robustness and noise immunity of the estimators. It is found that, in presence of a coincident (global) signal, the cross-correlation function is the worst estimator. (authors)

  20. Parametric tests of the effects of water chemistry impurities on corrosion of Zr-alloys under simulated BWR condition

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, S; Ito, K [Nippon Nuclear Fuel Development Co. Ltd., Oarai, Ibaraki (Japan); Lin, C C [GE Nucklear Energy (United States); Cheng, B [Electric Power Research Inst. (United States); Ikeda, T [Toshiba Corp. (Japan); Oguma, M [Hitachi, Ltd (Japan); Takei, T [Tokyo Electric Power Co., Inc. (Japan); Vitanza, C; Karlsen, T M [Institutt for Energiteknikk, Halden (Norway). OECD Halden Reaktor Projekt

    1997-02-01

    The Halden BWR corrosion test loop was constructed to evaluate the impact of water chemistry variables, heat flux and boiling condition on corrosion performance of Zr-alloys in a simulated BWR environment. The loop consists of two in-core rigs, one for testing fuel rod segments and the other for evaluating water chemistry variables utilizing four miniautoclaves. Ten coupon specimens are enclosed in each miniautoclave. The Zr-alloys for the test include Zircaloy-2 having different nodular corrosion resistance and five new alloys. The first and second of the six irradiation tests planned in this program were completed. Post-irradiation examination of those test specimens have shown that the test loop is capable of producing nodular corrosion on the fuel rod cladding tested under the reference chemistry condition. The miniautoclave tests showed that nodular corrosion could be formed without flux and boiling under some water chemistry conditions and the new alloys, generally, had higher corrosion resistance than the Zircaloy in high oxygen environments. (author). 5 refs, 4 figs, 5 tabs.

  1. Recent technology for BWR operator training simulators

    International Nuclear Information System (INIS)

    Sato, Takao; Hashimoto, Shigeo; Kato, Kanji; Mizuno, Toshiyuki; Asaoka, Koichi.

    1990-01-01

    As one of the important factors for maintaining the high capacity ratio in Japanese nuclear power stations, the contribution of excellent operators is pointed out. BWR Operation Training Center has trained many operators using two full scope simulators for operation training modeling BWRs. But in order to meet the demands of the recent increase of training needs and the upgrading of the contents, it was decided to install the third simulator, and Hitachi Ltd. received the order to construct the main part, and delivered it. This simulator obtained the good reputation as its range of simulation is wide, and the characteristics resemble very well those of the actual plants. Besides, various new designs were adopted in the control of the simulator, and its handling became very easy. Japanese nuclear power plants are operated at constant power output, and the unexpected stop is very rare, therefore the chance of operating the plants by operators is very few. Accordingly, the training using the simulators which can simulate the behavior of the plants with computers, and can freely generate abnormal phenomena has become increasingly important. The mode and positioning of the simulators for operation training, the full scope simulator BTC-3 and so on are reported. (K.I.)

  2. BWR shutdown analyzer using artificial intelligence (AI) techniques

    International Nuclear Information System (INIS)

    Cain, D.G.

    1986-01-01

    A prototype alarm system for detecting abnormal reactor shutdowns based on artificial intelligence technology is described. The system incorporates knowledge about Boiling Water Reactor (BWR) plant design and component behavior, as well as knowledge required to distinguish normal, abnormal, and ATWS accident conditions. The system was developed using a software tool environment for creating knowledge-based applications on a LISP machine. To facilitate prototype implementation and evaluation, a casual simulation of BWR shutdown sequences was developed and interfaced with the alarm system. An intelligent graphics interface for execution and control is described. System performance considerations and general observations relating to artificial intelligence application to nuclear power plant problems are provided

  3. Subchannel analysis of a critical power test, using simulated BWR 8x8 fuel assembly

    International Nuclear Information System (INIS)

    Mitsutake, T.; Terasaka, H.; Yoshimura, K.; Oishi, M.; Inoue, A.; Akiyama, M.

    1990-01-01

    Critical power predictions have been compared with the critical power test data obtained in simulated BWR 8x8 fuel rod assemblies. Two analytical methods for the critical power prediction in rod assemblies are used in the prediction, which are the subchannel analysis using the COBRA/BWR subchannel computer code with empirical critical heat flux (CHF) correlations and the liquid film dryout estimation using the CRIPP-3F 'multi-fluid' computer code. Improvements in both the analytical methods were made for spacer effect modeling, though they were specific for application to the current BWR rod assembly type. In general a reasonable agreement was obtained, though comparisons, between the prediction and the obtained test data. (orig.)

  4. U.S. Department Of Energy's nuclear engineering education research: highlights of recent and current research-II. 7. Hybrid Reactor Simulation and 3-D Information Display of BWR Out-of-Phase Oscillation

    International Nuclear Information System (INIS)

    Edwards, Robert; Huang, Zhengyu

    2001-01-01

    The real-time hybrid reactor simulation (HRS) capability of the Penn State TRIGA reactor has been recently expanded for BWR out-of-phase behavior. Out-of-phase oscillation is a phenomenon that occurs at BWRs. During this kind of event, half of the core can significantly oscillate out of phase with the other half, while the average power reported by the neutronic instrumentation may show a much lower amplitude for the oscillations. The HRS will be used for development and validation of stability monitoring and control techniques as part of an ongoing U.S. Department of Energy Nuclear Engineering Education and Research grant. The Penn State TRIGA reactor is used to simulate BWR fundamental mode power dynamics. The first harmonic mode power, together with detailed thermal hydraulics of boiling channels of both fundamental mode and first harmonic mode, is simulated digitally in real time with a computer. Simulations of boiling channels provide reactivity feedback to the TRIGA reactor, and the TRIGA reactor's power response is in turn fed into the channel simulations and the first harmonic mode power simulation. The combination of reactor power response and the simulated first harmonic power response with spatial distribution functions thus mimics the stability phenomena actually encountered in BWRs. The digital simulations of the boiling channels are performed by solving conservation equations for different regions in the channel with C-MEX S-functions. A fast three-dimensional (3-D) reactor power display of modal BWR power distribution was implemented using MATLAB graphics capability. Fundamental mode, first harmonic, together with the total power distribution over the reactor cross section, are displayed. Because of the large amount of computation for BWR boiling channel simulation and real-time data processing and graph generation, one computer is not sufficient to handle these jobs in the hybrid reactor simulation environment. A new three-computer setup has been

  5. Best-estimate analysis development for BWR systems

    International Nuclear Information System (INIS)

    Sutherland, W.A.; Alamgir, M.; Kalra, S.P.; Beckner, W.D.

    1986-01-01

    The Full Integral Simulation Test (FIST) Program is a three pronged approach to the development of best-estimate analysis capability for BWR systems. An experimental program in the FIST BWR system simulator facility extends the LOCA data base and adds operational transients data. An analytical method development program with the BWR-TRAC computer program extends the modeling of BWR specific components and major interfacing systems, and improves numerical techniques to reduce computer running time. A method qualification program tests TRAC-B against experiments run in the FIST facility and extends the results to reactor system applications. With the completion and integration of these three activities, the objective of a best-estimate analysis capability has been achieved. (author)

  6. BWR water chemistry impurity studies

    International Nuclear Information System (INIS)

    Ljungberg, L.G.; Korhonen, S.; Renstroem, K.; Hofling, C.G.; Rebensdorff, B.

    1990-03-01

    Laboratory studies were made on the effect of water impurities on environmental cracking in simulated BWR water of stainless steel, low alloy steel and nickel-base alloys. Constant elongation rate tensile (CERT) tests were run in simulated normal water chemistry (NWC), hydrogen water chemistry (HWC), or start-up environment. Sulfate, chloride and copper with chloride added to the water at levels of a fraction of a ppM were found to be extremely deleterious to all kinds of materials except Type 316 NG. Other detrimental impurities were fluoride, silica and some organic acids, although acetic acid was beneficial. Nitrate and carbon dioxide were fairly inoccuous. Corrosion fatigue and constant load tests on compact tension specimens were run in simulated normal BWR water chemistry (NWC) or hydrogen water chemistry (HWC), without impurities or with added sulfate or carbon dioxide. For sensitized Type 304 SS in NWC, 0.1 ppM sulfate increased crack propagation rates in constant load tests by up to a factor of 100, and in fatigue tests up to a factor of 10. Also, cracking in Type 316 nuclear grade SS and Alloy 600 was enhanced, but to a smaller degree. Carbon dioxide was less detrimental than sulfate. 3 figs., 4 tabs

  7. Quantitative evaluation for training results of nuclear plant operator on BWR simulator

    International Nuclear Information System (INIS)

    Sato, Takao; Sato, Tatsuaki; Onishi, Hiroshi; Miyakita, Kohji; Mizuno, Toshiyuki

    1985-01-01

    Recently, the reliability of neclear power plants has largely risen, and the abnormal phenomena in the actual plants are rarely encountered. Therefore, the training using simulators becomes more and more important. In BWR Operator Training Center Corp., the training of the operators of BWR power plants has been continued for about ten years using a simulator having the nearly same function as the actual plants. The recent high capacity ratio of nuclear power plants has been mostly supported by excellent operators trained in this way. Taking the opportunity of the start of operation of No.2 simulator, effort has been exerted to quantitatively grasp the effect of training and to heighten the quality of training. The outline of seven training courses is shown. The technical ability required for operators, the items of quantifying the effect of training, that is, operational errors and the time required for operation, the method of quantifying, the method of collecting the data and the results of the application to the actual training are described. It was found that this method is suitable to quantify the effect of training. (Kako, I.)

  8. Fracture toughness of irradiated wrought and cast austenitic stainless steels in BWR environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gruber, E.E.; Shack, W.J.

    2007-01-01

    Experimental data are presented on the fracture toughness of wrought and cast austenitic stainless steels (SSs) that were irradiated to a fluence of ∼ 1.5 x 10 21 n/cm 2 (E > 1 MeV) * (∼ 2.3 dpa) at 296-305 o C. To evaluate the possible effects of test environment and crack morphology on the fracture toughness of these steels, all tests were conducted in normal-water-chemistry boiling water reactor (BWR) environments at ∼ 289 o C. Companion tests were also conducted in air on the same material for comparison. The fracture toughness J-R curves for SS weld heat-affected-zone materials in BWR water were found to be comparable to those in air. However, the results of tests on sensitized Type 304 SS and thermally aged cast CF-8M steel suggested a possible effect of water environment. The available fracture toughness data on irradiated austenitic SSs were reviewed to assess the potential for radiation embrittlement of reactor-core internal components. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components are also discussed. (author)

  9. BWR 90 and BWR 90+: Two advanced BWR design generations from ABB

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced light water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and total power generation costs have been low. When developing the BWR 90 specific changes were introduced to a reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher than that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Hence, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The review work was completed in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with an 'evolutionary' design called BWR 90+, which aims at developing the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is performed by ABB Atom

  10. BWR plant analyzer development at BNL

    International Nuclear Information System (INIS)

    Cheng, H.S.; Wulff, W.; Mallen, A.N.; Lekach, S.V.; Stritar, A.; Cerbone, R.J.

    1985-01-01

    Advanced technology for high-speed interactive nuclear power plant simulations is of great value for timely resolution of safety issues, for plant monitoring, and for computer-aided emergency responses to an accident. Presented is the methodology employed at BNL to develop a BWR plant analyzer capable of simulating severe plant transients at much faster than real-time process speeds. Five modeling principles are established and a criterion is given for selecting numerical procedures and efficient computers to achieve the very high simulation speeds. Typical results are shown to demonstrate the modeling fidelity of the BWR plant analyzer

  11. Kinematics of two-phase mixture level motion in BWR pressure vessels

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.; Stritar, A.

    1985-01-01

    A model is presented for predicting two-phase mixture level elevations in BWR systems. The model accounts for the particular geometry and conditions in a BWR system during Small-Break Loss of Coolant Accidents. The model presented here is particularly suitable for efficient, high-speed simulations on small minicomputers. The model has been implemented and tested. Results are shown from BWR ATWS simulations

  12. FIST small break accident analysis with BWR TRACBO2-pretest predictions

    International Nuclear Information System (INIS)

    Alamgir, M.; Sutherland, W.A.

    1984-01-01

    The BWR Full Integral Simulation Test (FIST) program includes experimental simulation and analytical evaluation of BWR thermal-hydraulic phenomena during transient events. One such event is a small size break in the suction line of one of the recirculation pumps. The results from a test simulating this transient in the FIST facility are compared with a system analysis using the Transient Reactor Analysis Code (TRACB02). This comparison demonstrates BWR-TRAC capability for small break analyses and provides detailed understanding of the phenomena

  13. BWR 90: The ABB advanced BWR design

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced fight water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and the total power generation costs have been low. In the development of BWR 90 specific changes were introduced to the reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher dim that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Thus, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The work is scheduled for completion in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with the 'evolutionary' design BWR 90+. The primary design goal is to develop the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is

  14. Upgrading BWR training simulators for annual outage operation training

    International Nuclear Information System (INIS)

    Yamakabe, K.; Nakajima, A.; Shiyama, H.; Noji, K.; Okabe, N.; Murata, F.

    2006-01-01

    Based upon the recently developed quality assurance program by the Japanese electric companies, BWR Operator Training Center (BTC) identified the needs to enhance operators' knowledge and skills for operations tasks during annual outage, and started to develop a dedicated operator training course specialized for them. In this paper, we present the total framework of the training course for annual outage operations and the associated typical three functions of our full-scope simulators specially developed and upgraded to conduct the training; namely, (1) Simulation model upgrade for the flow and temperature behavior concerning residual heat removal (RHR) system with shutdown cooling mode, (2) Addition of malfunctions for DC power supply equipment, (3) Simulation model upgrade for water filling operation for reactor pressurization (future development). We have implemented a trial of the training course by using the upgraded 800MW full-scope training simulator with functions (1) and (2) above. As the result of this trial, we are confident that the developed training course is effective for enhancing operators' knowledge and skills for operations tasks during annual outage. (author)

  15. Status update of the BWR cask simulator

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximum thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations

  16. An interactive simulation-based education system for BWR emergency, procedure guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Tanikawa, Naoshi; Shida, Touichi [Hitachi Ltd (Japan). Hitachi Works; Ujita, Hiroshi; Yokota, Takeshi; Kato, Kanji [Hitachi Ltd, (Japan). Energy Research Lab.

    1994-12-31

    When applying EPGs (Emergency Procedure Guidelines), an operator decides the operational procedure by predicting the change of parameters from the plant status, because EPGs are described in a symptom style for emergency conditions. Technical knowledge of the plant behavior and its operation are necessary for operator to understand the EPGs. An interactive simulation-based education system, EPG-ICAI (Intelligent Computer Assisted Instruction), has been developed for BWR plant operators to acquire the knowledge of EPGs. EPG-ICAI is designed to realize an effective education by the step-by-step study by using an interactive real time simulator and an individual education by applying an intelligent tutoring function. (orig.) (2 refs., 7 figs., 1 tab.).

  17. An interactive simulation-based education system for BWR emergency, procedure guidelines

    International Nuclear Information System (INIS)

    Tanikawa, Naoshi; Shida, Touichi; Ujita, Hiroshi; Yokota, Takeshi; Kato, Kanji

    1994-01-01

    When applying EPGs (Emergency Procedure Guidelines), an operator decides the operational procedure by predicting the change of parameters from the plant status, because EPGs are described in a symptom style for emergency conditions. Technical knowledge of the plant behavior and its operation are necessary for operator to understand the EPGs. An interactive simulation-based education system, EPG-ICAI (Intelligent Computer Assisted Instruction), has been developed for BWR plant operators to acquire the knowledge of EPGs. EPG-ICAI is designed to realize an effective education by the step-by-step study by using an interactive real time simulator and an individual education by applying an intelligent tutoring function. (orig.) (2 refs., 7 figs., 1 tab.)

  18. BWR Full Integral Simulation Test (FIST). Phase I test results

    International Nuclear Information System (INIS)

    Hwang, W.S.; Alamgir, M.; Sutherland, W.A.

    1984-09-01

    A new full height BWR system simulator has been built under the Full-Integral-Simulation-Test (FIST) program to investigate the system responses to various transients. The test program consists of two test phases. This report provides a summary, discussions, highlights and conclusions of the FIST Phase I tests. Eight matrix tests were conducted in the FIST Phase I. These tests have investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. Results and governing phenomena of each test have been evaluated and discussed in detail in this report. One of the FIST program objectives is to assess the TRAC code by comparisons with test data. Two pretest predictions made with TRACB02 are presented and compared with test data in this report

  19. Cobra-IE Evaluation by Simulation of the NUPEC BWR Full-Size Fine-Mesh Bundle Test (BFBT)

    International Nuclear Information System (INIS)

    Burns, C. J.; Aumiler, D.L.

    2006-01-01

    The COBRA-IE computer code is a thermal-hydraulic subchannel analysis program capable of simulating phenomena present in both PWRs and BWRs. As part of ongoing COBRA-IE assessment efforts, the code has been evaluated against experimental data from the NUPEC BWR Full-Size Fine-Mesh Bundle Tests (BFBT). The BFBT experiments utilized an 8 x 8 rod bundle to simulate BWR operating conditions and power profiles, providing an excellent database for investigation of the capabilities of the code. Benchmarks performed included steady-state and transient void distribution, single-phase and two-phase pressure drop, and steady-state and transient critical power measurements. COBRA-IE effectively captured the trends seen in the experimental data with acceptable prediction error. Future sensitivity studies are planned to investigate the effects of enabling and/or modifying optional code models dealing with void drift, turbulent mixing, rewetting, and CHF

  20. Compact modular BWR (CM-BWR)

    International Nuclear Information System (INIS)

    Fennern, Larry; Boardman, Charles; Carroll, Douglas G.; Hida, Takahiko

    2003-01-01

    A preliminary assessment has shown that a small 350 MWe BWR reactor can be placed within a close fitting steel containment vessel that is 7.1 meters inside diameter. This allows the technology and manufacturing capability currently used to fabricate large ABWR reactor vessels to be used to provide a factory fabricated containment vessel for a 350 MWe BWR. When a close fitted steel containment is combined with a passive closed loop isolation condenser system and a natural circulating reactor system that contains a large water inventory, primary system leaks cannot uncover the core. This eliminates many of the safety systems needed in response to a LOCA that are common to large, conventional plant designs including. Emergency Core Flooding, Automatic Depressurization System, Active Residual Heat Removal, Safety Related Auxiliary Cooling, Safety Related Diesel Generators, Hydrogen Re-Combiners, Ex-vessel Core Retention and Cooling. By fabricating the containment in a factory and eliminating most of the conventional safety systems, the construction schedule is shortened and the capital cost reduced to levels that would not otherwise be possible for a relatively small modular BWR. This makes the CM-BWR a candidate for applications where smaller incremental power additions are desired relative to a large ALWR or where the local infrastructure is not able to accommodate a conventional ALWR plant rated at 1350 MWe or more. This paper presents a preliminary design description of a Compact Modular BWR (CM-BWR) whose design features dramatically reduce the size and cost of the reactor building and associated safety systems. (author)

  1. Efficient method for simulation of BWR severe accident sequence events before core uncovery

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1984-01-01

    BWR-LACP has been a versatile tool for the ORNL SASA program. The development effort was minimal, and the code is fast running and economical. Operator actions are easily simulated and the complete scope of both reactor vessel and primary containment are modeled. Valuable insights have been gained into accident sequences. A Fortran version is under development and it will be modified for application to Mark II plants

  2. IGSCC in cold worked austenitic stainless steel in BWR environment

    International Nuclear Information System (INIS)

    Persson, B.; Lindblad, B.

    1989-09-01

    The survey shows that austenitic stainless steels in a cold worked condition can exhibit IGSCC in BWR environment. It is also found that IGSCC often is initiated as a transgranular crack. Local stresses and surface defects very often acts as starting points for IGSCC. IGSCC due to cold working requires a cold working magnitude of at leas 5%. During cold working a formation of mechanical martensite can take place. The transgranular corrosion occurs in the martensitic phase due to sensitation. The crack propagates integranularly due to anodic solvation of α'-martensite. Sensitation of the martensitic phase is fasten in BCC-structures than in a FCC-structures mainly due to faster diffusion of chromium and carbon which cause precipitation of chromium carbides. Experiments show that a carbon content as low as 0.008% is enough for the formation of 68% martensite and for sensitation. Hydrogen induced cracking is regarded as a mechanism which can accelerate IGSCC. Such cracking requires a hydrostatic stress near the crack tip. Since the oxide in the crack tip is relatively impermeable to hydrogen, cracks in the oxide layer are required for such embrittlement. Hydrogen induced embrittlement of the martensitic phase, at the crack tip, can cause crack propagation. Solution heat treated unstabilized stainless steels are regarded to have a good resistance to IGSCC if they have not undergone cold working. In general, though, Mo-alloyed steels have a better resistance to IGSCC in BWR environment. Regarding the causes for IGSCC, the present literature survey shows that many mechanisms are suggested. To provide a safer ground for the estimation of crack propagation rates, SA recommends SKI to finance a project with the aim to determine the crack propagation rate on proper material. (authors) (65 refs.)

  3. Core followup studies of the Tarapur Reactors with the three dimensional BWR simulator COMTEG

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, S. R.; Jagannathan, V.; Mohanakrishnan, P.; Srinivasan, K. R.; Rastogi, B. P.

    1976-07-01

    Both the units of the Tarapur Atomic Power Station started operation in the year 1969. Since then, these units have completed three cycles. For efficient operation and fuel management of these reactors, a three dimensional BWR simulator COMETG has been developed. The reactors are closely being followed using the simulator. The detailed analyses for cycle 3/4 operation of both the units are described in the paper. The results show very good agreement between calculated and measured values. It is concluded that reactor core behaviour could be predicted in a satisfactory manner with the core simulator COMETG.

  4. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    International Nuclear Information System (INIS)

    Chen, Y.; Chopra, O. K.; Gruber, Eugene E.; Shack, William J.

    2010-01-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC. The

  5. Residual stress analysis in BWR pressure vessel attachments

    International Nuclear Information System (INIS)

    Dexter, R.J.; Leung, C.P.; Pont, D.

    1992-06-01

    Residual stresses from welding processes can be the primary driving force for stress corrosion cracking (SCC) in BWR components. Thus, a better understanding of the causes and nature of these residual stresses can help assess and remedy SCC. Numerical welding simulation software, such as SYSWELD, and material property data have been used to quantify residual stresses for application to SCC assessments in BWR components. Furthermore, parametric studies using SYSWELD have revealed which variables significantly affect predicted residual stress. Overall, numerical modeling techniques can be used to evaluate residual stress for SCC assessments of BWR components and to identify and plan future SCC research

  6. Effects of Cr and Nb contents on the susceptibility of Alloy 600 type Ni-base alloys to stress-corrosion cracking in a simulated BWR environment

    International Nuclear Information System (INIS)

    Akashi, Masatsune

    1995-01-01

    In order to discuss the effects of chromium and niobium contents on the susceptibility of Alloy 600 type nickel-base alloys to stress-corrosion cracking in the BWR primary coolant environment, a series of creviced bent-beam (CBB) tests were conducted in a high-temperature, high-purity water environment. Chromium, niobium, and titanium as alloying elements improved the resistivity to stress-corrosion cracking, whereas carbon enhanced the susceptibility to it. Alloy-chemistry-based correlations have been defined to predict the relative resistances of alloys to stress-corrosion cracking. A strong correlation was found, for several heats of alloys, between grain-boundary chromium depletion and the susceptibility to stress-corrosion cracking

  7. Results of the Simulator smart against synthetic signals using a model of reduced order of BWR with additive and multiplicative noise; Resultados del simulador smart frente a senales sinteticas utilizando un modelo de orden reducido de BWR con ruido aditivo y multiplicativo

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, J. L.; Montesino, M. E.; Pena, J.; Escriva, A.; Melara, J.

    2011-07-01

    Results of SMART-simulator front of synthetic signals with models of reduced order of BWR with additive and multiplicative noise Under the SMART project, which aims to monitor the signals Cofrentes nuclear plant, we have developed a signal generator of synthetics BWR that will allow together real signals of plant the validation of the monitor.

  8. Improvement for BWR operator training, 3

    International Nuclear Information System (INIS)

    Noji, Kunio; Toeda, Susumu; Saito, Genhachi; Suzuki, Koichi

    1990-01-01

    BWR Operator Training Center Corporation (BTC) is conducting training for BWR plant operators using Full-scope Simulators. There are several courses for individual operators and one training course for shift crew (Family Training Course) in BTC. Family Training is carried out by all members of the operating shift-crew. BTC has made efforts to improve the Family Training in order to acquire more effective training results and contribute to up-grade team performance of all crews. This paper describes some items of our efforts towards Family Training improvement. (author)

  9. Modeling of SCC initiation and propagation mechanisms in BWR environments

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Hans, E-mail: Hans.Hoffmeister@hsu-hh.de [Institute for Failure Analysis and Failure Prevention ISSV e.V., c/o Helmut Schmidt University of the Federal Armed Forces, D-22039 Hamburg (Germany); Klein, Oliver [Institute for Failure Analysis and Failure Prevention ISSV e.V., c/o Helmut Schmidt University of the Federal Armed Forces, D-22039 Hamburg (Germany)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We show that SSC in BWR environments includes anodic crack propagation and hydrogen assisted cracking. Black-Right-Pointing-Pointer Hydrogen cracking is triggered by crack tip acidification following local impurity accumulations and subsequent phase precipitations. Black-Right-Pointing-Pointer We calculate effects of pH, chlorides, potentials and stress on crack SCC growth rates at 288 Degree-Sign C. - Abstract: During operation of mainly BWRs' (Boiling Water Reactors) excursions from recommended water chemistries may provide favorite conditions for stress corrosion cracking (SCC). Maximum levels for chloride and sulfate ion contents for avoiding local corrosion are therefore given in respective water specifications. In a previously published deterministic 288 Degree-Sign C - corrosion model for Nickel as a main alloying element of BWR components it was demonstrated that, as a theoretically worst case, bulk water chloride levels as low as 30 ppb provide local chloride ion accumulation, dissolution of passivating nickel oxide and precipitation of nickel chlorides followed by subsequent local acidification. In an extension of the above model to SCC the following work shows that, in a first step, local anodic path corrosion with subsequent oxide breakdown, chloride salt formation and acidification at 288 Degree-Sign C would establish local cathodic reduction of accumulated hydrogen ions inside the crack tip fluid. In a second step, local hydrogen reduction charges and increasing local crack tip strains from increasing crack lengths at given global stresses are time stepwise calculated and related to experimentally determined crack critical cathodic hydrogen charges and fracture strains taken from small scale SSRT tensile tests pieces. As a result, at local hydrogen equilibrium potentials higher than those of nickel in the crack tip solution, hydrogen ion reduction initiates hydrogen crack propagation that is enhanced with

  10. Improvement for BWR operator training

    International Nuclear Information System (INIS)

    Tsuchiya, Toshio; Masuda, Hisao; Isono, Tomoyuki; Noji, Kunio; Togo, Toshiki

    1989-01-01

    BWR Operator Training Center Corporation (BTC) was established in April 1971 for the purpose of training the operators from all BWR utilities in Japan. Since April 1974, more than 2600 operators and 1000 shift teams have been trained with the full-scope simulators in BTC up to the end of March 1988. To get the satisfactory results of the training, BTC has been making every effort to improve the facilities, the training materials, the instruction methods and the curricula. In this paper, such a series of recent improvements in the instruction methods and the curricula are presented that are effective to expand the knowledge and to improve the skills of middle or senior class operators. (author)

  11. Cobra-TF simulation of BWR bundle dry out experiments

    Energy Technology Data Exchange (ETDEWEB)

    Frepoli, C.; Ireland, A.; Hochreiter, L.; Ivanov, K. [Penn State Univ., Dept. of Mechanical and Nuclear Engineering, University Park, PA (United States); Velten, R. [Siemens Nuclear Power GmbH, Erlangen (Germany)

    2001-07-01

    The COBRA-TF computer code uses a two-fluid, three-field and three-dimensional formulation to model a two-phase flow field in a specific geometry. The liquid phase is divided in a continuous liquid field and a separate dispersed field, which is used to describe the entrained liquid drops. For each space dimension, the code solves three momentum equations, three mass conservation equations and two energy conservation equations. Entrainment and depositions models are implemented into the code to model the mass transfer between the two liquid fields. This study presents the results obtained with COBRA-TF for the simulation of the Siemens 9-9Q BWR Bundle Dryout experiments. The model includes 20 channels and 34 axial nodes in the heated section. The predicted critical power and dryout location is compared with the measured values. An assessment of the code entrainment and de-entrainment models is presented. (authors)

  12. Core heat transfer analysis during a BWR LOCA simulation experiment at ROSA-III

    International Nuclear Information System (INIS)

    Yonomoto, T.; Koizumi, Y.; Tasaka, K.

    1987-01-01

    The ROSA-III test facility is a 1/424-th volumetrically scaled BWR/6 simulator with an electrically heated core to study the thermal-hydraulic response during a postulated loss-of-coolant accident (LOCA). Heat transfer analyses for 5, 15, 50 and 200% break tests were conducted to understand the basic heat transfer behavior in the core under BWR LOCA conditions and to obtain a data base of post-critical heat flux (CHF) heat transfer coefficients and quench temperature. The results show that the convective heat transfer coefficient of dried-out rods at the core midplane during a steam cooling period is less than approximately 120 W/m 2 K. It is larger than existing data measured at lower pressures during a spray cooling period. Bottom-up quench temperatures are given by a simple equations: The sum of the saturation temperature and a constant of 262 K. Then the heat transfer model in the RELAP4/MOD6/U4/J3 code was revised using the present results. The rod surface temperature behavior in the 200% break test was calculated better by using the revised model although the model is very simple. (orig.)

  13. Development of new irradiation facility for BWR safety research

    International Nuclear Information System (INIS)

    Okada, Yuji; Magome, Hirokatsu; Iida, Kazuhiro; Hanawa, Hiroshi; Ohmi, Masao

    2013-01-01

    In JAEA (Japan Atomic Energy Agency), about the irradiation embrittlement of the reactor pressure vessel and the stress corrosion cracking of reactor core composition apparatus concerning the long-term use of the light water reactor (BWR), in order to check the influence of the temperature, pressure, and water quality, etc on BWR condition. The water environmental control facility which performs irradiation assisted stress corrosion-cracking (IASCC) evaluation under BWR irradiation environment was fabricated in JMTR (Japan Materials Testing Reactor). This report is described the outline of manufacture of the water environmental control facility for doing an irradiation test using the saturation temperature capsule after JMTR re-operation. (author)

  14. SUN-RAH: a nucleoelectric BWR university simulator based in reduced order models

    International Nuclear Information System (INIS)

    Morales S, J.B.; Lopez R, A.; Sanchez B, A.; Sanchez S, R.; Hernandez S, A.

    2003-01-01

    The development of a simulator that allows to represent the dynamics of a nucleo electric central, with nuclear reactor of the BWR type, using reduced order models is presented. These models present the characteristics defined by the dominant poles of the system (1) and most of those premature operation transitories in a power station can be reproduced with considerable fidelity if the models are identified with data of plant or references of a code of better estimate like RAMONA, TRAC (2) or RELAP. The models of the simulator are developments or own simplifications starting from the physical laws and retaining the main terms. This work describes the objective of the project and the general specifications of the University student of Nucleo electric simulator with Boiling Water Reactor type (SUN-RAH) as well as the finished parts that fundamentally are the nuclear reactor, the one of steam supply (NSSS), the plant balance (BOP), the main controllers of the plant and the implemented graphic interfaces. The pendent goals as well as the future developments and applications of SUN-RAH are described. (Author)

  15. Peach Bottom transient analysis with BWR TRACB02

    International Nuclear Information System (INIS)

    Alamgir, M.; Sutherland, W.A.

    1984-01-01

    TRAC calculations have been performed for a Turbine Trip transient (TT1) in the Peach Bottom BWR power plant. This study is a part of the qualification of the BWR-TRAC code. The simulation is aimed at reproducing the observed thermal hydraulic behavior in a pressurization transient. Measured core power is an input to the calculation. Comparison with data show the code reasonably well predicts the generation and propagation of the pressure waves in the main steam line and associated pressurization of the reactor vessel following the closure of the turbine stop valve

  16. BWR stability: history and state-of-the-art

    International Nuclear Information System (INIS)

    Yadigaroglu, George

    2014-01-01

    The paper briefly recalls the historical developments, reviews the important phenomena, the analytical and simulation tools that are used for the analysis of BWR stability focussing on the linear, frequency domain methods

  17. Large bundle BWR test CORA-18: Test results

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Sepold, L.; Schanz, G.; Schumacher, G.

    1998-04-01

    The CORA out-of-pile experiments are part of the international Severe Fuel Damage (SFD) Program. They were performed to provide information on the damage progression of Light Water Reactor (LWR) fuel elements in Loss-of-coolant Accidents in the temperature range 1200 C to 2400 C. CORA-18 was the large BWR bundle test corresponding to the PWR test CORA-7. It should investigate if there exists an influence of the BWR bundle size on the fuel damage behaviour. Therefore, the standard-type BWR CORA bundle with 18 fuel rod simulators was replaced by a large bundle with two additional surrounding rows of 30 rods (48 rods total). Power input and steam flow were increased proportionally to the number of fuel rod simulators to give the same initial heat-up rate of about 1 K/s as in the smaller bundles. Emphasis was put on the initial phase of the damage progression. More information on the chemical composition of initial and intermediate interaction products and their relocation behaviour should be obtained. Therefore, power and steam input were terminated after the onset of the temperature escalation. (orig.) [de

  18. Material operating behaviour of ABB BWR control rods

    International Nuclear Information System (INIS)

    Rebensdorff, B.; Bart, G.

    2000-01-01

    The BWR control rods made by ABB use boron carbide (B 4 C and hafnium as absorber material within a cladding of stainless steel. The general behaviour under operation has proven to be very good. ABB and many of their control rod customers have performed extensive inspection programs of control rod behaviour. However, due to changes in the material properties under fast and thermal neutron irradiation defects may occur in the control rods at high neutron fluences. Examinations of irradiated control rod materials have been performed in hot cell laboratories. The examinations have revealed the defect mechanism Irradiation Assisted Stress Corrosion Cracking (IASCC) to appear in the stainless steel cladding. For IASCC to occur three factors have to act simultaneously. Stress, material sensitization and an oxidising environment. Stress may be obtained from boron carbide swelling due to irradiation. Stainless steel may be sensitized to intergranular stress corrosion cracking under irradiation. Normally the reactor environment in a BWR is oxidising. The presentation focuses on findings from hot cell laboratory work on irradiated ABB BWR control rods and studies of irradiated control rod materials in the hot cells at PSI. Apart from physical, mechanical and microstructural examinations, isotope analyses were performed to describe the local isotopic burnup of boron. Consequences (such as possible B 4 C washout) of a under operation in a ABB BWR, after the occurrence of a crack is discussed based on neutron radiographic examinations of control rods operated with cracks. (author)

  19. Development of neural network simulating power distribution of a BWR fuel bundle

    International Nuclear Information System (INIS)

    Tanabe, A.; Yamamoto, T.; Shinfuku, K.; Nakamae, T.

    1992-01-01

    A neural network model is developed to simulate the precise nuclear physics analysis program code for quick scoping survey calculations. The relation between enrichment and local power distribution of BWR fuel bundles was learned using two layers neural network (ENET). A new model is to introduce burnable neutron absorber (Gadolinia), added to several fuel rods to decrease initial reactivity of fresh bundle. The 2nd stages three layers neural network (GNET) is added on the 1st stage network ENET. GNET studies the local distribution difference caused by Gadolinia. Using this method, it becomes possible to survey of the gradients of sigmoid functions and back propagation constants with reasonable time. Using 99 learning patterns of zero burnup, good error convergence curve is obtained after many trials. This neural network model is able to simulate no learned cases fairly as well as the learned cases. Computer time of this neural network model is about 100 times faster than a precise analysis model. (author)

  20. Development of a BWR core burn-up calculation code COREBN-BWR

    International Nuclear Information System (INIS)

    Morimoto, Yuichi; Okumura, Keisuke

    1992-05-01

    In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)

  1. Studies of Corrosion of Cladding Materials in Simulated BWR-environment Using Impedance Measurements. Part I: Measurements in the Pre-transition Region

    International Nuclear Information System (INIS)

    Forsberg, Stefan; Ahlberg, Elisabet; Andersson, Ulf

    2004-09-01

    The corrosion of three Zircaloy 2 cladding materials, LK2, LK2+ and LK3, have been studied in-situ in an autoclave using electrochemical impedance spectroscopy. Measurements were performed in simulated BWR water at temperatures up to 288 deg C. The impedance spectra were successfully modelled using equivalent circuits. When the oxide grew thicker during the experiments, a change-over from one to two time constants was seen, showing that a layered structure was formed. Oxide thickness, oxide conductivity and effective donor density were evaluated from the impedance data. The calculated oxide thickness at the end of the experiments was consistent with the value obtained from SEM. It was shown that the difference in oxide growth rate between the investigated materials is small in the pre-transition region. The effective donor density, which is a measure of electronic conductivity, was found to be lower for the LK3 material compared to the other two materials

  2. Numerical simulation of boron injection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, Hernan, E-mail: htb@forsmark.vattenfall.s [Forsmarks Kraftgrupp AB, SE-742 03 Osthammar (Sweden); Buchwald, Przemyslaw [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Frid, Wiktor, E-mail: wiktor@reactor.sci.kth.s [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2010-02-15

    The present study constitutes a first step to understand the process of boron injection, transport and mixing in a BWR. It consists of transient CFD simulations of boron injection in a model of the downcomer of Forsmark's Unit 3 containing about 6 million elements. The two cases studied are unintentional start of boron injection under normal operation and loss of offsite power with partial ATWS leaving 10% of the core power uncontrolled. The flow conditions of the second case are defined by means of an analysis with RELAP5, assuming boron injection start directly after the first ECCS injection. Recent publications show that meaningful conservative results may be obtained for boron or thermal mixing in PWRs with grids as coarse as that utilized here, provided that higher order discretization schemes are used to minimize numerical diffusion. The obtained results indicate an apparently strong influence of the scenario in the behavior of the injection process. The normal operation simulation shows that virtually all boron solution flows down to the Main Recirculation Pump inlet located directly below the boron inlet nozzle. The loss of offsite power simulation shows initially a spread of the boron solution over the entire sectional area of the lower part of the downcomer filled with colder water. This remaining effect of the ECCS injection lasts until all this water has left the downcomer. Above this region, the boron injection jet develops in a vertical streak, eventually resembling the injection of the normal operation scenario. Due to the initial spread, this boron injection will probably cause larger temporal and spatial concentration variations in the core. In both cases, these variations may cause reactivity transients and fuel damage due to local power escalation. To settle this issue, an analysis using an extended model containing the downcomer, the MRPs and the Lower Plenum will be carried out. Also, the simulation time will be extended to a scale of

  3. Numerical simulation of boron injection in a BWR

    International Nuclear Information System (INIS)

    Tinoco, Hernan; Buchwald, Przemyslaw; Frid, Wiktor

    2010-01-01

    The present study constitutes a first step to understand the process of boron injection, transport and mixing in a BWR. It consists of transient CFD simulations of boron injection in a model of the downcomer of Forsmark's Unit 3 containing about 6 million elements. The two cases studied are unintentional start of boron injection under normal operation and loss of offsite power with partial ATWS leaving 10% of the core power uncontrolled. The flow conditions of the second case are defined by means of an analysis with RELAP5, assuming boron injection start directly after the first ECCS injection. Recent publications show that meaningful conservative results may be obtained for boron or thermal mixing in PWRs with grids as coarse as that utilized here, provided that higher order discretization schemes are used to minimize numerical diffusion. The obtained results indicate an apparently strong influence of the scenario in the behavior of the injection process. The normal operation simulation shows that virtually all boron solution flows down to the Main Recirculation Pump inlet located directly below the boron inlet nozzle. The loss of offsite power simulation shows initially a spread of the boron solution over the entire sectional area of the lower part of the downcomer filled with colder water. This remaining effect of the ECCS injection lasts until all this water has left the downcomer. Above this region, the boron injection jet develops in a vertical streak, eventually resembling the injection of the normal operation scenario. Due to the initial spread, this boron injection will probably cause larger temporal and spatial concentration variations in the core. In both cases, these variations may cause reactivity transients and fuel damage due to local power escalation. To settle this issue, an analysis using an extended model containing the downcomer, the MRPs and the Lower Plenum will be carried out. Also, the simulation time will be extended to a scale of several

  4. General Electric Company analytical model for loss-of-coolant analysis in accordance with 10CFR50 appendix K, amendment No. 3: effect of steam environment on BWR core spray distribution

    International Nuclear Information System (INIS)

    1977-04-01

    The core spray sparger designs of the BWR/2 through BWR/5 product lines were verified by means of full-scale mock-ups tested in air at various flow conditions. In 1974, an overseas technical partner of General Electric reported that a steam environment changed the individual core spray nozzle patterns when compared to patterns measured in air. This document describes preliminary findings of how a steam environment alters the core spray nozzle pattern, and the actions which General Electric is pursuing to quantify the steam effects

  5. Comparisons of ROSA-III and FIST BWR loss of coolant accident simulation tests

    International Nuclear Information System (INIS)

    Tasaka, Kanji; Suzuki, Mitsuhiro; Koizumi, Yasuo

    1985-10-01

    A common understanding and interpretation of BWR system response and the controlling phenomena in LOCA transients has been achieved through the evaluation and comparison of counterpart tests performed in the ROSA-III and FIST test facilities. These facilities, which are designed to simulate the thermal-hydraulic response of BWR systems, are operated respectively by the Japan Atomic Energy Research Institute (JAERI) and the General Electric Company. Comparison is made between three types of counterpart tests, each performed under similar tests conditions in the two facilities. They are large break, small break, and steamline break LOCA's. The system responses to these tests in each facility are quite similar. The sequence of events are similar, and the timing of these events are similar. Differences that do occur are due to minor differences in modeling objectives, facility scaling, and test conditions. Parallel channel flow interactions effects in the ROSA-III four channel (half length) core, although noticeable in the large break test, do not result in major differences with the single channel response in FIST. In the small break tests the timing of events is offset by the earlier ADS actuation in FIST. The steamline test responses are similar except there is no heatup in FIST, resulting from a different ECCS trip modeling. Overall comparisons between ROSA-III and FIST system responses in LOCA tests is very good. (author)

  6. Infinite fuel element simulation of pin power distributions and control blade history in a BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Nuenighoff, K.; Allelein, H.J. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energie- und Klimaforschung (IEK), Sicherheitsforschung und Reaktortechnik (IEK-6)

    2011-07-01

    Pellet-Cladding Interaction (PCI) is a well known effect in fuel pins. One possible reason for PCI-effects could be local power excursions in the fuel pins, which can led to a rupture of the fuel cladding tube. From a reactor safety point of view this has to be considered as a violence of the barrier principal in order to retain fission products in the fuel pins. This paper focuses on the pin power distributions in a 2D infinite lattice of a BWR fuel element. Lots of studies related PCI effect can be found in the literature. In this compact, coupled neutronic depletion calculations taking the control history effect into account are described. Depletion calculations of an infinite fuel element of a BWR were carried out with controlled, uncontrolled and temporarily controlled scenarios. Later ones are needed to describe the control blade history (CBH) effect. A Monte-Carlo approach is mandatory to simulate the neutron physics. The VESTA code was applied to couple the Monte-Carlo-Code MCNP(X) with the burnup code ORIGEN. Additionally, CASMO-4 is also employed to verify the method of simulation results from VESTA. The cross sections for Monte Carlo and burn-up calculations are derived from ENDF/B-VII.0. (orig.)

  7. Full scope upgrade project for the Fermi 2 simulator

    International Nuclear Information System (INIS)

    Bollacasa, D.; Gonsalves, J.B.; Newcomb, P.C.

    1994-01-01

    The Detroit Edison company (DECO) concentrated the Simulation Division of Asea Brown Boveri (ABB) to perform a full scope upgrade of the Fermi 2 simulator. The Fermi 2 plant is a BWR 6 generation Nuclear Steam Supply System (NSSS). The project included the complete replacement of the existing simulation model sofware with ABB's high fidelity BWR models, addition of an advanced instructor station facility and new simulation computers. Also provided on the project were ABB's advanced simulation environment (CETRAN), a comprehensive configuration management system based on a modern relational database system and a new computer interface to the input/output system. (8 refs., 2 figs.)

  8. Recent SCDAP/RELAP5 improvements for BWR severe accident simulations

    International Nuclear Information System (INIS)

    Griffin, F.P.

    1995-01-01

    A new model for the SCDAP/RELAP5 severe accident analysis code that represents the control blade and channel box structures in a boiling water reactor (BWR) has been under development since 1991. This model accounts for oxidation, melting, and relocation of these structures, including the effects of material interactions between B 4 C, stainless steel, and Zircaloy. This paper describes improvements that have been made to the BWR control blade/channel box model during 1994 and 1995. These improvements include new capabilities that represent the relocation of molten material in a more realistic manner and modifications that improve the usability of the code by reducing the frequency of code failures. This paper also describes a SCDAP/RELAP5 assessment calculation for the Browns Ferry Nuclear Plant design based upon a short-term station blackout accident sequence

  9. Automatic determination of BWR fuel loading patterns based on K.E. technique with core physics simulation

    International Nuclear Information System (INIS)

    Ikehara, T.; Tsuiki, M.; Takeshita, T.

    1990-01-01

    On the basis oof a computerized search method, a prototype for a fuel loading pattern expert system has been developed to support designers in core design for BWRs. The method was implemented by coupling rules and core physics simulators into an inference engine to establish an automated generate-and-test cycle. A search control mechanism, which prunes paths to be searched and selects appropriate rules through the interaction with the user, was also introduced to accomplish an effective search. The constraints in BWR core design are: (1) cycle length more than L, (2) core shutdown margin more than S, and (3) thermal margin more than T. Here L, S, and T are the specified minimum values. In this system, individual rules contain the manipulation to improve the core shutdown margin explicitly. Other items were taken into account only implicitly. Several applications to the test cases were carried out. It was found that the results were comparable with those obtained by human expert engineers. Broad applicability of the present method in the BWR core design domain was proved

  10. An efficient modeling method for thermal stratification simulation in a BWR suppression pool

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Ling Zou; Hongbin Zhang; Hua Li; Walter Villanueva; Pavel Kudinov

    2012-09-01

    The suppression pool in a BWR plant not only is the major heat sink within the containment system, but also provides major emergency cooling water for the reactor core. In several accident scenarios, such as LOCA and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; and the pool temperature distribution also affects the NPSHa (Available Net Positive Suction Head) and therefore the performance of the pump which draws cooling water back to the core. Current safety analysis codes use 0-D lumped parameter methods to calculate the energy and mass balance in the pool and therefore have large uncertainty in prediction of scenarios in which stratification and mixing are important. While 3-D CFD methods can be used to analyze realistic 3D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, therefore long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. The POOLEX experiments at Finland, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, are used for validation. GOTHIC lumped parameter models are used to obtain boundary conditions for BMIX++ code and CFD simulations. Comparison between the BMIX++, GOTHIC, and CFD calculations against the POOLEX experimental data is discussed in detail.

  11. Numerical simulations of pressure fluctuations at branch piping in BWR main steam line

    International Nuclear Information System (INIS)

    Morita, Ryo; Inada, Fumio; Yoshikawa, Kazuhiro; Takahashi, Shiro

    2009-01-01

    The power uprating of a nuclear power plant may increase/accelerate degradation phenomena such as flow-induced vibration and wall thinking. A steam dryer was damaged by a high cycle fatigue due to an acoustic-induced vibration at the branch piping of safety relief valves (SRVs) in main steam lines. In this study, we conducted the numerical simulations of steam/air flow around a simplified branch piping to clarify the basic characteristics of resonance. LES simulations were conducted in ordinary pressure/temperature air and steam under BWR plant conditions. In both cases, the excitation of the pressure fluctuations at the branch was observed under some inlet velocity conditions. These fluctuations and inlet conditions were normalized and the obtained results were compared. The normalized results showed that the range and maximum amplitude of pressure fluctuations were almost the same in low-pressure/temperature air and high-pressure/temperature steam. We found that ordinary pressure/temperature air experiments and simulations can possibly clarify the characteristics of the resonance in high-pressure/temperature steam. (author)

  12. Analysis of multidimensional and countercurrent effects in a BWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

    1991-01-01

    The presence of parallel enclosed channels in a boiling water reactor (BWR) provides opportunities for multiple flow regimes in cocurrent and countercurrent flow under loss-of-coolant accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the steam sector test facility (SSFT), which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests an integral transients with vessel vlowdown and refill were performed. The presence of multidimensional and parallel-channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

  13. Analysis of a BWR direct cycle forced circulation power plants operation

    International Nuclear Information System (INIS)

    Andrade, G.G. de.

    1973-01-01

    First, it is established a general view over the operational problems of the BWR direct cycle forced circulation power plants, and then it is analysed the possibility of the utilization of the energy purged from the turbine as an additional energy for the electrical generation. To simulate the BWR power plant and to obtain the solution of the mathematical model it was developed a computer code named ATOR which shows the feasibility of the proposed method. In this way it is shown the possibility to get a better maneuvering allowance for the BWR power plant whenever it is permitted a convenient use of the vapor extracted from the turbine for the feedwater pre-heaters of the reactor. (author)

  14. Tritium in liquid phase in a BWR-5 like Laguna Verde; Tritio en fase liquida en un BWR-5 como Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Tijerina S, F.; Vargas A, A.; Cardenas J, J., E-mail: francisco.tijerina@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Subgerencia de Ingenieria, Carretera Veracruz-Medellin Km 7.5, Veracruz (Mexico)

    2011-11-15

    In boiling water reactors (BWR), the tritium (H{sub 3}) takes place mainly as a result of ternary fissions in the nuclear reactors, of those which 75% are in gaseous form and 25% in liquid form. In the liquid phase, the tritium is transported to the pipes of the primary coolant toward condensed tanks or tanks of drainage excesses of radioactive equipment, located in external areas of a BWR, as well as to the processes of radioactive wastes to be able to be directed to the liquid effluents. For that reason, is necessary to know the possible routes of the transport and processes of the tritium in a BWR to control this radioisotope in the site of the event of leaks in equipment s and buried pipes, avoiding that emigrates toward underground flowing and an impact to the environment and to the people in general. (Author)

  15. Peach Bottom Turbine Trip Simulations with RETRAN Using INER/TPC BWR Transient Analysis Method

    International Nuclear Information System (INIS)

    Kao Lainsu; Chiang, Show-Chyuan

    2005-01-01

    The work described in this paper is benchmark calculations of pressurization transient turbine trip tests performed at the Peach Bottom boiling water reactor (BWR). It is part of an overall effort in providing qualification basis for the INER/TPC BWR transient analysis method developed for the Kuosheng and Chinshan plants. The method primarily utilizes an advanced system thermal hydraulics code, RETRAN02/MOD5, for transient safety analyses. Since pressurization transients would result in a strong coupling effect between core neutronic and system thermal hydraulics responses, the INER/TPC method employs the one-dimensional kinetic model in RETRAN with a cross-section data library generated by the Studsvik-CMS code package for the transient calculations. The Peach Bottom Turbine Trip (PBTT) tests, including TT1, TT2, and TT3, have been successfully performed in the plant and assigned as standards commonly for licensing method qualifications for years. It is an essential requirement for licensing purposes to verify integral capabilities and accuracies of the codes and models of the INER/TPC method in simulating such pressurization transients. Specific Peach Bottom plant models, including both neutronics and thermal hydraulics, are developed using modeling approaches and experiences generally adopted in the INER/TPC method. Important model assumptions in RETRAN for the PBTT test simulations are described in this paper. Simulation calculations are performed with best-estimated initial and boundary conditions obtained from plant test measurements. The calculation results presented in this paper demonstrate that the INER/TPC method is capable of calculating accurately the core and system transient behaviors of the tests. Excellent agreement, both in trends and magnitudes between the RETRAN calculation results and the PBTT measurements, shows reliable qualifications of the codes/users/models involved in the method. The RETRAN calculated peak neutron fluxes of the PBTT

  16. Analysis of multi-dimensional and countercurrent effects in a BWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

    1989-01-01

    The presence of parallel enclosed channels in a BWR provides opportunities for multiple flow regimes in co-current and countercurrent flow under Loss-of-Coolant Accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the Steam Sector Test Facility (SSTF) which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests and integral transients with vessel blowdown and refill were performed. The present of multi-dimensional and parallel channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

  17. SUN-RAH: a nucleoelectric BWR university simulator based in reduced order models; SUN-RAH: simulador universitario de nucleoelectrica BWR basado en modelos de orden reducido

    Energy Technology Data Exchange (ETDEWEB)

    Morales S, J.B.; Lopez R, A.; Sanchez B, A.; Sanchez S, R.; Hernandez S, A. [DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: jms0620@yahoo.com

    2003-07-01

    The development of a simulator that allows to represent the dynamics of a nucleo electric central, with nuclear reactor of the BWR type, using reduced order models is presented. These models present the characteristics defined by the dominant poles of the system (1) and most of those premature operation transitories in a power station can be reproduced with considerable fidelity if the models are identified with data of plant or references of a code of better estimate like RAMONA, TRAC (2) or RELAP. The models of the simulator are developments or own simplifications starting from the physical laws and retaining the main terms. This work describes the objective of the project and the general specifications of the University student of Nucleo electric simulator with Boiling Water Reactor type (SUN-RAH) as well as the finished parts that fundamentally are the nuclear reactor, the one of steam supply (NSSS), the plant balance (BOP), the main controllers of the plant and the implemented graphic interfaces. The pendent goals as well as the future developments and applications of SUN-RAH are described. (Author)

  18. BWR simulation in a stationary state for the evaluation of fuel cell design

    International Nuclear Information System (INIS)

    Montes T, J. L.; Ortiz S, J. J.; Perusquia del C, R.; Castillo M, A.

    2014-10-01

    In this paper the simulation of a BWR in order to evaluate the performance of a set of fuel assemblies under stationary state in three dimensions (3-D) is presented. 15 cases selected from a database containing a total of 18225 cases are evaluated. The main selection criteria were based on the results of the design phase of the power cells in two dimensions (2-D) and 3-D initial study. In 2-D studies the parameters that were used to qualify and select the designs were basically the local power peaking factor and neutron multiplication factor of each fuel cell. In the initial 3-D study variables that defined the quality of results, and from which the selection was realized, are the margins to thermal limits of reactor operation and the value of the effective multiplication factor at the end of cycle operation. From the 2-D and 3-D results of the studies described a second 3-D study was realized, where the optimizations of the fuel reload pattern was carried out. The results presented in this paper correspond to this second 3-D study. It was found that the designs of the fuel cell they had a similar behavior to those provided by the fuel supplier of reference BWR. Particularly it noted the impact of reload pattern on the cold shut down margin. An estimate of the operation costs of reference cycle analyzed with each one designed reload batch was also performed. As a result a positive difference (gain) up to 10,347 M/US D was found. (Author)

  19. Comparison of the corrosion potential for stainless steel measured in-plant and in laboratory during BWR normal water chemistry conditions

    International Nuclear Information System (INIS)

    Molander, A.; Pein, K.; Tarkpea, P.; Takagi, Junichi; Karlberg, G.; Gott, K.

    1998-01-01

    To obtain reliable crack growth rate date for stainless steel in BWR environments careful laboratory simulation of the environmental conditions is necessary. In the plant the BWR normal water chemistry environment contains hydrogen peroxide, oxygen and hydrogen. However, in crack growth rate experiments in laboratories, the environment is normally simulated by adding 200 ppb oxygen to the high temperature water. Thus, as hydrogen peroxide is a more powerful oxidant than oxygen, it is to be expected that a lower corrosion potential will be measured in the laboratory than in the plant. To resolve this issue this work has been performed. In-plant and laboratory measurements have often been performed with somewhat different equipment, due to the special requirements concerning in-plant measurements. In this work such differences have been avoided and two identical sets of equipment for electrochemical measurements were built and used for measurements in-plant in a Swedish BWR and in high purity water in the laboratory. The host plant was Barsebaeck 1. Corrosion potential monitoring in-plant was performed under both NWC (Normal Water Chemistry) and HWC (Hydrogen Water Chemistry) conditions. This paper is, however, focused on NWC conditions. This is due to the fact, that the total crack growth obtained during a reactor cycle, can be determined by NWC conditions, even for plants running with HWC due to periodic stops in the hydrogen addition for turbine inspections or failure of the dosage or hydrogen production equipment. Thus, crack growth data for NWC is of great importance both for BWRs operating with HWC and NWC. Measurements in-plant and in the laboratory were performed during additions of oxygen and hydrogen peroxide to the autoclave systems. The corrosion potentials were compared for various conditions in the autoclaves, as well as versus in-plant in-pipe corrosion potentials. (J.P.N.)

  20. The BWR Stability Issue

    International Nuclear Information System (INIS)

    D'Auria, F.

    2008-01-01

    The purpose of this paper is to supply general information about Boiling Water Reactor (BWR) stability. The main concerned topics are: phenomenological aspects, experimental database, modelling features and capabilities, numerical models, three-dimensional modelling, BWR system performance during stability, stability monitoring and licensing aspects.

  1. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL; Poore III, Willis P [ORNL

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  2. Siemens Nuclear Power Corporation methods development for BWR/PWR reactor licensing

    International Nuclear Information System (INIS)

    Pruitt, D.W.

    1992-01-01

    This presentation addresses the Siemens Nuclear Power Corporation (SNP) perspective on the primary forces driving methods development in the nuclear industry. These forces are fuel design, computational environment and industry requirement evolution. The first segment of the discussion presents the SNP experience base. SNP develops, manufactures and licenses both BWR and PWR reload fuel. A review of this experience base highlights the accelerating rate at which new fuel designs are being introduced into the nuclear industry. The application of advanced BWR lattice geometries provides an example of fuel design trends. The second aspect of the presentation is the rapid evolution of the computing environment. The final subject in the presentation is the impact of industry requirements on code or methods development

  3. SCORPIO-BWR: status and future plans

    International Nuclear Information System (INIS)

    Porsmyr, Jan; Bodal, Terje; Beere, William H.

    2004-01-01

    Full text: During the years from 2000 to 2003 a joint project has been performed by IFE, Halden and TEPCO Systems Corporation, Japan, to develop a core monitoring system for BWRs based on the their existing core monitoring system TiARA and the SCORPIO framework. It has been emphasised to develop a reliable, flexible, adaptable and user-friendly system, which is easy to maintain. Therefore, a rather general framework (SCORPIO Framework) has been used which facilitates easy software modifications as well as adding/ replacing physics modules. The software modules is integrated in the SCORPIO framework using the Software Bus as the communication tool and with the Picasso UIMS tool for MMI. The SCORPIO-BWR version is developed on a Windows-PC platform. The SCORPIO-BWR version provides all functions, which are necessary for all analyses and operations performed on a BWR plant and comprises functions for on-line core monitoring, predictive analysis and core management with interfaces to plant instrumentation and physics codes. Functions for system initialisation and maintenance are also included. A SCORPIO-BWR version adapted for ABWR was installed in TEPSYS facilities in Tokyo in January 2003, where the final acceptance tests were carried out and accepted. The ABWR version of the system is now in the verification and validation phase. In the period from April 2003 until March 2004 a project for realizing an offline-version of SCORPIO-BWR system, which supports the offline tasks of BWR in-core fuel management for ABWR and BWR-5 type of reactors, was developed. The offline-version of the SCORPIO-BWR system for ABWR and BWR-5 type of reactors was installed at TEPSYS in March 2003, where the final acceptance tests were carried out and accepted. Plans for the next version of this system is to study the possibility of adapting SCORPIO-BWR to work with 'mobile technology'. This means that it should be possible to access and display information from the SCORPIO-BWR system on a

  4. SCORPIO-BWR: status and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Porsmyr, Jan; Bodal, Terje; Beere, William H. (and others)

    2004-07-01

    Full text: During the years from 2000 to 2003 a joint project has been performed by IFE, Halden and TEPCO Systems Corporation, Japan, to develop a core monitoring system for BWRs based on the their existing core monitoring system TiARA and the SCORPIO framework. It has been emphasised to develop a reliable, flexible, adaptable and user-friendly system, which is easy to maintain. Therefore, a rather general framework (SCORPIO Framework) has been used which facilitates easy software modifications as well as adding/ replacing physics modules. The software modules is integrated in the SCORPIO framework using the Software Bus as the communication tool and with the Picasso UIMS tool for MMI. The SCORPIO-BWR version is developed on a Windows-PC platform. The SCORPIO-BWR version provides all functions, which are necessary for all analyses and operations performed on a BWR plant and comprises functions for on-line core monitoring, predictive analysis and core management with interfaces to plant instrumentation and physics codes. Functions for system initialisation and maintenance are also included. A SCORPIO-BWR version adapted for ABWR was installed in TEPSYS facilities in Tokyo in January 2003, where the final acceptance tests were carried out and accepted. The ABWR version of the system is now in the verification and validation phase. In the period from April 2003 until March 2004 a project for realizing an offline-version of SCORPIO-BWR system, which supports the offline tasks of BWR in-core fuel management for ABWR and BWR-5 type of reactors, was developed. The offline-version of the SCORPIO-BWR system for ABWR and BWR-5 type of reactors was installed at TEPSYS in March 2003, where the final acceptance tests were carried out and accepted. Plans for the next version of this system is to study the possibility of adapting SCORPIO-BWR to work with 'mobile technology'. This means that it should be possible to access and display information from the SCORPIO-BWR

  5. BWR core melt progression phenomena: Experimental analyses

    International Nuclear Information System (INIS)

    Ott, L.J.

    1992-01-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component

  6. Evaluation of the cracking by stress corrosion in nuclear reactor environments type BWR

    International Nuclear Information System (INIS)

    Arganis J, C. R.

    2010-01-01

    The stress corrosion cracking susceptibility was studied in sensitized, solution annealed 304 steel, and in 304-L welded with a heat treatment that simulated the radiation induced segregation, by the slow strain rate test technique, in a similar environment of a boiling water reactor (BWR), 288 C, 8 MPa, low conductivity and a electrochemical corrosion potential near 200 mV. vs. standard hydrogen electrode (She). The electrochemical noise technique was used for the detection of the initiation and propagation of the cracking. The steels were characterized by metallographic studies with optical and scanning electronic microscopy and by the electrochemical potentiodynamic reactivation of single loop and double loop. In all the cases, the steels present delta ferrite. The slow strain rate tests showed that the 304 steel in the solution annealed condition is susceptible to transgranular stress corrosion cracking (TGSCC), such as in a normalized condition showed granulated. In the sensitized condition the steel showed intergranular stress corrosion cracking, followed by a transition to TGSCC. The electrochemical noise time series showed that is possible associated different time sequences to different modes of cracking and that is possible detect sequentially cracking events, it is means, one after other, supported by the fractographic studies by scanning electron microscopy. The parameter that can distinguish between the different modes of cracking is the re passivation rate, obtained by the current decay rate -n- in the current transients. This is due that the re passivation rate is a function of the microstructure and the sensitization. Other statistic parameters like the localized index, Kurtosis, Skew, produce results that are related with mixed corrosion. (Author)

  7. Parallel channel effects under BWR LOCA conditions

    International Nuclear Information System (INIS)

    Suzuki, H.; Hatamiya, S.; Murase, M.

    1988-01-01

    Due to parallel channel effects, different flow patterns such as liquid down-flow and gas up-flow appear simultaneously in fuel bundles of a BWR core during postulated LOCAs. Applying the parallel channel effects to the fuel bundle, water drain tubes with a restricted bottom end have been developed in order to mitigate counter-current flow limiting and to increase the falling water flow rate at the upper tie plate. The upper tie plate with water drain tubes is an especially effective means of increasing the safety margin of a reactor with narrow gaps between fuel rods and high steam velocity at the upper tie plate. The characteristics of the water drain tubes have been experimentally investigated using a small-scaled steam-water system simulating a BWR core. Then, their effect on the fuel cladding temperature was evaluated using the LOCA analysis program SAFER. (orig.)

  8. Validation and application of the system code ATHLET-CD for BWR severe accident analyses

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino, E-mail: valentino.marcello@kit.edu; Imke, Uwe; Sanchez, Victor

    2016-10-15

    Highlights: • We present the application of the system code ATHLET-CD code for BWR safety analyses. • Validation of core in-vessel models is performed based on KIT CORA experiments. • A SB-LOCA scenario is simulated on a generic German BWR plant up to vessel failure. • Different core reflooding possibilities are investigated to mitigate the accident consequences. • ATHLET-CD modelling features reflect the current state of the art of severe accident codes. - Abstract: This paper is aimed at the validation and application of the system code ATHLET-CD for the simulation of severe accident phenomena in Boiling Water Reactors (BWR). The corresponding models for core degradation behaviour e.g., oxidation, melting and relocation of core structural components are validated against experimental data available from the CORA-16 and -17 bundle tests. Model weaknesses are discussed along with needs for further code improvements. With the validated ATHLET-CD code, calculations are performed to assess the code capabilities for the prediction of in-vessel late phase core behaviour and reflooding of damaged fuel rods. For this purpose, a small break LOCA scenario for a generic German BWR with postulated multiple failures of the safety systems was selected. In the analysis, accident management measures represented by cold water injection into the damaged reactor core are addressed to investigate the efficacy in avoiding or delaying the failure of the reactor pressure vessel. Results show that ATHLET-CD is applicable to the description of BWR plant behaviour with reliable physical models and numerical methods adopted for the description of key in-vessel phenomena.

  9. Simulation of hydrogen deflagration and detonation in a BWR reactor building

    International Nuclear Information System (INIS)

    Manninen, M.; Silde, A.; Lindholm, I.; Huhtanen, R.; Sjoevall, H.

    2002-01-01

    A systematic study was carried out to investigate the hydrogen behaviour in a BWR reactor building during a severe accident. BWR core contains a large amount of Zircaloy and the containment is relatively small. Because containment leakage cannot be totally excluded, hydrogen can build up in the reactor building, where the atmosphere is normal air. The objective of the work was to investigate, whether hydrogen can form flammable and detonable mixtures in the reactor building, evaluate the possibility of onset of detonation and assess the pressure loads under detonation conditions. The safety concern is, whether the hydrogen in the reactor building can detonate and whether the external detonation can jeopardize the containment integrity. The analysis indicated that the possibility of flame acceleration and deflagration-to-detonation transition (DDT) in the reactor building could not be ruled out in case of a 20 mm 2 leakage from the containment. The detonation analyses indicated that maximum pressure spike of about 7 MPa was observed in the reactor building room selected for the analysis

  10. Tritium in liquid phase in a BWR-5 like Laguna Verde

    International Nuclear Information System (INIS)

    Tijerina S, F.; Vargas A, A.; Cardenas J, J.

    2011-11-01

    In boiling water reactors (BWR), the tritium (H 3 ) takes place mainly as a result of ternary fissions in the nuclear reactors, of those which 75% are in gaseous form and 25% in liquid form. In the liquid phase, the tritium is transported to the pipes of the primary coolant toward condensed tanks or tanks of drainage excesses of radioactive equipment, located in external areas of a BWR, as well as to the processes of radioactive wastes to be able to be directed to the liquid effluents. For that reason, is necessary to know the possible routes of the transport and processes of the tritium in a BWR to control this radioisotope in the site of the event of leaks in equipment s and buried pipes, avoiding that emigrates toward underground flowing and an impact to the environment and to the people in general. (Author)

  11. Kohonen mapping of the crack growth under fatigue loading conditions of stainless steels in BWR environments and of nickel alloys in PWR environments

    International Nuclear Information System (INIS)

    Urquidi-Macdonald, Mirna

    2008-01-01

    In this study, crack growth rate data under fatigue loading conditions generated by Argonne National Laboratories and published in 2006 were analyzed [O.K. Chopra, B. Alexandreanu, E.E. Gruber, R.S. Daum, W.J. Shack, Argonne National Laboratory, NUREG CR 6891-series ANL 04/20, Crack Growth Rates of Austenitic Stainless Steel Weld Heat Affected Zone in BWR Environments, January, 2006; B. Alexandreanu, O.K. Chopra, H.M. Chung, E.E. Gruber, W.K. Soppet, R.W. Strain, W.J. Shack, Environmentally Assisted Cracking in Light Water Reactors, vol. 34 in the NUREG/CR-4667 series annual report of Argonne National Laboratory program studies for Calendar (Annual Report 2003). Manuscript Completed: May 2005, Date Published: May 2006], and reported by DoE [B. Alexandreanu, O.K. Chopra, W.J. Shack, S. Crane, H.J. Gonzalez, NRC, Crack Growth Rates and Metallographic Examinations of Alloy 600 and Alloy 82/182 from Field Components and Laboratory Materials Tested in PWR Environments, NUREG/CR-6964, May 2008]. The data collected were measured on austenitic stainless steels in BWR (boiling water reactor) environments and on nickel alloys in PWR (pressurized water reactor) environments. The data collected contained information on material composition, temperature, conductivity of the environment, oxygen concentration, irradiated sample information, weld information, electrochemical potential, load ratio, rise time, hydrogen concentration, hold time, down time, maximum stress intensity factor (K max ), stress intensity range (ΔK max ), crack length, and crack growth rates (CGR). Each position on that Kohonen map is called a cell. A Kohonen map clusters vectors of information by 'similarities.' Vectors of information were formed using the metal composition, followed by the environmental conditions used in each experiments, and finally followed by the crack growth rate (CGR) measured when a sample of pre-cracked metal is set in an environment and the sample is cyclically loaded

  12. Development of advanced BWR

    International Nuclear Information System (INIS)

    Toyota, Masatoshi

    1982-01-01

    The Japanese technology and domestic production of BWR type nuclear power plants have been established through the experiences in the construction and operation of BWRs in addition to the technical agreement with the General Electric Co. In early days, the plants experienced some trouble such as stress corrosion cracking and some inconvenience in the operation and maintenance. The government, electric power companies and BWR manufacturers have endeavored to standardize and improve the design of LWRs for the purpose of improving the safety, reliability and the rate of operation and reducing the radiation exposure dose of plant workers. The first and second stages of the standardization and improvement of LWRs have been completed. Five manufacturers of BWRs in the world have continued the conceptual design of a new version of BWR power plants. It was concluded that this is the most desirable version of BWR nuclear power stations, but the technical and economic evaluation must be made before the commercial application. Six electric power companies and three manufacturers of BWRs in Japan set up the organization to develop the technology in cooperation. The internal pump system, the new control rod drive mechanism and others are the main features. (Kako, I.)

  13. Valuation of power oscillations in a BWR after control rod banks withdrawal events

    International Nuclear Information System (INIS)

    Costa, A. L.; Pereira, C.; Da Silva, C. A. M.; Veloso, M. A. F.

    2009-01-01

    The out-of-phase mode of oscillation is a very challenging type of instability occurring in BWR (Boiling Water Reactor) and its study is relevant because of the safety implications related to the capability to promptly detect any such inadvertent occurrence by in-core neutron detectors, thus triggering the necessary countermeasures in terms of selected rod insertion or even reactor shutdown. In this work, control rod banks (CRB) withdrawal transient was considered to study the power instability occurring in a BWR. To simulate this transient, the control rod banks were continuously removed from the BWR core in different cases. The simulation resulted in a very large increase of power. To perform the instability simulations, the RELAP5/MOD3.3 thermal hydraulic system code was coupled with the PARCS/2.4 3D neutron kinetic code. Data from a real BWR, the Peach Bottom, have been used as reference conditions and reactor parameters. The trend of the mass flow rate, pressure, coolant temperature and the void fraction to four thermal hydraulic channels symmetrically located in the core with respect to the core centre, were taken. It appears that the velocity of the rod bank withdrawal is a very important aspect for reactor stability. The slowest CRB withdrawal (180 s) did not cause power perturbation while the fast removal (20 s) triggered a slow power oscillation that little by little amplified to reach levels of more 100% of the initial power after about 210 s. The investigation of the related thermo hydraulic parameters showed that the mass flow rate, the void fraction and also the coolant temperature began to oscillate at approximately the same time interval

  14. Initiation model for intergranular stress corrosion cracking in BWR pipes

    International Nuclear Information System (INIS)

    Hishida, Mamoru; Kawakubo, Takashi; Nakagawa, Yuji; Arii, Mitsuru.

    1981-01-01

    Discussions were made on the keys of intergranular stress corrosion cracking of austenitic stainless steel in high-temperature water in laboratories and stress corrosion cracking incidents in operating plants. Based on these discussions, a model was set up of intergranular stress corrosion cracking initiation in BWR pipes. Regarding the model, it was presumed that the intergranular stress corrosion cracking initiates during start up periods whenever heat-affected zones in welded pipes are highly sensitized and suffer dynamic strain in transient water containing dissolved oxygen. A series of BWR start up simulation tests were made by using a flowing autoclave system with slow strain rate test equipment. Validity of the model was confirmed through the test results. (author)

  15. Uncertainty and sensitivity analysis in the neutronic parameters generation for BWR and PWR coupled thermal-hydraulic–neutronic simulations

    International Nuclear Information System (INIS)

    Ánchel, F.; Barrachina, T.; Miró, R.; Verdú, G.; Juanas, J.; Macián-Juan, R.

    2012-01-01

    Highlights: ► Best-estimate codes are affected by the uncertainty in the methods and the models. ► Influence of the uncertainty in the macroscopic cross-sections in a BWR and PWR RIA accidents analysis. ► The fast diffusion coefficient, the scattering cross section and both fission cross sections are the most influential factors. ► The absorption cross sections very little influence. ► Using a normal pdf the results are more “conservative” comparing the power peak reached with uncertainty quantified with a uniform pdf. - Abstract: The Best Estimate analysis consists of a coupled thermal-hydraulic and neutronic description of the nuclear system's behavior; uncertainties from both aspects should be included and jointly propagated. This paper presents a study of the influence of the uncertainty in the macroscopic neutronic information that describes a three-dimensional core model on the most relevant results of the simulation of a Reactivity Induced Accident (RIA). The analyses of a BWR-RIA and a PWR-RIA have been carried out with a three-dimensional thermal-hydraulic and neutronic model for the coupled system TRACE-PARCS and RELAP-PARCS. The cross section information has been generated by the SIMTAB methodology based on the joint use of CASMO-SIMULATE. The statistically based methodology performs a Monte-Carlo kind of sampling of the uncertainty in the macroscopic cross sections. The size of the sampling is determined by the characteristics of the tolerance intervals by applying the Noether–Wilks formulas. A number of simulations equal to the sample size have been carried out in which the cross sections used by PARCS are directly modified with uncertainty, and non-parametric statistical methods are applied to the resulting sample of the values of the output variables to determine their intervals of tolerance.

  16. Methyl Iodide Decomposition at BWR Conditions

    International Nuclear Information System (INIS)

    Pop, Mike; Bell, Merl

    2012-09-01

    Based on favourable results from short-term testing of methanol addition to an operating BWR plant, AREVA has performed numerous studies in support of necessary Engineering and Plant Safety Evaluations prior to extended injection of methanol. The current paper presents data from a study intended to provide further understanding of the decomposition of methyl iodide as it affects the assessment of methyl iodide formation with the application of methanol at BWR Plants. This paper describes the results of the decomposition testing under UV-C light at laboratory conditions and its effect on the subject methyl iodide production evaluation. The study as to the formation and decomposition of methyl iodide as it is effected by methanol addition is one phase of a larger AREVA effort to provide a generic plant Safety Evaluation prior to long-term methanol injection to an operating BWR. Other testing phases have investigated the compatibility of methanol with fuel construction materials, plant structural materials, plant consumable materials (i.e. elastomers and coatings), and ion exchange resins. Methyl iodide is known to be very unstable, typically preserved with copper metal or other stabilizing materials when produced and stored. It is even more unstable when exposed to light, heat, radiation, and water. Additionally, it is known that methyl iodide will decompose radiolytically, and that this effect may be simulated using ultra-violet radiation (UV-C) [2]. In the tests described in this paper, the use of a UV-C light source provides activation energy for the formation of methyl iodide. Thus is similar to the effect expected from Cherenkov radiation present in a reactor core after shutdown. Based on the testing described in this paper, it is concluded that injection of methanol at concentrations below 2.5 ppm in BWR applications to mitigate IGSCC of internals is inconsequential to the accident conditions postulated in the FSAR as they are related to methyl iodide formation

  17. Verification of a BWR code package by gamma scan measurements

    International Nuclear Information System (INIS)

    Nakajima, Tsuyoshi; Iwamoto, Tatsuya; Kumanomido, Hironori

    1996-01-01

    High-burnup 8 x 8 fuel with a large central water rod (called step 2 fuel) has been recently introduced to the latest Japanese boiling water reactor (BWR) plants. Lanthanum-140 gamma intensity is almost directly related to nodal powers. By gamma scan measurement, the axial distribution of 140 La in the exposed fuel was measured at the end of cycle (EOC) 1 and was compared with the calculation by a BWR code package TGBLA/LOGOS. The multienrichment fuel-type core (MEC) design was adopted for the initial cycle core of the plants. The MEC design contains three different enrichment types of fuels to simulate the equilibrium cycles, achieve much higher discharge exposure, and save fuel cycle cost, and the low-enrichment fuels are loaded in periphery and in control cells. Such MEC design could be a challenge to the BWR design methods because of the large spectrum mismatch among the fuel assemblies of the different enrichments. The aforementioned comparison has shown that the accuracy of the TGBLA/LOGOS code package is satisfactory

  18. Development of alternative materials for BWR fuel springs

    International Nuclear Information System (INIS)

    Uruma, Y.; Osato, T.; Yamazaki, K.

    2002-01-01

    Major sources of radioactivity introduced into reactor water of BWR were estimated fuel crud and in-core materials (especially, fuel springs). Fuel springs are used for fixation of fuel cladding tubes with spacer grid. Those are small parts (total length is only within 25 mm) and so many numbers are loaded simultaneously and then total surfaces area are calculated up to about 200 m 2 . Fuel springs are located under high radiation field and high oxidative environment. Conventional fuel spring is made of alloy-X750 which is one of nickel-based alloy and is reported to show relatively higher corrosion release rate. 58 Co and 60 Co will be released directly into reactor water from intensely radio-activated fuel springs surface and increase radioactivity concentrations in primary coolant. Corrosion release control from fuel springs is an important technical item and a development of alternative material instead of alloy-X750 for fuel spring is a key subject to achieve ultra low man-rem exposure BWR plant. In present work, alloy-X718 which started usage for PWR fuel springs and stainless steel type 316L which has many mechanical property data are picked up for alternative materials and compared their corrosion behaviors with conventional material. Corrosion experiment was conducted under vapor-water two phases flow which is simulated fuel cladding surface boiling condition. After exposure, corrosion film formed under corrosion test was analyzed in detail and corrosion film amount and corrosion release amount are estimated among three materials. (authors)

  19. Corrosion resistance improvement of ferritic steels through hydrogen additions to the BWR coolant

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jewett, C.W.; Pickett, A.E.; Indig, M.E.

    1984-01-01

    Motivated by the success of oxygen suppression for mitigation of intergranular stress corrosion cracking (IGSCC) in weld sensitized austenitic materials used in Boiling Water Reactors (BWRs), oxygen suppression, through hydrogen additions to the feedwater was investigated to determine its affect on the corrosion resistance of ferritic and martensitic BWR structural materials. The results of these investigations are presented in this paper, where particular emphasis is placed on the corrosion performance of BWR pressure vessel low alloy steels, carbon steel piping materials and martensitic pump materials. It is important to note that the corrosion resistance of these materials in the BWR environment is excellent. Consequently this investigation was also motivated to determine whether there were any detrimental effects of hydrogen additions, as well as to identify any additional margin in ferritic/martensitic materials corrosion performance

  20. TRAB, a transient analysis program for BWR. Part 1

    International Nuclear Information System (INIS)

    Rajamaeki, Markku.

    1980-03-01

    TRAB is a transient analysis program for BWR. The present report describes its principles. The program has been developed from TRAWA-program. It models the interior of the pressure vessel and related subsystems of BWR viz. reactor core, recirculation loop including the upper part of the vessel, recirculation pumps, incoming and outgoing flow systems, and control and protection systems. Concerning core phenomena and all flow channel hydraulics the submodels are one-dimensional of main features. The geometry is very flexible. The program has been made particularly to simulate various reactivity transients, but it is applicable more generally to reactor incidents and accidents in which no flow reversal or no emptying of the circuit must occur below the water level. The program is extensively supplied by input and output capabilities. The user can act upon the simulation of a transient by defining external disturbances, scheduled timevariations for any system variable, by modeling new subsystems, which are representable with ordinary linear differential equations, and by defining relations of functional form between system variables. The run of the program can be saved and restarted. (author)

  1. Corrosion of pre-oxidized nickel alloy X-750 in simulated BWR environment

    Energy Technology Data Exchange (ETDEWEB)

    Tuzi, Silvia, E-mail: silvia.tuzi@chalmers.se [Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Lai, Haiping [Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Göransson, Kenneth [Westinghouse Electric Sweden AB, SE-721 63 Västerås (Sweden); Thuvander, Mattias; Stiller, Krystyna [Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2017-04-01

    Samples of pre-oxidized Alloy X-750 were exposed to a simulated boiling water reactor environment in an autoclave at a temperature of 286 °C and a pressure of 80 bar for four weeks. The effect of alloy iron content on corrosion was investigated by comparing samples with 5 and 8 wt% Fe, respectively. In addition, the effect of two different surface pre-treatments was investigated. The microstructure of the formed oxide scales was studied using mainly electron microscopy. The results showed positive effects of an increased Fe content and of removing the deformed surface layer by pickling. After four weeks of exposure the oxide scale consists of oxides formed in three different ways. The oxide formed during pre-oxidization at 700 °C, mainly consisting of chromia, is partly still present. There is also an outer oxide consisting of NiFe{sub 2}O{sub 4} crystals, reaching a maximum size of 3 μm, which has formed by precipitation of dissolved metal ions. Finally, there is an inner nanocrystalline and porous oxide, with a metallic content reflecting the alloy composition, which has formed by corrosion.

  2. PSI contribution to the CASTOC round robin on EAC of low-alloy RPV steels under BWR conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.

    2001-08-01

    Within the CASTOC-project (5th EU FW programme), the environmentally-assisted crack growth (EAC) behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state BWR power operation conditions by 6 European laboratories. The present report contains a summary of the PSI contribution to the Working Package 1 (WP1) of this project. WP1 is an interlaboratory round robin EAC test in simulated BWR/NWC environment under cyclic and static loading conditions. The round robin shall demonstrate the applicability of the used advanced test technique and establishes the technical basis for the decision of test conditions in the other working packages. In the first part of the report, the PSI testing facility/measurement instruments and the applied test and evaluation procedure are discussed in detail. In the second part, the exact test conditions and test results with detailed post-test fractographical evaluation in the SEM are presented. The test results are compared with other PSI results, literature data and nuclear codes. Stable and stationary test conditions within the specified range could be achieved in the PSI test during the whole conditioning and experimental phase. The cyclic crack growth rate results agree well with recent PSI results at a higher dissolved oxygen content of 8 ppm and are slightly below the 'high-sulphur line' of the PLEDGE-model. The crack growth rates are significantly above the ASME XI 'wet' curve. Compared to fatigue crack growth rates in air under otherwise identical test conditions, the effect of the high-temperature water environment resulted in an acceleration of crack growth by a factor of 150-250 under these low-cyclic loading conditions. The test results at constant load confirm the extremely low susceptibility to SCC crack growth under static load at 288 o C observed in tests at MPA, PSI and in a European Round Robin. They agree well with the RPV operating experience

  3. BWR 9 X 9 Fuel Assembly Thermal-Hydraulic Tests (2): Hydraulic Vibration Test

    International Nuclear Information System (INIS)

    Yoshiaki Tsukuda; Katsuichiro Kamimura; Toshiitsu Hattori; Akira Tanabe; Noboru Saito; Masahiko Warashina; Yuji Nishino

    2002-01-01

    Nuclear Power Engineering Corporation (NUPEC) conducted thermal-hydraulic projects for verification of thermal-hydraulic design reliability for BWR high-burnup 8 x 8 and 9 x 9 fuel assemblies, entrusted by the Ministry of Economy, Trade and Industry (METI). As a part of the NUPEC thermal-hydraulic projects, hydraulic vibration tests using full-scale test assemblies simulating 9 x 9 fuel assemblies were carried out to evaluate BWR fuel integrity. The test data were applied to development of a new correlation for the estimation of fuel rod vibration amplitude. (authors)

  4. BWR normal water chemistry guidelines: 1986 revision

    International Nuclear Information System (INIS)

    1988-09-01

    Boiling water reactors (BWRs) have experienced stress corrosion cracking in the reactor cooling system piping resulting in adverse impacts on plant availability and personnel radiation exposure. The BWR Owners Group and EPRI have sponsored a major research and development program to provide remedies for this stress corrosion cracking problem. This work shows that the likelihood of cracking depends on the plant's water chemistry performance (environment) as well as on material condition and stress level. Plant experience and other research demonstrate that water quality also affects fuel performance and radiation field buildup in BWRs. This report,''BWR Normal Water Chemistry Guidelines: 1986 Revision,'' presents suggested generic water chemistry specifications, justifies the proposed water chemistry limits, suggests responses to out-of-specification water chemistry, discusses available chemical analysis methods as well as data management and surveillance schemes, and details the management philosophy required to successfully implement a water chemistry control program. An appendix contains recommendations for water quality of auxiliary systems. 73 refs., 20 figs., 9 tabs

  5. Simulation of the BWR experiments CORA-17 and CORA-28 using ATHLET-CD and assessment of BWR modelling. 1{sup st} Technical report. Validation and interpretation of the ATHLET-CD model basis; Simulation der SWR-Versuche CORA-17 und CORA-28 mit dem Programmsystem ATHLET-CD und Bewertung der SWR-Modellbasis. 1. Technischer Fachbericht. Validierung und Interpretation der ATHLET-CD Modellbasis

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, M.; Gremme, F.; Koch, M.K.

    2013-08-15

    The 1st Technical Report was prepared for the research project ''Validation and Interpretation of the ATHLET-CD Model Basis'' funded by the Federal Ministry of Economics and Technology (BMWi1501385) and carried out at the Chair of Energy Systems and Energy Economics at Ruhr-Universitaet Bochum (RUB). This report provides results of the simulation of the Boiling Water Reactor (BWR) experiments CORA-17 and -28 with ATHLET-CD Mod. 2.2A. The system code ATHLET-CD (Analysis of Thermal-hydraulics of Leaks and Transients - Core Degradation) is developed by the German Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH. Code results are compared to measurements in order to assess and to analyze the capabilities of the current code version with regard to the modeling of BWR components. The CORA test series was carried out between the years 1987 and 1993 at the former Kernforschungszentrum Karlsruhe (KfK), now Karlsruhe Institute of Technology (KIT). The investigations provided experimental data regarding the material behavior during the early phase of core degradation in Light Water Reactors (LWR). The tests CORA17 and -28 represented a typical BWR arrangement of the fuel rod bundle and provided insights about the bundle behavior during the quenching process (CORA-17) and regarding the influence of a preoxidized bundle (CORA-28), respectively. The simulation results are analyzed and discussed in terms of the thermal bundle behavior, the zirconium oxidation in steam and the resulting hydrogen generation as well as the material relocation. In particular, the recently extended modeling capabilities of the code in terms of the relocation of BWR components like the absorber blade and the canister wall are assessed. The analysis shows that the code captures the thermal behavior in good agreement in both experiments. An even enhanced reproduction of the test CORA-28 is obtained in comparison to a calculation using the previous code version ATHLET-CD Mod

  6. BWR Radiation Assessment and Control Program: assessment and control of BWR radiation fields. Volume 1. Executive summary

    International Nuclear Information System (INIS)

    Anstine, L.D.

    1983-05-01

    This report covers work on the BWR Radiation Assessment and Control (BRAC) Program from 1978 to 1982. The major activities during this report period were assessment of the radiation-level trends in BWRs, evaluation of the effects of forward-pumped heater drains on BWR water quality, installation and operation of a corrosion-product deposition loop in an operating BWR, and analyzation of fuel-deposit samples from two BWRs. Radiation fields were found to be controlled by cobalt-60 and to vary from as low as 50 mr/hr to as high as 800 mr/hr on the recirculation-system piping. Detailed information on BWR corrosion films and system deposits is presented in the report. Additionally, the results of an oxygen-injection experiment and recontamination monitoring studies are provided

  7. Panorama of the BWR reactors - Evolution of the concept

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, C.; Uhrig, E. [AREVA NP GmbH, Safety Engineering Department - PEPS-G (Germany)

    2012-01-15

    Nowadays, a fleet of more than 50 boiling water reactors (BWR) are in operation in the world. This article gives a short overview on the developments of nuclear power plants of the BWR type, with a focus on the European builds. It describes the technical bases from the early designs in the fifties, sketches the innovations of the sixties and seventies in the types BWR 69 and 72 (Baulinie 69 and 72) and gives an outlook of a possible next generation BWR. A promising approach in recent BWR developments is the the combination of passive safety systems with established design basis

  8. BWR AXIAL PROFILE

    International Nuclear Information System (INIS)

    Huffer, J.

    2004-01-01

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I

  9. Pattern recognition model to estimate intergranular stress corrosion cracking (IGSCC) at crevices and pit sites of 304 SS in BWR environments

    International Nuclear Information System (INIS)

    Urquidi-Macdonald, Mirna

    2004-01-01

    Many publications have shown that crack growth rates (CGR) due to intergranular stress corrosion cracking (IGSCC) of metals is dependent on many parameters related to the manufacturing process of the steel and the environment to which the steel is exposed. Those parameters include, but are not restricted to, the concentration of chloride, fluoride, nitrates, and sulfates, pH, fluid velocity, electrochemical potential (ECP), electrolyte conductivity, stress and sensitization applied to the steel during its production and use. It is not well established how combinations of each of these parameters impact the CGR. Many different models and beliefs have been published, resulting in predictions that sometimes disagree with experimental observations. To some extent, the models are the closest to the nature of IGSCC, however, there is not a model that fully describes the entire range of observations, due to the difficulty of the problem. Among the models, the Fracture Environment Model, developed by Macdonald et al., is the most physico-chemical model, accounting for experimental observations in a wide range of environments or ECPs. In this work, we collected experimental data on BWR environments and designed a data mining pattern recognition model to learn from that data. The model was used to generate CGR estimations as a function of ECP on a BWR environment. The results of the predictive model were compared to the Fracture Environment Model predictions. The results from those two models are very close to the experimental observations of the area corresponding to creep and IGSCC controlled by diffusion. At more negative ECPs than the potential corresponding to creep, the pattern recognition predicts an increase of CGR with decreasing ECP, while the Fracture Environment Model predicts the opposite. The results of this comparison confirm that the pattern recognition model covers 3 phenomena: hydrogen embrittlement at very negative ECP, creep at intermediate ECP, and IGSCC

  10. Pattern recognition model to estimate intergranular stress corrosion cracking (IGSCC) at crevices and pit sites of 304 SS in BWR environments

    Energy Technology Data Exchange (ETDEWEB)

    Urquidi-Macdonald, Mirna [Penn State University, 212 Earth-Engineering Science Building, University Park, PA 16801 (United States)

    2004-07-01

    Many publications have shown that crack growth rates (CGR) due to intergranular stress corrosion cracking (IGSCC) of metals is dependent on many parameters related to the manufacturing process of the steel and the environment to which the steel is exposed. Those parameters include, but are not restricted to, the concentration of chloride, fluoride, nitrates, and sulfates, pH, fluid velocity, electrochemical potential (ECP), electrolyte conductivity, stress and sensitization applied to the steel during its production and use. It is not well established how combinations of each of these parameters impact the CGR. Many different models and beliefs have been published, resulting in predictions that sometimes disagree with experimental observations. To some extent, the models are the closest to the nature of IGSCC, however, there is not a model that fully describes the entire range of observations, due to the difficulty of the problem. Among the models, the Fracture Environment Model, developed by Macdonald et al., is the most physico-chemical model, accounting for experimental observations in a wide range of environments or ECPs. In this work, we collected experimental data on BWR environments and designed a data mining pattern recognition model to learn from that data. The model was used to generate CGR estimations as a function of ECP on a BWR environment. The results of the predictive model were compared to the Fracture Environment Model predictions. The results from those two models are very close to the experimental observations of the area corresponding to creep and IGSCC controlled by diffusion. At more negative ECPs than the potential corresponding to creep, the pattern recognition predicts an increase of CGR with decreasing ECP, while the Fracture Environment Model predicts the opposite. The results of this comparison confirm that the pattern recognition model covers 3 phenomena: hydrogen embrittlement at very negative ECP, creep at intermediate ECP, and IGSCC

  11. GPE-BWR and the containment venting and filtering issue

    International Nuclear Information System (INIS)

    Palomo, J.; Santiago, J. de

    1988-01-01

    The Spanish Boiling Water Reactor Owner's Group (GPE-BWR) is formed by three utilities, owning four units: Santa Maria de Garona (46 MWe, BWR3, Mark I containment), Cofrentes (975 MWe, BWR6, Mark III containment) and Valdecaballeros (2x975 MWe, BWR6, Mark III containment) - all of the reactors having been supplied by General Electric. One of the GPE-BWR's several committees is the Safety and Licensing Committee, which follows up the evolution of severe accident topics and particularly the containment venting and filtering issue. In September 1987, the Consejo de Seguridad Nuclear (CSN), the Spanish Regulatory Body, asked the GPE-BWR to define its position on the installation of a containment venting system. The GPE-BWR created a Working Group which presented a Report on Containment Venting to the CSN in January 1987 gathered from: the US Nuclear Regulatory Commission (NRC); some US utilities; and several European countries, especially France, Germany and Sweden. CSN's review of the containment venting Report and the Action Plan proposed by the GPE-BWR finished in April 1988. The conclusion of the Report and the proposed Action Plan take into account the US NRC's identified open items on severe accidents and the R and D programs scheduled to close these items

  12. A detailed BWR recirculation loop model for RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Araiza-Martínez, Enrique, E-mail: enrique.araiza@inin.gob.mx; Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.mx; Castillo-Durán, Rogelio, E-mail: rogelio.castillo@inin.gob.mx

    2017-01-15

    Highlights: • A new detailed BWR recirculation loop model was developed for RELAP. • All jet pumps, risers, manifold, suction and control valves, and recirculation pump are modeled. • Model is tested against data from partial blockage of two jet pumps. • For practical applications, simulation results showed good agreement with available data. - Abstract: A new detailed geometric model of the whole recirculation loop of a BWR has been developed for the code RELAP. This detailed model includes the 10 jet pumps, 5 risers, manifold, suction and control valves, and the recirculation pump, per recirculation loop. The model is tested against data from an event of partial blockage at the entrance nozzle of one jet pump in both recirculation loops. For practical applications, simulation results showed good agreement with data. Then, values of parameters considered as figure of merit (reactor power, dome pressure, core flow, among others) for this event are compared against those from the common 1 jet pump per loop model. The results show that new detailed model led to a closer prediction of the reported power change. The detailed recirculation loop model can provide more reliable boundary condition data to a CFD models for studies of, for example, flow induced vibration, wear, and crack initiation.

  13. Evaluation of thermal margin during BWR neutron flux oscillation

    International Nuclear Information System (INIS)

    Takeuchi, Yutaka; Takigawa, Yukio; Chuman, Kazuto; Ebata, Shigeo

    1992-01-01

    Fuel integrity is very important, from the view point of nuclear power plant safety. Recently, neutron flux oscillations were observed at several BWR plants. The present paper describes the evaluations of the thermal margin during BWR neutron flux oscillations, using a three-dimensional transient code. The thermal margin is evaluated as MCPR (minimum critical power ratio). The LaSalle-2 event was simulated and the MCPR during the event was evaluated. It was a core-wide oscillation, at which a large neutron flux oscillation amplitude was observed. The results indicate that the MCPR had a sufficient margin with regard to the design limit. A regional oscillation mode, which is different from a core-wide oscillation, was simulated and the MCPR response was compared with that for the LaSalle-2 event. The MCPR decrement is greater in the regional oscillation, than in the core wide -oscillation, because of the sensitivity difference in a flow-to-power gain. A study was carried out about regional oscillation detectability, from the MCPR response view point. Even in a hypothetically severe case, the regional oscillation is detectable by LPRM signals. (author)

  14. Damage by radiation in structural materials of BWR reactor vessels; Dano por radiacion en materiales estructurales de vasijas de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [Departamento de Sintesis y Caracterizacion de Materiales, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The structural materials which are manufactured the pressure vessels of the BWR reactors undergo degradation in their mechanical properties mainly due to the damage produced by the fast neutrons (E> 1 MeV) coming from the reactor core. The mechanisms of neutron damage in this type of materials are experimentally studied, through the irradiation of vessel steel in experimental reactors for a quickly ageing. Alternately the neutron damage through steel irradiation with heavy ions is simulated. In this work the first results of the damage induced by irradiation of a similar steel to the vessel of a BWR reactor are shown. The irradiation was performed with fast neutrons (E> 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA Mark III Salazar reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator (E= 4.8 MeV and an ion flux rank of 0.1 to 53 ions/A{sup 2}). (Author)

  15. OECD/NRC BWR Turbine Trip Benchmark: Simulation by POLCA-T Code

    International Nuclear Information System (INIS)

    Panayotov, Dobromir

    2004-01-01

    Westinghouse transient code POLCA-T brings together the system thermal-hydraulics plant models and three-dimensional (3-D) neutron kinetics core models. Participation in the OECD/NRC BWR Turbine Trip (TT) Benchmark is a part of our efforts toward the code's validation. The paper describes the objectives for TT analyses and gives a brief overview of the developed plant system input deck and 3-D core model.The results of exercise 1, system model without netronics, are presented. Sensitivity studies performed cover the maximal time step, turbine stop valve position and mass flow, feedwater temperature, and steam bypass mass flow. Results of exercise 2, 3-D core neutronic and thermal-hydraulic model with boundary conditions, are also presented. Sensitivity studies include the core inlet temperature, cladding properties, and direct heating to core coolant and bypass.The entire plant model was validated in the framework of the benchmark's phase 3. Sensitivity studies include the effect of SCRAM initialization and carry-under. The results obtained - transient fission power and its initial axial distribution and steam dome, core exit, lower and upper plenum, main steam line, and turbine inlet pressures - showed good agreement with measured data. Thus, the POLCA-T code capabilities for correct simulation of pressurizing transients with very fast power were proved

  16. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    International Nuclear Information System (INIS)

    Garcia, S.E.; Giannelli, J.F.; Jarvis, M.L.

    2010-01-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  17. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: sgarcia@epri.com [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, M.L., E-mail: jgiannelli@finetech.com [Finetech, Inc., Parsippany, NJ (United States)

    2010-07-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  18. Simulation of Thermal Stratification in BWR Suppression Pools with One Dimensional Modeling Method

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Ling Zou; Hongbin Zhang

    2014-01-01

    The suppression pool in a boiling water reactor (BWR) plant not only is the major heat sink within the containment system, but also provides the major emergency cooling water for the reactor core. In several accident scenarios, such as a loss-of-coolant accident and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; the pool temperature distribution also affects the NPSHa (available net positive suction head) and therefore the performance of the Emergency Core Cooling System and Reactor Core Isolation Cooling System pumps that draw cooling water back to the core. Current safety analysis codes use zero dimensional (0-D) lumped parameter models to calculate the energy and mass balance in the pool; therefore, they have large uncertainties in the prediction of scenarios in which stratification and mixing are important. While three-dimensional (3-D) computational fluid dynamics (CFD) methods can be used to analyze realistic 3-D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, resulting in a long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code (Berkeley mechanistic MIXing code in C++) has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by one-dimensional (1-D) transient partial differential equations and substructures (such as free or wall jets) are modeled with 1-D integral models. This allows very large reductions in computational effort compared to multi-dimensional CFD modeling. One heat-up experiment performed at the Finland POOLEX facility, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, is used for

  19. Thermohydraulic analysis of BWR and PWR spent fuel assemblies contained within square canisters

    International Nuclear Information System (INIS)

    Wiles, L.E.; McCann, R.A.

    1981-09-01

    This report presents the results of several thermohydraulic simulations of spent fuel assembly/canister configurations performed in support of a program investigating the feasibility of storing spent nuclear fuel assemblies in canisters that would be stored in an air environment. Eleven thermohydraulic simulations were performed. Five simulations were performed using a single BWR fuel assembly/canister design. The various cases were defined by changing the canister spacing and the heat generation rate of the fuel assembly. For each simulation a steady-state thermohydraulic solution was achieved for the region inside the canister. Similarly, six simulations were performed for a single PWR fuel assembly/canister design. The square fuel rod arrays were contained in square canisters which would permit closer packing of the canisters in a storage facility. However, closer packing of the canisters would result in higher fuel temperatures which would possibly have an adverse impact on fuel integrity. Thus, the most important aspect of the analysis was to define the peak fuel assembly temperatures for each case. These results are presented along with various temperature profiles, heat flux distributions, and air velocity profiles within the canister. 48 figures, 4 tables

  20. Boiling transition phenomenon in BWR fuel assemblies effect of fuel spacer shape on critical power

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Morooka, Shin-ichi; Mitsutake, Toru; Yokobori, Seiichi; Kimura, Jiro.

    1996-01-01

    A thorough understanding of the thermal-hydraulic phenomena near fuel spacer is necessary for the accurate prediction of the critical power of BWR fuel assemblies, and is thus essential for effective developments of a new BWR fuel assembly. The main purpose of this study is to develop an accurate method for predicting the effect of spacer shapes on critical power. Tests have been conducted under actual BWR operating conditions, using an annulus flow channel consisting of a heated rod and circular-tube channel, and BWR simulated 4x4 rod bundles with heater rods unheated just upsteam of spacer. The effect of spacer shapes on critical power was predicted analytically based on the droplet deposition rate estimation. The droplet deposition rate for different spacer shapes was calculated using a single-phase flow model. The prediction results were compared with the test results for the annulus flow channel using ring-type spacers. Analytical results of critical power agreed with measured critical power from point of the effects of changes in the rod-spacer clearance and the spacer thickness on critical power. (author)

  1. Predictive uncertainty reduction in coupled neutron-kinetics/thermal hydraulics modeling of the BWR-TT2 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Badea, Aurelian F., E-mail: aurelian.badea@kit.edu [Karlsruhe Institute of Technology, Vincenz-Prießnitz-Str. 3, 76131 Karlsruhe (Germany); Cacuci, Dan G. [Center for Nuclear Science and Energy/Dept. of ME, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States)

    2017-03-15

    Highlights: • BWR Turbine Trip 2 (BWR-TT2) benchmark. • Substantial (up to 50%) reduction of uncertainties in the predicted transient power. • 6660 uncertain model parameters were calibrated. - Abstract: By applying a comprehensive predictive modeling methodology, this work demonstrates a substantial (up to 50%) reduction of uncertainties in the predicted total transient power in the BWR Turbine Trip 2 (BWR-TT2) benchmark while calibrating the numerical simulation of this benchmark, comprising 6090 macroscopic cross sections, and 570 thermal-hydraulics parameters involved in modeling the phase-slip correlation, transient outlet pressure, and total mass flow. The BWR-TT2 benchmark is based on an experiment that was carried out in 1977 in the NPP Peach Bottom 2, involving the closure of the turbine stop valve which caused a pressure wave that propagated with attenuation into the reactor core. The condensation of the steam in the reactor core caused by the pressure increase led to a positive reactivity insertion. The subsequent rise of power was limited by the feedback and the insertion of the control rods. The BWR-TT2 benchmark was modeled with the three-dimensional reactor physics code system DYN3D, by coupling neutron kinetics with two-phase thermal-hydraulics. All 6660 DYN3D model parameters were calibrated by applying a predictive modeling methodology that combines experimental and computational information to produce optimally predicted best-estimate results with reduced predicted uncertainties. Simultaneously, the predictive modeling methodology yields optimally predicted values for the BWR total transient power while reducing significantly the accompanying predicted standard deviations.

  2. Predictive uncertainty reduction in coupled neutron-kinetics/thermal hydraulics modeling of the BWR-TT2 benchmark

    International Nuclear Information System (INIS)

    Badea, Aurelian F.; Cacuci, Dan G.

    2017-01-01

    Highlights: • BWR Turbine Trip 2 (BWR-TT2) benchmark. • Substantial (up to 50%) reduction of uncertainties in the predicted transient power. • 6660 uncertain model parameters were calibrated. - Abstract: By applying a comprehensive predictive modeling methodology, this work demonstrates a substantial (up to 50%) reduction of uncertainties in the predicted total transient power in the BWR Turbine Trip 2 (BWR-TT2) benchmark while calibrating the numerical simulation of this benchmark, comprising 6090 macroscopic cross sections, and 570 thermal-hydraulics parameters involved in modeling the phase-slip correlation, transient outlet pressure, and total mass flow. The BWR-TT2 benchmark is based on an experiment that was carried out in 1977 in the NPP Peach Bottom 2, involving the closure of the turbine stop valve which caused a pressure wave that propagated with attenuation into the reactor core. The condensation of the steam in the reactor core caused by the pressure increase led to a positive reactivity insertion. The subsequent rise of power was limited by the feedback and the insertion of the control rods. The BWR-TT2 benchmark was modeled with the three-dimensional reactor physics code system DYN3D, by coupling neutron kinetics with two-phase thermal-hydraulics. All 6660 DYN3D model parameters were calibrated by applying a predictive modeling methodology that combines experimental and computational information to produce optimally predicted best-estimate results with reduced predicted uncertainties. Simultaneously, the predictive modeling methodology yields optimally predicted values for the BWR total transient power while reducing significantly the accompanying predicted standard deviations.

  3. Development of a detailed BWR core thermal-hydraulic analysis method based on the Japanese post-BT standard using a best-estimate code

    International Nuclear Information System (INIS)

    Ono, H.; Mototani, A.; Kawamura, S.; Abe, N.; Takeuchi, Y.

    2004-01-01

    The post-BT standard is a new fuel integrity standard or the Atomic Energy Society of Japan that allows temporary boiling transition condition in the evaluation for BWR anticipated operational occurrences. For application of the post-BT standard to BWR anticipated operational occurrences evaluation, it is important to identify which fuel assemblies and which axial, radial positions of fuel rods have temporarily experienced the post-BT condition and to evaluates how high the fuel cladding temperature rise was and how long the dryout duration continued. Therefore, whole bundle simulation, in which each fuel assembly is simulated independently by one thermal-hydraulic component, is considered to be an effective analytical method. In the present study, a best-estimate thermal-hydraulic code, TRACG02, has been modified to extend it predictive capability by implementing the post-BT evaluation model such as the post-BT heat transfer correlation and rewetting correlation and enlarging the number of components used for BWR plant simulation. Based on new evaluation methods, BWR core thermal-hydraulic behavior has been analyzed for typical anticipated operational occurrence conditions. The location where boiling transition occurs and the severity of fuel assembly in the case of boiling transition conditions such as fuel cladding temperature, which are important factors in determining whether the reuse of the fuel assembly can be permitted, were well predicted by the proposed evaluation method. In summary, a new evaluation method for a detailed BWR core thermal-hydraulic analysis based on the post-BT standard of the Atomic Energy Society of Japan has been developed and applied to the evaluation of the post-BT standard during the actual BWR plant anticipated operational occurrences. (author)

  4. Simulation in 3 dimensions of a cycle 18 months for an BWR type reactor using the Nod3D program

    International Nuclear Information System (INIS)

    Hernandez, N.; Alonso, G.; Valle, E. del

    2004-01-01

    The development of own codes that you/they allow the simulation in 3 dimensions of the nucleus of a reactor and be of easy maintenance, without the consequent payment of expensive use licenses, it can be a factor that propitiates the technological independence. In the Department of Nuclear Engineering (DIN) of the Superior School of Physics and Mathematics (ESFM) of the National Polytechnic Institute (IPN) a denominated program Nod3D has been developed with the one that one can simulate the operation of a reactor BWR in 3 dimensions calculating the effective multiplication factor (kJJ3, as well as the distribution of the flow neutronic and of the axial and radial profiles of the power, inside a means of well-known characteristics solving the equations of diffusion of neutrons numerically in stationary state and geometry XYZ using the mathematical nodal method RTN0 (Raviart-Thomas-Nedelec of index zero). One of the limitations of the program Nod3D is that it doesn't allow to consider the burnt of the fuel in an independent way considering feedback, this makes it in an implicit way considering the effective sections in each step of burnt and these sections are obtained of the code Core Master LEND. However even given this limitation, the results obtained in the simulation of a cycle of typical operation of a reactor of the type BWR are similar to those reported by the code Core Master LENDS. The results of the keJ - that were obtained with the program Nod3D they were compared with the results of the code Core Master LEND, presenting a difference smaller than 0.2% (200 pcm), and in the case of the axial profile of power, the maxim differs it was of 2.5%. (Author)

  5. Behavior of small-sized BWR fuel under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujishiro, Toshio; Horiki, Oichiro; Chen Dianshan; Takeuchi, Kiyoshi.

    1992-01-01

    The present work was performed on this small-sized BWR fuel, where Zr liner and rod prepressurization were taken as experimental parameters. Experiment was done under simulated reactivity initiated accident (RIA) conditions at Nuclear Safety Research Reactor (NSRR) belonged to Japan Atomic Energy Research Institute (JAERI). Major remarks obtained are as follows: (1) Three different types of the fuel rods consisted of (a) Zr lined/pressurized (0.65MPa), (b) Zr lined/non-pressurized and (c) non-Zr lined/pressurized (o.65MPa) were used, respectively. Failure thresholds of these were not less than that (260 cal/g·fuel) described in Japanese RIA Licensing Guideline. Small-sized BWR and conventional 8 x 8 BWR fuels were considered to be in almost the same level in failure threshold. Failure modes of the three were (a) cladding melt/brittle, (b) cladding melt/brittle and (c) rupture by large ballooning, respectively. (2) The magnitude of pressure pulse at fuel fragmentation was also studied by lined/pressurized and non-lined/pressurized fuels. Above the energy deposition of 370 cal/g·fuel, mechanical energy (or pressure) was found to be released from these fragmented fuels. No measurable difference was, however, observed between the tested fuels and NSRR standard (and conventional 8 x 8 BWR) fuels. (3) It is worthy of mentioning that Zr liner tended to prevent the cladding from large ballooning. Non-lined/pressurized fuel tended to cause wrinkle deformation at cladding. Hence, cladding external was notched much by the wrinkles. (4) Time to fuel failure measured from the tested BWR fuels (pressurization < 0.6MPA) was longer than that measured from PWR fuels (pressurization < 3.2MPa). The magnitude of the former was of the order of 3 ∼ 6s, while that of the latter was < 1s. (J.P.N.)

  6. Novel modular natural circulation BWR design and safety evaluation

    International Nuclear Information System (INIS)

    Ishii, Mamoru; Shi, Shanbin; Yang, Won Sik; Wu, Zeyun; Rassame, Somboon; Liu, Yang

    2015-01-01

    Highlights: • Introduction of BWR-type natural circulation small modular reactor preliminary design (NMR-50). • Design of long fuel cycle length for the NMR-50. • Design of double passive safety systems for the NMR-50. • RELAP5 analyses of design basis accidents for the NMR-50. - Abstract: The Purdue NMR (Novel Modular Reactor) represents a BWR-type small modular reactor with a significantly reduced reactor pressure vessel (RPV) height. Specifically, it has one third the height of a conventional BWR RPV with an electrical output of 50 MWe. The preliminary design of the NMR-50 including reactor, fuel cycle, and safety systems is described and discussed. The improved neutronics design of the NMR-50 extends the fuel cycle length up to 10 years. The NMR-50 is designed with double passive engineering safety system, which is intended to withstand a prolonged station black out with loss of ultimate heat sink accident such as experienced at Fukushima. In order to evaluate the safety features of the NMR-50, two representative design basis accidents, i.e. main steam line break (MSLB) and bottom drain line break (BDLB), are simulated by using the best-estimate thermal–hydraulic code RELAP5. The RPV water inventory, containment pressure, and the performance of engineering safety systems are investigated for about 33 h after the initiation of the accidents

  7. Studies of fragileness in steels of vessels of BWR reactors; Estudios de fragilizacion en aceros de vasija de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA MARK lll reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A{sup 2}. (Author)

  8. Behavior to the fracture of an AISI 304 stainless steel sensitized in BWR reactor conditions (288 degrees Centigrade and 80 Kg/cm{sup 2}); Comportamiento a la fractura de un acero inoxidable AISI 304 sensibilizado en condiciones de reactor BWR (288 grados Centigrados y 80 Kg/cm{sup 2})

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Garcia R, R.; Aguilar T, A.; Gachuz M, M.; Arganis J, C.; Merino C, J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    It is a knew fact that ductility of a lot of structural alloys can be deteriorated by the environment effect which are exposed, and that their consequent embrittlement can put in doubt the safety of their functioning; such is the case of austenitic stainless steels used in internal components of the BWR type reactors which not only is subjected to the effect combined of the aggressive environment which surround it (pressure, temperature, corrosion potential, conductivity medium, local state of efforts, etc.), but also to the action of present neutron radiation, manifesting microstructural changes which are reflected in the augmentation of its susceptibility to the intergranular cracking, phenomena generally known as IASCC ''Irradiation Assisted Stress Corrosion Cracking''. Once appeared the cracking in the material, the useful life of a component is limited by the rapidity to growth of these cracking, making necessary evaluations which can to predict its behavior, therefore the present work shows the preliminary results for determining the behavior to the fracture of an AISI 304 stainless steel sensitized, in a dynamic recirculation circuit which allows to simulate the operation conditions of a BWR reactor (288 Centigrade and 80 kg/cm{sup 2}). (Author)

  9. PSI contribution to the CASTOC round robin on EAC of low-alloy RPV steels under BWR conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S

    2001-08-01

    Within the CASTOC-project (5th EU FW programme), the environmentally-assisted crack growth (EAC) behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state BWR power operation conditions by 6 European laboratories. The present report contains a summary of the PSI contribution to the Working Package 1 (WP1) of this project. WP1 is an interlaboratory round robin EAC test in simulated BWR/NWC environment under cyclic and static loading conditions. The round robin shall demonstrate the applicability of the used advanced test technique and establishes the technical basis for the decision of test conditions in the other working packages. In the first part of the report, the PSI testing facility/measurement instruments and the applied test and evaluation procedure are discussed in detail. In the second part, the exact test conditions and test results with detailed post-test fractographical evaluation in the SEM are presented. The test results are compared with other PSI results, literature data and nuclear codes. Stable and stationary test conditions within the specified range could be achieved in the PSI test during the whole conditioning and experimental phase. The cyclic crack growth rate results agree well with recent PSI results at a higher dissolved oxygen content of 8 ppm and are slightly below the 'high-sulphur line' of the PLEDGE-model. The crack growth rates are significantly above the ASME XI 'wet' curve. Compared to fatigue crack growth rates in air under otherwise identical test conditions, the effect of the high-temperature water environment resulted in an acceleration of crack growth by a factor of 150-250 under these low-cyclic loading conditions. The test results at constant load confirm the extremely low susceptibility to SCC crack growth under static load at 288 {sup o}C observed in tests at MPA, PSI and in a European Round Robin. They agree well with the RPV

  10. BWR stability analysis

    International Nuclear Information System (INIS)

    Valtonen, K.

    1990-01-01

    The objective of this study has been to examine TVO-I oscillation incident, which occured in February 22.1987 and to find out safety implications of oscillations in ATWS incidents. Calculations have been performed with RAMONA-3B and TRAB codes. RAMONA-3B is a BWR transient analysis code with three-dimencional neutron kinetics and nonequilibrium, nonhomogeneous thermal hydraulics. TRAB code is a one-dimencional BWR transient code which uses methods similar to RAMONA-3B. The results have shown that both codes are capable of analyzing of the oscillation incidents. Both out-of-phase and in-phase oscillations are possible. If the reactor scram fails (ATWS) during oscillations the severe fuel failures are always possible and the reactor core may exceed the prompt criticality

  11. Strain-induced corrosion cracking in ferritic components of BWR primary circuits

    International Nuclear Information System (INIS)

    Seifert, H.-P.; Ritter, S.; Ineichen, U.; Tschanz, U.; Gerodetti, B.

    2003-04-01

    The present final report of the RIKORR project is a summary of a literature survey and of the experimental work performed by PSI on the environmentally-assisted cracking (EAC) and dynamic strain ageing (DSA) susceptibility of low-alloy steels (LAS) in high-temperature (HT) water. Within this project, the EAC crack growth behaviour of different low-alloy RPV steels, weld filler and weld heat-affected zone materials has been investigated under simulated transient and steady-state BWR/NWC power operation conditions. The strain-induced corrosion cracking (SICC) / low-frequency corrosion fatigue (CF) and stress corrosion cracking (SCC) crack growth behaviour of different low-alloy RPV steels under simulated transient and stationary BWR/NWC conditions was characterized by slow rising load / low-frequency corrosion fatigue and constant load / periodical partial unloading / ripple load tests with pre-cracked fracture mechanics specimens in oxygenated HT water at temperatures of either 288, 250, 200 or 150 o C. Modern high-temperature water loops, on-line crack growth monitoring and fractographic analysis by scanning electron microscopy (SEM) were used to quantify the cracking response. (author)

  12. AREVA solutions to licensing challenges in PWR and BWR reload and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Curca-Tivig, Florin [AREVA GmbH, Erlangen (Germany)

    2016-05-15

    Regulatory requirements for reload and safety analyses are evolving: new safety criteria, request for enlarged qualification databases, statistical applications, uncertainty propagation.. In order to address these challenges and access more predictable licensing processes, AVERA is implementing consistent code and methodology suites for PWR and BWR core design and safety analysis, based on first principles modeling and extremely broad verification and validation data base. Thanks to the high computational power increase in the last decades methods' development and application now include new capabilities. An overview of the main AREVA codes and methods developments is given covering PWR and BWR applications in different licensing environments.

  13. Fundamentals of boiling water reactor (BWR)

    International Nuclear Information System (INIS)

    Bozzola, S.

    1982-01-01

    These lectures on fundamentals of BWR reactor physics are a synthesis of known and established concepts. These lectures are intended to be a comprehensive (even though descriptive in nature) presentation, which would give the basis for a fair understanding of power operation, fuel cycle and safety aspects of the boiling water reactor. The fundamentals of BWR reactor physics are oriented to design and operation. In the first lecture general description of BWR is presented, with emphasis on the reactor physics aspects. A survey of methods applied in fuel and core design and operation is presented in the second lecture in order to indicate the main features of the calculational tools. The third and fourth lectures are devoted to review of BWR design bases, reactivity requirements, reactivity and power control, fuel loading patterns. Moreover, operating limits are reviewed, as the actual limits during power operation and constraints for reactor physics analyses (design and operation). The basic elements of core management are also presented. The constraints on control rod movements during the achieving of criticality and low power operation are illustrated in the fifth lecture. Some considerations on plant transient analyses are also presented in the fifth lecture, in order to show the impact between core and fuel performance and plant/system performance. The last (sixth) lecture is devoted to the open vessel testing during the startup of a commercial BWR. A control rod calibration is also illustrated. (author)

  14. Simulation of the automatic depressurization system (Ads) for a boiling water reactor (BWR) based on RELAP

    International Nuclear Information System (INIS)

    Ramirez G, C.; Chavez M, C.

    2012-10-01

    The automatic depressurization system (Ads) of the boiling water reactor (BWR) like part of the emergency cooling systems is designed to liberate the vapor pressure of the reactor vessel, as well as the main vapor lines. At the present time in the Engineering Faculty, UNAM personnel works in the simulation of the Laguna Verde reactor based on the nuclear code RELAP/SCADAP and in the incorporation to the same of the emergency cooling systems. The simulation of the emergency cooling systems began with the inclusion of two hydrodynamic volumes, one source and another drain, and the incorporation of the initiation logic for each emergency system. In this work is defined and designed a simplified model of Ads of the reactor, considering a detail level based on the main elements that compose it. As tool to implement the proposed model, the RELAP code was used. The simulated main functions of Ads are centered in the quick depressurization of the reactor by means of the vapor discharge through the relief/safety valves to the suppression pool, and, in the event of break of the main vapor line, the reduction of the vessel pressure operates for that the cooling systems of the core to low pressure (Lpcs and Lpci) they can begin their operation. (Author)

  15. BWR Refill-Reflood Program, Task 4.7 - model development: TRAC-BWR component models

    International Nuclear Information System (INIS)

    Cheung, Y.K.; Parameswaran, V.; Shaug, J.C.

    1983-09-01

    TRAC (Transient Reactor Analysis Code) is a computer code for best-estimate analysis for the thermal hydraulic conditions in a reactor system. The development and assessment of the BWR component models developed under the Refill/Reflood Program that are necessary to structure a BWR-version of TRAC are described in this report. These component models are the jet pump, steam separator, steam dryer, two-phase level tracking model, and upper-plenum mixing model. These models have been implemented into TRAC-B02. Also a single-channel option has been developed for individual fuel-channel analysis following a system-response calculation

  16. Boiling water system of nuclear power plants (BWR)

    International Nuclear Information System (INIS)

    Martias Nurdin

    1975-01-01

    About 85% of the world electric generators are light water reactors. It shows that LWR is technologically and economically competitive with other generators. The Boiling Water Reactor (BWR) is one of the two systems in the LWR group. The techniques of BWR operation in several countries, especially low and moderate power BWR, are presented. The discussion is made in relation with the interconnection problems of electric installation in developing countries, including Indonesia, where the total electric energy installation is low. The high reliability and great flexibility of the operation of a boiling water reactor for a sufficiently long period are also presented. Component standardization for BWR system is discussed to get a better technological and economical performance for further development. (author)

  17. Experimental simulation of the water cooling of corium spread over the floor of a BWR containment

    Energy Technology Data Exchange (ETDEWEB)

    Morage, F.; Lahey, R.T. Jr.; Podowski, M.Z. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    This paper is concerned with an experimental investigation of the cooling effect of water collected on the surface of corium released onto the floor of a BWR drywell. In the present experiments, the actual reactor materials were replaced by simulant materials. Specifically, the results are shown for Freon-11 film boiling over liquid Wood`s metal spread above a solid porous surface through which argon gas was injected. An analysis of the obtained experimental data revealed that the actual film boiling heat transfer between a molten pool of corium and the water above the pool should be more efficient than predicted by using standard correlations for boiling over solid surfaces. This effect will be further augmented by the gas released due to the ablation of concrete floor beneath the corium and percolating towards its upper surface and into through the water layer above.

  18. FIST/6IB1, BWR/6 System Responses to Intermediate Break in Recirculation Suction Line LINE

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Description of test facility: BWR/6-218 standard plant. A full size bundle with electrically heated rods is used to simulate the reactor core. A scaling ratio of 1/624 is applied in the design of the system components. Key features of the FIST facility include: (1) Full height test vessel and internals; (2) correctly scaled fluid volume distribution; (3) simulation of ECCS, S/RV, and ADS; (4) level trip capability; (5) heated feedwater supply system, which provides the capability for steady state operation. 2 - Description of test: Test 6IB1 investigates system responses to an intermediate break in the recirculation suction line. BWR system licensing evaluations for various size recirculation break LOCA's indicates that a break size of about 0.2 sq.ft., without LPCS operation, is the highest PCT case for the intermediate break LOCA. Test 6IB1 simulates this event

  19. Synergistic failure of BWR internals

    International Nuclear Information System (INIS)

    Ware, A. G.; Chang, T.Y.

    1999-01-01

    Boiling Water Reactor (BWR) core shrouds and other reactor internals important to safety are experiencing intergranular stress corrosion cracking (IGSCC). The United States Nuclear Regulatory Commission has followed the problem, and as part of its investigations, contracted with the Idaho National Engineering and Environmental Laboratory to conduct a risk assessment. The overall project objective is to assess the potential consequences and risks associated with the failure of IGSCC-susceptible BWR vessel internals, with specific consideration given to potential cascading and common mode effects. An initial phase has been completed in which background material was gathered and evaluated, and potential accident sequences were identified. A second phase is underway to perform a simplified, quantitative probabilistic risk assessment on a representative high-power BWR/4. Results of the initial study conducted on the jet pumps show that any cascading failures would not result in a significant increase in the core damage frequency. The methodology is currently being extended to other major reactor internals components

  20. Utility experience with BWR-PSMS

    International Nuclear Information System (INIS)

    Bond, G.R.

    1986-01-01

    The BWR Power Shape Monitoring System (BWR-PSMS) has proven to be an effective and versatile tool for core monitoring. GPU Nuclear Corporation's (GPUN) Oyster Creek plant has been involved in the PSMS development since its inception, having been selected by EPRI as the initial demonstration site. Beginning with Cycle 10, Oyster Creek has been applying the BWR-PSMS as the primary core monitoring tool. Although the system has been in operation at Oyster Creek for the past several cycles, this is the first time the PSMS was used to monitor compliance to the plant technical specifications, to guide adherence to vendore fuel maneuvering recommendations and to develop data for certain performance records such as fuel burnup, isotopic accounting, etc. This paper will discuss the bases for the decision to apply PSMS as the fundamental core monitoring system, the experience in implementing the PSMS in this mode, activities currently underway or planned related to PSMS, and potential future extensions and applications of PSMS at Oyster Creek

  1. BWR simulation in a stationary state for the evaluation of fuel cell design; Simulacion de un reactor BWR en estado estacionario para la evaluacion del diseno de celdas de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Montes T, J. L.; Ortiz S, J. J.; Perusquia del C, R.; Castillo M, A., E-mail: joseluis.montes@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In this paper the simulation of a BWR in order to evaluate the performance of a set of fuel assemblies under stationary state in three dimensions (3-D) is presented. 15 cases selected from a database containing a total of 18225 cases are evaluated. The main selection criteria were based on the results of the design phase of the power cells in two dimensions (2-D) and 3-D initial study. In 2-D studies the parameters that were used to qualify and select the designs were basically the local power peaking factor and neutron multiplication factor of each fuel cell. In the initial 3-D study variables that defined the quality of results, and from which the selection was realized, are the margins to thermal limits of reactor operation and the value of the effective multiplication factor at the end of cycle operation. From the 2-D and 3-D results of the studies described a second 3-D study was realized, where the optimizations of the fuel reload pattern was carried out. The results presented in this paper correspond to this second 3-D study. It was found that the designs of the fuel cell they had a similar behavior to those provided by the fuel supplier of reference BWR. Particularly it noted the impact of reload pattern on the cold shut down margin. An estimate of the operation costs of reference cycle analyzed with each one designed reload batch was also performed. As a result a positive difference (gain) up to 10,347 M/US D was found. (Author)

  2. Behavior to the fracture of an AISI 304 stainless steel sensitized in BWR reactor conditions (288 degrees Centigrade and 80 Kg/cm2)

    International Nuclear Information System (INIS)

    Hernandez C, R.; Diaz S, A.; Garcia R, R.; Aguilar T, A.; Gachuz M, M.; Arganis J, C.; Merino C, J.

    1999-01-01

    It is a knew fact that ductility of a lot of structural alloys can be deteriorated by the environment effect which are exposed, and that their consequent embrittlement can put in doubt the safety of their functioning; such is the case of austenitic stainless steels used in internal components of the BWR type reactors which not only is subjected to the effect combined of the aggressive environment which surround it (pressure, temperature, corrosion potential, conductivity medium, local state of efforts, etc.), but also to the action of present neutron radiation, manifesting microstructural changes which are reflected in the augmentation of its susceptibility to the intergranular cracking, phenomena generally known as IASCC ''Irradiation Assisted Stress Corrosion Cracking''. Once appeared the cracking in the material, the useful life of a component is limited by the rapidity to growth of these cracking, making necessary evaluations which can to predict its behavior, therefore the present work shows the preliminary results for determining the behavior to the fracture of an AISI 304 stainless steel sensitized, in a dynamic recirculation circuit which allows to simulate the operation conditions of a BWR reactor (288 Centigrade and 80 kg/cm 2 ). (Author)

  3. EPRI BWR Water Chemistry Guidelines Revision

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.

    2014-01-01

    BWRVIP-190: BWR Water Chemistry Guidelines – 2008 Revision has been revised. The revision committee consisted of U.S. and non-U.S. utilities (members of the BWR Vessel and Internals Protection (BWRVIP) Mitigation Committee), reactor system manufacturers, fuel suppliers, and EPRI and industry experts. The revised document, BWRVIP-190 Revision 1, was completely reformatted into two volumes, with a simplified presentation of water chemistry control, diagnostic and good practice parameters in Volume 1 and the technical bases in Volume 2, to facilitate use. The revision was developed in parallel and in coordination with preparation of the Fuel Reliability Guidelines Revision 1: BWR Fuel Cladding Crud and Corrosion. Guidance is included for plants operating under normal water chemistry (NWC), moderate hydrogen water chemistry (HWC-M), and noble metal application (GE-Hitachi NobleChem™) plus hydrogen injection. Volume 1 includes significant changes to BWR feedwater and reactor water chemistry control parameters to provide increased assurance of intergranular stress corrosion cracking (IGSCC) mitigation of reactor materials and fuel reliability during all plant conditions, including cold shutdown (≤200°F (93°C)), startup/hot standby (>200°F (93°C) and ≤ 10%) and power operation (>10% power). Action Level values for chloride and sulfate have been tightened to minimize environmentally assisted cracking (EAC) of all wetted surfaces, including those not protected by hydrogen injection, with or without noble metals. Chemistry control guidance has been enhanced to minimize shutdown radiation fields by clarifying targets for depleted zinc oxide (DZO) injection while meeting requirements for fuel reliability. Improved tabular presentations of parameter values explicitly indicate levels at which actions are to be taken and required sampling frequencies. Volume 2 provides the technical bases for BWR water chemistry control for control of EAC, flow accelerated corrosion

  4. CFD predictions of standby liquid control system mixing in lower plenum of a BWR

    International Nuclear Information System (INIS)

    Boyd, Christopher; Skarda, Raymond

    2014-01-01

    Highlights: • Computational fluid dynamics analysis of BWR lower plenum. • Mixing and stratification of the standby liquid control system injection. • Scoping study highlights the expected flow paths and limitations of experiments. - Abstract: During an anticipated transient without scram (ATWS) scenario in certain boiling water reactor (BWR) systems, a standby liquid control system (SLCS) is used to inject a sodium pentaborate solution into the reactor system in order to quickly shut down (scram) the reactor without the use of the control rods. Some BWR designs utilize a SLCS that injects through a set of nozzles on a vertical pipe in the peripheral region of the lower plenum of the reactor vessel. During the scenario, system water levels are reduced and natural circulation flow rates down through the jet pump nozzles and up into the core are a small fraction of the rated system flow. It is during this period that the SLCS flows are considered. This work outlines some initial scoping studies completed by the staff at the Nuclear Regulatory Commission (NRC). An attempt at benchmarking the computational fluid dynamics (CFD) approach using a set of available test data from a small facility is outlined. Due to our lack of information related to specific details of the facility geometry along with the limited data available from the test, the benchmark exercise produced only a qualitative basis for selecting turbulence models and mesh density. A CFD model simulating a full-scale reactor system is developed for the lower plenum of a representative BWR/4 design and SLCS flows and mixing are studied under a range of flow conditions. The full-scale BWR simulation builds upon the lessons learned from the benchmark exercise. One challenge for this work is the large size of the domain and the relatively small size of the geometric details such as flow passages and gaps. The geometry is simplified to make meshing feasible by eliminating some of the small features. The

  5. Effects of cold working ratio and stress intensity factor on intergranular stress corrosion cracking susceptibility of non-sensitized austenitic stainless steels in simulated BWR and PWR primary water

    International Nuclear Information System (INIS)

    Yaguchi, Seiji; Yonezawa, Toshio

    2012-01-01

    To evaluate the effects of cold working ratio, stress intensity factor and water chemistry on an IGSCC susceptibility of non-sensitized austenitic stainless steel, constant displacement DCB specimens were applied to SCC tests in simulated BWR and PWR primary water for the three types of austenitic stainless steels, Types 316L, 347 and 321. IGSCC was observed on the test specimens in simulated BWR and PWR primary water. The observed IGSCC was categorized into the following two types. The one is that the IGSCC observed on the same plane of the pre-fatigue crack plane, and the other is that the IGSCC observed on a plane perpendicular to the pre-fatigue crack plane. The later IGSCC fractured plane is parallel to the rolling plane of a cold rolled material. Two types of IGSCC fractured planes were changed according to the combination of the testing conditions (cold working ratio, stress intensity factor and simulated water). It seems to suggest that the most susceptible plane due to fabrication process of materials might play a significant role of IGSCC for non-sensitized cold worked austenitic stainless steels, especially, in simulated PWR primary water. Based upon evaluating on the reference crack growth rate (R-CGR) of the test specimens, the R-CGR seems to be mainly affected by cold working ratio. In case of simulated PWR primary water, it seems that the effect of metallurgical aspects dominates IGSCC susceptibility. (author)

  6. Interpretation of the results of the CORA-33 dry core BWR test

    International Nuclear Information System (INIS)

    Ott, L.J.; Hagen, S.

    1993-01-01

    All BWR degraded core experiments performed prior to CORA-33 were conducted under ''wet'' core degradation conditions for which water remains within the core and continuous steaming feeds metal/steam oxidation reactions on the in-core metallic surfaces. However, one dominant set of accident scenarios would occur with reduced metal oxidation under ''dry'' core degradation conditions and, prior to CORA-33, this set had been neglected experimentally. The CORA-33 experiment was designed specifically to address this dominant set of BWR ''dry'' core severe accident scenarios and to partially resolve phenomenological uncertainties concerning the behavior of relocating metallic melts draining into the lower regions of a ''dry'' BWR core. CORA-33 was conducted on October 1, 1992, in the CORA tests facility at KfK. Review of the CORA-33 data indicates that the test objectives were achieved; that is, core degradation occurred at a core heatup rate and a test section axial temperature profile that are prototypic of full-core nuclear power plant (NPP) simulations at ''dry'' core conditions. Simulations of the CORA-33 test at ORNL have required modification of existing control blade/canister materials interaction models to include the eutectic melting of the stainless steel/Zircaloy interaction products and the heat of mixing of stainless steel and Zircaloy. The timing and location of canister failure and melt intrusion into the fuel assembly appear to be adequately simulated by the ORNL models. This paper will present the results of the posttest analyses carried out at ORNL based upon the experimental data and the posttest examination of the test bundle at KfK. The implications of these results with respect to degraded core modeling and the associated safety issues are also discussed

  7. A Non-Linear Digital Computer Model Requiring Short Computation Time for Studies Concerning the Hydrodynamics of the BWR

    Energy Technology Data Exchange (ETDEWEB)

    Reisch, F; Vayssier, G

    1969-05-15

    This non-linear model serves as one of the blocks in a series of codes to study the transient behaviour of BWR or PWR type reactors. This program is intended to be the hydrodynamic part of the BWR core representation or the hydrodynamic part of the PWR heat exchanger secondary side representation. The equations have been prepared for the CSMP digital simulation language. By using the most suitable integration routine available, the ratio of simulation time to real time is about one on an IBM 360/75 digital computer. Use of the slightly different language DSL/40 on an IBM 7044 computer takes about four times longer. The code has been tested against the Eindhoven loop with satisfactory agreement.

  8. Experimental study on reduced moderation BWR with Advanced Recycle System (BARS)

    International Nuclear Information System (INIS)

    Hiraiwa, K.; Yoshioka, K.; Yamamoto, Y.; Akiba, M.; Yamaoka, M.; Abe, N.; Mimatsu, J.

    2004-01-01

    Experimental study has been done for reduced-moderation spectrum boiling water reactor named BARS (BWR with Advanced Recycle System). The critical assembly experiment for triangular tight uranium lattice has been done in TOSHIBA critical assembly (NCA). Experimental method based on modified conversion ratio was adopted to evaluate the void reactivity effect. Void fraction was simulated by formed polystyrene in this experiment. The measured void coefficient for tight uranium lattice agreed with calculation. The thermal hydraulic test study has been done to study the coolability of BARS lattice. Visual test and high-pressure thermal hydraulic test have been done as the thermal hydraulic test. Visual test has indicated the flow behavior for BARS lattice is same as that of current BWR. The high-pressure thermal hydraulic test has indicated the applicability of modified Arai's correlation to the BARS lattice. (authors)

  9. Optimization of analysis best-estimate of a fuel element BWR with Code STAR-CCM+; Optimizacion del analisis best-estimate de un elemento combustible BWR con el codigo STAR-CCM+

    Energy Technology Data Exchange (ETDEWEB)

    Morgado Canada, E.; Concejal Barmejo, A.; Jimenez Varas, G.; Solar Martinez, A.

    2014-07-01

    The objective of the project is the evaluation of the code STAR-CCM +, as well as the establishment of guidelines and standardized procedures for the discretization of the area of study and the selection of physical models suitable for the simulation of BWR fuel. For this purpose several of BFBT experiments have simulated [1] provide a data base for the development of experiments for measuring distribution of fractions of holes to changes in power in order to find the most appropriate models for the simulation of the problem. (Author)

  10. BWR Services maintenance training program

    International Nuclear Information System (INIS)

    Cox, J.H.; Chittenden, W.F.

    1979-01-01

    BWR Services has implemented a five-phase program to increase plant availability and capacity factor in operating BWR's. One phase of this program is establishing a maintenance training program on NSSS equipment; the scope encompasses maintenance on both mechanical equipment and electrical control and instrumentation equipment. The program utilizes actual product line equipment for practical Hands-on training. A total of 23 formal courses will be in place by the end of 1979. The General Electric Company is making a multimillion dollar investment in facilities to support this training. These facilities are described

  11. OECD/NRC BWR Turbine Trip Transient Benchmark as a Basis for Comprehensive Qualification and Studying Best-Estimate Coupled Codes

    International Nuclear Information System (INIS)

    Ivanov, Kostadin; Olson, Andy; Sartori, Enrico

    2004-01-01

    An Organisation for Economic Co-operation and Development (OECD)/U.S. Nuclear Regulatory Commission (NRC)-sponsored coupled-code benchmark has been initiated for a boiling water reactor (BWR) turbine trip (TT) transient. Turbine trip transients in a BWR are pressurization events in which the coupling between core space-dependent neutronic phenomena and system dynamics plays an important role. In addition, the available real plant experimental data make this benchmark problem very valuable. Over the course of defining and coordinating the BWR TT benchmark, a systematic approach has been established to validate best-estimate coupled codes. This approach employs a multilevel methodology that not only allows for a consistent and comprehensive validation process but also contributes to the study of different numerical and computational aspects of coupled best-estimate simulations. This paper provides an overview of the OECD/NRC BWR TT benchmark activities with emphasis on the discussion of the numerical and computational aspects of the benchmark

  12. BWR-plant simulator and its neural network companion with programming under mat lab environment

    International Nuclear Information System (INIS)

    Ghenniwa, Fatma Suleiman

    2008-01-01

    Stand alone nuclear power plant simulators, as well as building blocks based nuclear power simulator are available from different companies throughout the world. In this work, a review of such simulators has been explored for both types. Also a survey of the possible authoring tools for such simulators development has been performed. It is decided, in this research, to develop prototype simulator based on components building blocks. Further more, the authoring tool (Mat lab software) has been selected for programming. It has all the basic tools required for the simulator development similar to that developed by specialized companies for simulator like MMS, APROS and others. Components simulations, as well as integrated components for power plant simulation have been demonstrated. Preliminary neural network reactor model as part of a prepared neural network modules library has been used to demonstrate module order shuffling during simulation. The developed components library can be refined and extended for further development. (author)

  13. Behaviour of the reactivity for BWR fuel cells; Comportamiento de la reactividad para celdas de combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. A.; Alonso, G.; Delfin, A.; Vargas, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: galonso@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico)

    2011-11-15

    In this work the behaviour of the reactivity of a fuel assembly type BWR was studied, the objective is to obtain some expressions that consider the average enrichment of U-235 and the gadolinium concentration like a function of the fuel cells burnt. Also, the applicability of the lineal reactivity model was analyzed for fuel cells type BWR. The analysis was carried out with the CASMO-4 code. (Author)

  14. Moderator temperature coefficient in BWR core

    International Nuclear Information System (INIS)

    Naito, Yoshitaka

    1977-01-01

    Temperature dependences of infinite multiplication factor k sub(infinity) and neutron leakage from the core must be examined for estimation of moderator temperature coefficient. Temperature dependence on k sub(infinity) has been investigated by many researchers, however, the dependence on neutron leakage of a BWR with cruciformed control rods has hardly been done. Because there are difficulties and necessity on calculations of three space dimensional and multi-energy groups neutron distribution in a BWR core. In this study, moderator temperature coefficients of JPDR-II (BWR) core were obtained by calculation with DIFFUSION-ACE, which is newly developed three-dimensional multi-group computer code. The results were compared with experimental data measured from 20 to 275 0 C of the moderator temperature and the good agreement was obtained between calculation and measurement. In order to evaluate neutron leakage from the core, the other two calculations were carried out, adjusting criticality by uniform absorption rate and by material buckling. The former underestimated neutron leakage and the latter overestimated it. Discussion on the results shows that in order to estimate the temperature coefficient of BWR, neutron leakage must be evaluated precisely, therefore the calculation at actual pattern of control rods is necessary. (auth.)

  15. BWR stability analysis at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.; Rohatgi, U.S.

    1991-01-01

    Following the unexpected, but safely terminated, power and flow oscillations in the LaSalle-2 Boiling Water Reactor (BWR) on March 9, 1988, the Nuclear Regulatory Commission (NRC) Offices of Nuclear Reactor Regulation (NRR) and of Analysis and Evaluation of Operational Data (AEOD) requested that the Office of Nuclear Regulatory Research (RES) carry out BWR stability analyses, centered around fourteen specific questions. Ten of the fourteen questions address BWR stability issues in general and are dealt with in this paper. The other four questions address local, out-of-phase oscillations and matters of instrumentation; they fall outside the scope of the work reported here. It was the purpose of the work documented in this report to answer ten of the fourteen NRC-stipulated questions. Nine questions are answered by analyzing the LaSalle-2 instability and related BWR transients with the BNL Engineering Plant Analyzer (EPA) and by performing an uncertainty assessment of the EPA predictions. The tenth question is answered on the basis of first principles. The ten answers are summarized

  16. Impact of advanced BWR core physics method on BWR core monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Moon, H; Wells, A [Siemens Power Corporation, Richland (United States)

    2000-07-01

    Siemens Power Corporation recently initiated development of POWERPLEX{sup TM}-III for delivery to the Grand Gulf Nuclear Power Station. The main change introduced in POWERPLEX{sup TM}-III as compared to its predecessor POWERPLEX{sup TM}-II is the incorporation of the advances BWR core simulator MICROBURN-B2. A number of issues were identified and evaluated relating to the implementation of MICROBURN-B2 and its impact on core monitoring. MICROBURN-B2 demands about three to five times more memory and two to three times more computing time than its predecessor MICROBURN-B in POWERPLEX {sup TM}-II. POWERPLEX{sup TM}-III will improve thermal margin prediction accuracy and provide more accurate plant operating conditions to operators than POWERPLEX{sup TM}-II due to its improved accuracy in predicted TIP values and critical k-effective. The most significant advantage of POWERPLEX{sup TM}-III is its capability to monitor a relaxed rod sequence exchange operation. (authors)

  17. Application of EASY5 and MMS modules to BWR controller design

    International Nuclear Information System (INIS)

    Carmichael, L.A.; Rayes, L.; Yasutake, T.

    1987-01-01

    The application of EPRI's MMS Library and BCS' EASY5 simulation language to the design of a digital feedwater control system for the Monticello Boiling Water Nuclear Power Plant is discussed. In order to first design and then verify the digital feedwater controller algorithms, a digital simulation model of the Monticello plant was constructed using a combination of custom designed modules, existing MMS two-phase library modules, and standard modules available in the EASY5 library. Details of the process models, namely the BWR nuclear steam supply system, the steamline piping, and the feedwater piping are described in a companion paper. Details of the models for the existing BWR turbine pressure inlet pressure control and recirculation flow control system are described. These models are required to be operational during the transient analysis portion of the feedwater controller design verification, since they interact strongly with the reactor steam flow and water level. The design of the digital feedwater flow control loop is described. Its design is of particular interest because it requires consideration of control loop interaction and is, therefore, a simple example of multivariable non-interacting control design

  18. Development of membrane moisture separator for BWR off-gas system

    International Nuclear Information System (INIS)

    Ogata, H.; Kawamura, S.; Kumasaka, M.; Nishikubo, M.

    2001-01-01

    In BWR plant off-gas treatment systems, dehumidifiers are used to maintain noble gas adsorption efficiency in the first half of the charcoal hold-up units. From the perspective of simplifying and reducing the cost of such a dehumidification system, Japanese BWR utilities and plant fabricators have been developing a dehumidification system employing moisture separation membrane of the type already proven in fields such as medical instrumentation and precision measuring apparatus. The first part of this development involved laboratory testing to simulate the conditions found in an actual off-gas system, the results of which demonstrated satisfactory results in terms of moisture separation capability and membrane durability, and suggested favorable prospects for application in actual off-gas systems. Further, in-plant testing to verify moisture separation capability and membrane durability in the presence of actual gases is currently underway, with results so far suggesting that the system is capable of obtaining good moisture separation capability. (author)

  19. Flux and power distributions in BWR multi-bundle fuel arrays

    International Nuclear Information System (INIS)

    Cheng, H.S.

    1976-02-01

    Multi-bundle calculations have been performed in order to shed some light on an abnormal TIP trace recently discovered in a BWR/3. Transport theory was employed to perform the calculations with ENDF/B-IV data. The results indicate that a strong variation of the TIP reading does exist along the narrow water gap of a BWR due to the steep gradient of the thermal neutron flux; the maxima occurring at the intersections of the water gaps and the minima in between. Using this characteristic behavior of the TIP reading, together with the observed normal TIP trace, the abnormal behavior of the affected TIP trace exhibiting three peaks along the channel was roughly simulated. The calculations confirmed that the observed TIP trace anomaly was caused by the severe bending of the affected instrument tube as was actually discovered. The effect of hot water intrusion into the TIP guide tube, as well as that of loading the new 8 x 8 reload bundles, was also evaluated

  20. Damage by radiation in structural materials of BWR reactor vessels

    International Nuclear Information System (INIS)

    Robles, E.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E.

    2002-01-01

    The structural materials which are manufactured the pressure vessels of the BWR reactors undergo degradation in their mechanical properties mainly due to the damage produced by the fast neutrons (E> 1 MeV) coming from the reactor core. The mechanisms of neutron damage in this type of materials are experimentally studied, through the irradiation of vessel steel in experimental reactors for a quickly ageing. Alternately the neutron damage through steel irradiation with heavy ions is simulated. In this work the first results of the damage induced by irradiation of a similar steel to the vessel of a BWR reactor are shown. The irradiation was performed with fast neutrons (E> 1 MeV, fluence of 1.45 x 10 18 n/cm 2 ) in the TRIGA Mark III Salazar reactor and separately with Ni +3 ions in a Tandetrom accelerator (E= 4.8 MeV and an ion flux rank of 0.1 to 53 ions/A 2 ). (Author)

  1. Studies of fragileness in steels of vessels of BWR reactors

    International Nuclear Information System (INIS)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E.

    2003-01-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10 18 n/cm 2 ) in the TRIGA MARK lll reactor and separately with Ni +3 ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A 2 . (Author)

  2. Analysis of results of AZTRAN and AZKIND codes for a BWR; Analisis de resultados de los codigos AZTRAN y AZKIND para un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Bastida O, G. E.; Vallejo Q, J. A.; Galicia A, J.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Xolocostli M, J. V.; Rodriguez H, A.; Gomez T, A. M., E-mail: gbo729@yahoo.com.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    This paper presents an analysis of results obtained from simulations performed with the neutron transport code AZTRAN and the kinetic code of neutron diffusion AZKIND, based on comparisons with models corresponding to a typical BWR, in order to verify the behavior and reliability of the values obtained with said code for its current development. For this, simulations of different geometries were made using validated nuclear codes, such as CASMO, MCNP5 and Serpent. The results obtained are considered adequate since they are comparable with those obtained and reported with other codes, based mainly on the neutron multiplication factor and the power distribution of the same. (Author)

  3. Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly

    International Nuclear Information System (INIS)

    Andrey Ioilev; Maskhud Samigulin; Vasily Ustinenko; Simon Lo; Adrian Tentner

    2005-01-01

    Full text of publication follows: The goal of this project is to develop an advanced Computational Fluid Dynamics (CFD) computer code (CFD-BWR) that allows the detailed analysis of the two-phase flow and heat transfer phenomena in a Boiling Water Reactor (BWR) fuel bundle under various operating conditions. This code will include more fundamental physical models than the current generation of sub-channel codes and advanced numerical algorithms for improved computational accuracy, robustness, and speed. It is highly desirable to understand the detailed two-phase flow phenomena inside a BWR fuel bundle. These phenomena include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for the analysis of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is still too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Recent progress in Computational Fluid Dynamics (CFD), coupled with the rapidly increasing computational power of massively parallel computers, shows promising potential for the fine-mesh, detailed simulation of fuel assembly two-phase flow phenomena. However, the phenomenological models available in the commercial CFD programs are not as advanced as those currently being used in the sub-channel codes used in the nuclear industry. In particular, there are no models currently available which are able to reliably predict the nature of the flow regimes, and use the appropriate sub-models for those flow regimes. The CFD-BWR code is being developed as a customized module built on the foundation of the commercial CFD Code STAR-CD which provides general two-phase flow modeling capabilities. The paper describes the model development strategy which has been adopted by the development team for the

  4. BWROPT: A multi-cycle BWR fuel cycle optimization code

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, Keith E.; Maldonado, G. Ivan, E-mail: Ivan.Maldonado@utk.edu

    2015-09-15

    Highlights: • A multi-cycle BWR fuel cycle optimization algorithm is presented. • New fuel inventory and core loading pattern determination. • The parallel simulated annealing algorithm was used for the optimization. • Variable sampling probabilities were compared to constant sampling probabilities. - Abstract: A new computer code for performing BWR in-core and out-of-core fuel cycle optimization for multiple cycles simultaneously has been developed. Parallel simulated annealing (PSA) is used to optimize the new fuel inventory and placement of new and reload fuel for each cycle considered. Several algorithm improvements were implemented and evaluated. The most significant of these are variable sampling probabilities and sampling new fuel types from an ordered array. A heuristic control rod pattern (CRP) search algorithm was also implemented, which is useful for single CRP determinations, however, this feature requires significant computational resources and is currently not practical for use in a full multi-cycle optimization. The PSA algorithm was demonstrated to be capable of significant objective function reduction and finding candidate loading patterns without constraint violations. The use of variable sampling probabilities was shown to reduce runtime while producing better results compared to using constant sampling probabilities. Sampling new fuel types from an ordered array was shown to have a mixed effect compared to random new fuel type sampling, whereby using both random and ordered sampling produced better results but required longer runtimes.

  5. ROSA-III/971, BWR Rig of Safety Assessment LOCA, Loss of Offsite Power Transient

    International Nuclear Information System (INIS)

    1992-01-01

    1 - Description of test facility: ROSA-III is a 1/124 scaled down test facility with electrically heated core designed to study the response of engineered safety features to loss-of-coolant accidents in in commercial BWR. It consists of the following, fully instrumented subsystems: (a) the pressure vessel with a core simulating four half-length fuel assemblies and control rod; (b) steam line and feed water line, which are independent open loops; (c) coolant recirculation system, which consists of two loops provided with a recirculation pump and two jet pumps in each loop; (d) emergency cooling system, including HPCS, LPCS, LPCI, and ADS. 2 - Description of test: Run 971 simulated a BWR LOSS of off-site power transient. The core scram was assumed to occur at 6 seconds after the transient initiated by the turbine trip. HPCS failure was assumed. After ADS started, the upper half of the core was uncovered by steam. The core was re-flooded by LPCS alone

  6. Performance of iron–chromium–aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun [University of Illinois, Department of Nuclear, Radiological, and Plasma Engineering, Urbana, IL 61801 (United States); Heuser, Brent J., E-mail: bheuser@illinois.edu [University of Illinois, Department of Nuclear, Radiological, and Plasma Engineering, Urbana, IL 61801 (United States); Mandapaka, Kiran K.; Was, Gary S. [University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, MI 48109 (United States)

    2016-03-15

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe–Zr is addressed with the FeCrAl-YSZ system. - Graphical abstract: Weight gain normalized to total sample surface area versus time during 700 °C steam exposure for FeCrAl samples with different composition (A) and Fe/Cr/Al:62/4/34 (B). In both cases, the responses of uncoated Zry2 (Zry2-13A and Zry2-19A) are shown for comparison. This uncoated Zry2 response shows the expected pre-transition quasi-cubic kinetic behavior and eventual breakaway (linear) kinetics. Highlights: • FeCrAl coatings deposited on Zy2 have been tested with respect to oxidation in high-temperature steam. • FeCrAl compositions promoting alumina formation inhibited oxidation of Zy2 and delay weight gain. • Autoclave testing to 20 days of coated Zy2 in a simulated BWR environment demonstrates minimal weight gain and no film degradation. • The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  7. BWR Refill-Reflood Program. Final report

    International Nuclear Information System (INIS)

    Myers, L.L.

    1983-09-01

    The BWR Refill-Reflood Program is part of the continuing Loss of Coolant Accident (LOCA) research in the United States which is jointly sponsored by the Nuclear Regulatory Commission, the Electric Power Research Institute, and the General Electric Company. The current program expanded the focus of this research to include full scale experimental evaluations of multidimensional and multichannel effects during system refill. The program has also made major contributions to the BWR version of the Transient Reactor Analysis Code (TRAC) which has been developed cooperatively with the Idaho National Engineering Laboratory (INEL) for application to BWR transients. A summary description of the complete program is provided including the principal findings and main conclusions of the program. The results of the program have shown that multidimensional and parallel channel effects have the potential to significantly improve the system response over that observed in single channel tests

  8. Analysis of void reactivity measurements in full MOX BWR physics experiments

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Yamamoto, Toru; Umano, Takuya

    2008-01-01

    In the full MOX BWR physics experiments, FUBILA, four 9x9 test assemblies simulating BWR full MOX assemblies were located in the center of the core. Changing the in-channel moderator condition of the four assemblies from 0% void to 40% and 70% void mock-up, void reactivity was measured using Amplified Source Method (ASM) technique in the subcritical cores, in which three fission chambers were located. ASM correction factors necessary to express the consistency of the detector efficiency between measured core configurations were calculated using collision probability cell calculation and 3D-transport core calculation with the nuclear data library, JENDL-3.3. Measured reactivity worth with ASM correction factor was compared with the calculated results obtained through a diffusion, transport and continuous energy Monte Carlo calculation respectively. It was confirmed that the measured void reactivity worth was reproduced well by calculations. (author)

  9. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  10. Sensitiaztion of austenitic stainless steels and its significance as regards stress-corrosion cracking of BWR pipe systems

    International Nuclear Information System (INIS)

    Roberts, W.; Otterberg, R.

    1984-05-01

    A critical literature evaluation dealing with sensitization of austenitic stainless steels and its importance in the context of intergranular stress-corrosion cracking (IGSCC) in high-temperature, oxygenated water is presented. The factors influencing the degree of sensitization are discussed, principally for type-304 stainless steels, both as regards sensitization arising as a result of isothermal holding within the critical temperature range and weld sensitization. The phenomenon of low-temperature sensitization is described and its potential significance under BWR operating conditions speculated upon. The principal features of and mechanisms controlling IGSCC of sensitized 304 steels in BWR-type environments are reviewed and some thoughts are given to the relevance of laboratory SCC testing in predicting the occurrence of cracking in actual BWR systems. Finally various countermeasures against IGSCC in existing and projected reactors are presented and discussed. (Author)

  11. In-Pile Tests for IASCC Growth Behavior of Irradiated 316L Stainless Steel under Simulated BWR Condition in JMTR

    Science.gov (United States)

    Chimi, Yasuhiro; Kasahara, Shigeki; Ise, Hideo; Kawaguchi, Yoshihiko; Nakano, Junichi; Nishiyama, Yutaka

    The Japan Atomic Energy Agency (JAEA) has an in-pile irradiation test plan to evaluate in-situ effects of neutron/γ-ray irradiation on stress corrosion crack (SCC) growth of irradiated stainless steels using the Japan Materials Testing Reactor (JMTR). SCC growth rate and its dependence on electrochemical corrosion potential (ECP) are different between in-pile test and post irradiation examination (PIE). These differences are not fully understood because of a lack of in-pile data. This paper presents a systematic review on SCC growth data of irradiated stainless steels, an in-pile test plan for crack growth of irradiated SUS316L stainless steel under simulated BWR conditions in the JMTR, and the development of the in-pile test techniques.

  12. Simplified distributed parameters BWR dynamic model for transient and stability analysis

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto; Nunez-Carrera, Alejandro; Vazquez-Rodriguez, Alejandro

    2006-01-01

    This paper describes a simplified model to perform transient and linear stability analysis for a typical boiling water reactor (BWR). The simplified transient model was based in lumped and distributed parameters approximations, which includes vessel dome and the downcomer, recirculation loops, neutron process, fuel pin temperature distribution, lower and upper plenums reactor core and pressure and level controls. The stability was determined by studying the linearized versions of the equations representing the BWR system in the frequency domain. Numerical examples are used to illustrate the wide application of the simplified BWR model. We concluded that this simplified model describes properly the dynamic of a BWR and can be used for safety analysis or as a first approach in the design of an advanced BWR

  13. Prediction of droplet deposition around BWR fuel spacer by FEM flow analysis

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Morooka, Shinichi

    1997-01-01

    The critical power of the BWR fuel assembly has been remarkably increased. That increase mainly depends on the improvement of the spacer which keeps fixed gaps between fuel rods. So far, these improvements have been carried out on the basis of what developers consider to be appropriate and the results of mockup tests of the BWR fuel assembly. However, continued reliance on these approaches for the development of a higher performance fuel assembly will prove time-consuming and costly. Therefore, it is hoped that the spacer effects for the critical power can be investigated by computer simulation, and it is significantly important to develop the critical power prediction method. Direct calculation of the two-phase flow in a BWR fuel channel s still difficult. Accordingly, a new method for predicting the critical power was proposed. Our method consists of CFD (computer fluid dynamics) code based on the single-phase flow analysis method and the subchannel analysis code. To verify our method, the critical power predictions for various spacer geometries were performed. The predicted results of the critical power were compared with the experimental data. The result of the comparison showed a good agreement and the applicability of our method for various spacer geometries. (author)

  14. ABB advanced BWR and PWR fuel

    International Nuclear Information System (INIS)

    Junkrans, S.; Helmersson, S.; Andersson, S.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both BWR and PWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter, proven to meet the -6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10x10 BWR fuel, where ABB is the only vendor to date with multi batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of BWR and PWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its customers. (orig.)

  15. High fidelity analysis of BWR fuel assembly with COBRA-TF/PARCS and trace codes

    International Nuclear Information System (INIS)

    Abarca, A.; Miro, R.; Barrachina, T.; Verdu, G.; Soler, A.

    2013-01-01

    The growing importance of detailed reactor core and fuel assembly description for light water reactors (LWRs) as well as the sub-channel safety analysis requires high fidelity models and coupled neutronic/thermalhydraulic codes. Hand in hand with advances in the computer technology, the nuclear safety analysis is beginning to use a more detailed thermal hydraulics and neutronics. Previously, a PWR core and a 16 by 16 fuel assembly models were developed to test and validate our COBRA-TF/PARCS v2.7 (CTF/PARCS) coupled code. In this work, a comparison of the modeling and simulation advantages and disadvantages of modern 10 by 10 BWR fuel assembly with CTF/PARCS and TRACE codes has been done. The objective of the comparison is making known the main advantages of using the sub-channel codes to perform high resolution nuclear safety analysis. The sub-channel codes, like CTF, permits obtain accurate predictions, in two flow regime, of the thermalhydraulic parameters important to safety with high local resolution. The modeled BWR fuel assembly has 91 fuel rods (81 full length and 10 partial length fuel rods) and a big square central water rod. This assembly has been modeled with high level of detail with CTF code and using the BWR modeling parameters provided by TRACE. The same neutronic PARCS's model has been used for the simulation with both codes. To compare the codes a coupled steady state has be performed. (author)

  16. BWR control blade replacement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kennard, M W [Stoller Nuclear Fuel, NAC International, Pleasantville, NY (United States); Harbottle, J E [Stoller Nuclear Fuel, NAC International, Thornbury, Bristol (United Kingdom)

    2000-02-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B{sub 4}C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  17. BWR control blade replacement strategies

    International Nuclear Information System (INIS)

    Kennard, M.W.; Harbottle, J.E.

    2000-01-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B 4 C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  18. Results of modeling advanced BWR fuel designs using CASMO-4

    International Nuclear Information System (INIS)

    Knott, D.; Edenius, M.

    1996-01-01

    Advanced BWR fuel designs from General Electric, Siemens and ABB-Atom have been analyzed using CASMO-4 and compared against fission rate distributions and control rod worths from MCNP. Included in the analysis were fuel storage rack configurations and proposed mixed oxide (MOX) designs. Results are also presented from several cycles of SIMULATE-3 core follow analysis, using nodal data generated by CASMO-4, for cycles in transition from 8x8 designs to advanced fuel designs. (author)

  19. Burnup credit feasibility for BWR spent fuel shipments

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1990-01-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent of fuel casks used for transportation and storage. Analyses 1 have shown the feasibility estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This paper summarizes the extension of the previous PWR feasibility assessments to boiling water reactor (BWR) fuel. As with the PWR analysis, the purpose was not verification of burnup credit (see ref. 2 for ongoing work in this area) but a reasonable assessment of the feasibility and potential gains from its use in BWR applications. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. The method includes characterization of a typical pin-cell spectrum, using a one-dimensional (1-D) model of a BWR assembly. The calculated spectrum allows burnup-dependent few-group material constants to be generated. Point depletion methods were then used to obtain the time-varying characteristics of the fuel. These simple methods were validated, where practical, with multidimensional methods. 6 refs., 1 tab

  20. Safety analysis of thorium-based fuels in the General Electric Standard BWR

    International Nuclear Information System (INIS)

    Colby, M.J.; Townsend, D.B.; Kunz, C.L.

    1980-06-01

    A denatured (U-233/Th)O 2 fuel assembly has been designed which is energy equivalent to and hardware interchangeable with a modern boiling water reactor (BWR) reference reload assembly. Relative to the reference UO 2 fuel, the thorium fuel design shows better performance during normal and transient reactor operation for the BWR/6 product line and will meet or exceed current safety and licensing criteria. Power distributions are flattened and thermal operating margins are increased by reduced steam void reactivity coefficients caused by U-233. However, a (U-233/Th)O 2 -fueled BWR will likely have reduced operating flexibility. A (U-235/Th)O 2 -fueled BWR should perform similar to a UO 2 -fueled BWR under all operating conditions. A (Pu/Th)O 2 -fueled BWR may have reduced thermal margins and similar accident response and be less stable than a UO 2 -fueled BWR. The assessment is based on comparisions of point model and infinite lattice predictions of various nuclear reactivity parameters, including void reactivity coefficients, Doppler reactivity coefficients, and control blade worths

  1. Simulation in 3 dimensions of a cycle 18 months for an BWR type reactor using the Nod3D program; Simulacion en 3 dimensiones de un ciclo de 18 meses para un reactor BWR usando el programa Nod3D

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, N.; Alonso, G. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)]. E-mail: nhm@nuclear.inin.mx; Valle, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)

    2004-07-01

    The development of own codes that you/they allow the simulation in 3 dimensions of the nucleus of a reactor and be of easy maintenance, without the consequent payment of expensive use licenses, it can be a factor that propitiates the technological independence. In the Department of Nuclear Engineering (DIN) of the Superior School of Physics and Mathematics (ESFM) of the National Polytechnic Institute (IPN) a denominated program Nod3D has been developed with the one that one can simulate the operation of a reactor BWR in 3 dimensions calculating the effective multiplication factor (kJJ3, as well as the distribution of the flow neutronic and of the axial and radial profiles of the power, inside a means of well-known characteristics solving the equations of diffusion of neutrons numerically in stationary state and geometry XYZ using the mathematical nodal method RTN0 (Raviart-Thomas-Nedelec of index zero). One of the limitations of the program Nod3D is that it doesn't allow to consider the burnt of the fuel in an independent way considering feedback, this makes it in an implicit way considering the effective sections in each step of burnt and these sections are obtained of the code Core Master LEND. However even given this limitation, the results obtained in the simulation of a cycle of typical operation of a reactor of the type BWR are similar to those reported by the code Core Master LENDS. The results of the keJ - that were obtained with the program Nod3D they were compared with the results of the code Core Master LEND, presenting a difference smaller than 0.2% (200 pcm), and in the case of the axial profile of power, the maxim differs it was of 2.5%. (Author)

  2. Assessment of boiling transition analysis code against data from NUPEC BWR full-size fine-mesh bundle tests

    International Nuclear Information System (INIS)

    Utsuno, Hideaki; Ishida, Naoyuki; Masuhara, Yasuhiro; Kasahara, Fumio

    2004-01-01

    Transient BT analysis code TCAPE based on mechanistic methods coupled with subchannel analysis has been developed for the evaluation on fuel integrity under abnormal operations in BWR. TCAPE consisted mainly of the drift-flux model, the cross-flow model, the film model and the heat transfer model. Assessment of TCAPE has been performed against data from BWR full-size fine-mesh bundle tests (BFBT), which consisted of two major parts: the void distribution measurement and the critical power measurement. Code and data comparison was made for void distributions with varying number of unheated rods in simulated actual fuel assembly. Prediction of steady-state critical power was compared with the measurement on full-scale bundle under a range of BWR operational conditions. Although the cross-sectional averaged void fraction was underestimated when it became lower, the accuracy was obtained that the averaged ratio 0.910 and its standard deviation 0.076. The prediction of steady-state critical power agreed well with the data in the range of BWR operations, where the prediction accuracy was obtained that the averaged ratio 0.997 and its standard deviation 0.043. These results demonstrated that TCAPE is well capable to predict two-phase flow distribution and liquid film dryout phenomena occurring in BWR rod bundles. Part of NUPEC BFBT database will be made available for an international benchmark exercise. The code assessment shall be continued against the OECD/NRC benchmark based on BFBT database. (author)

  3. BWR vessel and internals project (BWRVIP)

    International Nuclear Information System (INIS)

    Bilanin, W.J.; Dyle, R.L.

    1996-01-01

    Recent Boiling Water Reactor (BWR) inspections indicate that Intergranular Stress Corrosion Cracking (IGSCC) is a significant technical issue for some BWR internals. IN response, the Boiling Water Reactor Vessel and Internals Project (BWRVIP) was formed by an associated of domestic and international utilities which own and operate BWRs. The project is identifying or developing generic, cost-effective strategies for managing degradation of reactor internals from which each utility can select the alternative most appropriate for their plant. The Electric Power Research Institute manages the technical program, implementing the utility defined programs. The BWRVIP is organized into four technical tasks: Assessment, Inspection, Repair and Mitigation. An Integration task coordinates the work. The goal of the Assessment task is to develop methodologies for evaluation of vessel and internal components in support of decisions for operation, inspection, mitigation or repair. The goal of the Inspection task is to develop and assess effective and predictable inspection techniques which can be used to determine the condition of BWR vessel and internals that are potentially susceptible to service-related SCC degradation. The goal of the Repair task is to assure the availability of cost-effective repair/replacement alternatives. The goal of the Mitigation task is to develop and demonstrate countermeasures for SCC degradation. This paper summarizes the BWRVIP approach for addressing BWR internals SCC degradation and illustrates how utilities are utilizing BWRVIP products to successfully manage the effect of SCC on core shrouds

  4. 3D pin-by-pin power density profiles with high spatial resolution in the vicinity of a BWR control blade tip simulated with coupled neutronics/burn-up calculations

    International Nuclear Information System (INIS)

    Li, J.; Nünighoff, K.; Allelein, H.-J.

    2011-01-01

    Highlights: ► High spatial resolution neutronic and burn-up calculations of quarter BWR fuel element section. ► Coupled MCNP(X)–ORIGEN2.2 simulation using VESTA. ► Control blade history effect was taken into account. ► Determining local power excursion after instantaneous control rod movement. ► Correlation between control blade geometry and occurrence of local power excursions. - Abstract: Pellet cladding interaction (PCI) as well as pellet cladding mechanical interaction (PCMI) are well-known fuel failures in light water reactors, especially in boiling water reactors (BWR). Whereas the thermo-mechanical processes of PCI effects have been intensively investigated in the last decades, only rare information is available on the role of neutron physics. However, each power transient is primary due to neutron physics effects and thus knowledge of the neutron physical background is mandatory to better understand the occurrence of PCI effects in BWRs. This paper will focus on a study of local power excursions in a typical BWR fuel assembly during control rod movements. Burn-up and energy deposition were simulated with high spatial granularity, especially in the vicinity of the control blade tip. It could be shown, that the design of the control blade plays a dominant role for the occurrence of local power peaks while instantaneously moving down the control rod. The main result is, that the largest power peak occurs at the interface between steel handle and absorber rods. A full width half maximum (FWHM) of ±2.5 cm was observed. This means, the local power excursion due to neutron physics phenomena involve approximately five pellets. With the VESTA code coupled MCNP(X)/ORIGEN2.2 calculations were performed with more than 3400 burn-up zones in order to take history effects into account.

  5. Strategies of operation cycles in BWR type reactors

    International Nuclear Information System (INIS)

    Molina, D.; Sendino, F.

    1996-01-01

    The article analyzes the operation cycles in BWR type reactors. The cycle size of operation is the consequence on the optimization process of the costs with the technical characteristics of nuclear fuel and the characteristics of demand and production. The authors analyze the cases of Garona NP and Cofrentes NP, both with BWR reactors. (Author)

  6. Investigation on the electrochemical properties and crack growth rates of stainless steels in BWR alkaline environments

    International Nuclear Information System (INIS)

    Wang, L.H.; Hsu, T.Y.; Huang, C.S.

    2000-01-01

    Increasing pH of reactor water to mildly alkaline is considered as one of the mitigating water chemistry strategies to reduce the activity release of radioactive oxides and suppress the growth rate of stress corrosion cracking. However, only limited experimental data are currently available in the published literature, it is imperative to perform additional tests to verify the effectiveness of slightly alkaline reactor water. Because the electrochemical behavior and SCC are intricately related, this study will attempt to investigates the electrochemical properties and measures the crack growth rates (CGRs) of type 304 stainless steel (SS) in both normal water chemistry (200 ppb O 2 , neutral pH 25 ) and alkaline chemistry (200 ppb O 2 , pH 25 = 8.0). The additive for pH control is potassium hydroxide (KOH). The crack growth rate was monitored by reversing DC potential drop technique. The electrochemical measurements include AC impedance measurement and potential pulsing test to measure the repassivation behavior. The characteristics of electrochemical properties and its effect on stress corrosion crocking in BWR alkaline environments have been further examined. (author)

  7. High burnup (41 - 61 GWd/tU) BWR fuel behavior under reactivity initiated accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takehiko; Kusagaya, Kazuyuki; Yoshinaga, Makio; Uetsuka, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    High burnup boiling water reactor (BWR) fuel was pulse irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity initiated accident (RIA) conditions. Temperature, deformation, failure, and fission gas release behavior under the simulated RIA condition was studied in the tests. Fuel failure due to pellet-cladding mechanical interaction (PCMI) did not occur in the tests with typical domestic BWR fuel at burnups up to 56 GWd/tU, because they had limited cladding embrittlement due to hydrogen absorption of about 100 ppm or less. However, the cladding failure occurred in tests with fuel at a burnup of 61 GWd/tU, in which the peak hydrogen content in the cladding was above 150 ppm. This type of failure was observed for the first time in BWR fuels. The cladding failure occurred at fuel enthalpies of 260 to 360 J/g (62 to 86 cal/g), which were higher than the PCMI failure thresholds decided by the Japanese Nuclear Safety Commission. From post-test examinations of the failed fuel, it was found that the crack in the BWR cladding progressed in a manner different from the one in PWR cladding failed in earlier tests, owing to its more randomly oriented hydride distribution. Because of these differences, the BWR fuel was judged to have failed at hydrogen contents lower than those of the PWR fuel. Comparison of the test results with code calculations revealed that the PCMI failure was caused by thermal expansion of pellets, rather than by the fission gas expansion in the pellets. The gas expansion, however, was found to cause large cladding hoop deformation later after the cladding temperature escalated. (author)

  8. BWR Mark III containment analyses using a GOTHIC 8.0 3D model

    International Nuclear Information System (INIS)

    Jimenez, Gonzalo; Serrano, César; Lopez-Alonso, Emma; Molina, M del Carmen; Calvo, Daniel; García, Javier; Queral, César; Zuriaga, J. Vicente; González, Montserrat

    2015-01-01

    Highlights: • The development of a 3D GOTHIC code model of BWR Mark-III containment is described. • Suppression pool modelling based on the POOLEX STB-20 and STB-16 experimental tests. • LOCA and SBO transient simulated to verify the behaviour of the 3D GOTHIC model. • Comparison between the 3D GOTHIC model and MAAP4.07 model is conducted. • Accurate reproduction of pre severe accident conditions with the 3D GOTHIC model. - Abstract: The purpose of this study is to establish a detailed three-dimensional model of Cofrentes NPP BWR/6 Mark III containment building using the containment code GOTHIC 8.0. This paper presents the model construction, the phenomenology tests conducted and the selected transient for the model evaluation. In order to study the proper settings for the model in the suppression pool, two experiments conducted with the experimental installation POOLEX have been simulated, allowing to obtain a proper behaviour of the model under different suppression pool phenomenology. In the transient analyses, a Loss of Coolant Accident (LOCA) and a Station Blackout (SBO) transient have been performed. The main results of the simulations of those transients were qualitative compared with the results obtained from simulations with MAAP 4.07 Cofrentes NPP model, used by the plant for simulating severe accidents. From this comparison, a verification of the model in terms of pressurization, asymmetric discharges and high pressure release were obtained. The completeness of this model has proved to adequately simulate the thermal hydraulic phenomena which occur in the containment during accidental sequences

  9. Review of international solutions to NEACRP benchmark BWR lattice cell problems

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1977-12-01

    This paper summarises international solutions to a set of BWR benchmark problems. The problems, posed as an activity sponsored by the Nuclear Energy Agency Committee on Reactor Physics, were as follows: 9-pin supercell with central burnable poison pin, mini-BWR with 4 pin-cells and water gaps and control rod cruciform, full 7 x 7 pin BWR lattice cell with differential U 235 enrichment, and full 8 x 8 pin BWR lattice cell with water-hole, Pu-loading, burnable poison, and homogenised cruciform control rod. Solutions have been contributed by Denmark, Japan, Sweden, Switzerland and the UK. (author)

  10. Upgraded operator training by using advanced simulators

    International Nuclear Information System (INIS)

    Iwashita, Akira; Toeda, Susumu; Fujita, Eimitsu; Moriguchi, Iwao; Wada, Kouji

    1991-01-01

    BWR Operator Training Center Corporation (BTC) has been conducting the operator training for all BWR utilities in Japan using fullscope simulators. Corresponding to increasing quantitative demands and higher qualitative needs of operator training, BTC put advanced simulators in operation (BTC-2 simulator in 1983 and BTC-3 simulator in 1989). This paper describes the methods and the effects of upgraded training contents by using these advanced simulators. These training methods are applied to the 'Advanced Operator Training course,' the 'Operator Retraining Course' and also the 'Family (crew) Training Course.' (author)

  11. Summary of the OECD/NRC Boiling Water Reactor Turbine Trip Benchmark - Fifth Workshop (BWR-TT5)

    International Nuclear Information System (INIS)

    2003-01-01

    The reference problem chosen for simulation in a BWR is a Turbine Trip transient, which begins with a sudden Turbine Stop Valve (TSV) closure. The pressure oscillation generated in the main steam piping propagates with relatively little attenuation into the reactor core. The induced core pressure oscillation results in dramatic changes of the core void distribution and fluid flow. The magnitude of the neutron flux transient taking place in the BWR core is strongly affected by the initial rate of pressure rise caused by pressure oscillation and has a strong spatial variation. The correct simulation of the power response to the pressure pulse and subsequent void collapse requires a 3-D core modeling supplemented by 1-D simulation of the remainder of the reactor coolant system. A BWR TT benchmark exercise, based on a well-defined problem with complete set of input specifications and reference experimental data, has been proposed for qualification of the coupled 3-D neutron kinetics/thermal-hydraulic system transient codes. Since this kind of transient is a dynamically complex event with reactor variables changing very rapidly, it constitutes a good benchmark problem to test the coupled codes on both levels: neutronics/thermal-hydraulic coupling and core/plant system coupling. Subsequently, the objectives of the proposed benchmark are: comprehensive feedback testing and examination of the capability of coupled codes to analyze complex transients with coupled core/plant interactions by comparison with actual experimental data. The benchmark consists of three separate exercises: Exercise 1 - Power vs. Time Plant System Simulation with Fixed Axial Power Profile Table (Obtained from Experimental Data). Exercise 2 - Coupled 3-D Kinetics/Core Thermal-Hydraulic BC Model and/or 1-D Kinetics Plant System Simulation. Exercise 3 - Best-Estimate Coupled 3-D Core/Thermal-Hydraulic System Modeling. The purpose of this fifth workshop was to discuss the results from Phase III (best

  12. Assessment of two BWR accident management strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Petek, M.

    1991-01-01

    Candidate mitigative strategies for management of in-vessel events during the late phase (after core degradation has occurred) of postulated BWR severe accidents were considered at Oak Ridge National Laboratory (ORNL) during 1990. The identification of new strategies was subject to the constraint that they should, to the maximum extent possible, make use of the existing equipment and water resources of the BWR facilities and not require major equipment modifications or additions. As a result of this effort, two of these candidate strategies were recommended for additional assessment. The first is a strategy for containment flooding to maintain the core and structural debris within the reactor vessel in the event that vessel injection cannot be restored to terminate a severe accident sequence. The second strategy pertains to the opposite case, for which vessel injection would be restored after control blade melting had begun; its purpose is to provide an injection source of borated water at the concentration necessary to preclude criticality upon recovering a damaged BWR core. Assessments of these two strategies have been performed during 1991 under the auspices of the Detailed Assessment of BWR In-Vessel Strategies Program. This paper provides a discussion of the motivation for and purpose of these strategies and the potential for their success. 33 refs., 9 figs

  13. CFD Simulation of rigid venting of the containment of a BWR-5 Mark-II reactor

    International Nuclear Information System (INIS)

    Galindo G, I. F.; Vazquez B, A. K.; Velazquez E, L.; Tijerina S, F.; Tapia M, R.

    2016-09-01

    In conditions of prolonged loss of external energy or a severe accident, venting to the atmosphere is an alternative to prevent overpressure and release of fission products from the primary containment of a nuclear reactor. Due to the importance of flow determination through rigid vents, a computational fluid dynamics (CFD) model is proposed to verify the capacity of rigid vents in the primary containment of a boiling water reactor (BWR) under different operating conditions (pressure, temperature and compositions of the fluids). The model predicts and provides detailed information on variables such as mass flow and velocity of the venting gases. In the proposed model the primary containment gas is vented to the atmosphere via rigid vents (pipes) from the dry and wet pit. Is assumed that the container is pressurized because is in a defined scenario, and at one point the venting is open and the gas released into the atmosphere. The objective is to characterize the flow and validate the CFD model for the overpressure conditions that occur in an accident such as a LOCA, Sbo, etc. The model is implemented with Ansys-Fluent general-purpose CFD software based on the geometry of the venting ducts of the containment of a BWR. The model is developed three-dimensional and resolves at steady state for compressible flow and includes the effects of the turbulence represented by the Reynolds stress model. The CFD results are compared with the values of a one-dimensional and isentropic model for compressible flow. The relative similarity of results leads to the conclusion that the proposed CFD model can help to predict the rigid venting capacity of the containment of a BWR, however more information is required for full validation of the proposed model. (Author)

  14. Uncertainties in source term estimates for a station blackout accident in a BWR with Mark I containment

    International Nuclear Information System (INIS)

    Lee, M.; Cazzoli, E.; Liu, Y.; Davis, R.; Nourbakhsh, H.; Schmidt, E.; Unwin, S.; Khatib-Rahbar, M.

    1988-01-01

    In this paper, attention is limited to a single accident progression sequence, namly a station blackout accident in a BWR with a Mark I containment building. Identified as an important accident in the draft version of NUREG-1150 a station blackout involves loss of both off-site power and dc power resulting in failure of the diesels to start and in the unavailability of the high pressure injection and core isolation cooling systems. This paper illustrates the calculated uncertainties (Probability Density Functions) associated with the radiological releases into the environment for the nine fission product groups at 10 hours following the initiation of core-concrete interactions. Also shown are the results ofthe STCP base case simulation. 5 refs., 1 fig., 1 tab

  15. Study of transient turbine shot without bypass in a BWR; Estudio del transitorio disparo de turbina sin bypass en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vallejo Q, J. A.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L., E-mail: amhed_jvq@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2015-09-15

    The study and analysis of operational transients are important for predicting the behavior of a system to short-terms events and the impact that would cause this transition. For the nuclear industry these studies are indispensable due to economic, environmental and social impacts that could result in an accident during the operation of a nuclear reactor. In this paper the preparation, simulation and analysis of results of a turbine shot transient, which is not taken into operation the bypass is presented. The study is realized for a BWR of 2027 MWt, to an intermediate cycle life and using the computer code Simulate-3K a depressurization stage of the vessel is created which shows the response of other security systems and gives a coherent prediction to the event presented type. (Author)

  16. Propagation of cracks by stress corrosion in conditions of BWR type reactor; Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua en ebullicion (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Merino C, F.J. [ININ, 52045 Estado de Mexico (Mexico); Fuentes C, P. [ITT, Metepec, Estado de Mexico (Mexico)]. E-mail: fjmc@nuclear.inin.mx

    2004-07-01

    In this work, the obtained results when applying the Hydrogen Chemistry to a test tube type Compact Tension (CT), built in austenitic stainless steel 304l, simulating the conditions to those that it operates a Boiling Water Reactor (BWR), temperature 288 C and pressure of 8 MPa are presented. With the application of this water chemistry, seeks to be proven the diminution of the crack propagation speed. (Author)

  17. BISEN: Biochemical simulation environment

    NARCIS (Netherlands)

    Vanlier, J.; Wu, F.; Qi, F.; Vinnakota, K.C.; Han, Y.; Dash, R.K.; Yang, F.; Beard, D.A.

    2009-01-01

    The Biochemical Simulation Environment (BISEN) is a suite of tools for generating equations and associated computer programs for simulating biochemical systems in the MATLAB® computing environment. This is the first package that can generate appropriate systems of differential equations for

  18. Application of gadolinia credit to cask transportation of BWR-STEP3 SFAs

    International Nuclear Information System (INIS)

    Kikuchi, Tsukasa; Mitsuhashi, Ishi; Ito, Dai-ichiro; Nakamura, Yu

    2003-01-01

    Instead of the fresh-fuel assumption, the application of gadolinia credit to cask transportation of BWR SFAs is studied. Its efficacy for BWR-STEP2 SFAs had already been estimated. This paper reports on the application of gadolinia credit to cask transportation of BWR-STEP3 SFAs. (author)

  19. Data report of BWR post-CHF tests. Transient core thermal-hydraulic test program. Contract research

    International Nuclear Information System (INIS)

    Iguchi, Tadashi; Itoh, Hideo; Kiuchi, Toshio; Watanabe, Hironori; Kimura, Mamoru; Anoda, Yoshinari

    2001-03-01

    JAERI has been performing transient core thermal-hydraulic test program. In the program, authors performed BWR/ABWR DBE simulation tests with a test facility, which can simulate BWR/ABWR transients. The test facility has a 4 x 4 bundle core simulator with 15-rod heaters and one non-heated rod. Through the tests, authors quantified the thermal safety margin for core cooling. In order to quantify the thermal safety margin, authors collected experimental data on post-CHF. The data are essential for the evaluation of clad temperature transient when core heat-up occurs during DBEs. In comparison with previous post-CHF tests, present experiments were performed in much wider experimental condition, covering high clad temperature, low to high pressure and low to high mass flux. Further, data at wider elevation (lower to higher elevation of core) were obtained in the present experiments, which make possible to discuss the effect of axial position on thermal-hydraulics, while previous works usually discuss the thermal-hydraulics at the position where the first heat-up occurs. This data report describes test procedure, test condition and major experimental data of post-CHF tests. (author)

  20. Seismic risk assessment of a BWR: status report

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Bernreuter, D.L.; Wells, J.E.; Johnson, J.J.

    1985-02-01

    The seismic risk methodology developed in the US NRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant, a pressurized water reactor (PWR). A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models was developed and analyzed. The SSMRP methodology can equally be applied to a boiling water reactor (BWR). To demonstrate its applicability, to identify fundamental differences in seismic risk between a PWR and a BWR, and to provide a basis of comparison of seismic risk between a PWR and a BWR when analyzed with comparable methodology and assumptions, a seismic risk analysis is being performed on the LaSalle County Station nuclear power plant

  1. BWR 1 % main recirculation line break LOCA tests, RUNs 917 and 918, without HPCS at ROSA-III program

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Okazaki, Motoaki; Anoda, Yoshinari; Kumamaru, Hiroshige; Nakamura, Hideo; Yonomoto, Taisuke; Koizumi, Yasuo; Tasaka, Kanji

    1988-07-01

    In a case of small break loss-of-coolant accident (LOCA) at a boiling water reactor (BWR) system, it is important to lower the system pressure to cool down the reactor system by using either the high pressure core spray (HPCS) or the automatic depressurization system (ADS). The report presents characteristic test results of RUNs 918 and 917, which were performed at the rig-of-safety assessment (ROSA)-III program simulating a 1 % break BWR LOCA with an assumption of HPCS failure, and clarifies effects of the ADS delay time on a small break LOCA. The ROSA-III test facility simulates principal components of a BWR/6 system with volumetric scaling factor of 1/424. It is experimentally concluded that the ADS delay time shorter than 4 minutes results in a similar PCT as that in a standard case, in which the PCT is observed after actuation of the low pressure core spray (LPCS). And the ADS delay time longer than 4 minutes results in higher PCT than in the standard case. In the latter, the PCT depends on the ADS time, a 220 K higher PCT, for example, in a case of 10 minutes ADS delay compared with the standard case. (author) 52 refs. 299 figs

  2. Propagation of cracks by stress corrosion in conditions of BWR type reactor

    International Nuclear Information System (INIS)

    Merino C, F.J.; Fuentes C, P.

    2004-01-01

    In this work, the obtained results when applying the Hydrogen Chemistry to a test tube type Compact Tension (CT), built in austenitic stainless steel 304l, simulating the conditions to those that it operates a Boiling Water Reactor (BWR), temperature 288 C and pressure of 8 MPa are presented. With the application of this water chemistry, seeks to be proven the diminution of the crack propagation speed. (Author)

  3. LWR [Light Water Reactor] power plant simulations using the AD10 and AD100 systems

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Chien, C.J.; Jang, J.Y.; Lin, H.C.; Mallen, A.N.; Wang, S.J.

    1989-01-01

    Boiling (BWR) and Pressurized (PWR) Water Reactor Power Plants are being simulated at BNL with the AD10 and AD100 Peripheral Processor Systems. The AD10 system has been used for BWR simulations since 1984 for safety analyses, emergency training and optimization studies. BWR simulation capabilities have been implemented recently on the AD100 system and PWR simulation capabilities are currently being developed under the auspices of international cooperation. Modeling and simulation methods are presented with emphasis on the simulation of the Nuclear Steam Supply System. Results are presented for BWR simulation and performance characteristics are compared of the AD10 and AD100 systems. It will be shown that the AD100 simulates two times faster than two AD10 processors operating in parallel and that the computing capacity of one AD100 (with FMU processor) is twice as large as that of two AD10 processors. 9 refs., 5 figs., 1 tab

  4. Analysis of radiological consequences in a typical BWR with a mark-II containment

    International Nuclear Information System (INIS)

    Funayama, Kyoko; Kajimoto, Mitsuhiro

    2003-01-01

    INS/NUPEC in Japan has been carrying out the Level 3 PSA program. In the program, the MACCS2 code has been extensively applied to analyze radiological consequences for typical BWR and PWR plants in Japan. The present study deals with analysis of effects of the AMs, which were implemented by industries, on radiological consequence for a typical BWR with a Mark-II containment. In the present study, source terms and their frequencies of source terms were used based on results of Level 2 PSA taking into account AM countermeasures. Radiological consequences were presented with dose risks (Sv/ry), which were multiplied doses (Sv) by containment damage frequencies (/ry), and timing of radionuclides release to the environment. The results of the present study indicated that the dose risks became negligible in most cases taking AM countermeasures and evacuations. (author)

  5. An improved one-and-a-half group BWR core simulator for a new-generation core management system

    International Nuclear Information System (INIS)

    Iwamoto, Tatsuya; Yamamoto, Munenari

    2000-01-01

    An improved one-and-a-half group core simulator method for a next-generation BWR core management system is presented. In the improved method, intranodal spectral index (thermal to fast flux ratio) is expanded with analytic solutions to the diffusion equation, and the nodal power density and the interface net current are calculated, taking the intranodal flux shape into consideration. A unique method was developed for assembly heterogeneity correction. Thus eliminating the insufficiencies of the conventional one-and-a-half group method, we can have accurate power distributions as well as local peaking factors for cores having large spectral mismatch between fuel assemblies. The historical effects of spectral mismatch are also considered in both nodal power and local peaking calculations. Although reflectors are not solved explicitly, there is essentially no need for core dependent adjustable parameters, since boundary conditions are derived in the same manner as in the interior nodes. Calculation time for nodal solutions is comparable to that for the conventional method, and is less than 1/10 of a few-group nodal simulator. Verifications of the present method were made by comparing the results with those obtained by heterogeneous fine-mesh multi-group core depletion calculations, and the accuracy was shown to be fairly good. (author)

  6. A pneumatic bellows-driven setup for controlled-distance electrochemical impedance measurements of Zircaloy-2 in simulated BWR conditions

    International Nuclear Information System (INIS)

    Arilahti, E.; Bojinov, M.; Hansson-Lyyra, L.

    2004-01-01

    This paper describes a novel pneumatic bellows-driven arrangement designed for controlled distance electrochemistry (CDE) measurements. The feasibility of the new arrangement has been verified by performing contact electric impedance measurements to study corrosion of Zircaloy-2 in a re-circulation loop simulating the BWR conditions. Until now, the measurements have been carried out using a step-motor driven controlled-distance electrochemistry (CDE) arrangement. The electrical and electrochemical properties of the pre transition oxide on Zircaloy-2 determined from these measurements were in good agreement with those estimated from measurements with a step-motor driven CDE. Furthermore, the results indicate that the bellows-driven CDE device is less sensitive to the contact pressure variation than the step-motor driven arrangement. This property combined with the bellows driven displacement mechanism provides a clear advantage for future in-core corrosion studies of fuel cladding materials. (Author)

  7. Analysis of results of AZTRAN and AZKIND codes for a BWR

    International Nuclear Information System (INIS)

    Bastida O, G. E.; Vallejo Q, J. A.; Galicia A, J.; Francois L, J. L.; Xolocostli M, J. V.; Rodriguez H, A.; Gomez T, A. M.

    2016-09-01

    This paper presents an analysis of results obtained from simulations performed with the neutron transport code AZTRAN and the kinetic code of neutron diffusion AZKIND, based on comparisons with models corresponding to a typical BWR, in order to verify the behavior and reliability of the values obtained with said code for its current development. For this, simulations of different geometries were made using validated nuclear codes, such as CASMO, MCNP5 and Serpent. The results obtained are considered adequate since they are comparable with those obtained and reported with other codes, based mainly on the neutron multiplication factor and the power distribution of the same. (Author)

  8. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    International Nuclear Information System (INIS)

    Martinez-Gonzalez, Jesus S.; Ade, Brian J.; Bowman, Stephen M.; Gauld, Ian C.; Ilas, Germina; Marshall, William BJ J.

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10x10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  9. Interpretation of incore noise measurements in BWR's

    International Nuclear Information System (INIS)

    Dam, H. van

    1982-01-01

    A survey is given of the main incentives for power reactor noise research and the differences and similarities of noise in power and zero power systems are touched on. The basic characteristics of the adjoint method in reactor noise theory are treated. The detector adjoint functions describe the transfer functions between spatially distributed noise sources and a (neutron or gamma) detector. In particular, the spatial dependence of these functions explains the 'local' and 'global' effects in BWR noise measurements. By including thermal hydraulic feedback effects in the adjoint analysis, it is shown that the common idea of a dominant global effect at low frequencies which should result in point kinetic behaviour, is erroneous. The same analysis provides a method for nonperturbing on-line measurement of the reactor transfer function, which is demonstrated by results from measurements on a BWR in the Netherlands. In the final part of the paper some ideas are given for further research in the field of BWR noise. (author)

  10. Interpretation of incore noise measurements in BWR's

    International Nuclear Information System (INIS)

    Dam, H. van

    1983-01-01

    A survey is given of the main incentives for power reactor noise research, and the differences and similarities of noise in power and zero power systems are shown. After a short outline of historical developments the basic characteristics of the adjoint method in reactor noise theory are dealt with. The detector adjoint functions describe the transfer functions between spatially distributed noise sources and a (neutron or gamma) detector. In particular, the spatial dependence of these functions explains the 'local' and 'global' effects in BWR noise measurements. By including thermal hydraulic feedback effects in the adjoint analysis, it is shown that the common idea of a dominant global effect at low frequencies, which should result in point kinetic behaviour, is erroneous. The same analysis provides a method for nonperturbing on-line measurements on a BWR in The Netherlands. In the final part of the paper some ideas are given for further research in the field of BWR noise. (author)

  11. Summary of the OECD/NRC Boiling Water Reactor Turbine Trip Benchmark - Fourth Workshop (BWR-TT4)

    International Nuclear Information System (INIS)

    2002-01-01

    The reference problem chosen for simulation in a BWR is a Turbine Trip transient, which begins with a sudden Turbine Stop Valve (TSV) closure. The pressure oscillation generated in the main steam piping propagates with relatively little attenuation into the reactor core. The induced core pressure oscillation results in dramatic changes of the core void distribution and fluid flow. The magnitude of the neutron flux transient taking place in the BWR core is strongly affected by the initial rate of pressure rise caused by pressure oscillation and has a strong spatial variation. The correct simulation of the power response to the pressure pulse and subsequent void collapse requires a 3-D core modeling supplemented by 1-D simulation of the remainder of the reactor coolant system. A BWR TT benchmark exercise, based on a well-defined problem with complete set of input specifications and reference experimental data, has been proposed for qualification of the coupled 3-D neutron kinetics/thermal-hydraulic system transient codes. Since this kind of transient is a dynamically complex event with reactor variables changing very rapidly, it constitutes a good benchmark problem to test the coupled codes on both levels: neutronics/thermal-hydraulic coupling and core/plant system coupling. Subsequently, the objectives of the proposed benchmark are: comprehensive feedback testing and examination of the capability of coupled codes to analyze complex transients with coupled core/plant interactions by comparison with actual experimental data. The benchmark consists of three separate exercises: Exercise 1 - Power vs. Time Plant System Simulation with Fixed Axial Power Profile Table (Obtained from Experimental Data). Exercise 2 - Coupled 3-D Kinetics/Core Thermal-Hydraulic BC Model and/or 1-D Kinetics Plant System Simulation. Exercise 3 - Best-Estimate Coupled 3-D Core/Thermal-Hydraulic System Modeling. The purpose of this fourth workshop was to present and discuss final results of

  12. Development of next BWR plant

    International Nuclear Information System (INIS)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke

    1995-01-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.)

  13. Development of next BWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke [Hitachi Ltd., Ibaraki (Japan). Hitachi Works

    1995-04-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.).

  14. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    Susilo, Jati

    2002-01-01

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6 t h of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  15. Decay ratio studies in BWR and PWR using wavelet

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-10-01

    The on-line stability of BWR and PWR is studied using the neutron noise signals as the fluctuations reflect the dynamic characteristics of the reactor. Using appropriate signal modeling for time domain analysis of noise signals, the stability parameters can be directly obtained from the system impulse response. Here in particular for BWR, an important stability parameter is the decay ratio (DR) of the impulse response. The time series analysis involves the autoregressive modeling of the neutron detector signal. The DR determination is strongly effected by the low frequency behaviour since the transfer function characteristic tends to be a third order system rather than a second order system for a BWR. In a PWR low frequency behaviour is modified by the Boron concentration. As a result of these phenomena there are difficulties in the consistent determination of the DR oscillations. The enhancement of the consistency of this DR estimation is obtained by wavelet transform using actual power plant data from BWR and PWR. A comparative study of the Restimation with and without wavelets are presented. (orig.)

  16. BWR radiation exposure--experience and projection

    International Nuclear Information System (INIS)

    Falk, C.F.; Wilkinson, C.D.; Hollander, W.R.

    1979-01-01

    The BWR/6 Mark III radiation exposures are projected to be about half of those of current average operating experience of 725 man-rem. These projections are said to be realistic and based on current achievements and not on promises of future development. The several BWRs operating with low primary system radiation levels are positive evidence that radiation sources can be reduced. Improvements have been made in reducing the maintenance times for the BWR/6, and further improvements can be made by further attention to cost-effective plant arrangement and layout during detail design to improve accessibility and maintainability of each system and component

  17. The BWR Hybrid 4 control rod

    International Nuclear Information System (INIS)

    Gross, H.; Fuchs, H.P.; Lippert, H.J.; Dambietz, W.

    1988-01-01

    The service life of BWR control rods designed in the past has been unsatisfactory. The main reason was irradiation assisted stress corrosion cracking of B 4 C rods caused by external swelling of the B 4 C powder. By this reason KWU developed an improved BWR control rod (Hybrid 4 control rod) with extended service life and increased control rod worth. It also allows the procedure for replacing and rearranging fuel assemblies to be considerably simplified. A complete set of Hydbrid 4 control rods is expected to last throughout the service life of a plant (assumption: ca. 40 years) if an appropriate control rod reshuffling management program is used. (orig.)

  18. An overview of the BWR ECCS strainer blockage issues

    International Nuclear Information System (INIS)

    Serkiz, A.W.; Marshall, M.L. Jr.; Elliott, R.

    1996-01-01

    This Paper provides a brief overview of actions taken in the mid 1980s to resolve Unresolved Safety Issue (USI) A-43, open-quotes Containment Emergency Sump Performance,close quotes and their relationship to the BWR strainer blockage issue; the importance of insights gained from the Barseback-2 (a Swedish BWR) incident in 1992 and from ECCS strainer testing and inspections at the Perry nuclear power plant in 1992 and 1993; an analysis of an US BWR/4 with a Mark I containment; an international community sharing of knowledge relevant to ECCS strainer blockage, additional experimental programs; and identification of actions needed to resolve the strainer blockage issue and the status of such efforts

  19. Simulation of the automatic depressurization system (Ads) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de despresurizacion automatica (ADS) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, C.; Chavez M, C., E-mail: ces.raga@gmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The automatic depressurization system (Ads) of the boiling water reactor (BWR) like part of the emergency cooling systems is designed to liberate the vapor pressure of the reactor vessel, as well as the main vapor lines. At the present time in the Engineering Faculty, UNAM personnel works in the simulation of the Laguna Verde reactor based on the nuclear code RELAP/SCADAP and in the incorporation to the same of the emergency cooling systems. The simulation of the emergency cooling systems began with the inclusion of two hydrodynamic volumes, one source and another drain, and the incorporation of the initiation logic for each emergency system. In this work is defined and designed a simplified model of Ads of the reactor, considering a detail level based on the main elements that compose it. As tool to implement the proposed model, the RELAP code was used. The simulated main functions of Ads are centered in the quick depressurization of the reactor by means of the vapor discharge through the relief/safety valves to the suppression pool, and, in the event of break of the main vapor line, the reduction of the vessel pressure operates for that the cooling systems of the core to low pressure (Lpcs and Lpci) they can begin their operation. (Author)

  20. BWR type nuclear reactors

    International Nuclear Information System (INIS)

    Yamamoto, Toru.

    1987-01-01

    Purpose: To obtain reactor core characteristics with less changes in the excess reactivity due to fuel burnup even when the operation period varies. Constitution: In a BWR type reactor where fuel assemblies containing fuel rods incorporated with burnable poisons are arranged, the fuel assemblies are grouped into first fuel assemblies and second fuel assemblies. Then, the number of fuel rods incorporated with burnable poisons within the first fuel assemblies is made greater than that of the second fuel rods, while the concentration of the burnable poisons in the fuel rods incorporated with the burnable poisons in the first fuel assemblies is made lower than that of the fuel rods incorporated with the burnable poisons in the second fuel assemblies. In the BWR type reactor constituted in this way, the reactor core characteristics can be improved by changing the ratio between the first fuel assemblies and the second fuel assemblies charged to the reactor core, thereby decreasing the changes in the burnup of the excess reactivity. (Kamimura, M.)

  1. Ultrasonic phased array examination of circumferential weld joint in reactor pressure vessel of BWR

    Energy Technology Data Exchange (ETDEWEB)

    Nanekar, Paritosh, E-mail: pnanekar@barc.gov.in [Quality Assurance Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jothilakshmi, N. [Quality Assurance Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2013-12-15

    Highlights: • Phased array technique developed for weld joint inspection in BWR pressure vessel. • Simulation studies were carried out for conventional and phased array probe. • Conventional ultrasonic test shows in-adequate weld coverage and poor resolution. • Focused sound beam in phased array results in good resolution and sensitivity. • Ultrasonic phased array technique is validated on mock-up with reference defects. - Abstract: The weld joints in the reactor pressure vessel (RPV) of Boiling Water Reactors (BWR) are required to be examined periodically for assurance of structural integrity. Ultrasonic phased array examination technique has been developed in authors’ laboratory for inspection of the top flange to shell circumferential weld joint in RPV of BWRs, which are in operation in India since the late 1960s. The development involved detailed simulation studies for computation of focal laws followed by validation on mock-up. The paper brings out the limitations of the conventional ultrasonic technique and how this can be overcome by the phased array approach for the weld joint under consideration. The phased array technique was successfully employed for field examination of this weld joint in RPV during the re-fuelling outage.

  2. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    International Nuclear Information System (INIS)

    Bennett, P.R.; Kolaczkowski, A.M.; Medford, G.T.

    1986-09-01

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments

  3. Assessment of severe accident prevention and mitigation features: BWR, Mark II containment design

    International Nuclear Information System (INIS)

    Lehner, J.R.; Hsu, C.J.; Eltawila, F.; Perkins, K.R.; Luckas, W.J.; Fitzpatrick, R.G.; Pratt, W.T.

    1988-07-01

    Plant features and operator actions, which have been found to be important in either preventing or mitigating severe accidents in BWRs with Mark II containments (BWR Mark II's) have been identified. These features and actions were developed from insights derived from reviews of in-depth risk assessments performed specifically for the Limerick and Shoreham plants and from other relevant studies. Accident sequences that dominate the core-damage frequency and those accident sequences that are of potentially high consequence were identified. Vulnerabilities of the BWR Mark II to severe-accident containment loads were also noted. In addition, those features of a BWR Mark II, which are important for preventing core damage and are available for mitigating fission-product release to the environment were also identified. This report is issued to provide focus to an analyst examining an individual plant. This report calls attention to plant features and operator actions and provides a list of deterministic attributes for assessing those features and actions found to be helpful in reducing the overall risk for Mark II plants. Thus, the guidance is offered as a resource in examining the subject plant to determine if the same, or similar, plant features and operator actions will be of value in reducing overall plant risk. This report is intended to serve solely as guidance

  4. Single pin BWR benchmark problem for coupled Monte Carlo - Thermal hydraulics analysis

    International Nuclear Information System (INIS)

    Ivanov, A.; Sanchez, V.; Hoogenboom, J. E.

    2012-01-01

    As part of the European NURISP research project, a single pin BWR benchmark problem was defined. The aim of this initiative is to test the coupling strategies between Monte Carlo and subchannel codes developed by different project participants. In this paper the results obtained by the Delft Univ. of Technology and Karlsruhe Inst. of Technology will be presented. The benchmark problem was simulated with the following coupled codes: TRIPOLI-SUBCHANFLOW, MCNP-FLICA, MCNP-SUBCHANFLOW, and KENO-SUBCHANFLOW. (authors)

  5. Single pin BWR benchmark problem for coupled Monte Carlo - Thermal hydraulics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.; Sanchez, V. [Karlsruhe Inst. of Technology, Inst. for Neutron Physics and Reactor Technology, Herman-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hoogenboom, J. E. [Delft Univ. of Technology, Faculty of Applied Sciences, Mekelweg 15, 2629 JB Delft (Netherlands)

    2012-07-01

    As part of the European NURISP research project, a single pin BWR benchmark problem was defined. The aim of this initiative is to test the coupling strategies between Monte Carlo and subchannel codes developed by different project participants. In this paper the results obtained by the Delft Univ. of Technology and Karlsruhe Inst. of Technology will be presented. The benchmark problem was simulated with the following coupled codes: TRIPOLI-SUBCHANFLOW, MCNP-FLICA, MCNP-SUBCHANFLOW, and KENO-SUBCHANFLOW. (authors)

  6. The JAERI code system for evaluation of BWR ECCS performance

    International Nuclear Information System (INIS)

    Kohsaka, Atsuo; Akimoto, Masayuki; Asahi, Yoshiro; Abe, Kiyoharu; Muramatsu, Ken; Araya, Fumimasa; Sato, Kazuo

    1982-12-01

    Development of respective computer code system of BWR and PWR for evaluation of ECCS has been conducted since 1973 considering the differences of the reactor cooling system, core structure and ECCS. The first version of the BWR code system, of which developmental work started earlier than that of the PWR, has been completed. The BWR code system is designed to provide computational tools to analyze all phases of LOCAs and to evaluate the performance of the ECCS including an ''Evaluation Model (EM)'' feature in compliance with the requirements of the current Japanese Evaluation Guideline of ECCS. The BWR code system could be used for licensing purpose, i.e. for ECCS performance evaluation or audit calculations to cross-examine the methods and results of applicants or vendors. The BWR code system presented in this report comprises several computer codes, each of which analyzes a particular phase of a LOCA or a system blowdown depending on a range of LOCAs, i.e. large and small breaks in a variety of locations in the reactor system. The system includes ALARM-B1, HYDY-B1 and THYDE-B1 for analysis of the system blowdown for various break sizes, THYDE-B-REFLOOD for analysis of the reflood phase and SCORCH-B2 for the calculation of the fuel assembl hot plane temperature. When the multiple codes are used to analyze a broad range of LOCA as stated above, it is very important to evaluate the adequacy and consistency between the codes used to cover an entire break spectrum. The system consistency together with the system performance are discussed for a large commercial BWR. (author)

  7. Report on the BWR owners group radiation protection/ALARA Committee

    International Nuclear Information System (INIS)

    Aldrich, L.R.

    1995-01-01

    Radiation protection programs at U.S. boiling water reactor (BWR) stations have evolved during the 1980s and early 1990s from a regulatory adherence-based endeavor to a proactive, risk-based radiation protection and prevention mission. The objectives are no longer to merely monitor and document exposure to radiation and radioactive materials. The focus of the current programs is the optimization of radiation protection of occupational workers consistent with the purpose of producing cost-effective electric power. The newly revised 10 CFR 20 defines the term ALARA (as low as reasonably achievable) to take into account the state of technology, the economics of improvements in relation to the state of the technology, and the benefits to the public health and safety. The BWR Owners Group (BWROG) initially formed the Radiation Protection/ALARA Committee in January 1990 to evaluate methods of reducing occupational radiation exposure during refueling outages. Currently, twenty U.S. BWR owner/operators (representing 36 of the operational 37 domestic BWR units), as well as three foreign BWR operators (associate members), have broadened the scope to promote information exchange between BWR radiation protection professionals and develop good practices which will affect optimization of their radiation protection programs. In search of excellence and the challenge of becoming open-quotes World Classclose quotes performers in radiation protection, the BWROG Radiation Protection/ALARA Committee has recently accepted a role in assisting the member utilities in improving radiation protection performance in a cost-effective manner. This paper will summarize the recent activities of this Committee undertaken to execute their role of exchanging information in pursuit of optimizing the improvement of their collective radiation protection performance

  8. Report on the BWR owners group radiation protection/ALARA Committee

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, L.R. [Commonwealth Edison Co., Downers Grove, IL (United States)

    1995-03-01

    Radiation protection programs at U.S. boiling water reactor (BWR) stations have evolved during the 1980s and early 1990s from a regulatory adherence-based endeavor to a proactive, risk-based radiation protection and prevention mission. The objectives are no longer to merely monitor and document exposure to radiation and radioactive materials. The focus of the current programs is the optimization of radiation protection of occupational workers consistent with the purpose of producing cost-effective electric power. The newly revised 10 CFR 20 defines the term ALARA (as low as reasonably achievable) to take into account the state of technology, the economics of improvements in relation to the state of the technology, and the benefits to the public health and safety. The BWR Owners Group (BWROG) initially formed the Radiation Protection/ALARA Committee in January 1990 to evaluate methods of reducing occupational radiation exposure during refueling outages. Currently, twenty U.S. BWR owner/operators (representing 36 of the operational 37 domestic BWR units), as well as three foreign BWR operators (associate members), have broadened the scope to promote information exchange between BWR radiation protection professionals and develop good practices which will affect optimization of their radiation protection programs. In search of excellence and the challenge of becoming {open_quotes}World Class{close_quotes} performers in radiation protection, the BWROG Radiation Protection/ALARA Committee has recently accepted a role in assisting the member utilities in improving radiation protection performance in a cost-effective manner. This paper will summarize the recent activities of this Committee undertaken to execute their role of exchanging information in pursuit of optimizing the improvement of their collective radiation protection performance.

  9. Optimization of fuel reloads for a BWR using the ant colony system; Optimizacion de recargas de combustible para un BWR usando el sistema de colonia de hormigas

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel E, J. [Universidad Autonoma del Estado de Mexico, Facultad de Ingenieria, Cerro de Coatepec s/n, Ciudad Universitaria, 50110 Toluca, Estado de Mexico (Mexico); Ortiz S, J. J. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: jaime.es.jaime@gmail.com

    2009-10-15

    In this work some results obtained during the development of optimization systems are presented, which are employees for the fuel reload design in a BWR. The systems use the ant colony optimization technique. As first instance, a system is developed that was adapted at travel salesman problem applied for the 32 state capitals of Mexican Republic. The purpose of this implementation is that a similarity exists with the design of fuel reload, since the two problems are of combinatorial optimization with decision variables that have similarity between both. The system was coupled to simulator SIMULATE-3, obtaining good results when being applied to an operation cycle in equilibrium for reactors of nuclear power plant of Laguna Verde. (Author)

  10. Weightless environment simulation test; Mujuryo simulation shiken

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, K.; Yamamoto, T.; Kato, F. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1997-07-20

    Kawasaki Heavy Industries, Ltd., delivered a Weightless Environment Test System (WETS) to National Space Development Agency of Japan in 1994. This system creates a weightless environment similar to that in space by balancing gravity and buoyancy in the water, and is constituted of a large water tank, facilities to supply air and cooling water to space suits worn in the water, etc. In this report, a weightless environment simulation test and the facilities to supply air and cooling water are described. In the weightless environment simulation test, the astronaut to undergo tests and training wears a space suit quite similar to the suit worn on the orbit, and performs EVA/IVA (extravehicular activities/intravehicular activities) around a JEM (Japanese Experimental Module) mockup installed in the water verifying JEM design specifications, preparing manuals for operations on the orbit, or receives basic space-related drill and training. An EVA weightless environment simulation test No. 3 was accomplished with success in January, 1997, when the supply of breathing water and cooling water to the space suit, etc., were carried out with safety and reliability. 2 refs., 8 figs., 2 tabs.

  11. Study of transient rod extraction failure without RBM in a BWR; Estudio del transitorio error de extraccion de barra sin RBM en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vallejo Q, J. A.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L., E-mail: amhed_jvq@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2015-09-15

    The study and analysis of the operational transients are important for predicting the behavior of a system to short-term events and the impact that would cause this transient. For the nuclear industry these studies are indispensable due to economic, environmental and social impacts that could cause an accident during the operation of a nuclear reactor. In this paper the preparation, simulation and analysis results of the transient rod extraction failure in which not taken into operation the RBM is presented. The study was conducted for a BWR of 2027 MWt, in an intermediate cycle of its useful life and using the computer code Simulate-3K a scenario of anomalies was created in the core reactivity which gave a coherent prediction to the type of presented event. (Author)

  12. Advanced methods for BWR transient and stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A; Wehle, F; Opel, S; Velten, R [AREVA, AREVA NP, Erlangen (Germany)

    2008-07-01

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  13. Advanced methods for BWR transient and stability analysis

    International Nuclear Information System (INIS)

    Schmidt, A.; Wehle, F.; Opel, S.; Velten, R.

    2008-01-01

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  14. BWR nuclear plant maintenance simulation

    International Nuclear Information System (INIS)

    Stuart, I.F.

    1985-01-01

    As early as 1977, the General Electric Company, USA, Nuclear Energy Operation was making plans to construct a maintenance-type simulator to support Training and Services. The Company's pioneering experience with control room simulators started in 1968 with the Dresden simulator and showed clearly the benefits of having such facilities for training, checkout of procedures and, in the case of maintenance, match-up of equipment or tools as needed. Since the dedication of the facility, it has proved to be an invaluable resource in the training of refuelling and servicing crews. The facility has also been extensively used as developmental and test facility for in-vessel servicing equipment and procedures. (author)

  15. Study of behavior on bonding and failure mode of pressurized and doped BWR fuel rod

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1992-03-01

    The study of transient behavior on the bonding and the failure mode was made using the pressurized/doped 8 x 8 BWR type fuel rod. The dopant was mullite minerals consisted mainly of silicon and aluminum up to 1.5 w/o. Pressurization of the fuel rod with pure helium was made to the magnitude about 0.6 MPa. As a reference, the non-pressurized/non-doped 8 x 8 BWR fuel rod and the pressurized/7 x 7 BWR fuel rod up to 0.6 MPa were prepared. Magnitude of energy deposition given to the tested fuel rods was 248, 253, and 269 cal/g·fuel, respectively. Obtained results from the pulse irradiation in NSRR are as follows. (1) It was found from the experiment that alternation of the fuel design by the adoption of pressurization up to 0.6 MPa and the use of wider gap up to 0.38 mm could avoid the dopant BWR fuel from the overall bonding. The failure mode of the present dopant fuel was revealed to be the melt combined with rupture. (2) The time of fuel failure of the pressurized/doped 8 x 8 BWR fuel defected by the melt/rupture mode is of order of two times shorter than that of the pressurized/ 7 x 7 BWR defected by the rupture mode. Failure threshold of the pressurized/doped 8 x 8 BWR BWR tended to be lower than that of non-pressurized/non-doped 8 x 8 BWR one. Cracked area of the pressurized/doped 8 x 8 BWR was more wider and magnitude of oxidation at the place is relatively larger than the other tested fuels. (3) Failure mode of the non-pressurized/ 8 x 8 BWR fuel rod was the melt/brittle accompanied with a significant bonding at failed location. While, failure mode of the pressurized/ 7 x 7 BWR fuel rod was the cladding rupture accompanied with a large ballooning. No bonding at failed location of the latter was observed. (author)

  16. Development of a BWR loading pattern design system based on modified genetic algorithms and knowledge

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Francois, Juan Luis; Avendano, Linda; Gonzalez, Mario

    2004-01-01

    An optimization system based on Genetic Algorithms (GAs), in combination with expert knowledge coded in heuristics rules, was developed for the design of optimized boiling water reactor (BWR) fuel loading patterns. The system was coded in a computer program named Loading Pattern Optimization System based on Genetic Algorithms, in which the optimization code uses GAs to select candidate solutions, and the core simulator code CM-PRESTO to evaluate them. A multi-objective function was built to maximize the cycle energy length while satisfying power and reactivity constraints used as BWR design parameters. Heuristic rules were applied to satisfy standard fuel management recommendations as the Control Cell Core and Low Leakage loading strategies, and octant symmetry. To test the system performance, an optimized cycle was designed and compared against an actual operating cycle of Laguna Verde Nuclear Power Plant, Unit I

  17. Optimization of axial enrichment and gadolinia distributions for BWR fuel under control rod programming, (2)

    International Nuclear Information System (INIS)

    Hida, Kazuki; Yoshioka, Ritsuo

    1992-01-01

    A method has been developed for optimizing the axial enrichment and gadolinia distributions for the reload BWR fuel under control rod programming. The problem was to minimize the enrichment requirement subject to the criticality and axial power peaking constraints. The optimization technique was based on the successive linear programming method, each linear programming problem being solved by a goal programming algorithm. A rapid and practically accurate core neutronics model, named the modified one-dimensional core model, was developed to describe the batch-averaged burnup behavior of the reload fuel. A core burnup simulation algorithm, employing a burnup-power-void iteration, was also developed to calculate the rigorous equilibrium cycle performance. This method was applied to the optimization of axial two- and 24-region fuels for demonstrative purposes. The optimal solutions for both fuels have proved the optimality of what is called burnup shape optimization spectral shift. For the two-region fuel with a practical power peaking of 1.4, the enrichment distribution was nearly uniform, because a bottom-peaked burnup shape flattens the axial power shape. Optimization of the 24-region fuel has shown a potential improvement in BWR fuel cycle economics, which will guide future advancement in BWR fuel designs. (author)

  18. Assessment of the Prony's method for BWR stability analysis

    International Nuclear Information System (INIS)

    Ortiz-Villafuerte, Javier; Castillo-Duran, Rogelio; Palacios-Hernandez, Javier C.

    2011-01-01

    Highlights: → This paper describes a method to determine the degree of stability of a BWR. → Performance comparison between Prony's and common AR techniques is presented. → Benchmark data and actual BWR transient data are used for comparison. → DR and f results are presented and discussed. → The Prony's method is shown to be a robust technique for BWR stability. - Abstract: It is known that Boiling Water Reactors are susceptible to present power oscillations in regions of high power and low coolant flow, in the power-flow operational map. It is possible to fall in one of such instability regions during reactor startup, since both power and coolant flow are being increased but not proportionally. One other possibility for falling into those areas is the occurrence of a trip of recirculation pumps. Stability monitoring in such cases can be difficult, because the amount or quality of power signal data required for calculation of the stability key parameters may not be enough to provide reliable results in an adequate time range. In this work, the Prony's Method is presented as one complementary alternative to determine the degree of stability of a BWR, through time series data. This analysis method can provide information about decay ratio and oscillation frequency from power signals obtained during transient events. However, so far not many applications in Boiling Water Reactors operation have been reported and supported to establish the scope of using such analysis for actual transient events. This work presents first a comparison of decay ratio and frequency oscillation results obtained by Prony's method and those results obtained by the participants of the Forsmark 1 and 2 Boiling Water Reactor Stability Benchmark using diverse techniques. Then, a comparison of decay ratio and frequency oscillation results is performed for four real BWR transient event data, using Prony's method and two other techniques based on an autoregressive modeling. The four

  19. Effect of a Sulphate Transient on the EAC Crack Growth Behaviour of Low-Alloy RPV Steels under Simulated BWR Operating Conditions (CASTOC WP 3, PSI Test 1)

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H. P

    2002-03-01

    Within the CASTOC-project (5th EU FW programme), the environmentally-assisted crack (EAC) growth behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state boiling water reactor (BWR) power operation conditions by six European laboratories. Within WP 3 of this project, the Paul Scherrer Institut (PSI) investigates the effect of water chemistry transients on the EAC crack growth behaviour under periodical partial unloading (PPU) conditions. The present report is a summary of the first PSI test of WP 3 with a Na{sub 2}SO{sub 4} transient. In the first part of the report, the theoretical background on crack growth mechanisms, crack chemistry, mass transport and water chemistry transients as well as a brief literature survey on other water chemistry transient investigations is given. Furthermore, the experimental equipment and test procedure is presented, followed by a summary of the results of PSI test 1 of WP 3. Finally the results are discussed in detail and compared to literature data. In the first part of the experiment, an actively growing EAC crack was generated by PPU in oxygenated high-temperature, high-purity water (T = 288 {sup o}C, DO = 8 ppm, SO{sub 4}{sup 2-} < 0.6 ppb). Then a sulphate transient was applied. The duration ({approx} 300 h) and the amount of sulphate (SO{sub 4}{sup 2-} = 368 ppb) of the applied sulphate transient conservatively covered all sulphate transients, which might occur in BWR/normal water chemistry (NWC) practice. After the transient, outlet conductivity was lowered from ca. 1 {mu}S/cm to less than 0.15 {mu}S/cm within 2.6 h by a 'two-loop technique'. No accelerating effect of the sulphate transient on the EAC crack growth of both tested fracture mechanics specimens under highly oxidising BWR/NWC conditions was observed, making it impossible to deterrnine incubation or delay times. The EAC crack growth rates (CGR) before, during and after the

  20. Study of transient turbine shot without bypass in a BWR

    International Nuclear Information System (INIS)

    Vallejo Q, J. A.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L.

    2015-09-01

    The study and analysis of operational transients are important for predicting the behavior of a system to short-terms events and the impact that would cause this transition. For the nuclear industry these studies are indispensable due to economic, environmental and social impacts that could result in an accident during the operation of a nuclear reactor. In this paper the preparation, simulation and analysis of results of a turbine shot transient, which is not taken into operation the bypass is presented. The study is realized for a BWR of 2027 MWt, to an intermediate cycle life and using the computer code Simulate-3K a depressurization stage of the vessel is created which shows the response of other security systems and gives a coherent prediction to the event presented type. (Author)

  1. Thermochemistry in BWR. An overview of applications of program codes and databases

    International Nuclear Information System (INIS)

    Hermansson, H-P.; Becker, R.

    2010-01-01

    The Swedish work on thermodynamics of metal-water systems relevant to BWR conditions has been ongoing since the 70ies, and at present time a compilation and adaptation of codes and thermodynamic databases are in progress. In the previous work, basic thermodynamic data were compiled for parts of the system Fe-Cr-Ni-Co-Zn-S-H 2 O at 25-300 °C. Since some thermodynamic information necessary for temperature extrapolations of data up to 300 °C was not published in the earlier works, these data have now been partially recalculated. This applies especially to the parameters of the HKF-model, which are used to extrapolate the thermodynamic data for ionic and neutral aqua species from 25 °C to BWR temperatures. Using the completed data, e.g. the change in standard Gibbs energy (ΔG 0 ) and the equilibrium constant (log K) can be calculated for further applications at BWR/LWR conditions. In addition a computer program is currently being developed at Studsvik for the calculation of equilibrium conductivity in high temperature water. The program is intended for PWR applications, but can also be applied to BWR environment. Data as described above will be added to the database of this program. It will be relatively easy to further develop the program e.g. to calculate Pourbaix diagrams, and these graphs could then be calculated at any temperature. This means that there will be no limitation to the temperatures and total concentrations (usually 10 -6 to 10 -8 mol/kg) as reported in earlier work. It is also easy to add a function generating ΔG 0 and log K values at selected temperatures. One of the fundamentals for this work was also to overview and collect publicly available thermodynamic program codes and databases of relevance for BWR conditions found in open sources. The focus has been on finding already done compilations and reviews, and some 40 codes and 15 databases were found. Codes and data-bases are often integrated and such a package is often developed for

  2. Power oscillations in BWR reactors

    International Nuclear Information System (INIS)

    Espinosa P, G.

    2002-01-01

    One of the main problems in the operation of BWR type reactors is the instability in power that these could present. One type of oscillations and that is the objective of this work is the named density wave, which is attributed to the thermohydraulic processes that take place in the reactor core. From the beginnings of the development of BWR reactors, the stability of these has been an important aspect in their design, due to its possible consequences on the fuel integrity. The reactor core operates in two phase flow conditions and it is observed that under certain power and flow conditions, power instabilities appear. Studying this type of phenomena is complex, due to that a reactor core is constituted approximately by 27,000 fuel bars with different distributions of power and flow. The phenomena that cause the instability in BWR reactors continue being matter of scientific study. In the literature mainly in nuclear subject, it can be observed that exist different methods and approximations for studying this type of phenomena, nevertheless, their results are focused to establish safety limits in the reactor operation, instead of studying in depth of the knowledge about. Also in this line sense of the reactor data analysis, the oscillations characteristic frequencies are obtained for trying to establish if the power is growing or decreasing. In addition to that before mentioned in this paper it is presented a rigorous study applying the volumetric average method, for obtaining the vacuum waves propagation velocities and its possible connection with the power oscillations. (Author)

  3. Steam CFD simulation of injection in suppression pool

    International Nuclear Information System (INIS)

    Naveen Samad, A.M.; Ghosh, Sumana

    2015-01-01

    Boiling water reactor (BWR) is one of the common types of electricity generating nuclear reactor. Suppression pool system is a major component of the BWR which has to be designed efficiently for the safe operations. During some accidents like Loss of Coolant Accident (LOCA) large amount of steam are injected to the pressure suppression system resulting in increase in temperature of the pool and thereby increasing the pressure. The present work discuss about the Computational Fluid Dynamics (CFD) simulation of steam injected to the wet well of BWR through the blow down pipes and there by investigating the hydrodynamic and thermal characteristics of the system. The simulations were carried out for three different steam injection velocities. The numerical simulations were performed with ANSYS FLUENT using multiphase 3D Volume of Fluid (VOF) model and k-ε model was adopted for modelling turbulence flow. (author)

  4. Scaling and uncertainty in BWR instability problems

    International Nuclear Information System (INIS)

    Di Auria, F.; Pellicoro, V.

    1995-01-01

    This paper deals with a critical review of activities, performed at the DCMN of Pisa University, in relation to the thermo-hydraulic oscillations in two-phase systems. Stability analyses, including model development and achievement of experimental data, are generally performed for BWRs in order to achieve the following objectives: to reach a common understanding in relation to the predictive capabilities of system codes and to the influence of various parameters on the instability; to establish a data base for the qualification of the analytical tools already or becoming available; to set-up qualified tools (code/models + nodalization + user assumption) suitable for predicting the unstable behaviour of the nuclear plants of interest (current BWR, SBWR, ABWR and RBMK). These considerations have been the basis for the following researches: 1) proposal of the Boiling Instability Program (BIP) (1) 2) evaluation of stability tests in PIPER-ONE apparatus (2) 3) coupled thermal-hydraulic and neutronic instabilities in the LaSalle-2 BWR plant (3) 4) participation to the NEA-OECD BWR Benchmark (4) The RELAP/MOD2 and RELAP5/MOD3 codes have been used. (author)

  5. Experimental study on breakup and fragmentation behavior of molten material jet in complicated structure of BWR lower plenum

    International Nuclear Information System (INIS)

    Saito, Ryusuke; Abe, Yutaka; Yoshida, Hiroyuki

    2014-01-01

    To estimate the state of reactor pressure vessel of Fukushima Daiichi nuclear power plant, it is important to clarify the breakup and fragmentation of molten material jet in the lower plenum of boiling water reactor (BWR) by a numerical simulation. To clarify the effects of complicated structures on the jet behavior experimentally and validate the simulation code, we conduct the visualized experiments simulating the severe accident in the BWR lower plenum. In this study, jet breakup, fragmentation and surrounding velocity profiles of the jet were observed by the backlight method and the particle image velocimetry (PIV) method. From experimental results using the backlight method, it was clarified that jet tip velocity depends on the conditions whether complicated structures exist or not and also clarified that the structures prevent the core of the jet from expanding. From measurements by the PIV method, the surrounding velocity profiles of the jet in the complicated structures were relatively larger than the condition without structure. Finally, fragment diameters measured in the present study well agree with the theory suggested by Kataoka and Ishii by changing the coefficient term. Thus, it was suggested that the fragmentation mechanism was mainly controlled by shearing stress. (author)

  6. General Electric's training program for BWR chemists

    International Nuclear Information System (INIS)

    Osborn, R.N.; Lim, W.

    1981-01-01

    This paper describes the development and implementation of the General Electric boiling water reactor chemistry training program from 1959 to the present. The original intention of this program was to provide practical hands on type training in radiochemistry to BWR chemistry supervisors with fossil station experience. This emphasis on radiochemistry has not changed through the years, but the training has expanded to include the high purity water chemistry of the BWR and has been modified to include new commission requirements, engineering developments and advanced instrumentation. Student and instructor qualifications are discussed and a description of the spin off courses for chemistry technicians and refresher training is presented

  7. BWR SFAT, gross-defect verification of spent BWR fuel. Final report on Task FIN A563 on the Finnish Support Programme to IAEA Safeguards including BWR SFAT User Manual

    International Nuclear Information System (INIS)

    Tarvainen, M.; Paakkunainen, M.; Tiitta, A.; Sarparanta, K.

    1994-04-01

    A measurement instrument called Spent Fuel Attribute Tester, SFAT, has been designed, fabricated and taken into use by the IAEA in gross defect verification of spent BWR fuel assemblies. The equipment consists of an underwater measurement head connected with cables to a control unit on the bridge of the fuel handling machine as well as to a PMCA for measurement of the gamma spectra. The BWR SFAT is optimized for the AFR interim storage, TVO KPA-STORE, of the TVO Power Company in Olkiluoto, Finland. It has a shape and it is moved like a fuel assembly using the fuel handling machine. No fuel movements are needed. Spent fuel specific radiation from the fission product 137 Cs at the gamma-ray energy of 662 keV is detected above the assemblies in the storage rack using a NaI(Tl) detector. In the design and in licensing the requirements of the IAEA, operator and the safety authority have been taken into account. The BWR SFAT allows modifications for other LWR fuel types with minor changes. The work has been carried out under the task FIN A 563 of the Finnish Support Programme to IAEA Safeguards. (orig.) (9 refs., 22 figs.)

  8. Reducing BWR O and M costs through on-line performance monitoring

    International Nuclear Information System (INIS)

    Jonas, T.; Gross, R.; Logback, F.; Josyula, R.

    1995-01-01

    Competition in the electric power industry has placed significant emphasis on reducing operating and maintenance (O and M) costs at nuclear facilities. Therefore, on-line performance monitoring to locate power losses for boiling water reactor (BWR) plants is creating tremendous interest. In addition, the ability to automate activities such as data collection, analysis, and reporting increases the efficiency of plant engineers and gives them more time to concentrate on solving plant efficiency problems. This capability is now available with a unique software product called GEBOPS. GE Nuclear Energy, in conjunction with Joint Venture partner Black and Veatch, has undertaken development of the General Electric/Black and Veatch On-line Performance System (GEBOPS), an on-line performance monitoring system for BWR plants. The experience and expertise of GE Nuclear Energy with BWR plants, coupled with the proven on-line monitoring software development experience and capability of Black and Veatch, provide the foundation for a unique product which addresses the needs of today's BWR plants

  9. Optimization of fuel reloads for a BWR using the ant colony system

    International Nuclear Information System (INIS)

    Esquivel E, J.; Ortiz S, J. J.

    2009-10-01

    In this work some results obtained during the development of optimization systems are presented, which are employees for the fuel reload design in a BWR. The systems use the ant colony optimization technique. As first instance, a system is developed that was adapted at travel salesman problem applied for the 32 state capitals of Mexican Republic. The purpose of this implementation is that a similarity exists with the design of fuel reload, since the two problems are of combinatorial optimization with decision variables that have similarity between both. The system was coupled to simulator SIMULATE-3, obtaining good results when being applied to an operation cycle in equilibrium for reactors of nuclear power plant of Laguna Verde. (Author)

  10. On-line prediction of BWR transients in support of plant operation and safety analyses

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.

    1983-01-01

    A combination of advanced modeling techniques and modern, special-purpose peripheral minicomputer technology is presented which affords realistic predictions of plant transient and severe off-normal events in LWR power plants through on-line simulations at a speed ten times greater than actual process speeds. Results are shown for a BWR plant simulation. The mathematical models account for nonequilibrium, nonhomogeneous two-phase flow effects in the coolant, for acoustical effects in the steam line and for the dynamics of the recirculation loop and feed-water train. Point kinetics incorporate reactivity feedback for void fraction, for fuel temperature, and for coolant temperature. Control systems and trip logic are simulated for the nuclear steam supply system

  11. TRAC-BWR development

    International Nuclear Information System (INIS)

    Weaver, W.L.; Rouhani, S.Z.

    1983-01-01

    The TRAC-BD1/MOD1 code containing many new or improved models has been assembled and is undergoing developmental assessment and testing and should be available shortly. The preparation of the manual for this code version is underway and should be available to the USNRC and their designated contractors by April of 1984. Finally work is currently underway on a fast running version of TRAC-BWR which will contain a one-dimensional neutron kinetics model

  12. Experience using individually supplied heater rods in critical power testing of advanced BWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Majed, M.; Morback, G.; Wiman, P. [ABB Atom AB, Vasteras (Sweden)] [and others

    1995-09-01

    The ABB Atom FRIGG loop located in Vasteras Sweden has during the last six years given a large experience of critical power measurements for BWR fuel designs using indirectly heated rods with individual power supply. The loop was built in the sixties and designed for maximum 100 bar pressure. Testing up to the mid eighties was performed with directly heated rods using a 9 MW, 80 kA power supply. Providing test data to develop critical power correlations for BWR fuel assemblies requires testing with many radial power distributions over the full range of hydraulic conditions. Indirectly heated rods give large advantages for the testing procedure, particularly convenient for variation of individual rod power. A test method being used at Stern Laboratories (formerly Westinghouse Canada) since the early sixties, allows one fuel assembly to simulate all required radial power distributions. This technique requires reliable indirectly heated rods with independently controlled power supplies and uses insulated electric fuel rod simulators with built-in instrumentation. The FRIGG loop was adapted to this system in 1987. A 4MW power supply with 10 individual units was then installed, and has since been used for testing 24 and 25 rod bundles simulating one subbundle of SVEA-96/100 type fuel assemblies. The experience with the system is very good, as being presented, and it is selected also for a planned upgrading of the facility to 15 MW.

  13. BWR mechanics and materials technology update

    International Nuclear Information System (INIS)

    Kiss, E.

    1983-01-01

    This paper discusses technical results obtained from a variety of important programs underway at General Electric's Nuclear Engineering Division. The principal objective of these programs is to qualify and improve BWR product related technologies that fall broadly under the disciplines of Applied Mechanics and Materials Engineering. The paper identifies and deals with current technical issues that are of general importance to the LWR industry albeit the specific focus is directed to the development and qualification of analytical predictive methods and criteria, and improved materials for use in the design of the BWR. In this paper, specific results and accomplishments are summarized to provide a braod perspective of technology advances. Results are presented in sections which discuss: dynamic analysis and modeling; fatigue and fracture evaluation; materials engineering advances; and flow induced vibration. (orig.)

  14. Water chemistry control practices and data of the European BWR fleet

    International Nuclear Information System (INIS)

    Stellwag, B.; Laendner, A.; Weiss, S.; Huettner, F.

    2010-01-01

    Nineteen BWR plants are in operation in Europe, nine built by ASEA Atom, six by Siemens KWU and four by General Electric. This paper gives an overview of water chemistry operation practices and parameters of the European BWR plants. General design characteristics of the plants are described. Chemistry control strategies and underlying water chemistry guidelines are summarized. Chemistry data are presented and discussed with regard to plant design characteristics. The paper is based on a contract of the European BWR Forum with AREVA on a chemistry sourcebook for member plants. The survey of chemistry data was conducted for the years 2002 to 2008. (author)

  15. Behavioral simulation of a nuclear power plant operator crew for human-machine system design

    International Nuclear Information System (INIS)

    Furuta, K.; Shimada, T.; Kondo, S.

    1999-01-01

    This article proposes an architecture of behavioral simulation of an operator crew in a nuclear power plant including group processes and interactions between the operators and their working environment. An operator model was constructed based on the conceptual human information processor and then substantiated as a knowledge-based system with multiple sets of knowledge base and blackboard, each of which represents an individual operator. From a trade-off between reality and practicality, we adopted an architecture of simulation that consists of the operator, plant and environment models in order to consider operator-environment interactions. The simulation system developed on this framework and called OCCS was tested using a scenario of BWR plant operation. The case study showed that operator-environment interactions have significant effects on operator crew performance and that they should be considered properly for simulating behavior of human-machine systems. The proposed architecture contributed to more realistic simulation in comparison with an experimental result, and a good prospect has been obtained that computer simulation of an operator crew is feasible and useful for human-machine system design. (orig.)

  16. The BWR owners' group planning guide for life extension

    International Nuclear Information System (INIS)

    Smith, S.K.; Lehnert, D.F.; Locke, R.K.

    1991-01-01

    Extending the operating life of a commercial nuclear power plant has been shown to be economically beneficial to both the utility and the electric customer. As such, many utilities are planning and implementing plant life extension (PLEX) programs. A document has been developed which provides guidance to utilities in formulating a PLEX program plant for one or more boiling water reactor (BWR) plants. The guide has been developed by the BWR Owners' Group Plant Life Extension Committee. The principal bases for this guide were the BWR Pilot and Lead Plant Programs. These programs were used as models to develop the 'base plan' described in this guide. By formulating their program plant utilizing the base plan, utilities will be able to maximize the use of existing evaluations and results. The utility planner will build upon the base plan by adding any tasks or features that are unique to their programs. (author)

  17. Metallurgical factors that contribute to cracking in BWR piping

    International Nuclear Information System (INIS)

    Weeks, J.R.

    1975-01-01

    During the fall of 1974 and early winter of 1975, cracks have been discovered in the 4 in. bypass lines of several Boiling Water Reactors (BWR's) in the United States. Further, similar cracks were discovered at two BWR's in Japan during the same period. More recently, cracks have been discovered in the core spray piping and in a furnace-sensitized ''safe end'' and adjacent ''dutchman'' at the Dresden Nuclear Power Station, Unit No. 2. Although inspections at all other U.S. BWR's have not disclosed further instances of cracking in core spray piping, leaking cracks have been found in the core spray piping of two BWR's overseas. Metallurgical examinations of these cracks are not yet complete. The following observations have been made to date. All cracks (except those in the furnace-sensitized safe end and dutchman) occurred in seamless type 304 stainless steel piping or in elbows fabricated from such piping, in the outer heat affected zone of either field or shop welds, in lines isolated from the main primary coolant flow during full power operation, except for the not yet examined cracks in the Monticello bypass lines. The cracks are exclusively intergranular, and occur in metal that has been lightly sensitized by the welding process, with only intermittent grain boundary carbides. They developed in the areas of peak axial residual stresses from welding rather than in the most heavily sensitized areas. No fatigue striations have been found on the fracture surfaces. The evidence received to date strongly indicates that these cracks were caused by intergranular stress corrosion of weld-sensitized stainless steel by BWR water containing greater than 0.2 ppM oxygen. The possible role of fatigue or alternating stresses in this corrosion is not clear. Further, not all the cracks detected to date necessarily have occurred by the same mechanism

  18. Advanced BWR core component designs and the implications for SFD analysis

    International Nuclear Information System (INIS)

    Ott, L.J.

    1997-01-01

    Prior to the DF-4 boiling water reactor (BWR) severe fuel damage (SFD) experiment conducted at the Sandia National Laboratories in 1986, no experimental data base existed for guidance in modeling core component behavior under postulated severe accident conditions in commercial BWRs. This paper will present the lessons learned from the DF-4 experiment (and subsequent German CORA BWR SFD tests) and the impact on core models in the current generation of SFD codes. The DF-4 and CORA BWR test assemblies were modeled on the core component designs circa 1985; that is, the 8 x 8 fuel assembly with two water rods and a cruciform control blade constructed of B 4 C-filled tubelets. Within the past ten years, the state-of-the-art with respect to BWR core component development has out-distanced the current SFD experimental data base and SFD code capabilities. For example, modern BWR control blade design includes hafnium at the tips and top of each control blade wing for longer blade operating lifetimes; also water rods have been replaced by larger water channels for better neutronics economy; and fuel assemblies now contain partial-length fuel rods, again for better neutronics economy. This paper will also discuss the implications of these advanced fuel assembly and core component designs on severe accident progression and on the current SFD code capabilities

  19. CFD Simulation of rigid venting of the containment of a BWR-5 Mark-II reactor; Simulacion CFD de los venteos rigidos de la contencion de un reactor BWR-5 Mark-II

    Energy Technology Data Exchange (ETDEWEB)

    Galindo G, I. F.; Vazquez B, A. K.; Velazquez E, L. [Instituto Nacional de Electricidad y Energias Limpias, Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico); Tijerina S, F.; Tapia M, R., E-mail: francisco.tijerina@cfe.gob.mx [CFE, Central Nucleoelectrica Laguna Verde, Carretera Federal Cardel-Nautla Km 42.5, 91476 Municipio Alto Lucero, Veracruz (Mexico)

    2016-09-15

    In conditions of prolonged loss of external energy or a severe accident, venting to the atmosphere is an alternative to prevent overpressure and release of fission products from the primary containment of a nuclear reactor. Due to the importance of flow determination through rigid vents, a computational fluid dynamics (CFD) model is proposed to verify the capacity of rigid vents in the primary containment of a boiling water reactor (BWR) under different operating conditions (pressure, temperature and compositions of the fluids). The model predicts and provides detailed information on variables such as mass flow and velocity of the venting gases. In the proposed model the primary containment gas is vented to the atmosphere via rigid vents (pipes) from the dry and wet pit. Is assumed that the container is pressurized because is in a defined scenario, and at one point the venting is open and the gas released into the atmosphere. The objective is to characterize the flow and validate the CFD model for the overpressure conditions that occur in an accident such as a LOCA, Sbo, etc. The model is implemented with Ansys-Fluent general-purpose CFD software based on the geometry of the venting ducts of the containment of a BWR. The model is developed three-dimensional and resolves at steady state for compressible flow and includes the effects of the turbulence represented by the Reynolds stress model. The CFD results are compared with the values of a one-dimensional and isentropic model for compressible flow. The relative similarity of results leads to the conclusion that the proposed CFD model can help to predict the rigid venting capacity of the containment of a BWR, however more information is required for full validation of the proposed model. (Author)

  20. Comparison of the long-time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory tests

    International Nuclear Information System (INIS)

    Garzarolli, F.; Broy, Y.; Busch, R.A.

    1996-01-01

    Laboratory corrosion tests have always been an important tool for Zr alloy development and optimization. However, it must be known whether a test is representative for the application in-reactor. To shed more light on this question, coupons of several Zr alloys were exposed under isothermal conditions in BWR and PWR type environments. For evaluation of the in-PWR tests and for comparison of out-of-pile and in-pile tests, the different temperatures and times were normalized to a temperature-independent normalized time by assuming an activation temperature (Q/R) of 14,200 K. Comparison of in-PWR and out-of-pile corrosion behavior of Zircaloy shows that corrosion deviates to higher values in PWR if a weight gain of about 50 mg/dm 2 is exceeded. In the case of the Zr2.5Nb alloy, a slight deviation of corrosion as compared to laboratory results starts in PWR only above a weight gain of 100 mg/dm 2 . In BWR, corrosion of Zircaloy is enhanced early in time if compared with out-of-pile. Zr2.5Nb exhibits higher corrosion results in BWR than Zircaloy-4. Alloying chemistry and material condition affect corrosion of Zr alloys. However, several of the material parameters have shown a different ranking in the different environments. Nevertheless, several material parameters influencing in-reactor corrosion like the second phase particle (SPP) size of in-PWR behavior as the Sn and Fe content can be optimized by out-of-pile corrosion tests

  1. Assessment of two BWR accident management strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Petek, M.

    1994-01-01

    Candidate mitigative strategies for the management of in-vessel events during the late phase (after-core degradation has occurred) of postulated boiling water reactor (BWR) severe accidents were considered at Oak Ridge National Laboratory (ORNL) during 1990. The identification of new strategies was subject to the constraint that they should, to the maximum extent possible, make use of the existing equipment and water resources of the BWR facilities, and not require major equipment modifications or additions. As a result of this effort, two of these candidate strategies were recommended for further assessment. The first was a strategy for containment flooding to maintain the core and structural debris within the reactor vessel in the event that vessel injection cannot be restored to terminate a severe accident sequence. The second strategy pertained to the opposite case, for which vessel injection would be restored after control blade melting had begun; its purpose was to provide an injection source of borated water at the concentration necessary to preclude criticality upon recovering a damaged BWR core. Assessments of these two strategies were performed during 1991 and this paper provides a discussion of the motivation for and purpose of these strategies, and the potential for their success. ((orig.))

  2. Development of water chemistry diagnosis system for BWR primary loop

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu; Uchida, Shunsuke; Ohsumi, Katsumi.

    1988-01-01

    The prototype of a water chemistry diagnosis system for BWR primary loop has been developed. Its purposes are improvement of water chemistry control and reduction of the work burden on plant chemistry personnel. It has three main features as follows. (1) Intensifying the observation of water chemistry conditions by variable sampling intervals based on the on-line measured data. (2) Early detection of water chemistry data trends using a second order regression curve which is calculated from the measured data, and then searching the cause of anomaly if anything (3) Diagnosis of Fe concentration in feedwater using model simulations, in order to lower the radiation level in the primary system. (author)

  3. BWR plant dynamic analysis code BWRDYN user's manual

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Yoshida, Kazuo; Fujiki, Kazuo

    1989-06-01

    Computer code BWRDYN has been developed for thermal-hydraulic analysis of a BWR plant. It can analyze the various types of transient caused by not only small but also large disturbances such as operating mode changes and/or system malfunctions. The verification of main analytical models of the BWRDYN code has been performed with measured data of actual BWR plant. Furthermore, the installation of BOP (Balance of Plant) model has made it possible to analyze the effect of BOP on reactor system. This report describes on analytical models and instructions for user of the BWRDYN code. (author)

  4. Modern technology applied in the advanced BWR (ABWR)

    International Nuclear Information System (INIS)

    Hucik, S.A.

    1988-01-01

    The advanced boiling water reactor (ABWR) represents the next generation of light water reactors (LWR) to be introduced into commercial operation in the 1990's. The ABWR is the result of the continuing evolution of the BWR, incorporating state-of-the-art technology and improvements based on worldwide experience, and extensive design and test and development programs. This paper discusses how the ABWR development objective focused on an optimized selection of advanced technologies and proven BWR technologies. A technical evaluation of the ABWR shows its superiority in terms of performance characteristics and economics relative to current LWR designs

  5. BWR 2 % main recirculation line break LOCA tests RUNs 915 and 920 without HPCS in ROSA-III program

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Nakamura, Hideo; Anoda, Yoshinari; Kumamaru, Hiroshige; Yonomoto, Taisuke; Koizumi, Yasuo; Tasaka, Kanji

    1987-03-01

    This report presents the experimental results of BWR LOCA integral tests, RUNs 915 and 920, which are performed in the ROSA-III program simulating 2 % main recirculation line break LOCA tests with and without pressure control system operation. The ROSA-III test facility simulates a BWR system with volume scale of 1/424 and has four half-length electrically heated fuel bundles, two active recirculation loops, four types of ECCS's, and steam and feedwater systems. The report presents (1) the experimental results of 2 % small break LOCA phanomena in the ROSA-III system and (2) the effects of the pressure control system on the LOCA phenomena. The pressure control system contributed to (A) prevent bulk flashing in the early blowdown phase, (B) early closure of MSIV by L2 level trip, (C) early actuation of ADS by L1 level trip. However, the core thermal responses of the two tests were similar because of the similar mass inventory in PV after the ADS actuation in both tests. (author)

  6. BWR recirculation pump diagnostic expert system

    International Nuclear Information System (INIS)

    Chiang, S.C.; Morimoto, C.N.; Torres, M.R.

    2004-01-01

    At General Electric (GE), an on-line expert system to support maintenance decisions for BWR recirculation pumps for nuclear power plants has been developed. This diagnostic expert system is an interactive on-line system that furnishes diagnostic information concerning BWR recirculation pump operational problems. It effectively provides the recirculation pump diagnostic expertise in the plant control room continuously 24 hours a day. The expert system is interfaced to an on-line monitoring system, which uses existing plant sensors to acquire non-safety related data in real time. The expert system correlates and evaluates process data and vibration data by applying expert rules to determine the condition of a BWR recirculation pump system by applying knowledge based rules. Any diagnosis will be automatically displayed, indicating which pump may have a problem, the category of the problem, and the degree of concern expressed by the validity index and color hierarchy. The rules incorporate the expert knowledge from various technical sources such as plant experience, engineering principles, and published reports. These rules are installed in IF-THEN formats and the resulting truth values are also expressed in fuzzy terms and a certainty factor called a validity index. This GE Recirculation Pump Expert System uses industry-standard software, hardware, and network access to provide flexible interfaces with other possible data acquisition systems. Gensym G2 Real-Time Expert System is used for the expert shell and provides the graphical user interface, knowledge base, and inference engine capabilities. (author)

  7. Economic analysis of hydride fueled BWR

    International Nuclear Information System (INIS)

    Ganda, F.; Shuffler, C.; Greenspan, E.; Todreas, N.

    2009-01-01

    The economic implications of designing BWR cores with hydride fuels instead of conventional oxide fuels are analyzed. The economic analysis methodology adopted is based on the lifetime levelized cost of electricity (COE). Bracketing values (1970 and 3010 $/kWe) are used for the overnight construction costs and for the power scaling factors (0.4 and 0.8) that correlate between a change in the capital cost to a change in the power level. It is concluded that a newly constructed BWR reactor could substantially benefit from the use of 10 x 10 hydride fuel bundles instead of 10 x 10 oxide fuel bundles design presently in use. The cost saving would depend on the core pressure drop constraint that can be implemented in newly constructed BWRs - it is between 2% and 3% for a core pressure drop constraint as of the reference BWR, between 9% and 15% for a 50% higher core pressure drop, and between 12% and 21% higher for close to 100% core pressure. The attainable cost reduction was found insensitive to the specific construction cost but strongly dependent on the power scaling factor. The cost advantage of hydride fuelled cores as compared to that of the oxide reference core depends only weakly on the uranium and SWU prices, on the 'per volume base' fabrication cost of hydride fuels, and on the discount rate used. To be economically competitive, the uranium enrichment required for the hydride fuelled core needs to be around 10%.

  8. Study of transient rod extraction failure without RBM in a BWR

    International Nuclear Information System (INIS)

    Vallejo Q, J. A.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L.

    2015-09-01

    The study and analysis of the operational transients are important for predicting the behavior of a system to short-term events and the impact that would cause this transient. For the nuclear industry these studies are indispensable due to economic, environmental and social impacts that could cause an accident during the operation of a nuclear reactor. In this paper the preparation, simulation and analysis results of the transient rod extraction failure in which not taken into operation the RBM is presented. The study was conducted for a BWR of 2027 MWt, in an intermediate cycle of its useful life and using the computer code Simulate-3K a scenario of anomalies was created in the core reactivity which gave a coherent prediction to the type of presented event. (Author)

  9. BWR Water Chemistry Guidelines: 1993 Revision, Normal and hydrogen water chemistry

    International Nuclear Information System (INIS)

    Karlberg, G.; Goddard, C.; Fitzpatrick, S.

    1994-02-01

    The goal of water chemistry control is to extend the operating life of the reactor and rector coolant system, balance-of-plant components, and turbines while simultaneously controlling costs to safeguard the continued economic viability of the nuclear power generation investment. To further this goal an industry committee of chemistry personnel prepared guidelines to identify the benefits, risks, and costs associated with water chemistry in BWRs and to provide a template for an optimized water chemistry program. This document replaces the BWR Normal Water Chemistry Guidelines - 1986 Revision and the BWR Hydrogen Water Chemistry Guidelines -- 1987 Revision. It expands on the previous guidelines documents by covering the economic implications of BWR water chemistry control

  10. Nuclear reactor core modelling in multifunctional simulators

    International Nuclear Information System (INIS)

    Puska, E.K.

    1999-01-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  11. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  12. BWR alloy 182 stress Corrosion Cracking Experience

    International Nuclear Information System (INIS)

    Horn, R.M.; Hickling, J.

    2002-01-01

    Modern Boiling Water Reactors (BWR) have successfully operated for more than three decades. Over that time frame, different materials issues have continued to arise, leading to comprehensive efforts to understand the root cause while concurrently developing different mitigation strategies to address near-term, continued operation, as well as provide long-term paths to extended plant life. These activities have led to methods to inspect components to quantify the extent of degradation, appropriate methods of analysis to quantify structural margin, repair designs (or strategies to replace the component function) and improved materials for current and future application. The primary materials issue has been the occurrence of stress corrosion cracking (SCC). While this phenomenon has been primarily associated with austenitic stainless steel, it has also been found in nickel-base weldments used to join piping and reactor internal components to the reactor pressure vessel consistent with fabrication practices throughout the nuclear industry. The objective of this paper is to focus on the history and learning gained regarding Alloy 182 weld metal. The paper will discuss the chronology of weld metal cracking in piping components as well as in reactor internal components. The BWR industry has pro-actively developed inspection processes and procedures that have been successfully used to interrogate different locations for the existence of cracking. The recognition of the potential for cracking has also led to extensive studies to understand cracking behavior. Among other things, work has been performed to characterize crack growth rates in both oxygenated and hydrogenated environments. The latter may also be relevant to PWR systems. These data, along with the understanding of stress corrosion cracking processes, have led to extensive implementation of appropriate mitigation measures. (authors)

  13. TRACE/PARCS analysis of the OECD/NEA Oskarshamn-2 BWR stability benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, T. [Univ. of Illinois, Urbana-Champaign, IL (United States); Downar, T.; Xu, Y.; Wysocki, A. [Univ. of Michigan, Ann Arbor, MI (United States); Ivanov, K.; Magedanz, J.; Hardgrove, M. [Pennsylvania State Univ., Univ. Park, PA (United States); March-Leuba, J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hudson, N.; Woodyatt, D. [Nuclear Regulatory Commission, Rockville, MD (United States)

    2012-07-01

    On February 25, 1999, the Oskarshamn-2 NPP experienced a stability event which culminated in diverging power oscillations with a decay ratio of about 1.4. The event was successfully modeled by the TRACE/PARCS coupled code system, and further analysis of the event is described in this paper. The results show very good agreement with the plant data, capturing the entire behavior of the transient including the onset of instability, growth of the oscillations (decay ratio) and oscillation frequency. This provides confidence in the prediction of other parameters which are not available from the plant records. The event provides coupled code validation for a challenging BWR stability event, which involves the accurate simulation of neutron kinetics (NK), thermal-hydraulics (TH), and TH/NK. coupling. The success of this work has demonstrated the ability of the 3-D coupled systems code TRACE/PARCS to capture the complex behavior of BWR stability events. The problem was released as an international OECD/NEA benchmark, and it is the first benchmark based on measured plant data for a stability event with a DR greater than one. Interested participants are invited to contact authors for more information. (authors)

  14. Final results of the XR2-1 BWR metallic melt relocation experiment

    International Nuclear Information System (INIS)

    Gauntt, R.O.; Humphries, L.L.

    1997-08-01

    This report documents the final results of the XR2-1 boiling water reactor (BWR) metallic melt relocation experiment, conducted at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. The objective of this experiment was to investigate the material relocation processes and relocation pathways in a dry BWR core following a severe nuclear reactor accident such as an unrecovered station blackout accident. The imposed test conditions (initial thermal state and the melt generation rates) simulated the conditions for the postulated accident scenario and the prototypic design of the lower core test section (in composition and in geometry) ensured that thermal masses and physical flow barriers were modeled adequately. The experiment has shown that, under dry core conditions, the metallic core materials that melt and drain from the upper core regions can drain from the core region entirely without formation of robust coherent blockages in the lower core. Temporary blockages that suspended pools of molten metal later melted, allowing the metals to continue draining downward. The test facility and instrumentation are described in detail. The test progression and results are presented and compared to MERIS code analyses. 6 refs., 55 figs., 4 tabs

  15. Validations of BWR nuclear design code using ABWR MOX numerical benchmark problems

    International Nuclear Information System (INIS)

    Takano, Shou; Sasagawa, Masaru; Yamana, Teppei; Ikehara, Tadashi; Yanagisawa, Naoki

    2017-01-01

    BWR core design code package (the HINES assembly code and the PANACH core simulator), being used for full MOX-ABWR core design, has been benchmarked against the high-fidelity numerical solutions as references, for the purpose of validating its capability of predicting the BWR core design parameters systematically from UO 2 to 100% MOX cores. The reference solutions were created by whole core critical calculations using MCNPs with the precisely modeled ABWR cores both in hot and cold conditions at BOC and EOC of the equilibrium cycle. A Doppler-Broadening Rejection Correction (DCRB) implemented MCNP5-1.4 with ENDF/B-VII.0 was mainly used to evaluate the core design parameters, except for effective delayed neutron fraction (β eff ) and prompt neutron lifetime (l) with MCNP6.1. The discrepancies in the results between the design codes HINES-PANACH and MCNPs for the core design parameters such as the bundle powers, hot pin powers, control rod worth, boron worth, void reactivity, Doppler reactivity, β eff and l, are almost within target accuracy, leading to the conclusion that HINES-PANACH has sufficient fidelity for application to full MOX-ABWR core design. (author)

  16. JAPC Compact Simulator evolution to latest integration

    International Nuclear Information System (INIS)

    Nabeta, T.; Nakayama, Y.

    1999-01-01

    This paper describes the evolution of JAPC compact simulator from the first installation in 1988 until recent integration with SIMULATE-3 engineering code core model and extended simulation for Mid-loop operation and severe accidents. JAPC Compact Simulator has an advanced super compact rotating panel design. Three plants, Tokai 2 (GE BWR 5), Tsuruga 1 (GE BWR 2), Tsuruga 2 (MHI PWR 4-Loop) are simulated. The simulator has been used for training of operator and engineering personnel, and has continuously been upgraded to follow normal plant modifications as well as development in modeling and computer technology. The integration of SIMULATE-3 core model is, to our knowledge, the first integration of a real design code into a training simulator. SIMULATE-3 has been successfully integrated into the simulator and run in real time, without compromising the accuracy of SIMULATE-3. The code has been modified to also handle mid-loop operation and severe accidents. (author)

  17. Development of the BWR Dry Core Initial and Boundary Conditions for the SNL XR2 Experiments; TOPICAL

    International Nuclear Information System (INIS)

    Ott, L.J.

    1994-01-01

    The objectives of the Boiling Water Reactor Experimental Analysis and Model Development for Severe Accidents (BEAMD) Program at the Oak Ridge National Laboratory (ORNL) are: (1) the development of a sound quantitative understanding of boiling water reactor (BWR) core melt progression; this includes control blade and channel box effects, metallic melt relocation and possible blockage formation under severe accident conditions, and (2) provision of BWR melt progression modeling capabilities in SCDAP/RELAP5 (consistent with the BWR experimental data base). This requires the assessment of current modeling of BWR core melt progression against the expanding BWR data base. Emphasis is placed upon data from the BWR tests in the German CORA test facility and from the ex-reactor experiments[Sandia National Laboratories (SNL)] on metallic melt relocation and blockage formation in BWRs, as well as upon in-reactor data from the Annular Core Research Reactor (ACRR) DF-4 BWR test (conducted in 1986 at SNL). The BEAMD Program is a derivative of the BWR Severe Accident Technology Programs at ORNL. The ORNL BWR programs have studied postulated severe accidents in BWRs and have developed a set of models specific to boiling water reactor response under severe accident conditions. These models, in an experiment-specific format, have been successfully applied to both pretest and posttest analyses of the DF-4 experiment, and the BWR severe fuel damage (SFD) experiments performed in the CORA facility at the Kernforschungszentrum Karlsruhe (KfK) in Germany, resulting in excellent agreement between model prediction and experiment. The ORNL BWR models have provided for more precise predictions of the conditions in the BWR experiments than were previously available. This has provided a basis for more accurate interpretation of the phenomena for which the experiments are performed. The experiment-specific models, as used in the ORNL DF-4 and CORA BWR experimental analyses, also provide a basis

  18. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior

  19. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    International Nuclear Information System (INIS)

    Thakre, S.; Ma, W.

    2013-08-01

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  20. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  1. Thermohydraulic stability coupled to the neutronic in a BWR; Estabilidad termohidraulica acoplada a la neutronica en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Calleros M, G.; Zapata Y, M.; Gomez H, R.A.; Mendez M, A. [Comision Federal de Electricidad, Central Nucleoelectrica de Laguna Verde, Carretera Cardel-Nautla Km. 42.5, Mpio. Alto Lucero, Veracruz (Mexico); Castlllo D, R. [ININ, Carretera Mexico-Toluca Km 36.5, La Marquesa, Estado de Mexico (Mexico)]. e-mail: gcm9acpp@cfe.gob.mx

    2006-07-01

    In a BWR type reactor the phenomenon of the nuclear fission is presented, in which are liberated in stochastic form neutrons, originating that the population of the same ones varies in statistic form around a mean value. This variation will cause that when the neutron flow impacts on the neutron detectors, its are had as a result neutron flow signals with fluctuations around an average value. In this article it is shown that it conforms it lapses the time, this variations in the neutron flow (and therefore, in the flow signal due only to the fission), they presented oscillations inside a stable range, which won't be divergent. Considering that the BWR is characterized because boiling phenomena are presented, which affect the moderation of the neutrons, additional variations will be had in the signal coming from the neutron detectors, with relationship to the fission itself, which will be influenced by the feedback of the moderator's reactivity and of the temperature of the fuel pellet. Also, as the BWR it has coupled control systems to maintain the coolant level one and of the thermal power of the reactor, for each control action it was affected the neutron population. This means that the reactor could end up straying of a stable state condition. By it previously described, the study of the thermohydraulic stability coupled to the neutronic is complex. In this work it is shown the phenomenology, the mathematical models and the theoretical behavior associated to the stability of the BWR type reactor; the variables that affect it are identified, the models that reproduce the behavior of the thermohydraulic stability coupled to the neutronic, the way to maintain stable the reactor and the instrumentation that can settle to detect and to suppress uncertainties is described. In particular, is make reference to the evolution of the methods to maintain the stability of the reactor and the detection system and suppression of uncertainties implemented in the

  2. Flex concept for US-A BWR extended loss of AC power events

    International Nuclear Information System (INIS)

    Powers, J.; Aoyagi, Y.; Kataoka, K.; Thomas, S.; Mookhoek, B.

    2015-09-01

    The US-Advanced Boiling Water Reactor (US-A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (Stp 3 and 4) Combined License Application (Cola) and incorporates numerous design and technology enhancements for improved safety performance. Nuclear Innovation North America (NINA) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The Stp 3 and 4 project has finished the US NRC technical review of the Cola, and the final safety evaluation report (FSER) is scheduled to be issued by the US NRC in 2015. Following the accident at the Fukushima Dai-ichi plant, the US-A BWR was reviewed for Beyond Design Basis Event (BDBE) safety using industry and regulatory guidance for US NRC Order EA-12-049 Order Modifying Licenses with Regard to Requirements for Mitigation of Beyond Design Basis External Events (BDBEE). By virtue of the design approach, the US-A BWR is capable of providing an indefinite coping period for a station blackout. The use of installed systems with extended coping times is a significant advantage of the US-A BWR compared to most of the plants currently operating in the U.S. In addition, the Stp 3 and 4 design incorporates enhancements consistent with the current US industry Diverse and Flexible Coping Strategies (Flex) initiative. The final technical topic requiring review by the US NRC Advisory Committee on Reactor Safeguards was the Flex Integrated Plan submitted by NINA, and this review was successfully completed. This paper summarizes the progress of the US-A BWR in licensing the Flex Integrated Plan for the project, and describes the technology and features of the US-A BWR design that contribute to safety post-Fukushima. It also provides an informational comparison of the design capabilities of the US-A BWR for extreme external events, and relates these capabilities to re

  3. Flex concept for US-A BWR extended loss of AC power events

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Aoyagi, Y.; Kataoka, K. [Toshiba Corporation, Kawasaki, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (US-A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (Stp 3 and 4) Combined License Application (Cola) and incorporates numerous design and technology enhancements for improved safety performance. Nuclear Innovation North America (NINA) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The Stp 3 and 4 project has finished the US NRC technical review of the Cola, and the final safety evaluation report (FSER) is scheduled to be issued by the US NRC in 2015. Following the accident at the Fukushima Dai-ichi plant, the US-A BWR was reviewed for Beyond Design Basis Event (BDBE) safety using industry and regulatory guidance for US NRC Order EA-12-049 Order Modifying Licenses with Regard to Requirements for Mitigation of Beyond Design Basis External Events (BDBEE). By virtue of the design approach, the US-A BWR is capable of providing an indefinite coping period for a station blackout. The use of installed systems with extended coping times is a significant advantage of the US-A BWR compared to most of the plants currently operating in the U.S. In addition, the Stp 3 and 4 design incorporates enhancements consistent with the current US industry Diverse and Flexible Coping Strategies (Flex) initiative. The final technical topic requiring review by the US NRC Advisory Committee on Reactor Safeguards was the Flex Integrated Plan submitted by NINA, and this review was successfully completed. This paper summarizes the progress of the US-A BWR in licensing the Flex Integrated Plan for the project, and describes the technology and features of the US-A BWR design that contribute to safety post-Fukushima. It also provides an informational comparison of the design capabilities of the US-A BWR for extreme external events, and relates these capabilities to re

  4. Development of a methodology of analysis of instabilities in BWR reactors; Desarrollo de una metodologia de analisis de inestabilidades en reactores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fenoll, M.; Abarca, A.; Barrachina, T.; Miro, R.; Verdu, G.

    2012-07-01

    This paper presents a methodology of analysis of the reactors instabilities of BWR type. This methodology covers of modal analysis of the point operation techniques of signal analysis and simulation of transients, through 3D Coupled RELAP5/PARCSv2.7 code.

  5. Dose rate reduction method for NMCA applied BWR plants

    International Nuclear Information System (INIS)

    Nagase, Makoto; Aizawa, Motohiro; Ito, Tsuyoshi; Hosokawa, Hideyuki; Varela, Juan; Caine, Thomas

    2012-09-01

    BRAC (BWR Radiation Assessment and Control) dose rate is used as an indicator of the incorporation of activated corrosion by products into BWR recirculation piping, which is known to be a significant contributor to dose rate received by workers during refueling outages. In order to reduce radiation exposure of the workers during the outage, it is desirable to keep BRAC dose rates as low as possible. After HWC was adopted to reduce IGSCC, a BRAC dose rate increase was observed in many plants. As a countermeasure to these rapid dose rate increases under HWC conditions, Zn injection was widely adopted in United States and Europe resulting in a reduction of BRAC dose rates. However, BRAC dose rates in several plants remain high, prompting the industry to continue to investigate methods to achieve further reductions. In recent years a large portion of the BWR fleet has adopted NMCA (NobleChem TM ) to enhance the hydrogen injection effect to suppress SCC. After NMCA, especially OLNC (On-Line NobleChem TM ), BRAC dose rates were observed to decrease. In some OLNC applied BWR plants this reduction was observed year after year to reach a new reduced equilibrium level. This dose rate reduction trends suggest the potential dose reduction might be obtained by the combination of Pt and Zn injection. So, laboratory experiments and in-plant tests were carried out to evaluate the effect of Pt and Zn on Co-60 deposition behaviour. Firstly, laboratory experiments were conducted to study the effect of noble metal deposition on Co deposition on stainless steel surfaces. Polished type 316 stainless steel coupons were prepared and some of them were OLNC treated in the test loop before the Co deposition test. Water chemistry conditions to simulate HWC were as follows: Dissolved oxygen, hydrogen and hydrogen peroxide were below 5 ppb, 100 ppb and 0 ppb (no addition), respectively. Zn was injected to target a concentration of 5 ppb. The test was conducted up to 1500 hours at 553 K. Test

  6. Maximum thermal loading test of BWR fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Yoshitaka; Yoshimura, Kunihiro; Nakamura, Satoshi; Ishizuka, Takao.

    1987-01-01

    Various proving tests on the reliability of nuclear power plants have been conducted at the Nuclear Power Engineering Test Center and at the Japan Power Plant Engineering and Inspection Corporation. The tests were initiated at the request of the Ministry of International Trade and Industry (MITI). Toshiba undertook one of the proving tests on the reliability of nuclear fuel assembly; the maximum thermal loading test of BWR fuel assembly from the Nuclear Power Engineering Test Center. These tests are part of the proving tests mentioned above, and their purpose is to confirm the reliability of the thermal hydraulic engineering techniques. Toshiba has been engaged for the past nine years in the design, fabrication and testing of the equipment. For the project, a test model fuel assembly was used to measure the critical power of the BWR fuel assembly and the void and fluidity of the coolant. From the test results, it has been confirmed that the heat is transferred safely from the fuel assembly to the coolant in the BWR nuclear power plant. In addition, the propriety and reliability of the thermal hydraulic engineering techniques for the fuel assembly have been proved. (author)

  7. Experimental data report for Test TS-2 reactivity initiated accident test in NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio; Sobajima, Makoto; Fujishiro, Toshio; Kobayashi, Shinsho; Yamahara, Takeshi; Sukegawa, Tomohide; Kikuchi, Teruo

    1993-02-01

    This report presents experimental data for Test TS-2 which was the second test in a series of Reactivity Initiated Accident (RIA) condition test using pre-irradiated BWR fuel rods, performed at the Nuclear Safety Research Reactor (NSRR) in February, 1990. Test fuel rod used in the Test TS-2 was a short sized BWR (7x7) type rod which was fabricated from a commercial rod irradiated at Tsuruga Unit 1 power reactor. The fuel had an initial enrichment of 2.79% and a burnup of 21.3Gwd/tU (bundle average). A pulse irradiation of the test fuel rod was performed under a cooling condition of stagnant water at atmospheric pressure and at ambient temperature which simulated a BWR's cold start-up RIA event. The energy deposition of the fuel rod in this test was evaluated to be 72±5cal/g·fuel (66±5cal/g·fuel in peak fuel enthalpy) and no fuel failure was observed. Descriptions on test conditions, test procedures, transient behavior of the test rod during the pulse irradiation, and, results of pre and post pulse irradiation examinations are described in this report. (author)

  8. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor; Evaluacion del diseno radial de celdas de combustible en un ciclo de operacion de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez C, J.; Martin del Campo M, C. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Facultad de Ingenieria, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: jgco@ver.megared.net.mx

    2003-07-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  9. BWR condensate filtration studies

    International Nuclear Information System (INIS)

    Wilson, J.A.; Pasricha, A.; Rekart, T.E.

    1993-09-01

    Poor removal of particulate corrosion products (especially iron) from condensate is one of the major problems in BWR systems. The presence of activated corrosion products creates ''hot spots'' and increases piping dose rates. Also, fuel efficiency is reduced and the risk of fuel failure is increased by the deposit of corrosion products on the fuel. Because of these concerns, current EPRI guidelines call for a maximum of 2 ppb of iron in the reactor feedwater with a level of 0.5 ppb being especially desirable. It has become clear that conventional deep bed resins are incapable of meeting these levels. While installation of prefilter systems is an option, it would be more economical for plants with naked deep beds to find an improved bead resin for use in existing systems. BWR condensate filtration technologies are being tested on a condensate side stream at Hope Creek Nuclear Generating Station. After two years of testing, hollow fiber filters (HFF) and fiber matrix filters (FMF), and low crosslink cation resin, all provide acceptable results. The results are presented for pressure drop, filtration efficiency, and water quality measurements. The costs are compared for backwashable non-precoat HFF and FMF. Results are also presented for full deep bed vessel tests of the low crosslink cation resin

  10. BWR Mark I pressure suppression study: bench mark experiments

    International Nuclear Information System (INIS)

    Lai, W.; McCauley, E.W.

    1977-01-01

    Computer simulations representative of the wetwell of Mark I BWR's have predicted pressures and related phenomena. However, calculational predictions for purposes of engineering decision will be possible only if the code can be verified, i.e., shown to compute in accord with measured values. Described in the report is a set of single downcomer spherical flask bench mark experiments designed to produce quantitative data to validate various air-water dynamic computations; the experiments were performed since relevant bench mark data were not available from outside sources. Secondary purposes of the study were to provide a test bed for the instrumentation and post-experiment data processing techniques to be used in the Laboratory's reactor safety research program and to provide additional masurements for the air-water scaling study

  11. The AutoAssociative Neural Network in signal analysis: II. Application to on-line monitoring of a simulated BWR component

    International Nuclear Information System (INIS)

    Marseguerra, M.; Zoia, A.

    2005-01-01

    In this paper, Robust AutoAssociative Neural Networks (RAANN) are applied to a series of signals produced by the Halden simulator of the 1200MWe BWR Forsmark-3 plant in Sweden. The applications concern: - correction of drifts and gross errors in sensors, for diagnostic and control purposes, - cluster analysis, to individuate a failed component and the intensity of the failure, - forecasting system signals, for safety or economic purposes, - reconstruction of unmeasured signals (virtual sensors). In the attainment of the above results, the geometric interpretation of the mapping performed by the network, propounded in Part I of this work, has provided a reasoned choice of the most critical free parameter, i.e., the number f of nodes of the bottleneck layer, thus allowing a deep understanding of the network functioning and also avoiding the traditional and troubling procedure of selection by trial-and-error. The theoretical basis of this analysis, discussed in details in the companion paper, is founded on the idea of dimension and in particular of fractal dimension, which has been used as a numerical estimator of f

  12. Simulation of the flow obstruction of a jet pump in a BWR reactor with the code RELAP/SCDAPSIM

    International Nuclear Information System (INIS)

    Cardenas V, J.; Filio L, C.

    2016-09-01

    This work simulates the flow obstruction of a jet pump in one of the recirculation loops of a nuclear power plant with a reactor of type BWR at 100% of operating power, in order to analyze the behavior of the total flow of the refrigerant passing through the reactor core, the total flow in each recirculation loop of the reactor, together with the 10 jet pumps of each loop. The behavior of the power and the reactivity insertion due to the change of the refrigerant flow pattern is also analyzed. The simulation was carried out using the RELAP/SCDAPSIM version 3.5 code, using a reactor model with 10 jet pumps in each recirculation loop and a core consisting of 6 radial zones and 25 axial zones. The scenario postulates the flow obstruction in a jet pump in a recirculation loop A when the reactor operates at 100% rated power, causing a change in the total flow of refrigerant in the reactor core, leading to a decrease in power. Once the reactor conditions are established to its new power, the operator tries to recover the nominal power using the flow control valve of the recirculation loop A, opening stepwise as a strategy to safely recover the reactor power. In this analysis is assumed that the intention of the nuclear plant operator is to maintain the operation of the reactor during the established cycle. (Author)

  13. Characteristics of fluctuating pressure generated in BWR main steam lines

    International Nuclear Information System (INIS)

    Takahashi, Shiro; Okuyama, Keita; Tamura, Akinori

    2009-01-01

    The BWR-3 steam dryer in the Quad Cities Unit 2 Nuclear Power Plant was damaged by high cycle fatigue due to acoustic-induced vibration. The dryer failure was as attributed to flow-induced acoustic resonance at the stub pipes of safety relief valves (SRVs) in the main steam lines (MSLs). The acoustic resonance was considered to be generated by interaction between the sound field and an unstable shear layer across the closed side branches with SRV stub pipes. We have started a research program on BWR dryers to develop their loading evaluation methods. Moreover, it has been necessary to evaluate the dryer integrity of BWR-5 plants which are the main type of BWR in Japan. In the present study, we used 1/10-scale BWR tests and analyses to investigate the flow-induced acoustic resonance and acoustic characteristics in MSLs. The test apparatus consisted of a steam dryer, a steam dome and 4 MSLs with 20 SRV stub pipes. A finite element method (FEM) was applied for the calculation of three-dimensional wave equations in acoustic analysis. We demonstrated that remarkable fluctuating pressures occurred in high and low frequency regions. High frequency fluctuating pressures was generated by the flow-induced acoustic resonance in the SRV stub pipes. Low frequency fluctuating pressure was generated in an MSL with the dead leg. The frequency of the latter almost coincided with the natural frequency of the MSL with the dead leg. The amplitude of the fluctuating pressures in the multiple stub pipes became more intense because of interaction between them compared with that in the single stub pipe. Acoustic analysis results showed that the multiple stub pipes caused several natural frequencies in the vicinity of the natural frequency of the single stub pipe and several modes of the standing wave in the MSLs. (author)

  14. The BWR vessel and internals project - 2001 and beyond

    International Nuclear Information System (INIS)

    Wagoner, V.; Mulford, T.

    2001-01-01

    The BWR Vessel and Internals Project (BWRVIP) is an international association of utilities owning boiling water reactors (BWRs). Figure 1 contains a list of current BWRVIP member utilities. The association was formed in 1994 with the following objectives: to lead the BWR industry toward generic resolution of reactor pressure vessel and internals material condition issues; to identify or develop generic, cost-effective strategies from which each operating plant will select the most appropriate alternative; to serve as the focal point for the regulatory interface with the industry on BWR vessel and internals issues; and to share information and promote communication and cooperation among participating utilities. The initial issue faced by the BWRVIP was core shroud cracking that had been observed in a number of BWRs. The BWRVIP reacted by quickly developing a set of industry guidelines to assist utilities in inspecting, evaluating, and, if necessary, repairing cracked shrouds. Subsequently, the BWRVIP pro-actively developed a comprehensive set of guidelines for managing degradation in other reactor internal components, including the reactor pressure vessel itself. The major components addressed by the BWRVIP are included. (author)

  15. The BWR vessel and internals project - 2001 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, V. [Carolina Power and Light, Progress Energy Building, NC (United States); Mulford, T. [Electric Power Research Institute, Palo Alto, CA (United States)

    2001-07-01

    The BWR Vessel and Internals Project (BWRVIP) is an international association of utilities owning boiling water reactors (BWRs). Figure 1 contains a list of current BWRVIP member utilities. The association was formed in 1994 with the following objectives: to lead the BWR industry toward generic resolution of reactor pressure vessel and internals material condition issues; to identify or develop generic, cost-effective strategies from which each operating plant will select the most appropriate alternative; to serve as the focal point for the regulatory interface with the industry on BWR vessel and internals issues; and to share information and promote communication and cooperation among participating utilities. The initial issue faced by the BWRVIP was core shroud cracking that had been observed in a number of BWRs. The BWRVIP reacted by quickly developing a set of industry guidelines to assist utilities in inspecting, evaluating, and, if necessary, repairing cracked shrouds. Subsequently, the BWRVIP pro-actively developed a comprehensive set of guidelines for managing degradation in other reactor internal components, including the reactor pressure vessel itself. The major components addressed by the BWRVIP are included. (author)

  16. Advanced chemistry management system to optimize BWR chemistry control

    International Nuclear Information System (INIS)

    Maeda, K.; Nagasawa, K.

    2002-01-01

    BWR plant chemistry control has close relationships among nuclear safety, component reliability, radiation field management and fuel integrity. Advanced technology is required to improve chemistry control [1,3,6,7,10,11]. Toshiba has developed TACMAN (Toshiba Advanced Chemistry Management system) to support BWR chemistry control. The TACMAN has been developed as response to utilities' years of requirements to keep plant operation safety, reliability and cost benefit. The advanced technology built into the TACMAN allows utilities to make efficient chemistry control and to keep cost benefit. TACMAN is currently being used in response to the needs for tools those plant chemists and engineers could use to optimize and identify plant chemistry conditions continuously. If an incipient condition or anomaly is detected at early stage, root causes evaluation and immediate countermeasures can be provided. Especially, the expert system brings numerous and competitive advantages not only to improve plant chemistry reliability but also to standardize and systematize know-how, empirical knowledge and technologies in BWR chemistry This paper shows detail functions of TACMAN and practical results to evaluate actual plant. (authors)

  17. Crud deposition modeling on BWR fuel rods

    International Nuclear Information System (INIS)

    Kucuk, Aylin; Cheng, Bo; Potts, Gerald A.; Shiralkar, Bharat; Morgan, Dave; Epperson, Kenny; Gose, Garry

    2014-01-01

    Deposition of boiling water reactor (BWR) system corrosion products (crud) on operating fuel rods has resulted in performance-limiting conditions in a number of plants. The operational impact of performance-limiting conditions involving crud deposition can be detrimental to a BWR operator, resulting in unplanned or increased frequency of fuel inspections, fuel failure and associated radiological consequences, operational restrictions including core power derate and/or forced shutdowns to remove failed fuel, premature discharge of individual bundles or entire reloads, and/or undesirable core design restrictions. To facilitate improved management of crud-related fuel performance risks, EPRI has developed the CORAL (Crud DepOsition Risk Assessment ModeL) tool. This paper presents a summary of the CORAL elements and benchmarking results. Applications of CORAL as a tool for fuel performance risk assessment are also discussed. (author)

  18. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  19. Development of long operating cycle simplified BWR

    International Nuclear Information System (INIS)

    Heki, H.; Nakamaru, M.; Maruya, T.; Hiraiwa, K.; Arai, K.; Narabayash, T.; Aritomi, M.

    2002-01-01

    This paper describes an innovative plant concept for long operating cycle simplified BWR (LSBWR) In this plant concept, 1) Long operating cycle ( 3 to 15 years), 2) Simplified systems and building, 3) Factory fabrication in module are discussed. Designing long operating core is based on medium enriched U-235 with burnable poison. Simplified systems and building are realized by using natural circulation with bottom located core, internal CRD and PCV with passive system and an integrated reactor and turbine building. This LSBWR concept will have make high degree of safety by IVR (In Vessel Retention) capability, large water inventory above the core region and no PCV vent to the environment due to PCCS (Passive Containment Cooling System) and internal vent tank. Integrated building concept could realize highly modular arrangement in hull structure (ship frame structure), ease of seismic isolation capability and high applicability of standardization and factory fabrication. (authors)

  20. Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly. Final CRADA Report

    International Nuclear Information System (INIS)

    Tentner, A.

    2009-01-01

    A direct numerical simulation capability for two-phase flows with heat transfer in complex geometries can considerably reduce the hardware development cycle, facilitate the optimization and reduce the costs of testing of various industrial facilities, such as nuclear power plants, steam generators, steam condensers, liquid cooling systems, heat exchangers, distillers, and boilers. Specifically, the phenomena occurring in a two-phase coolant flow in a BWR (Boiling Water Reactor) fuel assembly include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for this purpose of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Advanced CFD (Computational Fluid Dynamics) codes provide a potential for detailed 3D simulations of coolant flow inside a fuel assembly, including flow around a spacer element using more fundamental physical models of flow regimes and phase interactions than sub-channel codes. Such models can extend the code applicability to a wider range of situations, which is highly important for increasing the efficiency and to prevent accidents.

  1. Simulation of BWR stability following an ATWS with boron injection using TRAC-BF1 with one-dimensional kinetics

    International Nuclear Information System (INIS)

    Lider, S.; Maclan, R.; Baratta, A.J.; Mahaffy, J.; Robinson, G.E.

    2004-01-01

    The scenario following an ATWS is characterized by the necessity to reduce the power in the reactor as fast as possible. The only means to insert a significant amount of negative reactivity in a BWR during an ATWS are the natural reactor negative void coefficient, and the injection of highly enriched boron through the SLCS. The ATWS management strategy suggested by BWR owner's group contemplates an initial rapid decrease in power as a result of the recirculation pump trip. This is followed by lowering of vessel water level and the injection of borated water into the lower plenum. A recent paper of Dias, et al. reports that reducing core power and lowering water level causes a reduction in boron mixing efficiency and the net effect is a longer time to shut down and an increase in Suppression Pool (SP) temperature. In the present paper, a series of analyses are made to address this issue. The preliminary results for the water level positions at TAF, TAF+1.5 m (TAF+5') and TAF+3 m (TAF+10') support the similar findings of Dias, et al. (author)

  2. Virtual environments simulation in research reactor

    Science.gov (United States)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  3. APROS 3-D core models for simulators and plant analyzers

    International Nuclear Information System (INIS)

    Puska, E.K.

    1999-01-01

    The 3-D core models of APROS simulation environment can be used in simulator and plant analyzer applications, as well as in safety analysis. The key feature of APROS models is that the same physical models can be used in all applications. For three-dimensional reactor cores the APROS models cover both quadratic BWR and PWR cores and the hexagonal lattice VVER-type cores. In APROS environment the user can select the number of flow channels in the core and either five- or six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the channel description have a decisive effect on the calculation time of the 3-D core model and thus just these selection make at present the major difference between a safety analysis model and a training simulator model. The paper presents examples of various types of 3-D LWR-type core descriptions for simulator and plant analyzer use and discusses the differences of calculation speed and physical results between a typical safety analysis model description and a real-time simulator model description in transients. (author)

  4. Secondary systems of PWR and BWR

    International Nuclear Information System (INIS)

    Schindler, N.

    1981-01-01

    The secondary systems of a nuclear power plant comprises the steam, condensate and feedwater cycle, the steam plant auxiliary or ancillary systems and the cooling water systems. The presentation gives a general review about the main systems which show a high similarity of PWR and BWR plants. (orig./RW)

  5. Improvement for BWR operator training

    International Nuclear Information System (INIS)

    Kurisu, Takanori; Takahashi, Yoshitaka; Harada, Mitsuhiro; Takahashi, Iwao.

    1988-01-01

    BWR Operator Training Center was founded in April, 1971, and in April, 1974, training was begun, since then, 13 years elapsed. During this period, the curriculum and training facilities were strengthened to meet the training needs, and the new training techniques from different viewpoint were developed, thus the improvement of training has been done. In this report, a number of the training techniques which have been developed and adopted recently, and are effective for the improvement of the knowledge and skill of operators are described. Recently Japanese nuclear power stations have been operated at stable high capacity factor, accordingly the chance of experiencing the occurrence of abnormality and the usual start and stop of plants decreased, and the training of operators using simulators becomes more important. The basic concept on training is explained. In the standard training course and the short period fundamental course, the development of the guide for reviewing lessons, the utilization of VTRs and the development of the techniques for diagnosing individual degree of learning were carried out. The problems, the points of improvement and the results of these are reported. (Kako, I.)

  6. Strain-induced corrosion cracking in ferritic components of BWR primary circuits; Risskorrosion in druckfuehrenden ferritischen Komponenten des Primaerkreislaufes von Siedewasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.-P.; Ritter, S.; Ineichen, U.; Tschanz, U.; Gerodetti, B

    2003-04-01

    The present final report of the RIKORR project is a summary of a literature survey and of the experimental work performed by PSI on the environmentally-assisted cracking (EAC) and dynamic strain ageing (DSA) susceptibility of low-alloy steels (LAS) in high-temperature (HT) water. Within this project, the EAC crack growth behaviour of different low-alloy RPV steels, weld filler and weld heat-affected zone materials has been investigated under simulated transient and steady-state BWR/NWC power operation conditions. The strain-induced corrosion cracking (SICC) / low-frequency corrosion fatigue (CF) and stress corrosion cracking (SCC) crack growth behaviour of different low-alloy RPV steels under simulated transient and stationary BWR/NWC conditions was characterized by slow rising load / low-frequency corrosion fatigue and constant load / periodical partial unloading / ripple load tests with pre-cracked fracture mechanics specimens in oxygenated HT water at temperatures of either 288, 250, 200 or 150 {sup o}C. Modern high-temperature water loops, on-line crack growth monitoring and fractographic analysis by scanning electron microscopy (SEM) were used to quantify the cracking response. (author)

  7. 3D simulation of a core operation cycle of a BWR using Serpent

    International Nuclear Information System (INIS)

    Barrera Ch, M. A.; Del Valle G, E.; Gomez T, A. M.

    2016-09-01

    This work had the main goal to develop a methodology to obtain the length of an operating cycle of the core of a BWR under different operating states using the Serpent code. The reactor core modeled in Serpent is composed of 444 fuel assemblies (120 with fresh fuels and 324 fuels from previous cycles), 109 cruciform control rods and light water as moderator and coolant. Once the core of the reactor was modeled in Serpent (Three-dimensional) without considering the cruciform control rods, a simulation was carried out with different steps of burning in the operational state with the average values of the fuel temperature (900 K), moderator temperature (600 K) and voids fraction equal to 0.4. In addition, the thermal power considered was 2017 MWt. This operational state was chosen because a previous analysis (not shown in this work) was carried out in 4 types of control cells. The first and second control cell has all of its natural uranium fuel pellets, with control rod and without control rod respectively. The third and fourth control cell types have various types of enrichment, both natural uranium and gadolinium in their fuel pellets, with control rod and without control rod. The conclusion of this previous analysis was that the behavior of the effective multiplication factor along the fuel burnout within the four control cell types was almost unaffected by the fuel temperature but was affected by the voids fraction. Thus, for this operating cycle in the operating state defined above, its length was 14,63052 GW t/Tm. In addition, at the end of this cycle, the decay heat obtained was equal to 116.71 MWt and the inventory of the most important isotopes to be considered was obtained, such as some isotopes of uranium, neptune, plutonium, americium and curio. (Author)

  8. Development and recent trend of design of BWR nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kani, J [Tokyo Shibaura Electric Co. Ltd., Kawasaki, Kanagawa (Japan)

    1977-11-01

    Many improvements have been carried out in BWR nuclear power plants from BWR-1, represented by Dresden No. 1 plant, to the present BWR-6 as the capacity has increased. In Japan, the plants up to BWR-5 have been constructed. In addition, further fine design improvements are being performed in the complete domestic manufacturing of BRWs based on the operational experiences to date. A variety of investigations on the standardization of nuclear power facilities have been progressing under the leadership of Japanese Ministry of International Trade and Industry since 1975. In this standardization, it is intended to forward the plant design taking eight concrete items into consideration, mainly aiming at carrying cut unerringly the maintenance and inspection, reduction of exposure of employees to radiation, and improvements of the rate of operation of plants and equipment reliability. The containment vessel has been developed in three forms, from Mark 1 through 3, adopting the pressure control system consistently since BWR-2. Mark 1 and 2 were constructed in Japan. However, these designs sacrificed the workability and increased radiation exposure during maintenance as a result of placing emphasis on the safety facilities, therefore Toshiba Electric has investigated the advanced Mark 1 type. Its features are the design for improving the work efficiency in a containment vessel, reducing the radiation exposure of workers, shortening plant construction period, and considering the aseismatic capability. In addition, the following themes are being planned as future standardization: (1) electrically driven control rod driving system, (2) improved design of reactor core, and (3) internal pump system as compared with external re-circulation.

  9. Development and recent trend of disign of BWR nuclear power plants

    International Nuclear Information System (INIS)

    Kani, Jiro

    1977-01-01

    Many improvements have been carried out in BWR nuclear power plants from BWR-1, represented by Dresden No. 1 plant, to the present BWR-6 as the capacity has increased. In Japan, the plants up to BWR-5 have been constructed. In addition, further fine design improvements are being performed in the complete domestic manufacturing of BRWs based on the operational experiences to date. A variety of investigations on the standardization of nuclear power facilities have been progressing under the leadership of Japanese Ministry of International Trade and Industry since 1975. In this standardization, it is intended to forward the plant design taking eight concrete items into consideration, mainly aiming at carrying cut unerringly the maintenance and inspection, reduction of exposure of employees to radiation, and improvements of the rate of operation of plants and equipment reliability. The containment vessel has been developed in three forms, from Mark 1 through 3, adopting the pressure control system consistently since BWR-2. Mark 1 and 2 were constructed in Japan. However, these designs sacrificed the workability and increased radiation exposure during maintenance as a result of placing emphasis on the safety facilities, therefore Toshiba Electric has investigated the advanced Mark 1 type. Its features are the design for improving the work efficiency in a containment vessel, reducing the radiation exposure of workers, shortening plant construction period, and considering the aseismatic capability. In addition, the following themes are being planned as future standardization: (1) electrically driven control rod driving system, (2) improved design of reactor core, and (3) internal pump system as compared with external re-circulation. (Wakatsuki, Y.)

  10. Identification and assessment of BWR in-vessel severe accident mitigation strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Kress, T.S.; Cleveland, J.C.; Petek, M.

    1992-01-01

    This paper briefly describes the results of work carried out in support of the US Nuclear Regulatory Commission Accident Management Research Program to evaluate the effectiveness and feasibility of current and proposed strategies for BWR severe accident management. These results are described in detail in the just-released report Identification and Assessment of BWR In-Vessel Severe Accident Mitigation Strategies, NUREG/CR-5869, which comprises three categories of findings. First, an assessment of the current status of accident management strategies for the mitigation of in-vessel events for BWR severe accident sequences is combined with a review of the BWR Owners' Group Emergency Procedure Guidelines (EPGs) to determine the extent to which they currently address the characteristic events of an unmitigated severe accident. Second, where considered necessary, new candidate accident management strategies are proposed for mitigation of the late-phase (after core damage has occurred) events. Finally, two of the four candidate strategies identified by this effort are assessed in detail. These are (1) preparation of a boron solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and (2) containment flooding to maintain the core debris within the reactor vessel if the injection systems cannot be restored

  11. BWR level estimation using Kalman Filtering approach

    International Nuclear Information System (INIS)

    Garner, G.; Divakaruni, S.M.; Meyer, J.E.

    1986-01-01

    Work is in progress on development of a system for Boiling Water Reactor (BWR) vessel level validation and failure detection. The levels validated include the liquid level both inside and outside the core shroud. This work is a major part of a larger effort to develop a complete system for BWR signal validation. The demonstration plant is the Oyster Creek BWR. Liquid level inside the core shroud is not directly measured during full power operation. This level must be validated using measurements of other quantities and analytic models. Given the available sensors, analytic models for level that are based on mass and energy balances can contain open integrators. When such a model is driven by noisy measurements, the model predicted level will deviate from the true level over time. To validate the level properly and to avoid false alarms, the open integrator must be stabilized. In addition, plant parameters will change slowly with time. The respective model must either account for these plant changes or be insensitive to them to avoid false alarms and maintain sensitivity to true failures of level instrumentation. Problems are addressed here by combining the extended Kalman Filter and Parity Space Decision/Estimator. The open integrator is stabilized by integrating from the validated estimate at the beginning of each sampling interval, rather than from the model predicted value. The model is adapted to slow plant/sensor changes by updating model parameters on-line

  12. Investigation of BWR stability in Forsmark 2

    International Nuclear Information System (INIS)

    Oguma, R.; Reisch, F.; Bergdahl, B.G.; Lorenzen, J.; Aakerhielm, F.; Kellner, S.

    1988-01-01

    A series of noise measurements have been conducted at the Forsmark-2 reactor during its start-up operation after the revision in 1987. The main purpose was to investigate the BWR stability problem based on noise analysis, i.e. the problem of resonant power oscillation with frequency of about 0.5 Hz, which tends to arise at high power and low core flow condition. The noise analysis was performed to estimate the noise source which gives rise to the power oscillation, to evaluate the stability condition of the Forsmark-2 reactor in terms of the decay ratio (DR), as well as to investigate a safety related problem in connection with the BWR stability. The results indicate that the power oscillation is due to dynamic coupling between the neutron kinetics and thermal-hydraulics via void reactivity feedback. The DR reached as high as ≅ 0.7 at 63% of the rated power and 4100 kg/s of the total core flow. An investigation was made for the noise recording which represents a strong pressure oscillation with a peak frequency at 0.33 Hz. The result suggests that such pressure oscillation, if the peak frequency coincided with that of the resonant power oscillation, might become a cause of scram. The present noise analysis indicates the importance of a BWR on-line surveillance system with functions like stability condition monitoring and control system diagnosis. (orig.)

  13. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Kenji; Ebata, Shigeo [Toshiba Corp., Yokohama (Japan)

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding of the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.

  14. Development of BWR computerized operator support system for emergency conditions

    International Nuclear Information System (INIS)

    Murata, F.

    1984-01-01

    A BWR computerized operator support system (COSS) for emergency conditions has been under development for three years. The conceptual design of the system has been settled and some of the subsystems are in the detailed design or manufacturing stage. The principal functions are technical specification monitoring, diagnosis, guidance during emergency conditions, predictive simulation and safety monitoring. Before a reactor trip, alternative operational guidance for anomalous events is provided by utilization of the CTT (cause consequence tree) and FPS (failure propagation simulator). After the trip, operational guidance is based on event-oriented and symptom-oriented methods in association with the safety function monitor. The technical specification monitor controls the readiness monitor and performs surveillance tests of safety systems to maintain plant operational reliability and to ensure correct performance when initiated. The predictive simulator gives the future trends of significant plant parameters. These subsystems are expected to assist the operational personnel. The feasibility of the COSS functions is confirmed separately by off-line simulation. The paper considers the conceptual design, the functions of the subsystems and the off-line simulation results. Each subsystem has shown that useful information to operational personnel is provided. Henceforth these functions will be integrated into a single system and the feasibility will be thoroughly evaluated using a plant simulator which is being separately developed to verify the COSS. (author)

  15. Corrosion issues in the BWR and their mitigation for plant life extension

    International Nuclear Information System (INIS)

    Gordon, B.M.

    1988-01-01

    Corrosion is a major service life limiting mechanism for both pressurized water reactors (PWRs) and boiling water reactors (BWRs). For the BWR, stress corrosion cracking of piping has been the major source of concern where extensive research has led to a number of qualified remedies and currently > 90% of susceptible welds have been mitigated or replaced. Stress corrosion cracking of reactor internals due to the interaction of irradiation, as discussed elsewhere in this conference, is also a possible life limiting phenomenon. This paper focusses on two corrosion phenomena in the BWR which have only recently been identified as impacting the universal goal of BWR life extension: the general corrosion of containment structures and the erosion-corrosion of carbon steel piping

  16. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  17. LAPUR5 BWR stability analysis in Kuosheng nuclear power plant

    International Nuclear Information System (INIS)

    Kunlung Wu; Chunkuan Shih; Wang, J.R.; Kao, L.S.

    2005-01-01

    Full text of publication follows: Unstable oscillation of a nuclear power reactor core is one of the main reasons that causes minor core damage. Stability analysis needs to be performed to predict the potential problem as early as possible and to prevent core instability events from happening. Nuclear Regulatory Commission (NRC) requests all BWR licensees to examine each core reload and to impose operating limitations, as appropriate, to ensure compliance with GDC 10 and 12. GDC 10 requires that the reactor core be designed with appropriate margin to assure that specified acceptable fuel design limits will not be exceeded during any condition of normal operation, including anticipated operational occurrences. GDC 12 requires assurance that power oscillations which can result in conditions exceeding specified acceptable fuel design limits are either not possible or can be reliably and readily detected and suppressed. Therefore, the core instability is directly related to the fuel design limits. The core and channel DR (decay ratio) calculation are commonly performed to determine system's stability when new fuel designs are introduced in the core. In order to establish the independent analysis technology for BWR licensees and verifications, the Institute of Nuclear Energy Research (INER) has obtained agreement from NRC and implemented the 'Methodology and Procedure for Calculation of Core and Channel Decay Ratios with LAPUR', which was developed by the IBERINCO in 2001. LAPUR5 uses a multi-nodal description of the neutron dynamics, together with a distributed parameter model of the core thermal hydrodynamics to produce a space-dependent representation of the dynamics of a BWR in the frequency domain for small perturbations around a steady state condition. From the output of LAPUR5, the following results are obtained: global core decay ratio, out-of phase core decay ratio, and channel decay ratio. They are key parameters in the determination of BWR core stability

  18. Advances in BWR water chemistry

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Mary L.

    2012-09-01

    This paper reviews recent advances in Boiling Water Reactor (BWR) water chemistry control with examples of plant experiences at U.S. designed BWRs. Water chemistry advances provide some of the most effective methods for mitigating materials degradation, reducing fuel performance concerns and lowering radiation fields. Mitigation of stress corrosion cracking (SCC) of materials remains a high priority and improved techniques that have been demonstrated in BWRs will be reviewed, specifically hydrogen injection combined with noble metal chemical addition (NMCA) and the newer on-line noble metal application process (OLNC). Hydrogen injection performance, an important part of SCC mitigation, will also be reviewed for the BWR fleet, highlighting system improvements that have enabled earlier injection of hydrogen including the potential for hydrogen injection during plant startup. Water chemistry has been significantly improved by the application of pre-filtration and optimized use of ion exchange resins in the CP (condensate polishing) and reactor water cleanup (RWCU) systems. EPRI has monitored and supported water treatment improvements to meet water chemistry goals as outlined in the EPRI BWR Water Chemistry Guidelines, particularly those for SCC mitigation of reactor internals and piping, minimization of fuel risk due to corrosion and crud deposits and chemistry control for radiation field reduction. In recent years, a significant reduction has occurred in feedwater corrosion product input, particularly iron. A large percentage of plants are now reporting <0.1 ppb feedwater iron. The impacts to plant operation and chemistry of lower feedwater iron will be explored. Depleted zinc addition is widely practiced across the fleet and the enhanced focus on radiation reduction continues to emphasize the importance of controlling radiation source term. In addition, shutdown chemistry control is necessary to avoid excessive release of activated corrosion products from fuel

  19. Seismic proving test of BWR primary loop recirculation system

    International Nuclear Information System (INIS)

    Sato, H.; Shigeta, M.; Karasawa, Y.

    1987-01-01

    The seismic proving test of BWR Primary Loop Recirculation system is the second test to use the large-scale, high-performance vibration table of Tadotsu Engineering Laboratory. The purpose of this test is to prove the seismic reliability of the primary loop recirculation system (PLR), one of the most important safety components in the BWR nuclear plants, and also to confirm the adequacy of seismic analysis method used in the current seismic design. To achieve the purpose, the test was conducted under conditions and scale as near as possible to actual systems. The strength proving test was carried out with the test model mounted on the vibration table in consideration of basic design earthquake ground motions and other conditions to confirm the soundness of structure and the strength against earthquakes. Detailed analysis and analytic evaluation of the data obtained from the test was conducted to confirm the adequacy of the seismic analysis method and earthquake response analysis method used in the current seismic design. Then, on the basis of the results obtained, the seismic safety and reliability of BWR primary loop recirculation of the actual plants was fully evaluated

  20. Complete BWR--EM LOCA analysis using the WRAP--EM system

    International Nuclear Information System (INIS)

    Beckmeyer, R.R.; Gregory, M.V.; Buckner, M.R.

    1979-01-01

    The Water Reactor Analysis Package, Evaluation Model (WRAP--EM), provides a complete analysis of postulated loss-of-coolant accidents (LOCA's) in light--water nuclear power reactors. The system is being developed at the Savannah River Laboratory (SRL) for use by the Nuclear Regulatory Commission (NRC) to interpret and evaluate reactor vendor, evaluation model (EM) analyses. The initial version of the WRAP--EM system for analysis of boiling water reactors (BWR's) is operational. To demonstrate the complete capability of the WRAP--BWR--EM system, a LOCA analysis has been performed for the Hope Creek Plant

  1. Limerick BWR turbine control and protection system upgrade success

    International Nuclear Information System (INIS)

    Tang, C.K.; Pietryka, T.S.; Federico, P.A.; Williams, J.C.

    2015-01-01

    Westinghouse and Exelon have successfully implemented a digital electro-hydraulic control (DEHC) at Limerick BWR Unit 1 Station to perform the turbine control, protection and reactor pressure functions. The DEHC replaces analog controls and addressed system performance, obsolescence and reliability. This was a first-of-a-kind application for control and protection of the main turbine and BWR pressure control for the distributed control system utilized. The demolition of analog equipment, main control room and front standard modifications, and acceptance testing were completed on schedule during the normal 2014 outage. Key aspects of the project that facilitated this success will be discussed and presented. (author)

  2. Limerick BWR turbine control and protection system upgrade success

    Energy Technology Data Exchange (ETDEWEB)

    Tang, C.K.; Pietryka, T.S.; Federico, P.A., E-mail: tangck@westinghouse.com, E-mail: pietryt@westinghouse, E-mail: federipa@westinghouse.com [Westinghouse Electric Company, LLC, Cranberry Township, PA (United States); Williams, J.C., E-mail: Jonathan.Williams@exeloncorp.com [Exelon Nuclear, Warrenville, IL (United States)

    2015-07-01

    Westinghouse and Exelon have successfully implemented a digital electro-hydraulic control (DEHC) at Limerick BWR Unit 1 Station to perform the turbine control, protection and reactor pressure functions. The DEHC replaces analog controls and addressed system performance, obsolescence and reliability. This was a first-of-a-kind application for control and protection of the main turbine and BWR pressure control for the distributed control system utilized. The demolition of analog equipment, main control room and front standard modifications, and acceptance testing were completed on schedule during the normal 2014 outage. Key aspects of the project that facilitated this success will be discussed and presented. (author)

  3. AREVA 10x10 BWR fuel experience feedback and on going upgrading

    International Nuclear Information System (INIS)

    Lippert, Hans Joachim; Rentmeister, Thomas; Garner, Norman; Tandy, Jay; Mollard, Pierre

    2008-01-01

    Established with engineering and manufacturing operations in the US and Europe, AREVA NP has been and is supplying nuclear fuel assemblies and associated core components to boiling water reactors worldwide, representing today more than 63 000 fuel assemblies. The evolution of BWR fuel rod arrays from early 6x6 designs to the 10x10 designs first introduced in the mid 1990's yielded significant improvements in thermal mechanical operating limits, critical power level, cold shutdown margin, discharge burnup, as well as other key operational capabilities. Since first delivered in 1992, ATRIUM T M 1 0 fuel assemblies have now been supplied to a total of 32 BWR plants in the US, Europe, and Asia resulting in an operating experience over 20 000 fuel assemblies. This article presents in detail the operational experience consolidated by these more than 20 000 ATRIUM T M 1 0 BWR assemblies already supplied to utilities. Within the different 10x10 fuel assemblies available, the Fuel Assembly design is chosen and tailored to the operating strategies of each reactor. Among them, the latest versions of ATRIUM T M a re ATRIUM T M 1 0XP and ATRIUM T M 1 0XM fuel assemblies which have been delivered to several utilities worldwide. The article details key aspects of ATRIUM T M 1 0 fuel assemblies in terms of reliability and performance. Special attention is paid to key proven features, ULTRAFLOW T M s pacer grids, the use of part length fuel rods (PLFRs) and their geometrical optimization, water channel and load chain, upgraded features available for inclusion with most advanced designs. Regular upgrading of the product has been made possible thanks to a continuous improvement process with the aim of further upgrading BWR fuel assembly performance and reliability. Regarding thermal mechanical behavior of fuel rods, chromia (Cr2O3) doped fuel pellets, described in Reference 1, well illustrate this improvement strategy to reduce fission gas release, increase power thresholds for PCI

  4. Characterisation of material behaviour in high temperature aqueous environments by means of electrochemical techniques

    International Nuclear Information System (INIS)

    Bojinov, M.; Laitinen, T.; Maekelae, K.; Sirkiae, P.; Beverskog, B.

    1998-01-01

    Electrochemical measurements in solutions simulating power plant coolants are complicated by the low conductivity of the water, especially in the case of boiling water reactor (BWR) environments. To be able to obtain useful information also in BWR conditions, electrochemical techniques based on a thin-layer electrode arrangement are introduced. This arrangement makes it possible to perform voltammetric and electrochemical impedance measurements in high-temperature water with a room temperature conductivity (κ) as low as 0.1 μScm -1 . A combination of these results with those obtained by means of measuring the resistance of the surface film using the contact electric resistance (CER) technique facilitates versatile characterisation of oxide film behaviour. Examples are given on impedance and CER measurements of the oxide films formed on AISI 316 stainless steel in high temperature high purity (κ -1 ) water and on OX18H10T stainless steel in VVER water. Correlations between temperature, hydrogen and oxygen content of the solution and the oxide behaviour are discussed. (author)

  5. LBB application in Swedish BWR design

    Energy Technology Data Exchange (ETDEWEB)

    Kornfeldt, H.; Bjoerk, K.O.; Ekstroem, P. [ABB Atom, Vaesteras (Sweden)

    1997-04-01

    The protection against dynamic effects in connection with potential pipe breaks has been implemented in different ways in the development of BWR reactor designs. First-generation plant designs reflect code requirements in effect at that time which means that no piping restraint systems were designed and built into those plants. Modern designs have, in contrast, implemented full protection against damage in connection with postulated pipe breaks, as required in current codes and regulations. Moderns standards and current regulatory demands can be met for the older plants by backfitting pipe whip restraint hardware. This could lead to several practical difficulties as these installations were not anticipated in the original plant design and layout. Meeting the new demands by analysis would in this situation have great advantages. Application of leak-before-break criteria gives an alternative opportunity of meeting modem standards in reactor safety design. Analysis takes into account data specific to BWR primary system operation, actual pipe material properties, piping loads and leak detection capability. Special attention must be given to ensure that the data used reflects actual plant conditions.

  6. LBB application in Swedish BWR design

    International Nuclear Information System (INIS)

    Kornfeldt, H.; Bjoerk, K.O.; Ekstroem, P.

    1997-01-01

    The protection against dynamic effects in connection with potential pipe breaks has been implemented in different ways in the development of BWR reactor designs. First-generation plant designs reflect code requirements in effect at that time which means that no piping restraint systems were designed and built into those plants. Modern designs have, in contrast, implemented full protection against damage in connection with postulated pipe breaks, as required in current codes and regulations. Moderns standards and current regulatory demands can be met for the older plants by backfitting pipe whip restraint hardware. This could lead to several practical difficulties as these installations were not anticipated in the original plant design and layout. Meeting the new demands by analysis would in this situation have great advantages. Application of leak-before-break criteria gives an alternative opportunity of meeting modem standards in reactor safety design. Analysis takes into account data specific to BWR primary system operation, actual pipe material properties, piping loads and leak detection capability. Special attention must be given to ensure that the data used reflects actual plant conditions

  7. Evaluation on transmutation performance of minor actinides with high-flux BWR

    International Nuclear Information System (INIS)

    Setiawan, M.B.; Kitamoto, A.; Taniguchi, A.

    2001-01-01

    The performance of high-flux BWR (HFBWR) for burning and/or transmutation (B/T) treatment of minor actinides (MA) and long-lived fission products (LLFP) was discussed herein for estimating an advanced waste disposal with partitioning and transmutation (P and T). The concept of high-flux B/T reactor was based on a current 33 GWt-BWR, to transmute the mass of long-lived transuranium (TRU) to short-lived fission products (SLFP). The nuclide selected for B/T treatment was MA (Np-237, Am-241, and Am-243) included in the discharged fuel of LWR. The performance of B/T treatment of MA was evaluated by a new function, i.e. [F/T ratio], defined by the ratio of the fission rate to the transmutation rate in the core, at an arbitrary burn-up, due to all MA nuclides. According to the results, HFBWR could burn and/or transmute MA nuclides with higher fission rate than BWR, but the fission rate did not increase proportionally to the flux increment, due to the higher rate of neutron adsorption. The higher B/T fraction of MA would result in the higher B/T capacity, and will reduce the units of HFBWR needed for the treatment of a constant mass of MA. In addition, HFBWR had a merit of higher mass transmutation compared to the reference BWR, under the same mass loading of MA

  8. Comparative analysis of mechanical characteristics of solidified concentrates from BWR system using Yugoslav and Italian cements

    International Nuclear Information System (INIS)

    Plecas, I.; Peric, A.; Drljaca, J.; Kostadinovic, A.

    1987-01-01

    In this paper, properties of Italian and Yugoslav cement mixture with BWR evaporation concentrates were compared, research was held upon fifteen samples, according to the adequate formulations. Samples were made in standard cube form, side 10 cm. Functional relationship between decreasing the compressive strength and amount of incorporated BWR concentrate cement mixture was developed. The results of research showed nearly the same mechanical properties of solidified BWR concentrate with Italian and Yugoslav cements. (author)

  9. Kuosheng BWR/6 containment safety analysis with gothic code

    International Nuclear Information System (INIS)

    Lin Ansheng; Wang Jongrong; Yuann Rueyyng; Shih Chunkuan

    2011-01-01

    Kuosheng Nuclear Power Plant in Taiwan is a GE-designed twin-unit BWR/6 plant, each unit rated at 2894 MWt. In this study, we presented the calculated results of the containment pressure and temperature responses after the main steam line break accident, which is the design basis for the containment system. During the simulation, a power of SPU range (105.1%) was used and a model of the Mark III type containment was built using the containment thermal-hydraulic program GOTHIC. The simulation consists of short and long-term responses. The drywell pressure and temperature responses which display the maximum values in the early state of the LOCA were investigated in the short-term response; the primary containment pressure and temperature responses in the long-term response. The blowdown flow was provided by FSAR and used as boundary conditions in the short-term model; in the long-term model, the blowdown flow was calculated using a GOTHIC built-in homogeneous equilibrium model. In the long-term analysis, a simplifier RPV model was employed to calculate the blowdown flow. Finally, the calculated results, similar to the FSAR results, indicate the GOTHIC code has the capability to simulate the pressure/temperature response of Mark III containment to the main steam line break LOCA. (author)

  10. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor

    International Nuclear Information System (INIS)

    Gonzalez C, J.; Martin del Campo M, C.

    2003-01-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  11. Standard Technical Specifications, General Electric plants, BWR/4

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/4, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power specifications. This report contains three volumes. This document, Volume 2, contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS

  12. BWR zinc addition Sourcebook

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Alfred J.

    2014-01-01

    Boiling Water Reactors (BWRs) have been injecting zinc into the primary coolant via the reactor feedwater system for over 25 years for the purpose of controlling primary system radiation fields. The BWR zinc injection process has evolved since the initial application at the Hope Creek Nuclear Station in 1986. Key transitions were from the original natural zinc oxide (NZO) to depleted zinc oxide (DZO), and from active zinc injection of a powdered zinc oxide slurry (pumped systems) to passive injection systems (zinc pellet beds). Zinc addition has continued through various chemistry regimes changes, from normal water chemistry (NWC) to hydrogen water chemistry (HWC) and HWC with noble metals (NobleChem™) for mitigation of intergranular stress corrosion cracking (IGSCC) of reactor internals and primary system piping. While past reports published by the Electric Power Research Institute (EPRI) document specific industry experience related to these topics, the Zinc Sourcebook was prepared to consolidate all of the experience gained over the past 25 years. The Zinc Sourcebook will benefit experienced BWR Chemistry, Operations, Radiation Protection and Engineering personnel as well as new people entering the nuclear power industry. While all North American BWRs implement feedwater zinc injection, a number of other BWRs do not inject zinc. This Sourcebook will also be a valuable resource to plants considering the benefits of zinc addition process implementation, and to gain insights on industry experience related to zinc process control and best practices. This paper presents some of the highlights from the Sourcebook. (author)

  13. Experimental data report for test TS-3 Reactivity Initiated Accident test in the NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio; Fujishiro, Toshio; Kobayashi, Shinsho; Yamahara, Takeshi; Sukegawa, Tomohide; Kikuchi, Teruo; Sobajima, Makoto.

    1993-09-01

    This report presents experimental data for Test TS-3 which was the third test in a series of Reactivity Initiated Accident (RIA) tests using pre-irradiated BWR fuel rods, performed in the Nuclear Safety Research Reactor (NSRR) in September, 1990. Test fuel rod used in the Test TS-3 was a short-sized BWR (7 x 7) type rod which was re-fabricated from a commercial rod irradiated in the Tsuruga Unit 1 power reactor of Japan Atomic Power Co. The fuel had an initial enrichment of 2.79 % and a burnup of 26 Gwd/tU. A pulse irradiation of the test fuel rod was performed under a cooling condition of stagnant water at atmospheric pressure and at ambient temperature which simulated a BWR's cold start-up RIA event. The energy deposition of the fuel rod in this test was evaluated to be 94 ± 4 cal/g · fuel (88 ± 4 cal/g · fuel in peak fuel enthalpy) and no fuel failure was observed. Descriptions on test conditions, test procedures, transient behavior of the test rod during the pulse irradiation, and results of pre-pulse and post-pulse irradiation examinations are described in this report. (author)

  14. Two types of a passive safety containment for a near future BWR with active and passive safety systems

    International Nuclear Information System (INIS)

    Sato, Takashi; Akinaga, Makoto; Kojima, Yoshihiro

    2009-01-01

    The paper presents two types of a passive safety containment for a near future BWR. They are named Mark S and Mark X containment. One of their common merits is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. The PCV pressure can be moderated within the design pressure. Another merit is the capability to submerge the PCV and the RPV above the core level. The third merit is robustness against external events such as a large commercial airplane crash. Both the containments have a passive cooling core catcher that has radial cooling channels. The Mark S containment is made of reinforced concrete and applicable to a large power BWR up to 1830 MWe. The Mark X containment has the steel secondary containment and can be cooled by natural circulation of outside air. It can accommodate a medium power BWR up to 1380 MWe. In both cases the plants have active and passive safety systems constituting in-depth hybrid safety (IDHS). The IDHS provides not only hardware diversity between active and passive safety systems but also more importantly diversity of the ultimate heat sinks between the atmosphere and the sea water. Although the plant concept discussed in the paper uses well-established technology, plant performance including economy is innovatively and evolutionally improved. Nothing is new in the hardware but everything is new in the performance.

  15. Two types of a passive safety containment for a near future BWR with active and passive safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Takashi [Toshiba Corporation, IEC, Gen-SS, 8, Shinsugita-ho, Isogo-ku, Yokohama (Japan)], E-mail: takashi44.sato@glb.toshiba.co.jp; Akinaga, Makoto; Kojima, Yoshihiro [Toshiba Corporation, IEC, Gen-SS, 8, Shinsugita-ho, Isogo-ku, Yokohama (Japan)

    2009-09-15

    The paper presents two types of a passive safety containment for a near future BWR. They are named Mark S and Mark X containment. One of their common merits is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. The PCV pressure can be moderated within the design pressure. Another merit is the capability to submerge the PCV and the RPV above the core level. The third merit is robustness against external events such as a large commercial airplane crash. Both the containments have a passive cooling core catcher that has radial cooling channels. The Mark S containment is made of reinforced concrete and applicable to a large power BWR up to 1830 MWe. The Mark X containment has the steel secondary containment and can be cooled by natural circulation of outside air. It can accommodate a medium power BWR up to 1380 MWe. In both cases the plants have active and passive safety systems constituting in-depth hybrid safety (IDHS). The IDHS provides not only hardware diversity between active and passive safety systems but also more importantly diversity of the ultimate heat sinks between the atmosphere and the sea water. Although the plant concept discussed in the paper uses well-established technology, plant performance including economy is innovatively and evolutionally improved. Nothing is new in the hardware but everything is new in the performance.

  16. Coretran/Vipre assembly critical power assessment against Nupec BWR experiments

    International Nuclear Information System (INIS)

    Aounallah, Y.

    2001-01-01

    This study has been performed, in the framework of the STARS project, to assess CORETRAN-01/VIPRE-02 code capability to predict critical heat flux conditions for BWR fuel assemblies. The assessment is based on comparisons of the code results with the NUPEC steady-state critical power measurements on full-scale assemblies tested under a range of flow conditions. Two assembly types were considered, the standard BWR 8 x 8 and the so-called ''high-burnup'' assembly, similar to GE-10. Code modelling options that have a significant impact on the results have been identified, along with code limitations. (author)

  17. Simulation of a large break loss of coolant (LBLOCA), without actuation of the emergency injection systems (ECCS) for a BWR-5

    International Nuclear Information System (INIS)

    Cardenas V, J.; Mugica R, C. A.; Lopez M, R.

    2015-09-01

    In this paper the analysis of scenario for the loss of coolant case was realized with break at the bottom of a recirculation loop of a BWR-5 with containment type Mark II and a thermal power of 2317 MWt considering that not have coolant injection. This in order to observe the speed of progression of the accident, the phenomenology of the scenario, the time to reach the limit pressure of containment venting and the amount of radionuclides released into the environment. This simulation was performed using the MELCOR code version 2.1. The scenario posits a break in one of the shear recirculation loops. The emergency core cooling system (ECCS) and the reactor core isolation cooling (Rcic) have not credit throughout the event, which allowed achieve greater severity on scenario. The venting of the primary containment was conducted via valve of 30 inches instead of the line of 24 inches of wet well, this in order to have a larger area of exhaust of fission products directly to the reactor building. The venting took place when the pressure in the primary containment reached the 4.5 kg/cm 2 and remained open for the rest of the scenario to maximize the amount released of radionuclides to the atmosphere. The safety relief valves were considered functional they do not present mechanical failure or limit their ability to release pressure due to the large number of performances in safety mode. The results of the analysis covers about 48 hours, time at which the accident evolution was observed; behavior of level, pressure in the vessel and the fuel temperature profile was analyzed. For progression of the scenario outside the vessel, the pressure and temperature of the primary containment, level and temperature of the suppression pool, the hydrogen accumulation in the container and the radionuclides mass released into the atmosphere were analyzed. (Author)

  18. Methods and results of a PSA level 2 for a German BWR of the 900 MWe class

    International Nuclear Information System (INIS)

    Loffler, H.; Sonnenkalb, M.

    2006-01-01

    On behalf of the federal Ministry for Environment, Nature Conservation and Reactor Safety (BMU) GRS has performed a PSA level 2 for a BWR type 69 NPP of the 900 MWe class, equipped with a N 2 inerted steel containment and a pressure suppression system. Integral deterministic accident analyses have been performed with the computer code MELCOR 1.8.5. Additional analyses have been done for those events and phenomena which are not or not sufficiently covered by MELCOR. The probabilistic event tree analysis begins with the core damage states received from PSA level 1, and it ends with the definition of release categories and the determination of their frequencies. Uncertainties about the frequency of core damage states and about events during the accident progression are taken into account by means of Monte Carlo simulations. If there is a core damage state there is a high probability (>50 %) for a very high and rapid release of radionuclides into the environment. This high conditional probability is due to the very low probability to retain a partly destroyed core inside the reactor pressure vessel (RPV) and because the containment almost certainly fails at the bottom of the control rod drives room after melt release from the failed RPV. (authors)

  19. Recent BWR fuel management reactor physics advances

    International Nuclear Information System (INIS)

    Crowther, R.L.; Congdon, S.P.; Crawford, B.W.; Kang, C.M.; Martin, C.L.; Reese, A.P.; Savoia, P.J.; Specker, S.R.; Welchly, R.

    1982-01-01

    Improvements in BWR fuel management have been under development to reduce uranium and separative work (SWU) requirements and reduce fuel cycle costs, while also maintaining maximal capacity factors and high fuel reliability. Improved reactor physics methods are playing an increasingly important role in making such advances feasible. The improved design, process computer and analysis methods both increase knowledge of the thermal margins which are available to implement fuel management advance, and improve the capability to reliably and efficiently analyze and design for fuel management advances. Gamma scan measurements of the power distributions of advanced fuel assembly and advanced reactor core designs, and improved in-core instruments also are important contributors to improving 3-d predictive methods and to increasing thermal margins. This paper is an overview of the recent advances in BWR reactor physics fuel management methods, coupled with fuel management and core design advances. The reactor physics measurements which are required to confirm the predictions of performance fo fuel management advances also are summarized

  20. Hydrogen injection device in BWR type reactor

    International Nuclear Information System (INIS)

    Takagi, Jun-ichi; Kubo, Koji.

    1988-01-01

    Purpose: To reduce the increasing ratio of main steam system dose rate due to N-16 activity due to excess hydrogen injection in the hydrogen injection operation of BWR type reactors. Constitution: There are provided a hydrogen injection mechanism for injecting hydrogen into primary coolants of a BWR type reactor, and a chemical injection device for injecting chemicals such as methanol, which makes nitrogen radioisotopes resulted in the reactor water upon hydrogen injection non-volatile, into the pressure vessel separately from hydrogen. Injected hydrogen and the chemicals are not reacted in the feedwater system, but the reaction proceeds due to the presence of radioactive rays after the injection into the pressure vessel. Then, hydrogen causes re-combination in the downcomer portion to reduce the dissolved oxygen concentration. Meanwhile, about 70 % of the chemicals is supplied by means of a jet pump directly to the reactor core, thereby converting the chemical form of N-16 in the reactor core more oxidative (non-volatile). (Kawakami, Y.)

  1. BWR radiation buildup control with ionic zinc

    International Nuclear Information System (INIS)

    Marble, W.J.; Wood, C.J.; Leighty, C.E.; Green, T.A.

    1986-01-01

    In 1983 a hypothesis was disclosed which suggested that the presence of ionic zinc in the reactor water of the BWR could reduce radiation buildup. This hypothesis was developed from correlations of plant data, and subsequently, from laboratory experiments which demonstrated clearly that ionic zinc inhibits the corrosion of stainless steel. The benefits of zinc addition have been measured at the Vallecitos Nuclear Center under and EPRI/GE project. Experimentation and analyses have been performed to evaluate the impact of intentional zinc addition on the IGSCC characteristics of primary system materials and on the performance of the nuclear fuel. It has been concluded that no negative effects are expected. The author conclude that the intentional addition of ionic zinc to the BWR reactor water at a concentration of approximately 10 ppb will provide major benefits in controlling the Co-60 buildup on primary system stainless steel surfaces. The intentional addition of zinc is now a qualified technique for use in BWRs

  2. A macroscopic cross-section model for BWR pin-by-pin core analysis

    International Nuclear Information System (INIS)

    Fujita, Tatsuya; Endo, Tomohiro; Yamamoto, Akio

    2014-01-01

    A macroscopic cross-section model used in boiling water reactor (BWR) pin-by-pin core analysis is studied. In the pin-by-pin core calculation method, pin-cell averaged cross sections are calculated for many combinations of core state and depletion history variables and are tabulated prior to core calculations. Variations of cross sections in a core simulator are caused by two different phenomena (i.e. instantaneous and history effects). We treat them through the core state variables and the exposure-averaged core state variables, respectively. Furthermore, the cross-term effect among the core state and the depletion history variables is considered. In order to confirm the calculation accuracy and discuss the treatment of the cross-term effect, the k-infinity and the pin-by-pin fission rate distributions in a single fuel assembly geometry are compared. Some cross-term effects could be negligible since the impacts of them are sufficiently small. However, the cross-term effects among the control rod history (or the void history) and other variables have large impacts; thus, the consideration of them is crucial. The present macroscopic cross-section model, which considers such dominant cross-term effects, well reproduces the reference results and can be a candidate in practical applications for BWR pin-by-pin core analysis on the normal operations. (author)

  3. Study on vertical seismic response model of BWR-type reactor building

    International Nuclear Information System (INIS)

    Konno, T.; Motohashi, S.; Izumi, M.; Iizuka, S.

    1993-01-01

    A study on advanced seismic design for LWR has been carried out by the Nuclear Power Engineering Corporation (NUPEC), under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan. As a part of the study, it has been investigated to construct an accurate analytical model of reactor buildings for a seismic response analysis, which can reasonably represent dynamic characteristics of the building. In Japan, vibration models of reactor buildings for horizontal ground motion have been studied and examined through many simulation analyses for forced vibration tests and earthquake observations of actual buildings. And now it is possible to establish a reliable horizontal vibration model on the basis of multi-lumped mass and spring model. However, vertical vibration models have not been so much studied as horizontal models, due to less observed data for vertical motions. In this paper, the vertical seismic response models of a BWR-type reactor building including soil-structure interaction effect are numerically studied, by comparing the dynamic characteristics of (1) three dimensional finite element model, (2) multi-stick lumped mass model with a flexible base-mat, (3) multi-stick lumped mass model with a rigid base-mat and (4) single-stick lumped mass model. In particular, the BWR-type reactor building has the long span truss roof which is considered to be one of the critical members to vertical excitation. The modelings of the roof trusses are also studied

  4. Generic Simulator Environment for Realistic Simulation - Autonomous Entity Proof and Emotion in Decision Making

    Directory of Open Access Journals (Sweden)

    Mickaël Camus

    2004-10-01

    Full Text Available Simulation is usually used as an evaluation and testing system. Many sectors are concerned such as EUROPEAN SPACE AGENCY or the EUROPEAN DEFENCE. It is important to make sure that the project is error-free in order to continue it. The difficulty is to develop a realistic environment for the simulation and the execution of a scenario. This paper presents PALOMA, a Generic Simulator Environment. This project is based essantially on the Chaos Theory and Complex Systems to create and direct an environment for a simulation. An important point is the generic aspect. PALOMA will be able to create an environment for different sectors (Aero-space, Biology, Mathematic, .... PALOMA includes six components : the Simulation Engine, the Direction Module, the Environment Generator, the Natural Behavior Restriction, the Communication API and the User API. Three languages are used to develop this simulator. SCHEME for the Direction language, C/C++ for the development of modules and OZ/MOZART for the heart of PALOMA.

  5. Delivering high performance BWR fuel reliably

    International Nuclear Information System (INIS)

    Schardt, J.F.

    1998-01-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  6. Development of power change maneuvering method for BWR

    International Nuclear Information System (INIS)

    Fukuzaki, Takaharu; Yamada, Naoyuki; Kiguchi, Takashi; Sakurai, Mikio.

    1985-01-01

    A power change maneuvering method for BWR has been proposed to generate an optimal power control maneuver, which realizes the power change operation closest to a power change demand pattern under operating constraints. The method searches for the maneuver as an optimization problem, where the variables are thermal power levels sampled from the demand pattern, the performance index is defined to express the power mismatch between demand and feasible patterns, and the constraints are limit lines on the thermal power-core flow rate map and limits on keeping fuel integrity. The usable feasible direction method is utilized as the optimization algorithm, with newly developed techniques for initial value generation and step length determination, which apply one-dimensional search and inverse-interpolation methods, respectively, to realize the effective search of the optimal solution. Simulation results show that a typical computing time is about 5 min by a general purpose computer and the method has been verified to be practical even for on-line use. (author)

  7. Condensate polishing guidelines for PWR and BWR plants

    International Nuclear Information System (INIS)

    Robbins, P.; Crinigan, P.; Graham, B.; Kohlmann, R.; Crosby, C.; Seager, J.; Bosold, R.; Gillen, J.; Kristensen, J.; McKeen, A.; Jones, V.; Sawochka, S.; Siegwarth, D.; Keeling, D.; Polidoroff, T.; Morgan, D.; Rickertsen, D.; Dyson, A.; Mills, W.; Coleman, L.

    1993-03-01

    Under EPRI sponsorship, an industry committee, similar in form and operation to other guideline committees, was created to develop Condensate Polishing Guidelines for both PWR and BWR systems. The committee reviewed the available utility and water treatment industry experience on system design and performance and incorporated operational and state-of-the-art information into document. These guidelines help utilities to optimize present condensate polisher designs as well as be a resource for retrofits or new construction. These guidelines present information that has not previously been presented in any consensus industry document. The committee generated guidelines that cover both deep bed and powdered resin systems as an integral part of the chemistry of PWR and BWR plants. The guidelines are separated into sections that deal with the basis for condensate polishing, system design, resin design and application, data management and performance and management responsibilities

  8. Role of BWR MK I secondary containments in severe accident mitigation

    International Nuclear Information System (INIS)

    Greene, S.R.

    1986-01-01

    The recent advent of detailed containment analysis codes such as CONTAIN and MELCOR has facilitated the development of the first large-scale, architectural-based BWR secondary containment models. During the past year ORNL has developed detailed, plant-specific models of the Browns Ferry and Peach Bottom secondary containments, and applied these models in a variety of studies designed to evaluate the role and effectiveness of BWR secondary containments in severe accident mitigation. The topology and basis for these models is discussed, together with some of the emerging insights from these studies

  9. Automatic refueling platform and CRD remote handling device for BWR plant

    International Nuclear Information System (INIS)

    Kato, Hiroaki; Takagi, Kaoru

    1978-01-01

    In BWR plants, machines for replacing fuel assemblies and control rod drives are usually operated directly by personnel. An automatic refueling platform and a CRD remote handling device aiming at radiation exposure reduction and handling perfectness are described, which are already used in BWR plants. Automation of the former is achieved in transporting fuel assemblies between a reactor pressure vessel and a fuel storage pool, shuffling fuel assemblies in a reactor core and moving fuel assemblies in a fuel storage pool. In the latter, replacement of CRDs is nearly all performed remotely. (Mori, K.)

  10. BWR fuel performance

    International Nuclear Information System (INIS)

    Baily, W.E.; Armijo, J.S.; Jacobson, J.; Proebstle, R.A.

    1979-01-01

    The General Electric experience base on BWR fuel includes over 29,000 fuel assemblies which contain 1,600,000 fuel rods. Over the last five years, design, process and operating changes have been introduced which have had major effects in improving fuel performance. Monitoring this fuel performance in BWRs has been accomplished through cooperative programs between GE and utilities. Activities such as plant fission product monitoring, fuel sipping and fuel and channel surveillance programs have jointly contributed to the value of this extensive experience base. The systematic evaluation of this data has established well-defined fuel performance trends which provide the assurance and confidence in fuel reliability that only actual operating experience can provide

  11. Fast measurements of the in-core coolant velocity in a BWR by neutron noise analysis

    International Nuclear Information System (INIS)

    Hagen, T.H.J.J. van der; Hoogenboom, J.E.

    1988-01-01

    A method to determine in-core coolant velocities from neutron noise within short time intervals has been developed. The accuracy of the method was determined by using a simulation set-up and by using signals of a twin self-powered neutron detector installed in the core of the Dodewaard BWR in the Netherlands. In-core coolant velocities can be estimated within 2.5 s with a standard deviation (due to statistics) less than 2.1%. The method is suitable for velocity monitoring as is shown by the application to a stepwise velocity change of the coolant in a model of a coolant channel of a BWR. The presented technique was applied to determine the variations of the coolant velocity in the Dodewaard core during normal operation and during pressure steps. Only minor variations of the coolant velocity were detected during normal reactor conditions. An increase of those variations with pressure lowering - indicating a lower thermal hydraulic stability - could be detected. A clear velocity response to pressure steps could be determined which was also reflected in the cross-spectrum of the velocity with the vessel pressure and with the in-core neutron flux. (author)

  12. Simulation of the operational monitoring of a BWR with Simulate-3; Simulacion del seguimiento operacional de un reactor BWR con Simulate-3

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez F, J. O.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L., E-mail: ace.jo.cu@gmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2015-09-15

    This work was developed in order to describe the methodology for calculating the fuel burned of nuclear power reactors throughout the duration of their operating cycle and for each fuel reload. In other words, simulate and give monitoring to the main operation parameters of sequential way along its operation cycles. For this particular case, the operational monitoring of five consecutive cycles of a reactor was realized using the information reported by their processes computer. The simulation was performed with the Simulate-3 software and the results were compared with those of the process computer. The goal is to get the fuel burned, cycle after cycle for obtain the state conditions of the reactor needed for the fuel reload analyses, stability studies and transients analysis, and the development of a methodology that allows to manage and resolve similar cases for future fuel cycles of the nuclear power plant and explore the various options offered by the simulator. (Author)

  13. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.; Devrient, B.; Roth, A.; Ehrnsten, U.; Ernestova, M.; Zamboch, M.; Foehl, J.; Weissenberg, T.; Gomez-Briceno, D.; Lapena, J.

    2004-01-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  14. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.P. [Paul Scherrer Institute, PSI, Villigen (Switzerland); Devrient, B.; Roth, A. [Framatome ANP GmbH, Erlangen (Germany); Ehrnsten, U. [VTT Industrial Systems, Espoo (Finland); Ernestova, M.; Zamboch, M. [Nuclear Research Institute, NRI, Rez (Czech Republic); Foehl, J.; Weissenberg, T. [Staatliche Materialpruefungsanstalt, MPA, Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, CIEMAT, Madrid (Spain)

    2004-07-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  15. Sensitivity of BWR shutdown margin tests to local reactivity anomalies

    International Nuclear Information System (INIS)

    Cokinos, D.M.; Carew, J.F.

    1987-01-01

    Successful shutdown margin (SDM) demonstration is a required procedure in the startup of a newly configured boiling water reactor (BWR) core. In its most reactive condition throughout a cycle, a BWR core must be capable of being made subcritical by a specified margin with the highest worth control rod fully withdrawn and all other rods at their fully inserted positions. Two different methods are used to demonstrate SDM: (a) the adjacent-rod test and (b) the in-sequence test. In the adjacent-rod test, the strongest rod is fully withdrawn and an adjacent rod is withdrawn to reach criticality. In the in-sequence test, control rods spread throughout the core are withdrawn in a predetermined sequence of withdrawals. Larger than expected core k/sub eff/ values have been observed during the performance of BWR SDM tests. The purpose of the work summarized in this paper has been to investigated and quantify the sensitivity of both the adjacent-rod and in-sequence SDM tests to local reactivity anomalies. This was accomplished by introducing reactivity perturbations at selected four-bundle cell locations and by evaluating their effect on core reactivity in each of the two tests

  16. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    International Nuclear Information System (INIS)

    Morikawa, Yoshitake

    1995-01-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data

  17. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Yoshitake [ISOGO Nuclear Engineering Center, Yokohama (Japan)

    1995-03-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data.

  18. Description of the power plant model BWR-plasim outlined for the Barsebaeck 2 plant

    International Nuclear Information System (INIS)

    Christensen, P. la Cour.

    1979-08-01

    A description is given of a BWR power plant model outlined for the Barsebaeck 2 plant with data placed at our disposal by the Swedish Power Company Sydkraft A/B. The basic operations are derived and simplifications discussed. The model is implemented with a simulation system DYSYS which assures reliable solutions and easy programming. Emphasis has been placed on the models versatility and flexibility so new features are easy to incorporate. The model may be used for transient calculations for both normal plant conditions and for abnormal occurences as well as for control system studies. (author)

  19. Study of the Utilization BWR Type Nuclear Power Reactor for Desalination Process

    International Nuclear Information System (INIS)

    Itjeu Karliana; Sumijanto; Dhandhang Purwadi, M.

    2008-01-01

    The needs of fresh water increased by rapid population growth and industrials expansion, but these demands can not be prepared naturally. Following this case, seawater desalination becomes the primer option which can fulfill the need through the nuclear desalination technology. The coupled nuclear power reactor enables to supply thermal energy for auxiliary equipment and pumps operation. The utilization study of power reactor type BWR coupled with desalination process has been performed. The goal of study is to obtain characteristic data of desalted water specification which desalination system coupling with nuclear power plant produced energy for desalination process. The study is carried out by browsing data and information, and comprehensive review of thermal energy correlation between NPP with desalination process installation. According to reviewing are found that the thermal energy and electric power utilization from the nuclear power reactor are enable to remove the seawater to produce desalted water and also to operate auxiliary equipments. The assessment results is VK-300 reactor prototype, BWR type 250 MW(e) power are cogeneration unit can supplied hot steam temperature 285 °C to the extraction turbine to empower 150 MW electric power, and a part of hot steam 130 °C is use to operate desalination process and remind heat is distribute to the municipal and offices at that region. The coupled of VK-300 reactor power type BWR with desalination installation of MED type enable to produce desalted water with high quality distillate. Based on the economic calculation that the VK-300 reactor power of BWR type produced water distillate capacity is 300.000 m 3 /hour with cost US$ 0.58/m 3 . The coupling VK-300 reactor power type BWR with MED desalination plant is competitive economically. (author)

  20. Design guideline to prevent the pipe rupture by radiolysis gases in BWR steam piping

    International Nuclear Information System (INIS)

    Inagaki, T.; Miyagawa, M.; Ota, T.; Sato, T.; Sakata, K.

    2009-01-01

    In late 2001, pipe rupture accidents due to fast combustion of radiolysis gas occurred in Japan and elsewhere's BWR power plants. TENPES began to set up the guideline as action to such a new problem to prevent accumulation and combustion of radiolysis gas in BWR steam piping. And then, the first edition of guideline was published in October 2005. Afterwards, the experimental study about combustion/detonation of radiolysis gas have been continued. And in March 2007, TENPES published a revised edition of the guideline. This is the report of the revised edition of that guideline. According to this guideline, it became possible to design BWR's steam piping to prevent accumulation of radiolysis gas. (author)

  1. Neutron noise analysis of BWR using time series analysis

    International Nuclear Information System (INIS)

    Fukunishi, Kohyu

    1976-01-01

    The main purpose of this paper is to give more quantitative understanding of noise source in neutron flux and to provide a useful tool for the detection and diagnosis of reactor. The space dependent effects of distributed neutron flux signals at the axial direction of two different strings are investigated by the power contribution ratio among neutron fluxes and the incoherent noise spectra of neutron fluxes derived from autoregressive spectra. The signals are measured on the medium sized commercial BWR of 460 MWe in Japan. From the obtained results, local and global noise sources in neutron flux are discussed. This method is indicated to be a useful tool for detection and diagnosis of anomalous phenomena in BWR. (orig./RW) [de

  2. A BWR 24-month cycle analysis using multicycle techniques

    International Nuclear Information System (INIS)

    Hartley, K.D.

    1993-01-01

    Boiling water reactor (BWR) fuel cycle design analyses have become increasingly challenging in the past several years. As utilities continue to seek improved capacity factors, reduced power generation costs, and reduced outage costs, longer cycle lengths and fuel design optimization become important considerations. Accurate multicycle analysis techniques are necessary to determine the viability of fuel designs and cycle operating strategies to meet reactor operating requirements, e.g., meet thermal and reactivity margin constraints, while minimizing overall fuel cycle costs. Siemens Power Corporation (SPC), Nuclear Division, has successfully employed multi-cycle analysis techniques with realistic rodded cycle depletions to demonstrate equilibrium fuel cycle performance in 24-month cycles. Analyses have been performed by a BWR/5 reactor, at both rated and uprated power conditions

  3. Coretran/Vipre assembly critical power assessment against Nupec BWR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aounallah, Y. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2001-07-01

    This study has been performed, in the framework of the STARS project, to assess CORETRAN-01/VIPRE-02 code capability to predict critical heat flux conditions for BWR fuel assemblies. The assessment is based on comparisons of the code results with the NUPEC steady-state critical power measurements on full-scale assemblies tested under a range of flow conditions. Two assembly types were considered, the standard BWR 8 x 8 and the so-called ''high-burnup'' assembly, similar to GE-10. Code modelling options that have a significant impact on the results have been identified, along with code limitations. (author)

  4. Development of RBWR (Resource-renewable BWR) for environmental burden reduction of radioactive wastes

    International Nuclear Information System (INIS)

    Hino, Tetsushi; Ohtsuka, Masaya; Moriya, Kumiaki; Matsuura, Masayoshi

    2014-01-01

    Accumulation of long-life transuranium elements produced as by-products with uranium fuel burning became an issue of nuclear power. Hitachi had been developing the reactor with transuranium elements burning as fuels based on BWR type reactors successfully used as commercial reactors: RBWR (Resource-renewable BWR). Efficient transmutation and fissioning of transuranium elements needed adjustment of in-core neutron energy spectra distribution better for nuclear reaction of transuranium elements. Taking advantage of characteristics of BWR type reactors with neutron spectra hardening more easily adjustable than other type of reactors, multiple recycling and fissioning transuranium elements as fuels could make environmental burden reduction of radioactive wastes and efficient use of resources compatible. This article described the concept and history of RBWR and showed its specifications and reactor core characteristics. (T. Tanaka)

  5. Phenomenology of BWR fuel assembly degradation

    Science.gov (United States)

    Kurata, Masaki; Barrachin, Marc; Haste, Tim; Steinbrueck, Martin

    2018-03-01

    Severe accidents occurred at the Fukushima-Daiichi Nuclear Power Station (FDNPS) which required an immediate re-examination of fuel degradation phenomenology. The present paper reviews the updated knowledge on the phenomenology of the fuel degradation, focusing mainly on the BWR fuel assembly degradation at the macroscopic scale and that of the individual interactions at the meso-scale. Oxidation of boron carbide (B4C) control rods potentially generates far larger amounts of heat and hydrogen under BWR accident conditions. All integral tests with B4C control rods or control blades have shown early failure, liquefaction, relocation and oxidation of B4C starting at temperatures around 1250 °C, well below the significant interaction temperatures of UO2-Zry. These interactions or reactions potentially influence the progress of fuel degradation in the early phase. The steam-starved conditions, which are being discussed as a likely scenario at the FDNPS accident, highly influence the individual interactions and potentially lead the fuel degradation in non-prototypical directions. The detailed phenomenology of individual interactions and their influence on the transient and on the late phase of the severe accidents are also discussed.

  6. Evaluation of leachable behavior from ion exchange resins effects of organic impurities on BWR water chemistry. 1

    International Nuclear Information System (INIS)

    Igarashi, Hiroo; Nishimura, Yusaku; Ohsumi, Katsumi; Uchida, Shunsuke; Matsui, Tsuneo

    1999-01-01

    The elution rate of leachables from ion exchange resin, which is used in condensate demineralizers and is one of several major sources of organic compounds in BWR cooling water, was measured. Properties of the leachables and elution rate depended on the kind of ion exchange resin and the years of use. The organic compounds elution rate of cation exchange resin was constant for 5 years and the molecular weight of these leachables was low. After 5 years, the elution rate increased and leachables consisted of organic compounds of high molecular weights of several thousand. The elution rate of anion exchange resin decreased yearly. The difference in the elution behavior was attributed to a dependence on oxidation degradation promoted by transition metal catalysis. The cation exchange resin included absorbed transition metal, while the anion exchange resin did not. An empirical formula showing the time dependence of the elution rate of organic compounds was derived. The formula was judged to be appropriate based on simulations of an actual BWR plant and comparisons of impurity concentrations with actual reactor water data. (author)

  7. CAPS Simulation Environment Development

    Science.gov (United States)

    Murphy, Douglas G.; Hoffman, James A.

    2005-01-01

    The final design for an effective Comet/Asteroid Protection System (CAPS) will likely come after a number of competing designs have been simulated and evaluated. Because of the large number of design parameters involved in a system capable of detecting an object, accurately determining its orbit, and diverting the impact threat, a comprehensive simulation environment will be an extremely valuable tool for the CAPS designers. A successful simulation/design tool will aid the user in identifying the critical parameters in the system and eventually allow for automatic optimization of the design once the relationships of the key parameters are understood. A CAPS configuration will consist of space-based detectors whose purpose is to scan the celestial sphere in search of objects likely to make a close approach to Earth and to determine with the greatest possible accuracy the orbits of those objects. Other components of a CAPS configuration may include systems for modifying the orbits of approaching objects, either for the purpose of preventing a collision or for positioning the object into an orbit where it can be studied or used as a mineral resource. The Synergistic Engineering Environment (SEE) is a space-systems design, evaluation, and visualization software tool being leveraged to simulate these aspects of the CAPS study. The long-term goal of the SEE is to provide capabilities to allow the user to build and compare various CAPS designs by running end-to-end simulations that encompass the scanning phase, the orbit determination phase, and the orbit modification phase of a given scenario. Herein, a brief description of the expected simulation phases is provided, the current status and available features of the SEE software system is reported, and examples are shown of how the system is used to build and evaluate a CAPS detection design. Conclusions and the roadmap for future development of the SEE are also presented.

  8. Analysis of BWR out-of-phase instabilities in the frequency domain

    International Nuclear Information System (INIS)

    Farawila, Y.M.; Pruitt, D.W.; Kreuter, D.

    1992-01-01

    During startup or because of an inadvertent recirculation pump trip, a boiling water reactor (BWR) may operate at relatively low flow and high power conditions. At these conditions, a BWR is susceptible to coupled flow and power oscillations that could result in undesirable reactor scram unless appropriate countermeasures are taken. This contribution to analytical methods has been developed to address in part a general industrywide and regulatory concern about BWR stability initiated by the LaSalle 2 instability event in March 1988. This work is designed to extend the capability of the one-dimensional parallel channel frequency domain code STAIF to predict the regional oscillation decay ratio. The basic theory follows that developed by March-Leuba and Blakeman, where the oscillation mechanism is identified as the excitation of a subcritical neutronic mode with a constant core pressure drop boundary condition. The improvements to the basic theory include applying the theory to one-dimensional neutronics instead of point kinetics and taking account of the actual three-dimensional harmonic flux distribution

  9. The use of the partial coherence function technique for the investigation of BWR noise dynamics

    International Nuclear Information System (INIS)

    Kostic, Lj.

    1983-01-01

    The extensive experimental investigations, at the last time, indicate that the partial coherence function technique can be a powerful method of the investigation of BWR noise dynamics. Symple BWR noise dynamics model for the global noise study, based on different noise phenomena, is proposed in this paper. (author)

  10. Delivering high performance BWR fuel reliably

    Energy Technology Data Exchange (ETDEWEB)

    Schardt, J.F. [GE Nuclear Energy, Wilmington, NC (United States)

    1998-07-01

    Utilities are under intense pressure to reduce their production costs in order to compete in the increasingly deregulated marketplace. They need fuel, which can deliver high performance to meet demanding operating strategies. GE's latest BWR fuel design, GE14, provides that high performance capability. GE's product introduction process assures that this performance will be delivered reliably, with little risk to the utility. (author)

  11. The corrosion potential of stainless steel in BWR environment comparison of data and modeling results

    International Nuclear Information System (INIS)

    Molander, Anders; Ullberg, Mats

    2004-01-01

    Corrosion potential measurements have been performed in Swedish BWRs during 25 years using commercially available monitoring equipment. Today, such measurements are performed on a routine basis in the BWRs on hydrogen water chemistry in Sweden. Measurements are usually performed at several monitoring locations in the plants. During the years, variations in the corrosion potential between different reactor cycles have been observed. Also, the corrosion potential can vary significantly during the reactor year. The changes have not always been easy to explain. Examples of in-plant data are given, demonstrating the need for a better understanding and for improved modeling tools. These examples were used as starting points for developing improved methods for corrosion potential modeling. A new tool recently developed, The Virtual ECP Laboratory, is described and applications to BWR conditions including some unexpected experimental corrosion potential responses are given. (author)

  12. Application of TRAC-BD1/MOD1 to a BWR/4 feedwater control failure ATWS

    International Nuclear Information System (INIS)

    Rouhani, S.Z.; Giles, M.M.; Mohr, C.M. Jr.; Weaver, W.L. III.

    1984-01-01

    This paper begins with a short description of the Transient Reactor Analysis Code for Boiling Water Reactors (TRAC-BWR), briefly mentioning some of its main features such as specific BWR models and input structure. Next, an input model of a BWR/4 is described, and, the assumptions used in performing an analysis of the loss of a feedwater controller without scram are listed. The important features of the calculated trends in flows, pressure, reactivity, and power are shown graphically and commented in the text. A comparison of some of the main predicted trends with the calculated results from a similar study by General Electric is also presented

  13. Construction techniques and management methods for BWR plants

    International Nuclear Information System (INIS)

    Shimizu, Yohji; Tateishi, Mizuo; Hayashi, Yoshishige

    1989-01-01

    Toshiba is constantly striving for safer and more efficient plant construction to realize high-quality BWR plants within a short construction period. To achieve these aims, Toshiba has developed and improved a large number of construction techniques and construction management methods. In the area of installation, various techniques have been applied such as the modularization of piping and equipment, shop installation of reactor internals, etc. Further, installation management has been upgraded by the use of pre-installation review programs, the development of installation control systems, etc. For commissioning, improvements in commissioning management have been achieved through the use of computer systems, and testing methods have also been upgraded by the development of computer systems for the recording and analysis of test data and the automatic adjustment of controllers in the main control system of the BWR. This paper outlines these construction techniques and management methods. (author)

  14. Paired replacement fuel assemblies for BWR-type reactor

    International Nuclear Information System (INIS)

    Oguchi, Kazushige.

    1997-01-01

    There are disposed a large-diameter water rod constituting a non-boiling region at a central portion and paired replacement fuel assemblies for two streams having the same average enrichment degree and different amount of burnable poisons. The paired replacement fuel assemblies comprise a first fuel assembly having a less amount of burnable poisons and a second fuel assembly having a larger amount of burnable poisons. A number of burnable poison-containing fuel rods in adjacent with the large diameter water rod is increased in the second fuel assembly than the first fuel assembly. Then, the poison of the paired replacement fuel assemblies for the BWR type reactor can be annihilated simultaneously at the final stage of the cycle. Accordingly, fuels for a BWR type reactor excellent in economical property and safety and facilitating the design of the replacement reactor core can be obtained. (N.H.)

  15. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    Science.gov (United States)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  16. Thermohydraulic stability coupled to the neutronic in a BWR

    International Nuclear Information System (INIS)

    Calleros M, G.; Zapata Y, M.; Gomez H, R.A.; Mendez M, A.; Castlllo D, R.

    2006-01-01

    In a BWR type reactor the phenomenon of the nuclear fission is presented, in which are liberated in stochastic form neutrons, originating that the population of the same ones varies in statistic form around a mean value. This variation will cause that when the neutron flow impacts on the neutron detectors, its are had as a result neutron flow signals with fluctuations around an average value. In this article it is shown that it conforms it lapses the time, this variations in the neutron flow (and therefore, in the flow signal due only to the fission), they presented oscillations inside a stable range, which won't be divergent. Considering that the BWR is characterized because boiling phenomena are presented, which affect the moderation of the neutrons, additional variations will be had in the signal coming from the neutron detectors, with relationship to the fission itself, which will be influenced by the feedback of the moderator's reactivity and of the temperature of the fuel pellet. Also, as the BWR it has coupled control systems to maintain the coolant level one and of the thermal power of the reactor, for each control action it was affected the neutron population. This means that the reactor could end up straying of a stable state condition. By it previously described, the study of the thermohydraulic stability coupled to the neutronic is complex. In this work it is shown the phenomenology, the mathematical models and the theoretical behavior associated to the stability of the BWR type reactor; the variables that affect it are identified, the models that reproduce the behavior of the thermohydraulic stability coupled to the neutronic, the way to maintain stable the reactor and the instrumentation that can settle to detect and to suppress uncertainties is described. In particular, is make reference to the evolution of the methods to maintain the stability of the reactor and the detection system and suppression of uncertainties implemented in the Laguna Verde

  17. PWR and BWR spent fuel assembly gamma spectra measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, S. [European Commission, DG Energy, Directorate EURATOM Safeguards Luxembourg (Luxembourg); Tobin, S.J.; Favalli, A. [Los Alamos National Laboratory, Los Alamos, NM (United States); Grogan, B. [Oak Ridge National Laboratory, Oak Ridge (United States); Jansson, P. [Uppsala University, Uppsala (Sweden); Liljenfeldt, H. [Oak Ridge National Laboratory, Oak Ridge (United States); Mozin, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hu, J. [Oak Ridge National Laboratory, Oak Ridge (United States); Schwalbach, P. [European Commission, DG Energy, Directorate EURATOM Safeguards Luxembourg (Luxembourg); Sjöland, A. [Swedish Nuclear Fuel and Waste Management Company (SKB) (Sweden); Trellue, H.; Vo, D. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-10-11

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of {sup 137}Cs, {sup 154}Eu, and {sup 134}Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  18. BWR and PWR chemistry operating experience and perspectives

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Garcia, S.; Lynch, N.; Reid, R.

    2014-01-01

    It is well recognized that proper control of water chemistry plays a critical role in ensuring the safe and reliable operation of Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). State-of-the-art water chemistry programs reduce general and localized corrosion of reactor coolant system, steam cycle equipment, and fuel cladding materials; ensure continued integrity of cycle components; and reduce radiation fields. Once a particular nuclear plant component has been installed or plant system constructed, proper water chemistry provides a global tool to mitigate materials degradation problems, thereby reducing the need for costly repairs or replacements. Recognizing the importance of proper chemistry control and the value in understanding the relationship between chemistry guidance and actual operating experience, EPRI continues to collect, monitor, and evaluate operating data from BWRs and PWRs around the world. More than 900 cycles of valuable BWR and PWR operating chemistry data has been collected, including online, startup and shutdown chemistry data over more than 10 years (> 20 years for BWRs). This paper will provide an overview of current trends in BWR and PWR chemistry, focusing on plants in the U.S.. Important chemistry parameters will be highlighted and discussed in the context of the EPRI Water Chemistry Guidelines requirements (i.e., those parameters considered to be of key importance as related to the major goals identified in the EPRI Guidelines: materials integrity; fuel integrity; and minimizing plant radiation fields). Perspectives will be provided in light of recent industry initiatives and changes in the EPRI BWR and PWR Water Chemistry Guidelines. (author)

  19. Electromagnetic Environments Simulator (EMES)

    International Nuclear Information System (INIS)

    Varnado, G.B.

    1975-11-01

    A multipurpose electromagnetic environments simulator has been designed to provide a capability for performing EMR, EMP, and lightning near stroke testing of systems, subsystems and components in a single facility. This report describes the final facility design and presents the analytical and experimental verification of the design

  20. Generic safety evaluation report regarding integrity of BWR scram system piping

    International Nuclear Information System (INIS)

    1981-08-01

    Safety concerns associated with postulated pipe breaks in the boiling water reactor (BWR) scram system were identified during the staff's continuing investigation of the Browns Ferry Unit 3 control rod partial insertion failure on June 28, 1980. This report includes an evaluation of the licensing basis for the BWR scram discharge volume (SDV) piping and an assessment of the potential for the SDV piping to fail while in service. A discussion of the means available for mitigation an unlikely SDV system failure is provided. Generic recommendations are made to improve mitigation capability and ensure that system integrity is maintained in service

  1. Repair and preventive maintenance technology for BWR reactor internals and piping

    International Nuclear Information System (INIS)

    Ootsubo, Tooru; Itou, Takashi; Sakashita, Akihiro

    2009-01-01

    Stress corrosion cracking of welding portion has found in many domestic and foreign BWR reactor internals and Primary Loop Recirculation piping. Also, repair and preventive maintenance technologies for SCC has been developed and/or adopted to BWRs in recent years. This paper introduces the sample of these technologies, such as seal-welding for SCC on BWR reactor internals, preventive maintenance technology for PLR piping such as Corrosion Resistant Cladding, Internal Polishing and Induction Heating Stress Improvement. These technologies are introduced on 'E-Journal of Advanced Maintenance', which is an international journal on a exclusive website of Japan Society of Maintenology. (author)

  2. BWR type reactors

    International Nuclear Information System (INIS)

    Yano, Ryoichi; Sato, Takashi; Osaki, Masahiko; Hirayama, Fumio; Watabe, Atsushi.

    1980-01-01

    Purpose: To effectively eliminate radioactive substances released upon loss of coolant accidents in BWR type reactors. Constitution: A high pressure gas jetting device having a plurality of small aperture nozzles is provided above a spray nozzle, that is, at the top of a dry well. The jetting device is connected to a vacuum breaker provided in a pressure suppression chamber. Upon loss of coolant accident, coolants are sprayed from the spray nozzle and air or nitrogen is jetted from the gas jetting device as well. Then, the gases in the dry well are disturbed, whereby radioactive iodine at high concentration liable to be accumulated in the dry well is forced downwardly, dissolved in the spray water and eliminated. (Ikeda, J.)

  3. 3D modeling of missing pellet surface defects in BWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov; Williamson, R.L.; Stafford, D.S.; Novascone, S.R.; Hales, J.D.; Pastore, G.

    2016-10-15

    Highlights: • A global/local analysis procedure for missing pellet surface defects is proposed. • This is applied to defective BWR fuel under blade withdrawal and high power ramp conditions. • Sensitivity of the cladding response to key model parameters is studied. - Abstract: One of the important roles of cladding in light water reactor fuel rods is to prevent the release of fission products. To that end, it is essential that the cladding maintain its integrity under a variety of thermal and mechanical loading conditions. Local geometric irregularities in fuel pellets caused by manufacturing defects known as missing pellet surfaces (MPS) can in some circumstances lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. The BISON nuclear fuel performance code developed at Idaho National Laboratory can be used to simulate the global thermo-mechanical fuel rod behavior, as well as the local response of regions of interest, in either 2D or 3D. In either case, a full set of models to represent the thermal and mechanical properties of the fuel, cladding and plenum gas is employed. A procedure for coupling 2D full-length fuel rod models to detailed 3D models of the region of the rod containing a MPS defect is detailed here. The global and local model each contain appropriate physics and behavior models for nuclear fuel. This procedure is demonstrated on a simulation of a boiling water reactor (BWR) fuel rod containing a pellet with an MPS defect, subjected to a variety of transient events, including a control blade withdrawal and a ramp to high power. The importance of modeling the local defect using a 3D model is highlighted by comparing 3D and 2D representations of the defective pellet region. Parametric studies demonstrate the effects of the choice of gaseous swelling model and of the depth and geometry of the MPS defect on the response of the cladding

  4. An intelligent dynamic simulation environment: An object-oriented approach

    International Nuclear Information System (INIS)

    Robinson, J.T.; Kisner, R.A.

    1988-01-01

    This paper presents a prototype simulation environment for nuclear power plants which illustrates the application of object-oriented programming to process simulation. Systems are modeled using this technique as a collection of objects which communicate via message passing. The environment allows users to build simulation models by selecting iconic representations of plant components from a menu and connecting them with the aid of a mouse. Models can be modified graphically at any time, even as the simulation is running, and the results observed immediately via real-time graphics. This prototype illustrates the use of object-oriented programming to create a highly interactive and automated simulation environment. 9 refs., 4 figs

  5. An intelligent simulation environment for control system design

    International Nuclear Information System (INIS)

    Robinson, J.T.

    1989-01-01

    The Oak Ridge National Laboratory is currently assisting in the development of advanced control systems for the next generation of nuclear power plants. This paper presents a prototype interactive and intelligent simulation environment being developed to support this effort. The environment combines tools from the field of Artificial Intelligence; in particular object-oriented programming, a LISP programming environment, and a direct manipulation user interface; with traditional numerical methods for simulating combined continuous/discrete processes. The resulting environment is highly interactive and easy to use. Models may be created and modified quickly through a window oriented direct manipulation interface. Models may be modified at any time, even as the simulation is running, and the results observed immediately via real-time graphics. 8 refs., 3 figs

  6. Development of the radiation models of a BWR type reactor and it facility in the SUN-RAH; Desarrollo de modelos de radiacion de un reactor tipo BWR y su instalacion en el SUN-RAH

    Energy Technology Data Exchange (ETDEWEB)

    Barron A, I. [Facultad de Ingenieria, UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: isbarron@yahoo.com.mx

    2005-07-01

    This work about generation models, transport in processes and radioactive contamination of areas of a BWR central, is an amplification to the project developed in the UNAM to have a support tool in subjects or electric generation courses. It is planned about the implementation of models of radiation generation in a BWR type reactor for complement the functions developed in the University Simulator of Nucleo electric- Boiling water reactor (SUN-RAH) which it has been implemented in Simulink of MatLab and it has a model for the dynamics of one nucleo electric central that presents the main characteristics of the reactor vessel, the recirculation system, steam lines, turbines, generator, condensers and feeding water, defined by the main processes that intervene in the generation of energy of these plants. By this way the radiation monitoring systems for area and process, operate simultaneously with the processes of energy generation, with that is possible to observe the changes that present with respect to the operation conditions of the plant, and likewise to appreciate the radiation transport process through the components of the reactor, steam lines and turbines, for different operation conditions and possible faults that they could be presented during the reactor operation. (Author)

  7. BUTREN-RC an hybrid system for the recharges optimization of nuclear fuels in a BWR; BUTREN-RC un sistema hibrido para la optimizacion de recargas de combustible nuclear en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J.; Castillo M, J.A. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico); Valle G, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)

    2004-07-01

    The obtained results with the hybrid system BUTREN-RC are presented that obtains recharges of nuclear fuel for a BWR type reactor. The system has implemented the methods of optimization heuristic taboo search and neural networks. The optimization it carried out with the technique of taboo search, and the neural networks, previously trained, were used to predict the behavior of the recharges of fuel, in substitution of commercial codes of reactor simulation. The obtained recharges of nuclear fuel correspond to 5 different operation cycles of the Laguna Verde Nuclear Power plant, Veracruz in Mexico. The obtained results were compared with the designs of this cycles. The energy gain with the recharges of fuel proposals is of approximately 4.5% with respect to those of design. The time of compute consumed it was considerably smaller that when a commercial code for reactor simulation is used. (Author)

  8. Prediction of BWR performance under the influence of Isolation Condenser-using RAMONA-4 code

    International Nuclear Information System (INIS)

    Khan, H.J.; Cheng, H.S.; Rohatgi, U.S.

    1992-01-01

    The purpose of the Boiling Water Reactor (BWR) Isolation Condenser (IC) is to passively control the reactor pressure by removing heat from the system. This type of control is expected to reduce the frequency of opening and closing of the Safety Relief Valves (SRV). A comparative analysis is done for a BWR operating with and without the influence of an IC under Main Steam Isolation Valve (MSIV) closure. A regular BWR, with forced flow and high thermal power, has been considered for analysis. In addition, the effect of ICs on the BWR performance is studied for natural convection flow at lower power and modified riser geometry. The IC is coupled to the steam dome for the steam inlet flow and the Reactor Pressure Vessel (RPV) near the feed water entrance for the condensate return flow. Transient calculations are performed using prescribed pressure set points for the SRVs and given time settings for MSIV closure. The effect of the IC on the forced flow is to reduce the rate of pressure rise and thereby decrease the cycling frequency ofthe SRVS. This is the primary objective of any operating IC in a BWR (e.g. Oyster Creek). The response of the reactor thermal and fission power, steam flow rate, collapsed liquid level, and core average void fraction are found to agree with the trend of pressure. The variations in the case of an active IC can be closely related to the creation of a time lag and changes in the cycling frequency of the SRVS. An analysis for natural convection flow in a BWR indicates that the effect of an IC on its transient performance is similar to that for the forced convection system. In this case, the MSIV closure, has resulted in a lower peak pressure due to the magnitude of reduced power. However, the effect of reduced cycling frequency of the SRV due to the IC, and the time lag between the events, are comparable to that for forced convection

  9. Simulation of a scenario of total loss of external and internal power (Sbo) for different vent pressures of the containment of a BWR-5

    International Nuclear Information System (INIS)

    Cardenas V, J.; Mugica R, C. A.; Godinez S, V.

    2014-10-01

    The simulation of a Station Black Out (Sbo) was realized with intervention of the vent containment by means of a rigid vent coming from the dry-well and that discharges directly to the atmosphere, with the MELCOR code version 2.1. This scenario was carried out for a BWR-5 and containment type Mark II, with a thermal power of 2317 MWt similar to the reactor of nuclear power plant of Laguna Verde. For this scenario was considered as only available system for coolant injection to the reactor to the Reactor Core Isolation Cooling (Rcic), which remained operating 4 hours with batteries bank. The Security and Relief Valves (SR V) were considered functional (by simplicity) and that they mechanically do not exceed their capacity to liberate pressure due to the performances in their safety way. The operator maneuver to perform the SR V and to de pressurize the vessel until the pressure (13 kg/cm 2 ) to operate the low pressure systems was modeled. The results cover approximately 48 hours (172000 seconds), time in which was observed the behavior of the level and pressure in the vessel. Also the scenario evolution was analyzed to different vent pressures of the primary containment (2.0, 3.0, 4.5, 6.0, and 10.0 kg/cm 2 ), the temperature profiles of the dry-well, the hydrogen accumulation in the containment, the radio-nuclides liberation through rigid vent to the atmosphere and the inventory of these. In this work an analysis of the pressure behavior in the primary containment is presented, with the purpose of minimizing liberated fission products to the environment. (Author)

  10. The impact of BWR MK I primary containment failure dynamics on secondary containment integrity

    International Nuclear Information System (INIS)

    Greene, S.R.

    1987-01-01

    During the past four years, the ORNL BWRSAT Program has developed a series of increasingly sophisticated BWR secondary containment models. These models have been applied in a variety of studies to evaluate the severe accident mitigation capability of BWR secondary containments. This paper describes the results of a recent ORNL study of the impact of BWR MK I primary containment failure dynamics on secondary containment integrity. A 26-cell MELCOR Browns Ferry secondary containment model is described and the predicted thermodynamic response of the secondary containment to a variety of postulated primary containment failure modes is presented. The effects of primary containment failure location, timing, and ultimate hole size on secondary containment response is investigated, and the potential impact of hydrogen deflagrations on secondary containment integrity is explored

  11. BWR internals life assurance

    International Nuclear Information System (INIS)

    Herrera, M.L.; Stancavage, P.P.

    1988-01-01

    Boiling water reactor (BWR) internal components play an important role in power plant life extension. Many important internals were not designed for easy removal and changes in material properties and local environmental effects due to high radiation makes stress corrosion cracking more likely and more difficult to correct. Over the past several years, operating experience has shown that inspection, monitoring and refurbishment can be accomplished for internal structures with existing technology. In addition, mitigation techniques which address the causes of degradation are available to assure that life extension targets can be met. This paper describes the many considerations and aspects when evaluating life extension for reactor vessel internals

  12. Simulation of the flow obstruction of a jet pump in a BWR reactor with the code RELAP/SCDAPSIM; Simulacion de la obstruccion de flujo de una bomba jet en un reactor BWR con el codigo RELAP/SCDAPSIM

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas V, J.; Filio L, C., E-mail: jaime.cardenas@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose M. Barragan 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2016-09-15

    This work simulates the flow obstruction of a jet pump in one of the recirculation loops of a nuclear power plant with a reactor of type BWR at 100% of operating power, in order to analyze the behavior of the total flow of the refrigerant passing through the reactor core, the total flow in each recirculation loop of the reactor, together with the 10 jet pumps of each loop. The behavior of the power and the reactivity insertion due to the change of the refrigerant flow pattern is also analyzed. The simulation was carried out using the RELAP/SCDAPSIM version 3.5 code, using a reactor model with 10 jet pumps in each recirculation loop and a core consisting of 6 radial zones and 25 axial zones. The scenario postulates the flow obstruction in a jet pump in a recirculation loop A when the reactor operates at 100% rated power, causing a change in the total flow of refrigerant in the reactor core, leading to a decrease in power. Once the reactor conditions are established to its new power, the operator tries to recover the nominal power using the flow control valve of the recirculation loop A, opening stepwise as a strategy to safely recover the reactor power. In this analysis is assumed that the intention of the nuclear plant operator is to maintain the operation of the reactor during the established cycle. (Author)

  13. Eulerian fluid-structure analysis of BWR

    International Nuclear Information System (INIS)

    McMaster, W.H.

    1979-05-01

    A fluid-structure-interaction algorithm is developed for the analysis of the dynamic response of a BWR pressure-suppression pool and containment structure. The method is incorporated into a two-dimensional semi-implicit Eulerian hydrodynamics code, PELE-IC, for the solution of incompressible flow coupled to flexible structures. The fluid, structure, and coupling algorithms have been verified by calculation of solved problems from the literature and by comparison with air and steam blowdown experiments

  14. ZZ BWRSB-RINGHALS1, Stability Benchmark Data from BWR RINGHALS-1

    International Nuclear Information System (INIS)

    2002-01-01

    Description of program or function: The purpose of this benchmark is to enable code developers to test their codes and also to validate the predictive capability of their respective codes and models for BWR stability analysis. Emphasis is put on the modelling of flow dynamics of the reactor core and in-vessel flow loop wit detailed neutronic and thermodynamic feedback. The secondary systems as well as the control and production systems will be neglected. Data provided comes from measurements in beginning of cycle (BOC) 14, 15, 16 and 17 and middle of cycle (MOC) 16 in the Swedish BWR reactor Ringhals 1. For these measurements complete data sets are given

  15. Operator training simulator for nuclear power plant

    International Nuclear Information System (INIS)

    Shiozuka, Hiromi

    1977-01-01

    In nuclear power plants, training of the operators is important. In Japan, presently there are two training centers, one is BWR operation training center at Okuma-cho, Fukushima Prefecture, and another the nuclear power generation training center in Tsuruga City, Fukui Prefecture, where the operators of PWR nuclear power plants are trained. This report describes the BWR operation training center briefly. Operation of a nuclear power plant is divided into three stages of start-up, steady state operation, and shut down. Start-up is divided into the cold-state start-up after the shut down for prolonged period due to periodical inspection or others and the hot-state start-up from stand-by condition after the shut down for a short time. In the cold-state start-up, the correction of reactivity change and the heating-up control to avoid excessive thermal stress to the primary system components are important. The BWR operation training center offers the next three courses, namely beginner's course, retraining course and specific training course. The training period is 12 weeks and the number of trainees is eight/course in the beginner's course. The simulator was manufactured by modeling No. 3 plant of Fukushima First Nuclear Power Station, Tokyo Electric Power Co. The simulator is composed of the mimic central control panel and the digital computer. The software system comprises the monitor to supervise the whole program execution, the logic model simulating the plant interlock system and the dynamic model simulating the plant physical phenomena. (Wakatsuki, Y.)

  16. An assessment of BWR [boiling water reactor] Mark-II containment challenges, failure modes, and potential improvements in performance

    International Nuclear Information System (INIS)

    Kelly, D.L.; Jones, K.R.; Dallman, R.J.; Wagner, K.C.

    1990-07-01

    This report assesses challenges to BWR Mark II containment integrity that could potentially arise from severe accidents. Also assessed are some potential improvements that could prevent core damage or containment failure, or could mitigate the consequences of such failure by reducing the release of fission products to the environment. These challenges and improvements are analyzed via a limited quantitative risk/benefit analysis of a generic BWR/4 reactor with Mark II containment. Point estimate frequencies of the dominant core damage sequences are obtained and simple containment event trees are constructed to evaluate the response of the containment to these severe accident sequences. The resulting containment release modes are then binned into source term release categories, which provide inputs to the consequence analysis. The output of the consequences analysis is used to construct an overall base case risk profile. Potential improvements and sensitivities are evaluated by modifying the event tree spilt fractions, thus generating a revised risk profile. Several important sensitivity cases are examined to evaluate the impact of phenomenological uncertainties on the final results. 75 refs., 25 figs., 65 tabs

  17. BWR Fuel Assemblies Physics Analysis Utilizing 3D MCNP Modeling

    International Nuclear Information System (INIS)

    Chiang, Ren-Tai; Williams, John B.; Folk, Ken S.

    2008-01-01

    MCNP is used to model a partially controlled BWR fresh fuel four assemblies (2x2) system for better understanding BWR fuel behavior and for benchmarking production codes. The impact of the GE14 plenum regions on axial power distribution is observed by comparing against the GE13 axial power distribution, in which the GE14 relative power is lower than the GE13 relative power at the 15. node and at the 16. node due to presence of the plenum regions in GE14 fuel in these two nodes. The segmented rod power distribution study indicates that the azimuthally dependent power distribution is very significant for the fuel rods next to the water gap in the uncontrolled portion. (authors)

  18. BWR Fuel Assemblies Physics Analysis Utilizing 3D MCNP Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ren-Tai [University of Florida, Gainesville, Florida 32611 (United States); Williams, John B.; Folk, Ken S. [Southern Nuclear Company, Birmingham, Alabama 35242 (United States)

    2008-07-01

    MCNP is used to model a partially controlled BWR fresh fuel four assemblies (2x2) system for better understanding BWR fuel behavior and for benchmarking production codes. The impact of the GE14 plenum regions on axial power distribution is observed by comparing against the GE13 axial power distribution, in which the GE14 relative power is lower than the GE13 relative power at the 15. node and at the 16. node due to presence of the plenum regions in GE14 fuel in these two nodes. The segmented rod power distribution study indicates that the azimuthally dependent power distribution is very significant for the fuel rods next to the water gap in the uncontrolled portion. (authors)

  19. Experimental and numerical investigations of BWR fuel bundle inlet flow

    International Nuclear Information System (INIS)

    Hoashi, E; Morooka, S; Ishitori, T; Komita, H; Endo, T; Honda, H; Yamamoto, T; Kato, T; Kawamura, S

    2009-01-01

    We have been studying the mechanism of the flow pattern near the fuel bundle inlet of BWR using both flow visualization test and computational fluid dynamics (CFD) simulation. In the visualization test, both single- and multi-bundle test sections were used. The former test section includes only a corner orifice facing two support beams and the latter simulates 16 bundles surrounded by four beams. An observation window is set on the side of the walls imitating the support beams upstream of the orifices in both test sections. In the CFD simulation, as well as the visualization test, the single-bundle model is composed of one bundle with a corner orifice and the multi-bundle model is a 1/4 cut of the test section that includes 4 bundles with the following four orifices: a corner orifice facing the corner of the two neighboring support beams, a center orifice at the opposite side from the corner orifice, and two side orifices. Twin-vortices were observed just upstream of the corner orifice in the multi-bundle test as well as the single-bundle test. A single-vortex and a vortex filament were observed at the side orifice inlet and no vortex was observed at the center orifice. These flow patterns were also predicted in the CFD simulation using Reynolds Stress Model as a turbulent model and the results were in good agreement with the test results mentioned above. (author)

  20. Product Evaluation Task Force Phase Two report for BWR/PWR dissolver wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1990-01-01

    It has been proposed that all Intermediate Level Wastes arising at Sellafield should be encapsulated prior to ultimate disposal. The Product Evaluation Task Force (PETF) was set up to investigate possible encapsulants and to produce an adequate data base to justify the preferred matrices. This report details the work carried out, under Phase 2 of the Product Evaluation Task Force programme, on BWR/PWR Dissolver Wastes. Three possible types of encapsulants for BWR/PWR Dissolver Wastes:- Inorganic cements, Polymer cements and Polymers are evaluated using the Kepner Tregoe decision analysis technique. This technique provides a methodology for scoring and ranking alternative options and evaluating any risks associated with an option. The analysis shows that for all four stages of waste management operations ie Storage, Transport, handling and emplacement, Disposal and Process, cement matrices are considerably superior to other potential matrices. A matrix, consisting of three parts Blast Furnace Slag (BFS) to one part Ordinary Portland Cement (OPC), is recommended for Phase 3 studies on BWR/PWR Dissolver Wastes. (author)

  1. Two-loop feed water control system in BWR plants

    International Nuclear Information System (INIS)

    Omori, Takashi; Watanabe, Takao; Hirose, Masao.

    1982-01-01

    In the process of the start-up and shutdown of BWR plants, the operation of changing over feed pumps corresponding to plant output is performed. Therefore, it is necessary to develop the automatic changeover system for feed pumps, which minimizes the variation of water level in reactors and is easy to operate. The three-element control system with the water level in reactors, the flow rate of main steam and the flow rate of feed water as the input is mainly applied, but long time is required for the changeover of feed pumps. The two-loop feed control system can control simultaneously two pumps being changed over, therefore it is suitable to the automatic changeover control system for feed pumps. Also it is excellent for the control of the recirculating valves of feed pumps. The control characteristics of the two-loop feed water control system against the external disturbance which causes the variation of water level in reactors were examined. The results of analysis by simulation are reported. The features of the two-loop feed water control system, the method of simulation and the evaluation of the two-loop feed water control system are described. Its connection with a digital feed water recirculation control system is expected. (Kako, I.)

  2. Experimental study of advanced continuous acoustic emission monitoring of BWR components. Final report

    International Nuclear Information System (INIS)

    McElroy, J.W.; Hartman, W.F.

    1980-09-01

    The program consisted of installing, maintaining, and monitoring AE sensors located on primary piping, nozzles, and valves in the BWR system. Analysis of the AE data was correlated to the results of supplementary nondestructive testing techniques used during the in-service inspection, performed at refueling outages. Purpose of the program was to develop the on-line surveillance acoustic emission technique in order to identify areas of possible structural degradation. Result of reducing inspection time was to reduce accumulated radiation exposure to inspecting personnel and to reduce the amount of critical plant outage time by identifying the critical inspection areas during operation. The program demonstrated the capability of acoustic emission instrumentation to endure the nuclear reactor environment. The acoustic emission sensors withstood 12 months of reactor operation at temperatures of 400 0 F and greater in high radiation fields. The preamplifiers, also mounted in the reactor environment, operated for the 12-month period in 100% humidity, 250 0 F conditions. The remaining cable and AE instrumentation were operated in controlled environments

  3. System control model of a turbine for a BWR; Modelo del sistema de control de una turbina para un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, Y. [Universidad del Valle de Mexico, Campus Toluca, Av. Las Palmas No. 136, Col. San Jorge Pueblo Nuevo, 52140 Metepec, Estado de Mexico (Mexico); Amador G, R.; Ortiz V, J.; Castillo D, R.; Delfin L, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: rodolfo.amador@inin.gob.mx

    2009-10-15

    In this work is presented a design of a control system of a turbine for a nuclear power plant with a BWR like energy source. The model seeks to implement later on at thermal hydraulics code of better estimate RELAP/SCDAPSIM. The model is developed for control and protection of turbine, and the consequent protection to the BWR, considering that the turbine control could be employed for one or several turbines in series. The quality of present designs of control pattern of turbine it is that it considers the parameters more important in the operation of a turbine besides that is has incorporated at control the secondary parameters that will be activated originally as true when the turbine model is substituted by a model more detailed. The development of control model of a turbine will be good in short and medium term to realize analysis about the operation of turbine with different operation conditions, of vapor extraction specific steps of turbine to feed other equipment s, besides analyzing the separate effect and integrated effect. (Author)

  4. A Modeling of BWR-MOX assemblies based on the characteristics method combined with advanced self-shielding models

    International Nuclear Information System (INIS)

    Le Tellier, R.; Hebert, A.; Le Tellier, R.; Santamarina, A.; Litaize, O.

    2008-01-01

    Calculations based on the characteristics method and different self-shielding models are presented for 9 x 9 boiling water reactor (BWR) assemblies fully loaded with mixed-oxide (MOX) fuel. The geometry of these assemblies was recovered from the BASALA experimental program. We have focused our study on three configurations simulating the different voiding conditions that an assembly can undergo in a BWR pressure vessel. A parametric study was carried out with respect to the spatial discretization, the tracking parameters, and the anisotropy order. Comparisons with Monte Carlo calculations in terms of k eff , radiative capture, and fission rates were performed to validate the computational tools. The results are in good agreement between the stochastic and deterministic approaches. The mutual self-shielding model recently introduced within the framework of the Ribon extending self-shielding method appears to be useful for this type of assemblies. Indeed, in the calculation of these MOX benchmarks, the overlapping of resonances, especially between 238 U and 240 Pu, plays an important role due to the spectral strengthening of the flux as the voiding percentage is increased. The method of characteristics is shown to be adequate to perform accurate calculations handling a fine spatial discretization. (authors)

  5. Analysis of an ADS spurious opening event at a BWR/6 by means of the TRACE code

    International Nuclear Information System (INIS)

    Nikitin, Konstantin; Manera, Annalisa

    2011-01-01

    Highlights: → The spurious opening of 8 relief valves of the ADS system in a BWR/6 has been simulated. → The valves opening results in a fast depressurization and significant loads on the RPV internals. → This event has been modeled by means of the TRACE and TRAC-BF1 codes. The results are in good agreement with the available plant data. - Abstract: The paper presents the results of a post-event analysis of a spurious opening of 8 relief valves of the automatic depressurization system (ADS) occurred in a BWR/6. The opening of the relief valves results in a fast depressurization (pressure blow down) of the primary system which might lead to significant dynamic loads on the RPV and associated internals. In addition, the RPV level swelling caused by the fast depressurization might lead to undesired water carry-over into the steam line and through the safety relief valves (SRVs). Therefore, the transient needs to be characterized in terms of evolution of pressure, temperature and fluid distribution in the system. This event has been modeled by means of the TRACE and TRAC-BF1 codes. The results are in good agreement with the plant data.

  6. Comparison of results for burning with BWR reactors CASMO and SCALE 6.2 (TRITON / NEWT); Comparacion de los resultados de quemado para reactores BWR con CASMO y SCALE 6.2 (TRITON/NEWT)

    Energy Technology Data Exchange (ETDEWEB)

    Mesado, C.; Miro, R.; Barrachina, T.; Verdu, G.

    2014-07-01

    In this paper we compare the results from two codes burned, CASMO and SCALE 6.2 (TRITON). To do this, is simulated all segments corresponding to a boiling water reactor (BWR) using both codes. In addition, to account for different working points, simulations changing the instantaneous variables, these are repeated: void fractions (6 points), fuel temperature (6 points) and control rods (two points), with a total of 72 possible combinations of different instantaneous variables for each segment. After all simulations are completed for each segment, we can reorder the obtained cross sections, as SCALE CASMO both, to create a library of compositions nemtab format. This format is accepted by the neutronic code of nodal diffusion, PARCS v2.7. Finally compares the results obtained with PARCS and with the SIMULATE3 -SIMTAB methodology to level of full reactor. Also, we have made use of the KENO-VI and MCDANCOFF modules belonging to SCALE. The first is a Monte Carlo transport code with which you can validate the value of the multiplier, the second has been used to obtain values of Dancoff factor and increase the accuracy of model SCALE. (Author)

  7. Experimental data report for Test TS-1 Reactivity Initiated Accident Test in NSRR with pre-irradiated BWR fuel rod

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio; Sobajima, Makoto; Fujishiro, Toshio; Horiki, Ohichiro; Yamahara, Takeshi; Ichihashi, Yoshinori; Kikuchi, Teruo

    1992-01-01

    This report presents experimental data for Test TS-1 which was the first in a series of tests, simulating Reactivity Initiated Accident (RIA) conditions using pre-irradiated BWR fuel rods, performed in the Nuclear Safety Research Reactor (NSRR) in October, 1989. Test fuel rod used in the Test TS-1 was a short-sized BWR (7 x 7) type rod which was fabricated from a commercial rod provided from Tsuruga Unit 1 power reactor. The fuel had an initial enrichment of 2.79 % and burnup of 21.3 GWd/t (bundle average). Pulse irradiation was performed at a condition of stagnant water cooling, atmospheric pressure and ambient temperature using a newly developed double container-type capsule. Energy deposition of the rod in this test was evaluated to be about 61 cal/g·fuel (55 cal/g·fuel in peak fuel enthalpy) and no fuel failure was observed. Descriptions on test conditions, test procedures, fuel burnup measurements, transient behavior of the test rod during pulse irradiation and results of post pulse irradiation examinations are contained in this report. (author)

  8. A simulation and training environment for robotic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Schlaefer, Alexander [University of Luebeck, Institute for Robotics and Cognitive Systems, Luebeck (Germany); Stanford University, Department of Radiation Oncology, Stanford, CA (United States); Gill, Jakub; Schweikard, Achim [University of Luebeck, Institute for Robotics and Cognitive Systems, Luebeck (Germany)

    2008-09-15

    To provide a software environment for simulation of robotic radiosurgery, particularly to study the effective robot workspace with respect to the treatment plan quality, and to illustrate the concepts of robotic radiosurgery. A simulation environment for a robotic radiosurgery system was developed using Java and Java3D. The kinematics and the beam characteristics were modeled and linked to a treatment planning module. Simulations of different robot workspace parameters for two example radiosurgical patient cases were performed using the novel software tool. The first case was an intracranial lesion near the left inner ear, the second case was a spinal lesion. The planning parameters for both cases were visualized with the novel simulation environment. An incremental extension of the robot workspace had limited effect for the intracranial case, where the original workspace already covered the left side of the patient. For the spinal case, a larger workspace resulted in a noticeable improvement in plan quality and a large portion of the beams being delivered from the extended workspace. The new software environment is useful to simulate and analyze parameters and configurations for robotic radiosurgery. An enlarged robot workspace may result in improved plan quality depending on the location of the target region. (orig.)

  9. A simulation and training environment for robotic radiosurgery

    International Nuclear Information System (INIS)

    Schlaefer, Alexander; Gill, Jakub; Schweikard, Achim

    2008-01-01

    To provide a software environment for simulation of robotic radiosurgery, particularly to study the effective robot workspace with respect to the treatment plan quality, and to illustrate the concepts of robotic radiosurgery. A simulation environment for a robotic radiosurgery system was developed using Java and Java3D. The kinematics and the beam characteristics were modeled and linked to a treatment planning module. Simulations of different robot workspace parameters for two example radiosurgical patient cases were performed using the novel software tool. The first case was an intracranial lesion near the left inner ear, the second case was a spinal lesion. The planning parameters for both cases were visualized with the novel simulation environment. An incremental extension of the robot workspace had limited effect for the intracranial case, where the original workspace already covered the left side of the patient. For the spinal case, a larger workspace resulted in a noticeable improvement in plan quality and a large portion of the beams being delivered from the extended workspace. The new software environment is useful to simulate and analyze parameters and configurations for robotic radiosurgery. An enlarged robot workspace may result in improved plan quality depending on the location of the target region. (orig.)

  10. GOTHIC MODEL OF BWR SECONDARY CONTAINMENT DRAWDOWN ANALYSES

    International Nuclear Information System (INIS)

    Hansen, P.N.

    2004-01-01

    This article introduces a GOTHIC version 7.1 model of the Secondary Containment Reactor Building Post LOCA drawdown analysis for a BWR. GOTHIC is an EPRI sponsored thermal hydraulic code. This analysis is required by the Utility to demonstrate an ability to restore and maintain the Secondary Containment Reactor Building negative pressure condition. The technical and regulatory issues associated with this modeling are presented. The analysis includes the affect of wind, elevation and thermal impacts on pressure conditions. The model includes a multiple volume representation which includes the spent fuel pool. In addition, heat sources and sinks are modeled as one dimensional heat conductors. The leakage into the building is modeled to include both laminar as well as turbulent behavior as established by actual plant test data. The GOTHIC code provides components to model heat exchangers used to provide fuel pool cooling as well as area cooling via air coolers. The results of the evaluation are used to demonstrate the time that the Reactor Building is at a pressure that exceeds external conditions. This time period is established with the GOTHIC model based on the worst case pressure conditions on the building. For this time period the Utility must assume the primary containment leakage goes directly to the environment. Once the building pressure is restored below outside conditions the release to the environment can be credited as a filtered release

  11. Simulation of the operational monitoring of a BWR with Simulate-3

    International Nuclear Information System (INIS)

    Jimenez F, J. O.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L.

    2015-09-01

    This work was developed in order to describe the methodology for calculating the fuel burned of nuclear power reactors throughout the duration of their operating cycle and for each fuel reload. In other words, simulate and give monitoring to the main operation parameters of sequential way along its operation cycles. For this particular case, the operational monitoring of five consecutive cycles of a reactor was realized using the information reported by their processes computer. The simulation was performed with the Simulate-3 software and the results were compared with those of the process computer. The goal is to get the fuel burned, cycle after cycle for obtain the state conditions of the reactor needed for the fuel reload analyses, stability studies and transients analysis, and the development of a methodology that allows to manage and resolve similar cases for future fuel cycles of the nuclear power plant and explore the various options offered by the simulator. (Author)

  12. Prevention of organic iodide formation in BWR's

    International Nuclear Information System (INIS)

    Karjunen, T.; Laitinen, T.; Piippo, J.; Sirkiae, P.

    1996-01-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR's as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs

  13. Prony's method application for BWR instabilities characterization

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Rogelio, E-mail: rogelio.castillo@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Ramírez, J. Ramón, E-mail: ramon.ramirez@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Alonso, Gustavo, E-mail: gustavo.alonso@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico)

    2015-04-01

    Highlights: • Prony's method application for BWR instability events. • Several BWR instability benchmark are assessed using this method. • DR and frequency are obtained and a new parameter is proposed to eliminate false signals. • Adequate characterization of in-phase and out-of-phase events is obtained. • The Prony's method application is validated. - Abstract: Several methods have been developed for the analysis of reactor power signals during BWR power oscillations. Among them is the Prony's method, its application provides the DR and the frequency of oscillations. In this paper another characteristic of the method is proposed to determine the type of oscillations that can occur, in-phase or out-of-phase. Prony's method decomposes a given signal in all the frequencies that it contains, therefore the DR of the fundamental mode and the first harmonic are obtained. To determine the more dominant pole of the system a normalized amplitude W of the system is calculated, which depends on the amplitude and the damping coefficient. With this term, it can be analyzed which type of oscillations is present, if W of the fundamental mode frequency is the greater, the type of oscillations is in-phase, if W of the first harmonic frequency is the greater, the type of oscillations is out-of-phase. The method is applied to several stability benchmarks to assess its validity. Results show the applicability of the method as an alternative analysis method to determine the type of oscillations occurred.

  14. Prony's method application for BWR instabilities characterization

    International Nuclear Information System (INIS)

    Castillo, Rogelio; Ramírez, J. Ramón; Alonso, Gustavo; Ortiz-Villafuerte, Javier

    2015-01-01

    Highlights: • Prony's method application for BWR instability events. • Several BWR instability benchmark are assessed using this method. • DR and frequency are obtained and a new parameter is proposed to eliminate false signals. • Adequate characterization of in-phase and out-of-phase events is obtained. • The Prony's method application is validated. - Abstract: Several methods have been developed for the analysis of reactor power signals during BWR power oscillations. Among them is the Prony's method, its application provides the DR and the frequency of oscillations. In this paper another characteristic of the method is proposed to determine the type of oscillations that can occur, in-phase or out-of-phase. Prony's method decomposes a given signal in all the frequencies that it contains, therefore the DR of the fundamental mode and the first harmonic are obtained. To determine the more dominant pole of the system a normalized amplitude W of the system is calculated, which depends on the amplitude and the damping coefficient. With this term, it can be analyzed which type of oscillations is present, if W of the fundamental mode frequency is the greater, the type of oscillations is in-phase, if W of the first harmonic frequency is the greater, the type of oscillations is out-of-phase. The method is applied to several stability benchmarks to assess its validity. Results show the applicability of the method as an alternative analysis method to determine the type of oscillations occurred

  15. A Simulated Learning Environment for Teaching Medicine Dispensing Skills.

    Science.gov (United States)

    McDowell, Jenny; Styles, Kim; Sewell, Keith; Trinder, Peta; Marriott, Jennifer; Maher, Sheryl; Naidu, Som

    2016-02-25

    To develop an authentic simulation of the professional practice dispensary context for students to develop their dispensing skills in a risk-free environment. A development team used an Agile software development method to create MyDispense, a web-based simulation. Modeled on virtual learning environments elements, the software employed widely available standards-based technologies to create a virtual community pharmacy environment. Assessment. First-year pharmacy students who used the software in their tutorials, were, at the end of the second semester, surveyed on their prior dispensing experience and their perceptions of MyDispense as a tool to learn dispensing skills. The dispensary simulation is an effective tool for helping students develop dispensing competency and knowledge in a safe environment.

  16. BWR-stability investigation at Forsmark 1

    International Nuclear Information System (INIS)

    Bergdahl, B.G.; Reisch, F.; Oguma, R.; Lorenzen, J.; Aakerhielm, F.

    1988-01-01

    A series of noise measurements have been conducted at Forsmark 1 during start-up operation after the revision summer '87. The main purpose was to investigate BWR-stability problems, i.e. resonant power oscillations of 0.5 Hz around 65% power and 4100 kg/s core flow, which tend to arise at high power and low core flow conditions. The analysis was performed to estimate the noise source which gives rise to the oscillation, to evaluate the measure of stability, i.e. the Decay Ratio (Dr) as well as to investigate other safety related problems. The result indicates that the oscillation is due to the dynamic coupling between the neutron kinetics and thermal hydraulics via void reactivity feedback. The Dr ranged between values of 0.7 and > 0.9, instead of expected 0.6 (Dr=1 is defined as instability). These high values imply that the core cannot suppress oscillations fast enough and a small perturbation can cause scram. Further it was found that the entire core is oscillating in phase (LPRM's) with varying strength where any connection to the consequences of different fuel (8x8, 9x9) being present simultaneously cannot be excluded. This report elucidates the importance of an on-line BWR-stability surveillance system with functions like stability condition monitoring and control system diagnosis. (orig.)

  17. Identification and assessment of BWR in-vessel severe accident mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, S.A.; Cleveland, J.C.; Kress, T.S.; Petek, M. [Oak Ridge National Lab., TN (United States)

    1992-10-01

    This report provides the results of work carried out in support of the US Nuclear Regulatory Commission Accident Management Research Program to develop a technical basis for evaluating the effectiveness and feasibility of current and proposed strategies for boiling water reactor (BWR) severe accident management. First, the findings of an assessment of the current status of accident management strategies for the mitigation of in-vessel events for BWR severe accident sequences are described. This includes a review of the BWR Owners` Group Emergency Procedure Guidelines (EPGSs) to determine the extent to which they currently address the characteristic events of an unmitigated severe accident and to provide the basis for recommendations for enhancement of accident management procedures. Second, where considered necessary, new candidate accident management strategies are proposed for mitigation of the late-phase (after core damage has occurred) events. Finally, recommendations are made for consideration of additional strategies where warranted, and two of the four candidate strategies identified by this effort are assessed in detail: (1) preparation of a boron solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and (2) containment flooding to maintain the core debris within the reactor vessel if the injection systems cannot be restored.

  18. Identification and assessment of BWR in-vessel severe accident mitigation strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Cleveland, J.C.; Kress, T.S.; Petek, M.

    1992-10-01

    This report provides the results of work carried out in support of the US Nuclear Regulatory Commission Accident Management Research Program to develop a technical basis for evaluating the effectiveness and feasibility of current and proposed strategies for boiling water reactor (BWR) severe accident management. First, the findings of an assessment of the current status of accident management strategies for the mitigation of in-vessel events for BWR severe accident sequences are described. This includes a review of the BWR Owners' Group Emergency Procedure Guidelines (EPGSs) to determine the extent to which they currently address the characteristic events of an unmitigated severe accident and to provide the basis for recommendations for enhancement of accident management procedures. Second, where considered necessary, new candidate accident management strategies are proposed for mitigation of the late-phase (after core damage has occurred) events. Finally, recommendations are made for consideration of additional strategies where warranted, and two of the four candidate strategies identified by this effort are assessed in detail: (1) preparation of a boron solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and (2) containment flooding to maintain the core debris within the reactor vessel if the injection systems cannot be restored

  19. FIX-II/3025, BWR FIX-II Pump Trip Experiment 3025, Immediate Split Size Break

    International Nuclear Information System (INIS)

    NILSSON, Lars; GUSTAFSSON, Per-Ake; GUSTAFSON, Lennart; JANCZAK, Rajmund; OESTERLUNDH, Ingrid

    1992-01-01

    1 - Description of test facility: The FIX-II facility is a volume scaled 1:777 representation of a Swedish BWR with external pumps. The pressure vessel contains a 36 rod full length bundle and a spray condenser at the top to allow steady state operation. The downcomer, bypass channels and guide tube volumes are represented by external piping. The intact loop represents three of the four external reactor loops. The broken loop is constructed such that both guillotine breaks and split breaks may be simulated. The facility is equipped with ADS-simulation, but no ECCS injection are included. The FIX-II loop is also suited to investigate response of pump trips and MSIV closures in internal pump reactors. 2 - Description of test: Test 3025 simulates an intermediate size split break in one of the four main recirculation lines. The break area was 31 per cent of the scaled down pipe area of the reactor. The initial power of the 36-rod bundle was 3.38 MW, corresponding to the hot channel power of the reactor

  20. Standard Technical Specifications, General Electric Plants, BWR/6

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/4, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3, contains the Bases for Sections 3.4--3.10 of the improved STS

  1. BWR power oscillation evaluation methodologies in core design

    International Nuclear Information System (INIS)

    Hotta, Akitoshi

    1995-01-01

    At the initial stage of BWR development, the power oscillation due to the nuclear-thermal interaction originated in random boiling phenomena and nuclear void feedback was feared. But it was shown that under the high pressure condition in the normal operation of recent commercial BWRs, the core is in very stable state. However, power oscillation events have been observed in actual machines, and it is necessary to do the stability evaluation that sufficiently reflects the detailed operation conditions of actual plants. As the cause of power oscillation events, the instability of control system and nuclear-thermal coupling instability are important, and their mechanisms are explained. As the model for analyzing the stability of BWR core, the nuclear-thermal coupling model in frequency domain is the central existence. As the information for the design, the parameters of fuel assemblies, and the nuclear parameters and the thermohydraulic parameters of cores are enumerated. LAPUR-TSI is a nuclear-thermal coupling model. The analysis system in the software of Tokyo Electric Power Co. is outlined, and the analysis model was verified. (K.I.)

  2. Standard Technical Specifications, General Electric plants, BWR/4

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/6, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. This document Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  3. MELCOR 1.8.2 assessment: The DF-4 BWR Damaged Fuel experiment

    International Nuclear Information System (INIS)

    Tautges, T.J.

    1993-10-01

    MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment, program, MELCOR has been used to model the ACRR in-pile DF-4 Damaged Fuel experiment. DF-4 provided data for early phase melt progression in BWR fuel assemblies, particularly for phenomena associated with eutectic interactions in the BWR control blade and zircaloy oxidation in the canister and cladding. MELCOR provided good agreement with experimental data in the key areas of eutectic material behavior and canister and cladding oxidation. Several shortcomings associated with the MELCOR modeling of BWR geometries were found and corrected. Twenty-five sensitivity studies were performed on COR, HS and CVH parameters. These studies showed that the new MELCOR eutectics model played an important role in predicting control blade behavior. These studies revealed slight time step dependence and no machine dependencies. Comparisons made with the results from four best-estimate codes showed that MELCOR did as well as these codes in matching DF-4 experimental data

  4. Application of the FFTBM method and the power relative contribution to the discharge transitory of the recirculation pumps of a BWR; Aplicacion del metodo FFTBM y de la contribucion relativa de potencia al transitorio de disparo de las bombas de recirculacion de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Castillo D, R.; Ortiz V, J.; Fuentes M, L., E-mail: rogelio.castillo@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In this work was realized the simulation of the discharge transitory of both recirculation pumps of a BWR with the Simulate-3K code. This type of transitory is used in the stability analyses for the licensing of the fuel reload. An analysis of the precision of the simulation is also presented, using the FFTBM method jointly with the power relative contribution. This way, instead of determining the total precision of the calculation, a weighed precision is obtained by the contribution of each relevant parameter of the transitory. The results show that the precision of the simulation is acceptable due to the small magnitude of the merit figure of the width total average. The error in the merit figure comes mainly from the parameters total flow in the core and temperature of the fuel in the core. (Author)

  5. Virtual Environments for Advanced Trainers and Simulators

    NARCIS (Netherlands)

    Jense, G.J.; Kuijper, F.

    1993-01-01

    Virtual environment technology is expected to make a big impact on future training and simulation systems. Direct stimulation of human senses (eyesight, auditory, tactile) and new paradigms for user input will improve the realism of simulations and thereby the effectiveness of training systems.

  6. BWR ATWS mitigation by Fine Motion Control Rod

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.; Mallen, A.; Diamond, D.

    1994-01-01

    Two main methods of ATWS mitigation in a SBWR are: fine Motion control Rods (FMCRD) and Boron injection via the Standby Liquid control System (SLCS). This study has demonstrated that the use of FMCRD along with feedwater runback mitigated the conditions due to reactivity insertion and possible ATWS in a BWR which is similar to SBWR

  7. 3D simulation of a core operation cycle of a BWR using Serpent; Simulacion 3D de un ciclo de operacion del nucleo de un BWR usando SERPENT

    Energy Technology Data Exchange (ETDEWEB)

    Barrera Ch, M. A.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, 07738 Ciudad de Mexico (Mexico); Gomez T, A. M., E-mail: rionchez@icloud.com [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    This work had the main goal to develop a methodology to obtain the length of an operating cycle of the core of a BWR under different operating states using the Serpent code. The reactor core modeled in Serpent is composed of 444 fuel assemblies (120 with fresh fuels and 324 fuels from previous cycles), 109 cruciform control rods and light water as moderator and coolant. Once the core of the reactor was modeled in Serpent (Three-dimensional) without considering the cruciform control rods, a simulation was carried out with different steps of burning in the operational state with the average values of the fuel temperature (900 K), moderator temperature (600 K) and voids fraction equal to 0.4. In addition, the thermal power considered was 2017 MWt. This operational state was chosen because a previous analysis (not shown in this work) was carried out in 4 types of control cells. The first and second control cell has all of its natural uranium fuel pellets, with control rod and without control rod respectively. The third and fourth control cell types have various types of enrichment, both natural uranium and gadolinium in their fuel pellets, with control rod and without control rod. The conclusion of this previous analysis was that the behavior of the effective multiplication factor along the fuel burnout within the four control cell types was almost unaffected by the fuel temperature but was affected by the voids fraction. Thus, for this operating cycle in the operating state defined above, its length was 14,63052 GW t/Tm. In addition, at the end of this cycle, the decay heat obtained was equal to 116.71 MWt and the inventory of the most important isotopes to be considered was obtained, such as some isotopes of uranium, neptune, plutonium, americium and curio. (Author)

  8. The development of emergency core cooling systems in the PWR, BWR, and HWR Candu type of nuclear power plants

    International Nuclear Information System (INIS)

    Mursid Djokolelono.

    1976-01-01

    Emergency core cooling systems in the PWR, BWR, and HWR-Candu type of nuclear power plant are reviewed. In PWR and BWR the emergency cooling can be catagorized as active high pressure, active low pressure, and a passive one. The PWR uses components of the shutdown cooling system: whereas the BWR uses components of pressure suppression contaiment. HWR Candu also uses the shutdown cooling system similar to the PWR except some details coming out from moderator coolant separation and expensive cost of heavy water. (author)

  9. A Collaborative Extensible User Environment for Simulation and Knowledge Management

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L.; Lansing, Carina S.; Porter, Ellen A.; Schuchardt, Karen L.; Guillen, Zoe C.; Sivaramakrishnan, Chandrika; Gorton, Ian

    2015-06-01

    In scientific simulation, scientists use measured data to create numerical models, execute simulations and analyze results from advanced simulators executing on high performance computing platforms. This process usually requires a team of scientists collaborating on data collection, model creation and analysis, and on authorship of publications and data. This paper shows that scientific teams can benefit from a user environment called Akuna that permits subsurface scientists in disparate locations to collaborate on numerical modeling and analysis projects. The Akuna user environment is built on the Velo framework that provides both a rich client environment for conducting and analyzing simulations and a Web environment for data sharing and annotation. Akuna is an extensible toolset that integrates with Velo, and is designed to support any type of simulator. This is achieved through data-driven user interface generation, use of a customizable knowledge management platform, and an extensible framework for simulation execution, monitoring and analysis. This paper describes how the customized Velo content management system and the Akuna toolset are used to integrate and enhance an effective collaborative research and application environment. The extensible architecture of Akuna is also described and demonstrates its usage for creation and execution of a 3D subsurface simulation.

  10. Two-phase flow phenomena in broken recirculation line of BWR

    International Nuclear Information System (INIS)

    Kato, Masami; Arai, Kenji; Narabayashi, Tadashi; Amano, Osamu.

    1986-01-01

    When a primary recirculation line of BWR is ruptured, a primary recirculation pump may be subjected to very high velocity two-phase flow and its speed may be accelerated by this flow. It is important for safety evaluation to estimate the pump behavior during blowdown. There are two problems involved in analyzing this behavior. One problem concerns the pump characteristics under two-phase flow. The other involves the two-phase conditions at the pump inlet. If the rupture occurs at a suction side of the pump, choking is considered to occur at a broken jet pump nozzle. Then, a void fraction becomes larger downstream from the jet pump nozzle and volumetric flow through the pump will be very high. However, there is little experimental data available on two-phase flow downstream from a choking plane. Blowdown tests were performed using a simulated broken recirculation line and measured data were analyzed by TRAC-PlA. Analytical results agreed with measured data. (author)

  11. Digital implementation, simulation and tests in MATLAB of the models of Steam line, the turbines, the pressure regulator of a BWR type nucleo electric power plant

    International Nuclear Information System (INIS)

    Lopez R, A.

    2004-01-01

    In this phase of the project they were carried out exhaustive tests to the models of the steam lines, turbines and pressure regulator of a BWR type nucleo electric central for to verify that their tendencies and behaviors are it more real possible. For it, it was necessary to also analyze the transfer functions of the different components along the steam line until the power generator. Such models define alone the dominant poles of the system, what is not limitation to reproduce a wide range of anticipated transitoriness of a power station operation. In the same manner, it was integrated and proved the integrated model form with the models of feeding water of the SUN-RAH, simulating the nuclear reactor starting from predetermined entrances of the prospective values of the vessel. Also it was coupled with the graphic interface developed with the libraries DirectX implementing a specific monitoring panel for this system. (Author)

  12. Development of CFD analysis method based on droplet tracking model for BWR fuel assemblies

    International Nuclear Information System (INIS)

    Onishi, Yoichi; Minato, Akihiko; Ichikawa, Ryoko; Mashara, Yasuhiro

    2011-01-01

    It is well known that the minimum critical power ratio (MCPR) of the boiling water reactor (BWR) fuel assembly depends on the spacer grid type. Recently, improvement of the critical power is being studied by using a spacer grid with mixing devices attaching various types of flow deflectors. In order to predict the critical power of the improved BWR fuel assembly, we have developed an analysis method based on the consideration of detailed thermal-hydraulic mechanism of annular mist flow regime in the subchannels for an arbitrary spacer type. The proposed method is based on a computational fluid dynamics (CFD) model with a droplet tracking model for analyzing the vapor-phase turbulent flow in which droplets are transported in the subchannels of the BWR fuel assembly. We adopted the general-purpose CFD software Advance/FrontFlow/red (AFFr) as the base code, which is a commercial software package created as a part of Japanese national project. AFFr employs a three-dimensional (3D) unstructured grid system for application to complex geometries. First, AFFr was applied to single-phase flows of gas in the present paper. The calculated results were compared with experiments using a round cellular spacer in one subchannel to investigate the influence of the choice of turbulence model. The analyses using the large eddy simulation (LES) and re-normalisation group (RNG) k-ε models were carried out. The results of both the LES and RNG k-ε models show that calculations of velocity distribution and velocity fluctuation distribution in the spacer downstream reproduce the experimental results qualitatively. However, the velocity distribution analyzed by the LES model is better than that by the RNG k-ε model. The velocity fluctuation near the fuel rod, which is important for droplet deposition to the rod, is also simulated well by the LES model. Then, to examine the effect of the spacer shape on the analytical result, the gas flow analyses with the RNG k-ε model were performed

  13. Logical model for the control of a BWR turbine;Modelo logico para el control de una turbina de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, Y. [Universidad del Valle de Mexico, Campus Toluca, Av. Las Palmas No. 136, Col. San Jorge Pueblo Nuevo, 52140 Metepec, Estado de Mexico (Mexico); Amador G, R.; Ortiz V, J.; Castillo D, R., E-mail: yonaeton@hotmail.co [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    In this work a design of a logical model is presented for the turbine control of a nuclear power plant with a BWR like energy source. The model is sought to implement later on inside the thermal hydraulics code of better estimate RELAP/SCDAPSIM. The logical model is developed for the control and protection of the turbine, and the consequent protection to the BWR, considering that the turbine control will be been able to use for one or several turbines in series. The quality of the present design of the logical model of the turbine control is that it considers the most important parameters in the operation of a turbine, besides that they have incorporated to the logical model the secondary parameters that will be activated originally as true when the turbine model is substituted by a detailed model. The development of the logical model of a turbine will be of utility in the short and medium term to carry out analysis on the turbine operation with different operation conditions, of vapor extraction, specific steps of the turbine to feed other equipment s, in addition to analyze the separate and the integrated effect. (Author)

  14. Modeling and validation of a mechanistic tool (MEFISTO) for the prediction of critical power in BWR fuel assemblies

    International Nuclear Information System (INIS)

    Adamsson, Carl; Le Corre, Jean-Marie

    2011-01-01

    Highlights: → The MEFISTO code efficiently and accurately predicts the dryout event in a BWR fuel bundle, using a mechanistic model. → A hybrid approach between a fast and robust sub-channel analysis and a three-field two-phase analysis is adopted. → MEFISTO modeling approach, calibration, CPU usage, sensitivity, trend analysis and performance evaluation are presented. → The calibration parameters and process were carefully selected to preserve the mechanistic nature of the code. → The code dryout prediction performance is near the level of fuel-specific empirical dryout correlations. - Abstract: Westinghouse is currently developing the MEFISTO code with the main goal to achieve fast, robust, practical and reliable prediction of steady-state dryout Critical Power in Boiling Water Reactor (BWR) fuel bundle based on a mechanistic approach. A computationally efficient simulation scheme was used to achieve this goal, where the code resolves all relevant field (drop, steam and multi-film) mass balance equations, within the annular flow region, at the sub-channel level while relying on a fast and robust two-phase (liquid/steam) sub-channel solution to provide the cross-flow information. The MEFISTO code can hence provide highly detailed solution of the multi-film flow in BWR fuel bundle while enhancing flexibility and reducing the computer time by an order of magnitude as compared to a standard three-field sub-channel analysis approach. Models for the numerical computation of the one-dimensional field flowrate distributions in an open channel (e.g. a sub-channel), including the numerical treatment of field cross-flows, part-length rods, spacers grids and post-dryout conditions are presented in this paper. The MEFISTO code is then applied to dryout prediction in BWR fuel bundle using VIPRE-W as a fast and robust two-phase sub-channel driver code. The dryout power is numerically predicted by iterating on the bundle power so that the minimum film flowrate in the

  15. Signal analysis of acoustic and flow-induced vibrations of BWR main steam line

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, G., E-mail: gepe@xanum.uam.mx [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Prieto-Guerrero, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Núñez-Carrera, A. [Comisión Nacional de Seguridad Nuclear y Salvaguardias, Doctor Barragán 779, Col. Narvarte, México, D.F. 03020 (Mexico); Vázquez-Rodríguez, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Centeno-Pérez, J. [Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas Unidad Profesional “Adolfo López Mateos”, Av. IPN, s/n, México, D.F. 07738 (Mexico); Espinosa-Martínez, E.-G. [Departamento de Sistemas Energéticos, Universidad Nacional Autónoma de México, México, D.F. 04510 (Mexico); and others

    2016-05-15

    Highlights: • Acoustic and flow-induced vibrations of BWR are analyzed. • BWR performance after extended power uprate is considered. • Effect of acoustic side branches (ASB) is analyzed. • The ASB represents a reduction in the acoustic loads to the steam dryer. • Methodology developed for simultaneous analyzing the signals in the MSL. - Abstract: The aim of this work is the signal analysis of acoustic waves due to phenomenon known as singing in Safety Relief Valves (SRV) of the main steam lines (MSL) in a typical BWR5. The acoustic resonance in SRV standpipes and fluctuating pressure is propagated from SRV to the dryer through the MSL. The signals are analyzed with a novel method based on the Multivariate Empirical Mode Decomposition (M-EMD). The M-EMD algorithm has the potential to find common oscillatory modes (IMF) within multivariate data. Based on this fact, we implement the M-EMD technique to find the oscillatory mode in BWR considering the measurements obtained collected by the strain gauges located around the MSL. These IMF, analyzed simultaneously in time, allow obtaining an estimation of the effects of the multiple-SRV in the MSL. Two scenarios are analyzed: the first is the signal obtained before the installation of the acoustic dampers (ASB), and the second, the signal obtained after installation. The results show the effectiveness of the ASB to damp the strong resonances when the steam flow increases, which represents an important reduction in the acoustic loads to the steam dryer.

  16. Signal analysis of acoustic and flow-induced vibrations of BWR main steam line

    International Nuclear Information System (INIS)

    Espinosa-Paredes, G.; Prieto-Guerrero, A.; Núñez-Carrera, A.; Vázquez-Rodríguez, A.; Centeno-Pérez, J.; Espinosa-Martínez, E.-G.

    2016-01-01

    Highlights: • Acoustic and flow-induced vibrations of BWR are analyzed. • BWR performance after extended power uprate is considered. • Effect of acoustic side branches (ASB) is analyzed. • The ASB represents a reduction in the acoustic loads to the steam dryer. • Methodology developed for simultaneous analyzing the signals in the MSL. - Abstract: The aim of this work is the signal analysis of acoustic waves due to phenomenon known as singing in Safety Relief Valves (SRV) of the main steam lines (MSL) in a typical BWR5. The acoustic resonance in SRV standpipes and fluctuating pressure is propagated from SRV to the dryer through the MSL. The signals are analyzed with a novel method based on the Multivariate Empirical Mode Decomposition (M-EMD). The M-EMD algorithm has the potential to find common oscillatory modes (IMF) within multivariate data. Based on this fact, we implement the M-EMD technique to find the oscillatory mode in BWR considering the measurements obtained collected by the strain gauges located around the MSL. These IMF, analyzed simultaneously in time, allow obtaining an estimation of the effects of the multiple-SRV in the MSL. Two scenarios are analyzed: the first is the signal obtained before the installation of the acoustic dampers (ASB), and the second, the signal obtained after installation. The results show the effectiveness of the ASB to damp the strong resonances when the steam flow increases, which represents an important reduction in the acoustic loads to the steam dryer.

  17. BWR Assembly Optimization for Minor Actinide Recycling

    International Nuclear Information System (INIS)

    Maldonado, G. Ivan; Christenson, John M.; Renier, J.P.; Marcille, T.F.; Casal, J.

    2010-01-01

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs). A top-level objective of the Advanced Fuel Cycle Systems Analysis program element of the DOE NERI program is to investigate spent fuel treatment and recycling options for current light water reactors (LWRs). Accordingly, this project targets to expand the traditional scope of nuclear fuel management optimization into the following two complementary specific objectives: (1) To develop a direct coupling between the pin-by-pin within-bundle loading control variables and core-wide (bundle-by-bundle) optimization objectives, (2) to extend the methodology developed to explicitly encompass control variables, objectives, and constraints designed to maximize minor actinide incineration in BWR bundles and cycles. The first specific objective is projected to 'uncover' dormant thermal margin made available by employing additional degrees of freedom within the optimization process, while the addition of minor actinides is expected to 'consume' some of the uncovered thermal margin. Therefore, a key underlying goal of this project is to effectively invest some of the uncovered thermal margin into achieving the primary objective.

  18. Status Report of Simulated Space Radiation Environment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-15

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety.

  19. Status Report of Simulated Space Radiation Environment Facility

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-01

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety

  20. Applied methods for mitigation of damage by stress corrosion in BWR type reactors; Metodos aplicados para la mitigacion del dano por corrosion bajo esfuerzo en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencia de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  1. Fast neutron fluence calculations as support for a BWR pressure vessel and internals surveillance program

    International Nuclear Information System (INIS)

    Lucatero, Marco A.; Palacios-Hernandez, Javier C.; Ortiz-Villafuerte, Javier; Xolocostli-Munguia, J. Vicente; Gomez-Torres, Armando M.

    2010-01-01

    Materials surveillance programs are required to detect and prevent degradation of safety-related structures and components of a nuclear power reactor. In this work, following the directions in the Regulatory Guide 1.190, a calculational methodology is implemented as additional support for a reactor pressure vessel and internals surveillance program for a BWR. The choice of the neutronic methods employed was based on the premise of being able of performing all the expected future survey calculations in relatively short times, but without compromising accuracy. First, a geometrical model of a typical BWR was developed, from the core to the primary containment, including jet pumps and all other structures. The methodology uses the Synthesis Method to compute the three-dimensional neutron flux distribution. In the methodology, the code CORE-MASTER-PRESTO is used as the three-dimensional core simulator; SCALE is used to generate the fine-group flux spectra of the components of the model and also used to generate a 47 energy-groups job cross section library, collapsed from the 199-fine-group master library VITAMIN-B6; ORIGEN2 was used to compute the isotopic densities of uranium and plutonium; and, finally, DORT was used to calculate the two-dimensional and one-dimensional neutron flux distributions required to compute the synthesized three-dimensional neutron flux. Then, the calculation of fast neutron fluence was performed using the effective full power time periods through six operational fuel cycles of two BWR Units and until the 13th cycle for Unit 1. The results showed a maximum relative difference between the calculated-by-synthesis fast neutron fluxes and fluences and those measured by Fe, Cu and Ni dosimeters less than 7%. The dosimeters were originally located adjacent to the pressure vessel wall, as part of the surveillance program. Results from the computations of peak fast fluence on pressure vessel wall and specific weld locations on the core shroud are

  2. Experimental and analytical studies for a BWR nuclear reactor building evaluation of soil-structure interaction behavior

    International Nuclear Information System (INIS)

    Mizuno, N.; Tsushima, Y.

    1975-01-01

    The purpose of this paper is to evaluate the spatial characteristics of dynamic properties, especially soil-structure interaction behavior, or the BWR nuclear reactor building by experimental and analytical studies. An analytical method (SMIRT-1 Paper K 2/4) for estimating the damping effects is reported. The complex damping is used, because the so-called structural damping may be more suitable for estimating the damping effects of an elastic structure. H. Tajimi's theory is used for estimating the dynamical soil-foundation stiffness with the dissipation of vibrational energy on the elastic half-space soil. An approximate explanation is presented in regard to the more developmental mathematical method for estimating the damping effects than the above-mentioned previous method, which is 'Modes Superposition Method for Multi-Degrees of Freedom System' with the constant complex stiffness showing the structural damping effects and the dynamical soil-foundation stiffness approximated by the linear or quadratic functions of the eigenvalues. Next, an approximate explanation is presented in regard to the experimental results of the No.1 reactor building (BWR) of Hamaoka Nuclear Power Station, The Chubu Electric Power Co., Ltd. The regression analyses of the experimental resonance curves by one degree system show that the critical damping ratio is larger than the 0.10 used in the design for the fundamental natural period. It is attempted to simulate the experimental results by the above-mentioned method. The simulated model is a fourty-eight degrees of freedom spring mass system because of the eight masses for the eight floors including the base foundation and the six degrees of freedom for a mass

  3. BUTREN-RC an hybrid system for the recharges optimization of nuclear fuels in a BWR

    International Nuclear Information System (INIS)

    Ortiz S, J.J.; Castillo M, J.A.; Valle G, E. del

    2004-01-01

    The obtained results with the hybrid system BUTREN-RC are presented that obtains recharges of nuclear fuel for a BWR type reactor. The system has implemented the methods of optimization heuristic taboo search and neural networks. The optimization it carried out with the technique of taboo search, and the neural networks, previously trained, were used to predict the behavior of the recharges of fuel, in substitution of commercial codes of reactor simulation. The obtained recharges of nuclear fuel correspond to 5 different operation cycles of the Laguna Verde Nuclear Power plant, Veracruz in Mexico. The obtained results were compared with the designs of this cycles. The energy gain with the recharges of fuel proposals is of approximately 4.5% with respect to those of design. The time of compute consumed it was considerably smaller that when a commercial code for reactor simulation is used. (Author)

  4. Power plant design: ESBWR - the latest passive BWR

    International Nuclear Information System (INIS)

    Arnold, H.; Yadigaroglu, G.; Stoop, P.C.

    1997-01-01

    When General Electric said it would end development of its 670 MWe SBWR (Simplified Boiling Water Reactor), it was not quite the end of the story. Also on the drawing board at the time was the larger ESBWR (standing for either European or Economic Simplified BWR) whose goal was to provide the improved economic performance that the SBWR could not. (UK)

  5. BWR fuel experience with zinc injection

    International Nuclear Information System (INIS)

    Levin, H.A.; Garcia, S.E.

    1995-01-01

    In 1982 a correlation between low primary recirculation system dose rates in BWR's and the presence of ionic zinc in reactor water was identified. The source of the zinc was primarily from Admiralty brass condensers. Plants with brass condensers are called ''natural zinc'' plants. Brass condensers were also a source of copper that was implicated in crude induced localized corrosion (CILC) fuel failures. In 1986 the first BWR intentionally injected zinc for the benefits of dose rate control. Although zinc alone was never implicated in fuel degradation of failures, a comprehensive fuel surveillance program was initiated to monitor fuel performance. Currently there are 14 plants that are injecting zinc. Six of these plants are also on hydrogen water chemistry. This paper describes the effect on both Zircaloy corrosion and the cruding characteristics as a result of these changes in water chemistry. Fuel rod corrosion was found to be independent of the specific water chemistry of the plants. The corrosion behavior was the same with the additions of zinc alone or zinc plus hydrogen and well within the operating experience for fuel without either of these additions. No change was observed in the amounts of crude deposited on the fuel rods, both for the adherent and loosely held deposits. One of the effects of the zinc addition was the trend to form more of the zinc rich iron spinel in the fuel deposits rather than the hematite deposits that are predominantly formed with non additive water chemistry

  6. Development of the radiation models of a BWR type reactor and it facility in the SUN-RAH

    International Nuclear Information System (INIS)

    Barron A, I.

    2005-01-01

    This work about generation models, transport in processes and radioactive contamination of areas of a BWR central, is an amplification to the project developed in the UNAM to have a support tool in subjects or electric generation courses. It is planned about the implementation of models of radiation generation in a BWR type reactor for complement the functions developed in the University Simulator of Nucleo electric- Boiling water reactor (SUN-RAH) which it has been implemented in Simulink of MatLab and it has a model for the dynamics of one nucleo electric central that presents the main characteristics of the reactor vessel, the recirculation system, steam lines, turbines, generator, condensers and feeding water, defined by the main processes that intervene in the generation of energy of these plants. By this way the radiation monitoring systems for area and process, operate simultaneously with the processes of energy generation, with that is possible to observe the changes that present with respect to the operation conditions of the plant, and likewise to appreciate the radiation transport process through the components of the reactor, steam lines and turbines, for different operation conditions and possible faults that they could be presented during the reactor operation. (Author)

  7. Comparison of BWR-6 pressurization transients with one-dimensional and point kinetics

    International Nuclear Information System (INIS)

    Serra, J.M.; Mata, P.; Cronin, J.T.

    1992-01-01

    This paper focuses on the differences between the results of core reload licensing calculations for the BWR-6 plant when performed with a one-dimensional (1-D) versus a point kinetics model. More specifically, the improvement in critical power ratio which would be expected from a change in methods from a point to a 1-D kinetics core wide transient calculation for pressurization transients is investigated. To qualitatively assess critical power ratio (CPR) improvement, core wide transient and hot channel calculations of a generator load rejection with failure of the steam by-pass system and a feedwater controller failure of maximum demand are performed with both, point and 1-D kinetics models in the core wide simulation. Additionally, a sensitivity study on the frequency of power shape function updating in the 1-D kinetics calculation is performed

  8. Simulation based virtual learning environment in medical genetics counseling

    DEFF Research Database (Denmark)

    Makransky, Guido; Bonde, Mads T.; Wulff, Julie S. G.

    2016-01-01

    BACKGROUND: Simulation based learning environments are designed to improve the quality of medical education by allowing students to interact with patients, diagnostic laboratory procedures, and patient data in a virtual environment. However, few studies have evaluated whether simulation based...... the perceived relevance of medical educational activities. The results suggest that simulations can help future generations of doctors transfer new understanding of disease mechanisms gained in virtual laboratory settings into everyday clinical practice....... learning environments increase students' knowledge, intrinsic motivation, and self-efficacy, and help them generalize from laboratory analyses to clinical practice and health decision-making. METHODS: An entire class of 300 University of Copenhagen first-year undergraduate students, most with a major...

  9. Simplified system for the pressure control of a Nucleo electric central of the BWR type; Sistema simplificado para el control de presion de una central Nucleoelectrica del tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez J, J. [FI-UNAM, DEPFI Campus Morelos, Jiutepec, Morelos (Mexico)

    2003-07-01

    One of the main preoccupations of the electric power generator stations is the appropriate operation of the same ones. The operators must be qualified to respond in an adequate way and to be able to take to these power stations to an optimal, sure and stable operation condition under any circumstance. The Laboratory of Analysis in Nuclear Reactors Engineering (LAIRN) of the Engineering Faculty of UNAM (Fl) in collaboration with the International Atomic Energy Agency (IAEA), it develops an interactive classroom simulator in which simulations of the phenomena which take place in a nuclear power station are executed. The classroom simulator bases its operation on specialized nuclear codes feeding interactive graphic unfolding with those that it is possible to make a monitoring, supervision and control of the behavior of the power station under any operation regime, either in normal operation, transitory events or postulated accident sequence. The development of this classroom simulator includes a modular and re configurable structure. Due to it is indispensable to count with a higher inter activity with the system it is included the simulation of the control system of the plant and inside the same, one of those more important it is the reactor pressure control system. The present work describes the conceptual design and the used methodology for the development and implementation in the simulator of a simplified model of the pressure control system for a BWR generic central. The reach of the development will allow to accomplish the necessary tests to demonstrate that this has an adequate performance according to the carried out simplifications. (Author)

  10. Vertical Drop of 44-BWR Waste Package With Lifting Collars

    Energy Technology Data Exchange (ETDEWEB)

    A.K. Scheider

    2005-08-23

    The objective of this calculation is to determine the structural response of a waste package (WP) dropped flat on its bottom from a specified height. The WP used for that purpose is the 44-Boiling Water Reactor (BWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The Uncanistered Waste Disposal Container System is classified as Quality Level 1 (Ref. 4, page 7). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 16). AP-3. 12Q, Design Calculations and Analyses (Ref. 11) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 44-BWR WP considered in this calculation and provides the potential dimensions and materials for that design.

  11. Study on thermal performance and margins of BWR fuel elements

    International Nuclear Information System (INIS)

    Stosic, Zoran

    1999-01-01

    This paper contributes to developing a methodology of predicting and analyzing thermal performance and margins of Boiling Water Reactor (BWR) fuel assemblies under conditions of reaching high quality Boiling Crisis and subsequent post-dryout thermal hydraulics causing temperature excursion of fuel cladding. Operational margins against dryout and potential for increasing fuel performance with appropriate benefits are discussed. The philosophy of modeling with its special topics are demonstrated on the HECHAN (HEated CHannel ANalyzer) model as the state-of-art for thermal-hydraulics analysis of BWR fuel assemblies in pre- and post-dryout two-phase flow regimes. The scope of further work either being or has to be performed concerning implementation of new physical aspects, including domain extension of HECHAN model applications to the Pressurized Water Reactors (PWRs), is discussed. Finally, a comprehensive overview of the literature dealing with development of the model is given. (author)

  12. Control in fabrication of PWR and BWR type reactor fuel elements

    International Nuclear Information System (INIS)

    Gorskij, V.V.

    1981-01-01

    Both destructive and non-destructive testing methods now in use in fabrication of BWR and PWR type reactor fuel elements at foreign plants are reviewed. Technological procedures applied in fabrication of fuel elements and fuel assemblies are described. Major attention is paid to radiographic, ultrasonic, metallographic, visual and autoclavic testings. A correspondence of the methods applied to the ASTM standards is discussed. The most part of the countries are concluded the apply similar testing methods enabling one to reliably evaluate the quality of primary materials and fabricated fuel elements and thus meeting the demands to contemporary PWR and BWR type reactor fuel elements. Practically all fuel element and pipe fabrication plants in Western Europe, Asia and America use the ASTM standards as the basis for the quality contr [ru

  13. Development of a computerized operator support system for BWR power plant

    International Nuclear Information System (INIS)

    Monta, K.; Sekimizu, K.; Sato, N.; Araki, T.; Mori, N.

    1985-01-01

    A computerized operator support system for BWR power plant has been developed since 1980 supported by the Japanese government. The main functions of the systems are post trip operational guidance, disturbance analysis, standby system management, operational margin monitoring and control rod operational guidance. The former two functions aim at protection against incidents during operation of nuclear power plants and the latter three functions aim at their prevention. As the final stage of the development, these functions are combined with the plant supervision function and are organized as an advanced man-machine interface for BWR power plant. During the above process, operator task analyses are performed to enable synthesis of these support functions for right fit to operator tasks and to realize a hierarchical structure for CRT displays for right fit to operators cognitive needs. (author)

  14. Feasibility studies of computed tomography in partial defect detection of spent BWR fuel

    International Nuclear Information System (INIS)

    Levai, F.; Tikkinen, J.; Tarvainen, M.; Arlt, R.

    1990-10-01

    Feasibility studies were made for tomographic reconstruction of a cross-sectional activity distribution of a spent nuclear fuel assembly. The purpose was to determine the number of fuel rods (pins) and localize the positisons where pins are missing. The activity distribution map showing the locations of fuel rods in the assembly was reconstructed. The theoretical part of this work consists of simulation of image reconstruction based on theoretically calculated data from a reference assembly model. Evaluation of different image reconstruction techniques was made. Measurements were made in real facility conditions. Gamma radiation from an irradiated 8 x 8 - 1 BWR fuel assembly was measured through a narrow custom made collimator from different angles and positions. The measured data set was used as projections for reconstructing the activity profile of the assembly in cross-sectional plane

  15. Large Eddy and Interface Simulation (LEIS) of liquid entrainment in turbulent stratified flow

    International Nuclear Information System (INIS)

    Gulati, S.; Buongiorno, J.; Lakehal, D.

    2011-01-01

    Dryout of the liquid film on the fuel rods in BWR fuel assemblies leads to an abrupt decrease in heat transfer coefficient and can result in fuel failure. The process of mechanical mass transfer from the continuous liquid field into the continuous vapor field along the liquid-vapor interface is called entrainment and is the dominant depletion mechanism for the liquid film in annular flow. Using interface tracking methods combined with a Large Eddy Simulation approach, implemented in the Computational Multi-Fluid Dynamics (CMFD) code TransAT®, we are studying entrainment phenomena in BWR fuel assemblies. In this paper we report on the CMFD simulation approaches and the current validation effort for the code. (author)

  16. Water chemistry control and decontamination experience with TEPCO BWR`s and the measures planned for the future

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, N.; Miyamaru, K. [Tokyo Electric Power Co. (Japan)

    1995-03-01

    The new TEPCO BWR`s are capable of having the occupational radiation exposure controlled successfully at a low level by selecting low cobalt steel, using corrosion-resistant steel, employing dual condensate polishing systems, and controlling Ni/Fe ratio during operation. The occupational radiation exposure of the old BWR`s, on the other hand, remains high though reduced substantially through the use of low cobalt replacement steel and the partial addition of a filter in the condensate polishing system. Currently under review is the overall decontamination procedure for the old BWR`s to find out to measures needed to reduce the amount of crud that is and has been carried over into the nuclear reactor. The current status of decontamination is reported below.

  17. Application of the FFTBM method and the power relative contribution to the discharge transitory of the recirculation pumps of a BWR

    International Nuclear Information System (INIS)

    Castillo D, R.; Ortiz V, J.; Fuentes M, L.

    2013-10-01

    In this work was realized the simulation of the discharge transitory of both recirculation pumps of a BWR with the Simulate-3K code. This type of transitory is used in the stability analyses for the licensing of the fuel reload. An analysis of the precision of the simulation is also presented, using the FFTBM method jointly with the power relative contribution. This way, instead of determining the total precision of the calculation, a weighed precision is obtained by the contribution of each relevant parameter of the transitory. The results show that the precision of the simulation is acceptable due to the small magnitude of the merit figure of the width total average. The error in the merit figure comes mainly from the parameters total flow in the core and temperature of the fuel in the core. (Author)

  18. Severe Accident Sequence Analysis Program: Anticipated transient without scram simulations for Browns Ferry Nuclear Plant Unit 1

    International Nuclear Information System (INIS)

    Dallman, R.J.; Gottula, R.C.; Holcomb, E.E.; Jouse, W.C.; Wagoner, S.R.; Wheatley, P.D.

    1987-05-01

    An analysis of five anticipated transients without scram (ATWS) was conducted at the Idaho National Engineering Laboratory (INEL). The five detailed deterministic simulations of postulated ATWS sequences were initiated from a main steamline isolation valve (MSIV) closure. The subject of the analysis was the Browns Ferry Nuclear Plant Unit 1, a boiling water reactor (BWR) of the BWR/4 product line with a Mark I containment. The simulations yielded insights to the possible consequences resulting from a MSIV closure ATWS. An evaluation of the effects of plant safety systems and operator actions on accident progression and mitigation is presented

  19. A novel natural environment background model for Monte Carlo simulation and its application in the simulation of anticoincidence measurement

    International Nuclear Information System (INIS)

    Li, Sangang; Wang, Lei; Cheng, Yi; Tuo, Xianguo; Liu, Mingzhe; Yao, Fuliang; Leng, Fengqing; Cheng, Yuanyuan; Cai, Ting; Zhou, Yan

    2016-01-01

    This study proposes a novel natural environment background model by modeling brief environment conditions. It uses Geant4 program to simulate decays of "2"3"8U, "2"3"2Th, and "4"0K in soil and obtains compositions of different-energy gamma rays in the natural environment background. The simulated gamma spectrum of the natural environment background agrees well with the experimental spectrum, particularly above 250 keV. The model is used in the simulation of anticoincidence measurement, indicating that the natural environment background can be decreased by approximately 88%, and the Compton attenuation factor is 2.22. The simulation of anticoincidence measurement can improve the minimum detectable activity (MDA) of the detection system. - Highlights: • This study proposes a novel natural environment background model by simulating decays of "2"3"8U, "2"3"2Th, and "4"0K in soil. • The simulated gamma spectrum of the natural environment background agrees well with the experimental spectrum, particularly above 250 keV. • The proposed environment background model is applied to study the properties of anticoincidence detector.

  20. PREDICTIVE METHODS FOR STABILITY MARGIN IN BWR

    OpenAIRE

    MELARA SAN ROMÁN, JOSÉ

    2016-01-01

    [EN] Power and flow oscillations in a BWR are very undesirable. One of the major concerns is to ensure, during power oscillations, compliance with GDC 10 and 12. GDC 10 requires that the reactor core be designed with appropriate margin to assure that specified acceptable fuel design limits will not be exceeded during any condition of normal operation, including the effects of anticipated operational occurrences. GDC 12 requires assurance that power oscillations which can result in conditions ...

  1. Analysis of Core Physics Experiments on Irradiated BWR MOX Fuel in REBUS Program

    International Nuclear Information System (INIS)

    Yamamoto, Toru; Ando, Yoshihira; Hayashi, Yamato

    2008-01-01

    As part of analyses of experimental data of a critical core containing a irradiated BWR MOX test bundle in the REBUS program, depletion calculations was performed for the BWR MOX fuel assemblies from that the MOX test rods were selected by using a general purpose neutronics code system SRAC. The core analyses were carried out using SRAC and a continuous energy Monte Carlo code MVP. The calculated k eff s were compared with those of the core containing a fresh MOX fuel bundle in the program. The SRAC-diffusion calculation underestimates k eff s of the both cores by 1.0 to 1.3 %dk and the k eff s of MVP are 1.001. The difference in k eff between the irradiated BWR MOX test bundle core and the fresh MOX one is 0.4 %dk in the SRAC-diffusion calculation and 0.0 %dk in the MVP calculation. The calculated fission rate distributions are in good agreement with the measurement in the SRAC-diffusion and MVP calculations. The calculated neutron flux distributions are also in good agreement with the measurement. The calculated burnup reactivity in the both calculations well reproduce the measurements. (authors)

  2. Development of the advanced on-line BWR core monitoring system TiARA

    International Nuclear Information System (INIS)

    Kobayashi, Yoko; Yamazaki, Hiroshi

    1996-01-01

    Development of an integrated computer environment to support plant operators and station nuclear engineers is a recent activity. In achieving this goal, an advanced on-line boiling water reactor (BWR) core monitoring system: TiARA has been developed by Toden Software. An integrated design approach was performed through the introduction of recent computer technologies, a sophisticated human/machine interface (HMI) and an advanced nodal method. The first prototype of TiARA was ready in early 1996. This prototype is now undergoing a field test at Kashiwazaki-Kariwa unit 6. After successful completion of this test, the authors will have achieved the following goals: (1) consistency between on-line core monitoring system and off-line core management system; (2) an enhanced HMI and database; (3) user-friendly operability and maintainability; (4) system development from the utilities' standpoint to fully satisfy operator needs

  3. Prevention of organic iodide formation in BWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Karjunen, T [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Laitinen, T; Piippo, J; Sirkiae, P [VTT Manufacturing Technology (Finland)

    1996-12-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR`s as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs.

  4. Requests on domestic nuclear data library from BWR design

    International Nuclear Information System (INIS)

    Maruyama, Hiromi

    2003-01-01

    Requests on the domestic nuclear data library JENDL and activities of the Nuclear Data Center have been presented from the perspective of BWR design and design code development. The requests include a standard multi-group cross section library, technical supports, and clarification of advantage of JENDL as well as requests from physical aspects. (author)

  5. A study of heat capacity temperature limit of BWR

    International Nuclear Information System (INIS)

    Wang, Shih-Jen; Chen, Jyh-Jun; Chien, Chun-Sheng; Teng, Jyh-Tong

    2012-01-01

    Highlights: ► The purpose of this study is to verify the HCTL. ► MAAP4 was used as code to generate a realistic and convenient HCTL. ► The current HCTL curve causes confusing in reading data. ► The revised HCTL curves developed in this study. ► Users can obtain important parameters from the revised HCTL without confusion and interpolation. - Abstract: Heat capacity temperature limit (HCTL) is an important parameter for operation of BWR. Current version of the HCTL was derived, based on simple model of computation aids (CA) of BWR owners’ group (BWROG). However, some parts of the current HCTL are confusing to the users in reading data. The purpose of this study is to verify the HCTL by applying the MAAP4 code to the field of emergency operating procedure (EOP). The trends of HCTL generated by MAAP4 code are consistent with those obtained from CA. A series of revised HCTL evaluated at various times after scram are provided and the confusing part is eliminated.

  6. System control model of a turbine for a BWR

    International Nuclear Information System (INIS)

    Vargas O, Y.; Amador G, R.; Ortiz V, J.; Castillo D, R.; Delfin L, A.

    2009-10-01

    In this work is presented a design of a control system of a turbine for a nuclear power plant with a BWR like energy source. The model seeks to implement later on at thermal hydraulics code of better estimate RELAP/SCDAPSIM. The model is developed for control and protection of turbine, and the consequent protection to the BWR, considering that the turbine control could be employed for one or several turbines in series. The quality of present designs of control pattern of turbine it is that it considers the parameters more important in the operation of a turbine besides that is has incorporated at control the secondary parameters that will be activated originally as true when the turbine model is substituted by a model more detailed. The development of control model of a turbine will be good in short and medium term to realize analysis about the operation of turbine with different operation conditions, of vapor extraction specific steps of turbine to feed other equipment s, besides analyzing the separate effect and integrated effect. (Author)

  7. A study of heat capacity temperature limit of BWR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shih-Jen, E-mail: sjenwang@iner.gov.tw [Institute of Nuclear Energy Research (INER), 1000, Wunhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Chen, Jyh-Jun [Department of Mechanical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li City, Taoyuan County 32023, Taiwan (China); Chien, Chun-Sheng [Institute of Nuclear Energy Research (INER), 1000, Wunhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Teng, Jyh-Tong [Department of Mechanical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li City, Taoyuan County 32023, Taiwan (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The purpose of this study is to verify the HCTL. Black-Right-Pointing-Pointer MAAP4 was used as code to generate a realistic and convenient HCTL. Black-Right-Pointing-Pointer The current HCTL curve causes confusing in reading data. Black-Right-Pointing-Pointer The revised HCTL curves developed in this study. Black-Right-Pointing-Pointer Users can obtain important parameters from the revised HCTL without confusion and interpolation. - Abstract: Heat capacity temperature limit (HCTL) is an important parameter for operation of BWR. Current version of the HCTL was derived, based on simple model of computation aids (CA) of BWR owners' group (BWROG). However, some parts of the current HCTL are confusing to the users in reading data. The purpose of this study is to verify the HCTL by applying the MAAP4 code to the field of emergency operating procedure (EOP). The trends of HCTL generated by MAAP4 code are consistent with those obtained from CA. A series of revised HCTL evaluated at various times after scram are provided and the confusing part is eliminated.

  8. Development of methodology for early detection of BWR instabilities

    International Nuclear Information System (INIS)

    Alessandro Petruzzi; Shin Chin; Kostadin Ivanov; Asok Ray; Fan-Bill Cheung

    2005-01-01

    Full text of publication follows: The objective of the work presented in this paper research, which is supported by the US Department of Energy under the NEER program, is to develop an early anomaly detection methodology in order to enhance safety, availability, and operational flexibility of Boiling Water Reactor (BWR) nuclear power plants. The technical approach relies on suppression of potential power oscillations in BWRs by detecting small anomalies at an early stage and taking appropriate prognostic actions based on an anticipated operation schedule. The model of coupled (two-phase) thermal-hydraulic and neutron flux dynamics, based on the US NRC coupled code TRACE/PARCS, is being utilized as a generator of time series data for anomaly detection at an early stage. The concept of the methodology is based on the fact that nonlinear systems show bifurcation, which is a change in the qualitative behavior as the system parameters vary. Some of these parameters may change on their own accord and account for the anomaly, while certain parameters can be altered in a controlled fashion. The non-linear, non-autonomous BWR system model considered in this research exhibits phenomena at two time scales. Anomalies occur at the slow time scale while the observation of the dynamical behavior, based on which inferences are made, takes place at the fast time scale. It is assumed that: (i) the system behavior is stationary at the fast time scale; and (ii) any observable non-stationary behavior is associated with parametric changes evolving at the slow time scale. The goal is to make inferences about evolving anomalies based on the asymptotic behavior derived from the computer simulation. However, only sufficient changes in the slowly varying parameter may lead to detectable difference in the asymptotic behavior. The need to detect such small changes in parameters and hence early detection of an anomaly motivate the utilized stimulus-response approach. In this approach, the model

  9. Simulation Environment Synchronizing Real Equipment for Manufacturing Cell

    Science.gov (United States)

    Inukai, Toshihiro; Hibino, Hironori; Fukuda, Yoshiro

    Recently, manufacturing industries face various problems such as shorter product life cycle, more diversified customer needs. In this situation, it is very important to reduce lead-time of manufacturing system constructions. At the manufacturing system implementation stage, it is important to make and evaluate facility control programs for a manufacturing cell, such as ladder programs for programmable logical controllers (PLCs) rapidly. However, before the manufacturing systems are implemented, methods to evaluate the facility control programs for the equipment while mixing and synchronizing real equipment and virtual factory models on the computers have not been developed. This difficulty is caused by the complexity of the manufacturing system composed of a great variety of equipment, and stopped precise and rapid support of a manufacturing engineering process. In this paper, a manufacturing engineering environment (MEE) to support manufacturing engineering processes using simulation technologies is proposed. MEE consists of a manufacturing cell simulation environment (MCSE) and a distributed simulation environment (DSE). MCSE, which consists of a manufacturing cell simulator and a soft-wiring system, is emphatically proposed in detail. MCSE realizes making and evaluating facility control programs by using virtual factory models on computers before manufacturing systems are implemented.

  10. Application of the coupled code Athlet-Quabox/Cubbox for the extreme scenarios of the OECD/NRC BWR turbine trip benchmark and its performance on multi-processor computers

    International Nuclear Information System (INIS)

    Langenbuch, S.; Schmidt, K.D.; Velkov, K.

    2003-01-01

    The OECD/NRC BWR Turbine Trip (TT) Benchmark is investigated to perform code-to-code comparison of coupled codes including a comparison to measured data which are available from turbine trip experiments at Peach Bottom 2. This Benchmark problem for a BWR over-pressure transient represents a challenging application of coupled codes which integrate 3-dimensional neutron kinetics into thermal-hydraulic system codes for best-estimate simulation of plant transients. This transient represents a typical application of coupled codes which are usually performed on powerful workstations using a single CPU. Nowadays, the availability of multi-CPUs is much easier. Indeed, powerful workstations already provide 4 to 8 CPU, computer centers give access to multi-processor systems with numbers of CPUs in the order of 16 up to several 100. Therefore, the performance of the coupled code Athlet-Quabox/Cubbox on multi-processor systems is studied. Different cases of application lead to changing requirements of the code efficiency, because the amount of computer time spent in different parts of the code is varying. This paper presents main results of the coupled code Athlet-Quabox/Cubbox for the extreme scenarios of the BWR TT Benchmark together with evaluations of the code performance on multi-processor computers. (authors)

  11. Full immersion simulation: validation of a distributed simulation environment for technical and non-technical skills training in Urology.

    Science.gov (United States)

    Brewin, James; Tang, Jessica; Dasgupta, Prokar; Khan, Muhammad S; Ahmed, Kamran; Bello, Fernando; Kneebone, Roger; Jaye, Peter

    2015-07-01

    To evaluate the face, content and construct validity of the distributed simulation (DS) environment for technical and non-technical skills training in endourology. To evaluate the educational impact of DS for urology training. DS offers a portable, low-cost simulated operating room environment that can be set up in any open space. A prospective mixed methods design using established validation methodology was conducted in this simulated environment with 10 experienced and 10 trainee urologists. All participants performed a simulated prostate resection in the DS environment. Outcome measures included surveys to evaluate the DS, as well as comparative analyses of experienced and trainee urologist's performance using real-time and 'blinded' video analysis and validated performance metrics. Non-parametric statistical methods were used to compare differences between groups. The DS environment demonstrated face, content and construct validity for both non-technical and technical skills. Kirkpatrick level 1 evidence for the educational impact of the DS environment was shown. Further studies are needed to evaluate the effect of simulated operating room training on real operating room performance. This study has shown the validity of the DS environment for non-technical, as well as technical skills training. DS-based simulation appears to be a valuable addition to traditional classroom-based simulation training. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  12. Accident sequence analysis for a BWR [Boiling Water Reactor] during low power and shutdown operations

    International Nuclear Information System (INIS)

    Whitehead, D.W.; Hake, T.M.

    1990-01-01

    Most previous Probabilistic Risk Assessments have excluded consideration of accidents initiated in low power and shutdown modes of operation. A study of the risk associated with operation in low power and shutdown is being performed at Sandia National Laboratories for a US Boiling Water Reactor (BWR). This paper describes the proposed methodology for the analysis of the risk associated with the operation of a BWR during low power and shutdown modes and presents preliminary information resulting from the application of the methodology. 2 refs., 2 tabs

  13. A full scope nuclear power plant simulator for multiple reactor types with virtual control panels

    International Nuclear Information System (INIS)

    Yonezawa, Hisanori; Ueda, Hiroki; Kato, Takahisa

    2017-01-01

    This paper summarizes a full scope nuclear power plant simulator for multiple reactor types with virtual control panels which Toshiba developed and delivered. After the Fukushima DAIICHI nuclear power plants accident, it is required that all the people who are engaged in the design, manufacturing, operation, maintenance, management and regulation for the nuclear power plant should learn the wide and deep knowledge about the nuclear power plant design including the severe accident. For this purpose, the training with a full scope simulator is one of the most suitable ways. However the existing full scope simulators which are consist of the control panels replica of the referenced plants are costly and they are hard to remodel to fit to the real plant of the latest condition. That's why Toshiba developed and delivered the new concept simulator system which covers multiple referenced plants even though they have different design like BWR and PWR. The control panels of the simulator are made by combining 69 large Liquid Crystal Display (LCD) panels with touch screen instead of a control panel replica of referenced plant. The screen size of the each panel is 42 inches and 3 displays are arranged in tandem for one unit and 23 units are connected together. Each panel displays switches, indicators, recorders and lamps with the Computer Graphics (CG) and trainees operate them with touch operations. The simulator includes a BWR and a PWR simulator model, which enable trainees to learn the wide and deep knowledge about the nuclear power plant of BWR and PWR reactor types. (author)

  14. Seismic PRA of a BWR plant

    International Nuclear Information System (INIS)

    Nishio, Masahide; Fujimoto, Haruo

    2014-01-01

    Since the occurrence of nuclear power plant accidents in the Fukushima Daichi nuclear power station, the regulatory framework on severe accident (SA) has been discussed in Japan. The basic concept is to typify and identify the accident sequences leading to core/primary containment vessel (PCV) damage and to implement SA measures covering internal and external events extensively. As Japan is an earthquake-prone country and earthquakes and tsunami are important natural external events for nuclear safety of nuclear power plants, JNES performed the seismic probabilistic risk assessment (PRA) on a typical nuclear power plant and evaluated the dominant accident sequences leading to core/PCV damage to discuss dominant scenarios of severe accident (SA). The analytical models and the results of level-1 seismic PRA on a 1,100 MWe BWR-5 plant are shown here. Seismic PRA was performed for a typical BWR5 plant. Initiating events with large contribution to core damage frequency are the loss of all AC powers (station blackout) and the large LOCA. The top of dominant accident sequences is the simultaneous occurrence of station blackout and large LOCA. Important components to core damage frequency are electric power supply equipment. It needs to keep in mind that the results are influenced on site geologic characteristic to a greater or lesser. In the process of analysis, issues such as conservative assumptions related to damages of building or structure and success criteria for excessive LOCA are left to be resolved. These issues will be further studied including thermal hydric analysis in the future. (authors)

  15. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors

  16. Proposal of fatigue crack growth rate curve in air for nickel-base alloys used in BWR

    International Nuclear Information System (INIS)

    Ogawa, Takuya; Itatani, Masao; Nagase, Hiroshi; Aoike, Satoru; Yoneda, Hideki

    2013-01-01

    When the defects are detected in the nuclear components in Japan, structural integrity assessment should be performed for the technical judgment on continuous service based on the Rules on Fitness-for-Service for Nuclear Power Plants of the Japan Society of Mechanical Engineers Code (JSME FFS Code). Fatigue crack growth analysis is required when the cyclic loading would be applied for the components. Recently, fatigue crack growth rate curve in air environment for Nickel-base alloys weld metal used in BWR was proposed by the authors and it was adopted as a code case of JSME FFS Code to evaluate the embedded flaw. In this study, fatigue crack growth behavior for heat-affected zone (HAZ) of Nickel-base alloys in air was investigated. And a unified fatigue crack growth rate curve in air for HAZ and weld metal of Nickel-base alloys used in BWR was evaluated. As a result, it was found that the curve for weld metal could be applied as a curve for both HAZ and weld metal since moderately conservative assessment of fatigue crack growth rate of HAZ is possible by the curve for weld metal in the Paris region. And the threshold value of stress intensity far range (ΔK th ) is determined to 3.0 MPa√m based on the fatigue crack growth rate of HAZ. (author)

  17. Fatigue cracking of alloy 600 in simulated steam generator crevice environment

    International Nuclear Information System (INIS)

    Ogundele, G.; Lepik, O.

    1998-01-01

    Investigations were carried out to generate fatigue life (S-N) and near-threshold fatigue crack propagation (da/dN) data to determine the environmental influence on fatigue behavior for Alloy 600 in air, deionized water and in simulated Bruce Nuclear Generating Station 'A' crevice environments under appropriate loading conditions. In the low cycle fatigue regime, the simulated crevice environment did not affect the fatigue life of Alloy 600 under the applied loading conditions. The near-threshold fatigue crack growth rates of Alloy 600 in the simulated crevice environment were significantly lower compared to either pure water or air environments and is believed to be the result of higher crack closure in the crevice environment. (author)

  18. Experiences with a simulated learning environment - the SimuScape©: Virtual environments in medical education

    Directory of Open Access Journals (Sweden)

    Anna-Lena Thies

    2014-03-01

    Full Text Available INTRODUCTION: Simulation as a tool for medical education has gained considerable importance in the past years. Various studies have shown that the mastering of basic skills happens best if taught in a realistic and workplace-based context. It is necessary that simulation itself takes place in the realistic background of a genuine clinical or in an accordingly simulated learning environment. METHODS: A panoramic projection system that allows the simulation of different scenarios has been created at the medical school of the Westphalian Wilhelms-University  Muenster/Germany. The SimuScape© is a circular training room of six meters in diameter and has the capacity to generate pictures or moving images as well as the corresponding background noises for medical students, who are then able to interact with simulated patients inside a realistic environment. RESULTS: About 1,000 students have been instructed using the SimuScape© in the courses of emergency medicine, family medicine and anesthesia. The SimuScape©, with its 270°-panoramic projection, gives the students the impression “of being right in the center of action”.  It is a flexible learning environment that can be easily integrated into curricular teaching and which is in full operation for 10 days per semester. CONCLUSION: The SimuScape© allows the establishment of new medical areas outside the hospital and surgery for simulation and it is an extremely adaptable and cost-effective utilization of a lecture room. In this simulated environment it is possible to teach objectives like self-protection and patient care during disturbing environmental influences in practice.

  19. An advanced frequency-domain code for boiling water reactor (BWR) stability analysis and design

    International Nuclear Information System (INIS)

    Behrooz, A.

    2008-01-01

    for a large reactor could reach 20 gigabytes) that it is not possible to load into RAM memory of an operating system with 32 bit architecture. A special procedure has been developed within the MATLAB environment to remove this memory limitation, and to invert such large matrices and finally obtain the reactor transfer functions that enable the study of system stability. Various applications of the present frequency-domain code to a typical BWR fuel assembly, a BWR core, and to a chemical reactor showed a good agreement with reference results. (author)

  20. Applying virtual environments to training and simulation (abstract)

    NARCIS (Netherlands)

    Jense, G.J.; Kuijper, F.

    1993-01-01

    Virtual environment (VE) technology is expected to make a big impact on future training and simulation systems. Direct stimulation of human-senses (eyesight, auditory, tactile) and new paradigms for user input will improve the realism of simulations and thereby the effectiveness of training systems.

  1. Aging assessment of BWR control rod drive systems

    International Nuclear Information System (INIS)

    Greene, R.H.

    1992-01-01

    This Phase 1 Nuclear Plant Aging Research (NPAR) study examines the aging phenomena associated with boiling water reactor (BWR) control rod drive mechanisms (CRDMs) and assesses the merits of various methods of managing this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of NPRDS failure cases attributed to the CRD system, and (4) personal information exchange. As part of this study, nearly 3,500 NPRDS failure reports have been analyzed to examine the prevailing failure trends for CRD system components. An investigation has been conducted that summarizes the occurrence frequency of these component failures, discovery methods, reported failure causes, their respective symptoms, and actions taken by utilities to restore component and system service. The results of this research have identified the predominant CRDM failure modes and causes. In addition, recommendations are presented regarding specific actions that utilities can implement to mitigate CRDM aging. An evaluation has also been made of certain practices and tooling which have enabled some utilities to reduce ALARA exposures received from routine CRDM replacement and rebuilding activities

  2. Aging assessment of BWR control rod drive systems

    International Nuclear Information System (INIS)

    Greene, R.H.

    1991-01-01

    This study examines the aging phenomena associated with boiling water reactor (BWR) control rod drive mechanisms (CRDMs) and assess the merits of various methods of managing this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of Nuclear Plant Reliability Data System (NPRDS) failure cases attributed to the CRD system, and (4) personal information exchange with industry experts. As part of this study, nearly 3500 NPRDS failure reports have been analyzed to examine the prevailing failure trends for CRD system components. An investigation was conducted to summarize the occurrence frequency of these component failures, discovery methods, reported failure causes, their respective symptoms, and actions taken by utilities to restore component and system service. The results of this research have identified the predominant CRDM failure modes and causes. In addition, recommendations are presented that identify specific actions utilities can implement to mitigate CRDM aging. An evaluation has also been made of certain maintenance practices and tooling which have enabled some utilities to reduce ALARA exposures received from routine CRDM replacement and rebuilding activities. 5 refs., 8 figs., 2 tabs

  3. Appraisal of BWR plutonium burners for energy centers

    International Nuclear Information System (INIS)

    Williamson, H.E.

    1976-01-01

    The design of BWR cores with plutonium loadings beyond the self-generation recycle (SGR) level is investigated with regard to their possible role as plutonium burners in a nuclear energy center. Alternative plutonium burner approaches are also examined including the substitution of thorium for uranium as fertile material in the BWR and the use of a high-temperature gas reactor (HTGR) as a plutonium burner. Effects on core design, fuel cycle facility requirements, economics, and actinide residues are considered. Differences in net fissile material consumption among the various plutonium-burning systems examined were small in comparison to uncertainties in HTGR, thorium cycle, and high plutonium-loaded LWR technology. Variation in the actinide content of high-level wastes is not likely to be a significant factor in determining the feasibility of alternate systems of plutonium utilization. It was found that after 10,000 years the toxicity of actinide high-level wastes from the plutonium-burning fuel cycles was less than would have existed if the processed natural ores had not been used for nuclear fuel. The implications of plutonium burning and possible future fuel cycle options on uranium resource conservation are examined in the framework of current ERDA estimates of minable uranium resources

  4. Aging assessment of BWR control rod drive systems

    International Nuclear Information System (INIS)

    Greene, R.H.

    1991-01-01

    This Phase 1 Nuclear Plant Aging Research (NPAR) study examines the aging phenomena associated with boiling water reactor (BWR) control rod drive mechanisms (CRDMs) and assesses the merits of various methods of managing this aging. Information for this study was acquired from (1) the results of a special CRDM aging questionnaire distributed to each US BWR utility, (2) a first-of-its-kind workshop held to discuss CRDM aging and maintenance concerns, (3) an analysis of NPRDS failure cases attributed to the CRD system, and (4) personal information exchange. As part of this study, nearly 3,500 NPRDS failure reports have been analyzed to examine the prevailing failure trends for CRD system components. An investigation has been conducted that summarizes the occurrence frequency of these component failures, discovery methods, reported failure causes, their respective symptoms, and actions taken by utilities to restore component and system service. The results of this research have identified the predominant CRDM failure modes and causes. In addition, recommendations are presented regarding specific actions that utilities can implement to mitigate CRDM aging. An evaluation has also been made of certain practices and tooling which have enabled some utilities to reduce ALARA exposures received from routine CRDM replacement and rebuilding activities

  5. Safety evaluation of BWR off-gas treatment systems

    International Nuclear Information System (INIS)

    Schultz, R.J.; Schmitt, R.C.

    1975-01-01

    Some of the results of a safety evaluation performed on current generic types of BWR off-gas treatment systems including cooled and ambient temperature adsorber beds and cryogenics are presented. The evaluation covered the four generic types of off-gas systems and the systems of five major vendors. This study was part of original work performed under AEC contract for the Directorate of Regulatory Standards. The analysis techniques employed for the safety evaluation of these systems include: Fault Tree Analysis; FMECA (Failure Mode Effects and Criticality Analysis); general system comparisons, contaminant, system control, and design adequacy evaluations; and resultant Off-Site Dose Calculations. The salient areas presented are some of the potential problem areas, the approach that industry has taken to mitigate or design against potential upset conditions, and areas where possible deficiencies still exist. Potential problem areas discussed include hydrogen detonation, hydrogen release to equipment areas, operator/automatic control interface, and needed engineering evaluation to insure safe system operation. Of the systems reviewed, most were in the category of advanced or improved over that commonly in use today, and a conclusion from the study was that these systems offer excellent potential for noble gas control for BWR power plants where more stringent controls may be specified -- now or in the future. (U.S.)

  6. Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model

    Energy Technology Data Exchange (ETDEWEB)

    Karve, A.A.; Rizwan-uddin; Dorning, J.J. [Univ. of Virginia, Charlottesville, VA (United States)

    1995-09-01

    A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcation occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.

  7. K-infinite trends with burnup, enrichment, and cooling time for BWR fuel assemblies

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1998-08-01

    This report documents the work performed by ORNL for the Yucca Mountain project (YMP) M and O contractor, Framatome Cogema Fuels. The goal of this work was to obtain k inf values for infinite arrays of flooded boiling-water-reactor (BWR) fuel assemblies as a function of various burnup/enrichment and cooling-time combinations. These scenarios simulate expected limiting criticality loading conditions (for a given assembly type) for drift emplacements in a repository. Upon consultation with the YMP staff, a Quad Cities BWR fuel assembly was selected as a baseline assembly. This design consists of seven axial enrichment zones, three of which contain natural uranium oxide. No attempt was made to find a bounding or even typical assembly design due to the wide variety in fuel assembly designs necessary for consideration. The current work concentrates on establishing a baseline analysis, along with a small number of sensitivity studies which can be expected later if desired. As a result of similar studies of this nature, several effects are known to be important in the determination of the final k inf for spent fuel in a cask-like geometry. For a given enrichment there is an optimal burnup: for lower burnups, excess energy (and corresponding excess reactivity) is present in the fuel assembly; for larger burnups, the assembly is overburned and essentially driven by neighboring fuel assemblies. The majority of the burnup/enrichment scenarios included in this study were for some near-optimum burnup/enrichment combinations as determined from Energy Information Administration (EIA) data. Several calculations were performed for under- and over-burned fuel to show these effects

  8. Maintenance of BWR control rod drive mechanisms

    International Nuclear Information System (INIS)

    Greene, R.H.

    1991-01-01

    Control rod drive mechanism (CRDM) replacement and rebuilding is one of the highest dose, most physically demanding, and complicated maintenance activities routinely accomplished by BWR utilities. A recent industry workshop sponsored by the Oak Ridge National Laboratory, which dealt with the effects of CRDM aging, revealed enhancements in maintenance techniques and tooling which have reduced ALARA, improved worker comfort and productivity, and have provided revised guidelines for CRDM changeout selection. Highlights of this workshop and ongoing research on CRDM aging are presented in this paper

  9. WinGraphics: An optimized windowing environment for interactive real-time simulations

    International Nuclear Information System (INIS)

    Verboncoeur, J.P.; Vahedi, V.

    1989-01-01

    We have developed a customized windowing environment, Win Graphics, which provides particle simulation codes with an interactive user interface. The environment supports real-time animation of the simulation, displaying multiple diagnostics as they evolve in time. In addition, keyboard and printer (PostScript and dot matrix) support is provided. This paper describes this environment

  10. Lithium-ion Battery Electrothermal Model, Parameter Estimation, and Simulation Environment

    Directory of Open Access Journals (Sweden)

    Simone Orcioni

    2017-03-01

    Full Text Available The market for lithium-ion batteries is growing exponentially. The performance of battery cells is growing due to improving production technology, but market request is growing even more rapidly. Modeling and characterization of single cells and an efficient simulation environment is fundamental for the development of an efficient battery management system. The present work is devoted to defining a novel lumped electrothermal circuit of a single battery cell, the extraction procedure of the parameters of the single cell from experiments, and a simulation environment in SystemC-WMS for the simulation of a battery pack. The electrothermal model of the cell was validated against experimental measurements obtained in a climatic chamber. The model is then used to simulate a 48-cell battery, allowing statistical variations among parameters. The different behaviors of the cells in terms of state of charge, current, voltage, or heat flow rate can be observed in the results of the simulation environment.

  11. A novel natural environment background model for Monte Carlo simulation and its application in the simulation of anticoincidence measurement.

    Science.gov (United States)

    Li, Sangang; Wang, Lei; Cheng, Yi; Tuo, Xianguo; Liu, Mingzhe; Yao, Fuliang; Leng, Fengqing; Cheng, Yuanyuan; Cai, Ting; Zhou, Yan

    2016-02-01

    This study proposes a novel natural environment background model by modeling brief environment conditions. It uses Geant4 program to simulate decays of (238)U, (232)Th, and (40)K in soil and obtains compositions of different-energy gamma rays in the natural environment background. The simulated gamma spectrum of the natural environment background agrees well with the experimental spectrum, particularly above 250 keV. The model is used in the simulation of anticoincidence measurement, indicating that the natural environment background can be decreased by approximately 88%, and the Compton attenuation factor is 2.22. The simulation of anticoincidence measurement can improve the minimum detectable activity (MDA) of the detection system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Application of eddy current inspection to the Inconel weld of BWR internals

    International Nuclear Information System (INIS)

    Machida, Eiji; Yusa, Noritaka

    2004-01-01

    In order to definite the basic specifications of application of ECT (Eddy Current Test) to Inconel weld of BWR internals, the inspection and numerical analysis were carried out. The characteristics of the existing ECT probe were studied by making sample as same as CRD stud tube, measuring the relative permeability and electric conductivity of Inconel and alloy and evaluating ECT probe. On the basis of the results obtained, the basic specifications were determined and a new eddy current probe for inspection was designed and produced. The new ECT probe was able to detect small notch in Inconel weld, to classify the defects by eddy current inspection signal and sizing the length and depth. It is concluded that the new ECT probe is able to apply the Inconel weld of BWR internals. (S.Y.)

  13. IFPE/IFA-432, Fission Gas Release, Mechanical Interaction BWR Fuel Rods, Halden

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    1996-01-01

    Description: It contains data from experiments that have been performed at the IFE/OECD Halden Reactor Project, available for use in fuel performance studies. It covers experiments on thermal performance, fission product release, clad properties and pellet clad mechanical interaction. It includes also experimental data relevant to high burn-up behaviour. IFA-432: Measurements of fuel temperature response, fission gas release and mechanical interaction on BWR-type fuel rods up to high burn-ups. The assembly featured several variations in rod design parameters, including fuel type, fuel/cladding gap size, fill gas composition (He and Xe) and fuel stability. It contained 6 BWR-type fuel rods with fuel centre thermocouples at two horizontal planes, rods were also equipped with pressure transducers and cladding extensometers. Only data from 6 rods are compiled here

  14. Feasibility study on development of plate-type heat exchanger for BWR plants

    International Nuclear Information System (INIS)

    Ohyama, Nobuhiro; Suda, Kenichi; Ogata, Hiroshi; Matsuda, Shinichi; Nagasaka, Kazuhiro; Fujii, Toshi; Nozawa, Toshiya; Ishihama, Kiyoshi; Higuchi, Tomokazu

    2004-01-01

    In order to apply plate-type heat exchanger to RCW, TCW and FPC system in BWR plants, heat test and seismic test of RCW system heat exchanger sample were carried out. The results of these tests showed new design plate-type heat exchanger satisfied the fixed pressure resistance and seismic resistance and keep the function. The evaluation method of seismic design was constructed and confirmed by the results of tests. As anti-adhesion measure of marine organism, an ozone-water circulation method, chemical-feed method and combination of circulation of hot water and air bubbling are useful in place of the chlorine feeding method. Application of the plate-type heat exchanger to BWR plant is confirmed by these investigations. The basic principles, structure, characteristics, application limit and reliability are stated. (S.Y.)

  15. TVA experience in BWR reload design and licensing

    International Nuclear Information System (INIS)

    Robertson, J.D.

    1986-01-01

    TVA has developed and implemented the capability to perform BWR reload core design and licensing analyses. The advantages accruing from this capability include the tangible cost-savings from performing reload analyses in-house. Also, ''intangible'' benefits such as increased operating flexibility and the ability to accommodate multivendor fuel designs have been demonstrated. The major disadvantage with performing in-house analyses is the cost associated with development and maintenance of the analytical methods and staff expertise

  16. Aggressive chemical decontamination tests on small valves from the Garigliano BWR

    International Nuclear Information System (INIS)

    Bregani, F.

    1990-01-01

    In order to check the effectiveness of direct chemical decontamination on small and complex components, usually considered for storage without decontamination because of the small amount, some tests were performed on the DECO experimental loop. Four small stainless steel valves from the primary system of the Garigliano BWR were decontaminated using mainly aggressive chemicals such as HC1, HF, HNO 3 and their mixtures. On two valves, before the treatment with aggressive chemicals, a step with soft chemical (oxalic and citric acid mixture) was performed in order to see whether a softening action enhances the following aggressive decontamination. Moreover, in order to increase as much as possible the decontamination effectiveness, a decontamination process using ultrasounds jointly with aggressive chemicals was investigated. After an intensive laboratory testing programme, two smaller stainless steel valves from the primary system of the Garigliano BWR were decontaminated using ultrasounds in aggressive chemical solutions

  17. BWR/5 Pressure-Suppression Pool Response during an SBO

    Directory of Open Access Journals (Sweden)

    Javier Ortiz-Villafuerte

    2013-01-01

    Full Text Available RELAP/SCDAPSIM Mod 3.4 has been used to simulate a station blackout occurring at a BWR/5 power station. Further, a simplified model of a wet well and dry well has been added to the NSSS model to study the response of the primary containment during the evolution of this accident. The initial event leading to severe accident was considered to be a LOOP with simultaneous scram. The results show that RCIC alone can keep the core fully covered, but even in this case about 30% of the original liquid water inventory in the PSP is vaporized. During the SBO, without RCIC, this inventory is reduced about 5% more within six hours. Further, a significant pressure rise occurs in containment at about the time when a sharp increase of heat generation occurs in RPV due to cladding oxidation. Failure temperature of fuel clad is also reached at this point. As the accident progresses, conditions for containment venting can be reached in about nine hours, although there still exists considerable margin before reaching containment design pressure. Detailed information of accident progress in reactor vessel and containment is presented and discussed.

  18. Status report: Intergranular stress corrosion cracking of BWR core shrouds and other internal components

    International Nuclear Information System (INIS)

    1996-03-01

    On July 25, 1994, the US Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 94-03 to obtain information needed to assess compliance with regulatory requirements regarding the structural integrity of core shrouds in domestic boiling water reactors (BWRs). This report begins with a brief description of the safety significance of intergranular stress corrosion cracking (IGSCC) as it relates to the design and function of BWR core shrouds and other internal components. It then presents a brief history of shroud cracking events both in the US and abroad, followed by an indepth summary of the industry actions to address the issue of IGSCC in BWR core shrouds and other internal components. This report summarizes the staff's basis for issuing GL 94-03, as well as the staff's assessment of plant-specific responses to GL 94-03. The staff is continually evaluating the licensee inspection programs and the results from examinations of BWR core shrouds and other internal components. This report is representative of submittals to and evaluations by the staff as of September 30, 1995. An update of this report will be issued at a later date

  19. Effect of Loading Transients on the EAC Crack Growth Behaviour of Low-Alloy RPV Steels under Simulated BWR Operating Conditions (CASTOC WP 3, PSI Tests 3 and 4)

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.-P

    2003-04-01

    Within the CASTOC-project (5{sup t}h EU FW programme), the environmentally-assisted crack (EAC) growth behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state boiling water reactor (BWR) power operation conditions by six European laboratories. The present report is a summary of the third and fourth test of working package (WP) 3 with loading transients, performed at Paul Scherrer Institut (PSI). Two different low-alloy steels (20 MnMoNi 5 5, 0.015 wt.% S and 22 NiMoCr 3 7, 0.007 wt. %S) were investigated in oxygenated high-temperature, high-purity water (T = 240 {sup o}C, DO = 400 ppb) in a daisy chain at two different load ratios (R = 0.8 and 0.2). In the first part of the experiments, asymmetrical saw tooth loading with different rise times {delta}t{sub R} of the load and different loading frequencies were applied. Then the loading conditions were changed to an asymmetrical trapezoid waveform loading (periodical partial unloading, PPU) and the hold time {delta}t{sub H} at maximum load was varied. In the final phase of WP 3 PSI tests 3 and 4 the SCC behaviour was investigated under constant load. With decreasing loading frequency the corrosion fatigue (CF) crack advance per cycle {delta}a/{delta}N{sub EAC} of material A increased. Sustained EAC crack growth could be maintained down to low frequencies of 10{sup -5} Hz. The time-based crack growth rate (CGR) da/dt{sub EAC} decreased with decreasing frequency. In material B no effect of the loading frequency could be resolved. Up to a hold time of 1 h at maximum constant load the CGR da/dt{sub EAC} seemed to be independent of the hold time. Above hold times of 1 h the CGR decreased and dropped down to CGR values in the range or below the BWR VIP 60 SCC disposition lines. This behaviour was observed in both investigated materials. The cycle-based CGR {delta}a/{delta}N{sub EAC} remained approximately constant with increasing hold time. The

  20. Modelling of the dynamics of the vessel and circuits of recirculation of a BWR type nucleo electric as part of the SUN-RAH university simulator

    International Nuclear Information System (INIS)

    Sanchez S, R.A.

    2003-01-01

    In the present project, the development of a model for the dynamics of the process of energy transport generated in the nuclear fuel until the main steam lines of a nucleo electric central with BWR type nuclear reactor, using mathematical models of reduced order is presented. These models present the main characteristics of the reactor vessel and of the recirculation system, defined by the main phenomena that intervene in those physical processes. Likewise, the objective of the general project of the one University student nucleo electric simulator with Boiling Water Reactor (SUN-RAH) for later on to establish the modeling equations for each part of the nuclear reactor as well as of the load pursuit system. Also, its were described the graphic interfaces implemented in an three layers architecture in which the different measuring variables are presented in the monitor. It fits signalize that the advantage presented by the University student nucleo electric simulator is the possibility to carry out changes in the magnitudes of those different variables that intervene in the physical processes made in the one reactor and in the recirculation system in execution time of the same one. Of same way, the creation of a graphic intuitive interface, friendly, and designed with the same technology with the one that the video games are programmed in the present time. Besides all the above mentioned, the pending goals inside of the project are exposed, as well as the developments in construction process or conceptualized to be included in future versions of the simulator. Finally its are thinking about possible scenarios of applications of SUN-RAH, as well as their reaches. (Author)